
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

On the Optimization of Monotone Polynomials by
Simple Randomized Search Heuristics

Ingo Wegener and Carsten Witt

No. CI-141/02

Technical Report ISSN 1433-3325 October 2002
Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/XI
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence”, at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

On the Optimization of Monotone Polynomials
by Simple Randomized Search Heuristics

Ingo Wegener∗

FB Informatik, LS 2
Univ. Dortmund

44221 Dortmund, Germany
wegener@ls2.cs.uni-dortmund.de

Carsten Witt∗

FB Informatik, LS 2
Univ. Dortmund

44221 Dortmund, Germany
witt@ls2.cs.uni-dortmund.de

October 14, 2002

Abstract

Randomized search heuristics like evolutionary algorithms and simulated
annealing find many applications, especially in situations where no full
information on the problem instance is available. In order to understand
how these heuristics work, it is necessary to analyze their behavior on
classes of functions. Such an analysis is performed here for the class of
monotone pseudo-boolean polynomials. Results depending on the degree
and the number of terms of the polynomial are obtained. The class of
monotone polynomials is of special interest since simple functions of this
kind can have an image set of exponential size, improvements can increase
the Hamming distance to the optimum and in order to find a better search
point, it can be necessary to search within a large plateau of search points
with the same fitness value.

1 Introduction

Randomized search heuristics like random local search, simulated annealing, and
all variants of evolutionary algorithms have many applications and practitioners
report surprisingly good results. However, there are only few theoretical papers
on the design and analysis of randomized search heuristics. Most of the algorithm
papers are problem-oriented, i. e., for a given well-known problem one looks for
a better algorithm. In the case of minimizing the worst-case expected runtime

∗Supported in part by the Deutsche Forschungsgemeinschaft as a part of the Collaborative
Research Center “Computational Intelligence” (SFB 531).

1

the best algorithms typically are clever-tuned problem-specific algorithms. Some-
times, these algorithms are difficult to implement and, sometimes, they are only
asymptotically efficient. This has led to the new area called algorithm engineer-
ing or experimental algorithms, where the issue is the design (and analysis) of
practically efficient algorithms. Theses heuristics with problem-specific modules
can beat the clever algorithms mentioned above.

In this paper, we investigate general randomized search heuristics, namely a
random local search algorithm and a mutation-based evolutionary algorithm. It
should be obvious that they do not improve heuristics with well-chosen problem-
specific modules. Our motivation to investigate these algorithms is that such
algorithms are used in some applications and that only an analysis will provide
us with some knowledge to understand these algorithms better. This will give us
the chance to improve the heuristics, to decide when to apply them, and also to
teach them.

General randomized search heuristics are known as “robust” algorithms which
can be applied (with at most minor changes) to many different problems. Those
practitioners who do not have enough resources (time, money, or experts) to
design “problem-specific” modules like such robust algorithms.

In the theory of algorithms the first assumption is that the problem is given
and the algorithms can make full use of the properties of the problem instance.
However, this assumption is not met in many applications, especially, in engi-
neering disciplines. As an example, we assume that the rough draft of a machine
is given and n binary design decisions still are open. Then the set of possible
machines can be represented as the search space {0, 1}n describing the possible
alternatives. There exists a function f : {0, 1}n → � such that f(a) measures the
quality of the resulting machine. The main issue is that f may be not known.
The problem setting may be so complex that the engineers cannot describe f in
a closed form. Perhaps they know some properties of f . However, it is possible
to measure f(a) by an experiment (or its simulation). The obvious aim is that
a search heuristic quickly finds a good design of a machine. Then randomized
search heuristics are the right choice.

However, in such a scenario it seems to be impossible to analyze heuristics.
What can be done for an “unknown” problem instance f? No search heuristic will
be efficient on classes of functions which are difficult in a complexity-theoretical
sense. The hope is that f is somehow easy, which can be formalized as “belonging
to a class of functions which is easy.” Hence, one should analyze randomized
search heuristics on classes of functions which are easy in the scenario where the
problem, i. e., the class of functions, and the considered scenario are known.

Each pseudo-boolean function f : {0, 1}n → � can be written uniquely as a
polynomial

f(x) =
∑

A⊆{1,...,n}
wA ·

∏
i∈A

xi

2

and the degree d := max{|A| | wA �= 0} and the number N of non-vanishing
terms wA �= 0 are parameters describing properties of f . Note that the value of
N can vary if we exchange the meanings of ones and zeros for some variables, i. e.,
replace some xi by their negations 1−xi. For instance, the product of all (1−xi)
has the maximal number of 2n non-vanishing terms but only one non-vanishing
term if we replace xi by yi := 1 − xi. The parameter N will be relevant in some
upper bounds presented in this paper. However, all search heuristics that we will
consider treat zeros and ones in the same way. Therefore, we may silently assume
that in the polynomial representation of some monotone polynomial f , variables
xi have possibly been replaced by their negations 1 − xi in such a way that N
takes its minimum value. Droste, Jansen, and Wegener (2002) have analyzed
evolutionary algorithms on polynomials of degree d = 1 and Wegener and Witt
(2002) have investigated polynomials of degree d = 2. The last case is known to be
NP-hard in general. A simpler subcase is the case of monotone polynomials where
f can be written as a polynomial with non-negative weights on some variable set
z1, . . . , zn where zi = xi or zi = 1−xi. In the first case, the function is monotone
increasing with respect to xi and, in the second case, monotone decreasing. In
this paper, we investigate randomized search heuristics for the maximization
of monotone polynomials of degree bounded by some parameter d. Since all
considered heuristics treat zeros and ones in the same way, we can restrict our
analysis to monotone increasing polynomials where zi = xi for all i. The results
hold for all monotone polynomials.

The investigation of polynomials of small degree is well motivated since many
problems lead to polynomials of bounded degree. Monotonicity is a restriction
which simplifies the problem. However, in the general setting it is unknown
whether the function is monotone increasing or decreasing with respect to xi.

Evolutionary algorithms are general problem solvers which eventually opti-
mize each f : {0, 1}n → �. For monotone polynomials we do not see any ad-
vantage when using crossover and large populations. Therefore, we investigate a
simple standard evolutionary algorithm (EA) which is mutation-based and works
with population size 1. This so-called (1+1) EA consists of an initialization step
and an infinite loop.

(1+1) EA
Initialization: Choose a ∈ {0, 1}n randomly.
Loop: The loop consists of a mutation and a selection step.
Mutation: For each position i, decide independently whether ai should be

flipped (replaced by 1−ai), the flipping probability equals 1/n.
Selection: Replace a by a′ iff f(a′) ≥ f(a).

The advantage of the (1+1) EA is that each point can be created from each
point with positive probability but steps flipping only a few bits are preferred.
Therefore, it is not necessary (as in simulated annealing) to accept worsenings.

3

Random local search (RLS) flips only one bit per step.

RLS
This works like the (1+1) EA with a different mutation operator.
Mutation: Choose i ∈ {1, . . . , n} randomly and flip ai.

RLS cannot escape from local optima where the local neighborhood is the
Hamming ball with distance 1. However, it can optimize monotone polynomials
(by our assumption the optimum is 1n) since, for each a, there exists a sequence
a0 = a, a1, . . . , am = 1n such that m ≤ n, H(ai, ai+1) = 1, and f(a0) ≤ f(a1) ≤
· · · ≤ f(am). The analysis of RLS will be much easier than the analysis of the
(1+1) EA. However, only the (1+1) EA is a general problem solver. The difficulty
is that accepted steps can increase the number of zeros and the Hamming distance
to the optimum. The problem for all heuristics is that it can be necessary to
change many bits (up to d) until one finds a search point with larger f -value
(also called fitness).

We have to discuss how we analyze RLS and the (1+1) EA which are defined
as infinite loops. In applications, we need a stopping criterion. However, this is
not the essential problem. Hence, we are interested in the random optimization
time Xf defined as the minimum time step t where an optimal search point is
created. Its mean value E(Xf) is called the expected optimization time and
Prob(Xf ≤ t) describes the success probability within t steps.

