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Abstract. Evolutionary algorithms are not only applied to optimization
problems where a single objective is to be optimized but also to prob-
lems where several and often conflicting objectives are to be optimized
simultaneously. Practical knowledge on the design and application of
multi-objective evolutionary algorithms (MOEAs) is available but well-
founded theoretical analyses can hardly be found. Laumanns, Thiele,
Zitzler, Welzl, and Deb (2002) have started such an analysis for two
simple multi-objective evolutionary algorithms (SEMO and FEMO). In
this work, the (expected) runtime of a variant of SEMO that searches
globally is investigated. It is proven that the expected runtime is O(n™)
for all objective functions {0,1}" — R™. For each d € {2,...,n}, a bi-
criteria problem such that the expected runtime is ©(n?) is presented.
Bounds on the runtime and the expected runtime of the algorithm when
applied to the problems LOTZ (leading ones trailing zeroes) and MOCO
(multi-objective counting ones) are derived.

1 Introduction

Randomized search heuristics are applied to optimization problems in situations
where problem-specific algorithms are not available. The lack of such algorithms
can have various reasons. Problem-specific algorithms might be unknown for the
considered problem, there might be not enough time and not enough experts
to devise a problem-specific algorithm, or there might be only little knowledge
about the structure of the problem. General search heuristics that do not employ
problem-specific knowledge are of particular interest in theoretical investiga-
tions. In applications, these heuristics are often combined with problem-specific
modules. Evolutionary algorithms (EAs) are such randomized search heuristics.
They are not only applied to single-objective optimization problems but also to
multi-objective optimization problems. Practical knowledge on the design and
application of multi-objective evolutionary algorithms (MOEAs) has increased
considerably in recent years but theoretical works are rare. A common approach
to learn how EAs work is to analyze basic EAs. In this work, we analyze the
expected runtime of a very simple but fundamental MOEA.

* Supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Collabo-
rative Research Center “Computational Intelligence” (SFB 531).



Theoretical analyses of the runtime of basic EAs in the scenario of single-
objective optimization have been carried out in recent years. Most results giving
time bounds consider discrete search spaces (e.g., Droste, Jansen, and Wegener
(1998), Garnier, Kallel, and Schoenauer (1999), Droste, Jansen, and Wegener
(2002), Wegener and Witt (2003)). Rigorous proofs on the runtime in a contin-
uous search space have only been obtained recently (Jégerskiipper (2003)). For
an overview, refer to Wegener (2001) and Beyer, Schwefel, and Wegener (2002).

Works on the analysis of MOEAs have mostly focused on the limit behav-
ior (convergence), i.e., the question under what conditions an algorithm can find
the set of optimal solutions when time goes to infinity (Rudolph (1998a,b, 2001),
Rudolph and Agapie (2000)). It is not possible to derive sharp bounds on the
(expected) runtime without taking into account some properties of the func-
tion (the problem) to be optimized. Scharnow, Tinnefeld, and Wegener (2002)
have analyzed the expected runtime of a variant of the (14+1) EA on a multi-
objective formulation of the single-source shortest-path problem. However, the
objectives of the problem are non-conflicting. Laumanns, Thiele, Zitzler, Welzl,
and Deb (2002) have been the first to analyze the (expected) runtime of two
local search algorithms (SEMO and FEMO) for a problem with two conflicting
objectives (LOTZ). Mutation is the only variation operator in these algorithms.
In this work, we study the algorithm SEMO, but consider two different mutation
operators. The first mutation operator flips a randomly chosen bit, the second
mutation operator flips each bit independently. This results in two variants of
SEMO which we call local SEMO and global SEMO, respectively. The local
SEMO is the algorithm that has originally been named SEMO in Laumanns,
Thiele, Zitzler, Welzl, and Deb (2002). The main concern of this work is the
analysis the global SEMO even though the local SEMO will be considered as
well.

The next section describes the scenario of multi-objective optimization in
the framework of a partially ordered objective space and defines the goal of
algorithms working in this scenario. Section 3 introduces the algorithms studied
in subsequent sections and derives a tight bound on the expected runtime of the
global SEMO in the worst case. Section 4 revisits the problem LOTZ (leading
ones trailing zeros) from Laumanns, Thiele, Zitzler, Welzl, and Deb (2002) but
studies the global SEMO. Section 5 intensively studies the bicriteria problem
MOCO (multi-objective counting ones) from Thierens (2003). It is shown that
the runtimes of both algorithms are ©(n?logn) with high probability. Yet, the
expected runtimes are much larger. Finally, in Section 6, the well-known test
function z +— (22, (z — 2)?) is adapted to the Boolean decision space and bounds
on the runtime are derived.

