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Abstract

While in the absence of noise, no improvement in local performance can be gained from
retaining but the best candidate solution found so far, it has been shown experimentally that in
the presence of noise, operating with a non-singular population of candidate solutions can have a
marked and positive effect on the local performance of evolution strategies. So as to determine
the reasons for the improved performance, we study the evolutionary dynamics of the (u, A)-ES
in the presence of noise. Considering asimple, idealized environment, a moment-based approach
that utilizes recent results involving concomitants of selected order statistics is developed. This
approach yields an intuitive explanation for the performance advantage of multi-parent strategies
in the presence of noise. It isthen shown that the idealized dynamic process considered does bear
relevance to optimization problemsin high-dimensional search spaces.

Keywords: Evolution strategies, (u, A)-ES, distributed populations, population variance, Gaus-
sian noise, noise-to-signal ratio.

1 Introduction

Evolutionary algorithms (EAS) are frequently recommended for optimization in the presence of noise.
Underlying this recommendation is a good track record of evolutionary optimization strategies on
noisy, real-world optimization problems along with the vague idea that using a population of candi-
date solutions that is distributed in search space should make EAs particularly robust and insensitive
to the effects of noise. Empirical research by Nissen and Propach [11] seems to support this idea.
However, little is known as to where exactly the benefits of distributed populations in noisy envi-
ronments stem from. In the realm of genetic algorithms (GAs), some results have been found by
Miller and Goldberg [10] and by Rattray and Shapiro [13]. Based on the building block hypothesis,
Miller and Goldberg analyzed the effects of noise on different selection mechanisms for GAs. Rattray
and Shapiro investigated the effects of noise on GA performance on the OneMax function and on a
perceptron learning problem with binary weights. They concluded that the effects of noise can be
removed altogether by using a sufficiently large population, where the necessary population size in-
creases exponentially with the noise strength. While both of those studies consider discrete problems,
the present paper focuses on the performance of evolution strategies (ES) in continuous search spaces.
The mathematical analysis of the performance of a multi-parent ES in the presence of noise would
greatly contribute to the understanding of the reasons for the observed robustness of EAs. According



to Rechenberg [15], it would be a“little breakthrough” if alaw describing the local performance of a
multi-parent strategy in a quadratic fitness environment could be found.

In the absence of noise, Beyer [6] presented a moment-based analysis of the performance of the
(1, A)-ES for spherically symmetric fitness functions. The mathematical difficulties of the analysis
were considerable asfor i > 1, the population of candidate solutions that emergesin the course of the
evolution isdistributed in search space and needs to be modeled. The approach relied on the possibility
to characterize the population distribution by a small number of its lower order moments, such as
expected value, variance, skewness, and kurtosis. Expansions of the population distribution in terms
of derivatives of the normal distribution were employed. Approximations to the lower-order central
moments of the distribution and subsequently to the progress rate were obtained by imposing “ self-
consistency conditions’ and solving aresulting system of equations. The results that were obtained
are quite accurate even if only moments up to the third order are considered. A main result of Beyer's
analysis, which was also stated by Rechenberg [15], is the observation that on the noise-free sphere
the performance of the (u, A)-ES with 1 > 1 is never superior to that of the (1, A\)-ES, and that
thus no benefits can be gained from retaining any but the best candidate solution generated. However,
Rechenberg [15] aso provided empirical evidence that thisis not true in the presence of noise. Simple
computer experiments can be used to demonstrate that for the very same fitness function, significant
speed-up factors over the (1, \)-ES can be achieved by retaining more than just the (seemingly) best
candidate solution if there is noise present.

First steps towards the analysis of the behavior of the (1, A)-ES in the presence of noise were
taken by Arnold and Beyer [2]. In that reference, a quality gain law for the (i, A)-ES on a noisy
linear fitness function was derived and its implications were studied. However, the variance of the
population of candidate solutions appeared as a factor in that quality gain law, and an attempt to
obtain an analytical expression for that variance using a normal approximation to the distribution of
candidate solutions yielded unacceptably inaccurate results. Instead, it was necessary to resort to using
values for the population variance that were measured empirically. It was noted that in the absence
of noise, considering additional terms in the expansion of the population distribution had led to the
greatly improved results reported by Beyer [6], and it was suggested that including those terms might
yield a much improved approximation in the presence of noise as well. However, it was also noted
that the mathematical difficulties involved in such an approach could be expected to be considerable.

