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Abstract
Evolution strategies are general, nature-inspired heuristics for search and optimization. Sup-

ported both by empirical evidence and by recent theoretical findings, there is a common belief that
evolution strategies are robust and reliable, and frequently they are the method of choice if nei-
ther derivatives of the objective function are at hand nor differentiability and numerical accuracy
can be assumed. However, despite their widespread use, there is little exchange between mem-
bers of the “classical” optimization community and people working in the field of evolutionary
computation. It is our belief that both sides would benefit from such an exchange.

In this paper, we present a brief outline of evolution strategies and discuss some of their prop-
erties in the presence of noise. We then empirically demonstrate that for a simple but nonetheless
nontrivial noisy objective function, an evolution strategy outperforms other optimization algo-
rithms designed to be able to cope with noise. The environment in which the algorithms are tested
is deliberately chosen to afford a transparency of the results that reveals the strengths and short-
comings of the strategies, making it possible to draw conclusions with regard to the design of
better optimization algorithms for noisy environments.

1 Introduction

Noise is a common factor in most real-world optimizationproblems. Sources of noise include, to name
but a few, physical measurement limitations, the use of stochastic simulation models, incomplete sam-
pling of large spaces, and human-computer interaction. Many of the search methods designed to be
able to cope with noise that are in use today can be traced back to either the approach of response
surface methodology or to the field of stochastic approximation. The foundations of response surface
methodology were established by Box and Wilson [18] who were concerned with minimizing an un-
known quadratic objective function disturbed by random noise of constant strength. They proposed
constructing a local linear or quadratic model of the objective function by performing experiments
in the neighborhood of the current iterate, and to take a step in the direction of steepest descent as
derived from this model. According to Torczon and Trosset [52], the designs employed in these
experiments would become the patterns in pattern search methods. Response surface methodology
thus is a direct precursor of methods such as those of Hooke and Jeeves [27], Spendley, Hext and
Himsworth [50], Nelder and Mead [34], Torczon [51], Humphrey and Wilson [28], and Anderson and
Ferris [1]. Stochastic approximation on the other hand dates back to work of Robbins and Monro [40]
and Kiefer and Wolfowitz [31]. The latter authors suggested the use of finite differencing for obtaining
an approximation to the gradient of an unknown, noisy function, and to proceed in direction of this ap-
proximate gradient. The implicit filtering algorithm of Gilmore and Kelley [20] and the simultaneous
perturbation stochastic approximation algorithm of Spall [47, 49] are derived from this approach.
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Evolutionary algorithms are general, nature-inspired heuristics for search and optimization that
have developed in relative isolation from the general optimization community. A notable exception is
an early book of Schwefel [45] which contained an empirical comparison of classical and evolutionary
optimization strategies on a large number of objective functions. See [46] for an updated and translated
version of this text. Only in the wake of the recent reflaring of interest in direct search methods
asserted by Wright [54] and witnessed by a number of publications [53, 37, 52] have there been
renewed attempts to compare methods from both classical and evolutionary optimization [35, 48]. If
carefully crafted, such comparisons can serve to reveal the strengths and weaknesses of the respective
strategies.

Characteristic for evolutionary computing is the metaphorical use of concepts, principles, and
mechanisms underlying natural systems. The three major variants of evolutionary algorithms dis-
tinguished by Bäck [9] — genetic algorithms, evolutionary programming, and evolution strategies
— have originated independently and differ in their particulars, but share the same basic paradigm.
Starting from an initial set of candidate solutions, in an iterative process new candidate solutions are
generated from existing ones by means of variation, and selection serves to drive the set of candidate
solutions towards increasingly better regions of the search space. Variation is achieved by means of
recombination — the act of combining several candidate solutions to form a new one — and mutation
— the random modification of parameter values. Adopting the usual terminology, we refer to the
objective function as thefitness function, to time steps asgenerations, to the set of candidate solutions
as apopulation, and to existing and newly generated candidate solutions asparentsandoffspring,
respectively. In the design of evolution strategies, special emphasis is put on the aspect of adaptabil-
ity. That is, mechanisms that dynamically adapt expected properties of the set of offspring candidate
solutions to local characteristics of the fitness landscape are intrinsic components of the algorithms.

Industrial applications of evolutionary algorithms date back at least to the 1960s, and areas of
application today include management, control, design, scheduling, pattern recognition, and decision
making. A host of international conferences and several international journals are devoted to the field.
In many instances, evolutionary algorithms have proven to be robust and are frequently employed to
solve challenging problems where traditional methods are prone to failure, such as optimization prob-
lems with highly discontinuous objective functions or where only unreliable data is available. Major
reasons for the widespread use of evolutionary algorithms are their universal applicability and the rel-
ative ease with which the underlying paradigm is understood and implemented. While in principle for
any optimization problem there is a special-purpose algorithm that uses problem-specific knowledge
that makes it more efficient, evolutionary algorithms are intended to be general-purpose, easy-to-use,
and usually require very little knowledge of the problem at hand. Moreover, as will be seen below,
there is both theoretical and empirical evidence that the very concepts that distinguishthem from many
other optimization strategies — the use of populations, recombination, and emphasis on adaptability
— may give evolutionary algorithms performance advantages especially in the presence of noise.