We present monotone polynomials of degree d where the expected optimiza-
tion time equals Θ((n/d) · log(n/d + 1) · 2d) for RLS and the (1+1) EA and we
believe that the upper bound holds for all monotone polynomials. This can be
proved for RLS but our best bound for the (1+1) EA is worse and depends on
N . For this reason we also investigate a class of algorithms which bridge the dif-
ference between RLS and the (1+1) EA. The first idea is to reduce the mutation
probability 1/n of the (1+1) EA. However, then we increase the probability of
useless steps flipping no bit. Hence, we guarantee that at least one bit is flipped.
We call the new algorithm RLSp since it is a modification of RLS.

RLSp

This works like the (1+1) EA and RLS with a different mutation operator.
Mutation: Choose i ∈ {1, . . . , n} randomly and flip ai. For each j �= i, flip

aj independently of the other positions with probability p.

Obviously, RLSp equals RLS for p = 0. For p = 1/n, RLSp is close to the
(1+1) EA which omits steps without flipping bit. Hence, we investigate RLSp

only for 0 ≤ p ≤ 1/n and try to maximize p such that we can prove the upper
bound O((n/d) · log(n/d + 1) · 2d) on the expected optimization time of RLSp on
monotone polynomials.

The paper is structured as follows. Search heuristics with population size 1
lead to a Markov chain on {0, 1}n. Therefore, we develop some results on such

4

Markov chains in Section 2. The results are stated in general form, but some
motivation from our applications will be given. The reader may skip this section
and may come back to it whenever the results are needed. In Section 3, we
investigate the very special case of monomials, i. e., monotone polynomials where
N = 1. These results are crucial since we later consider how long it takes to
maximize a special monomial in the presence of many other monomials in the
polynomial. In the Sections 4, 6, and 7, we prove upper bounds on the expected
optimization time of the algorithms RLS, RLSp and the (1+1) EA on monotone
polynomials. In Section 5, we present a worst-case monotone polynomial for RLS
which is conjectured to be also a worst-case monotone polynomial for RLSp and
the (1+1) EA. We finish with some conclusions. Some of the results of this paper
are contained in Wegener (2001). However, that paper contains only proof ideas.

2 Some Results on Markov Chains

The behavior of randomized search heuristics on single monomials is of special
interest. For a monomial of degree d, the current state can be identified with the
number of ones among the variables of the monomial. This leads to the state
space D = {0, . . . , d}. In order to obtain an ergodic Markov chain, we replace
the selection operator by the selection operator which accepts each a′, i. e., a′

always replaces a. Then we are interested in the minimal t such that in time
step t the state d is reached. This equals the optimization time for the single
monomial. Later we will investigate time phases where it is unlikely that there is
one step where more than two bits of the considered monomial flip. The transition
probabilities for the (1+1) EA under the condition that each step flips at most
two bits are denoted by Q(i, j) and the corresponding transition probabilities for
RLSp by R(i, j).

We prove that these Markov chains have the property that it is more likely to
reach from i “higher” states than from i − 1. This intuitive notion is formalized
as follows.

Definition 1 Let P (i, j) be the transition probabilities of a time-homogeneous
Markov chain on D = {0, . . . , d}. The Markov chain has an ε-advantage, ε ≥ 0,
if for all i ∈ {0, . . . , d − 2} the following properties hold.

1. P (i, j) ≥ (1 + ε) · P (i + 1, j) for j ≤ i,

2. P (i + 1, j) ≥ (1 + ε) · P (i, j) for j > i.

Lemma 1 Let ε ≥ 0 and d ≤ (n − 1)/(1 + ε). Then the Markov chain with
transition probabilities Q(i, j) has an ε-advantage.

5

Proof: Since Q(i, j) = 0 for |i − j| ≥ 3, only the cases j = i − 1 ≥ 0, j = i,
j = i + 1, and j = i + 2 ≤ d are not trivial. Let α be the probability that the
(1+1) EA flips at most two bits among the d important positions. Let c := 1+ ε.

Case 1: j = i − 1 ≥ 0. Then

Q(i, j) − c · Q(i + 1, j) = Q(i, i − 1) − c · Q(i + 1, i − 1)

=
1

α
·
(

i

1

)
· 1

n
·
(

1 − 1

n

)d−1

− c

α
·
(

i + 1

2

)
· 1

n2
·
(

1 − 1

n

)d−2

=
1

αn
·
(

1 − 1

n

)d−2

· i ·
(

1 − 1

n
− c · (i + 1)

2n

)

≥ 1

αn
·
(

1 − 1

n

)d−2

· i ·
(

1 − 1

n
− cd

n

)
≥ 0

since i + 1 ≤ d and d ≤ (n − 1)/c by our assumptions.
Case 2: j = i. Then Q(i, i) ≥ (1/α) · (1 − 1/n)d since it is sufficient (but

not necessary) not to change any bit among the d important positions in order
to stay in state i. Hence, we obtain the following lower bound

Q(i, j) − c · Q(i + 1, j) = Q(i, i) − c · Q(i + 1, i)

≥ 1

α
·
(

1 − 1

n

)d

− c · 1

α
·
(

i + 1

1

)
· 1

n
·
(

1 − 1

n

)d−1

≥ 1

α
·
(

1 − 1

n

)d−1

·
(

1 − 1

n
− cd

n

)
≥ 0.

Case 3: j = i + 1. Then

Q(i + 1, j) − c · Q(i, j) = Q(i + 1, i + 1) − c · Q(i, i + 1)

≥ 1

α
·
(

1 − 1

n

)d

− c · 1

α
·
(

d − i

1

)
· 1

n
·
(

1 − 1

n

)d−1

≥ 1

α
·
(

1 − 1

n

)d−1

·
(

1 − 1

n
− cd

n

)
≥ 0.

Case 4: j = i + 2 ≤ d. Then

Q(i + 1, j) − c · Q(i, j) = Q(i + 1, i + 2) − c · Q(i, i + 2)

=
1

αn
·
(

1 − 1

n

)d−2

·
(

(d − i − 1) ·
(

1 − 1

n

)
−
(

d − i

2

)
· c

n

)

≥ 1

αn
·
(

1 − 1

n

)d−2

· (d − i − 1) ·
(

1 − 1

n
− cd

n

)
≥ 0. �

Lemma 2 Let ε ≥ 0 and d ≤ (n − 1)/(3 + 2ε). Then the Markov chain with
transition probabilities R(i, j) has an ε-advantage.

6

Proof: Since R(i, j) = 0 for |i − j| ≥ 3, only the cases j = i − 1 ≥ 0, j = i,
j = i + 1, and j = i + 2 ≤ d are not trivial. Let α be the probability that RLSp

flips at most two bits among the d important positions. Let c := 1 + ε.
In the following, we derive lower bounds on R(i, j) by inspecting only the case

that the first flipping bit of RLSp is not among the d important positions, which
happens with probability 1−d/n. For upper bounds on R(i, j), we apply the law
of total probability with respect to the event that the first flipping bit of RLSp

is among the d important bits or not. The calculations and estimations used in
the following cases are very similar to those in the respective cases in the proof
of Lemma 1.

Case 1: j = i − 1 ≥ 0. Then

R(i, j) − c · R(i + 1, j) = R(i, i − 1) − c · R(i + 1, i − 1)

≥ 1

α
·
((

1 − d

n

)
·
(

i

1

)
· p · (1 − p)d−1 − c · i + 1

n
·
(

i

1

)
· p · (1 − p)d−2

− c · n − d

n
·
(

i + 1

2

)
· p2 · (1 − p)d−2

)

≥ 1

α
· i · p · (1 − p)d−2 ·

((
1 − d

n

)
· (1 − p) − c · d

n
− c · n − d

n
· d

2
· p
)

≥ 1

α
· i · p · (1 − p)d−2 ·

(
1 − d

n
− p − cd

n
− c · d · p

)

≥ 1

α
· i · p · (1 − p)d−2 ·

(
1 − d

n
− 1

n
− 2cd

n

)
≥ 0.