A first attempt to overcome those mathematical difficulties was presented by Arnold [1]. In that
reference, noisy order statistics were introduced and expected values of samples of selected offspring
candidate solutions were computed. Moments of the third order as well as some fourth order terms
were included in the analysis. By formulating “self-consistency conditions’ analogous to those of
Beyer [6], fairly accurate estimates of the quality gain and of the population variance of the (1, A)-ES
in the presence of noise were obtained. The present paper both extends on those results by improving
their accuracy by considering al fourth order terms and it increases the accessibility of the argument
by using recent results with respect to expected values of sample moments of concomitants of selected
order statistics. Moreover, the process of finding population moments is automated entirely by the
Mathematica program in the appendix.

The organization of the remainder of this paper is as follows. In Section 2, we study the evo-
lutionary dynamics of the (1, A)-ES on a linear, one-dimensional fitness function in the presence of
Gaussian noise. Moments up to the fourth order need to be considered so as to obtain a satisfactory
approximation to the population distribution. In Section 3, an intuitively appealing explanation for
the improved performance of multi-parent strategies in the presence of noise is given based on the
insights afforded by the analysis from Section 2. Multi-parent strategies are seen to operate under a
reduced noise-to-signal ratio as compared to one-parent strategies, thus enabling selection to be more
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effective. Finally, in Section 4, we discuss the relevance of the findings that have been made in a
highly idealized, one-dimensional fitness environment for practical optimization problems. In partic-
ular, implications for the sphere model are discussed, and estimates for optimal population sizes and
efficiencies of the (u, \)-ES on the noisy sphere are determined for high search space dimensionality.
Section 5 concludes with a brief summary of the main results.

2 Analyss
Let us consider the behavior of the (i, A)-ES on the simple fitness function
f:R—> R
flz) = . )

Without loss of generality, we assume that the task at hand is maximization. Even though very simple,
this fitness function can serve to reveal scaling properties of the (i, A)-ES and will be seen to have
implications for more complex optimization problems. In particular, in Section 4 we will see that it
can shed light on design decisions that practitioners face, such as the choice of population size.

The (i, A)-ES at time step ¢ maintains a population {z&t), el xff)} of 1 candidate solutions. So
as to obtain the population at time step ¢ + 1, A new candidate solutions are generated by each time
randomly picking one of the mz(t) and adding a normally distributed mutation vector with zero mean.
Note that for the special case of a one-dimensiona fitness function, the mutation vector consists of a
single component, and that due to the scale invariance of the fitness function defined in Eq. (1) it can
without loss of generality be assumed that the variance of that component is unity. The population of
candidate solutions at time step ¢ 4 1 consists of those . of the A newly generated candidate solutions
that score best in terms of the fitness function. As anoise model, we assume that evaluating the fitness
function yields a measured fitness value that differs from the ideal fitness value f(z) by an additive,
normally distributed term with mean zero and with variance «#. This assumption of Gaussian white
noise is aimost universal in the optimization literature. The decision which candidate solutions to
select for inclusion in the next time step’s population is made based on measured fithess values. The
standard deviation «} of the noise term is referred to as the noise level.

AsBeyer [6], we consider the central moments
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where m; = > | z;/u denotes the mean, as important characteristics of the population of candi-
date solutions. For the fitness function defined in Eq. (1), after initialization effects have faded the
distribution of the central moments of the population will approach atime-invariant limit distribution.
The approach pursued in the remainder of this section consists in determining the influence of muta-
tion and selection on the central moments and inferring properties of their distribution. Note that the
change of the mean m, of the population is an indicator of the progress that the strategy makes in
a single time step. Due to the tranglation variance of the environment, it is possible without loss of
generality to assume that at time ¢, m; = 0.

The effects of mutation on the central moments are easily determined. When generating an off-
spring candidate solution, one of the parentsis selected at random and a standard normally distributed
random variable is added. The distribution of the offspring is thus the convolution of the distribution
of the parents and a standard normal distribution. As such, it has variance & = my + 1, coefficient
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of skewness v, = my/v/ms + 1°, and coefficient of kurtosis v = (my — 3m3)/(ma + 1)%. For
a thorough introduction to moments, cumulants, and their interrelationship we refer to Stuart and
Ord [17].

The effects of selection are considerably harder to characterize than those of mutation. Mathe-
matically speaking, it is necessary to determine expected values of sample moments of concomitants
of selected order statistics. Arnold and Beyer [4] recently presented a moment-based solution to the
problem. While their analysis assumes a standardized population, the results can be almost trivialy
generalized to include the case of a population of arbitrary variance and can be summarized for that
case as follows.