It is the aim of this paper to contrast the robustness in the presence of noise of evolution strate-
gies with that of other common algorithms. Clearly, there are at least two complementary approaches
to learning about the behavior of optimization strategies: theoretical and empirical. Theoretical in-
vestigations frequently focus on obtaining proofs of convergence under certain general conditions.
Sometimes convergence orders or asymptotic bounds on the expected times required to reach a cer-
tain vicinity of a global optimum can be obtained. For evolutionary algorithms a number of such
results have been derived by Rudolph [43]. However, while undoubtedly useful, such results are often
rather coarse as the assumptions that are made are deliberately as weak as possible, and the results
that can be derived offer only limited advice for the practitioner who faces the task of choosing one
algorithm or the other. Indeed, Powell [37] states that “there seems to be hardly any correlation be-
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tweenthe algorithms that are in regular use for practical applications and the algorithms that enjoy
guaranteed convergence in theory.” Empirical investigations on the other hand frequently evaluate the
performance of optimization strategies on a variety of fairly standard objective functions, including
ill-scaled, discontinuous, and multimodal functions. Factors like initializationprocedures, termination
criteria, and the settings of strategy-specific parameters can have decisive influence on the outcome
of such experiments. The results do not necessarily bear significance for even the most closely re-
lated problems and strategies, and often they contribute little to the understanding of why one strategy
works better than another.

The approach pursued in the present paper is of a different nature. Instead of considering either
very general classes of problems or specific complex, “realistic” problems, we seek to learn about the
behavior of optimizationstrategies on very simple but nonetheless nontrivialobjective functions. Such
investigations can be either theoretical or empirical. In either case, the results that can be obtained
are interpretable and ideally lead to an understanding of what makes some strategies work better than
others. Sometimes, scaling laws that describe the dependence of the performance of a strategy on
parameters of the strategy or of the optimization problem can be derived. We believe that such an ap-
proach can constitute a useful complement to the other two approaches as it furthers the understanding
not only of under what conditions but also of how and why the strategies work or fail. Therefore, after
presenting a brief outline of evolution strategies in Section 2, we introduce and motivate a highly sym-
metric noisy fitness environment that forms the basis for the empirical investigations in Section 3. In
Section 4, we conclude with a summary of the insights we have gained and with directions for future
research.

2 Evolution Strategies

The purpose of this section is to outline the(�=� +; � )-ES with isotropic normal mutations as an
evolution strategy for the optimization of real-valued functionsf : IRN ! IR. Variants of the
basic algorithm are touched on briefly where appropriate, and different mutation strength adaptation
schemes are discussed. Finally, a few theoretical results concerning the performance in the presence
of noise of the algorithm are summarized.

2.1 The Basic (�=� +; � )-ES

Evolution strategies strive to drive populations of candidate solutions to an optimization problem
towards increasingly better regions of the search space by means of variation and selection. A(�=� +;

�)-ES operates with a populationP of � candidate solutions. Time proceeds in discrete steps and
is indicated by a superscript(t) where necessary. In every time stept, a setQ(t) of � candidate
solutions is created fromP(t) by means of the variational operators of recombination and mutation.
The symbol� indicates the number of parental candidate solutions involved in the creation of every
single offspring candidate solution. The candidate solutions to form the populationP(t+1) of time
step t + 1 are selected on the basis of their individual fitness — depending on the selection type
— either fromP(t) [ Q(t) or fromQ(t). Figure 1 illustrates the basic procedure. While generally,
initialization schemes and termination criteria are important components of the algorithm, they are
frequently application-dependent and irrelevant for what follows. Rather than considering them here,
we refer to Bäck [9] for a discussion. The following paragraphs describe the operators used for
variation and selection in greater detail.

Variation is crucial for preventing stagnation of the evolutionary search. It can be considered a
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offspringQ

(plus-strategies)

Figure 1:The basic evolution loop. Variational
operators are applied to a populationP of can-
didate solutions to generate a setQ of new can-
didate solutions. Selection is then used to re-
duce the population to its original size. For
comma-strategies, selection is from the set of
offspring Q, for plus-strategies it is from the
unionP [ Q as indicated by the dashed line.

source of innovation and is usually undirected. The process of creating an offspring candidate
solution involvesrecombinationandmutation. Recombination is a process in which� � �
parental candidate solutions are selected at random and their centroid is computed. Mutation
consists in adding a random vector drawn from an isotropic normal distribution to that centroid.
For a populationP = fx1; : : : ;x�g, the setQ thus consists of offspring candidate solutions

yi =
1

�

�X
j=1

xij + �zi i = 1 ; : : : ; �; (1)

where the indicesij are independently drawn with replacement and with equal probability
from f1; : : : ; � g, and where themutation vectorszi consist ofN independent components
drawn from a standardized normal distribution. The scalar variable� determines the expected
distance of an offspring candidate solution from the centroid of its parents and is referred to as
themutation strength. Only for the special case that� = �, it is commonplace to stipulate that
the indicesij be drawn fromf1; : : : ; � gwithout replacement. As a consequence, all� parents
are involved in the creation of every single offspring candidate solution and recombination is in
fact deterministic. We refer to this case asglobal intermediate recombination.

Selection is the goal-directed component of the evolutionary search and requires the evaluation of
the fitness of the candidate solutions. It is deterministic, with the(+; ) symbolism denoting the
two mutually exclusive selection types. Using plus-selection, the� best of the�+ � candidate
solutions inP(t) [ Q(t) are selected to formP(t+1). Using comma-selection, the life span of
a candidate solution is restricted to a single time step and it is the� best of the� candidate
solutions inQ(t) that formP(t+1). Obviously, comma-strategies require� � �. We refer to the
fraction�=� as thetruncation ratio.

