
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

The Cooperative Coevolutionary (1+1) EA

Thomas Jansen R. Paul Wiegand

No. CI-145/03

Technical Report ISSN 1433-3325 March 2003
Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/XI
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

The Cooperative Coevolutionary (1+1) EA

Thomas Jansen R. Paul Wiegand∗

Fachbereich Informatik Computer Science Department
Universität Dortmund George Mason University
44221 Dortmund, Germany Fairfax, VA 22030, USA
Thomas.Jansen@udo.edu paul@tesseract.org

Abstract

Coevolutionary algorithms are a variant of evolutionary algorithms
which are aimed for the solution of more complex tasks than tradi-
tional evolutionary algorithms. One example is a general cooperative
coevolutionary framework for function optimization. A thorough and
rigorous introductory research in which the optimization potential of
cooperative coevolution is studied is presented.

Using the cooperative coevolutionary framework as a starting point,
the CC (1+1) EA is defined and investigated. The main interest is in
the analysis of the expected optimization time. The research concen-
trates on separability since this is a key property of objective func-
tions. It is shown that separability alone is not sufficient to yield any
advantage of the CC (1+1) EA over its traditional, non-coevolutionary
counterpart. Such an advantage is demonstrated to have one basis in
the increased explorative possibilities of the cooperative coevolution-
ary algorithm. For inseparable functions, the cooperative coevolution-
ary set-up can be harmful. We prove that for some objective functions
the CC (1+1) EA fails to locate a global optimum with probability
converging to 1 exponentially fast, even in infinite time; however, in-
separability alone is not sufficient for an objective function to cause
difficulties. It is demonstrated that the CC (1+1) EA may perform
equal to its traditional counterpart and even may outperform it on
certain inseparable functions.

When implementing the CC (1+1) the use of a parallel computer
makes a big difference. For sequential and parallel implementations

∗The author was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of
the Collaborative Research Center “Computational Intelligence” (SFB 531).

1

different variants of the algorithm are more natural. It is proved that
both variants are equivalent for separable objective functions but can
show very different performance on inseparable functions. The two
variants are compared when applied to the approximation of a care-
fully designed example problem.

1 Introduction

An increasingly more common extension to traditional evolutionary algo-
rithms are so-called coevolutionary algorithms, in which individuals obtain
fitness values corresponding to how well they behave in conjunction with
other individuals. Indeed, coevolution often seems to be a plausible way to
approach many types of problems, especially when no clear objective measure
can be obtained, or when problems may benefit from partitioning potential
solutions into smaller components that can be solved separately. It seems
reasonable that the potential advantages with this second group may bene-
fit many kinds of optimization applications. However, while it is clear that
one can apply coevolution towards optimization problems, it is unclear how
efficient it may be when compared to traditional evolutionary algorithms
(EAs).

The contextual nature of the fitness evaluation in coevolutionary algo-
rithms have frequently presented researchers with a great deal of consterna-
tion. Coevolutionary dynamics can be very complicated (Ficici and Pollack
2000; Wiegand, Liles, and De Jong 2002b), and even relatively straight for-
ward issues in a traditional EA surrounding representation and progress mea-
surement can be quite difficult in many types of coevolutionary algorithms
(Cliff and Miller 1995; Ficici and Pollack 1998; Stanley and Miikkulainen
2002). As a result, most analytical efforts of coevolutionary algorithms have
focussed on aspects of coevolutionary dynamics, representation, and progress
measurement, while very little effort has been placed in establishing the effi-
ciency of coevolutionary approaches as optimization methods. In this paper,
we seek to bridge this gap by concentrating our attention on the analysis of
the performance of a specific coevolutionary algorithm as an optimizer.

In order to focus on this question of optimization, we adopt the well-
known cooperative coevolutionary framework provided by Potter and De Jong
(1994), which has several advantages that suit our interests. First, ques-
tions of objective progress measurement are greatly simplified. Second, the

2

framework provides a very general architecture for optimization applications.
Additionally, the method has been applied successfully to a variety of appli-
cations (e.g., Eriksson and Olsson (1997, Leung, Wong, and King (1998,
Iorio and Li (2002)). Finally, the framework allows that any evolutionary
algorithm can be used as a piece of the architecture.

These cooperative coevolutionary algorithms (CCEAs) work by applying
several EAs in an almost independent way to components of a larger, ob-
jective problem. Fitness is assessed by assembling an individual component
with representative components from other EA populations. This process is
static and symmetric in the sense that each EA has a specific role to play in
the problem that does not alter during a given run, and a specific assembled
string will receive the same reward, regardless of which component is cur-
rently being evaluated. As a result, objective progress measurement is not
an obstacle to our analysis.

What remains an important issue, however, is representation. How one
divides the problem representation into these static components is still very
much a part of the design engineer’s duties, and will certainly impact the
efficiency of the optimization process in many cases. We concentrate our
attention on maximization of pseudo-Boolean functions, f : {0, 1}n �→ R,
and make fairly natural and obvious decompositional decisions with respect
to assignment of roles of the various EA populations. A bit string x ∈ {0, 1}n

of length n is divided into k disjoint components x(1), . . . , x(k). Thus, there
are k EAs, each operating on one of these k components. The choice of
the underlying EA is of obvious importance, and will undoubtedly influence
the performance of the CCEA. We concentrate our attention on the well-
known (1+1) EA, since it is perhaps the simplest EA that still shares many
important properties with more complex EAs.

The main question with respect to the decomposition is how the degree
to which this decomposition matches the true separability of the problem
might affect run time performance. Since the individual components are in
some sense treated almost independently of one another, it is plausible to
believe that CCEA may be able to exploit this property of f when it is ap-
propriately divided, or may be hindered by properties of interdependency
when f is poorly decomposed. Indeed, intuitively one might expect that the
advantage of a CCEA over an EA grows with the degree of separability of
the problem; however, we will show that separability alone is insufficient for
the CCEA to gain an advantage. Moreover, we investigate this property of
separability of the objective function both in the case when the problem is

3

separable across population boundaries, as well as when it is not. In com-
bination with problem division, the CCEA brings with it the potential for
more focussed exploration of the individual components. Important param-
eters such as the mutation probability are often related to the length of the
string being searched (e.g, 1/n for string length n). Since individuals in
the sub-populations represent only components of a complete solution, and
are therefor only a fraction of the search space, parameters like mutation
probability often have more dramatic potential due to their increased rates.
This enables the CCEA to search these components with greater exploratory
power, while protecting the other components from the added disruption of
this exploration by the nature of the problem decomposition. We will present
a class of functions where this becomes very clear. Moreover, we present an
example where we achieve an exponential separation between the EA and
the CCEA in terms of optimization performance.

In the next section, we give precise definitions of the (1+1) EA, the CC
(1+1) EA, the notion of separability, and the notion of expected optimiza-
tion time. In the third section, we consider problems that are separable with
respect to the population boundary. We first show that the CC (1+1) EA
has surprisingly no advantage over the (1+1) EA on linear functions, despite
the fact that such functions are fully separable. Then we present a class of
functions that demonstrates that it is the explorative advantage in conjunc-
tion with the problem decomposition that leads to CC (1+1) EA superiority.
We conclude this section by constructing an example that illustrates that it
is possible for the (1+1) EA to perform better than the CC (1+1) EA, even
when the problem is separable across the population boundaries. In Sec-
tion 4, we consider the situation in which the problem is not separable across
the population boundaries. We first demonstrate that there exist inseparable
problems for whichthe CC (1+1) EA cannot find the global optimum. We
follow this by next demonstrating that inseparability itself is an insufficient
obstacle to performance by identifying a class of inseparable problems that
are no more difficult for the CC (1+1) EA than for the (1+1) EA. We con-
clude this section by showing that there remain advantages to the CC (1+1)
EA on some problems, despite inseparability, and that this advantage can
be exponential. In Section 5, we consider a more parallel alternative to our
sequential implementation of the CC (1+1) EA. We begin by showing there
is no analytical difference between these two algorithms when the problem is
separable across the population boundaries, and that both algorithms can be
similarly prevented from global convergence by some inseparable functions.

4

We then present an inseparable function that clearly demonstrates a perfor-
mance difference between the two algorithms. In our final section, we offer a
short summary of the things learned by this research and a brief discussion
of possible future directions for research.

2 Definitions

We choose to instantiate the cooperative coevolutionary function optimiza-
tion framework of Potter and De Jong (1994) with the (1+1) EA as under-
lying search heuristic. This extremely simple evolutionary algorithm uses a
population of size one, produces one offspring in each generation via bit-wise
mutation and applies plus-selection known from evolution strategies: the off-
spring replaces its parent iff its fitness is at least as large. The advantage
of choosing such a simple EA as underlying search heuristic is that the re-
sulting cooperative coevolutionary algorithm (CCEA) is easier to analyze.
Our motivation for choosing the (1+1) EA stems from the wealth of known
analytical results (see for example Mühlenbein (1992), Rudolph (1997), Gar-
nier, Kallel, and Schoenauer (1999), Droste, Jansen, and Wegener (2002),
Scharnow, Tinnefeld, and Wegener (2002)) and tools and methods (see for
example Wegener (2002)). We present a formal definition of the (1+1) EA
in a form that is suitable for maximization of a pseudo-Boolean function
f : {0, 1}n → R.

Algorithm 1 (1+1 Evolutionary Algorithm ((1+1) EA)).

1. Initialization
Choose x0 ∈ {0, 1}n uniformly at random.

2. t := 0
3. Mutation

Create y ∈ {0, 1} by copying xt and, independently for each bit,
flip this bit with probability min{1/n, 1/2}.

4. Selection
If f(y) ≥ f(xt), then set xt+1 := y, else set xt+1 := xt.

5. t := t+ 1
6. Continue at line 3.

We consider the (1+1) EA without stopping criterion and are mainly
interested in the first point of time when a global optimum of f is encoun-
tered. We measure time by counting function evaluations and assume that

5

the number of function evaluations is an accurate measure for the actual
computation time. Note that the function value of the parent f(x) can be
assumed to be known in line four, since it has been computed in the previ-
ous generation. Thus, the number of function evaluations is larger than the
number of generations by exactly one.

Definition 2. Consider some randomized algorithm A optimizing some func-
tion f : {0, 1}n → R. Let the random variable T denote the number of func-
tion evaluations A makes before evaluating some f -optimal x ∈ {0, 1}n for
the first time. We call T the optimization time of A on f and E (T) the
expected optimization time of A on f . We call Prob (T ≤ t) the success
probability of A on f after t steps.

We use the (1+1) EA as the underlying search heuristic and obtain a
cooperative coevolutionary (1+1) EA. We choose to use a numbering for
the independent EA populations and make them active in this ordering. We
consider it to be the most natural implementation for a sequential computing
environment.

Algorithm 3 (Cooperative Coevolutionary (1+1) Evolutionary Al-
gorithm (CC (1+1) EA)).

1. Initialization

Independently for each i ∈ {1, . . . , k}, choose x
(i)
0 ∈ {0, 1}l uniformly at random.

2. t := −1
3. a := 1; t := t+ 1
4. Mutation

Create y(a) by copying x
(a)
t and, independently for each bit,

flip this bit with probability min{1/l, 1/2}.
5. Selection

If f(x
(1)
t+1 · · · y(a) · · ·x(k)

t) ≥ f(x
(1)
t+1 · · ·x(a) · · ·x(k)

t), set x
(a)
t+1 := y(a),

else set x
(a)
t+1 := x

(a)
t .

6. a := a+ 1
7. If a > k, then continue at line 3, else continue at line 4.

Note that each (1+1) EA may have to make two function evaluations in
each generation. Since the current version of the component from the other
EAs is used to compute the function value, each EA may use a different
parent bit string for the selection. Thus, the number of function evaluations

6

is almost twice as large as the number of generations summed over all (1+1)
EAs.

After k consecutive generations, each (1+1) EA was active exactly once.
Therefore, we denote k consecutive generations as a round. Obviously, the
number of function evaluations can be estimated quite accurately by 2k times
the number of rounds. However, the factor of two is not important since we
employ asymptotic analysis. For the sake of completeness, we give definitions
of the notions we use to describe the asymptotic growth of functions.

Definition 4. Let f, g : N0 → R be two functions. We say f = O(g), if

∃n0 ∈ N, c ∈ R
+ : ∀n ≥ n0 : f(n) ≤ c · g(n)

holds. We say f = Ω(g), if g = O(f) holds. We say f = Θ(g), if f = O(g)
and f = Ω(g) both hold. We say f = o(g), if lim

n→∞
f(n)/g(n) = 0 holds. We

say f = ω(g), if g = o(f) holds.

When optimizing a pseudo-Boolean function f : {0, 1}n → R using a
CCEA, each bit string is divided into different components. It is well known
that for some functions it is possible to find such a division in a way that the
separate components do not interfere with each other. Such functions are
called separable. Since separability is a key issue we have to discuss when
analyzing the performance of the CC (1+1) EA, we give a precise formal
definition.

Definition 5. A function f : {0, 1}n → R is called (r, s)-separable, where
r, s ∈ {1, 2, . . . , n}, if there exists a partition of {1, . . . , n} into r disjoint sets
I1, . . . , Ir, and if there exist a matching number of pseudo-Boolean functions
g1, . . . , gr with gj : {0, 1}|Ij | → R such that

∀x = x1 . . . xn ∈ {0, 1}n : f(x) =
r∑

j=1

gj

(
xij,1

xij,2
· · ·xi

j,|Ij|
)

holds, Ij =
{
ij,1, . . . , ij,|Ij |

}
and |Ij| ≤ s for all j ∈ {1, . . . , r}.