Suppose that (X1,Y7),...,(X\,Y)) are X independent, identically distributed bivariate observa-
tions from a continuous population with probability density function p(z,y) = p(z|y)q(y), where the
conditional probability density isp(z|y) = ¢((z —y)/9)/9. Hereand in what follows, ¢(x) denotes
the probability density function of the standardized normal distribution. The probability density ¢(y)
is assumed to have variance s2, coefficient of skewness vy, and coefficient of kurtosis v,. Intuitively,
the X; are the measured fitness values and the Y; are the corresponding ideal fitness values. To com-

pute central moments of the selected offspring candidate solutions, let A = («y, ..., «,) be avector
of v positiveintegers o;;, i = 1,...,v, where 1 < v < pu. Furthermore, let
— I/
Z Yll AT Ya
where the summation ranges over all indicesi; = A — v +1,..., A suchthat i; # 4, forany j # k

and therefore over al candidate solutions that are selected to form the population of the following
time step. Y7;.,) denotes the ideal fitness value of the offspring with the ith smallest measured fitness
and thus the concomitant of the sth order statistic X;.,. A good introduction to concomitants of order
statistics can be found in David and Nagargja [9]. It is easily seen by multiplying out Eq. (2) and
rearranging terms that sample moments of the selected offspring candidate solutions can be expressed
in terms of the S4. For example,
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Thus, expected values of the sample moments at time step ¢ + 1 can be given provided that expected
values of the S4 can be obtained. Expected values of the S4 have been found to be expressible as
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where || A]| = 32_, a;. The coefficients ¢’ (k) have been tabulated by Amold and Beyer [4] and
depend on the noise coefficient
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only. The coefficients h;’f& are defined as
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where ®(y) denotes the cumulative distribution function of the standardized normal distribution and
Hey(x) denotes the kth Hermite polynomial, and can be determined numerically. For example, for
A = (1), the expected value of S, is

1,0, N 1,1
E[Si] =s (ahw\ + €a2(3 — 2a2)hu,)\
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Both Edgeworth and Cornish-Fisher expansions have been used in the derivation of Eq. (7). All terms
that are neglected and are represented by dots consist of terms of an order higher than the fourth.
It can be expected that additional accuracy could be gained by including such terms in the analysis.
However, the resulting expressions become very lengthy, and the accuracy of the results is sufficient
for our purposes even if only terms up to the fourth order are considered.

Clearly, the central moments of the population are random variables. For the simple fitness func-
tion given in Eq. (1), the probability distribution of those random variables tends to a time-invariant
limit distribution. For the simple case of infinite noise level (and thus random selection), some lower
order moments of that distribution have been computed by Arnold [1]. Unfortunately, the approach
pursued there cannot be used if selection is not random. Instead, we follow Beyer [6] who neglected
fluctuations of the central momentsin an attempt to learn about their expected values. However, rather
than considering central moments, we choose to consider cumulants due to their somewhat better nu-
merical properties. Note that for orders up to the third, central moments and cumulants agree, and
that the fourth order cumulant can be obtained from the second and fourth order central moments. We
postulate that the expected values of the cumulants of the population at time step ¢ 4+ 1 agree with
those at time step ¢, i.e. that

E [ gt+1)} _ mgt) — my )
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Egs. (10) together with Egs. (3) through (6) form a system of three equations in the three unknowns
mg, m3, and my that can be solved numerically. The Mathematica program in the appendix can be
used to both obtain expected values of the central moments after selection and for solving the resulting
system of equations. While the approach does not yield exact results as both fluctuations and higher
order moments have been neglected, it will be seen in Section 3 that the values of the moments that
are obtained do not differ much from the expected values that are observed empirically.
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3 Discussion

In Figure 1, the estimates that have been obtained by solving the system of Egs. (10) and the resulting
estimate for the expected progress given by Eqg. (9) are compared with measurements of runs of evolu-
tion strategies. While in that figure we have used A = 40, the graphsthat are obtained for other values
of \ are qualitatively similar. Three levels of approximation are included in the figure. The solid lines
are the result of considering moments up to the fourth order, the dashed lines result from considering
moments only up to the third order, and the dotted lines correspond to a normal approximation that
does not consider either skewness or kurtosis of the distribution. It can be seen that the estimates for
the progress and the variance of the population that have been obtained do agree quite closely with the
values measured empirically provided that moments including those of the fourth order are consid-
ered. For ;1 = 1, solving Egs. (10) yields the exact result for the progress as the parental population
consists of a single point and the distribution of offspring fitness values is normal. The results agree
with those found for the (1, A\)-ES by Beyer [5]. For ¢ = 0, the estimates agree with those derived
by Beyer [6], except that fourth order moments are considered here in addition. Note that while in the
absence of noise, considering moments up to the third order is sufficient for obtaining fairly accurate
results, in the presence of noise both the expected progress and the population variance are severely
overestimated unless moments of the fourth order are included in the analysis.

