
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

Evolutionary Algorithms and the Maximum
Matching Problem

Oliver Giel and Ingo Wegener

No. CI-142/02

Technical Report ISSN 1433-3325 December 2002
Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/XI
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

Evolutionary Algorithms and the Maximum
Matching Problem

Oliver Giel� and Ingo Wegener�

FB Informatik, LS 2, Univ. Dortmund, 44221 Dortmund, Germany
{giel, wegener}@ls2.cs.uni-dortmund.de

Abstract. Randomized search heuristics like evolutionary algorithms
are mostly applied to problems whose structure is not completely known
but also to combinatorial optimization problems. Practitioners report
surprising successes but almost no results with theoretically well-founded
analyses exist. Such an analysis is started in this paper for a fundamental
evolutionary algorithm and the well-known maximum matching problem.
It is proven that the evolutionary algorithm is a polynomial-time ran-
domized approximation scheme (PRAS) for this optimization problem,
although the algorithm does not employ the idea of augmenting paths.
Moreover, for very simple graphs it is proved that the expected optimiza-
tion time of the algorithm is polynomially bounded and bipartite graphs
are constructed where this time grows exponentially.

1 Introduction

The design and analysis of problem-specific algorithms for combinatorial opti-
mization problems is a well-studied subject. It is accepted that randomization
is a powerful concept for theoretically and practically efficient problem-specific
algorithms. Randomized search heuristics like random local search, tabu search,
simulated annealing, and variants of evolutionary algorithms can be combined
with problem-specific modules. The subject of this paper are general and not
problem-specific search heuristics. Practitioners report surprisingly good results
which they have obtained with such search heuristics. Nevertheless, one cannot
doubt that problem-specific algorithms outperform general search heuristics –
if they exist. So the area of applications of general search heuristics is limited
to situations where good problem-specific algorithms are not known. This may
happen if one quickly needs an algorithm for some subproblem in a large project
and there are not enough resources (time, money, or experts) available to develop
an efficient problem-specific algorithm. In many real-life applications, especially
in engineering disciplines, there is no possibility to design a problem-specific
algorithm. E.g., we may have the rough draft of a machine but we still have
to choose between certain alternatives to obtain an explicit description of the
machine. If we have m binary decisions to take, the search space (the space of all

� Supported in part by the Deutsche Forschungsgemeinschaft (DFG) as part of the
Collaborative Research Center “Computational Intelligence” (SFB 531).

2

possible solutions) equals {0, 1}m. Then there exists a function f : {0, 1}m → R

such that f(a) measures the quality of the machine if the vector of alternatives
a = (a1, . . . , am) is chosen. However, often no closed form of f is known and we
obtain f(a) only by an experiment (or its simulation).

We conclude that general randomized search heuristics have applications and
that their analysis is necessary to understand, improve, and teach them.
It is not possible to analyze algorithms on “unknown” functions f . However,

one can improve the knowledge on a search heuristic by
– analyzing its behavior on some classes of functions,
– analyzing its behavior on some well-known combinatorial problems,
– constructing example functions showing special properties of the heuristic.
Such results have been obtained recently for evolutionary algorithms. Evolu-
tionary algorithms have been analyzed on unimodal functions (Droste, Jansen,
and Wegener (1998)), linear functions (Droste, Jansen, and Wegener (2002)),
quadratic polynomials (Wegener and Witt (2002)), and monotone polynomi-
als (Wegener (2001)). Among other properties the effect of crossover has been
studied (Jansen and Wegener (2001, 2002)). A first step to study evolutionary
algorithms on combinatorial problems has been made by Scharnow, Tinnefeld,
and Wegener (2002) who studied sorting as minimization of unsortedness of a
sequence and the shortest path problem. These problems allow improvements by
local steps. Here, we investigate one of the best-known combinatorial optimiza-
tion problems in P, namely the maximum matching problem.
We work with the following model of the problem. For graphs with n vertices

and m edges, we have to decide for each edge whether we choose it. The search
space is {0, 1}m and a search point a = (a1, . . . , am) describes the choice of all
edges ei where ai = 1. The function f to be optimized has the value a1+ · · ·+am

(the number of edges) for all a describing matchings, i. e., edge sets where no
two edges share a vertex. For all non-matchings a, the so-called fitness value
f(a) is −c where the collision number c is the number of edge pairs ei and ej
that are chosen by a and share a vertex. This definition is crucial. If we chose
f(a) = 0 for all non-matchings a then our algorithm (and many other randomized
search heuristics) would not find any matching in polynomial time, e.g., for the
complete graph.
The maximum matching problem has the following nice properties:

– There is a well-known optimization strategy by Hopcroft and Karp (1973)
which is based on non-local changes along augmenting paths,

– there are graphs where the Hamming distance between a second-best search
point a and the only optimal search point is as large as possible (see Sect. 3),
namely m,

– for each non-maximum matching a, there is a sequence a0 = a, a1, . . . , a�

such that f(a0) = f(a1) = · · · = f(a�−1) < f(a�), Hamming distances
H(ai, ai+1) ≤ 2, and � ≤ �n/2�,

– and Sasaki and Hajek (1988) have investigated simulated annealing on it.
Simulated annealing only explores Hamming neighbors and, therefore, has to
accept worse matchings from time to time. Evolutionary algorithms frequently

3

consider new search points with larger Hamming distance to their current search
point. We investigate a simple mutation-based evolutionary algorithm (EA) with
population size one. Our conjecture is that larger populations and crossover do
not help. The basic EA consists of an initialization step and an infinite loop.
Special mutation operators will be introduced in the next paragraph.

Initialization: Choose a ∈ {0, 1}m according to the uniform distribution.
Loop: Create a′ from a by mutation and replace a by a′ iff f(a′) ≥ f(a).

In applications, we need a stopping criterion but typically we never know whether
a is optimal. Hence, we are interested in X, the minimum t such that we obtain
an optimal a in step t. This random variable X is called the optimization time
of the algorithm. The standard mutation operator decides for each bit ai of a
independently whether it should be flipped (replaced by 1 − ai). The flipping
probability equals 1/m implying that the expected number of flipping bits equals
one. This algorithm is called (1+1) EA. We can compute f(a) for the first a in
time O(m) and all successive a′ in expected time O(1) each (see Appendix A).
Hence, E(X) is an approximative measure of the runtime. Since we have seen
that steps with at most two flipping bits suffice to find an improvement, we also
investigate the local (1+1) EA; in each step with probability 1/2 a randomly
chosen bit ai flips and with probability 1/2 a randomly chosen pair ai and aj

flips. Sometimes it is easier to understand some ideas when discussing the local
(1+1) EA. However, only the (1+1) EA is a general randomized search heuristic
optimizing eventually each function f : {0, 1}m → R. In particular, the (1+1) EA
(and also its local variant) does not employ the idea of augmenting paths and it
is interesting to investigate whether it nevertheless randomly finds augmenting
paths. Such a result would be a hint that evolutionary algorithms may implicitly
use an optimization technique without knowing it. Again we stress that our aim
is the investigation of evolutionary algorithms and we definitely do not hope to
improve the best known maximum matching algorithms (Micali and Vazirani
(1980), Vazirani (1994), Blum (1999)). Here, we mention that our model of the
matching problem allows a polynomial-time algorithm even if the graph is not
given explicitly and the algorithm only sees f -values (see Appendix B).
In Sect. 2, we show that the considered EAs always find matchings easily. It

is proved that the EAs are polynomial-time randomized approximation schemes
(PRAS) for optimization problems. This is a fundamental result, since approx-
imation is the true aim of heuristics. In Sect. 3, we describe how the EAs work
efficiently on paths and, in Sect. 4, we describe graphs where the EAs have an
exponential expected optimization time.

2 Evolutionary Algorithms are PRAS

For many graphs it is very likely that the initial search point is a non-matching.
However, the (local) (1+1) EA finds matchings quickly.

Lemma 1. The (local) (1+1) EA discovers a matching in expected time O(m2).

4

Proof. Assume that initially the collision number is c > 0, i. e., there exist c edge
pairs {ei, ej} such that ei and ej have an endpoint in common. Let t denote the
total number of distinct edges contained in any of these edge pairs. Since t edges
can form at most

(
t
2

) ≤ t2 edge pairs, c ≤ t2 and t ≥ √
c hold. For the (1+1) EA,

the probability that exactly one of these t edges flips is t(1/m)(1− 1/m)m−1 ≥
t/(em) ≥ √

c/(em), and for the local (1+1) EA, it is t/(2m) ≥ √
c/(2m) ≥√

c/(em). The expected time until the number of colliding pairs decreases by
at least one is at most (em)/

√
c. Thus, the expected time to find a matching is

upper bounded by the sum of expectations

em
∑

c≥i≥1

1√
i

≤ em
∫ c

0

1√
x
dx = em

[
2x1/2

]c
0
= 2em

√
c = O(m2). �

Now we are prepared to prove that the (local) (1+1) EA efficiently finds at
least almost optimal matchings.

Theorem 1. For ε > 0, the (local) (1+1) EA finds a (1 + ε)-approximation of
a maximum matching in expected time O(m2�1/ε�).