The variation and selection operators thus defined are but a small subset of the great number of vari-
ants that have been suggested and that are being used. The choice of operators outlined above is
motivated both by that they are in widespread use and fairly standard and by their relative mathemat-
ical tractability. Among the more common alternatives isdominantor discrete recombination[13].
Several extensions, such as Cauchy distributed mutations [44], spatially distributed populations [41],
or co-evolutionary selection schemes [26] aim at improving global search properties of evolutionary
algorithms. Pointers to a great number of such variants can be found in the paper by Bäck, Hammel,
and Schwefel [10].
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Perhapsthe greatest practical shortcoming of the strategy outlined above is its reliance on isotropic
mutations. Most objective functions will not exhibit similar scales in different dimensions and will be
non-separable. Often, correlated mutations and the use of second-order information will be necessary
to achieve satisfactory performance. The scalar variable� in Equation (1) is to be replaced by an
N � N matrixST. Mutation vectors are then normally distributed with positive definite covariance
matrixSTS. The matrixST can better be adapted to the local structure of the fitness landscape. In the
present work, we do not consider correlated mutations as they render the strategies too complicated
for mathematical analysis and as they are not useful for the experiments to be conducted in Section 3.
However, we also note that the restriction to isotropic mutations may not be as severe as it seems.
Ideally, a mutation strength adaptation scheme is able to adapt the matrixST such that locally, fitness
functions are rescaled into the spherical function to be introduced in Section 2.3. According to Hansen
and Ostermeier [24], using their cumulative mutation strength adaptation mechanism, “Any convex-
quadratic function is rescaled into the sphere function”. Analyses of the performance of evolution
strategies on the sphere can therefore be expected to bear relevance to other fitness functions as well.

2.2 Mutation Strength Adaptation

The mutation strength� (or, in case of non-isotropic mutations, the matrixST) needs to be adapted
in the course of the evolutionary search. An ill-adjusted mutation strength can slow down progress
by orders of magnitude if it is too low, or lead to divergence if it is too high. A mutation strength
adaptation component is therefore an important integral part of evolution strategies. Rather than using
fixed schedules as is usual in stochastic approximation, evolutionary algorithms employ dynamic
schemes that adjust flexibly to the local characteristics of the fitness landscapes they operate on.

Presumably the first mutation strength adaptation scheme was proposed for the(1 + 1)-ES by
Rechenberg [38]. Defining thesuccess probabilityas the probability that an offspring candidate so-
lution is superior to its parent, Rechenberg’s scheme relies on the observation that for the fitness
functions he investigated, the success probabilities in case of optimally adjusted mutation strength are
in a range of values centered at about one fifth, and that generally increasing the mutation strength
reduces the success probability and vice versa. Thus, Rechenberg’s recommendation was to monitor
success probabilities by averaging over a number of time steps, and to increase the mutation strength
if the observed estimate of the success probability exceeds0:2 and to decrease the mutation strength
if the success probability is below0:2.

For multi-parent strategies, at least three different approaches for the adaptation of mutation
strengths have been proposed. Nested evolution strategies, propagated by Herdy [25] and Rechen-
berg [39], adjust strategy parameters such as mutation strengths on a meta level by means of evolu-
tionary optimization. Several populations, each one with their own mutation strength settings, com-
pete with each other for survival. After a number of time steps, the respective progress of the different
strategies is determined. The mutation strengths of those populations that have achieved the largest
progress are used as a basis for generating mutation strengths for the next round of competition by
means of recombination and mutation. Clearly, nested evolution strategies lend themselves well to
parallel implementation.

Mutative self-adaptation, due to Rechenberg [38, 39] and Schwefel [45, 46], includes the mutation
strengths into the optimization process at the same hierarchical level as the object parameters of the
problem. Different candidate solutions have differing mutation strengths. Assuming that favorable
mutation strengths are more likely to generate successful offspring than unfavorable ones, selection of
favorable mutation strengths is then a by-product of evolution. Beyer [14] has shown in the absence
of noise that mutative self-adaptation can guarantee stochastic linear convergence order and lead to
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nearoptimal mutation strengths for the(1; � )-ESon spherically symmetric objective functions.
Finally, cumulative mutation strength adaptation, introduced by Hansen and Ostermeier [22, 24],

is an attempt to “derandomize” the process of mutation strength adjustment. Unlike the previous
two methods, cumulative mutation strength adaptation is deterministic rather than evolutive in that it
explicitly analyzes statistical features of the selected offspring to drive the strategy parameter settings
towards their optimal values. Instead of having differing strategy parameter settings compete with
each other at a single time step, cumulative mutation strength adaptation accumulates and analyzes
information from a number of time steps. In the absence of noise, it has been demonstrated empirically
to reliably adapt mutation covariance matrices on a variety of fitness landscapes. As we deal with
isotropic mutations only, instead of outlining the mechanism in its full generality we restrict ourselves
to the variant using a single mutation strength.

Cumulative mutation strength adaptation relies on the presumption that if the mutation strength is
below its optimal value, then selected consecutive steps tend to be parallel, and that if the mutation
strength is too high, consecutive steps tend to be antiparallel. This is plausible intuitively as several
steps in the same direction in search space are ideally replaced by a single longer step in that direction,
and as consecutive steps that nullify each other are a sign that the step length is too high. So as to
be able to reliably detect parallel or antiparallel correlations of progress vectors, information from
a number of time steps needs to be accumulated. For the(�=�; �)-ES, theaccumulated progress
vectors is defined bys(0) = 0 and the recursive relationship

s(t+1) = (1� c)s(t) +
p
c(2� c)

p
�hzi(t); (2)

wherec is a constant determining how far back the “memory” of the accumulation process reaches and
wherehzi is the arithmetic mean of the mutation vectors that correspond to those candidate solutions
that are selected for survival and is referred to as theprogress vector. Thus, the vector�hzi connects
consecutive centroids of the population. The mutation strength is updated according to

�(t+1) = �(t) exp

 
ks(t+1)k2 �N

2DN

!
; (3)

whereD denotes a damping constant. Note that the termN in the numerator of the exponent equals the
expected value of the�2N -distributionand thus is the mean squared length of the accumulated progress
vector if consecutive progress vectors are stochastically independent of each other. If the squared
length of the accumulated progress vector is less thanN then the mutation strength is decreased. If it
is greater thanN then the mutation strength is increased. Also note that the prescription Equation (3)
for adapting the mutation strength has been changed slightly from the prescription in the original
algorithm given by Hansen [22] in that we perform adaptation on the basis of the squared length of
the accumulated progress vector rather than on its length. Pending further investigation, the change
has been approved of by Hansen and Ostermeier [24]. The constantsc andD are usually set to1=

p
N

and
p
N , respectively, according to recommendations made by Hansen [22].