The last but one inequality follows since 1/n is the maximum value of p we
consider. The last one holds since d ≤ (n−1)/(3+2ε) implies n−d−1−2cd ≥ 0.

Case 2: j = i. Then

R(i, j) − c · R(i + 1, j) = R(i, i) − c · R(i + 1, i)

≥ 1

α
·
((

1 − d

n

)
· (1 − p)d − c · i + 1

n
· (1 − p)d−1

− c · n − d

n
·
(

i + 1

1

)
· p · (1 − p)d−1

)

≥ 1

α
· (1 − p)d−1 ·

((
1 − d

n

)
· (1 − p) − c · d

n
− c · n − d

n
· d · p

)

≥ 1

α
· (1 − p)d−1 ·

(
1 − d

n
− p − cd

n
− c · d · p

)

≥ 1

α
· (1 − p)d−1 ·

(
1 − d

n
− 1

n
− 2cd

n

)
≥ 0

7

Case 3: j = i+1. This case is completely analogous to Case 2 with the only
exception that a flipping bit has to be chosen from d − i zeros in the important
positions. However, d − i can be estimated above by the same bound d as i + 1
in Case 2.

Case 4: j = i + 2 ≤ d. This case is completely analogous to Case 1 with the
only exception that the flipping bit (bits) has (have) to be chosen from d− i− 1
(d − i) zeros in the important positions. Again, we estimate d − i by d. �

We are interested in the random variable τ k describing for a time-homogeneous
Markov chain Y on D with transition probabilities P (i, j) the first point of time
when it reaches state d if it starts in state k. If Y has a 0-advantage, it should be
advantageous to start in a “higher state.” This is made precise in the following
lemma.

Lemma 3 Let P (i, j) be the transition probabilities of a time-homogeneous Mar-
kov chain with 0-advantage on D = {0, . . . , d}. Then

Prob(τ i ≥ t) ≥ Prob(τ i+1 ≥ t)

for 0 ≤ i ≤ d − 1 and each t. Moreover, E(τ i) ≥ E(τ i+1).

Proof: The second claim follows from the first one. The first claim is proved by
induction on t where the base step t = 0 is obvious. We can assume i ≤ d − 1
since Prob(τ d = 0) = 1. By the law of total probability

Prob(τ i ≥ t + 1)−Prob(τ i+1 ≥ t + 1) =
d−1∑
k=0

(P (i, k)−P (i + 1, k)) ·Prob(τ k ≥ t).

By induction hypothesis and the assumption of a 0-advantage,

P (i, k) − P (i + 1, k) ≥ 0 and Prob(τ k ≥ t) ≥ Prob(τ i ≥ t) if k ≤ i,

and

P (i, k) − P (i + 1, k) ≤ 0 and Prob(τ k ≥ t) ≤ Prob(τ i ≥ t) if k ≥ i + 1.

Hence,

Prob(τ i ≥ t + 1) − Prob(τ i+1 ≥ t + 1)

≥ Prob(τ i ≥ t) ·
d−1∑
k=0

(P (i, k) − P (i + 1, k))

= Prob(τ i ≥ t) · (1 − P (i, d) − (1 − P (i + 1, d))) ≥ 0,

where P (i+1, d)−P (i, d) ≥ 0 again follows from the assumption of a 0-advantage
of the Markov chain. �

8

Later, we compare different Markov chains. The complicated Markov chain Y1

describing a randomized search heuristic on a monotone polynomial with many
terms is compared with the simple Markov chain Y0 describing a randomized
search heuristic on a single monomial. The idea is to use results for Y0 to obtain
results for Y1. We denote by τ i

0 and τ i
1 the random time to reach state d from

state i according to Y0 and Y1, respectively.

Definition 2 Let P0(i, j) and P1(i, j) be the transition probabilities of the time-
homogeneous Markov chains Y0 and Y1 on D = {0, . . . , d}. The Markov chain
Y1 has an advantage compared to Y0 if P1(i, j) ≥ P0(i, j) for j ≥ i + 1 and
P1(i, j) ≤ P0(i, j) for j ≤ i − 1.

Lemma 4 If Y1 has an advantage compared to Y0 and Y0 has a 0-advantage, then
Prob(τ i

1 ≥ t) ≤ Prob(τ i
0 ≥ t) and E(τ i

1) ≤ E(τ i
0).

Proof: Again it is sufficient to prove the first claim by induction on t and the case
t = 0 is trivial. The result holds if E(τ i

0) = ∞. By the law of total probability
and the induction hypothesis we obtain for i < d

Prob(τ i
0 ≥ t + 1) − Prob(τ i

1 ≥ t + 1)

=
d−1∑
k=0

(P0(i, k) · Prob(τ k
0 ≥ t) − P1(i, k) · Prob(τ k

1 ≥ t))

≥
d−1∑
k=0

(P0(i, k) − P1(i, k)) · Prob(τ k
0 ≥ t).

Now we can continue as in the proof of Lemma 3 where P0(i, k) plays the role
of P (i, k) and P1(i, k) plays the role of P (i + 1, k). The assumption that Y1

has an advantage compared to Y0 can be applied analogously to the assumption
that the Markov chain considered in Lemma 3 has a 0-advantage. Moreover,
application of the induction hypothesis in the proof of Lemma 3 is replaced
by the analogous inequalities Prob(τ k

0 ≥ t) ≥ Prob(τ i
0 ≥ t) for k ≤ i, and

Prob(τ k
0 ≥ t) ≤ Prob(τ i

0 ≥ t) for k ≥ i + 1. They follow by Lemma 3 since Y0 is
assumed to have a 0-advantage. �

Finally, we apply Lemma 4 to compare two Markov chains Y0 and Y1 where
weaker conditions hold than in Lemma 4. We compare Y0 and Y1 by parameters
c(i, j) such that P1(i, j) = c(i, j) · P0(i, j). This includes an arbitrary choice of
c(i, j) if P0(i, j) = P1(i, j) = 0.

Definition 3 Let P0(i, j) and P1(i, j) be the transition probabilities of Y0 and
Y1 such that P1(i, j) = c(i, j) · P0(i, j) for some c(i, j). Then Y1 has a relative
advantage compared to Y0 if c(i, j) ≥ c(i, i + 1) for j ≥ i + 1, c(i, j) ≤ c(i, i + 1)
for j ≤ i − 1, and 0 < c(i, i + 1) ≤ 1 for all i ≤ d − 1.

9

Lemma 5 If Y1 has a relative advantage compared to Y0 and Y0 has a (c−1
min−1)-

advantage, then E(τ i
1) ≤ c−1

min · E(τ i
0) for cmin := min{c(i, i + 1) | 0 ≤ i ≤ d − 1}.

Proof: The proof idea is to define a third Markov chain Y2 with transition
probabilities P2(i, j) such that

• E(τ i
2) ≤ c−1

min · E(τ i
0),

• Y1 has an advantage compared to Y2,

• Y2 has a 0-advantage.

The second and third claim imply by Lemma 4 that E(τ i
1) ≤ E(τ i

2) and then the
first claim implies the lemma.

Let P2(i, j) := c(i, i + 1) · P0(i, j) for i ≤ d − 1 and j �= i and P2(i, i) :=
1 −∑j �=i P2(i, j). Moreover, P2(d, j) := P0(d, j). Since c(i, i + 1) ≤ 1, these
are transition probabilities of a Markov chain Y2 which can be interpreted as
follows. As long as we have not reached state d, we stay in the present state i
with probability 1− c(i, i+1) and simulate Y0 for one step otherwise (which may
also imply that we stay in state i). The expected time before a step of Y0 is
simulated equals c(i, i + 1)−1 ≤ c−1

min in state i. This implies the first claim.
Next we prove the second claim. First, let j ≥ i + 1. Then

P1(i, j) − P2(i, j) = c(i, j) · P0(i, j) − c(i, i + 1) · P0(i, j) ≥ 0

since c(i, j) ≥ c(i, i + 1) for j ≥ i + 1. Similarly, c(i, j) ≤ c(i, i + 1) for j ≤ i − 1
and P1(i, j) − P2(i, j) ≤ 0 by an analogous calculation.