Proof. By Lemma 1, we can assume that the EA has found a matching M . IfM
is not optimal, there exists an augmenting path ei(1), . . . , ei(�), where � is odd,
ei(j) /∈ M for j odd, ei(j) ∈ M for j even, and no edge in M meets the first
or last vertex of the path. The (1+1) EA improves M by flipping exactly the
edges of the augmenting path. This happens with probability Ω(m−�). The local
(1+1) EA improvesM by ��/2� 2-bit mutations shortening the augmenting path
from left or right and a final 1-bit mutation changing the free edge of the resulting
augmenting path of length one into a matching edge. The probability that this
happens within the next ��/2� + 1 steps is bounded below by Ω((m−2)��/2� ·
m−1

)
= Ω(m−�). If we can ensure that there always exists an augmenting path

whose length is at most � = 2�ε−1� − 1, the expected time to improve the
matching is bounded by O(m�) for the (1+1) EA and O(� · m�) for the local
(1+1) EA. For ε a constant, O(� · m�)=O(m�). In fact, the bound O(m�) for
the local (1+1) EA holds for arbitrary ε > 0 (see Appendix C). Hence, for both
EAs, the expected overall time is O(m2) +O(m) ·O(m�) = O(m2�ε−1�).
We can apply the known theory on the maximum matching problem to prove

that bad matchings imply short augmenting paths. Let M∗ be an arbitrary but
fixed maximum matching. We assume |M∗| > (1+ε)|M |, i. e., the (1+1) EA has
not yet produced a (1 + ε)-approximation. Furthermore, let |M | ≥ 1; otherwise
there exists a path of length 1 ≤ �. Consider the graph G′ = (V,E′) with edge
set E′ = M ⊕M∗, where ⊕ denotes the symmetric difference. G′ consists of
paths and cycles, forming the components of G′. All cycles and all paths of
even length consist of the same number of M -edges as M∗-edges, whereas paths
of odd length have a surplus of one M∗-edge or one M -edge. That means, all
paths of odd length starting with anM∗-edge also end with anM∗-edge and are
augmenting paths relative to M . Let k := |M∗| − |M |. Then |M∗| > (1 + ε)|M |
implies k/|M | > ε. There exist at least k disjoint paths of the last kind and at

5

least one of them has no more than �|M |/k� ≤ �ε−1� M -edges. In fact, if ε−1

is an integer, then |M |/k < ε−1 implies �|M |/k� < �ε−1�. Thus the path has at
most �ε−1� − 1 M -edges and its total length is at most � = 2�ε−1� − 1. �

The next corollary is an easy application of Markov’s inequality.

Corollary 1. According to Theorem 1, let pε(m) be a polynomial in m and
an upper bound on the expected number of fitness evaluations for the (local)
EA to find a (1 + ε)-approximation. The (local) (1+1) EA with an efficient
implementation of the mutation operator and the fitness function that halts after
4pε(m) fitness evaluations is a PRAS for the maximum matching problem, i. e.,
it finds a (1 + ε)-optimal solution with probability at least 3/4.

3 Paths

Here, we prove that the (local) (1+1) EA finds maximum matchings for graphs
consisting of a path of m edges in expected polynomial time. Among all graphs,
these graphs allow the maximum length m for an augmenting path if m is odd.
We prepare our analysis by describing the matchings on a fitness level distinct
from the level of all maximum matchings. During the exploration of a fitness
level, the number of disjoint augmenting paths is unchanged; otherwise the
matching size would change, too. However, individual augmenting paths may
vanish and new augmenting paths are created at the same time. Figure 1 de-
picts such a mutation. Solid lines indicate matching edges, dashed lines indicate
free edges; the path’s names after the mutation step are chosen arbitrarily. The
shortest augmenting paths are edges with two exposed endpoints. We term these
edges selectable, e. g., A′ is a path consisting of a single selectable edge.

A︷ ︸︸ ︷ B︷ ︸︸ ︷ C︷ ︸︸ ︷ D︷ ︸︸ ︷ E︷ ︸︸ ︷
� �

↓ ↓ ↓ ↓ ↓ ↓
︸︷︷︸
A′
︸ ︷︷ ︸

C′
︸ ︷︷ ︸

D′
︸ ︷︷ ︸

B′
︸ ︷︷ ︸

E′

� �

Fig. 1. Mutation step.

With Lemma 1, we can assume that the (local) (1+1) EA has arrived at a
matching after expected time O(m2) and there are at most �m/2� fitness levels
left to climb. At each point of time during the exploration of a fitness level,
we focus an augmenting path P but consider only relevant steps. A relevant
step alters P and produces a new string accepted by the EA. Furthermore, we
distinguish two situations. In Situation 1, the current matching is not maximal,
i. e., there exists some selectable edge e. The current matching can be improved
by flipping exactly the right bit in the next step. We choose P = {e} and for
both EAs the probability that the next step is relevant (event R) is Θ(1/m). In
Situation 2, the matching is maximal and, therefore, cannot be improved by a
1-bit flip. Shortest augmenting paths have length at least three. For all choices
of P , the probability of a relevant step is Θ(1/m2): It is lower bounded by the

6

probability that only a specific pair of edges at one end of P flips and upper
bounded by the probability that at least one of at most four edge pairs at both
ends of P flip (only for the (1+1) EA there are some more possibilities where at
least three edges in line flip). Clearly, both EAs have a not very small probability
to leave the current fitness level in Situation 1, whereas for the (1+1) EA it is
much harder to leave the level in Situation 2 and for the local (1+1) EA even
impossible. The EAs enter a fitness level in either situation and may shift from
one situation to the other several times until they finally leave the level. We name
such a mutation step improving. As we have seen, at any time, the probability
of a relevant step is at least Ω(1/m2). Hence, the expected number of steps
per relevant step is at most O(m2). If an expected number of T relevant steps
is necessary to reach some target then the expected total number of steps is∑

0≤t<∞ E(#steps | T = t) · Prob(T = t) ≤ ∑
0≤t<∞O(m

2) · t · Prob(T =
t) = O(m2) · E(T). We use this property in the following way to show that
it takes expected time O(m4) to find a maximum matching on a path with m
edges. The size of the maximum matching equals �m/2�. If the current matching
size is �m/2� − i, there exist i disjoint augmenting path; one of length at most
� := m/i. If an expected number of O(�2) relevant steps are sufficient to improve
the matching by one edge then

∑
1≤i≤�m/2�O((m/i)

2) = O(m2) relevant steps
are sufficient for the optimum.
As a beginning, we consider the local (1+1) EA and demonstrate that central

ideas of our proofs are easy to capture. Our analysis of the (1+1) EA only takes
advantage of mutation steps where at most two bits flip, too. All other mutation
steps only complicate the analysis and lengthen proofs considerably.

Theorem 2. For a path of m edges, the expected runtime of the local (1+1) EA
is O(m4).

Proof. With our foregoing remarks we only have to show that the expected
number of relevant steps to leave the current fitness level is O(�2). Consider
Situation 1 and let A be the event that only e flips in the next step and thereby
improves the matching, i. e., A implies R. Then ProbR(A) := Prob(A | R) =
Prob(A)/Prob(R) = Ω(1/m)/O(1/m) = Ω(1) and the expected total number
of relevant steps the EA spends in Situation 1 is O(1). Let B be the event
that the next step is not improving and leads to Situation 2; again B implies
R. We want to bound ProbR(B) := Prob(B | R) = Prob(B)/Prob(R) from
above. Only a mixed 2-bit flip can preserve the matching size. By definition, the
selectable edge e has no neighbor in the matching. Hence, one of at most two
neighbored pairs next to e has to flip. Thus ProbR(B) = O(1/m2)/Ω(1/m) =
O(1/m). As A and B are disjoint events, the conditional probability to improve
the matching when leaving Situation 1 in a relevant step is ProbR(A | A∪B) =
ProbR(A)/(ProbR(A) + ProbR(B)) = 1 − Ω(1/m). Thus the expected number
of times the EA leaves Situation 1 is at most 1 + O(1/m). Consequently, the
expected number of times the EA leaves Situation 2 is bounded by 1+O(1/m) =
O(1), too. Now it suffices to show that the expected number of relevant steps
to leave Situation 2 is O(�2). To this end, the rest of this proof shows for some

7

constants c and α > 0, the probability to leave Situation 2 within c�2 relevant
steps is bounded below by α. Since the proof will be independent of the initial
string when the EA enters Situation 2, it implies the O(�2) bound for leaving
Situation 2. Having this, the expected number of relevant steps to leave the level
is dominated by the product of the expected number of steps to leave Situation 2
and the number of times to leave Situation 2. Since in our analysis both numbers
are upper bounded by independent random variables, expectations multiply to
O(�2).
In Situation 2, there are no selectable edges. Straightforward considerations

show that only pairs of neighbored edges located at one end of an alternating
path can flip in an accepted step. Consider a phase of c�2 relevant steps, possibly
finished prematurely when an augmenting path of length one is created. Within
the phase, augmenting paths have minimum length three. We focus attention to
an augmenting path P whose initial length is at most � and estimate the proba-
bility that P shrinks to length one and finishes the phase. If another augmenting
path accomplishes this before P does, so much the better. We call a relevant
step a success if it shortens P (by two edges). Since P can always shrink by two
edges at both ends but sometimes cannot grow at both ends, the probability of
a success is lower bounded by 1/2 in each relevant step. As the initial length of
P is at most �, �/4 more successes than the expected value guarantee that P
shrinks to length one in that time. We want to estimate the probability of at
least (1/2)c�2 + (1/4)� successes within c�2 relevant steps. With c chosen suffi-
ciently large, N := c�2 and b a constant, the probability of exactly k successful
steps is(

N
k

) (
1
2

)k (1− 1
2

)N−k ≤ (N
N/2

)
2−N ≤

√
3πe−N NN+1/22−N

(
√

2πe−N/2(N/2)N/2+1/2)2
= bN−1/2 ≤ 1

2� .

The probability of less than (1/2)c�2 + (1/4)� successes is bounded above by
Prob(less than (1/2)c�2 successes) +

∑(1/2)c�2+(1/4)�−1
k=(1/2)c�2

1
2� ≤ 1

2 +
�
4 · 1

2� =
5
8 . �

Theorem 3. For a path of m edges, the (1+1) EA’s expected runtime is O(m4).