2.3 Performance Analysis of Evolution Strategies in the Presence of Noise

A considerable amount of effort has gone into the analysis of the local performance of evolutionstrate-
gies in the presence of noise [15, 3]. The goal of such research is to determine how the performance of
the strategy scales with parameters of the problem — such as the dimensionality of the search space or
the noise strength — and of the search strategy — such as the population size or the mutation strength.
Such scaling laws allow for a comparison of different variants of the strategies, provide guidelines for
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tuningevolution strategies for maximum performance, and offer insights and an understanding of the
behavior of the strategies that goes beyond what can be learned from mere experimentation. The most
prominent of the objective functions examined is the quadratic sphere

f(x) = xTx; x 2 IRN : (4)

This objective function has also been used by Torczon [51] outside of the realm of evolution strategies
to empirically evaluate the performance of optimization algorithms. Studying the performance of
search strategies on the sphere can be considered a first step towards a quantitative understanding of
the behavior of such algorithms. The sphere is arguably the most simple nontrivial function that can
be considered, and it seems plausible that an optimization strategy that fails on the sphere is unlikely
to succeed when facing more difficult tasks. According to an argument by Rechenberg [38], the
sphere can serve as a model for unconstrained optimization problems at a stage where the population
of candidate solutions is already in relatively close vicinity to the optimizer. It derives part of its
significance from that, ideally, mechanisms for the adaptation of mutation covariance matrices such as
cumulative mutation strength adaptation rescale any convex-quadratic function into the sphere. Other
fitness functions such as the ridge analyzed by Oyman and Beyer [36] attempt to model features
of fitness landscapes in greater distance from the optimizer. Beyer [16] also explores the use of
differential geometric methods for studying general quadratic fitness models. However, such fitness
functions have additional degrees of freedom and are therefore more difficult to analyze. At the same
time the results are less transparent.

Following common practice, we assume that noise inherent in the evaluation of the fitness function
is well modeled by an additive, normally distributed term with mean zero. That is, when evaluating the
fitness of a candidate solutionx, it is not theideal fitnessf(x) that we obtain, but ameasured fitness
that is normally distributed with meanf(x) and with standard deviation��(x). Quite naturally,��(x)
is referred to as thenoise strength. Depending on the dependence of the noise strength on the location
in search space, quite different behaviors of evolution strategies can be observed. For example, if the
noise strength is constant throughout the search space, it is impossible to accurately determine the
optimizer’s location in search space. As seen in [15, 16], after much time has passed the fitness values
of the population of candidate solutions will fluctuate around a nonzero mean that increases with
increasing noise strength and that can be decreased by increasing the population size. In what follows,
however we consider fitness-proportionate noise strength. That is, we assume that the noise strength
for a candidate solutionx being evaluated is proportional to its ideal fitnessf(x). Such relative errors
of measurement are of great practical importance as they arise for example in connection with physical
measurement devices that are accurate up to a certain percentage of the quantity they measure. We
will refer to the sphere in connection with fitness-proportionate noise strength as thenoisy sphere.

Mathematically, the assumption of fitness-proportionate noise strength leads to perfect scale-
invariance of the noisy sphere. Provided that the mutation strength adaptation component functions
properly, appropriately normalized quantities are independent of the location in search space and, af-
ter initialization effects have faded, have time-invariant probability distributions. When plotting the
logarithm of the objective function value of the centroid of the population of candidate solutions over
the number of objective function evaluations, the resulting graph is linear with some superimposed
fluctuations as illustrated in Figure 2. The convergence behavior could thus be termedstochastic linear
convergence.

As both evolution strategies and the optimization algorithms evaluated empirically in Section 3
exhibit stochastic linear convergence, more finely grained performance measures need to be employed
for a comparison of the different strategies. Even for strategies whose convergence orders agree, the
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Figure 2: Typical convergence behavior of di-
rect search strategies on the noisy sphere. The
dashed line shows the logarithm of the strat-
egy’s function value over the number of objec-
tive function evaluations. The efficiency of the
search strategy is determined by the negative of
the slope of the solid line.

differences in performance can be significant. Assuming that the computational costs of the search are
dominated by the costs involved in the evaluation of the fitness function, the efficiency of a strategy
on a serial computer can be considered to be proportional to the negative of the slope of the regression
line in Figure 2. For the(�=� +; � )-ES, thex-increment per time step is�. Denoting the distance from
the centroidhxi of the population to the optimizer byR, the fitness of the centroid of the population
is f(hxi) = R2 and they-increment is proportional to theone-generation gain

�
(t)
sphere

= �N

2

h
log
�
f(hxi(t+1))

�
� log

�
f(hxi(t))

�i

= �N log
R(t+1)

R(t)
; (5)

where the multiplication with the factorN=2 serves the purpose of normalization and reflects the fact
the difficulty of numerical search increases with increasing search space dimensionality. For example,
the cost of obtaining a gradient estimate by means of finite differencing increases linearly withN .
Theefficiency

� =
1

�
E[�sphere ] (6)

of a (�=� +; � )-ES is the expected one-generation gain per evaluation of the fitness function. Due to
the scale-invariance of the sphere, provided that the mutation strength adaptation functions properly,
the efficiency of the(�=� +; � )-ES is constant on the noisy sphere after initialization effects have
faded. This is reflected by the fact that the regression line in Figure 2 is straight.