It can be seen from Figure 1 that in the presence of noise, much higher progress than that of
the (1, A)-ES can be achieved by choosing ¢ > 1. As customary, we write ¢, »(¢) for the ex-
pected progress E[m; ] of the (i, \)-ES on the fitness function given by Eq. (1). For nonzero noise,
the curves in upper graph have a maximum at intermediate values of u. For example, while the
progress of the (1,40)-ES at noise level ¥ = 16.0 is ¢ 49(16.0) ~ 0.13, that of the (12,40)-ES
IS c12,40(16.0) ~ 0.46. That is, the expected progress can be increased by a factor of 3.5 without
additional computational costs simply by retaining more than just the seemingly best offspring can-
didate solution. Rechenberg [15] empirically demonstrated that at higher noise levels even greater
speed-up factors can be observed. The upper graph of Figure 1 suggests that for fixed A, the optimal
size of the parental population 1 increases with increasing noise strength — a fact that was already
observed by Rechenberg [15] —, and that at the same time the progress becomes less sensitive to the
choice of truncation ratio i/ A. Rechenberg speculated that the fact that the variance of the offspring
candidate solutions of a (i, A)-ESisincreased as compared to that of a (1, A)-ES operating with the
same mutation strength might contribute to the improved performance in the presence of noise of the
former strategy.

So asto see what can be learned with regard to the reasons for the speed-up that can be achieved,
let us consider Eq. (9). Closer numerical investigation shows that while skewness and kurtosis are
essential for obtaining a satisfactory estimate of the variance m, of the population, the influence of
the terms in Eq. (9) that v and - appear in is rather minor. Omitting all but the first term in the
parentheses and using s> = my + 1 yields the approximation

vma +1 pL0

E[mi] = ¢, (9) = NI

(11)

where the coefficient thA agrees with the coefficient eﬂ introduced and studied by Beyer [8]. The
dependence of the coeffl cient on i, and X isillustrated in Figure 2.

The lower graph of Figure 1 suggests that for fixed A, the variance of the population increases both
with increasing size of the parental population x and with increasing noise level ¥. In the absence of
noise, the progress according to Eq. (11) simply reads E[m; ] ~ \/mhi?\ When increasing the
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Figure 1: Progress m; and population variance my; of a (u, A)-ES with A = 40 as functions of the
size of the parental population n. The lines correspond to, from top to bottom in the upper graph
and from bottom to top in the lower graph, noise levels ¢ = 0.0, 4.0, and 16.0. The dotted lines
correspond to the normal approximation, the dashed lines take the skewness of the population into
account, and the solid lines represent the results obtained when additionally the fourth order moments
are considered. The crosses mark data that has been obtained from empirical measurements of runs
of evolution strategies.
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curves in the upper graph of Figure 1 decrease monotonl caly. In the presence of noise, however, the
variance of the population aso appears under the square root in the denominator whereit actsto reduce
the weight of the noise-dependent term. Asm;y + 1 isthe variance of the set of offspring candidate
solutions, and as selection is based on the measured fitness of the offspring candidate solutions, the
quotient ¥ /y/mo + 1 is the noise-to-signal ratio of the system. While for the (1, A\)-ES we have
mg = 0 and the progress decreases with 1/v/1 + 92 — aresult that is known from Beyer [5] and
Rechenberg [15] —, for . > 1 the noise-to-signal ratio is moderated by the nonzero variance of the
population. As we have seen the effect of this decrease of the noise-to-signal ratio can outweigh
the decrease in v/mo + 1 h 0 ), that results from an increase of x. Eq. (11) thus not only provides a
quantitative background for Rechenberg s speculation, but it also demonstrates that at least for the
simple fitness function given by Eq. (1) the increased variance of the offspring is the only reason
for the improved performance of the (i, A)-ES as compared with the (1, A\)-ES. In the next section,
we will see that the relevance of the results obtained for that ssmple fitness function is by no means
limited to that function alone, but that the results have important implications for optimization in
high-dimensional search spaces.