Proof. As in the previous proof, we only have to show that the expected num-
ber of relevant steps to leave a level is O(�2). In Situation 1, the probability
that a relevant step is improving again is ProbR(A) = Ω(1). A necessary con-
dition to move to Situation 2 in a relevant step is that e or at least one of
at most two neighbors of e is turned into a matching edge. Thus ProbR(B) =
O(1/m2)/Ω(1/m) = O(1/m). As before, the expected total number of relevant
steps in Situation 1 is O(1) and the expected number of times the (1+1) EA
leaves Situation 2 is at most 1 + O(1/m). It suffices to show that c�2 relevant
steps succeed in leaving Situation 2 with a probability α = Ω(1).
In Situation 2, we ignore improving steps; they may take place and only

shorten the time to leave the fitness level. Again we focus on an augmenting path
P whose initial length is at most � and consider a phase of c�2 relevant steps.
The phase is finished prematurely when P or another augmenting path shrinks
to length one. The (1+1) EA allows mutation steps where the path’s length |P |

8

changes by more than two edges or P vanishes completely as depicted in Fig. 1.
The following properties ensure that |P | never changes by more than two edges
(implying none or two) in any step of the phase. Let x and y be the vertices at the
current endpoints of P . Furthermore, let Ex =

{{u, v} ∈ E ∣∣ dist(x, u) ≤ 3} be
the set of edges where one endpoint has at most distance three to x, analogously
for y (Fig. 2). The first property is that no step is accepted and flips more than

︸ ︷︷ ︸
Ex

︸ ︷︷ ︸
Ey

x y
� �

Fig. 2. Environments Ex and Ey.

three edges in Ex ∪ Ey. The second property is that no step flips three or more
edges in line on the extended path P ′ := P ∪ Ex ∪ Ey and is accepted. We call
steps that respect both properties or finish the phase clean. Obviously, we only
have to ensure that all c�2 relevant steps are clean and call this event C. We show
that, given a step is relevant, it is clean with a probability 1−O(1/m2) and start
by considering unconditioned probabilities. A necessary event to violate the first
property is that a subset of four edges of Ex ∪ Ey flips and the corresponding
probability is at most

(
16
4

)
/m4 = O(1/m4) for a single step. For the second

property, let k be the length of a longest block of flipping edges of P ′. For k ≥ 5,
the probability that the block flips is at mostm·1/m5 = O(1/m4). Now let k = 4.
Four flipping edges where x or y is an endpoint of the block is already excluded by
the first property. All other blocks of length four violate the matching condition
if they flip. A mutation step where k = 3 produces a local surplus of either
one free edge or one matching edge in the block. The surplus must be balanced
outside the block; otherwise the step is not accepted. To compensate a surplus
of one free edge, another free edge must flip into a matching edge elsewhere.
Since there are no selectable edges in Situation 2, in fact another block of at
least three edges disjoint to the first block has to flip, too. This results in a
probability of at most (m · 1/m3)2 = O(1/m4). If a block of two free edges and
a matching edge flips, either a non-matching is produced or the matching is
improved locally in the block. If in the latter case the surplus of one matching
edge is not balanced elsewhere, the phase is finished. Otherwise, either another
single matching edge flips and thereby finishes the phase, too, or another block of
at least three edges flips. The probability of the last event again is O(1/m4). Let
D be the event of a clean step. Thus Prob(D) = O(1/m4) and given that a step
is relevant the probability is Prob(D | R) = Prob(D∩R)

Prob(R) ≤ Prob(D)
Prob(R) = O(1/m

2).
Hence, Prob(D | R) = 1 − O(1/m2) and for a certain constant d and m2 ≥ 2d,
Prob(C) ≥ (1− d/m2)c�2 ≥ (1− d/m2)cm2 ≥ e−2cd = Ω(1) holds.

In the proof for the local (1+1) EA we have already seen, for initial path
length at most �, c�2 relevant steps produce �/4 more successes than the ex-
pected value and succeed in decreasing the path length to one with probability
at least 3/8 if c is sufficiently large and a relevant step shortens the path with
probability at least 1/2. We call the event, given c�2 relevant and clean steps,
these steps succeed in decreasing the path to length one, event S. Then the

9

success probability of a phase is at least Prob(C ∩ S) = Prob(C) · Prob(S | C).
Given that a relevant step in Situation 2 is clean implies that it either finishes a
phase or it flips one and only one pair of neighbored edges at one end of P (and
perhaps some more edges not affecting P). In the latter case, the probability to
flip a pair of edges shortening the path is at least 1/2 and the probability to
lengthen the path is at most 1/2, since there are at least two shortening pairs
and sometimes only one lengthening pair. Thus Prob(S | C) ≥ 3/8. �

We discuss the results of Theorem 2 and 3. Paths are difficult since aug-
menting paths tend to be rather long in the final stages of optimization. The
(1+1) EA can cope with this difficulty. Paths are easy since there are not many
possibilities to lengthen an augmenting path. The time bound O(m4) = O(n4)
is huge but can be explained by the characteristics of general (and somehow
blind) search. If we consider a step relevant if it alters any augmenting path,
there are many irrelevant steps, including steps which are rejected. In the case
of O(1) augmenting paths and no selectable edge a step is relevant only with a
probability of Θ(1/m2). The expected number of relevant steps is bounded by
only O(m2) = O(n2). Indeed, the search on the level of second-best matchings is
already responsible for this. Since lengthenings and shortenings of the augment-
ing path have almost always the same probability for the local (1+1) EA, we are
in a situation of fair coin tosses and have to wait for the first point of time where
we have Θ(m) more heads than tails and this takes Θ(m2) coin tosses with large
probability. This implies that our bounds are tight if we have one augmenting
path of length Θ(m). The situation is more difficult for the (1+1) EA. It is likely
that from time to time several simultaneously flipping bits change the scenario
drastically. We have no real control of these events. However, by focussing on
one augmenting path we can ignore these events for the other paths and can
prove a bound on the probability of a bad event for the selected augmenting
path which is small enough that we may interpret the event as a bad phase.
The expected number of phases until a phase is successful can be bounded by a
constant. These arguments imply that we overestimate the expected time on the
fitness levels with small matchings and many augmenting paths. This does not
matter since the last improvement has an expected time of Θ(m4) if we start
with an augmenting path of length Θ(m).

4 Example with Exponential Time

After having seen that the (local) (1+1) EA computes maximum matchings on
very simple graphs efficiently, we present a class of bipartite graphs where both
EAs have an exponential expected optimization time. The graph Gh,� is defined
on n = h·(�+1) nodes where � ≥ 3 is odd. To describe the graphs we consider the
nodes as grid points (i, j), 1 ≤ i ≤ h, 0 ≤ j ≤ �. The nodes (·, j) belong to the jth
column. Between column j, j even, and j+1 there are the edges {(i, j), (i, j+1)}
and between column j, j odd, and j+1 we have all edges of a complete bipartite
graph. Fig. 3 depicts G3,11 and its unique perfect matching. Since every perfect

10

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� edges︷ ︸︸ ︷

︸ ︷︷ ︸
Kh,h

h




Fig. 3. The graph Gh,� and its perfect matching.

matching must cover the nodes in column 0, all edges {(i, 0), (i, 1)} belong to
every perfect matching. Therefore, all edges {(·, 1), (·, 2)} do not belong to any
perfect matching and all edges {(i, 2), (i, 3)} must be contained in every perfect
matching. By induction on �, it follows that every Gh,� has a unique perfect
matching consisting of all edges {(i, j), (i, j + 1)} where 1 ≤ i ≤ h and j is
even. Sasaki and Hajek (1988) have proved that simulated annealing has an
exponential expected optimization time on these graphs for h = �. Our result is
the following one.

Theorem 4. The local (1+1) EA has an exponential expected optimization time
2Ω(�) on Gh,� if h ≥ 2. For the (1+1) EA the expected optimization time is 2Ω(�)

if h ≥ 3 and 2Ω(�ε) for a certain ε > 0 if h = 2.

It is interesting that our result holds also in the case of constant h = 2 where
the degree of the graph is bounded by 3. Hence, the (local) (1+1) EA is not
successful on graphs of constant degree. Observe that we obtain a path if h = 1.
We are mostly interested in the situation where the algorithm has found an

almost optimal matching of size n/2 − 1. Then it is also easy to see that there
exists exactly one augmenting path: Assume there are at least two augmenting
paths P and Q. Using P or Q to improve the matching would result in two differ-
ent maximum matchings, i. e., perfect matchings; a contradiction. So let P be the
only augmenting path. Its length �′ is an odd number bounded by �. P contains
the nodes (i0, j), (i1, j + 1), . . . , (i�′ , j + �′), where i0 = i1, i2 = i3, . . . , i�′−1 = i�′
and j is even, i. e., it runs from left to right possibly changing the level (see
Fig. 4). To see this, just observe the following easy fact. Since P = (e1, . . . , e�′)
is an augmenting path, its free edges {e1, e3, e5, . . . , e�′} belong to the perfect
matching. The endpoints of these edges are only linked to nodes in the next
column. Thus one of these links is a selected edge of P (except for the first and
last point). So the path P runs from left to right from (i0, j) to (i�′ , j + �′).
The main observation is that an accepted 2-bit flip can shorten or lengthen

the augmenting path at either endpoint. However, at each endpoint (if not in
column 0 or �) there are h possibilities to lengthen the augmenting path and only
one possibility to shorten it. Only if h = 2 and one endpoint is in column 0 or �,
there are 2 possibilities to lengthen the augmenting path and the same number
of possibilities to shorten it. This explains why we sometimes have to consider
the case h = 2 separately in the proof of Theorem 4. From a more global point of

11

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

�
�

�

�
�

�

Fig. 4. An almost perfect matching and its augmenting path.

view, we may consider “semi-augmenting” paths, i. e., alternating paths starting
at a free node which cannot be lengthened to an augmenting path. The num-
ber of semi-augmenting paths is exponential (if �′ is not close to �). The (local)
(1+1) EA searches more or less locally and cannot distinguish immediately be-
tween semi-augmenting paths and augmenting paths. Our conjecture is that the
presence of exponentially many semi-augmenting paths and only polynomially
many augmenting paths at many points of time prevents the (local) (1+1) EA
from being efficient. This also explains why paths are easy and why trees should
be easy for the (local) (1+1) EA. The proof of Theorem 4 follows this intuition:
The first matching found is typically not the perfect matching. The conjecture
is that the probability is even close to 1, at least 1 − o(1). However, Lemma 2
is strong enough to prove Theorem 4. Then Lemma 3 guarantees that the al-
gorithms find almost perfect matchings of size n/2 − 1 before the optimum is
found with a probability close to 1. In this situation, the vast number of semi-
augmenting paths hinder the algorithms from being successful within reasonable
expected time. By Lemma 4, the probability that the augmenting path extends
to its maximum length during the exploration is not too small. Finally, Lemma 5
shows that it takes exponential time to improve the matching in this situation.

Lemma 2. With a probability of Ω(1/h) the first matching found by the (local)
(1+1) EA is not perfect.