We say f is exactly (r, s)-separable if f is (r, s)-separable but not (r′, s′)-
separable for any r′ > r or s′ < s.

Obviously, the two parameters r and s are not totally unrelated. We have
n/r ≤ s ≤ n−(r−1). We consider s to be the more important parameter with

7

respect to the potential performance of an evolutionary algorithm optimizing
f . The parameter s gives an upper bound on the dimension of the search
space for each of the sub-functions gj. It is obvious that this dimension of the
search space has large influence on the potential difficulty of f . Consider for
example the case where we have s = O(logn). Then the size of each search
space of the r sub-functions is polynomial in n and f can be optimized using
exhaustive search of the separate search spaces in polynomial time.

Note, however, that a high degree of separability corresponds to a small
value of s. For (n, 1)-separable functions, the function value can be computed
depending on single bits. An exactly (1, n)-separable function is not separable
at all, the values of all n bits have to be known together in order to compute
the function value.

As discussed in Section 1, we concentrate on the division of a bit string
x ∈ {0, 1}n into k separate components of equal size n/k. Thus, (k, n/k)-
separable functions are of special interest to us. We consider this case to
be the most interesting. Cases with a division into sub-functions of vary-
ing dimension can be analyzed based on the results for the homogeneous
decomposition.

When discussing the separability of a function, it is useful to note that
each pseudo-Boolean function f : {0, 1}n → R has a unique representation as
polynomial

f(x) =
∑

I⊆P({1,...,n})
wI ·

∏
i∈I

xi

with wI ∈ R. The wI are called weights and it is obvious that a non-zero
weight wI implies that all the bits xi with i ∈ I cannot be separated.

Since an important part of our research concentrates on the relationship
between the separability properties of a function and the decomposition cho-
sen when implementing a CC (1+1) EA, it is often necessary to distinguish
between these two concepts. We use the term component to mean a part of a
representation, given by the algorithm, while we use the term piece to mean
portions of the problem itself.

The difference between these terms is more obvious in some places than
others, since the algorithm’s decomposition may be closely aligned with the
problem’s true separation, or it may not. It will be helpful to provide terms
to distinguish between such cases. When the problem pieces are separable
between the components represented in the populations, we say that the
decomposition matches the separability of the problem. More specifically, we

8

say that the decomposition exactly matches the separability of the problem
when the pieces as exactly separable. We define these terms more formally
below.

Definition 6. Let a function f : {0, 1}n �→ R be (r, s)-separable as in Def-
inition 5. We say that a decomposition matches the separability of f if all
bits that belong to one index set Ij are in one population.

We say that the decomposition exactly matches the separability of f if
there are r components, and each EA operates on the bits contained in exactly
one of the index sets Ij.

Informally, we may also use the phrase separable across population bound-
aries to describe situations in which the algorithm’s decomposition matches
the separability of the problem. When the decomposition does not match
the problem separation, we use the phrase cross-population nonlinearities to
refer to the existence of nonlinear relationships between components result-
ing from decompositions that place portions of inseparable pieces in different
populations. It should be clear that when decompositions do not match the
problem’s separability, there will be such nonlinearities by definition.

3 Exploiting separability

When using the cooperative coevolutionary function optimization framework
by Potter and De Jong (1994) one has to decide how to separate a bit string
into different components that are distributed to the separate EAs. In this
section we concentrate on cases where the decomposition matches the sepa-
rability of the objective function.

It makes sense to begin the investigation with an extreme case. If one
believes that the CCEA framework is advantageous due to (explicitly) ex-
ploiting the separability of the objective function, one may speculate that this
becomes most visible when the objective function is separable to an extreme
degree. Thus, we begin our investigations with (n, 1)-separable functions.
Such functions can be written as f(x) = w0+w1 ·x1+ · · ·+wn ·xn with fixed
weights w0, w1, . . . , wn ∈ R and are known as linear functions. A particularly
well known and well investigated linear function is OneMax, which can be
defined by w0 = 0 and w1 = · · · = wn = 1. We will see in the next sub-
section that in spite of the maximal degree of separability the CC (1+1) EA
has no advantage over the traditional (1+1) EA on linear functions. This

9

motivates the search for reasons why the cooperative coevolutionary opti-
mization framework fails to provide an advantage on linear functions. We
define a class of functions in Section 3.2 that are exactly (k, n/k)-separable,
where k is a parameter. We will see that the CC (1+1) EA possesses in-
creased explorative possibilities, which can lead to an impressive speed-up
compared to the (1+1) EA. The main results of Sections 3.1 and 3.2 have
been published in (Jansen and Wiegand 2003), which proved a lower bound
for the CC (1+1) EA for linear functions, as well as an upper bound for
the (1+1) EA and lower bound for the CC (1+1) EA for a class of exactly
(k, n/k)-separable example functions. Here, we give a more complete picture
with upper and lower bounds for both algorithms. Finally, in Section 3.3, we
investigate whether the attempt to exploit the separability of an objective
function by means of the cooperative coevolutionary framework can possibly
lead to an increase in expected optimization time.

3.1 Linear functions

The analysis of the expected optimization time of evolutionary algorithms is
a difficult task. This is true even for simple objective functions like linear
functions, and it is still true when considering a simple evolutionary algorithm
like the (1+1) EA. Nevertheless, there are many results concerned with the
expected optimization time of the (1+1) EA on different objective functions
known. For linear functions, the expected optimization time is O(n logn)
and this upper bound matches the lower bounds for typical linear functions.
We cite the result by Droste, Jansen, and Wegener (2002).

Theorem 7. The expected optimization time of the (1+1) EA on a linear
function f : {0, 1}n → R is O(n logn). If f only has non-zero weights, the
expected optimization time of the (1+1) EA on f is Θ(n logn).

We consider the CC (1+1) EA on linear functions. Obviously, any decom-
position matches the separability of linear or (n, 1)-separable functions. We
consider any homogeneous decomposition where the number of components
k divides n. This allows us to ignore special cases where the last component
is either larger or smaller than all the other components. Such cases are not
very different from the cases we discuss and have no properties of special
interest. Since we are escpecially interested in seeing how much the coopera-
tive coevolutionary function optimization framework increases the efficiency,

10

we begin our investigations with a lower bound on the expected optimization
time of the CC (1+1) EA on a linear function.

Theorem 8. The expected optimization time of the CC (1+1) EA on a linear
function f : {0, 1}n → R with only non-zero weights is E (T) = Ω(n logn).

Proof. Since all weights are non-zero there is a unique global optimum x∗.
Let xt denote the current string of the CC (1+1) EA after t complete rounds.
Let pt be the probability that xt �= x∗ after t complete rounds. It is easy to
see that E (T) ≥ pt · t · k holds.

After random initialization with probability at least 1/2 at least �n/2� of
the bits in the inital string differ from x∗. Obviously, each of these bits has
to be mutated at least once in order to find the global optimum x∗.

First, we assume that k < n holds. We consider the situation after
(n− k) lnn complete rounds, so each (1+1) EA was active (l− 1) lnn times.
The probability that a specific bit is not mutated (l − 1) lnn times equals
(1− 1/l)(l−1) lnn. Thus, the probability that this bit is mutated at least once
in that time equals 1−(1−1/l)(l−1) ln n. The probability that �n/2� bits all do
so equals

(
1− (1− 1/l)(l−1) lnn

)�n/2

. So, finally, the probability that among

�n/2� bits which need to be mutated at least once there is at least one which is

not within (n−k) lnn complete rounds equals 1−(1− (1− 1/l)(l−1) ln n
)�n/2

.
We see that we have

E (T) ≥ 1

2
·

1−

(
1−

(
1− 1

l

)(l−1) lnn
)�n/2
 · (n− k) lnn

for k < n. For each l we have (1−1/l)l−1 ≥ 1/e. Thus, 1−(1−1/l)(l−1) ln n ≤
1− 1/n holds. This yields

E (T) ≥ 1

2
·
(
1−

(
1− 1

n

)�n/2
)
· (n− k) lnn

≥ 1

2
· (1− e−1/2

) · (n− k) lnn = Ω(n logn)

for k < n.
For k = n we have n (1+1) EAs each operating on exactly one bit. Each

bit has an unique optimal value. We are waiting for the first point of time
when each bit had this optimal value at least once. This is equivalent to

11

throwing n coins independently and repeating this until each coin came up
head at least once. Obviously, on average the number of coins that never
came up head is decomposed by the factor of pf(t) ln l each round. It follows
that on average Θ(logn) rounds are needed. This implies E (T) = Ω(n logn)
in this case.

Theorem 8 may be surprising: regardless of the way we choose the decom-
position, the decomposition will always match the separability of the linear
function. And yet, regardless of the decomposition, the CC (1+1) EA has no
advantage over the traditional (1+1) EA working on the complete problem.
Before we discuss how this can be explained, we try to get a complete pic-
ture of the performance of the CC (1+1) EA on linear functions. In order to
derive an upper bound, we describe an upper bound technique that depends
on the probability that the (1+1) EA takes longer than expected to optimize
a linear function.

Lemma 9. Let pf (t) denote the probability that the (1+1) EA does not op-
timize the linear function f : {0, 1}n → R within t · n lnn generations. The
expected optimization time of the CC (1+1) EA on f with k (1+1) EAs
operating on n/k bits each is

E (T) = O

(
t ln k

− ln pf (t)
· n ln l

)
.

Proof. We consider periods of time that consist of tl ln l rounds each. Each
(1+1) EA is active tl ln l times in each such period. The probability that it
finds an optimal bit string equals 1−pf(t). Obviously, if an optimal bit string
is found by a (1+1) EA, it cannot be lost again. Thus, after one such period
the expected number of (1+1) EAs that are not yet optimal is decreased by
the factor pf(t). Using standard arguments we see that the expected number
of rounds that is needed is bounded above by O(− ln k/ ln pf(t)).

The proof of Theorem 7 holds for arbitrary initial bit strings. Since the
expected optimization time is O(n logn), there is a constant c such that it is
less than cn lnn. Markov’s inequality yields that after 2cn lnn generations
the probability not to have optimized f is bounded above by 1/2. Thus, we
have pf(2ct) ≤ 2−t for any linear function f and any t ∈ N. This implies the
following result.

Theorem 10. The expected optimization time of the CC (1+1) EA on a
linear function f : {0, 1}n → R is O(n log2 n).

12

OneMax is a special linear function and we can give a better bound
on pOneMax(t). The Hamming distance to the global optimum can never
increase and the probability to increase the function value from i to i + 1
is bounded below by (n − i)/(en). Therefore, we can apply results from
the coupon collector’s problem (Motwani and Raghavan 1995). This yields
pOneMax(2et) ≤ n−t for any t ∈ N and we can conclude the following result.

Theorem 11. The expected optimization time of the CC (1+1) EA on
OneMax : {0, 1}n → R is O(n logn).

We see that for OneMax the expected optimization time of the CC
(1+1) EA is Θ(n log n). Although the cooperative coevolutionary approach
is not better than the traditional approach, it is at least not doing worse.
For general linear functions, we cannot prove that the CC (1+1) EA is not
doing worse; however, we conjecture that an upper bound of O(n logn) can
be proved for all linear functions.

Conjecture 12. The expected optimization time of the CC (1+1) EA on a
linear function f : {0, 1}n → R is O(n logn).

3.2 Exploring the explorative advantage

We found out that in spite of the complete separability of linear functions,
the CC (1+1) EA has no advantage over the (1+1) EA. Linear functions
can be optimized by mutations of single bits alone. And since restricting
the (1+1) EA to mutations of single bits does not slow it down on linear
functions, we may speculate that linear functions are optimized using mainly
mutations of single bits. One important aspect that we already pointed out
in the introduction is the increased mutation probability used by the (1+1)
EAs that are part of the CC (1+1) EA. What we expect from an increased
mutation probability is, of course, an increased number of mutations. We
investigate this a little further and classify a mutation by the number of
mutated bits. We compare one round of the CC (1+1) EA, when each
(1+1) EA was active once, with k generations of the traditional (1+1) EA.
We concentrate on the first component, only. It is quite easy to calculate
the expected number of mutations of exactly b bits. For a single (1+1)
EA operating on l bits, this number equals

(
l
b

)
(1/l)b(1 − 1/l)n−b. Thus, for

the (1+1) EA operating on n bits for k generations, this number equals

13

k · (l
b

)
(1/n)b(1− 1/n)n−b. For the CC (1+1) EA we get

(
l
b

)
(1/l)b(1− 1/l)l−b.

We consider the quotient of the two and get(
l
b

) (
1
l

)b (
1− 1

l

)l−b

k
(

l
b

) (
1
n

)b (
1− 1

n

)n−b
= kb−1 ·

(
n− k

n− l

)l−b

= Θ
(
kb−1

)
.