4 The Sphere

While the objective function introduced in Eq. (1) and studied in Sections 2 and 3 isof asimplicity that
makes it appear to be far removed from any practical optimization problem, it does have important
implications for all cases in which the fitness function can effectively be linearized locally. While
this is frequently possible for one-parent strategies that do not employ a large step length, it is not
clear whether linearization does not introduce too large an error if the population is distributed in
search space. However, by considering the sphere model — the most frequently studied objective
function in the realm of ES — we will see that in high-dimensional search spaces, the variance of
the population can be small enough to make it possible to linearize. With increasing search space
dimensionality, the error introduced by the linearization tends to zero, and even for moderate search
space dimensionalities the predictions that can be obtained using the results from Section 2 describe
the behavior of the (i, A)-ES on the noisy sphere with high accuracy. The close relationship of the
sphere model to other models of optimization problems such as the parabolic ridge studied by Oyman
et a. [12] makes it seem likely that the results that can be obtained with the approach pursued in the
present paper can be used in future analyses of other fitness environments.



The objective function
f:RY S R
fx) = (x = %) (x - %), (12)

where the task is minimization and where x € IR" denotes the optimizer, is commonly referred
to as the sphere model and has been introduced by Rechenberg [14] as a model for unconstrained
optimization problems at a stage where the population of candidate solutions is aready in relatively
close vicinity to the optimizer. It has been proven to be of great use for studying the scaling behavior
of ES with respect to parameters such as the search space dimensionality N, the population size
parameters ; and A, and the mutation strength. In this section, as in Arnold and Beyer [3], we
focus on the sphere model with Gaussian fitness-proportionate noise. That is, we assume that the
noise level present when evaluating a candidate solution x is proportional to that candidate solution’s
ideal fitness. The noise strength o = ¥/(2f(x)) is independent of the location in search space.
Fitness-proportionate noise model s relative errors of measurement that arise for example in connection
with physical measurement devices that are accurate up to a certain percentage of the quantity they
measure.

The (1, A)-ES generates A new candidate solutions from the parental population {x;,...,x,}
by randomly picking one of the parents and adding a mutation vector the components of which are
independently normally distributed with mean zero and with variance o*. We assume that some
mechanism for adapting the mutation strength ¢ isin place, such as mutative self-adaptation (Rechen-
berg [14], Schwefel [16]). The distances from the optimizer are denoted as B, = ||x; — %X||, and the
average distance of the population from the optimizer isR =) _* | R;/u. The progressrate ¢ isthe
expected value of the change in R from one time step to the next. Ascommon in ES theory, we intro-
duce the normalized progress rate ¢ = ¢ N/ R and the normalized mutation strength o* = o N/ R.

Analyses of thelocal performance of ES on the sphere rely on adecomposition of mutation vectors
into two components. a central component in direction of the optimizer and a lateral component in
the plane perpendicular to that direction. Both Rechenberg [15] and Beyer [8] have shown that in
the limit of infinite search space dimensionality, the distance from the optimizer » = ||y — %|| of an
offspring y generated from parent x; is

No?
r = Rz oz + 2—]%7;,
where 7z is a standard normally distributed random variable. The second term on the right hand side
isaresult of the central component of the mutation vector, the third term is contributed by the lateral
component. By normalization, it follows that
. R o*2

Ri—r

R =0 Z— E 2 .
Let usfor the moment assume that the variance of the R; decreases as the search space dimensionality
increases. In that case, the second summand on the right hand side of Eq. (13) tends to —o*2/2
and is thus independent of the parent that the offspring candidate solution is generated from. Hence,
by a simple linear transformation, we have the same situation as in Section 2, with the z-vaues of
the offspring candidate solutions taking the role of the #; in Section 2. The expected average of
the selected z-values would thus be ¢, \ (9), where ¥ = o} /o*. Therefore, the progress rate of the
(1, A)-ES on the noisy sphere in the limit of infinite search space dimensionality would be

N

(13)

0_*2
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For zero noise strength, Eqg. (14) formally agrees with a progress rate law given by both Rechen-
berg [15] and Beyer [8]. Rechenberg also claimed the validity of the law in the presence of noise.