Lemma 2 follows from Claim 1 and Claim 2.

Claim 1. The first search point is with overwhelming probability a non-matching.

Proof. The first search point is chosen randomly. Hence, each inner point with
degree h+ 1 has a probability of 1− (1/2)h+1(h+ 2) ≥ 1/2 to be touched by at
least two chosen edges. Inner nodes in the same column or with column distance
at least 2 are independent. Hence, the probability to start with a matching is
exponentially small. �

Claim 2. Starting with a non-matching, with a probability of Ω(1/h) the first
matching is not perfect.

Proof. We prove the lemma separately for the local (1+1) EA and the (1+1) EA.

12

Local (1+1) EA. We view the configuration graph of the process as a tree. The
root is the initial configuration and the nodes on level d represent all configura-
tions reachable in exactly d steps of the algorithm. Edges lead only from Level d
to Level d+1 and are marked with transition probabilities. All leaves of this in-
finite tree represent configurations where a matching is reached for the first time
and all inner nodes represent configurations corresponding to non-matchings. By
Prob(v) we denote the probability to reach a specific node v. Then Prob(v) is
the product of all probabilities assigned to edges on the path from the root to
v. For short, we name leaves representing the perfect matching p-leaves and all
other leaves representing non-perfect matchings n-leaves. We want to show that∑

v is a p-leaf

Prob(v) = O(h) ·
∑

v is an n-leaf

Prob(v).

This implies the claim. Both sums in the last equation converge absolutely; we
may split and reorder the terms on the left-hand side to compare the sums.
We do this by assigning the probability of every p-leaf to one or more n-leaves
in its neighborhood and ensure that the sum of probabilities assigned to an n-
leaf v is O(h) · Prob(v). For the following case inspection we first observe that
every inner node of the tree has at most one p-leaf as descendant. The reason is
that the perfect matching is unique and, therefore, the required mutation step
is determined uniquely.
Let b be a p-leaf and a its predecessor in the configuration tree. For con-

venience, a and b denote nodes of the tree and also the corresponding sets of
selected edges of Gh,�, i. e., b also denotes the perfect matching. If H(a, b) = 1
then a is a superset of b since a is a non-matching. Hence, a has one edge e more
than b and a has n/2 further descendants b′1, . . . , b

′
n/2 where e and another edge

of a flip. Obviously, all b′i are n-leaves and Prob(b
′
i) = Prob(a)/m · 1/(m − 1).

The probability to reach b equals Prob(a)/(2m). We assign Prob(b) uniformly to
all b′i such that each b

′
i gets a portion of Prob(a)/m · 1/n. Thus the probability

assigned to each b′i is only by a factor (m− 1)/n = Θ(�h2)/Θ(�h) = O(h) larger
than Prob(b′i).
Now let H(a, b) = 2. Because a is not a matching, a is not a subset of b.

This implies that the edge (a, b) of the configuration tree represents a mutation
where at least one selected edge flips. The first subcase is that (a, b) denotes a
mutation where a free edge e and a selected edge e′ flip. Then b has a sibling b′

where only e′ flips and b′ is an n-leaf. As Prob(b) = Prob(a)/(m(m − 1)) and
Prob(b′) = Prob(a)/(2m) we can assign Prob(b) to b′ and there is even a large
capacity left at b′. The second subcase is where (a, b) is a mutation step with two
selected edges e and e′ flipping. Clearly, a is a superset of b and there is no other
sibling of b that is a leaf. But there exist n/2 siblings b′1, . . . , b′n/2 that correspond
to the first subcase and are derived from a by flipping e and any of n/2 other
selected edges e′′ �= e′. Each b′i has a descendant ci obtained by flipping e′ and e′′,
a p-leaf, and another descendant c′i derived by flipping only e

′, an n-leaf. That
means, the edge (b′i, ci) is the same situation as the first subcase implying that
c′i already obtains Prob(ci) = Prob(a)/(m

2(m − 1)2). Now we assign Prob(b)

13

uniformly to all c′i, i. e., each c
′
i additionally gets (2/n) · Prob(a)/(m(m − 1)).

This can happen at most once, since b′i has at most one sibling b that is a p-
leaf and assigns probability to a descendant of b′i. Altogether, the probability
assigned to c′i is at most

Prob(a)
m2(m− 1)2 +

2Prob(a)
nm(m− 1) =

Prob(a)
2m2(m− 1) ·

(2
m− 1 +

4m
n

)
=

Prob(a)
2m2(m− 1) ·Θ(h)

and at most by a factor O(h) larger than Prob(c′i) = Prob(a)/(2m
2(m− 1)).

(1+1) EA. We consider a phase of cm2 steps, c a constant large enough. Then,
with a probability exponentially close to 1, we have among these steps at least
(c/4)m2 steps flipping one bit each. By the proof of Lemma 1 this implies a
probability of at least 1/2 of finding a matching. Moreover, with a probability
exponentially close to 1, among these steps there is no step flipping at least
�1/2 0-bits into 1-bits. (Since the probability to flip any �1/2 bits in a step is
exponentially small.) Now we investigate the step creating the first matching.
If the matching is perfect, the previous search point contains already at least
(�+ 1)h/2− �1/2 + 1 of the edges of the perfect matching. The probability of a
step flipping additionally one of the edges of the perfect matching is at most by
a factor of Ω(�h/m) = Ω(1/h) smaller than the probability of the step expected
(m = Θ(�h2)). Hence, with a probability of at least Ω(1/h) the first matching is
not perfect. �

Lemma 3. Assuming the (local) (1+1) EA finds first a non-perfect matching,
the probability to find an almost perfect matching, i. e., a matching of size n/2−1,
before finding the perfect matching a∗ is 1−O(1/m).
Proof. Assume the (1+1) EA’s current matching a is not perfect and let a∗

denote the perfect matching. If H(a, a∗) = 1 then a is almost perfect.

Local (1+1) EA. If H(a, a∗) > 2 the probability to find the optimum in the next
step is 0, whereas the probability to find some almost perfect matching may be
positive. If H(a, a∗) = 2 then clearly a is not a matching of size n/2 since a∗ is
the only perfect matching. We may consider the case where a is a matching of
size n/2 − 1. Then a is almost perfect and there is nothing to prove. However,
almost perfect matchings with a Hamming distance of 2 to the optimum do not
exist since augmenting paths have odd length. Thus, we conclude a is a matching
of size n/2−2 and, therefore, a subset of a∗. The probability to create a∗ from a
in the next step is 1/(m(m− 1)) and the probability to create an almost perfect
matching is 1/m. In any situation, the probability to create the perfect matching
in the next step is at least by a factor 1/(m− 1) smaller, i. e., the probability to
create an almost perfect matching first is at least 1− 1/m.

(1+1) EA. If H(a, a∗) =: d ≥ 2, the probability of creating a∗ in the next
step equals (1/m)d(1 − 1/m)m−d. As a is a matching and d ≥ 2, there are at
least two edges of a∗ which do not belong to a. If exactly one of them does

14

not flip and everything else works as in the mutation a→ a∗, we get an almost
perfect matching. The probability of such an event is 2(1/m)d−1(1−1/m)m−d ≥
2m(1/m)d(1− 1/m)m−d ≥ m(1/m)d(1− 1/m)m− d. Therefore, the probability
of creating a∗ before creating any second-best matching is at most 1/(m+ 1) =
O(1/m). �

Lemma 4. Starting with an almost perfect matching, the probability that the
augmenting path extends to its maximal length � before the matching is improved
is Ω(h/m).

Assume that the (local) (1+1) EA has found a matching of size n/2− 1. Let
�1 be the length of the unique augmenting path with respect to the matching.
We conjecture that �1 is with probability 1 − o(1) large, i. e., at least �ε for
some ε > 0. As a substitute of this unproven conjecture we use the following
arguments. Before constructing the perfect matching the (1+1) EA searches on
the plateau of matchings of size n/2−1, since no other search point is accepted.
In order to investigate the search on this plateau, we describe the random search
point in step k by Xk and its value by xk. Moreover, let Lk be the random length
of the augmenting path of Xk and �k the corresponding value of Lk. The search
stops iff �k = 0. Let T be this stopping time. Before that, �k is an odd number
bounded above by �. Claim 3 and Claim 4 imply Lemma 4.

Claim 3. If �1 = 1, the probability that �k ≥ 3 for some k < T is Ω(h/m).

Proof. Obviously, both algorithms accept almost perfect and perfect matchings
only. As long as �k = 1, there is a selectable edge e∗ and the probability of
creating the perfect matching equals 1/(2m) and (1/m)(1 − 1/m)m−1 for the
local (1+1) EA and the (1+1) EA, respectively. However, there are at least h
pairs {e′, e′′} such that e′ is free, e′′ is chosen, and (e∗, e′, e′′) is a path. If exactly
e′ and e′′ flip, we obtain an augmenting path of length 3. The probability that
this happens for one of the h pairs equals h/(m(m−1)) = 2h/(m−1)·1/(2m) for
the local (1+1) EA and h(1/m)2(1− 1/m)m−2 ≥ (h/m)(1/m)(1− 1/m)m−1 for
the (1+1) EA. Therefore, the probability that �k = 3 before �k′ = 0 for k′ < k
is at least 2h/(2h +m − 1) ≥ 2h/(3m) = Ω(h/m) for the local (1+1) EA. For
the (1+1) EA, this probability is at least h/(m+ h) ≥ h/(2m) = Ω(h/m). �

Claim 4. If �1 ≥ 3, the probability that �k = � for some k < T is Ω(1).

In the proof of this claim, we refer to the ruin problem. Alice owns A $ and
Bob B $. They play a coin-tossing game with a probability of p �= 1/2 that Alice
wins a round in this game, i. e., Bob pays a dollar to Alice. Let t := (1 − p)/p.
Then Alice wins, i. e., she has (A+B) $ before being ruined, with a probability
of (1− tA)/(1− tA+B) = 1− tA(1− tA)/(1− tA+B) (e.g., Feller (1971)).

Proof (Claim 4). Again we prove the claim for both algorithms separately. Ad-
ditionally, we distinguish the cases h ≥ 3 and h = 2. However, the case h = 2
can be viewed as a worst-case when proving the stated lower bound and one can
skip the case h ≥ 3. Note that if �k ≥ 3, only steps where the same number of
zeros and ones flip can be accepted, except for the special case for the (1+1) EA
where all edges of the augmenting path flip.