With respect to linear functions it is interesting to note that for b = 1 the
quotient does not grow. In spite of the increased mutation probability, the
expected number of single bit mutations is not significantly larger for the CC
(1+1) EA. This changes with mutations of at least two bits. The expected
number grows exponentially in (b − 1) ln k. For small values of b > 1 even
mutations of b specific bits occur in a polynomial number of generations.
Hence, we can expect to see significant differences in the performance of the
traditional (1+1) EA and its cooperative coevolutionary counterpart when
such mutations play an important role. This motivates the definition of a
family of functions where such mutations are crucial.

We start with a function which is exactly (1, n)-separable. The definition
is inspired by the well-known LeadingOnes problem.

Definition 13. For n ∈ N and b ∈ {1, . . . , n} with n/b ∈ N, we define the
function LOBb : {0, 1}n → R (short for LeadingOnesBlocks) by

LOBb(x) :=

n/b∑
i=1

b·i∏
j=1

xj

for each x = x1 · · ·xn ∈ {0, 1}n.

The function LOBb is identical to the so-called Royal Staircase function
which was introduced by van Nimwegen and Crutchfield (2001) in a different
context. The function value equals the number of blocks of size b that have all
bits set to 1 (scanning x from left to right). Nevertheless, it is not clear that
mutations of b bits in one step are needed in order to optimize LOBb. Since
the initial bit string is chosen uniformly at random, it may be the case that
on average b/2-bit mutations are sufficient. In order to overcome technical
difficulties that arise from such uncertainties, we embed LOBb in another
function. In this function we give leading ones blocks a higher weight and
subtract OneMax in order to force all the other bits to be set to 0. Finally,
we use a well-known technique to achieve a controllable degree of separability:
we define the function CLOBb,k as k concatenated copies of this function.

14

Definition 14. For n ∈ N, k ∈ {1, . . . , k} with n/k ∈ N, and b ∈ {1, . . . , n/k}
with n/(bk) ∈ N, we define the function CLOBb,k : {0, 1}n → R by

CLOBb,k(x) :=

(
k∑

h=1

n · LOBb

(
x(h−1)l+1 · · ·xhl

))−OneMax(x)

for all x = x1 · · ·xn ∈ {0, 1}n, with l := n/k.

Since LOBb is exactly (1, n)-separable, it is obvious that CLOBb,k is ex-
actly (k, l)-separable with l = n/k. Since we are interested in finding out
whether the increased mutation probability of the CC (1+1) EA proves to
be beneficial, we concentrate on CLOBb,k with b > 1 and use a decompo-
sition that exactly matches the separability of the problem. We start our
investigations with an upper bound on the expected optimization time of the
CC (1+1) EA.

Theorem 15. The expected optimization time of the CC (1+1) EA on the
function CLOBb,k : {0, 1}n → R is Θ

(
klb
(

l
b
+ ln k

))
with l := n/k, if the

CC (1+1) EA exactly matches the function’s separability with k (1+1) EAs,
and 2 ≤ b ≤ n/k, 1 ≤ k ≤ n/4, and n/(bk) ∈ N hold.

Proof. Since we have n/(bk) ∈ N we have k components x(1), . . . , x(k) of
length l := n/k each. In each component the size of the blocks rewarded
by CLOBb,k equals b and there are exactly l/b ∈ N such blocks in each
component.

We begin with the upper bound and consider the first (1+1) EA operating
on x(1). As long as x(1) differs from 1l, there is always a mutation of at most
b specific bits that increases the number of leading ones blocks by at least
one. After at most l/b such mutations x(1) = 1l holds. The probability
of such a mutation is bounded below by (1/l)b(1 − 1/l)l−b ≥ 1/(elb). We
consider k · 10e · lb((l/b) + ln k) generations. The first (1+1) EA is active in
10e · lb((l/b) + ln k) generations. The expected number of such mutations is
bounded below by 10((l/b)+ln k). Chernoff bounds (Motwani and Raghavan
1995) yield that the probability not to have at least (l/b)+ln k such mutations
is bounded above by e−4((l/b)+ln k) ≤ min{e−4, k−4}. In the case k = 1 this
immediately implies the claimed upper bound on the expected optimization
time. Otherwise, the probability that there is a component different from 1l

is bounded above by k · (1/k4) = 1/k3. This again implies the claimed upper
bound.

15

The proof of the lower bound consists of two parts. First, we prove that,
with probability close to 1, there are Ω(k) sub-populations where x(i) =
0l holds after o (k · l2) generations. Second, we prove that for these sub-
populations x(i) �= 1l holds with a probability that is sufficiently large for the
prove of the lower bound on the expected optimization time.

Each component equals 0l with probability 2−l after random initializa-
tion. If l = O(1), this yields that each sub-population is initialized 0l with
probability Ω(1). Now we deal with the case where l grows with n. We
consider the first component. With probability 1/4 the first two bits have
value 0 after random initialization. The probability that x(1) does not have
the form 1jb0l−jb for some j ∈ N0 after t · k · 2el log l generations is bounded
above by 2−t. The probability that the first two bits are mutated in the
first t · k · 2el log l generations is bounded above by (t · 2el log l)/l2. Thus,
we have x(1) = 0l after k · 10el log l generations with probability at least
1−((3/4) + 2−5 + (10e log l)/l) = Ω(1). Application of Chernoff bounds yield
in both cases that with probability close to 1 the number of sub-populations
equal to 0l is Ω(k) after O(n log l) generations.

For the second part of the proof, we distinguish two cases. First, assume
ln k ≥ l/b holds. We consider a sub-population with x(i) = 0l. We consider
the first k(lb − 1) ln k generations after this is the case. Note that l ≥ 2
implies k(lb − 1) ln k = Ω(klb ln k). Obviously, if there is no mutation of the
first b bits in x(i) in these generations, x(i) �= 1l still holds afterwards. The
sub-population is active for (lb − 1) ln k generations during the considered
time interval. Therefore, the probability for such an event is bounded below
by (

1− 1

lb

)(lb−1) ln k

≥ e− ln k =
1

k
.

We know from the first part of the proof that there are at least ck such
populations for some positive constant c < 1. They all are independent due
to the definition of the CC (1+1) EA. Therefore, the probability that at least
one sub-population has x(i) �= 1l is bounded below by

(
1− 1

k

)ck

>
e−c

2

which is a positive constant. This yields Ω
(
klb ln k

)
as lower bound on the

expected optimization time.

16

Now we deal with the case ln k < l/b. Again, we consider a sub-population
with x(i) = 0l. We consider the first (klb · l/b)/2 generations after this is the
case. In order to increase the number of leading ones blocks by i, a mutation
of i specific bits is necessary and sufficient. Such a mutation occurs with
probability l−ib. Since i/lib is maximal for i = 1, it suffices to consider
mutations of b bits. The sub-population is active for (lb · l/b)/2 generations.
By Chernoff bounds, the probability to have at least l/b such mutations
is bounded above by (e/4)l/(2b) <

√
3/2. Thus, with probability at least

1−√
3/2 the global optimum is not found after Ω

(
klb(l/b)

)
generations.

The expected optimization time Θ(klb((l/b) + ln k)) grows exponentially
with b, as could be expected. Note, however, that the basis is l, the length
of each piece. This supports our intuition that the exploitation of the sepa-
rability together with the increased mutation probability help the CC (1+1)
EA to be more efficient on CLOBb,k. We now prove this belief to be correct
by analyzing the expected optimization time of the (1+1) EA.

Theorem 16. The expected optimization time of the (1+1) EA on the func-
tion CLOBb,k : {0, 1}n → R is Θ

(
nb (n/(bk) + ln k)

)
, if 2 ≤ b ≤ n/k,

1 ≤ k ≤ n/4, and n/(bk) ∈ N hold.

Proof. We begin with a proof of the lower bound. This proof consists of
two main steps. First, we prove that with probability at least 1/8 the (1+1)
EA needs to make at least �k/8� · l/b mutations of b specific bits to find the
optimum of CLOBb,k. Second, we estimate the expected waiting time for
this number of mutations.

Consider some bit string x ∈ {0, 1}n. It is divided into k pieces of length
l = n/k each. Each piece contains l/b blocks of length b. Since each leading
block that contains 1-bits only contributes n− b to the function value, these
1-blocks are most important.

Consider one mutation generating an offspring y. Of course, y is divided
into pieces and blocks in the same way as x. But the bit values may be
different. We distinguish three different types of mutation steps that create
y from x. Note that our classification is complete, i. e., no other mutations
are possible.

First, the number of leading 1-blocks may be smaller in y than in x. We
can ignore such mutations since we have CLOBb,k(y) < CLOBb,k(x) in this
case. Then y will not replace its parent x.

17

Second, the number of leading 1-blocks may be the same in x and y.
Again, mutations with CLOBb,k(y) < CLOBb,k(x) can be ignored. Thus,
we are only concerned with the case CLOBb,k(y) ≥ CLOBb,k(x). Since the
number of leading 1-blocks is the same in x and y, the number of 0-bits
cannot be smaller in y compared to x. This is due to the −OneMax part
in CLOBb,k.

Third, the number of 1-blocks may be larger in y than in x. For blocks
with at least two 0-bits in x the probability to become a 1-block in y is
bounded above by 1/n2. We know that the −OneMax part of CLOBb,k

leads the (1+1) EA to all zero blocks in O(n logn) steps. Thus, with prob-
ability O((logn)/n) such steps do not occur before we have a string of the
form

1j1·b0((l/b)−j1)·b1j2·b0((l/b)−j2)·b · · · 1jk·b0((l/b)−jk)·b

as current string of the (1+1) EA.
The probability that we have at least two 0-bits in the first block of

a specific piece after random initialization is bounded below by 1/4. It is
easy to see that with probability at least 1/4 we have at least �k/8� such
pieces after random initialization. This implies that with probability at least
1/8 we have at least �k/8� pieces which are of the form 0l after O(n logn)
generations. This completes the first part of the lower bound proof.

Each 0-block can only become a 1-block by a specific mutation of b bits
all flipping in one step. Furthermore, only the leftmost 0-block in each piece
is available for such a mutation leading to an offspring y that replaces its
parent x. Let i be the number of 0-blocks in x. For i ≤ k, there are up
to i blocks available for such mutations. Thus, the probability for such a
mutation is bounded above by i/nb in this case. For i > k, there cannot be
more than k 0-blocks available for such mutations, since we have at most one
leftmost 0-block in each of the k pieces. Thus, for i > k, the probability for
such a mutation is bounded above by k/nb. This yields

1

8
·

 k∑

i=1

nb

i
+

�k/8�l/b∑
i=k+1

nb

k


 ≥ nb

8
·
(
ln k +

kl

8bk

)
= Ω

(
nb ·

(n
bk

+ logn
))

as lower bound on the expected optimization.
For an upper bound, we apply a method similar to f -based partitions

(Droste, Jansen, and Wegener 2002). We have k pieces x(1), . . . , x(k) of length

18

l := n/k each. In each piece, there are b bits in each of the blocks rewarded
by CLOBb,k and there are exactly l/b ∈ N such blocks in each piece.

For i ∈ {1, . . . , k}, x ∈ {0, 1}n we define the following. The set of first-bit
positions in every block of the ith piece is given by

Bi :=

{
j · b+ 1|j ∈

{
(i− 1)

l

b
, (i− 1)

l

b
+ 1, . . . , i

l

b
− 1

}}
.

The set of bit positions in the jth block of the ith piece which are 0 is given
by

Zi,j(x) := {h|j ≤ h ≤ j + l − 1 ∧ xj = 0}
for j ∈ Bi. The first-bit position of the left-most block in the ith piece which
is not the all one string is given by

zi := min {{j ∈ Bi|Zi,j(x) �=} ∪ {maxBi}} .
Note that zi indicates the first-bit position of the right-most block of the
piece if the entire piece is the all one string. Finally, we define the event
A(x), an advancing step, to be the situation in which there exists exactly one
i ∈ {1, . . . , k} such that all bits in Zi,zi(x)(x) mutate and all other bits in x
do not mutate.

First observe that ∀x : Pr{A(x)} ≥ (k
1

)
1
nb

(
1− 1

n

)n−b ≥ k
enb and that each

event A(x) belongs to exactly 1 piece. Observing that there are l/b blocks
in each piece, for symmetry reasons it is sufficient to see that the global
optimum is reached after at most l/b events in all pieces.

Since the A(x) events are independent and we are interested only in
bounding the waiting time to obtain a specific number of such events in each
piece, we can consider this process to be equivalent to a generalized form of
the coupon collector’s problem where we wait for the first point of time with
at least l/b balls in each bin. Here the pieces are bins and the advancing step
events are balls. Applying Lemma 17 we see that O(k ln k+ k l

b
) steps are on

average sufficient to insure that each piece has experienced at least l/b of the

A(x) events. Since we expect to wait O
(

nb

k

)
generations for each advancing

step, the total expected waiting time until the global optimum is reached is
O(nb ln k).

Lemma 17. Consider balls which are thrown independently and uniformly
at random into k bins. Let M denote the minimal number of balls thrown
such that each bin contains at least h balls.

E (M) = O (k ln k + kh)

19

Proof. For k = 1 the process is deterministic and the statement obviously
true. Thus, we assume k > 1. We begin with a lower bound onM . If we have
at least h balls in each bin, the sum of all balls is at least kh. Thus M ≥ kh
holds. Now, consider the situation after (k − 1) ln k balls. The probability
that the first bin is empty equals (1 − 1/k)(k−1) lnk > e− ln k = 1/k. The
probability that there is an empty bin among the k bins is bounded below
by 1 − (1 − 1/k)k ≥ 1 − e−1. Thus, we have M ≥ (1 − 1/e) · (k − 1) lnn.
Together, we have M = Ω(kh+ k ln k).