What remains to be seen is whether the variance of the R; really decreases with increasing search
space dimensionality. It is reasonable to assume — and can indeed be observed in experiments —
that the population variance is largest if selection is random. Notice that this fact is reflected in the
lower graph of Figure 1. The dynamics of EAswith random selection have been studied by Beyer [7].
In that reference, it is shown that the population variance of an ES with mutation strength o and with
random selection does not exceed po®. Thus, the quotient d; = (R; — R)/(,/fio) is of order unity
inN.As R . e
EZ :1+\/ﬁﬁdi:1+\//jﬁdi7
and asfor p and o* fixed the last term tends to zero as N tends to infinity, it follows that R,/ R more
and more closely approaches unity as the search space dimensionality increases. For sufficiently high
search space dimensionality and not too large a population, Eq. (14) therefore indeed describes the
progress rate of the (u, A)-ES on the noisy sphere.

Figure 3 compares predictions from Eq. (14) with empirical measurements of the progress rate
of a (3,10)-ES on the noisy sphere with search space dimensionalities N = 40 and N = 400. It
can be seen that for N = 40 the agreement is quite good, but that the accuracy of the predictions
afforded by Eq. (14) somewhat decreases with increasing noise strength and with increasing mutation
strength. This is reasonable as both increasing noise strength and increasing mutation strength in-
crease the population variance. Search space dimensionality N = 400 is sufficient for achieving very
good agreement with empirical measurements across the entire range of noise and mutation strengths
considered.

Using Eq. (14) it is now possible to determine optimal population sizes and maximal efficiencies
on the noisy spherefor sufficiently high search space dimensionality. Theefficiency n of the (x4, A\)-ES
is defined as the normalized progress rate per evaluation of the objective function and thus as

Thedivision by A serves the purpose of accounting for the computational costs that are assumed to be
dominated by the cost of evaluating the fitness function. We determine numerically mutation strengths
and population size parameters 1 and A that maximize the efficiency. Asthe focusin this section is
the relevance of the linear progress law for the sphere, empirical values for the coefficients ¢, » ()
have been used so as to not introduce errors resulting from the approximation made in Section 2.
While for low noise strengths (0.0 < o} < 4.0) there are virtually no discrepancies between the
resulting curves, for higher noise strengths the dependence of the progress rate on the population size
parameters becomes so weak that some deviations in the results can be observed.
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Figure 4: Optimal number of offspring per time step A and maximal efficiency n on ahigh-dimensional
sphere as functions of noise strength o;. In the left hand graph, the dashed line represents results for
the (1, A)-ES, the crosses for the (y, A)-ESwith optimally chosen 1. In the right hand graph, the solid
and dashed lines correspond to the (4, A)-ES and the (1, \)-ES, respectively, with optimally chosen
population size parameters. The dotted line reflects the result for the (1 + 1)-ES that was obtained by
Arnold and Beyer [3].

The left hand graph of Figure 4 shows the optimal number of offspring A as a function of the
noise strength for the (4, A)-ES with optimally chosen . as well as for the (1, A)-ES. It can be seen
that, except for very low noise strengths, the (i, A)-ES ideally operates with many fewer offspring
candidate solutions per time step than the (1, A)-ES. At least for the range considered, the relationship
between the noise strength and the optimal number of offspring candidate solutions of the (u, \)-ES
appears to be nearly linear. The optimal truncation ratio 1/ consistently lies between 0.1 and about
one quarter, with atendency to ratios at the upper end of that interval as the noise strength increases.

The right hand graph of Figure 4 compares the efficiency of the (1, A)-ES with optimally chosen
population size parameters 1 and A with those of the (1, A\)-ES with optimally chosen A and of the
(1 4+ 1)-ES. The efficiency of the (1 + 1)-ES exceeds the efficiency of the other two strategies only
up to a noise strength of o7 ~ 1.0 and is markedly inferior for higher noise strengths. Up to a
noise strength of about o7 ~ 1.4 it is not useful to retain more than a single candidate solution and
the curves for the (i, A)-ES and the (1, \)-ES agree. Above this noise strength the efficiency of the
(1, A)-ES can significantly exceed that of the (1, A)-ES. It isimportant to note that the sensitivity of
the efficiency of the (i, A\)-ES to the population size parameters 1 and ) is low especially for high
noise strengths. The left hand graph of Figure 4 in combination with the observation on optimal
truncation ratios made above can often serve as a guideline for choosing population size parameters
that result in near-optimal performance.