15

Local (1+1) EA, h ≥ 3. Let bk = (�k − 1)/2. The local (1+1) EA can change
the b-value by at most 1 as long as its value is positive. Obviously, b1 ≥ 1
and pessimistically b1 = 1. We are interested in the probability of reaching the
maximal b-value �/2 before the value 0. There are two 2-bit flips decreasing the
b-value by 1 and there are at least h (one endpoint of the augmenting path
can be in column 0 or �) 2-bit flips increasing the b-value. Hence, the next step
changing the b-value leads to b−1 with a probability of at most 2/(h+2) ≤ 2/5
and leads to b + 1 with a probability of at least h/(h + 2) ≥ 3/5. We have an
unfair game and can apply the result of the gambler’s ruin problem. With A = 1
and B = (�−1)/2−1 the probability that the b-value is (�−1)/2 before it drops
to 0 is (1− t)/(1− t(�−1)/2). Since t = 2/h ≤ 2/3, this probability is at least 1/3
and for general h it is at least 1−O(1/h). Moreover, if �1 is not too small, this
probability is even close to 1.

Local (1+1) EA, h = 2. W.l.o.g. let � ≡ 1 mod 4. In the beginning, there are
at least two 2-bit flips increasing �k and exactly two 2-bit flips decreasing �k,
i. e., the first accepted mutation increases �k with a probability of at least 1/2.
Thus with a probability of at least 1/2, we reach an �k-value of at least 5 before
an �k-value of 1. Pessimistically assuming we have reached the �k-value exactly
5, we consider only relevant steps, i. e., steps changing the length of the path,
and group these steps in pairs of successive relevant steps. That means, the first
and second, the third and fourth relevant step and so on are a pair. Observe
that a pair can cause a net change of the path length of either −4, 0, or 4.
Let bk = (�k − 1)/4, for �k ≡ 1 mod 4. Each relevant step is increasing with
a probability of at least 1/2 and, therefore, a pair increases the b-value with a
probability of at least 1/4. We have to be more careful for an upper bound on
the probability of a pair decreasing the b-value which should be less than 1/4.
We pessimistically assume that the path is in marginal position in the first step,
i. e., one endpoint is in column 0 or �. Now only four different 2-bit mutations
can be accepted in the first step. With a probability of 1/4 the first relevant step
decreases the length and preserves the marginal position and with a probability
of 1/4 the first relevant step decreases the length such that thereafter the path
is not in marginal position. In the first case, the next step is decreasing with a
probability of 1/2 and in the second case the next relevant step is decreasing
with a probability of 1/3. Thus 1/4 ·1/2+1/4 ·1/3 = 5/24 is an upper bound on
the probability of a decreasing pair. We consider only relevant pairs, i. e., pairs
changing the the b-value by −1 or 1. The conditional probability of a decreasing
pair, given the pair is relevant, is at most 5/11 and for an increasing pair it
is 6/11. Again we have a coin-tossing game with an unfair coin with t = 5/6,
A = 1, and B = (�−1)/4−1. The probability to reach a b-value (�−1)/4, before
0 is (1 − 5/6)/(1 − (5/6)(�−1)/4 ≥ 1/6. Altogether, the success probability is at
least 1/12.

(1+1) EA, h ≥ 3. We investigate some relevant probabilities. As long as �k < �
we have at least h 2-bit flips increasing �k by 2 and the corresponding probability
is at least h(1/m)2(1−1/m)m−2. The probability to create the perfect matching

16

equals (1/m)�k(1− 1/m)m−�k ≤ (1/m)�k . The probability that �k+1 − �k ≤ −4
is bounded above by 3/m4, since (at least) either the first four edges of the
augmenting path Pk have to flip or the last four edges of Pk or the first two
and the last two edges of Pk. Finally, we carefully estimate the probability that
�k+1 − �k = −2. This event happens only if exactly the first two edges of Pk or
exactly the last two edges of Pk flip or if the first four, the last four, or the first
two and the last two edges of Pk (and some more edges) flip. For the last event we
pessimistically assume that �k+1 − �k ≤ −4 and this event has been considered
above. Hence, under this assumption the probability of �k+1 − �k = −2 equals
2 ·(1/m)2(1−1/m)m−2. The event of creating the perfect matching has a “large”
probability only if �k ≤ 3. Hence, we first consider the probability of reaching
an �k-value of at least 5 before reaching a value of at most 1. From the results
above this probability is bounded below by 1/2− o(1).
In a step where �k+1 − �k ≥ 2 we pessimistically assume that �k+1 − �k = 2.

Thereby, we only decrease the probability to reach an �k-value of � first. For a
moment, we additionally assume that for each step also �k+1 − �k ≥ −2, i. e., we
ignore all other steps. Then a step is called relevant if it changes the length of the
augmenting path. The next relevant step increases and decreases the �k-value by
2 with a probability of at least h/(h + 2) ≥ 3/5 and at most 2/(h + 2) ≤ 2/5,
respectively. With the arguments of the ruin problem, we know that under this
assumption the probability of obtaining an augmenting path of length � before
obtaining an augmenting path of length at most 3 is at least (1/3).
In order to drop the last assumption, we investigate a phase of m7/2 steps of

the algorithm. We state that in the phase there is no step such that �k+1 − �k ≤
−4 with a probability close to 1 and the coin-tossing game is finished within
the phase with a probability close to 1. Let A be the event of winning the coin-
tossing game and let B be the event that the phase contains no step where the
�k-value decreases by at least 4. Then Prob(B) = 1−O(m−1/2). The probability
of a relevant 2-bit flip is Ω(1/m2). Let C be the event that we have Ω(m5/4)
relevant 2-bit flips and the difference between increasing and decreasing 2-bit
flips is Ω(m5/4). With a probability exponentially close to 1 we have Ω(m5/4)
relevant 2-bit flips. The conditional probability of a relevant step to increase
the length of the augmenting path is at least 3/5. Hence, the probability that
there is a surplus of Ω(m5/4) = Ω(�5/4) increasing 2-bit flips is exponentially
close to 1. With already �/2 more increasing than decreasing 2-bit flips we have
reached an �k-value of � such that the coin-tossing game is surely finished. Thus,
Prob(C) is exponentially close to 1 and Prob(B ∩ C) = 1 − O(m−1/2). Now,
Prob(A∩B∩C) = Prob(A | B∩C) ·Prob(B∩C). Under the assumption B∩C,
the probability to reach an �k-value of � before an �k-value of at most 3 is only
increased. Moreover, reaching an �k-value of � before an �k-value of at most 3
ensures that 3-bit flips cannot occur. Hence, Prob(A∩B∩C) = 1/3−O(m−1/2).
Altogether, the probability of interest is bounded below by 1/6− o(1).

(1+1) EA, h = 2. W.l.o.g. let � ≡ 1 mod 4. There are at least two 2-bit flips
increasing �k by 2 and 2(1/m)2(1−1/m)m−2 is a lower bound for the correspond-
ing probability. If the augmenting path is not in marginal position then there are

17

even four 2-bit flips increasing �k and the probability is 4(1/m)2(1− 1/m)m−2.
The probability that |�k+1 − �k| ≥ 4 is O(1/m4). The reason is that at least 4
edges in the following set Ek of edges have to flip. If the augmenting path starts
in column i and ends in column j, the set contains all edges between column i−4
and i+ 4 and between column j − 4 and j + 4. Since h = 2, |Ek| is bounded by
a constant and so is the number of ways to choose four edges from |Ek|. Again
we assume that �k+1 − �k = −2 only if either exactly the first two edges of Pk or
exactly the last two edges of Pk flip. Otherwise, at least four edges of Ek have to
flip and we pessimistically assume that �k+1 − �k < −2. With this assumption,
the probability that �k+1 − �k = −2 is 2(1/m)2(1 − 1/m)m−2. The probability
of obtaining an augmenting path of length at least 9 before obtaining a path of
length at most 1 is 1/8− o(1).

We investigate a phase of m7/2 steps. Let B be the event that the phase
has no step such that |�k+1 − �k| ≥ 4. Then Prob(B) is 1 − O(m−1/2). The
probability of a relevant step, a 2-bit flip changing �k, is Ω(1/m2) and with a
probability exponentially close to 1 the phase contains Ω(m5/4) relevant steps.
With the condition B, the probability of that many relevant steps only increases.
Now we group the relevant steps in pairs, i.e., a pair consists of two consecutive
relevant steps. We consider only relevant pairs consisting of either two increas-
ing or two decreasing relevant steps. Relevant pairs change �k by either 4 or −4.
The probability that a step in a pair is increasing is always at least 1/2 and
a pair is increasing with a probability of at least 1/4. Thus with a probability
exponentially close to 1 there are Ω(m5/4) relevant pairs. For an upper bound
on the probability of a decreasing pair we pessimistically assume that the path
is in marginal position in the first step, i. e., one endpoint is in column 0 or �.
With a probability of 1/4 the first step decreases the length and preserves the
marginal position. With a probability of 1/4 the first step decreases the length
such that thereafter the path is not in marginal position. In the first case, the
next step is decreasing with a probability of 1/2 and in the second case the next
step is decreasing with a probability of 1/3. Hence, 1/4 · 1/2 + 1/4 · 1/3 = 5/24
is an upper bound on the probability of a decreasing pair. Now we pessimisti-
cally assume that the probability of an increasing pair is 1/4 and the proba-
bility of a decreasing pair is 5/24. With this assumption and given that a pair
is relevant, the pair is increasing with a probability of at least 6/11 and the
probability that there are Ω(m5/4) more increasing pairs than decreasing pairs
is exponentially close to 1. Let Prob(C | B) be the probability that, given B,
there are Ω(m5/4) relevant 2-bit flips forming Ω(m5/4) relevant pairs with a
surplus of Ω(m5/4) = Ω(�5/4) increasing pairs. Then Prob(C | B) is exponen-
tially close to 1 and Prob(B ∩ C) = Prob(C | B) · Prob(B) = 1 − O(m−1/2).
Again we consider a coin-tossing game and define the b-values in the following
way. Let bk := (�k − 5)/4. The initial b-value is at least 1 and corresponds to
an augmenting path of length 9. Each relevant pair changes the b-value by 1
or −1. The maximal b-value is (� − 5)/4 and corresponds to a path of length
�. Then the probability Prob(A) to reach a b-value of 0 before the maximal
b-value in the coin-tossing game is (1 − 5/6)/(1 − 5/6)(�−3)/4 ≥ 1/6. Now,

18

Prob(A ∩B ∩ C) = Prob(A | B ∩ C) · Prob(B ∩ C). Condition B ∩ C ensures
that the coin-tossing game is finished within the phase and only increases the
probability to win the game. Thus, Prob(A ∩ B ∩ C) = 1/6 − O(m−1/2). Alto-
gether, the probability of interest is bounded below by 1/48− o(1). �

With Lemma 2, 3, and 4, both algorithms reach an almost perfect matching
where the path length �k is � with a probability of Ω(1/m). For each fixed h
we have m = Θ(�). In order to prove Theorem 4 it now suffices to prove the
following lemma.