For the upper bound, consider the situation after 4kh+4k ln k balls. Let
B1 denote the number of balls in the first bin. We have E (B1) = 4h+4 ln k.
Using Chernoff bounds we get

Prob (B1 < h) = Prob

(
B1 <

(
1− 3h+ 4 ln k

4h+ 4 ln k

)
(4h+ 4 ln k)

)
< e−(4h+4 lnk)((3h+4 ln k)/(4h+4 ln k))2/2 < e−(1/2)·(3/4)·4 ln k

= k−3/2.

Thus, with probability at most k · k−3/2 = 1/
√
k there is a bin with less

than h balls after 4kh + 4k ln k balls. This yields M ≤
(
1− 1/

√
k
)−1

·
(4kh+ 4k ln k) = O(kh+ k ln k).

We want to see the benefits the increased mutation probability due to
the cooperative coevolutionary approach can cause. Thus, our interest is not
specifically concentrated on the concrete expected optimization times of the
(1+1) EA and the CC (1+1) EA on CLOBb,k. Rather, we are much more
interested in a comparison. When comparing (expected) run times of two
algorithms solving the same problem, it is most often sensible to consider the
ratio of the two (expected) run times. Therefore, we consider the expected
optimization time of the (1+1) EA divided by the expected optimization
time of the CC (1+1) EA, both on CLOBb,k. We see that

Θ
(
nb · (n

bk
+ ln k

))
Θ
(
klb
(

l
b
+ ln k

)) = Θ
(
kb−1

)
holds. We can say that the CC (1+1) EA has an advantage of order kb−1.
The parameter b is a parameter of the problem. In our special setting, this
holds for k, too, since we divide the problem as much as possible. Using
c components, where c ≤ k, would reveal that this parameter c influences

20

the advantage of the CC (1+1) EA in a way k does in the expression above.
Obviously, c is a parameter of the algorithm. Choosing c as large as the
objective function CLOBb,k allows yields the best result. This confirms our
intuition that the separability of the problem should be exploited as much as
possible. We see that for some values of k and b this can decrease the expected
optimization time from super-polynomial for the (1+1) EA to polynomial for
the CC (1+1) EA. This is, for example, the case for k = n(log log n)/(2 logn)
and b = (log n)/ log logn.

It should be clear that simply increasing the mutation probability in the
(1+1) EA will not resolve the difference. Increased mutation probabilities
lead to a larger number of steps where the offspring y does not replace its
parents x since the number of leading ones blocks is decreased due to mu-
tations. After some time it will be necessary not to mutate at least half
of the bits in order to further increase the function value. Using the same
mutation probability for the (1+1) EA as for each sub-population of the CC
(1+1) EA, i. e. 1/l, the waiting time for only one such mutation is on av-

erage
(
(1− 1/l)n/2

)−1 ≈ ek/2 generations. As a result, the CC (1+1) EA
gains clear advantage over the (1+1) EA on this CLOBb,k class of functions.
Moreover, this advantage is drawn from more than a simple partitioning of
the problem. The advantage stems from the coevolutionary algorithm’s abil-
ity to increase the focus of attention of the mutation operator, while using
the partitioning mechanism to protect the remaining components from the
increased disruption.

3.3 Separability considered harmful

We have seen that the CC (1+1) EA can achieve a tremendous speed-up
compared to the (1+1) EA on separable functions when its increased explo-
rative possibilities are helpful. However, separability by itself is not sufficient
to make the cooperative coevolutionary approach beneficial, as the consid-
eration of linear functions revealed. Now we want to find out whether there
can be disadvantages due to this approach even on separable functions.

We should be careful about what we want to call a disadvantage. First
of all, we assume that the considered objective function is separable, and
that the decomposition of the problem for the CC (1+1) EA matches this
separability. Since we are, as usual, interested in extreme cases we assume
that the decomposition matches exactly the separability of the problem. We
know that the different mutation probabilities employed by the CC (1+1) EA

21

compared to the (1+1) EA can cause huge performance differences. More-
over, it is known that the most common mutation probability 1/l for strings
of length l is not optimal for all functions (Jansen and Wegener 2000). Dif-
ferent mutation probabilities can mean the difference between polynomial
and super-polynomial expected optimization time. We saw that the superior
performance of the CC (1+1) EA on CLOBb,k was not due to the increased
mutation probability alone. Thus, here we are not satisfied with an exam-
ple where the (1+1) EA is superior due to the use of a more appropriate
mutation probability.

Our goal is to investigate the following. Is it possible that the CC (1+1)
EA is outperformed by the (1+1) EA on a separable problem, where the CC
(1+1) EA makes full use of this separability by using a decomposition which
exactly matches the problem’s separability and where for each component
the CC (1+1) EA uses an optimal mutation probability? In order to an-
swer this question we define an example problem where this is exactly the
case. However, we can show that if the (1+1) EA has polynomial expected
optimization time, then the CC (1+1) EA optimizes this problem within a
polynomial number of steps with a probability that quickly converges to 1.

Assume the objective function f : {0, 1}n → R is (r, s)-separable and the
expected optimization time of the (1+1) EA on f is E (T) = t(n). Since f is
(r, s)-separable, there exist index sets I1, . . . Ir and functions g1, . . . , gr such
that

f (x1 . . . xn) = g1

(
xi1,1 · · ·xi1,|I1|

)
+ · · ·+ gr

(
xir,1 · · ·xir,|Ir |

)
for all x1 · · ·xn ∈ {0, 1}n. We consider functions f1, . . . , fr which we define
by

fj (x1 . . . xn) = gj

(
xij,1

· · ·xi
j,|Ij|

)
for all j ∈ {1, . . . , r}. Obviously, E (Tj) ≤ t(n) holds for the expected opti-
mization time E (Tj) of the (1+1) EA on fj for each j ∈ {1, . . . , r}. We
divide a bit string into components exactly matching the separability of
f but use 1/n as mutation probability for each component. We consider
r · n2 · t(n) = O(n3t(n)) generations of the CC (1+1) EA. Note, that since
t(n) is polynomial O(n3t(n)) is polynomially bounded, too. For each compo-
nent we apply Markov’s inequality and see that with probability at most 1/n2

this component is not optimized. Thus, with probability at most r/n2 ≤ 1/n

22

there is a component that is not optimized. We conclude that, with probabil-
ity 1−O(1/n), the CC (1+1) EA optimizes f within O(n3t(n)) generations.

Definition 18. For l ∈ N, we define the function gl : {0, 1}l → R by

gl(x) :=



l + i if x = 1i0l−i with i ∈ {0, 1, 2, . . . , l}
l + i if x = 0l−i1i with i ∈ {4} ∪ {6, 9, . . . , 3 �l/3�}
l − OneMax(x) otherwise

for each x = x1 · · ·xl ∈ {0, 1}l. For l ∈ N and k ∈ N we define n := l · k and
the function fk,l : {0, 1}n → R by

fk,l(x) :=

k∑
i=1

gl

(
x(i−1)l+1 · · ·xil

)
for each x = x1 · · ·xn ∈ {0, 1}n.

It is easy to see gl is exactly (1, l)-separable. We conclude that fk,l is
exactly (k, l)-separable. We claim that the (1+1) EA outperforms the CC
(1+1) EA on fk,l when performance is measured by expected optimization
time and the CC (1+1) EA makes full use of the separability of fk,l, even if
the CC (1+1) EA uses optimal mutation probabilities for each component.
We begin the formal analysis with an upper bound for the (1+1) EA using
standard mutation probability 1/n.

Theorem 19. The expected optimization time of the (1+1) EA on the func-
tion fk,l : {0, 1}n → R is O(n · l) for each k, l ∈ N with l = Ω(log n) and
n = k · l.
Proof. First, we prove that the expected optimization time of the (1+1) EA
with mutation probability 1/n on gn is O(n2). We consider a run of the (1+1)
EA on gn. Let P denote the set of points {0n−i1i | i ∈ {4}∪{6, . . . , 3 �n/3�}.
Let F denote the event that we have x ∈ P for the current string x at
some point of time during the run before reaching the global optimum 1n.
Let F denote the event that this is not the case. Using the method of f -
based partitions (Droste, Jansen, and Wegener 2002) we see that for the
expected optimization time of the (1+1) EA on gn E

(
T | F) = O(n2) and

E (T | F) = O(n4) hold. We have

E (T) ≤ E
(
T | F)+ Prob (F) · E (T | F) .

23

Therefore, it is sufficient to prove Prob (F) = O(1/n2).
After random initialization, we have x /∈ P with probability exponentially

close to 1. We consider a run of the (1+1) EA until we have x ∈ P or
x ∈ {1i0n−i | i ∈ {0, 1, . . . , n}} for the first time. The function value is then
given by n−OneMax(x). Consider Bi := {x ∈ {0, 1}n | OneMax(x) = i}.
For symmetry reasons, each point y ∈ Bi has equal probability to become
current search point x of the (1+1) EA. We conclude that we have x ∈ P
at the end of this phase with probability O(1/n3). Let x denote the current
string of the (1+1) EA and let x = 1i0n−i hold for some i ∈ {0, 1, . . . , n−1}.
Let x′ denote the first offspring with gn(x

′) > gn(x). The Hamming distance
between x and the closest point in P equals i+ 3 for i > 0 and 4 otherwise.
The second closest point in P has Hamming distance i+ 6. The next point
with larger gn-value has Hamming distance 1. Thus, the probability to have
x′ ∈ P is bounded above by

(1/n)i+3 + n · (1/n)i+6

1/(en)
= O

(
1

ni+2

)

for i > 0 and O(1/n3) otherwise. This implies Prob (F) = O(1/n3) +
n−1∑
i=1

O(1/ni+2) = O(1/n3).

Obviously, on fk,l the expected time until the first of the k gl-pieces be-
comes all 1 is bounded above by O(n · l). Furthermore, we see that, with
probability 1−O(1/n3), the first piece becomes all 1 within O(n · l) genera-
tions. Finally, if we have that the (1+1) EA enters P in the first component,
the expected number of generations before this piece becomes all 1 is bounded
above by O(n3 · l). All this holds for all k pieces. The probability that there
is one piece that is different from 1l after O(n · l) generations is bounded
above by O(k/n3). Thus, the expected optimization time is bounded above
by

O(n · l) +O

(
k

n3
· n3 · l

)
= O (n · l) .

Theorem 20. For l ∈ N, k := l4, and n := k · l, the expected optimization
time of the CC (1+1) EA on fk,l : {0, 1}n → R with k components that
match the function’s separability is Ω(n · l · l1/3) regardless of the mutation
probabilities used for the k components.

24

Proof. We start our analysis with the CC (1+1) EA using standard mutation
probability 1/l in each component. We know from the proof of Theorem 19
that for each component we have x = 0n−41111 with probability Θ(1/l3).
The probability to have this in at least 1 of the k independent components
is p(l, k) := 1 − (1−Θ(1/l3))

k
. Since we have k = l4 � l3, we know that

p(l, k) converges to 1 exponentially fast as l grows. Then Θ(l) mutations
of exactly 3 bits are needed to reach the global optimum. This implies
E (T) = Ω(k · l · l3) = Ω(n · l3) = ω(n · l · l1/3) as lower bound on the expected
optimization time.

We may use mutation probabilities different from 1/l. Larger mutation
probabilities can only increase the probability to reach 0n−41111. It is easy to
see that the probability for 3-bit mutations is maximal for the mutation prob-
ability 3/l. But mutation probabilities Θ(1/l) do not lead to a smaller lower
bound on the expected optimization time. Mutation probabilities o(1/l) can
decrease the probability to enter any point in P (see proof of Theorem 19 for
a definition of P). But as long as Ω(1/l4/3) is a lower bound on the mutation
probability, the probability to have x = 0n−41111 at some point of time is
still bounded below by some positive constant. Now, we take into account
that smaller mutation probabilities increase the expected time spent on the
1i0n−i path. For l = O(1/l4/3) we already have Ω(k · l · l4/3) = Ω(n · l · l1/3)
as lower bound on the expected optimization time.

Using k = l4 and n = k ·l the expected optimization time of the (1+1) EA
isO(n6/5) whereas it is Ω(n19/15) for the CC (1+1) EA. Thus, the performance
advantage of the (1+1) EA is a factor of Ω(n1/15). We can increase the relative
performance advantage when using a more complicated example function.

The idea of gl is that there are two paths leading to the global optimum.
The expected time spent on the paths is very different, the “slower” path
is significantly less likely. Since the probability depends on the mutation
probability, the CC (1+1) EA is much more likely to use the “slow path”
in at least one component. The relative advantage is not too impressive,
since with increasing mutation probability that time spent on the slow path
decreases. The reason for this is easy to see: we need 3-bit mutations in
order to advance on the slow path. We know from Section 3.2 that the CC
(1+1) EA is much faster in finding appropriate b-bit mutations than the
(1+1) EA for all b > 1. If we can replace the slow path by another kind
of slow path, we can increase the relative performance difference. We want
a path where the time spent on the path is long but still polynomial and

25

where the advance on the path is mainly caused by single-bit mutations.
Generalized long paths (Horn, Goldberg, and Deb (1994), Rudolph (1997))
have this property. It is known that the (1+1) EA operating on

√
n− 1-

long paths defined on n bits takes Θ(
√
n · 2√n) steps on the path and that

only mutations of at least
√
n − 1 bits can decrease the time on the path

significantly (Droste, Jansen, and Wegener 1998). Defining such a
√
c− 1-

long path on c bits with c = logj n, where j ∈ N is an arbitrarily large
constant, yields a relative performance difference that can be arbitrarily large,
yet polynomial. Since the construction is complicated, the analysis is tedious,
and the results are purely asymptotic in the sense that they are unlikely
to occur for reasonably small values of n, we do not discuss this further.
Note, that the claimed relative performance ratio of Θ(nc) for c ∈ N does
not contradict our reasoning above: with probability close to 1 the relative
performance ratio in a single run is bounded above by O(n3).