For the(1 + 1)-ES, in [5] systematic overvaluation of the fitness of surviving candidate solutions
has been identified as a decisive influence on the performance of the strategy. Those candidate solu-
tions that have a measured fitness that exceeds their ideal fitness are more likely to survive selection
than those that are undervalued. In the course of the search, overvaluation builds up and can lead to
stagnation of the search due to the failure of the one-fifth-success rule if the noise strength is too high.
The same effect can be observed for all optimization strategies where search points can persist indefi-
nitely. Periodic reevaluation of surviving candidate solutions may be required for achieving stochastic
linear convergence.

The effect of distributed populations of candidate solutions in the presence of noise has been
studied in [7, 3]. It has been seen that the benefit of distributed populations can be traced to a reduction
of the noise-to-signal ratio under which the strategy operates. That reduction results from an effective
increase in the signal strength that is the sum of a component due to mutation and a component due to
the nonzero variance of the population.
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Recombinationhas been seen to reduce the noise-to-signal ratio using a different approach. The
analysis presented in [6] relies on a decomposition of mutation vectors into acentral component
that points from the centroid of the parental candidate solutions in direction of the optimizer and a
perpendicularlateral component. While selection ensures that the central component is responsible
for progress in direction of the optimizer, the lateral component represents the “harmful” part of a
mutation in that it makes a negative contribution to the fitness of an offspring candidate solution. For
the(�=�; �)-ES, introducing normalized quantities

�0 = �
N

R
and �0

� = ��
N

2R2
;

the efficiency law

� ' 1

�

"
�0c�=�;�p
1 + ( �0�=�

0)2
� �02

2�

#
(7)

derived in [6] is asymptotically exact and provides a good approximation provided that the search
space dimensionalityN is sufficiently high. The coefficientc�=�;� equals the expected average of the
first � order statistics out of a sample of� independent random variates drawn from a standardized
normal distribution and can easily be computed numerically. See Arnold, Balakrishnan, and Na-
garaja [2] for an introduction to order statistics. The first term in the square brackets of Equation (7)
is due to the central components of the mutation vectors, the second term is due to the lateral compo-
nents. Clearly, the second term places a limit on the mutation strengths that positive efficiency can be
achieved with. The presence of the factor� in the denominator of the second term reflects the presence
of for what Beyer [13] has coined the termgenetic repair. It results from the fact that while the central
components of the mutation vectors corresponding to candidate solutions that are selected to survive
are correlated, their lateral components are not. The averaging effect implicit in global intermediate
recombination thus leads to a reduction in length of the “harmful” lateral components and makes it
possible to explore the search space at much higher mutation strengths than would be possible without
recombination. In the presence of noise, these increased mutation strengths are especially beneficial
as they reduce the noise-to-signal ratio# = �0

�=�
0 under which the(�=�; �)-ES operates that appears

in the denominator of the first term. A further result obtained numerically from Equation (7) is that
the optimal truncation ratio�=� increases from a value of0:270 in the absence of noise to0:5 at the
point where the noise strength becomes too high for positive efficiency to be possible.

3 Performance of Optimization Strategies on the Noisy Sphere

In this section, a number of common optimization strategies some of which are designed explicitly for
optimization in noisy environments are compared by evaluating their respective efficiencies on noisy
spheres of several search space dimensionalities. In particular, the strategies considered are the direct
pattern search algorithm of Hooke and Jeeves [27], the simplex method of Nelder and Mead [34],
the multi-directional search algorithm of Torczon [51], the implicit filtering method of Gilmore and
Kelley [20], and a(�=�; �)-ES with isotropic mutations and with cumulative mutation strength adap-
tation. Clearly, it would be desirable to compare the efficiencies of the various strategies analytically.
For the(�=�; �)-ES, analytical results valid for sufficiently largeN have been derived in [3]. How-
ever, while obtaining such results seems conceivable at least for some of the other strategies, the
difficulties involved in such an endeavor can be expected to be considerable, and the analytical com-
parison remains as a challenge for the future. Meanwhile, we resort to comparing the efficiencies of
the strategies on the noisy sphere empirically.
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Figure 3: Efficiencies� of search strategies on the noisy sphere as functions of normalized noise
strength�0

� for search space dimensionalityN = 4. The curves represent results for direct pattern
search (HJ), multi-directional search (MDS), implicit filtering (IF), and a(2=2; 6)-ES with cumulative
mutation strength adaptation (ES).

The definition of efficiency from the previous section is easily generalized for arbitrary search
strategies. To determine the efficiency of a strategy we average both its one-generation gain and the
number of objective function evaluations per time step over40; 000 time steps and then determine
the quotient of the two averages as an estimate for the efficiency. So as to achieve independence of
initial conditions, each strategy is run for2; 000 time steps before the averaging starts. The results of
measuring the efficiencies of the search strategies on noisy spheres with search space dimensionalities
N = 4, 40, and400 are shown in Figures 3, 4, and 5, respectively, and are described in detail in
what follows. Those runs in which stochastic linear convergence was not achieved are excluded from
the figures. The corresponding curves thus end abruptly. Due to the highly symmetric nature of the
objective function, the reasons for the failure of the various strategies become obvious.