Lemma 5. Starting with an almost perfect matching with an augmenting path
of length �, the probability that the local (1+1) EA finds the perfect matching
within 2c� steps, c > 0 an appropriate constant, is bounded by 2−Ω(�) if h ≥ 2.
In particular, the expected optimization time is 2Ω(�). The same holds for the
(1+1) EA if h ≥ 3. For h = 2, the (1+1) EA’s expected optimization time is
2Ω(�ε) for a certain constant ε > 0.

For the local (1+1) EA and both cases h ≥ 3 and h = 2, the presented proofs
are easy and almost identical. The proof for the (1+1) EA and h ≥ 3 is much
more involved but the arguments used do not obviously carry over to the case
h = 2. We present a more direct approach for the (1+1) EA and h = 2. However,
the exponential lower bound is weaker in this case.

Proof (Lemma 5).

Local (1+1) EA, h ≥ 3. W.l.o.g. let � ≡ 1 mod 4. We reuse the b-values defined
in the proof of Lemma 4 and start with the maximal b-value (�− 1)/2. In order
to reach the value 0 the value (�−1)/4 must be reached first. The probability to
reach then (�− 1)/2 before 0 is at least 1− t(�−1)/4(1− t(�−1)/4)/(1− t(�−1)/2).
Since t = 2/h ≤ 2/3, this probability is 1 − (2/h)Θ(�) and the probability of
reaching 0 before (� − 1)/2 can be bounded by 2−2c�, for a certain constant
c > 0. We estimate the number of the first such phase that reaches the bk-value
0 by a random variable T following the geometric distribution with parameter
p = 2−2c�. Then E(T) = 22c� is a lower bound for the expected optimization
time and the probability that T is at least 2c� is bounded by

(
1− 1

22c�

)2c�

≥ (e−1)
2cl

22c�−1 = e−2−Ω(�) ≥ 1− 2−Ω(�).

Local (1+1) EA, h = 2. For h = 2, we have defined the b-values differently.
W. l. o.g. let � ≡ 1 mod 8. The maximal b-value is (�− 1)/4. In order to reach 0,
the local (1+1) EA first reaches the b-value (�− 1)/8. The probability to reach
(�−1)/4 again before reaching 0 is at least 1−t(�−1)/8(1−t(�−1)/8)/(1−t(�−1)/4) =
1 − (5/6)Ω(�). The probability to reach 0 first is (5/6)Ω(�) = 2−Ω(�) and the
expected number of phases is 2Ω(�). Analogously to the case h ≥ 2, the expected
optimization time is 2Ω(�) with an overwhelming probability.

19

(1+1) EA, h ≥ 3. For the proof we apply methods due to Hajek (1982) which
have been worked out by He and Yao (2001). Analyzing their proof it follows
immediately that they have even proved a stronger result than stated, namely
a result on the success probability and not only the expected waiting time for a
success. We state this result in Theorem 5.

Theorem 5. Let X0, X1, X2, . . . be the random variables describing a Markov
process and let g : R → R

+
0 , 0 ≤ a(�) < b(�), λ > 0, D ∈ R, and p(�) a

polynomial. Moreover, assume that

g(X0) ≤ a(�) with probability 1,

b(�)− a(�) = Ω(�),

E
(
eλ(g(Xt+1)−g(Xt))

∣∣ Xt = x and a(�) < g(x) ≤ b(�)) ≤ 1− 1/p(�), and

E
(
eλ(g(Xt+1)−a(�))

∣∣ Xt = x and g(x) ≤ a(�)) ≤ D.

Let T be the smallest t where g(Xt) ≥ b(�). The probability that T ≤ B is bounded
above by D ·B · eλ(a(�)−b(�)) · p(�).
Since λ(a(�)− b(�)) = −Ω(�) and p is a polynomial, this bound is exponen-

tially small for B = 2c�, c ≥ 0 an appropriate constant.
Our initial Markov process is the (1+1) EA on our matching problem starting

with an almost perfect matching with an augmenting path of length �. In order
to meet the conditions of Theorem 5 we define g(Xk) := �−Xk. Then g(X0) = 0.
Let a(�) = 0 and b(�) = �− 3. Then the first two conditions are fulfilled.
In order to simplify the calculations we replace the (1+1) EA by a Markov

process on {0, 2, . . . , � − 3, � − 1, �}. We do this by estimating probabilities to
increase the g-value by larger values and probabilities to decrease the g-value by
smaller values. The new Markov process will be time-homogeneous. In state 0, it
is impossible to decrease the state. Otherwise, we only allow to go from state 2i to
state 2(i−1) and ignore other decreasing steps. Since there are always at least h
possibilities to lengthen the augmenting path, we estimate this probability below
by

p−2 := h · (1/m)2(1− 1/m)m−2.

There is the special case of reaching � from state 2j. Then exactly the edges of
the augmenting path have to flip. This probability can be estimated above by

p∗ := (1/m)�−2j .

Finally, we need an upper bound p2j on the probability of increasing the state
by 2j in one step. It is necessary to flip the 2i leftmost edges and the 2(j − i)
rightmost edges of the augmenting path for some i ∈ {0, . . . , j}. Hence,

p2j := (j + 1)(1/m)2j

is a correct bound. For the special case j = 1 we need a better bound which is
essentially smaller than p−2. It is sufficient to argue as follows. There are exactly

20

two possibilities flipping exactly two edges and otherwise we have to flip at least
the 2i, 0 ≤ i ≤ 2, leftmost edges and the 4−2i rightmost edges of the augmenting
path. Hence, we work with the new value

p2 := 2 · (1/m)2(1− 1/m)m−2 + 3 · (1/m)4.

The remaining probability is

p0 = 1− (h+ 2)(1/m)2(1− 1/m)m−2 −O(m−3).

Here we have used that due to our choice of b(�) = �−3 ≥ 2j the bound for p∗ is
O(m−3) in the situations described by the last two conditions of Theorem 5. Now
we omit all steps not changing the state. Then the new transition probabilities
are given by

q−2 = p−2/(1− p0), q∗ = p∗/(1− p0), and p2j = p2j/(1− p0).

Now we have to estimate the following sum.

e−2λq−2 + e2λq2 +
∑
j≥2

e2jλq2j + e(�−2i)λm−(�−2i)
/
(1− p0) (1)

Note that limλ→0 e−2λq−2+e2λq2 = q−2+q2 < 1. First we show that there exist
constants δ′ > 0 and λ > 0, such that e−2λq−2 + e2λq2 ≤ 1 − δ′ for m large
enough. We know that

p−2 − p2 = (h− 2)(1/m2)(1− 1/m)m−2 − 3(1/m4) ≥ α(h− 2)m−2

for some α > 0 and m large enough. Hence, q−2 − q2 ≥ β for some β > 0 and m
large enough. As λ approaches 0, e−2λ ≤ 1−2λ+c′ ·λ2 and e2λ ≤ 1+2λ+c′′ ·λ2

for certain constants c′ and c′′. This implies for c = max{c′, c′′} that

e−2λq−2 + e2λq2 ≤ (1− 2λ+ c · λ2)q−2 + (1 + 2λ+ c · λ2)q2
≤ q−2 + q2 − 2λ · (q−2 − q2) + c · λ2 · (q−2 + q2)

≤ 1− (2λ · (q−2 − q2)− c · λ2 · (q−2 + q2)
)
.

Now it suffices to show

2λ · (q−2 − q2) + c · λ2 · (q−2 + q2) ≥ δ′

⇔ c · λ · q−2 + q2
2

+
δ′

2λ
≤ q−2 − q2

Since (q−2 + q2)/2 ≤ 1/2 and β ≤ q−2 − q2, the next inequality implies the last
inequality:

cλ

2
+
δ′

2λ
≤ β.

21

Now choose λ such that 0 < λ ≤ β/c. With δ′ := β · λ > 0 the inequality is
fulfilled and e−2λq−2 + e2λq2 ≤ 1− δ′ for m large enough.
The sum in the middle of (1) can be bounded the following way. Note that

r := e2λ/m2 < 1/2 for m large enough.

∑
j≥2

e2jλq2j =
∑
j≥2

(j + 1)m−2je2jλ
/
(1− p0) =

∑
j≥2

(j + 1)
(
e2λ

m2

)j /
Ω(m−2)

= O
(
m2 ·

∑
j≥2

(j + 1) · rj
)
= O

(
m2 · r2 ·

∑
j≥2

(j + 1) · rj−2
)

= O
(
m−2 ·

∑
j≥0

(j + 3) · rj
)
= O

(
m−2

)

The last equality follows from

∑
j≥0

(j+3)·rj =
∑
j≥0

j·rj+3
∑
j≥0

rj =
r

(1− r)2+
3

1− r =
1

1− r
(

r

1− r+3
)

≤ 4
1− r

for m sufficiently large.
Finally, by our choice of b(�), � − 2i =: d is at least 3. Hence, the last term

of (1) is

edλm−d

Ω(m−2)
= O

((
eλ
)d

md−2

)
= O

(
e3λ

m
·
(
eλ

m

)d−3
)
= O(m−1).