5 Conclusions

In this paper, the influence of distributed populations on the performance of ES in continuous search
spaces has been studied. In particular, the behavior of the (i, A)-ES on alinear fitness function was
analyzed using a moment-based approach for describing the population of candidate solutions. The
results of the analysis that considered moments up to the fourth order and that neglected fluctuations
proved to yield good estimates for the population variance as well as for the expected progress. Based
on those results, we identified the population variance as a quantity of great importance for the un-
derstanding of the (x4, \)-ES. We have seen that it contributes to the “signal strength” of the selection
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process, and that greater variances improve the signal-to-noise ratio that the strategy operates under.
However, as greater variances can be achieved only by increasing the proportion of candidate so-
lutions that are retained and thus at the price of reduced selection pressure, there exists an optimal
truncation ratio that depends on the population size as well as on the noise strength. We have seen
that the optimal truncation ratio increases as the noise strength increases, but that attaining it exactly
becomes less significant as the dependence of the quality gain on it becomes weaker.

The results obtained on the linear fitness function are of immediate relevance and of practical
interest whenever it is possible to linearize the fitness function at hand. By considering the sphere
model, we have seen that in high-dimensional search spaces such alinearization can indeed be possi-
ble. Determining optimal population sizes on the sphere we found that the optimal number of offspring
candidate solutions generated per time step is much lower for the (i, A)-ES than for the (1, \)-ES —
aresult of great interest to the ES practitioner —, and that above a certain noise strength substantial
performance gains can be achieved by retaining more than the (seemingly) best candidate solution.
Moreover, it has been seen that the choice of population size parameters is relatively uncritical, and
that retaining about 20% of the total number of candidate solutions generated per time step amost
universally yields near-optimal performance. There is substantial hope that the results obtained in
this paper are of relevance for future studies of the effects of noise in other high-dimensional fitness
environments.

Appendix: Mathematica Program

This appendix contains the Mathematica program used to determine the population moments that
result from the analysisin Section 2 and that have been used to generate Figure 1. The code up to and
including the definition of MakeSum is a duplication of that proposed by Arnold and Beyer [4] for
the computation of the expected values of the Sy. The remainder of the code determines numerically
the coefficients h;iﬁ\ defined in Eq. (8) and solves the system of Egs. (10).

Hermite[k , x ] := Simplify[HermiteH [k, x/Sqgrt[2]]1/Sgrt[2] k] ;

MakePi[A ] :=
Apply[Plus,
Map [Apply [Times, MapIndexed[x[First [#2]] "#1 &, #11] &,

Permutations [A]l]l];

MakeIntegrandl[A ] :=
MakePi [A] *Product [1
+ gl*Hermite [3, x[i]]
+ g2*Hermite[4, x[i]]
+ gl”2*Hermitel[6, x[il1/2,
{i, 1, Length[A]}];

HermiteExpand[expr , x ] :=
ToHermite [Expand [expr]
/. {(g171i_ /; i>2)->0, gl”i .*g2"j .->0, g2”i ->0}, x];

ToHermite [exprl +expr2 , x ] :=
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ToHermite [exprl, x]+ToHermite [expr2, x];
ToHermite[expr , x ] :=
expr*He [0, x] /; Not[MatchQl[expr, a_ .*x"k .]11];

ToHermite[expr . x "k ., x 1 :=
expr*He [k, x]
+ ToHermite [Expand [expr* (x"k-Hermite [k, x])], x];
Integratel[A , 0] := A;
Integratel[A , 1 ] :=
Integratel [Intl [HermiteExpand[A, x[1]], xI[il, y[i]l, i-11;
Intl[c_ expr , x , v ] := c Intllexpr, x, y] /; FreeQlc, x];

Intl[exprl +expr2 , x , y_ 1 :=
Intl [exprl, x, yl+Intl[expr2, x, vl;

Intl[Helk , x 1, x , y. .1 := a”(k+1l) Hermitelk, yl glyl;
MakeIntegrand2[A ] := Integratel[MakeIntegrandl[A], Length[A]l];
Integrate2[A , 0] := A;
Integrate2[A , i ] :=

Integrate2 [Int2 [HermiteExpand[A, yI[il]l, y([i]l, yI[i-1]1, i-11;
Int2[c_ expr , x , v ] := c Int2[expr, x, y] /; FreeQlc, x];

Int2[exprl +expr2 , x , y 1 :=
Int2 [exprl, x, yl+Int2[expr2, x, vl;

Int2[He[0, x ] glx 1, x , yv. 1 := £lyl;
Int2[He[0, x ] flx ] glx 1, x , v 1:= f£lyl"2/2;
Int2[He[l, x ] glx 1"b ., x , yv. 1 := glyl "b/b;
Int2[Hel[l, x ] flx 1 glx 172, x , vy 1 :=

flylglyl "2/2-Int2[He [0, x] glx]"3, x, yv1/2;
Int2[Hel[k_, x_ ] glx 1, x_, y_1 := Hermitelk-1, ylglyl;
Int2[Hel[k , x ] glx 1"b ., x , y ] :=