4 Coping with inseparability

Though the presence of separability may not be sufficient to guarantee that
the CC (1+1) EA outperforms the more traditional (1+1) EA, it remains to
be seen whether or not its absence may in contrast produce unique challenges
for coevolution. Indeed, much empirical research has focused on the question
of whether or not cross-population nonlinearities of a problem may require
the special attention of a design engineer who chooses to use coevolution
(Bull 1997; Wiegand, Liles, and De Jong 2001; Wiegand, Liles, and De Jong
2002a).

It isn’t hard to imagine why researchers have focused on this issue. Ap-
plying a CCEA typically involves a static partitioning of the problem space
by the algorithm’s designer. This partitioned decomposition is exactly what
allows the CC (1+1) EA to leverage its increased mutation for superior per-
formance when the problem separation was commiserate with the algorithm’s
internal decomposition. When the decomposition is not related to the prob-
lem, or when the problem cannot be separated, coevolution may suffer as a
result of an inappropriate decomposition.

As such, the exact nature and extent of the effects of inseparability on
coevolution is an important research topic. Is it the case that the CC (1+1)
EA will perform much worse than the (1+1) EA when the problem cannot, or
is not, decomposed appropriately across the population boundaries? Alter-

26

natively, perhaps the property of inseparability makes little difference, and
provides no real advantage to the (1+1) EA? Or, is it possible that the CC
(1+1) EA can still gain advantage over the (1+1) EA, in spite of the presence
of strong cross-population nonlinearities? In fact, all three of these can be
true depending on the problem at hand, as we will show in the remainder of
this section.

4.1 Difficulties due to inseparability

It is clearly the case that the property of inseparability may give a perfor-
mance advantage to the (1+1) EA over its coevolutionary analog, though
the degree of the effect may depend on the function being optimized. This
being the case, perhaps the most interesting question might be: how severe
can the difference become?

To try to get a clearer perspective, we look more closely at what the CC
(1+1) EA is doing when it traverses the search space. In some sense, it is
essentially a kind of line search, moving only along a particular projection of
the space at any given step. Given this, intuition tells us that a coevolution-
ary algorithm as naive as our (1+1) mechanism may easily get “tricked” by
a fitness landscape and become locked away from the global optimum in a
way in which the traditional EA would not.

In fact, this is undoubtedly the case for some inseparable functions. Defi-
nition 21 below describes the very well-known, exactly (1, n)-separable Trap

function, which has precisely the effect we describe above: the CC (1+1) EA
cannot reach the global optimum. Theorem 22 below, and its subsequent
proof, not only justify our intuition, but also help to give our intuition a
little more clarity.

Definition 21. For n ∈ N, we define Trap : {0, 1}n → R by

Trap(x) :=

(
n ·

n∏
i=1

xi

)
+ n−OneMax(x)

for all x = x1 · · ·xn ∈ {0, 1}n.

Theorem 22. Let Trap : {0, 1}n → R, be decomposed into k ≥ 4 equal sized
components of length l ≥ 2, such that n = kl. The sequential CC (1+1) EA
will fail to converge to the global optimum of Trap with probability 1−2−Ω(n).

27

Proof. We define the term solved component to mean a component that is
the all one string, 1l, and the term unsolved component to mean a component
that contains at least one 0.

The proof consists of two basic parts. First, we prove that with a prob-
ability exponentially approaching 1, there are at least two subpopulations
of the sequential CC (1+1) EA whose individual is an unsolved component.
Next we show that, given there are at least two unsolved components af-
ter initialization, the mechanism of the algorithm itself will prevent it from
accepting mutations that will lead it to the global optimum.

For the first part of the proof, we begin by observing that the proba-
bility that a given population’s individual contains the all one string after
initialization equals 2−l, so the expected number of such individuals in k sub-
populations equals k

2l . Using Chernoff bounds we can see that the probability
that at most half of the k subpopulations are solved after initialization is at
most

[
e2l−1−1

(2l−1)2l−1

]k/2l

= 1

ek/2l

(
e

2l−1

)k/2l·2l−1

= 1

ek/2l

(
2e
2l

)k/2

= 2k/2−kl/2 · ek/2−k/2l

= 2−Ω(kl) = 2−Ω(n)

So the probability that at least half of the k populations are unsolved is
1 − 2−Ω(n). Thus, given k ≥ 4, there are at least two unsolved components
with probability exponentially approaching 1.

For the second component of the proof, let us first suppose that all the
subpopulations contained the all one string except for two of them, one that
is the current active subpopulation under consideration by the algorithm,
population a, and another that has yet to be considered during the cur-
rent round, population b. Suppose that the necessary mutations are per-
formed in x(a) such that the offspring, y(a) is the all one string. The off-
spring y(a) can be accepted if and only if Trap(x(1) · · ·y(a) · · ·x(b) · · ·x(k)) ≥
Trap(x(1) · · ·x(a) · · ·x(b) · · ·x(k)), which cannot be true, since x(b) does not
contain the all one string. Therefore the offspring will not be accepted. Since

28

the parent, x(a) was not the all one string, the same event will be true sym-
metrically for x(b).

Given that k ≥ 4, there cannot be fewer than two unsolved components.
Having more than two unsolved components cannot resolve the problem,
since a offspring that contains more ones than the parent will have a lower
fitness than the parent if at least one other component is unsolved.

Here the very partitioning mechanism of the CC (1+1) EA that helps
gain advantage over the (1+1) EA in the previous section now works against
it. In order to solve the Trap function, an algorithm must be able to make
that final n-bit leap out of the trap, and this cannot be done in a single step
by the CC (1+1) EA. Although exceedingly unlikely, it can be done for the
(1+1) EA. Thus, while the expected waiting time for the (1+1) EA on Trap

is exponential with respect to the size of the trap, it will eventually find the
unique global optimum, whereas the CC (1+1) EA will almost certainly not
do so. The difference in their performance, in terms of expected waiting time
until the global optimum is reached, is infinite.

One may be tempted to believe that the coevolutionary algorithm did
quite well: it found the second best point in the search space, and it did so
just as quickly as the (1+1) EA (since the function is essentially OneMax

when the global optimum is omitted). However, the gap between the point
found and the global optimum can easily be quite large. Imagine a set of
concatenated Trap functions, for instance, such that there are several popu-
lations working on each Trap. The global optimum still cannot be reached,
and the best reachable point may be quite far from the optimum.

Additionally, one may be tempted to imagine that it was simply the degree
of separability, since the Trap function is exactly (1, n)-separable. However,
the same effect can be produced when the degree of separability matches the
size of the individual components represented in the algorithm. Imagine a
concatenation of Traps, each of length l, but a decomposition of the problem
for the CC (1+1) EA that forces the Trap functions to be split across the
population boundaries. Again, the global optimum cannot be reached (as
long as l is sufficiently large), but the problem is no less separable in degree
than was the CLOBb,k problem discussed in the last section.

29

4.2 When inseparability is irrelevant

Our intuition is assuaged: the property of separability seems to have definite
relevance to the performance of coevolution for some problems. In the case
where we have problems that are separable along population boundaries, we
are comforted by the knowledge that reaching the global optimum is possible;
whereas, we have no such guarantee when problems are inseparable. Still
this discovery is hardly surprising, and it says nothing about whether or not
inseparability is a sufficient enough property to be considered a general foil
to coevolutionary effectiveness. Indeed, as we will show in this subsection,
it is not. The mere presence of inseparability tells us little about how easy
or difficult the problem may be to solve, either for the (1+1) EA or the CC
(1+1) EA.

Consider the well-known LeadingOnes problem, defined below. This
function merely returns the number of leading, consecutive 1-bits from left
to right in the bit string.

Definition 23. The function LeadingOnes : {0, 1}n → R is defined by

LeadingOnes(x) :=

n∑
i=1

i∏
j=1

xj

for all x = x1 · · ·xn ∈ {0, 1}n.

This problem is certainly exactly (1, n)-separable, so there exists no way
to partition it into smaller, separable components. Yet, the expected waiting
time for a (1+1) EA to find the global optimum can be tightly bound by
Θ(n2) (Droste, Jansen, and Wegener 2002). Further, as the theorem and
proof below show, the CC (1+1) EA’s expected optimization time is also
Θ(n2).

Theorem 24. The expected optimization time for the CC (1+1) EA on the
function LeadingOnes is Θ(n2).

Proof. The proof for the upper bound is very straight forward. We pessimisti-
cally assume that the algorithm solves its components from left to right, one
at a time. We know from Droste, Jansen, and Wegener (2002) that the ex-
pected number of active steps needed for a given component of length l to
reach the all string can be bounded above by 2el2. Since a component is
active every k steps, it will require a given component at most 2el2k steps

30

to reach 1l. Components are solved one at a time, so we can take the sum
of the expectations to find the expected waiting time for the entire process,∑k

i=1 2el
2k = O(n2). For the lower bound, we begin by defining the term

progressive component to mean the left-most component that is not the all
one string. We note that all of the components to the right of the progressive
component evolve without influencing the function value. Since the original
string is drawn at random, and the mutation events are generated indepen-
dently and uniformly at random, the result for each of these components to
the right of the progressive component must contain random strings. Thus
we can treat the process as successive solutions the individual leading ones
problems for each component. The lower bound for a given component can
be obtained from Droste, Jansen, and Wegener (2002), except that now we
must show that no advantage can be obtained from the partition.

First, we prove the lower bound for the case l > 3. We define the term
head start bits to be the number of bits that lead a component when that
component first becomes the progressive component. Since the string is ran-
dom until the component becomes progressive, the expected number of such
bits can be bound above by l/3. Using Chernoff bounds, we can see that
the probability that there are more than 2

3
l head start bits is bounded above

by 3
4

l/3
. Thus, from Droste, Jansen, and Wegener (2002) we know that the

lower bound of the expected number of active steps is Ω(l− 2
3
l)2) = Ω(l2/9).

A step is active every k generations, there are Ω(kl2/9) such generations.
We can slow the algorithm down by assuming that after reaching 1l in the
progressive component, there are no more mutations in the current round.
Since each component becomes all one only once, this slows down the opti-
mization by less than k2. Now, in each round at most one component can
be solved which yields

∑k
i=1 kl

2/9 = n2/9 as lower bound. Altogether this
yields n2/9− k2 = Ω(n2) for l > 3.

For l ≤ 3 it suffices to see that the expected number of leading ones gained
in one round is constant. This implies that there are on average Ω(k) = Ω(n)
rounds before the optimum is reached. In each round there are Ω(n) function
evaluations.

Interestingly, it is impossible for a function to be less separable than this
LeadingOnes problem, and yet this fact poses neither a general difficulty
for solving the problem, nor a specific disadvantage to the coevolutionary
algorithm. The algorithm’s performance seems to be unaffected by the in-
separability of the problem.

31

There are at least two reasons for this. First of all, this problem must be
solved in a specific order in terms of the bit positions in the string, regardless
of which algorithm it uses. As a result, the partitioning makes very little dif-
ference to the problem’s solution, one way or the other. Second, there is noth-
ing intrinsically contradictory in the interrelated bits. The LeadingOnes

function cannot drive the algorithm to a point where its partitioning makes
it impossible to make the necessary jump to the solution.

In fact, it is not hard to envision a general technique capable of demon-
strating run time performance similar to OneMax for a variety of insepa-
rable functions by simply aggregating OneMax to an inseparable function.
For example, consider the NeedleOMc function below. It is clear that both
algorithms behave on this function as they would on OneMax, even with
an arbitrarily small positive constant c. With this technique it is easy to
see that there may be a large number of inseparable functions that remain
relatively easy to solve by both the (1+1) EA and CC (1+1) EA.

Definition 25. For any c > 0, the function NeedleOMc : {0, 1}n → R is
defined by

NeedleOMc(x) := c · OneMax(x) + n ·
n∏

i=1

xi

for all x = x1 · · ·xn ∈ {0, 1}n.

Regardless, even though inseparability has a part to play in understanding
how and why coevolutionary algorithms perform the way they do, it is clear
there is something more than this at work here. Indeed, in the previous
section we learned that separability alone is insufficient to guarantee superior
performance of the CC (1+1) EA, and now we begin to see that inseparability
alone is insufficient to guarantee its inferior performance.

4.3 An exponential gap between CC (1+1) EA and
(1+1) EA performance

We have seen that, though inseparability can prove to be a stumbling block
to CC (1+1) EA success in terms of optimization, there are also some in-
separable problems that are no more or less difficult for the CC (1+1) EA
than for its more traditional analog. As it turns out, it is also true that the
CC (1+1) EA can preserve its advantage over a (1+1) EA in spite of the
existence of inseparability in the problem.