We still have to prove the third claim. Observe that our assumptions imply
P2(i + 1, j) ≥ c(i + 1, i + 2) · P0(i + 1, j) even for j = i + 1. Since Y0 has a
(c−1

min − 1)-advantage and c(i, i + 1) ≤ 1, we obtain for j ≥ i + 1

P2(i + 1, j) − P2(i, j) ≥ c(i + 1, i + 2) · P0(i + 1, j) − c(i, i + 1) · P0(i, j)

≥ cmin · P0(i + 1, j) − P0(i, j) ≥ 0.

An analogous calculation shows P2(i + 1, j) − P2(i, j) ≤ 0 for the case j ≤ i. �

The last result in this technical section is a generalization of Wald’s identity
(see Feller (1971)). We do not claim to be the first to prove this result, but we
have not found it in the literature.

Lemma 6 Let Di, i ∈ �, be a sequence of random variables such that |Di| ≤ c
for a constant c. For s > 0, let τs be the minimal i where D1 + · · · + Di = s. If
E(τs) < ∞ and E(Di | τs ≥ i) is bounded below by a positive constant � for all i
where Prob(τs ≥ i) > 0, then E(τs) ≤ s/�.

10

Proof: Since |Di| ≤ c, E(Di | τs ≥ i) exists for all i where Prob(τs ≥ i) > 0. By
definition of τs,

s = E

(
τs∑

i=1

Di

)

=
∞∑

j=1

Prob(τs = j) · E(D1 + · · · + Dj | τs = j)

=

∞∑
j=1

j∑
i=1

Prob(τs = j) · E(Di | τs = j)

=

∞∑
i=1

∞∑
j=i

Prob(τs = j) · E(Di | τs = j).

The last equality holds since |Di| ≤ c implies that the series is absolutely conver-
gent. Since j ≥ i, τs = j implies τs ≥ i and we obtain that

s =
∞∑
i=1

∞∑
j=i

Prob(τs = j | τs ≥ i) · Prob(τs ≥ i) · E(Di | τs = j)

=
∞∑
i=1

Prob(τs ≥ i) ·
[∞∑

j=i

Prob(τs = j | τs ≥ i) · E(Di | τs = j ∧ τs ≥ i)

]
.

If we can bound the [·]-term below by �, we obtain s ≥ E(τs) · � and, therefore,
the lemma. In the [·]-term we may add the terms for j ∈ {1 . . . , i − 1}. They
are all equal to 0 since in this case Prob(τs = j | τs ≥ i) = 0. Hence, the [·]-term
equals

∞∑
j=1

Prob(τs = j | τs ≥ i) · E(Di | τs = j ∧ τs ≥ i).

This is by definition equal to E(Di | τs ≥ i), which by assumption is bounded
below by �. �

3 The Optimization of Monomials

Because of the symmetry of all considered algorithms with respect to the bit
positions and the role of zeros and ones, we can investigate w. l. o. g. the monomial
m(x) = x1 · · · xd. As long as no optimal point is found, each new search point a′

replaces the old search point a. This leads to quite simple Markov chains which
can be analyzed by standard methods. We analyze the search heuristics as infinite
processes where a′ always replaces a (even if a is optimal and a′ is not) and are
interested in the first time of hitting an optimal point. These Markov chains are

11

ergodic and the only stationary distribution is the uniform distribution on {0, 1}n.
We compress the state space to D = {0, . . . , d} and search point a is replaced by
a1 + · · · + ad. The above result implies that the stationary distribution π on D
has the values π(i) =

(
d
i

)
/2d. Let Y be the Markov chain on D resulting from one

of the considered algorithms and let τi,j be the minimal point of time t ≥ 1 such
that Y (t) = j when starting in i. The fundamental theorem on ergodic Markov
chains (see Motwani and Raghavan (1995)) states that E(τi,i) = 1/π(i) = 2d/

(
d
i

)
.

We are interested in E(τi,d). Since all considered algorithms often only flip a
single bit, we estimate E(τi,d) for all i by the sum of all E(τj,j+1), 0 ≤ j ≤ d− 1.

Let P (i, j) be the transition probabilities of Y . Then by the law of total
probability

E(τj+1,j+1) = 1 +

d∑
k=0

k �=j+1

P (j + 1, k) · E(τk,j+1) ≥ P (j + 1, j) · E(τj,j+1)

or

E(τj,j+1) ≤ 2d(
d

j+1

) · P (j + 1, j)
.

Altogether,

E(τi,d) ≤ 2d ·
d−1∑
j=0

1(
d

j+1

) · P (j + 1, j)
.

Hence, we need lower bounds on P (j + 1, j). This parameter depends on the
considered algorithm. For RLSp and p ≤ 1/n, we switch from j + 1 to j if the
first flipping bit is one of the j + 1 ones among the first d positions and no other
bit flips. This leads to the lower bound j+1

n
(1 − p)d−1 ≥ j+1

n
(1 − 1/n)d−1 ≥ j+1

en
.

For the (1+1) EA the probability that exactly one bit flips and this is one of the
j + 1 ones among the first d positions equals (j + 1) 1

n
(1 − 1/n)n−1 ≥ j+1

en
. These

bounds also hold if we consider the algorithms under the conditions that we omit
steps with more than two flipping bits. Now(

d

j + 1

)
· j + 1

en
=

(
d − 1

j

)
· d

en

and, obviously, the sum of all 1/
(

d−1
j

)
, 0 ≤ j ≤ d − 1, is bounded above by a

constant c∗. Altogether,

E(τi,d) ≤ e · c∗ · n · 2d/d = O((n/d) · 2d).

Theorem 1 The algorithms RLSp, p ≤ 1/n, and (1+1) EA in their pure form
and under the condition of omitting all steps flipping more than two bits optimize
monomials of degree d in an expected time of Θ((n/d)·2d). The upper bounds also
hold if the initialization is replaced by the deterministic choice of any a ∈ {0, 1}n.

12

Proof: The upper bound has been proven by the preceding arguments. The
lower bound is easy to prove. Droste, Jansen, Tinnefeld, and Wegener (2002)
have shown a lower bound of 2d−1 + 1/2 for each black-box algorithm optimizing
monomials of degree d. This bound even holds if each search point is counted
only once. We do not define the notion black-box algorithm here. We only
state the fact that this bound holds for all considered algorithms which indeed
are black-box algorithms. We apply this bound for the compressed search space
{0, 1}d consisting of the first d bits. Hence, it is sufficient to prove that for
each compressed search point it takes an expected time of Ω(n/d) before another
compressed search point is found. The probability that the (1+1) EA flips at least
one of the first d bits is bounded above by d/n. The corresponding probability
for RLSp is bounded above by d/n + ((n− d)/n) · d · p ≤ 2d/n. The probabilities
are even smaller if steps flipping more than two bits are omitted. This proves the
lower bound. �

Theorem 1 has been proved before by Garnier, Kallel, and Schoenauer (1999)
for the special case d = n and the algorithms RLS0 and (1+1) EA.

4 On the Analysis of Random Local Search

The random local search algorithm RLS flips one bit per step. If the considered
polynomial f contains a monomial m on the variable set m(X) and if a activates
m, i. e., all bits of m equal 1, then m will never be deactivated. This property
simplifies the analysis of RLS and we will obtain the best possible upper bound
O((n/d)·log(n/d+1)·2d) on the expected optimization time of RLS on monotone
polynomials. We prove the upper bound before presenting in Section 5 an example
that the bound is best possible.