(Hermite[k-1, ylglyl "b/b
- (b-1) (k-1) Int2[He[k-2, x] glx]"b, x, vl/b) /; k>=2;
Int2[Helk_, x ] flx_] glx_1, x_, y_1 :=
(Hermite [k-1, v1flylgly]
- Int2[He[k-1, x] glx]"2, x, y])
Int2[Helk , x ] flx ] glx 172, x , y_
(Hermite [k-1, vI1flylglyl~2/2
- (k-1)Int2[He[k-2, x] flx] glx]"2, x, yl/2
- Int2[Helk-1, x] glx]173, x, y1/2) /; k>=2;

/i k>=1;
]

Substitution[c ] := ¢ /; FreeQlc, yl[0]];

Substitution[exprl +expr2 ] :=
Substitution[exprl] + Substitution[expr2];

Substitution[exprl *expr2 ] :=
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Substitution[exprl] * Substitution[expr2];
dl = gl a"3(x"2-1)+g2 a”4(x"3-3x)-gl”2 a"6(2x"3-5x) ;
d2 = gl©™2 a"6(x"2-1)"2;

Substitution[y[0] "k _.] :=
x"k + k x7(k-1)d1 + k(k-1)x"(k-2)d2/2;
Substitution[f[y[0]] "k .] :=
fix]"k - k £[x]"(k-1)glx] (d1-x*d2/2)
+ k(k-1)f[x]"(k-2)glx] "2 d2/2;
Substitution[gly[0]] "k .] :=
glx] "k(1 - k(x*dl-(x"2-1)d2/2) + k(k-1)x"2d2/2)

MakeSum[A ] :=
HermiteExpand [
Substitution|[Integrate2 [MakeIntegrand2 [A], Length[A]]]
/a"Length[A], x];

SRecursionLimit=512

h{i , k¥ , mu , lambda ] := h[i, k, mu, lambdal] =
N[ (lambda-mu) Binomial [lambda, mu] Integrate [
Hermite [k, x]
(Exp[—xAZ/Z]/Sqrt[ZPl]) (i+1)
((1+Erf [x/Sgrt[2]1]1)/2)" (lambda-mu-1)
((1-Erf[x/Sqgrt[211)/2)" (mu-1i),
{x, -Infinity, Inflnlty}

DetermineMoments [lambda , theta ] :=

(

Clear|[al;

NEval [arg ] :=
arg //. { glx]"i_.Helk_, x]:>h[i, k, mu, lambdal,
Helk , x]:>h[0, k, mu, lambdal,
Flx]™5 .:>1,
a:>Sgrt[(1+90)/ (1+theta”2+g0)] };

For [mu=1l, mu<=lambda, mu+=1,
sl = NEval [MakeSum[{1}1];
s11 = If[mu<=1, 0, NEval [MakeSum[{1, 1}11]1;
s111 = If[mu<=2, 0, NEval[MakeSum[{1, 1, 1}111;
s1111 = If[mu<=3, 0, NEval [MakeSum[{1, 1, 1, 1}11]1;
s2 = NEval [MakeSum[{2}]1];
s21 = If[mu<=1, 0, NEval[MakeSum[{2, 1}11];
211 = If[mu<=2, 0, NEval[MakeSum[{2, 1, 1}11];
s22 = If[mu<=1, 0, NEval[MakeSum[{2, 2}1]11];
s3 = NEval [MakeSum[{3}]];
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31 = If[mu<=1, 0, NEval[MakeSum[{3, 1}1]11];

s4 = NEval [MakeSum[{4}]1];
Al = s1;
A2 = (mu-1) (82-2s11)/mu;
A3 = (mu-1) (mu-2) (83-3s21+12s111)/mu"2;
A4 = (mu-1) (mu"2-6mu+6) (s4-4s31+6s22)/mu"3
-12 (mu-1) (mu-2) (mu-3) (s22-28211+12s1111) /mu”3;

rule = FindRoot[{gO==(1+gO)A2 6 gl==A3, 24 92==A4}

{go, 1}, {g1, o}, { 0}1;

Print [mu, " ", Sqgrt[l+g0]Al /. rule, " ", g0 /. rule];

1

) ;
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