Direct Pattern Search

The direct pattern search algorithm of Hooke and Jeeves [27] is an early example of a direct search
strategy. The state of the strategy at timet is described by a base pointx(t) 2 IRN , a vectord(t) 2 IRN

that equals the most recently taken step, and step lengthh(t). An iteration of the direct pattern search
algorithm consists of a pattern step and a sequence of exploratory steps. The pattern step results in
intermediate pointy(t) = x(t) + d(t), thus duplicating the most recently taken step in the hope that
it may speed up the search. Note that if the most recent step was unsuccessful,d(t) equals the zero
vector and effectively no pattern step is being made. The sequence of exploratory moves starts aty(t)

by successively taking steps of lengthh along the axesei, i = 1 ; : : : ; N, of the coordinate system.
If such a step leads to an improved objective function value, it is accepted. Otherwise, taking a step
in the opposite direction�ei is attempted. In our implementation of the algorithm of Hooke and
Jeeves we have made use of the improvement suggested by Bell and Pike [12] that aims at reducing
the number of objective function evaluations in the sequence of exploratory steps by remembering the
most recently taken of the two possible directions as the more promising one. Only after exploratory
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Figure 4: Efficiencies� of search strategies on the noisy sphere as functions of normalized noise
strength�0

� for search space dimensionalityN = 40. The curves represent results for direct pat-
tern search (HJ), multi-directional search (MDS), implicit filtering (IF), and, from top-left to bottom-
right, a(3=3; 10)-ES, a(6=6; 20)-ES, and a(12=12; 40)-ES with cumulative mutation strength adap-
tation (ES).

moves along all axes of the coordinate system have been attempted and a pointz(t) has been reached,
the objective function valuef(z(t)) is compared withf(x(t)) to decide whether the overall step is to
be taken. If it is, thend(t+1) is set toz(t) � x(t) and the new base pointx(t+1) is set to bez(t). If the
overall step is rejected, thend(t+1) is set to be zero. In addition, ifd(t) already equaled zero before
the step, then the step lengthh is halved.

For the direct pattern search algorithm, as for other search strategies that allow search points to
persist indefinitely, the objective function value of the base point needs to be reevaluated periodically
so as to achieve stochastic linear convergence. Without reevaluation, the base point is increasingly
overvalued and the strategy tends to stagnation. This kind of behavior has been studied analytically
for the(1 + 1)-ES in [5]. With reevaluation of the objective function value of the base point in every
time step a step of the direct pattern search algorithm involves betweenN + 1 and2N + 1 objective
function evaluations. It can be seen from Figures 3, 4, and 5 that the efficiency of the method is
quite good in the absence of noise, but that it rather rapidly declines if there is noise present. This
is especially true for high-dimensional search spaces. The curves end abruptly as above a certain
noise strength stochastic linear convergence is not achieved. Failure of achieving stochastic linear
convergence is marked by a rapid decrease in the step length that is easily explained by observing
that the “relative step length”h=R determines the “signal strength” under which the strategy operates.
Generally, the quotienth=R fluctuates. If it becomes rather small, then the difference in ideal fitness
between the old base point and the new candidate base point is small. Thus, the information based on
which the decision whether the old base point is to be replaced is almost entirely hidden by noise. As
a consequence, in the limit, the old base point is replaced randomly with a probability of one half and
the step length is halved with a probability of 25%. This further decrease of the relative step length
eventually leads to an exponential decrease ofh and to stagnation of the search.
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Figure 5: Efficiencies� of search strategies on the noisy sphere as functions of normalized noise
strength�0

� for search space dimensionalityN = 400. The curves represent results for direct pattern
search (HJ), multi-directional search (MDS), implicit filtering (IF), and, from top-left to bottom-right,
a (6=6; 20)-ES, a(12=12; 40)-ES, and a(24=24; 80)-ES with cumulative mutation strength adapta-
tion (ES).

Simplex Method

Based on an earlier numerical optimization scheme by Spendley, Hext, and Himsworth [50], Nelder
and Mead [34] in 1965 devised a simplex method for function minimization. According to Barton
and Ivey [11], in 1996 the simplex method of Nelder and Mead was the most popular direct search
strategy based on published applications. In 1995, Elster and Neumaier [19] asserted that the simplex
method was also the usually recommended and the most frequently used method for noisy function
optimization.

A simplex is the convex hull ofN + 1 points inIRN , where the points satisfy the nondegeneracy
condition that the volume of the hull is nonzero. The simplex method attempts to replace the current
worst vertex by a new vertex that is generated by a reflection, by an expansion, or by a contraction.
Only in case this fails a shrink step is carried out. According to Nelder and Mead, the purpose of these
operations is that “the simplex adapts itself to the local landscape, elongating down inclined planes,
changing direction on encountering a valley at an angle, and contracting in the neighborhood of a
minimum”. Depending on the quality of the new points that are generated, the method requires either
1, 2, orN + 2 objective function evaluations per time step. A good description of the method along
with a discussion of its properties has been published by Wright [54].

In spite of its widespread use, it is well known that the performance of the simplex method fre-
quently is unsatisfactory. A reason for the unsatisfactory performance of the method has been iden-
tified in the tendency of the simplices to collapse into a subspace of the search space or to become
extremely elongated and distorted in shape even if the local structure of the objective function does
not demand that. McKinnon [33] constructed a two-dimensional, strictly convex objective function
that has continuous second derivatives where the simplex method converges to a nonoptimal point.
The method repeatedly contracts the simplex with the best vertex remaining fixed. The simplices
tend to a straight line which is orthogonal to the steepest descent direction. Moreover, Torczon [51]
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hasshown experimentally that the algorithm of Nelder and Mead fails even on the sphere unless the
dimensionalityN of the search space is very small, and that the presence of noise even worsens the
tendency of the method to stagnate at nonoptimal points.

Our observations of the performance of the simplex method of Nelder and Mead on the noisy
sphere agree with those of Torczon [51]. ForN = 4 and zero noise strength, we have obtained an
efficiency of about0:26, thus exceeding that of all other search strategies we have tested but implicit
filtering. However, for nonzero noise strength or forN = 40 or evenN = 400, not a single run
of the strategy resulted in stochastic linear convergence. We have tested a number of reevaluation
strategies and have followed the recommendations of Barton and Ivey [11] with regard to the setting
of parameters, but to no discernible effect. There is little use in averaging over multiple samples as any
nonzero level of noise can lead to stagnation. Restart strategies to be applied if the simplex becomes
too degenerate have been suggested for example by Humphrey and Wilson [28] and by Kelley [29].
We have not employed any such strategies as the breakdowns are so frequent that the behavior of the
algorithm would be determined by the restart strategy rather than by the simplex search.