Altogether, the third condition is for large � fulfilled with a bound 1− δ, where
δ < δ′ is even a positive constant.
The last condition follows easily. We have the same sum without the constant

term e−2λq−2. Hence, this sum is bounded above by e−2λ + O(m−1) and by a
constant, since λ is a constant.

(1+1) EA, h = 2. W.l.o.g. let � ≡ 1 mod 32. Since h = 2, we have � = (m+1)/3.
We consider the first 2d·m steps, where d > 0 is an appropriate constant. Let A
be the event that there is no step flipping at least (1/8)(�− 1) + 1 > m/24 bits.
For a single step, the probability to flip at least �m/24� bits is at most(

m

�m/24�
)(

1
m

)�m/24�
≤ 1

�m/24�! = 2
− log(� m

24 �!) = 2−Ω(m log m).

Hence, Prob(A) is lower bounded by 1 − 2d·m · 2−Ω(m log m) = 1 − 2−Ω(m log m).
In the following, we assume A and have to consider conditional probabilities.
However, if we consider events B with Prob(B) = Ω(1/p(m)) where p(m) is a
polynomial then Prob(B | A) = Ω(1/p(m)), too. Thus we may as well work with
unconditioned probabilities.
Starting with an initial path length �k = �, we wait for the first point of time

where the �k-value is at most (7/8)(�− 1) + 1 ≈ (7/8)�. Then the �k-value is at

22

least (3/4)(�− 1) + 1 ≈ (3/4)�. We show that with a probability exponentially
close to 1 the �k-value increases to at least (7/8)(� − 1) + 1 within at most
16m3 steps without getting short before. The augmenting path is considered
short if its length is at most (1/8)(�− 1) + 1. Then it takes exponentially many
of such attempts to shrink the augmenting path until the final improvement of
the matching can take place. Our pessimistic assumption is that all accepted
mutation steps with j > 2 flipping bits decrease the �k-value by j. We argue
that these steps decrease the �k-value by less than (1/16)� with a probability
exponentially close to 1. Then we consider the changes of the �k-value caused
by exactly two flipping bits. We show that these steps succeed in increasing the
�k-value by (1/4)(�− 1)− �(1/16)√�� with a probability exponentially close to
1. This results in an �k-value larger than (7/8)(�− 1) + 1 within at most 16m3

steps.
First we account for the effect of mutation steps where more than 2 bits flip.

If such a mutation does not decrease the �k-value, we ignore it. For a decreasing
step where �k − �k−1 ≤ −2j, j ≥ 2, we bound the probability in the following
way. It is necessary to flip at least the 2i leftmost edges and the 2(j−i) rightmost
edges of the augmenting path for any i ∈ {0, . . . , j}. Hence, (j + 1)(1/m)2j is
a correct upper bound. With a probability exponentially close to 1 there is no
step in the phase decreasing �k by at least

√
m/5:

1− 16m3 · (1/2)
√
m/5 + 1

m
√

m/5
= 1−O(m−√

m) = 1− 2−Ω(m1/2 log m).

We show that for all 2j, 4 ≤ 2j < √
m/5, the number of steps decreasing by 2j is

at most
√
m/(5 · 2j) with a probability exponentially close to 1. The probability

that the phase contains at least d := �√m/(10j)� steps decreasing �k by 2j is
upper bounded by(

16m3

d

)(
j + 1
m2j

)d

≤16
dm3d(j + 1)d

d! ·m2j·d ≤ (16 + j + 1)d

d! ·m(2j−3)d
≤ 1
d! ·m(2j−4)d

≤

2

− log
(⌊ √

m
20

⌋
!
)

if j = 2

2−(2j−4)
⌊ √

m
10j

⌋
log m if j ≥ 3


 = 2−Ω(m1/2 log m).

This results in a decrease of �k of at most (1/2)(m/25) ≤ �/16 with a probability
exponentially close to 1.
At any time before the path is short, there are at least two possibilities to

shorten Pk by exactly 2 edges and there are at least 2 possibilities to lengthen
Pk by exactly 2 edges The probability of such a relevant 2-bit flip is at least
(4/m2)(1− 1/m)m−2 ≥ 4/(em2) > 1/m2. With a probability exponentially close
to 1 the phase contains 8m relevant steps. These 8m relevant steps form 4m pairs.
We call a pair clean if there is no other accepted mutation step in between the
paired steps and estimate the number of dirty pairs by the number of accepted
mutation steps flipping more than 2 bits. For an accepted step flipping more than
2 bits, at least 4 bits in the environment Ek (defined in the proof of Claim 4

23

for the (1+1) EA and h = 2, page 17) have to flip. This happens only with a
probability of at most c/m4 for a certain constant c and the probability that
there are at most d := �(1/120)√m� dirty pairs in the phase is at most(

16m3

d

)(c
m4

)d

≤ 16dm3dcd

d! ·m4d
≤ (16 + c)d

d! ·md
≤ 2− log(d!) = 2−Ω(m1/2 log m).

With a probability exponentially close to 1 we have at least 4m−�(1/120)√m� >
(7/2)m clean pairs and the number of dirty pairs is at most �(1/120)√m�. These
dirty pairs decrease the �k-value by at most (1/30)

√
m < (1/16)

√
� if we pes-

simistically assume that each dirty pair decreases �k by 4. All steps considered
so far decrease the �k-value by at most �/16 + (1/16)

√
� < (1/8)(�− 1). Hence,

we can assume for the remaining clean pairs that the initial �k-value is at least
(5/8)(�− 1) + 1. A clean pair is called relevant pair if either both steps increase
or decrease �k. We investigate the probabilities of increasing and decreasing
clean pairs. The probability that a step in a pair is increasing is always at least
1/2 and a clean pair is increasing with a probability of at least 1/4. The prob-
ability that a step in a pair is decreasing is always at least 1/3 and a clean
pair is decreasing with a probability of at least 1/9. Thus the probability of a
relevant pair is at least 13/36 and with a probability exponentially close to 1
there are at least m relevant pairs among the (7/2)m clean pairs. For an upper
bound on the probability of a decreasing clean pair we pessimistically assume
that the path is in marginal position in the first step, i. e., one endpoint is in
column 0 or �. With a probability of 1/4 the first step decreases the length
and preserves the marginal position. With a probability of 1/4 the first step
decreases the length such that thereafter the path is not in marginal position.
In the first case, the next step is decreasing with a probability of 1/2 and in
the second case the next step is decreasing with a probability of 1/3. Thus
1/4 · 1/2+1/4 · 1/3 = 5/24 is an upper bound on the probability of a decreasing
pair. Now we pessimistically assume that the probability of an increasing pair
is 1/4 and the probability of a decreasing pair is 5/24. We map some �k-values
to b-values in the following way: �k ≥ (� − 1)/4 + 1 with (�k − 1) ≡ 0 mod 4
is mapped to ((�k − 1) − (1/8)(� − 1))/4. Thus �k = (1/8)(� − 1) + 1 corre-
sponds to the b-value 0, the initial path length (5/8)(�− 1) + 1 corresponds to
(2/16)(�−1), and the target length (7/8)(�−1)+1 corresponds to (3/16)(�−1).
Note that b-values are integral numbers 0, . . . , (3/16)(�− 1). The relevant pairs
correspond to the outcomes of the coin flips in a coin-tossing game where Al-
ice’s initial capital is A = (2/16)(� − 1), Bob’s is (1/16)(� − 1). Alice wins a
round with a probability of p = 6/11. Alice wins the game with a probability of
1− (5/6)(2/16)�(1− (5/6)(2/16)�)/(1− (5/6)(3/16)�) ≥ 1− (5/6)(1/8)� = 1−2−Ω(�).
This implies that the augmenting path is never shorter than (1/8)(�−1)+1. We
show that the game is indeed finished within the restricted time of a phase with
high probability. With a probability exponentially close to 1 we have m relevant
pairs and a relevant pair is increasing with a probability of at least 6/11. The
probability of at least (23/44)m increasing pairs is exponentially close to 1. This
is a surplus of (2/44)m more increasing than decreasing pairs and implies that

24

the path has grown by (8/44)m > (1/4)� to length at least (7/8)(�− 1) + 1 and
thereby finished the coin-tossing game. With this assumption, the probability of
winning the coin tossing game only increases. �

We have seen that our results are not difficult in the case of the local

(1+1) EA. Only the general (1+1) EA can escape eventually from each local op-
timum. The probability of flipping many bits in one step is essential and makes
the analysis difficult. The result of Theorem 4 has the drawback of stating a
lower bound on the expected optimization time and not a an exponential lower
bound which holds with a probability exponentially close to 1. This offers the
chance that a multistart strategy may have a polynomially bounded expected
optimization time. However, many of our results hold already with a probabil-
ity exponentially close to 1. The missing link is that we obtain a non-perfect
matching with n/2−O(1) edges and one augmenting path of length Ω(�ε) with
large probability. It is already difficult to derive properties of the first matching
created by the algorithms.

Conclusions

Evolutionary algorithms without problem-specific modules are analyzed for the
maximum matching problem. The results show how heuristics can “use” algo-
rithmic ideas not known to the designer of the algorithm. Moreover, this is one of
the first results where an EA is analyzed on a well-known combinatorial problem.

25

A The Implementation of the (1+1) EA

W.l.o.g. we assume that the graph has no isolated vertices such that n = O(m),
otherwise the set of vertices incident to at least one edge can be determined in
time O(m).
The random first search point a can be produced and evaluated in time O(m).

We compute the following parameters:

– s := a1 + · · ·+ am, the number of chosen edges,
– d := (d1, . . . , dn), the degree vector where di is the number of chosen edges
which have i as vertex,

– c :=
∑

1≤i≤n

(
di

2

)
, the collision number.