32

Here, we want to prove an exponential difference in performance between
the CC (1+1) EA and the (1+1) EA. We do so using a general technique that
delivers such results (Witt 2003). Assume that you have two randomized
search heuristics A and A′ and you want to demonstrate an exponential
difference in performance of the two algorithms used as function optimizers.
Assume that you know two functions g : {0, 1}n → R and g′ : {0, 1}n → R

with the following properties. Algorithm A is clearly faster on g than on
g′, whereas algorithm A′ is clearly faster on g′ than on g. Assume that
both, g and g′, have a unique global optimum. Let xopt be the optimal
solution for g and x′opt be the optimal solution for g′. Now, define a function
f : {0, 1}2n → R with

f(x) =



g (x1 · · ·xn) + g′ (xn+1 · · ·x2n)

if x1 · · ·xn �= xopt or

H
(
x′opt, xn+1 · · ·x2n

)
< ∆

2
(
g (xopt) + g′

(
x′opt

))−H
(
x′opt, x

)
otherwise

where x′opt denotes the bit-wise complement of x′opt and x = x1 · · ·x2n ∈
{0, 1}2n. Since algorithm A is significantly faster on g than on g′, we expect it
to reach xopt, the global optimum of g, while still having a Hamming distance
of more than ∆ to x′opt. Then “the landscape changes”: the algorithm is

encouraged to stay on xopt and is lead to x′opt. Therefore, it will be easy to

find the global optimum of f , which is the concatenation of xopt and x′opt.
Algorithm A′ is expected to find x′opt before xopt. Then, the only way to find
the global optimum of f is to flip at least ∆ bits simultaneously. Obviously,
this is very unlikely. All our considerations implicitly assumed that changes
are only made to the first n bits or to the last n bits. Changes effecting both,
the front and the rear part, may cause unwanted effects. This may make
changes to the general setup described above necessary.

We apply this technique to separate the CC (1+1) EA and the (1+1) EA.
The two functions we use are LOB2 and LeadingOnes. We know that the
CC (1+1) EA clearly outperforms the (1+1) EA on LOB2. We know that
the advantage is larger on CLOBb,l with larger b, but that is not necessary
for this technique. Therefore, we prefer this simpler function.

Definition 26. For any constant ε ∈ (0, 2/3), any constant δ ∈ (max{ε, 3ε−
1}, 1), and any n ∈ N with n ≥ ⌈21/ε

⌉
, we define m := �nε� and the function

33

fε,δ by

fε,δ(x) :=




nε
LOB2 (x1 · · ·xm)

−OneMax (x1 · · ·xm)

+nLeadingOnes (xm+1 · · ·xn)

if x1 · · ·xm �= 1m or

LeadingOnes(xm+1 · · ·xn)

≥ nδ

n3 − OneMax (xm+1 · · ·xn) otherwise

for all x = x1 · · ·xn ∈ {0, 1}n.

Theorem 27. For any constant ε with 0 < ε < 2/3, and any constant
δ ∈ (max{ε, 3ε−1}, 1), the CC (1+1) EA operating with the two components
x(1) = x1 · · ·xm and x(2) = xm+1 · · ·xn on the function fε,δ : {0, 1}n → R has
optimization time T with

Prob
(
T = O

(
n1+ε log n

))
= 1− 2−Ω(nε).

Proof. We consider a run of the CC (1+1) EA on fε,δ with 0 < ε < 2/3 and
max{ε, 3ε− 1} < δ < 1. We describe conditions C1, C2, . . . , C5 for a run. If
a run satisfies all these conditions, then it is a run where the global optimum
is reached within O (n1+ε log n) generations. For each condition, we give an
upper bound on the probability that it is violated. Showing that the sum of
these upper bounds is 2−Ω(nε) completes the proof.

We start with a description of the five conditions. Note, that the condi-
tions need not to be independent. It is quite typical that some condition Ci

makes sense only when some other condition Cj with j < i is not violated.

C1: After random initialization, OneMax

(
x(2)
) ≤ 3nδ/4 holds.

C2: Within the first 2en3ε generations, we have that x(1) = 1m holds for the
first current string x(1).

C3: Within the first 2en3ε generations, the leftmost bit with value 0 in x(2)

is mutated at most nδ/12 times. This condition assumes that C1 is not
violated.

C4: In up to nδ/12 generations where the leftmost bit with value 0 in x(2)

is mutated, the number of leading ones in x(2) is increased by at most
nδ/6. This condition assumes that C3 is not violated.

34

C5: Let x(1) = 1m and LeadingOnes

(
x(2)
)
< nδ hold for the current strings

of the CC (1+1) EA. Then the global optimum of fε,δ is reached within
4en1+ε log n generations.

If C2 holds, we have x(1) = 1m within the first 2en3ε generations. Due to
the definition of fε,δ and the CC (1+1) EA, this will never change again. If C1,
C3 and C4 additionally hold, we have x(1) = 1m and LeadingOnes

(
x(2)
) ≤

11nδ/12 within the first 4en3ε generations. If C5 holds, within the next
4en1+ε logn generations the global optimum is reached. We see that T =
O (n1+ε log n) holds in this case. Now we derive upper bounds on the prob-
ability that a condition is violated.

C1: Initially, x(2) is drawn uniformly at random from {0, 1}n−m. Application

of Chernoff bounds yields that with probability 2−Ω(nδ) condition C1 is
violated.

C2: As long as x(1) �= 1m holds, there is always a mutation of at most two
specific bits that increases the number of leading ones by at least two.
The probability for such a mutation when x(1) is active is bounded
below by e−1 · (1/m2). When x(1) is not active, it cannot change.
Thus, after at most m/2 such mutations, x(1) = 1m holds. In 2en3ε

generations, x(1) is active en3ε times. Chernoff bounds yield that the
probability not to have at least m/2 such mutations in this time is
bounded above by 2−Ω(nε).

C3: Within the first 2en3ε generations, x(2) is active en3ε times. The prob-
ability to mutate a specific bit equals 1/(n − m) < 2/n. It follows
by Chernoff bounds that the number of such mutations is larger than

nδ/12 with probability at most 2−Ω(nδ).

C4: We consider up to nδ/12 steps where the number of leading ones in x(2)

is increased via a direct mutation of the left most bit with value zero.
We follow the analysis of the (1+1) EA on LeadingOnes (Droste,
Jansen, and Wegener 2002). In r such steps, the number of leading ones
is increased by r+a where a is the number of bits right to the mutated
bit with value 0 that happen to have value 1. The key observation is
that all bits that are right of the leftmost bit with value 0 are random at
all times. Thus, E (a) ≤ nδ/24 holds. This implies that C4 is violated

with probability 2−Ω(nδ).

35

C5: The expected number of generations the CC (1+1) EA needs to optimize
OneMax : {0, 1}n−m → N is bounded above by c(n−m) log(n−m) ≤
cn logn (Rudolph 1997). Markov’s inequality yields that x(2) = 1n−m

is achieved within 2cn logn generations where x(2) is active with prob-
ability at least 1/2. Thus, with probability 2−Ω(nε) this is not the case
after 4cn1+ε log n generations.

Theorem 28. For any constant ε with 0 < ε < 2/3, and any constant
δ ∈ (max{ε, 3ε− 1}, 1),

the (1+1) EA on the function fε,δ : {0, 1}n → R has optimization time T
with

Prob
(
T ≥ nn−2nδ

)
= 1− 2−Ω(nε).

Proof. It is convenient to use the notation x(1) := x1 · · ·xm and x(2) :=
xm+1 · · ·xn. After random initialization we have OneMax

(
x(1)
) ≤ 2m/3

with probability 1 − 2−Ω(nε). As long as x(1) �= 1m holds, the number of
leading ones in x(2) cannot decrease due to the definition of fε,δ.

It is easy to see that for LOB2 all bits that are right of the left most block
which is not all 1 are random at all times. Obviously, in nε

LOB2−OneMax

there is an increased probability for these bits to have value 0. Thus, after the
first O (n1+ε logn) generations after random initialization we have at most
m/4 leading ones blocks and at least m/8 blocks which are all 0 in x(1) with
probability 1 − 2−Ω(nε). This implies that for the next O (n2) generations
x(1) �= 1m holds with probability 1− 2−Ω(nε).

From the results of Droste, Jansen, and Wegener (2002) it follows that
with probability at least 1−2−Ω(n) we have x(2) = 1n−m within O (n2) genera-
tions. Then, a mutation of at least n−m−nδ bits simultaneously is necessary.
Such a mutation has probability at most n−n+nε+nδ

. The probability for such
a mutation within nn−2nδ

steps is bounded above by 2−Ω(nε).

5 Implementing the CC (1+1) EA

Until this point, we have discussed only one possible implementation of the
CC (1+1) EA, but there are clearly other choices one may make with respect
to the relationship between the current component and the collaborating
individuals from the other populations. Our choice is perhaps the simplest

36

and most natural choice for a sequential machine of some type; however,
there are other choices one might make that may be more natural for other
settings, such as parallel computing environments.

This section presents such an alternative implementation and offers some
initial analysis of this parallel CC (1+1) EA. We will show clearly when the
two variants can be expected to have the same advantages and disadvantages
when compared to a traditional (1+1) EA, as well as provide an example that
demonstrates performance differences between the two variants.

5.1 Sequential and parallel implementations

The CC (1+1) EA presented earlier in this article makes a subtle, but po-
tentially important implied decision with respect to how complete solutions
are assembled: it always uses the most current version of the components in
the other populations. While this is a reasonable choice, it is not at all the
only one. One plausible alternative is to evaluate the current offspring in the
context of the population from the last round. This idea is in some sense a
more naturally parallel implementation, since in a given round the individual
EAs may be processed in any order, asynchronously. Synchronization hap-
pens after a round is complete, rather than after each EA generation. Here
each EA can be run on a separate processor, whereas Algorithm 3 requires
that the EAs are executed one after another. Algorithm 29 below describes
this new parallel variant in more detail. For clarity, we will now refer to
the CC (1+1) EA defined in Section 2 as the sequential CC (1+1) EA, and
this new algorithm as the parallel CC (1+1 EA, whenever this distinction is
necessary.

Algorithm 29. (Parallel Cooperative Coevolutionary (1+1) Evolu-
tionary Algorithm (Parallel CC (1+1) EA))

1. Initialization

Independently for each i ∈ {1, . . . , k}, choose x
(i)
0 ∈ {0, 1}l uniformly at random.

2. t := −1
3. a := 1; t := t+ 1
4. Mutation

Create y(a) by copying x
(a)
t and, independently for each bit,

flip this bit with probability min{1/l, 1/2}.
5. Selection

37

If f(x
(1)
t · · · y(a) · · ·x(k)

t) ≥ f(x
(1)
t · · ·x(a) · · ·x(k)

t), set x
(a)
t+1 := y(a).

else set x
(a)
t+1 := x

(a)
t .

6. a := a+ 1
7. If a > k, then continue at line 3, else continue at line 4

There are several things the reader should be careful to note about the
above algorithm. First, the only difference between this algorithm and the
sequential variant is the selection step. Second, using the previous round’s
individuals for the evaluation affects not only the offspring evaluation, but
the parent’s as well. In fact, in the parallel variant we need only evaluate
the parent once a round, since its value will never change while the round is
in progress. This gives the parallel implementation an implicit advantage in
terms of the number of evaluations performed, since the sequential CC (1+1)
EA must evaluate the parent each EA generation; however, this difference is
a mere constant factor and does not influence the asymptotic analysis.

5.2 Comparison on separable functions

Since we began our analysis of the sequential CC (1+1) EA with problems
that are separable across population boundaries, perhaps it is most fitting to
begin analysis of the parallel variant here as well. It turns out, as is shown
in the Theorem 30, this task is made easier by the fact that the bounding
complexities for their respective run times must be the same in all cases
where the decomposition matches the separability. As such, all previously
stated results for the sequential CC (1+1) EA functions that are separable
across the population boundaries apply to the parallel variant. Indeed, there
is no substantive analytical difference between these two algorithms for such
functions.

Theorem 30. The parallel and sequential forms of the the CC (1+1) EA per-
form identically on all problems that are separable across populations bound-
aries.

Proof. We show that two algorithms must have the same performance be-
cause they behave identically in all cases against separable problems. Given
that they behave identically, their respective expected waiting times for the
the global optimum cannot differ by more than a factor of two.

For there to be any difference in behaviors, the algorithms must make
different decisions during the selection step. Given that the function is sep-
arable across population boundaries, the linear contribution of the active

38

component to the total fitness, ga : {0, 1}l �→ R, can be the only difference
in the total fitness score. As a result, for a different selection decision to be
made, it must be true that ga(y

(a)) ≥ ga(x
(a)
t) ⇒ ga(y

(a)) < ga(x
(a)
t). Since

both inequalities cannot be simultaneously true, the implication is false and
there is a contradiction.

5.3 Parallel CC (1+1) EA and global optimization

Since separability draws no distinction between these two variants of the
CC (1+1) EA, if we are to discover a difference, that difference must be
found in problems that have cross-population nonlinearities. Indeed, one
may be tempted to intuit that the parallel version may be less susceptible
to the pitfalls of the sequential version. After all, the algorithm essentially
reserves judgment about a next potential step until after information about
all offspring has been acquired. Perhaps this problem where the algorithm
can fail to find the global optimum may not exist for the parallel version?
Unfortunately, as is shown below, this problem exists for both variants.