2 Scenario and Basic Definitions

In the scenario of multi-objective optimization, m incommensurable and often
conflicting objectives of a solution to some problem have to be optimized at the
same time. The objective space F' can be thought of as a set of real-valued vectors



such that each of m components of a vector represents an objective of a solution.
We assume all objectives to be maximized. Obviously, an objective vector x is
not better than another vector y if each component of x is not larger than the
corresponding component of y. However, one cannot tell which of two distinct
vectors is better in general. There is no natural total order on the objective space
if the objectives are incommensurable. In this scenario, the aim of optimization
is to find solutions such that an improvement regarding one objective can only be
achieved at the expense of another objective. We follow Rudolph (1998a, 2001)
for basic definitions.

Definition 1 (preorder, partial order). Let F' be a set and < a binary re-
lation in F'. The relation = is called a preorder if it is reflexive and transitive.
The pair (F, =) is called a partially ordered set (poset) if < is an antisymmetric
Vz,ye F:z 2y ANy =x = x =y) preorder. Distinct x and y are incompa-
rable, denoted x || y, if neither x < y nor x = y. Otherwise, if x <y or x = y,
x and y are comparable. In particular, x is comparable to x.

The relation in the set of real-valued vectors described above is a partial order.

Definition 2 (domination and maximal elements). If © <y, we say y
weakly dominates x. We say y dominates x, denoted x < y, if xt <y and x # y.
An element x* € F is called maximal element of the preordered set (F, =) if
there is no x € F such that x* < x. M(F, =) is the set of all mazimal elements
in (F,=).

If F is a finite set, the set M (F, <) is finite and complete. M (F, <) is said to be
complete if for each x € F there exists an x* € M (F, <) such that = < a*.

In the framework of multi-objective optimization without constraints, we
have the decision space X (the set of all possible solutions), the partially ordered
objective space F (the poset of objective vectors), and an objective function
f: X — F. The aim of multi-objective optimization is not to compute the set
of maximal elements in the objective space. We are rather interested in a set of
best solutions in the decision space, the preimage of the maximal elements in
the objective space. As the objective function is generally not a bijection, the
preimage might be empty or considerably large. We must take care with regard
to the definition of the aim in solving a multi-objective optimization problem.

Definition 3 (=<y). Let X be the decision space and let (F, =) be the partially
ordered objective space. Let f: X — F be a mapping. Then f induces a preorder
=5 on X by the following definition:

=5y & flx) <fy),
v=py = f(x)=fy),
r2fy & r<py Vr=5y.

In general, the preorder < is not a partial order since z <y y A y Xy #
T =y.



We use the notion of Pareto optimality if f = (f1,..., fm) is a vector-valued
objective function, i.e., if F' is a subset of R™.

Definition 4 (Pareto front, Pareto set). Let X be a finite decision space,
let F:=f(X)={f(x) ]| x€ X} CR™ be the objective space, and let the partial
order < in F be defined by

W1y Um) X (21,00 0y2m) & Viiy < z;. (1)

The set of all mazimal elements F* = M(F, <) in the objective space is called
Pareto front. An element x € X in the decision space is Pareto optimal if
f(xz) belongs to the Pareto front F*. The set of all Pareto optimal elements
X* = f~YF*) is called Pareto set.

Definition 4 provides a surjective mapping f and ensures that the objective space
(F, =) is a finite poset with a finite (and complete) set of maximal elements, the
Pareto front. In the following, we assume the scenario of Definition 4.

Roughly speaking, the goal of multi-objective optimization is to compute
the Pareto set X*. This goal can be too ambitious if the Pareto set is fairly
large. However, if the Pareto set is large (e.g., exponential size) and the Pareto

front is small (e.g., polynomial size) there are solutions x!,. .., z* with the same
objective value f(x!) = --- = f(2*). In this case, a set of solutions should imply
only one solution = € {x!,...,2*}. Provided that the Pareto front is not too

large, a set A C X* representing each objective value in the Pareto front F* at
least once is a reasonable set of solutions.