Then f(a) = −c, if c > 0, and f(a) = s otherwise. Moreover, we compute the
probabilities bi, the probability of exactly i flipping bits in a mutation step.
Obviously, bi =

(
m
i

)
(1

m)
i(1 − 1

m)
m−i and can be computed in time O(1) if bi−1

has been computed.
For the implementation of the loop we use a random number r ∈ [0, 1]. By

linear search we find j such that bj−1 ≤ r < bj (where b−1 = 0). This takes
expected time O(1), since the expected number of flipping bits is 1. In order to
choose randomly j flipping bits, we choose the positions randomly in {1, . . . ,m}.
If some position is chosen repeatedly, this choice has to be repeated. As long as
j ≤ m/2, the expected number of repetitions to find the next flipping position is
bounded by two. Otherwise, it is bounded by m. The expected time equals O(1),
since the probability of more than m/2 flipping bits is exponentially small. The
parameters s, d, and c can be updated within the same time bound.
Obviously, we can proceed in a similar way for the local (1+1) EA.

B Maximum Matchings Can Be Computed in Polynomial
Time in the Black-box Scenario

In the classical algorithmic scenario, a matching algorithm gets an explicit repre-
sentation of the graph G = (V,E) as input. In the black-box scenario, algorithms
can only evaluate a fitness function. Initially, an algorithm has no knowledge of
the graph’s structure, except that there are m edges. It gains information about
the structure by evaluating the fitness function for search points a ∈ {0, 1}m.
These fitness evaluations can be viewed as queries to an oracle. Then the black-
box complexity, introduced in Droste, Jansen, Tinnefeld, and Wegener (2002),
is the expected number of queries the best (randomized) algorithm needs in the
worst case. In this appendix we show that the matching problem has polynomial
black-box complexity and, furthermore, that it can be solved in polynomial time
in this scenario. We assume that the fitness function has the following properties:

i) All matchings have higher fitness values than every non-matching,
ii) all matchings of the same size share the same fitness value,
iii) if both search points a and b encode matchings and a encodes a smaller

matching than b, then f(a) < f(b).

26

Theorem 6. The black-box complexity of the maximum matching problem is at
most

(
m
2

)
+ 2 = O(m2).

Proof. We make use of a deterministic search strategy. First of all, we query
a = (0, . . . , 0) and obtain the fitness value t of the empty matching. Then, we
query all subsets of E consisting of two edges, i. e., we query all

(
m
2

)
possible bit

strings with exactly two 1-bits in it and utilize t as a threshold; non-matchings
have fitness values smaller than t and matchings of size 2 have all the same
fitness value greater than t. Thereby, we learn for all pairs of edges whether they
have one endpoint in common. This information is kept in a table of size Θ(m2).
Now, given an arbitrary subset M of E, we can decide (in polynomial time)

whether M is a matching. We only have to look up at most
(|M |

2

) ≤ (m2) table
entries for all pairs of edges in M . By enumerating all 2m subsets of E we can
determine all maximum matchings. Finally, we query a bit string which is the
encoding of some maximum matching. �

This proves the theorem. Nonetheless, in the second part of the black-box
algorithm, exponential computational effort is required, which the algorithm
is not accounted for in the black-box scenario. But we can reduce the time
complexity of the second part to polynomial time in the following way. The
constructed table is effectively the adjacency matrix of the line graph of G,
denoted L(G). The vertices of L(G) are the edges (sometimes called lines) of
G, with two vertices of L(G) adjacent whenever the corresponding edges of G
are. So L(G) has m nodes and at most

(
m
2

)
edges. G is also called root graph of

L(G). Note that not all graphs have a root graph, i. e., not all graphs are line
graphs. In fact, the complete graph K3 has two root graphs, namely K3 and
the complete bipartite graph K1,3. Fortunately, all other connected line graphs
have unique root graphs (e.g., Harary (1969)). It is possible to reconstruct the
root graph G from its line graph L(G), unless L(G) = K3. Due to Lehot (1974),
given that the input L(G) �= K3 indeed is a line graph, the computation of its
root graph G requires time O(N) where N is the number of vertices of L(G).
We do not assume that G is connected and distinguish two types of com-

ponents of G. Components consisting of only one node contain no edges. While
computing a maximum matching, we can ignore these components completely.
They are not represented in the line graph L(G) anyway. We name the remain-
ing components consisting of at least two nodes and at least one edge proper
components. Each component of L(G) corresponds to a proper component of G.
So computing a maximum matching from the table can be outlined like this:

1) Partition the graph L(G) into components by a DFS on L(G).
2) Consider each component of L(G) separately, i. e., compute a maximum
matching on the corresponding proper component of G.
a) If a component of L(G) consists of at most three nodes, solve the prob-
lem by “brute force.” Therefore, enumerate all edge subsets of the corre-
sponding component in G. Employ the table to decide whether a subset
is a matching and choose a maximum matching.

27

b) Otherwise, the considered component of L(G) is not K3. Use Lehot’s
algorithm and obtain the root graph of the component in time linear in
the number of nodes of the component in L(G). Apply any polynomial
time maximum matching algorithm to the root graph of the component.

3) Compose a maximum matching for G from the maximum matchings of its
(proper) components.

Obviously, the overall time is a polynomial in m.

C O(m�) Bound for the local (1+1) EA

We have assumed that there always exists an augmenting path P of length at
most �, � odd. Partition the series of mutation steps into phases of length ��/2�.
The probability to flip the edges of P from left to right in the next phase by
��/2� 2-bit flips and a final 1-bit flip is at least(

1
2
· 2
m(m− 1)

)��/2�
· 1
2
· 1
m
= Ω

(
1/m�

)
.

That means, we determine the next �′ ≤ ��/2� mutation steps that lead to a
successful attempt and consider all other series of the next �′ mutations as error.
By our assumption, we can pick a new path P and investigate the next �′′ ≤ ��/2�
steps if the previous phase was unsuccessful. The number of phases is a random
variable T = min{i | ith phase is successful} with expectation E(T) = O(m�).
This leads to the bound O(�m�) since the length of a phase is O(�). We stick to
this bound for � = 1.
For � ≥ 3, we now finish a phase prematurely after the first mutation step that

differs from the determined sequence of events in a successful phase and start
over. So each phase has a random lengthXi. In each step, the probability to finish
the phase is at least 1/2. (In fact it is at least 1−1/(2m).) AllXi are stochastically
dominated by a random variable Y following the geometric distribution with
parameter 1/2 and, therefore, E(Y) = 2. We are interested in the expected total
length of T phases, where the first T − 1 phases are unsuccessful.

E(X1 + · · ·+XT) =
∑

1≤t<∞
E(X1 + · · ·+XT | T = t) · Prob(T = t)

=
∑

1≤t<∞

(∑
1≤i≤t−1

E(Xi | T = t) + E(XT | T = t)
)
· Prob(T = t)

The second expectation is bounded by ��/2�. For i < t,

E(Xi | T = t) ≤ E(Xi | Xi < ��/2�)

=
∑

1≤k≤��/2�
k · Prob(Xi = k | Xi < ��/2�) =

∑
1≤k≤��/2�

k · Prob(Xi = k)
Prob(Xi < ��/2�)

≤ 2
∑

1≤k≤��/2�
k · Prob(Xi = k) ≤ 2 · E(Xi) ≤ 2 · E(Y) ≤ 4.

28

Now,

E(X1 + · · ·+XT−1 +XT) ≤
∑

1≤t<∞

(
(t− 1) · 4 + �) · Prob(T = t)

≤ �+ 4 ·
∑

1≤t<∞
t · Prob(T = t) = �+ 4E(T) = O(�+m�) = O(m�).

References

Blum, N. (1999). A simplified realization of the Hopcroft-Karp approach to maximum
matching in general graphs. Technical report, Universität Bonn.

Droste, S., Jansen, T., Tinnefeld, K., and Wegener, I. (2002). A new framework for the
valuation of algorithms for black-box optimization. Proc. of the 7th Foundations of
Genetic Algorithms Workshop (FOGA VII), 197–214. To appear in 2003.

Droste, S., Jansen, T., and Wegener, I. (1998). On the optimization of unimodal
functions with the (1+1) evolutionary algorithm. Proc. of the 5th Conf. on Parallel
Problem Solving from Nature (PPSN V), LNCS 1498, 13–22.

Droste, S., Jansen, T., and Wegener, I. (2002). On the analysis of the (1+1) evolution-
ary algorithm. Theoretical Computer Science 276, 51–82.

Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Wiley.
Hajek, B. (1982). Hitting-time and occupation-time bounds implied by drift analysis

with applications. Advances in Applied Probability 14, 502–525.
Harary, F. (1969). Graph Theory. Addison Wesley.
He, J. and Yao, X. (2001). Drift analysis and average time complexity of evolutionary

algorithms. Artificial Intelligence 127, 57–85.
Hopcroft, J. E. and Karp, R. M. (1973). An n5/2 algorithm for maximum matchings

in bipartite graphs. SIAM Journal on Computing 2, 225–231.
Jansen, T. and Wegener, I. (2001). Real royal road functions – where crossover provably

is essential. Proc. of the 3rd Genetic and Evolutionary Computation Conference
(GECCO 2001), 375–382.

Jansen, T. and Wegener, I. (2002). The analysis of evolutionary algorithms – a proof
that crossover really can help. Algorithmica 34, 47–66.

Lehot, P. (1974). An optimal algorithm to detect a line graph and output its root
graph. Journal of the ACM 21, 569–575.

Micali, S. and Vazirani, V. V. (1980). An O(
√|V | · |E|) algorithm for finding maximum

matching in general graphs. Proc. 21st Annual Symp. on Foundations of Computer
Science (FOCS), 17–27.

Sasaki, G. H. and Hajek, B. (1988). The time complexity of maximum matching by
simulated annealing. Journal of the ACM 35, 387–403.

Scharnow, J., Tinnefeld, K., and Wegener, I. (2002). Fitness landscapes based on
sorting and shortest paths problems. Proc. of the 7th Conf. on Parallel Problem
Solving from Nature (PPSN VII), LNCS 2439, 54–63.

Vazirani, V. V. (1994). A theory of alternating paths and blossoms for proving cor-
rectness of the O(

√
V E) maximum matching algorithm. Combinatorica 14, 71–109.

Wegener, I. (2001). Theoretical aspects of evolutionary algorithms. Proc. of the 28th
Internat. Colloq. on Automata, Languages and Programming (ICALP), LNCS 2076,
64–78.

Wegener, I. and Witt, C. (2002). On the analysis of a simple evolutionary algorithm
on quadratic pseudo-boolean functions. Journal of Discrete Algorithms. To appear.