Theorem 31. Let Trap : {0, 1}n �→ R, be decomposed into k ≥ 4 equal
sized components of length l ≥ 2, such that n := kl. The parallel CC (1+1)
EA will fail to find the global optimum of Trap with probability 1− 2−Ω(n).

Proof. As with the proof for Theorem 22, this proof consists of two steps.
First we show that with a probability exponentially approaching 1, there are
at least two populations of the parallel CC (1+1) EA whose individual do not
contain the all one string after initialization. Next we show that, given there
are at least two unsolved components after initialization, the mechanism of
the algorithm itself will prevent it from accepting mutations that will lead it
to the global optimum.

The first part of the proof holds directly from the proof for Theorem 22,
since the initialization process for the two algorithms is the same.

For the second component of the proof, we once again consider the sit-
uation when all but two populations have individuals containing the all one
string. It suffices to observe that the sequential CC (1+1) EA cannot make
a different decision than the parallel version under this circumstance. The
y(a) offspring again cannot be accepted since, x(b) does not contain the all
one string, and again by symmetry the same is true with respect to y(b).

As Theorem 31 shows, the parallel CC (1+1) EA can also be locked away
from the global optimum, just as the sequential version is. Understanding the

39

cause for the pathology in the first place may help shed light on why this is
so for both algorithms. The algorithm becomes trapped specifically because
of the partitioning. In order to solve the Trap function, all n bits must flip
simultaneously; however, because the algorithm considers only a component
of the problem at a time, this cannot occur. In this (1+1) setting, there is no
way to resolve this problem as long as there is this essential partitioning of
the problem, regardless of how one implements the selection step. Moreover,
it should be clear that for many population-based approaches this difficulty
will still exist for the CCEA.

5.4 Separating the two CC (1+1) EA variants

Despite the fact that the two variations of the CC (1+1) EA perform the
same on problems that are separable across population boundaries, and are
both subject to some of the same pitfalls in terms of failure to find the
global optimum for some inseparable problems, they are nevertheless different
algorithms. As such, we should expect that for some problems with cross-
population nonlinearities there may be a performance advantage of one over
the other.

Indeed, in this subsection we prove by example that there can be enor-
mous differences in performance of these two algorithms. We construct such
an example in two stages. First, consider the g function below.

Definition 32. For any m ∈ N with m ≥ 6, we define n := 2m and the
function g : {0, 1}n → R. For x = x1 · · ·xn ∈ {0, 1}n we write x = x′x′′ with
x′ = x1 · · ·xm ∈ {0, 1}m and x′′ = xm+1 · · ·xn ∈ {0, 1}m. We define g by

g(x) :=




2n+ 2 if x = 0n

2n+ n · OneMax(x) if x′ = 0m or x′ = 0m

2n+ 1
if x′ �= 0m and x′′ �= 0m and

OneMax(x) = 2

2n+ 2 · OneMax(x)

if x′ �= 0m and x′′ �= 0m and

OneMax(x) > 2 and

(OneMax(x′) < �m/3� or

OneMax(x′′) < �m/3�)
n4 + OneMax(x) otherwise

for all x ∈ {0, 1}n.

40

It is easy to see that g : {0, 1}n → R is not (r, s)-separable for any s < n.
We will be interested in the performance of the two CC (1+1) EA variants
on g when using two sub-populations, one operating on x′ and the other
operating on x′′. Splitting these two, interrelated pieces up in this way will
help provide opportunities for the parallel and sequential algorithms to come
to different conclusions based on the information they have at their disposal
when processing a given generation. In order to analyze these effects, we
embed g into another function, SepFun, where the desired separation of the
two variants will become very clear and quite easy to prove.

Definition 33. For any k ∈ N with k ≥ 6, we define n := 4k2, m := n/2 =
2k2 and the function SepFun : {0, 1}n → R. For x = x1 · · ·xn ∈ {0, 1}
we write x = x′x′′ with x′ = x1 · · ·xm ∈ {0, 1}m and x′′ = xm+1 · · ·xn ∈
{0, 1}m. For x′ = x1 · · ·xm ∈ {0, 1}m we write x′ = x(1)x(2) · · ·x(k) with
x(i) = x2(i−1)k+1 · · ·x2ik for all i ∈ {1, . . . , k}. We define SepFun by

SepFun(x) :=



n− OneMax(x′) + LeadingOnes(x′′) if x′′ �= 1m

n+
k∑

i=1

g
(
x(i)
)

otherwise

for all x ∈ {0, 1}n.

We already know that neither of the two CC (1+1) EA variants guarantees
global optimization. In particular, we do not expect that the CC (1+1) EA
finds the global optimum of SepFun and instead change our perspective to
one of approximation. We want to discover which of the two algorithm finds
the larger function value in a number of generations, fixed in advance. We
will see that for SepFun this is almost the same as letting the algorithms
run until there is no improvement in function value for a fixed number of
generations. Specifically, we concentrate on quite large, but still polynomial,
numbers of generations.

Theorem 34. Consider the sequential variant of the CC (1+1) EA on the
function SepFun : {0, 1}n → R (n = 4k2, k ∈ N, k ≥ 6) with at least 2k + 1
sub-populations operating on x(i−1)k+1 · · ·xik for i ∈ {1, . . . , 2k} and an ar-
bitrary number of sub-populations on x(n/2)+1 · · ·xn. Let Ft denote the max-
imum of all function values encountered in the first t generations. For all t
with t ≥ 6n5/2 + 6n2 and t = nO(1)

Prob

(
Ft =

n2

4
+ n3/2 + n

)
= 1− 2−Ω(

√
n)

41

holds.

Proof. We use the notation from Definition 32 and Definition 33. Similar to
the proof of Theorem 27 we formulate a list of conditions on a run of the
described CC (1+1) EA on SepFun. The run has polynomial length t ≥
6n5/2 +n2. If the run complies with all conditions, the maximal encountered
function value is n2/4 + n3/2 + n. It is important to note that f(x) =
n2/4 + n3/2 + n is equivalent to x ∈ {y1y2 · · · yk1

n | yi ∈
{
0k1k, 1k0k

}}
. We

know from Theorem 24 that the number of sub-populations on x(n/2)+1 · · ·xn

has no influence. Thus, we assume that we have just one sub-population
operating there. It will be convenient to consider the algorithm in rounds,
not generations, where a round consists of 2k + 1 generations.

C1: For the first
⌈
n3/2 log2 n

⌉
rounds, x = x′x′′ with x′′ �= 1m holds.

C2: After
⌈
n3/2 log2 n

⌉
rounds, x = 0mx′′ with x′′ �= 1m holds and Ft ≤

n2/4 + n3/2 + n holds during this time.

C3: Given that C1 and C2 hold, within the first �2en2� rounds x = 0m1m

holds for at least one generation and Ft ≤ n2/4+n3/2 +n holds during
these rounds.

C4: Given that C1, C2, and C3 hold, after 6n2 rounds, Ft = f(x) = n2/4 +
n3/2 + n holds.

C5: Given that C1, C2, C3 and C4 hold, f(x) does not change within the
next t generations.

Condition C4 guarantees Ft = n2/4 + n3/2 + n after round �3en2�. Since
condition C5 states that there is no change of the function value within the
next t generations, obviously Ft = n2/4 + n3/2 + n holds at the end of the t
generations. Now we derive upper bounds on the probability that a condition
may be violated.

C1: It suffices to note that the sub-population operating on x′′ deals with
LeadingOnes : {0, 1}n/2 → R. It is known that there exists a constant
c > 0, such that the probability that 1n/2 is found in less than c · n2

generations is bounded above by e−Ω(n) (Droste, Jansen, and Wegener
2002). Thus, condition C1 is violated with probability e−Ω(n).

42

C2: Note, that x′′ �= 1m implies the bound on Ft. Furthermore, as long
as x′′ �= 1m holds, if x′ = 0m holds at some point of time this can-
not change. We know from condition C1 that x′′ �= 1m holds with
probability 1 − e−Ω(n). Therefore, we only have to estimate for the
probability that x′ = 0m does not hold at some point of time within
the first

⌈
n3/2 log2 n

⌉
rounds. We know that there exists some constant

c′ such that after c′n logn steps we have x(i) = 02k for a sub-population
with probability at least 1/2. Thus, after

⌈
n3/2 log2 n

⌉
>

√
n · c′n logn

rounds, we have x′ = 0m with probability 1− e−Ω(
√

n).

C3: We start our considerations with a current string x = 0mx′′, x′′ �= 1m. As
long as x′′ �= 1m, we have x = 0m with probability 1. The probability
not to have x′′ = 1m within the first �2en2� rounds is bounded above
by e−Ω(n) (Droste, Jansen, and Wegener 2002). Due to the definition
of the sequential CC (1+1) EA, in order to have Ft > n2/4+n3/2 +n a
mutation of at least k/3 bits is necessary in one of the sub-populations.
The probability for such a mutation is bounded below by (1/(2k))k/3 =
n−√

n/12. The probability that such a mutation occurs within �2en2�
rounds is bounded above by n3−√

n/12.

C4: It is easy to see that we have Ft ≤ n2/4 + n3/2 + n with probability
1 − e−Ω (

√
n). This can be shown in the same way as we did for

condition C3. It remains to be proven that Ft ≥ n2/4 + n3/2 + n holds
within the considered interval. In the worst case, we have x = 0m1m

after round �2en2�. Then there are 6n2 − �2en2� = Ω(n2) rounds
left to consider. We can rule out mutations of at least k/3 bits with
probability 1− e−

√
n. Thus, it remains to prove that within more than

n2/2 rounds, each sub-population finds a bit string of the form 0k1k or

1k0k. Since the probabilities of increasing the number of ones in x(i)′

and x(i)′′ are equal to those when optimizing OneMax, we see that
this is the case with probability 1− e−Ω(n/ log n).

C5: If we have f(x) = n2/4 + n3/2 + n, we can conclude that

x ∈ {y1y2 · · · yk1
n | yi ∈

{
0k1k, 1k0k

}}
holds. Due to the definition of g, x can only change to some string
with different function value, if a mutation of at least k/3 bits occurs.
The probability for such a mutation is bounded below by (1/(2k))k/3 =

43

n−√
n/12. The probability that such a mutation occurs within nO(1)

generations is bounded above by n−Ω(
√

n).

For the parallel variant of the CC (1+1) EA, it is more difficult to predict
a precise value for Ft. But we can prove a lower bound that is clearly larger
than the value from Theorem 34. In order to have a fair comparison, we use
the same division into sub-problems.

Theorem 35. Consider the parallel variant of the CC (1+1) EA on the
function SepFun : {0, 1}n → R (n = 4k2, k ∈ N, k ≥ 6) with at least
2k+1 sub-populations operating on x(i−1)k+1 · · ·xik for all i ∈ {1, . . . , 2k} and
x(n/2)+1 · · ·xn. Let Ft denote the maximum of all function values encountered
in the first t generations. For all t with t ≥ 6n5/2 + 6n2 and t = nO(1)

Prob
(
Ft > n4

)
> Prob

(
Ft = Θ

(
n9/2

))
= 1− 2−Ω(

√
n)

holds.

Proof. We follow the structure of the proof of Theorem 34. We consider the
conditions C1, C2, and C3 from there. The probability that a condition does
not hold here is the same as there. Now we consider the situation when x =
0m1m holds. We group the sub-populations in k pairs operating on the bits
x(i−1)2k+1 · · ·x2ik. Such a pair operates on one piece of the function SepFun

where the fitness is given by n+g. We consider the situation that the current
string is 02k for each of these pairs. Thus, obviously, each pair is independent.
For each pair the probability that after one round the fitness decreased from

3n + 2 to 3n + 1 is bounded below by
((

k
1

)
(1/k)(1− 1/k)k−1

)2
> e−2. In

the following rounds, the probability to increase the number of 1-bits in each
such sub-population is Ω(1) whereas the probability to reduce it is bounded
above by 1/ni when there are i 1-bits. Thus, with probability at least e−2/2
we reach 12k in one such pair. The probability not to have this in at least

one of the k pairs is bounded above by 2−Ω(k) = 2−Ω(
√

n). The same bound
holds for the probability not to have at least Ω(k) such pairs.

We have seen that the parallel variant is by far superior to the sequential
implementation on the SepFun problem. As a note of caution, we explicitly
add that this is due to the specific structure of SepFun and is, of course,
no general property of the two variants. In fact, it is very easy to present a

44

very similar function where the opposite behavior can be observed. We begin
with defining a function SepFun

′ that is very similar to SepFun.

Definition 36. For any k ∈ N with k ≥ 6, we define n := 4k2, m := n/2 =
2k2 and the function SepFun

′ : {0, 1}n → R. For x = x1 · · ·xn ∈ {0, 1}
we write x = x′x′′ with x′ = x1 · · ·xm ∈ {0, 1}m and x′′ = xm+1 · · ·xn ∈
{0, 1}m. For x′ = x1 · · ·xm ∈ {0, 1}m we write x′ = x(1)x(2) · · ·x(k) with
x(i) = x2(i−1)k+1 · · ·x2ik for all i ∈ {1, . . . , k}. We define SepFun

′ by

SepFun
′(x) :=



n−OneMax(x′) + LeadingOnes(x′′) if x′′ �= 1m

n +
k∑

i=1

g′
(
x(i)
)

otherwise

for all x ∈ {0, 1}n.