It is crucial for our analysis how the monomials overlap. Intuitively, many
overlapping monomials simplify the optimization. Consider two monomials m1

and m2 of degree d which overlap in i variables. If one of the monomials is ac-
tivated, the other monomial has i variables which are fixed on their right value
and it is sufficient to “optimize the truncated monomial of degree d− i.” Never-
theless, we start with a result where we only investigate a set of non-overlapping
monomials.

Lemma 7 Let f be a monotone polynomial whose degree is bounded by d and let
M be a set of pairwise non-overlapping monomials of f . The expected time until
RLS has activated all monomials in M is bounded by O((n/d) · log(n/d+ 1) · 2d).

Proof: If a monomial outside M is activated, some variables are fixed at the
value 1. This can only speed up the activation of the monomials in M . Hence, it
is sufficient to consider the case where f contains only the monomials in M .

13

Let c∗ be the constant from Section 3 such that each monomial of degree i
is activated by RLS in an expected time bounded by c∗ · (n/i) · 2i. Let c∗∗

be another appropriate constant which is chosen below depending on c∗. For
s := 2c∗∗ · (n/d) · 	log(n/d) + 1
 · 2d we claim that the probability that RLS
activates all monomials in M within s steps is at least 1/2. This will prove the
lemma.

Since (n/i) · (log(n/i) + 1) · 2i is monotone increasing with respect to i if
i ≥ 2, we can choose the constant c∗∗ such that the considered time interval of
s steps contains 	log(n/i)
 + 1 phases of length 2c∗ · (n/i) · 2i each. Hence, the
probability of not activating a monomial of degree d within s steps is bounded by
(1/2)�log(n/i)�+1 ≤ i/(2n). Let ci be the number of monomials in M of degree i.
Then we can conclude that the probability of not activating at least one of the
monomials in M within s steps is bounded above by the sum of all ci · i/(2n).
Since the monomials in M are pairwise non-overlapping, the sum of all ci · i is
bounded above by n and the failure probability within s steps is bounded above
by 1/2. This proves the claim and, therefore, the lemma. �

Theorem 2 The expected optimization time of RLS on a monotone polynomial
of degree d is bounded by O((n/d) · log(n/d + 1) · 2d).

Proof: The idea is to apply Lemma 7 repeatedly for carefully chosen sets Mi of
monomials. Let f0 = f and M0 be a maximal set of pairwise non-overlapping
monomials of f0. After having chosen M0, . . . ,Mi−1 we consider the truncation
fi of f defined as the subfunction of f obtained by assigning the value 1 to all
variables contained in one of the monomials in M0 ∪ · · · ∪ Mi−1. If fi is the
constant 1, the procedure is finished. Otherwise, Mi is a maximal set of pairwise
non-overlapping monomials of fi. Obviously, fj = 1 for some j ≤ d.

The expected optimization time of RLS on f is bounded above by the sum of
all Ti where Ti is the expected time until all monomials of Mi are activated. Since
we always choose a maximal set of pairwise non-overlapping monomials, in each
iteration at least one variable of each monomial is replaced by the constant 1.
Hence, the degree of all monomials in Mi is bounded above by d − i and, by
Lemma 7, Ti ≤ c · n

d−i
· log(n

d−i
+ 1) · 2d−i for some constant c. Finally, by simple

calculations, T0 + · · · + Td−1 is bounded by O((n/d) · log(n/d + 1) · 2d) and this
proves the theorem. �

5 A Worst-Case Example

In order to prove that the bound of Theorem 2 is asymptotically tight, we look for
a monotone degree-d polynomial which is difficult for RLS (and other randomized
search heuristics). The proof of the upper bound shows that the worst case seems
to be the case of many non-overlapping monomials. W. l. o. g. we only consider

14

the case n = kd for some integer k. The set of variables can be partitioned into
k blocks of size d each. We investigate the function which counts the number of
blocks where all bits have the value 1. This function can be written as

RRd(x) =
k−1∑
i=0

xid+1 · · · xid+d

and, therefore, is a polynomial with k non-overlapping monomials of degree d.
This function is well known in the community of genetic algorithms. It got the
name royal road function since Mitchell, Forrest, and Holland (1992) conjectured
that these functions are royal roads to prove the usefulness of the crossover oper-
ator. However, as Mitchell, Holland, and Forrest (1994) have observed, the royal
road functions do not gain from crossover. Functions where it can be proved
that crossover reduces the expected optimization time from exponential (for all
mutation-based evolutionary algorithms) to polynomial have been found only
recently (Jansen and Wegener (2001, 2002)).

The royal road functions are indeed the most difficult monotone polynomials
of degree d for RLS as will be shown in the following theorem.

Theorem 3 The probability that RLS has optimized the degree-d royal road func-
tion within (n/d) · log(n/d) · 2d/32 steps is bounded above by o(1) if d = o(n).
The expected optimization time of RLS on royal road functions equals Θ((n/d) ·
log(n/d + 1) · 2d).

Proof: The upper bound on the expected optimization time is contained in
Theorem 2.

First, we consider the simple cases, namely d = Θ(n) and d = O(1). For
d = Θ(n), the lower bound equals Ω(2d) and follows from the results of Garnier,
Kallel, and Schoenauer (1999) as well as more generally from Droste, Jansen,
Tinnefeld, and Wegener (2002). For d = O(1), we lower bound the optimization
time by the time until each bit initialized as 0 has flipped at least once. Then the
bound follows from the Coupon Collector’s Theorem (see Motwani and Raghavan
(1995)).

In the following we assume that d = ω(1) and d = o(n). We have to investigate
the first k · (log k) · 2d/32 steps. We are interested in the probability that each
monomial has been activated (all bits are set to 1) within this period. RLS
never deactivates a monomial since it flips one bit per step and does not accept
worsenings.

Considering a single monomial, the substring containing the corresponding
bits is initialized randomly. The probability that the substring is affected by a
step of RLS equals d/n = 1/k. These steps are called essential with respect to the
considered monomial. The monomials are “close to independent,” more precisely
the number of steps essential for one monomial depends on the number of essential

15

steps for the other monomials. However, for d not too small, the monomials have
almost the same number of essential steps. If the number of essential steps for
a monomial is fixed, then the event whether it is activated is independent of the
steps concerning the other monomials. Garnier, Kallel, and Schoenauer (1999)
have shown that for d → ∞ the probability that a monomial is activated within
t2d essential steps is approximately 1 − e−t. For d large enough, the success
probability within 2d−1 essential steps is therefore bounded by 1/2. Besides, it
has been shown that the random number of steps τ until activating m has for
d → ∞ a memoryless distribution, i. e., Prob(τ ≥ t) = Prob(τ ≥ t+t′ | τ ≥ t′) for
all t, t′ ≥ 0. More precisely, the difference Prob(τ ≥ t)−Prob(τ ≥ t + t′ | τ ≥ t′)
is bounded by O(1/d) independently of t and t′. If d is large enough, this implies
that even the conditional success probability Prob(τ ≤ 2d−1 + t′ | τ ≥ t′) is
bounded above by 1/2 for all values of t′. These results will be applied later on.

Since d ≥ 3, we can apply Chernoff bounds to prove that the probability of
starting with less than k/2 passive monomials is exponentially small with respect
to k and therefore o(1). In the following, we concentrate our considerations to k/2
monomials which are assumed to start as passive monomials. The k ·(log k)·2d/32
steps are partitioned to (log k)/4 phases of length k · 2d/8 each.

Let pi be the random number of passive monomials after the i-th phase. By
our assumptions, p0 ≥ k/2. We claim that the event that pi < pi−1/8 for some
i ≤ (log k)/4 is exponentially small with respect to k1/4. If this event does not
occur, the number of passive monomials at the end of all (log k)/4 phases is at
least

p0 ·
(

1

8

)(log k)/4

≥ 1

2
· k · k−3/4 ≥ k1/4

2
.