Multi-Directional Search

The multi-directional search method of Torczon [51] is a simplex-based strategy that attempts to
overcome the shortcomings of the algorithm of Nelder and Mead. A primary motivation for the new
method was the desire for efficiency in a parallel computing environment. An empirical comparison
of multi-directional search with the simplex method of Nelder and Mead led Torczon to suggest that
“the multi-directional search algorithm may prove to be most useful when the function evaluations are
subject to error”. A related method has recently been suggested by Anderson and Ferris [1].

Realizing that degenerate simplices are a frequent source of failure of the simplex method of
Nelder and Mead, Torczon insisted that for the multi-directional search method the shape of the sim-
plices does not change but that merely their size varies. In our implementation we employ a regular
simplex, i.e. one for which all edges have the same length. In contrast to the Nelder-Mead method,
not single vertices but the entire simplex is reflected, expanded, and contracted in one time step. An
iteration succeeds when it finds a point of strict improvement over thebest vertex, in contrast to the
much weaker condition in a Nelder-Mead iteration of finding a strict improvement compared to the
worst point.

In order to achieve stochastic linear convergence, it is necessary to reevaluate the objective func-
tion value of the best vertex in every time step. An iteration of the multi-directional search requires
2N + 1 evaluations of the objective function. It can be seen from Figures 3, 4, and 5 that overall
the efficiency of the strategy on the noisy sphere is satisfactory only forN = 4. In contrast to most
of the other methods considered, the efficiency markedly declines with increasing search space di-
mensionality and is virtually zero forN = 400 even in the absence of noise. Moreover, in contrast
to most of the other search strategies, the multi-directional search method never stagnates but rather
diverges if the noise strength is too high. This is plausible from the contraction/expansion strategy of
the multi-directional search method. An expansion step is made if at least one of theN vertices of
both the reflected and the expanded simplices improve on the best vertex of the current simplex. For
high noise strength and largeN , the possibility of that happening simply due to noise is high. Thus,
the strategy expands the simplex more often than it contracts it. While in the absence of noise and
for low noise strengths the strategy’s suitability for implementation on a parallel computer may be an
asset, parallelization would merely lead to faster divergence in the range of noise strengths in which
the efficiency is negative. Overall, multi-directional search may be useful in extended, “flat” fitness
landscapes; it is of little use in “deep” fitness landscapes like the sphere that require the continuous
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adjustmentof the resolution of the search over several orders of magnitude.

Implicit Filtering

In contrast to the search methods introduced so far, implicit filtering as devised by Gilmore and Kel-
ley [20, 30] relies on explicitly approximating the local gradient of the objective function by means
of finite differencing. A brief summary of the algorithm due to Kelley [30] states that “In its sim-
plest unconstrained form, implicit filtering is the steepest descent algorithm with difference gradients,
where the difference increment varies as the iteration progresses. Because the gradient is only an
approximation, the computed steepest descent direction may fail to be a descent direction and the line
search may fail. In this event, the difference increment is reduced.” The name “implicit filtering” has
been chosen because the method uses the differencing to “step over” the noise at varying levels of
resolution, hence implicitly filtering the objective. It is worth noting that Kelley [30] has enhanced
the basic algorithm to be described below by a quasi-Newton component that attempts to accumulate
second-order information on the objective function in the course of the search. As the sphere is the
only objective function we attempt to minimize, we do not consider this extension here. Kelley [30]
also provides pointers to optimization problems that implicit filtering has been applied to.

The state of the implicit filtering algorithm at timet is described by a base pointx and a difference
incrementh. Writing ei for the ith unit vector, a central finite difference gradientrhf(x) with ith
component

(rhf(x))i =
f(x+ hei)� f(x� hei)

2h

is computed by taking steps of lengthh in both the positive and negative directions parallel to the
axes of the coordinate system. Clearly, this step involves2N evaluations of the objective function.
Instead of using central differences, forward differences could be employed; however, Kelley [30]
states that the performance of implicit filtering with central difference gradients is far superior to that
with forward difference gradients.

Subsequently, a line search in the negative direction of the approximate gradient thus obtained is
carried out. In implicit filtering, the algorithm of Armijo is the usual choice for a line search method.
That is, starting with� = �0, it is tested whether the condition

f(x)� f(x� �rhf(x)) � 1

2
�krhf(x)k2

holds. If it does hold, then the base point is replaced byx � �rhf(x) and the implicit filtering
algorithm proceeds to the next iteration. Otherwise,� is halved and the condition is tested again. If
the value of� has been halvedimax times, then the line search is aborted, the difference incrementh

is halved, and a new iteration of the algorithm is started with the base point left unchanged. The line
search maximally requires a number of objective function evaluations that depends onimax , but not
on the dimensionalityN of the search space.

While the parameter�0 that determines the maximum step length and that was set to unity in
our experiments is relatively uncritical as long as it is chosen large enough, the maximum number of
iterations per line searchimax does have a decisive influence on the performance of the algorithm.
In our experiments, we have usedimax = 8. In general, the sizeh of the difference increments is
above its optimal value. Decreasingimax leads to it being decreased faster and therefore to improved
efficiency, but at the price of decreased stability.
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In the absence of noise, implicit filtering converges much faster than any of the other methods
as the exact gradient direction is obtained. Whether the exact optimizer is attained in a single time
step thus only depends on the outcome of the line search. Rather than measuring the performance
of the implicit filtering algorithm for zero noise strength, we have used the very low noise strength
�0

� = 0 :001instead. For nonzero noise strength, Figures 3, 4, and 5 illustrate that implicit filtering
does quite well on the sphere, but that above a certain noise strength the strategy fails to achieve
stochastic linear convergence. This failure is due to the fact that ifh is too small, then the gradient
approximation is so unreliable that the line searches fail frequently andh is decreased further, leading
to an exponential decrease ofh and to stagnation of the search.