The only difference is the use of g′ instead of g. Again, the function g′ is
very similar to g.

Definition 37. For any m ∈ N with m ≥ 6, we define n := 2m and the
function g′ : {0, 1}n → R. For x = x1 · · ·xn ∈ {0, 1}n we write x = x′x′′ with
x′ = x1 · · ·xm ∈ {0, 1}m and x′′ = xm+1 · · ·xn ∈ {0, 1}m. We define g′ by

g′(x) :=




2n+ 2 if x = 0n

2n+ n · OneMax(x) if x′ = 0m or x′′ = 0m

2n+ 1
if x′ �= 0m and x′′ �= 0m and

OneMax(x) = 2

2n+ 2 · OneMax(x)
if x′ �= 0m and x′′ �= 0m and

OneMax(x) > 2

for all x ∈ {0, 1}n.

The behavior of the two algorithms will be similar on SepFun
′ and on

SepFun. But for SepFun
′ the sequential implementation is clearly superior,

because having x(i) ∈ {1k0k, 0k1k
}

yields much better pay-off than x(i) =
12k. This suggests the reasonable idea that, while in other cases the parallel
variant clearly performs better than the sequential algorithm, in some cases
the reverse is true. The basic advantage of the parallel over the sequential CC
(1+1) EA seems to center around whether the accrual of local information
during a round will be misleading, while this advantage is reversed if the
omission of such information is misleading.

45

6 Conclusions

While the application of coevolutionary algorithms towards optimization
problems has gained increased popularity, our understanding of how such
algorithms work and when they should be applied has, until recently, made
less progress. This paper begins to bridge this gap by bringing traditional
run time analysis tools to bear on a simple (1+1) form of the general cooper-
ative coevolutionary architecture introduced by Potter and De Jong (1994).
The end result is the early stages of work that helps demonstrate when and
how the CC (1+1) EA may perform better than a (1+1) EA, as well as some
of the reasons of when and how it may not. Additionally, we have considered
a parallel variant of the CC (1+1) EA, also illustrating its similarities and
differences from both the traditional (1+1) EA, as well as the sequential CC
(1+1) EA. We have performed our analysis in the context of the important
property of separability, commonly believed to be especially important for
the success or failure of coevolutionary algorithms in general. The results are
the beginnings of a deeper understanding of how cooperative coevolutionary
algorithms work on optimization problems.

Perhaps the most important issue uncovered by this research is the clear
dismissal of the property of separability as the main deciding factor in coevo-
lutionary performance. We have provided analysis that clearly shows that
neither is the property of separability a sufficient one to imply an advantage
to the CC (1+1) EA over the (1+1) EA, nor is inseparability a sufficient
enough property to imply a disadvantage.

With respect to separability, we have shown that the expected waiting
time for both algorithms is Θ(n logn) for OneMax, which is fully separa-
ble. Moreover, for linear functions in general the lower bound for the CC
(1+1) EA is Ω(n logn) and the expected waiting time for the (1+1) EA is
Θ(n logn). This again suggests no advantage to the CC (1+1) EA in spite of
full separation of the problem. Further, while we have only demonstrated an
upper bound of O(n log2 n) for the CC (1+1) EA, we nevertheless conjecture
that the lower bound is tight here, too.

With respect to inseparability, we have shown that there exist inseparable
problems that can still easily be solved by the CC (1+1) EA, as well as the
(1+1) EA. We provided a proof for the well-known LeadingOnes problem
showing that both algorithms can be expected to find the global optimum in
Θ(n2) time, as well as provided a general technique for showing how there
may be many inseparable problems as “easy” as OneMax by simply aggre-

46

gating an inseparable function with OneMax. However, it should be noted
that the inseparability property is not totally irrelevant. One can only guar-
antee that global optimum can be found when pieces of the problem may be
linearly separated. While inseparability doesn’t always mean that the CC
(1+1) EA cannot find the global optimum, separability does always mean
that it can.

Thus, coevolutionary advantage in this (1+1) framework does not arise
from presence of the separability property, but arises when problems bene-
fit from both the partitioning and the increased exploratory focus of genetic
operators of the CC (1+1) EA. Problems that may benefit from these two
elements working in conjunction with one another may be separable or in-
separable, but the advantage is likely to increase as the need for greater
exploratory power increases. In the case of the the CLOBb,k problem, the
CC (1+1) EA is advantageous because a b-bit mutation is far more likely
for it than for its EA analog, leading to a potentially super-polynomial ad-
vantage to coevolution. Increasing the mutation rate for the (1+1) EA will
not help, since there will be significantly more disruption in the total string.
When problems have such properties, the partitioning of coevolution can act
as a protection against disruption for the other non-active pieces.

With this in mind, we constructed a function with cross-population non-
linearities that intentionally separates these two algorithms based on the
principals described below. We prove that on this fε,δ function, the CC
(1+1) EA outperforms the (1+1) EA exponentially in time in spite of the
presence of inseparable problem pieces.

Our presentation of an alternative parallel implementation of the CC
(1+1) EA revealed that the circumstances under which these two variants
differ is perhaps less than obvious. The parallel and sequential forms of
the CC (1+1) EA must perform identically on problems that are separable
across the population boundary, but may even have the same performance
on some problems with cross-population nonlinearities. We are able to show
an example function that exploits the sequential CC (1+1) EA’s potential
to be misled by individual generations within a round; however, by reversing
the roles of parts of this problem, we can reverse their performance roles as
well. This counters the intuition that the parallel variant is less likely to be
misled by a problem than the sequential algorithm, since either algorithm
might be misled depending on the content of the local information likely to
be uncovered during a round.

The cumulative result of this research is a much clearer picture of how

47

the CC (1+1) EA works, as well as its relationship to a more traditional
evolutionary approach. Moreover, many of the ideas discussed here clearly
reflect more generally on the nature of CCEAs as applied to optimization
tasks. For example, now that we know that separability is not the defining
property for problem difficulty for the CC (1+1) EA, it is easy to see that
this fact will be true for more complex CCEAs. Additionally, we presented a
better understanding of when many types of coevolutionary algorithms can
fail to find the global optimum. Finally, we’ve identified problem properties
that allow CCEAs to gain advantage over EAs, which we believe are far more
general than the (1+1) algorithms discussed here.

At least as important, we have laid the groundwork for future analysis by
bringing the tools of run time analysis of randomized algorithms to bear on
these questions of coevolution. With these tools, we would like to continue
looking at the CCEA further, leaving the tight upper bound for linear func-
tions as an open issue, but instead turning our attention towards examining
population-based approaches. It will also be interesting to consider adap-
tive problem decompositions and explore ways in which the separability of
a function may be estimated from sample points taken during the run. In
combination, we hope that such efforts will yield algorithms that are not only
useful optimization methods, but are also quite well understood.

References

L. Bull (1997). Evolutionary computing in multi-agent environments: Part-
ners. In T. Baeck (Ed.), Proceedings from the Seventh International Con-
ference on Genetic Algorithms, 370–377. Morgan Kaufmann.

D. Cliff and G. F. Miller (1995). Tracking the red queen: Measurements of
adaptive progress in co–evolutionary sumulations. In Proceedings of the
Third European Conference on Artificial Life, 200–218. Springer–Verlag.

S. Droste, T. Jansen, and I. Wegener (1998). On the optimization of unimodal
functions with the (1+1) evolutionary algorithm. In A. E. Eiben, T. Bäck,
M. Schoenauer, and H.-P. Schwefel (Eds.), Parallel Problem Solving from
Nature (PPSN V), Berlin, Germany, 47–56. Springer.

S. Droste, T. Jansen, and I. Wegener (2002). On the analysis of the (1+1)
evolutionary algorithm. Theoretical Computer Science 276, 51–81.

48

R. Eriksson and B. Olsson (1997). Cooperative coevolution in inventory con-
trol optimisation. In G. Smith, N. Steele, and R. Albrecht (Eds.), Pro-
ceedings of the Third International Conference on Artificial Neural Net-
works and Genetic Algorithms, University of East Anglia, Norwich, UK.
Springer.

S. Ficici and J. Pollack (1998). Challenges in coevolutionary learning: Arms–
race dynamics, open–endedness, and mediocre stable states. In A. et al
(Ed.), Proceedings of the Sixth International Conference on Artificial Life,
Cambridge, MA, 238–247. MIT Press.

S. Ficici and J. Pollack (2000). A game-theoretic approach to the simple co-
evolutionary algorithm. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao,
E. Lutton, J. Merelo, and H.-P. Schwefel (Eds.), Proceedings from the
Sixth Conference on Parallel Problem Solving from Nature), 467–476.
Springer-Verlag.

J. Garnier, L. Kallel, and M. Schoenauer (1999). Rigorous hitting times for
binary mutations. Evolutionary Computation 7 (2), 173–203.

J. Horn, D. E. Goldberg, and K. Deb (1994). Long path problems. In Y. Davi-
dor, H.-P. Schwefel, and R. Männer (Eds.), Parallel Problem Solving From
Nature (PPSN III), Berlin, Germany, 149–158. Springer.

A. Iorio and X. Li (2002). Parameter control within a co-operative co-
evolutionary genetic algorithm. In J. J. Merelo Guervós, P. Adamidis,
H.-G. Beyer, J.-L. Fernández-Villacañas, and H.-P. Schwefel (Eds.), Pro-
ceedings of the Seventh Conference on Parallel Problem Solving From
Nature (PPSN VII), Berlin, Germany, 247–256. Springer.

T. Jansen and I. Wegener (2000). On the choice of the mutation probabil-
ity for the (1+1) EA. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao,
E. Lutton, J. J. Merelo, and H.-P. Schwefel (Eds.), Proceedings of the
Sixth Conference on Parallel Problem Solving From Nature (PPSN VI),
Berlin, Germany, 89–98. Springer.

T. Jansen and R. P. Wiegand (2003). Exploring the explorative advantage of
the copoperative coevolutionary (1+1) EA. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 2003). To appear.

K. Leung, T. Wong, and I. King (1998). Probabilistic cooperative-competitive
hierarchical modeling for global optimization. In Proceedings of the Fifth

49

International Conference on Soft Computing and Information/Intelligent
Systems, 748–751. World Scientific.

R. Motwani and P. Raghavan (1995). Randomized Algorithms. Cambridge:
Cambridge University Press.

H. Mühlenbein (1992). How genetic algorithms really work. Mutation and
hillclimbing. In R. Männer and R. Manderick (Eds.), Proceedings of the
Second Conference on Parallel Problem Solving from Nature (PPSN II),
Amsterdam, The Netherlands, 15–25. North-Holland.

M. A. Potter and K. A. De Jong (1994). A cooperative coevolutionary ap-
proach to function optimization. In Y. Davidor, H.-P. Schwefel, and
R. Männer (Eds.), Proceedings of the Third Conference on Parallel
Problem Solving From Nature (PPSN III), Berlin, Germany, 249–257.
Springer.

G. Rudolph (1997). Convergence Properties of Evolutionary Algorithms.
Hamburg, Germany: Dr. Kovač.

J. Scharnow, K. Tinnefeld, and I. Wegener (2002). Fitness landscapes based
on sorting and shortest paths problems. In J. J. M. Guervos, P. Adamidis,
H.-G. Beyer, J.-L. Fernandez-Villacanas, and H.-P. Schwefel (Eds.), Pro-
ceedings of the Seventh Conference on Parallel Problem Solving From
Nature (PPSN VII), Berlin, Germany, 54–63. Springer.

K. O. Stanley and R. Miikkulainen (2002). The dominance tournament
method of monitoring progress in coevolution. In Workshop Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO) 2002.

E. van Nimwegen and J. P. Crutchfield (2001). Optimizing epochal evolution-
ary search: Population-size dependent theory. Machine Learning 45 (1),
77–114.

I. Wegener (2002). Methods for the analysis of evolutionary algorithms on
pseudo-boolean functions. In R. Sarker, X. Yao, and M. Mohammadian
(Eds.), Evolutionary Optimization, 349–369. Kluwer.

R. P. Wiegand, W. Liles, and K. De Jong (2001). An empirical analysis of col-
laboration methods in cooperative coevolutionary algorithms. In L. et al.
Spector (Ed.), Proceedings of the Genetic and Evolutionary Computation
Conference 2001, 1235–1242. Morgan Kaufmann.

R. P. Wiegand, W. Liles, and K. De Jong (2002a). The effects of representa-
tional bias on collaboration methods in cooperative coevolution. In J. J.

50

Merelo Guervós, P. Adamidis, H.-G. Beyer, J.-L. Fernández-Villacañas,
and H.-P. Schwefel (Eds.), Proceedings of the Seventh Conference on Par-
allel Problem Solving From Nature (PPSN VII), Berlin, Germany, 257–
268. Springer.

R. P. Wiegand, W. Liles, and K. De Jong (2002b). Modeling variation in co-
operative coevolution using evolutionary game theory. In R. Poli, J. Rowe,
and K. D. Jong (Eds.), Foundations of Genetic Algorithms VII, 231–248.
Morgan Kaufmann.

C. Witt (2003). Personal communication.

51