For proving the claim we can assume by the last calculation that we have at
least pi−1 ≥ k1/4/2 passive monomials at the end of the (i − 1)-th phase. The
expected number of steps in one phase which are essential for one of the passive
monomials equals pi−1 · 2d/8. By Chernoff bounds, the probability of more than
pi−1 ·2d/4 of these steps is exponentially small with respect to pi−1 and, therefore,
with respect to k1/4. Hence, the probability that this happens in at least one of
the (log k)/4 phases is still exponentially small with respect to k1/4. We assume
that such an event does not occur. In each phase we have at most pi−1 · 2d/4
essential steps for all pi−1 passive monomials. By the pigeon-hole principle there
are at most pi−1/2 passive monomials with at least 2d/2 essential steps each.
Pessimistically, we assume that these monomials are activated in the i-th phase.
For each other monomial the probability of getting activated is at most 1/2.
Hence, by Chernoff bounds, the probability of activating more than 3/4 of these
monomials is exponentially small with respect to pi−1 ≥ k1/4/2. Altogether, the
failure probability in one phase is exponentially small with respect to k1/4 and
this also holds for all phases together. �

16

Essentially, the same bounds hold for RLSp, p ≤ 1/n, and the (1+1) EA when
optimizing royal road functions. The upper bound on the expected optimization
time of the (1+1) EA has been proved by Mitchell, Holland, and Forrest (1994).
The same methods work for RLSp.

Theorem 4 For each ε > 0, the probability that the (1+1) EA is on a royal road
function by a factor of (1 + ε) faster than RLS is O(1/n). The same holds for
RLSp, p ≤ 1/n, and the factor (2 + ε) in comparison to RLS.

Proof: We prove the result on the (1+1) EA by replacing the (1+1) EA by a
faster algorithm (1+1)* EA and comparing the faster algorithm with RLS. A
step of the (1+1)* EA works as follows. First, the number k of flipping bits
is chosen according to the same distribution as for the (1+1) EA. Then the
(1+1)* EA flips a random subset of k bits. This can be realized as follows. In
each step, one random bit is flipped until one obtains a point of Hamming distance
k to the given one. Now the new search point of the (1+1)* EA is obtained as
follows. The selection procedure of RLS is applied after each step. This implies
by the properties of the royal road functions that we obtain a search point a∗

compared to the search point a of the (1+1) EA such that a ≤ a∗ according to
the componentwise partial order. This implies that the (1+1)* EA reaches the
optimal string 1n not later than the (1+1) EA.

However, the (1+1)* EA chooses flipping bits as RLS and it uses the same
selection procedure. The difference is that sometimes many steps of RLS are
required to simulate a single step of the (1+1)* EA. The probability that the
(1+1) EA tries to flip more than δn bits, δ > 0 a constant, in one step is 2−Ω(n log n)

and, therefore, still 2−Ω(n log n) if we consider the first 2O(n log1/2 n) steps. If this
event happens, this is included in the failure probability. Moreover, the proba-
bility of an optimization time which is at least 2cn log1/2 n, c > 0 a constant, is
by Markov bounds and the upper bound O(2n) for all monotone polynomials
exponentially small. Otherwise, we simulate steps with k ≤ δn flipping bits.
Let a be the starting point of the simulation of one step. Hence, all considered
search points have a Hamming distance of at most δn from a. The probability
of increasing the Hamming distance with the next flipping bit is at least 1 − δ.
Hence, among t steps we expect (1−δ)t distance-increasing steps and δt distance-
decreasing steps leading to an overhead of (1−2δ)t distance-increasing steps. Let
t be the random number of steps of RLS. If t = Ω(n) (this is the lower bound
for all royal road functions, which holds with probability exponentially close to
1), we have an exponentially small failure probability if we want to ensure an
overhead of (1− 3δ)t distance-increasing steps. The expected number of flipping
bits of the (1+1) EA in one step equals 1 and the variance is a little less than
1. Now we can apply the inequality of Chebyshev to obtain a bound of O(1/t)
on the probability that there are more than (1 + γ)t flipping bits in t steps for
some fixed constant γ > 0. If all the failures do not happen, we have to simulate

17

at most (1 + γ)t flipping bits and (1 + γ) · t/(1 − 3δ) steps of RLS are sufficient
to simulate them. Choosing γ and δ such that (1 + γ)/(1 − 3δ) = 1/(1 + ε), we
have proved the claim.

The statement on RLSp follows in the same way taking into account that the
expected number of flipping bits per step is upper bounded by 2 − 1/n and the
variance of this random number is less than 1. �

6 On the Analysis of RLSp

The analysis of an algorithm which often flips three or more bits is much more
complicated. Active monomials can be deactivated since passive monomials with
a larger total weight are activated. Moreover, even the analysis until a monomial
is activated is more difficult. Steps where two bits of the monomial flip from 0 to
1 and only one bit flips from 1 to 0 may not be accepted since the bit flipping to
0 causes a decrease of the fitness. Hence, we do not obtain simple Markov chains
like in the case of RLS or in the case of single monomials.

However, the probability of three and more flipping bits contained in the same
monomial strongly depends on the degree of the monomial. Theorems 3 and 4
have shown that we can obtain polynomial upper bounds only if d = O(log n).
Therefore, it make sense to concentrate on this case. If the current search point
is not optimal, there is a passive monomial which has to be activated. The best
bound we can hope for is of order (n/d) · 2d. We can prove this bound if p is
small enough.

Lemma 8 Let f be a monotone polynomial of degree d ≤ c log n and let m be
one if its monomials. There is a constant α > 0 such that RLSp with p =
min{1/n, α/(nc/2 log n)} activates m in an expected time of O((n/d) · 2d) steps.

Proof: The idea is to prove that RLSp activates m with a constant probability
ε > 0 within a phase of c′ · (n/d) ·2d steps for some constant c′. Since our analysis
does not depend on the starting point, this implies an upper bound c′ ·(n/d) ·2d/ε
on the expected time to activate m.

We bound the probability of the following so-called failure events:

• there is a step in the phase where at least three bits of m flip,

• under the condition that the first type of failure does not happen, the
algorithm does not create within a phase a search point where m is active,

• the first search point which activates m is not accepted.

If none of these failures happens, we activate m within the considered phase. The
first and third type of failure can be handled by standard techniques. For the
second type of failure we compare RLSp with steps of at most two flipping m-bits

18

on the function f with the same algorithm on the single monomial m. For this
purpose we apply the techniques developed in Section 2.

In the following we assume w. l. o. g. that m contains x1, . . . , xd. The analysis
is easier if m has smaller degree.

The first type of failure happens if the first flipping and two further flipping
bits belong to m or if three further flipping bits belong to m. Hence, the failure
probability for one step can be bounded above by

d

n

(
d − 1

2

)
p2 +

n − d

n

(
d

3

)
p3 ≤ d3 · p2

n
.

The failure probability for all steps of a phase is bounded above by

c′ · n

d
· 2d · d3 · p2

n
= c′ · 2d · d2 · p2 ≤ c′ · nc · c2 · (log2 n) · α2 · n−c · log−2 n.

Choosing α small enough, this is bounded by an arbitrary positive constant.
For the third type of failure it is necessary that at least one of the so-called

suffix bits xd+1, . . . , xn flips. However, m is activated during this step. Therefore,
we work under the condition that exactly all 0-bits of m, w. l. o. g. x1, . . . , xj ,
j ≥ 1, have flipped. We estimate the probability q that the failure does not
happen. Let Ai be the event that bit i flips. Then

q = Prob(Ad+1 ∩ · · · ∩ An | A1 ∩ · · · ∩ Aj ∩ Aj+1 ∩ · · · ∩ Ad)

=
Prob(A1 ∩ · · · ∩ Aj ∩ Aj+1 ∩ · · · ∩ Ad ∩ Ad+1 ∩ · · · ∩ An)

Prob(A1 ∩ · · · ∩ Aj ∩ Aj+1 ∩ · · · ∩ Ad)

The numerator equals

j

n
· pj−1(1 − p)n−j ≥ j

n
· pj−1 · e−1

and the denominator equals

j

n
· pj−1(1 − p)d−j +

n − d

n
· pj(1 − p)d−j ≤ 2 · j

n
· pj−1.