Evolution Strategy

As described in Section 2, the state of the(�=�; �)-ES is described by a populationP = fx1; : : : ;x�g
of candidate solutions, an accumulated progress vectors, and a mutation strength�. In every time
step, offspring candidate solutionsyi =

P�
j=1 xj=� + �zi, i = 1 ; : : : ; �, are generated by indepen-

dently sampling the components of the mutation vectorszi from a standardized normal distribution.
The fitness function values of the newly generated candidate solutions are evaluated, thus requiring�
fitness function evaluations per time step. Lettingi;� denote the index of the offspring candidate
solution with theith highest measured fitness, the iteration of the algorithm is completed by setting
xi = yi;� for i = 1 ; : : : ; �, updating the accumulated progress vector by multiplication with(1� c)
and subsequent addition of

p
c(2� c)=�

P�
i=1 zi;� according to Equation (2), and updating the mu-

tation strength by multiplication withexp((ksk2�N)=(2DN)) according to Equation (3).
Figures 3, 4, and 5 show that the(�=�; �)-ES with cumulative mutation strength adaptation is

that strategy in the lineup that is the most robust with regard to the effects of noise. ForN = 40
and especially forN = 400, it is the only search strategy that converges reliably for higher levels of
noise. As for choosing appropriate population sizes, theoretical results derived in [3] provide useful
orientation. Generally, increased population sizes decrease the efficiency for low noise strengths, but
afford better robustness for high noise strengths. It can be seen from Figures 4 and 5 that overall the
choice is not very critical, and that satisfactory performance can usually be achieved for a range of
population size parameter settings.

4 Discussion and Conclusions

In this paper, we have compared empirically the efficiency of a number of optimization strategies
on a simple, spherically symmetric objective function. It was assumed that gradient information is
not available, and objective function evaluations were subject to Gaussian noise of constant relative
strength. Despite its apparent simplicity, due to the presence of noise the environment presented a
real challenge to the strategies. Except for the implicit filtering method in the absence of noise, all
strategies we considered at best exhibited a linear decrease over time of logarithmic function values.

The strategies studied employ quite different approaches to generating new search points. While
most strategies place new search points using deterministic patterns, evolution strategies employ
stochastic rules for that task. A further difference consists in the number of new search points that are
generated per time step. Some strategies, such as implicit filtering and the multi-directional search
method, utilize a number of objective function evaluations that increases linearly with the search space
dimensionalityN . Other strategies, such as the simplex method of Nelder and Mead (except when
taking a shrink step) or evolution strategies, conduct only a typically rather small number of objective
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functionevaluations before taking a step. In general, by increasing the number of objective function
evaluations per time step, improved accuracy of the approximation to the gradient direction can be
obtained at the price of increased computational costs. For the sphere in the absence of noise, con-
ductingN + 1 objective function evaluations so as to obtain the exact gradient is optimal. However,
if even only little noise is present, the efficiencies of the various strategies are of about the same order
of magnitude irrespective of the number of search points they generate per time step. The objective
of methods that rely on a large number of objective function evaluations per time step is to be able
to make large steps. The objective of strategies like the(�=�; �)-ES or the simultaneous perturbation
stochastic approximation approach of Spall [47, 49] on the other hand is to make more steps, possibly
in directions that differ considerably from the gradient direction, but that are beneficial in their accu-
mulation. In the presence of noise, the possibilities of making large steps are limited, and approaches
that naturally rely on making smaller steps may have an advantage.

Perhaps more crucial for the performance in the presence of noise of optimization strategies than
the placement of new search points is the step length control mechanism that determines at what res-
olution the search space is explored. The step length determines the signal strength under which a
strategy operates. If the steps that are made are very small, then the ideal fitness values of search
points that are to be compared or that are used to determine an approximation to the gradient direction
are minor and noise can dominate the search process. It can frequently be read that finite-difference
gradient-based methods exhibit poor performance in the presence of noise. This is true if the dif-
ference increments are so small that the differences in function values are hidden by noise. Implicit
filtering recognizes this and uses difference increments that are large enough to afford good perfor-
mance. Similarly, evolution strategies benefit from genetic repair that makes it possible to employ
comparatively high mutation strengths. It has been seen that the usual road to failure in the presence
of noise for the direct pattern search method as well as for implicit filtering consists in the unwar-
ranted decrease of difference increments or step lengths. Both strategies react with a further decrease
of the step length if the noise strength is too high and thus stagnate. Especially for high search space
dimensionalities, the(�=�; �)-ES with cumulative mutation strength adaptation fared best of all of the
strategies we have tried. At the same time, the cumulative mutation strength adaptation scheme is the
only method considered here that explicitly accumulates information for the adaptation of step lengths
over a number of time steps. The averaging that is inherent in the accumulation of the progress vectors
seems to make cumulative mutation strength adaptation relatively robust with regard to the effects of
noise.

Evolutionary algorithms — and in fact randomized algorithms in general — are sometimes re-
ferred to as methods of last resort, to be applied only if everything else fails. Our results indicate
that if gradients are not available and especially in the presence of noise, they may be more than
just that. We have seen that due to their use of populations of candidate solutions, to the benefits of
genetic repair resulting from recombination, and to their robust schemes for the adaptation of mu-
tation strengths, evolutionary algorithms are quite rightfully the method of choice in many technical
disciplines. Future research should include both the empirical and the theoretical investigation of the
behaviors of different search strategies in other simple fitness environments.
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