Hence, the probability that this failure does not happen is at least 1/(2e). This
holds also under the condition that the first two types of failure do not happen.

Finally, we apply Lemma 5. The Markov chain Y0 equals RLS∗
p, namely RLSp

on the monomial m, where the condition holds that no step flips more than two
bits of m. The Markov chain Y1 equals RLS∗

p on the monotone polynomial f which
again equals RLSp under the condition that no step flips more than two bits. Both
Markov chains are investigated on the compressed state space D = {0, . . . , d}.
This implies that Y1 is not time-homogeneous. The transition probabilities at
time step t depend on the random current search point Xt. Nevertheless, we

19

denote the transition probabilities by P1(i, j) and consider only properties which
hold for arbitrary search points Xt with the right number of ones among the
m-bits.

We prove this lemma by applying Lemma 5 and proving the conditions of
Lemma 5, more precisely:

• Y1 has a relative advantage to Y0 for c-values such that cmin ≥ 1/(2e),

• Y0 has a (2e − 1)-advantage,

• E(τ i
0) = O((n/d) · 2d) for all i.

The last claim follows from Theorem 1 which shows that the upper bound
O((n/d) · 2d) holds for all starting points. Lemma 2 implies that Y0 has a
(2e − 1)-advantage if d ≤ (n − 1)/(4e + 1) which holds for large enough n.
We are left with the first claim. According to Definition 3 and the fact that
at most two m-bits flip, we have to consider c(i, j) = P1(i, j)/P0(i, j) for j ∈
{i − 2, i − 1, i + 1, i + 2} and to prove that

• 1/(2e) ≤ c(i, i + 1) ≤ 1,

• c(i, i + 2) ≥ c(i, i − 1),

• c(i, i − 1) ≤ c(i, i + 1), and

• c(i, i − 2) ≤ c(i, i + 1) (or even c(i, i − 2) ≤ c(i, i − 1)).

Since RLS∗
p on m accepts each new string as long as the optimum is not found,

P1(i, i + 1) ≤ P0(i, i + 1) and c(i, i + 1) ≤ 1. Since RLS∗
p on f accepts a

step where one m-bit flips from 0 to 1 and not bit outside m flips, we can ap-
ply our calculations on the third failure probability to prove that c(i, i + 1) =
P1(i, i + 1)/P0(i, i + 1) ≥ 1/(2e).

The compare the c-values, consider a search point a = (b, c) with i ones in m,
i. e., in b. Assuming that a is the current search point, P0(i, j) is the probability
that RLS∗

p produces a search point with j ones in the prefix. Moreover, P1(i, j) is
the probability of producing a search point with j prefix ones and of accepting it
for the fitness function f . Hence, c(i, j) is the conditional probability of accepting
a string with j prefix ones if it is produced. Hence, we can prove the inequalities
for each fixed new suffix c′. Let b�, 1 ≤ � ≤ d − j, be the string obtained from b
by flipping the �-th 0-bit. Under the considered conditions c(i, i+1) = k/(d− j),
where k is the number of indices � such that RLS∗

p accepts (b�, c
′) on f . Let b�,�′ ,

1 ≤ � < �′ ≤ d − j, be the string obtained from b by flipping the �-th and the
�′-th 0-bit. Let k∗ the the number of pairs (�, �′) such that RLS∗

p accepts (b�,�′, c
′).

Then c(i, i + 2) = k∗/
(

d−i
2

)
. If (b�, c

′) is accepted, each (b�,�∗ , c
′) or (b�∗,�, c

′) is
accepted. Hence, c(i, i + 2) ≥ c(i, i + 1) since it is more likely to hit one of the
k positions when choosing two of them than when only choosing one. A dual

20

argument proves c(i, i− 2) ≤ c(i, i− 1). For the inequality c(i, i− 1) ≤ c(i, i + 1)
we distinguish two cases. If (b, c′) is accepted, c(i, i+1) = 1 since flipping a 0-bit
can only increase the f -value. Hence, c(i, i − 1) ≤ 1 = c(i, i + 1). If (b, c′) is
not accepted, c(i, i − 1) = 0 since flipping a 1-bit can only decrease the f -value.
Hence, c(i, i − 1) = 0 ≤ c(i, i + 1). Altogether, we have proved the lemma. �

When optimizing a monotone polynomial with RLSp, it is not enough to
activate each of its monomials once. Activated monomials can get lost while
other monomials are activated. We obtain an upper bound of O((n2/d) · 2d) on
the expected optimization time if p is small enough. This is not far from the
lower bound Ω((n/d) · log(n/d + 1) · 2d).

Theorem 5 The expected optimization time of RLSp on a monotone polynomial
f of degree d ≤ c log n is bounded above by O((n2/d) · 2d) if

0 < p ≤ min
{
1/(2dn) − γ, α/(nc/2 · log n)

}
for the constant α from Lemma 8 and each constant γ > 0.

Proof: In order to measure the progress of the optimization process, the f -value
of the current search point is not the right choice. An f -value of v can be due
to a single monomial of degree 1 or to many monomials of large degree. Here
we choose the “pseudo-fitness” function Ef (a) counting the number of essential
ones of a (with respect to f). A 1-entry of a is called essential if it is contained in
an activated monomial of f . All other 1-entries may flip to 0 without decreasing
the f -value and the optimization process is not influenced by inessential ones
until they get essential ones. An essential 1-entry can become inessential, but
this implies that in the same step some monomial is activated. Otherwise, the
f -value would decrease and the new search point would not be accepted.

If we have not found the optimum, there is a passive monomial of f . The
number of essential ones does not change until a passive monomial is activated.
Such steps are called essential. By Lemma 8, it is sufficient to prove a bound of
O(n) on the number of essential steps.

The proof of this bound is an application of Lemma 6. Such an approach
is sometimes called drift analysis (see Hajek (1982), Sasaki and Hajek (1988),
and He and Yao (2001)). Let Xi be the number of essential ones after the i-th
essential step, i. e., X0 is the number of essential ones after initialization. Let
D0 = X0 and Di = Xi−Xi−1 for i ≥ 1. Then we are interested in τ , the minimal
i where D0 + D1 + · · ·+ Di = n. Some conditions of Lemma 6 are verified easily.
We have |Di| ≤ n and E(τ) < ∞ since we have a probability of at least pn to
create the optimal string in each step. If we can prove that E(Di | τ ≥ i) ≥ ε for
some ε > 0, Lemma 6 implies that E(τ) = O(n).

At least one monomial is activated in an essential step. This implies that at
least one bit turns from inessential into essential. We have to bound the expected

21

number of bits turning from essential into inessential. Since the assumption that
the new search point is accepted only decreases this number, we consider the
number of flipping ones under the condition that a 0-bit is flipped. A flipping
one may turn other essential bits into inessential.

Let Y be the random number of additional bits flipped by RLSp under the
assumption that a specified bit (activating a monomial) has flipped. The specified
bit can flip since it is chosen immediately by RLSp as a flipping bit (probability
1/n) or since it is not chosen immediately and flips nevertheless (probability
p · (1 − 1/n). In the first case Y is binomially distributed with respect to n − 1
and p and has an expected value of (n − 1) · p. In the second case, Y = Z + 1
where Z is binomially distributed with respect to n − 2 and p and the expected
value of Y equals 1 + (n − 2) · p. Altogether,

E(Y) =

[
(n − 1) · p · 1

n
+ (1 + (n − 2) · p) · p ·

(
1 − 1

n

)] / (1

n
+ p ·

(
1 − 1

n

))

= [p + (1 + (n − 2) · p) · p]
/ (1

n − 1
+ p

)

≤ (2p + p2n)
/ (1

n
+ p

)
≤ 1 − ε

d

for some ε > 0 since p ≤ 1/(2dn) − γ for some constant γ > 0.
Finally, we are interested in the expected number of bits turning from essential

into inessential if Y = i. In the worst case all these i bits are flipping from 1 to
0. Since we do not take into account that some new search point is not accepted,
each subset of size i of the essential ones has the same probability of being the
flipping ones. Let A contain the positions of the essential ones. Let L be the
random number of j ∈ A turning into inessential if a bit at a random position
k ∈ A flips to 0. We claim that E(L) ≤ d. We denote by Lk the number of
j ∈ A turning into inessential if bit k flips. If the claim holds and we flip i of
these positions one after the other, we lose on average not more than i ·d essential
ones. Since the average number of flipping essential ones is bounded above by
(1 − ε)/d, the expected number of bits turning from essential into inessential
is bounded above by 1 − ε. Since at least one bit turns from inessential into
essential, this implies E(Di | τ ≥ i) ≥ ε and the theorem.

We still have to prove the claim E(L) ≤ d. We consider a matrix of size
|A| × |A|. The (k, j)-entry equals 1 if bit j turns into inessential if bit k flips.
Otherwise, the entry equals 0. The sum of row k equals Lk and we are interested in
the average number of ones per row which equals (by the book-keeping method)
the average number of ones per column. In column j we have ones for all k
whose flip makes bit j inessential. The column sum is bounded by d since for
each (k, j)-entry equal to 1 the k-th variable has to be in each activated monomial
containing the j-th variable. If each column sum is bounded by d, so is the average
column sum. �

22

7 On the Analysis of the (1+1) EA

The bounds in the last section hold only if p is small enough. In particular, The-
orem 5 cannot be transferred to the (1+1) EA. However, a result corresponding
to Lemma 8 can be proved.

Lemma 9 Let f be a monotone polynomial of degree d and let m be one of its
monomials. There is a constant a such that the (1+1) EA activates m in an
expected number of O((n/d) · 2d) steps if d ≤ 2 log n − 2 log log n − a.

Proof: The proof follows the same structure as the proof of Lemma 8. We only
describe where we need different arguments.

First, the probability of at least three flipping m-bits is bounded above by(
d
3

) · (1/n)3 ≤ d3n−3/6 for the (1+1) EA. The probability that this happens in a
phase of length c · (n/d) · 2d is bounded by (c/6) · d2 · 2d/n2 which can be made
smaller than 1 by choosing a large enough.

Second, the probability that no bit outside m flips is at least (1 − 1/n)n−1 ≥
1/e. Also Lemma 8 can be applied with a value cmin ≥ 1/e and an (e − 1)-
advantage of Y0. It is again possible to apply Theorem 1. Instead of Lemma 2,
Lemma 1 is applied. Here it is sufficient that d ≤ (n − 1)/e.

Finally, the argument that Y1 has a relative advantage to Y0 for c-values such
that cmin ≥ 1/e can be used in the same way here. �

Since the expected number of flipping bits is too large, we only obtain an
upper bound on the expected optimization time which depends on the number
of f -monomials with non-zero weights.

Theorem 6 The expected optimization time of the (1+1) EA on a monotone
polynomial with N monomials and degree d ≤ 2 log n − 2 log log n − a for the
constant a from Lemma 9 is bounded above by O(N · (n/d) · 2d).

Proof: Here we use the method of measuring the progress by fitness layers. Let
the positive weights of the N monomials be sorted, i. e., w1 ≥ · · · ≥ wN > 0. We
partition the search space {0, 1}n into N + 1 layers L0, . . . , LN , where

Li = {a | w1 + · · · + wi ≤ f(a) < w1 + · · · + wi+1}

for i < N and LN contains all optimal search points with f -value w1 + · · ·+ wN .
The search process leaves each layer Li, i < N , at most once. Hence, it is
sufficient to prove a bound of O((n/d) · 2d) on the expected time to leave Li,
i < N . Let a ∈ Li. Then there exists some j ≤ i + 1 such that the monomial
mj corresponding to wj is passive. By Lemma 9, the expected time until mj

is activated is bounded by O((n/d) · 2d). Either we have left Li before or some
monomial is deactivated during the step activating mj or we leave Li with the

23

step activating mj. Since the probability that no bit outside mj flips in the step
activating mj is at least e−1, we have a constant probability to leave Li within
O((n/d) · 2d) steps. Otherwise, we stay in Li and can repeat the arguments for a
next phase with another passive monomial mk, k ≤ i + 1. The expected number
of phases is bounded by e and the theorem is proved. �

Conclusions

We have analyzed randomized search heuristics like random local search and a
simple evolutionary algorithm on monotone polynomials. The conjecture is that
all these algorithms optimize monotone polynomials of degree d in an expected
number of O((n/d)·log(n/d+1)·2d) steps. It has been shown that some functions
need that amount of time. Moreover, for random local search the bound has
been verified. If the expected number of flipping bits per step is limited, a little
weaker bound is proved. However, for the evolutionary algorithm only a bound
depending on the number of monomials with non-zero weights has been obtained.
Although there is room for improvements, the bounds and methods are a step to
understand how randomized search heuristics work on simple problems.

References

Droste, S., Jansen, T., Tinnefeld, K., and Wegener, I. (2002). A new framework
for the valuation of algorithms for black-box optimization. In Proc. of Foun-
dations of Genetic Algorithms 7 (FOGA 2002), 197–214. Final version of the
proceedings to appear in 2003.

Droste, S., Jansen, T., and Wegener, I. (2002). On the analysis of the (1+1)
evolutionary algorithm. Theoretical Computer Science, 276, 51–81.

Feller, W. (1971). An Introduction to Probability Theory and its Applications.
Wiley, New York.

Garnier, J., Kallel, L., and Schoenauer, M. (1999). Rigorous hitting times for
binary mutations. Evolutionary Computation, 7(2), 173–203.

Hajek, B. (1982). Hitting-time and occupation-time bounds implied by drift
analysis with applications. Advances in Applied Probability, 14, 502–525.

He, J. and Yao, X. (2001). Drift analysis and average time complexity of evolu-
tionary algorithms. Artificial Intelligence, 127, 57–85.

Jansen, T. and Wegener, I. (2001). Real royal road functions – where crossover
provably is essential. In Proc. of GECCO 2001, Genetic and Evolutionary
Computation Conference, 375–382.

24

Jansen, T. and Wegener, I. (2002). The analysis of evolutionary algorithms – a
proof that crossover really can help. Algorithmica, 34, 47–66.

Mitchell, M., Forrest, S., and Holland, J. H. (1992). The royal road for genetic
algorithms: Fitness landscapes and GA performance. In Varela, F. J. and
Bourgine, P. (eds.), Towards a Practice of Autonomous Systems: Proceedings
of the First European Conference on Artificial Life, 245–254. MIT Press, Paris.

Mitchell, M., Holland, J. H., and Forrest, S. (1994). When will a genetic algorithm
outperform hill climbing. In Cowan, J. D., Tesauro, G., and Alspector, J. (eds.),
Advances in Neural Information Processing Systems, vol. 6, 51–58. Morgan
Kaufmann.

Motwani, R. and Raghavan, P. (1995). Randomized Algorithms. Cambridge
University Press.

Sasaki, G. H. and Hajek, B. (1988). The time complexity of maximum matching
by simulated annealing. Journal of the ACM, 35, 387–403.

Wegener, I. (2001). Theoretical aspects of evolutionary algorithms (invited pa-
per). In Proceedings of ICALP 2001, no. 2076 in LNCS, 64–78.

Wegener, I. and Witt, C. (2002). On the analysis of a simple evolutionary algo-
rithm on quadratic pseudo-boolean functions. To appear in Journal of Discrete
Algorithms.

25