Definition 5 (approximation set). A set A’ C F is called an approximation
set (for the Pareto front) if no element in A’ is weakly dominated by any other
element in A’ with respect to =, i. e., any two distinct elements are incomparable.

In Definition 5, we can replace weak domination by domination: For distinct
elements in a poset, weak domination is equivalent to domination.

Definition 6 (set of representatives). A set of representatives for a set A’ C
Fis aset AC f~1(A") such that f(A) = A’ and |A| = |A'|.

In this work, the goal of an algorithm is to compute a set of representatives for
the Pareto front. Clearly, if f is not injective on the Pareto set, the Pareto set is
not a set of representatives for the Pareto front. The computed set of solutions
will be a subset of the Pareto set.

3 The Algorithm

The following evolutionary algorithm requires that the decision space is X =
{0,1}™ and that there is a partial order relation < defined in the objective space
F = f(X). In particular, it applies to the scenario of multi-objective optimization
in the Boolean decision space. The idea of the algorithm is that for each point
of time ¢, the population A; is a set of representatives for the approximation set
f(A;). The approximation set f(A;) is meant to approach the Pareto front F™*
as t increases.



Algorithm 1 (SEMO).

choose = € {0,1}"™ uniformly at random

determine f(x)

A — {z}

loop
select x € A uniformly at random
create 2’ from x by mutation
determine f(z')
ifVzeA:a' A5 2

A—{zeA|zA; 2’} U{a}

end if

end loop

An implementation of the set A needs to store search points = together with
their objective values f(x). For the ease of notation, this aspect is not explicitly
expressed in the description of Algorithm 1. Obviously, the initial population
Ay = {z1} is a set of representatives for the approximation set {f(z1)}. The
loop can be interpreted in the following way. At time ¢, the algorithm adds
the offspring z} to the population A; if there is no element in A; that weakly
dominates 7, i.e., each element in A; is either dominated by } or incomparable
to ;. If a} is added to A, all elements in A; dominated by z; are removed
from A; at the same time, i.e., afterwards all elements of A; are incomparable
with respect to <;. Hence, at each point of time ¢, A, is a set of representatives
for the set f(A:). The latter set is an approximation set since for =,y € A,
zlyy= £ | 7).

In applications, Algorithm 1 needs a stopping criterion. In this work, we are
interested in the first point of time that the aim of the optimization process is
reached and define the runtime of Algorithm 1 in the following way.

Definition 7 (runtime). Let A;, t € N, denote the population after the (t—1)th
iteration of the loop, i.e., after t objective function evaluations. The random
number Tt is the minimum t such that f(A:) = F*. Ty is called the runtime of
Algorithm 1 for f.

The assumption is that objective function evaluations are expensive and dom-
inate the costs of all other operations in the loop. Then it is reasonable to
call Ty the runtime of Algorithm 1 for f. This measure is well accepted, par-
ticularly for evolutionary algorithms. It is also used in theoretical analyses of
algorithms working in the black-box scenario (Droste, Jansen, Tinnefeld, and
Wegener (2003)). From a practical point of view, the measure may not be fair if
the population A becomes very large. If Q(|X|) elements of (X, <) are incom-
parable, the population may grow to size (2"). That means, the algorithm is
only applicable if there is a much better bound for all | A;|.

We have not specified the mutation operator yet. Depending on the mutation
operator we refer to Algorithm 1 either as local SEMO or global SEMO. If the



mutation operator flips only one bit chosen uniformly at random, we obtain
the local search algorithm studied in Laumanns, Thiele, Zitzler, Welzl, and Deb
(2002) — there called SEMO (simple evolutionary multi-objective optimizer). In
this paper, we call this algorithm local SEMO. If the mutation operator flips
each bit independently with probability 1/n we call the algorithm global SEMO.

The local SEMO searches locally in the manner of a hill climber. If there
is a subset of non-Pareto optimal points X in the search space such that all
Hamming nelghbors of these points outside X are (weakly) dominated by the
points in X the local SEMO’s population cannot escape from X if the entire
population is contained in X. The following example problem with two objec-
tives shows that this can happen with an overwhelming probability. The first
objective is the number of ones in a solution x if this number is even, otherwise
it is 0. The second objective is the number of zeroes if this number is strictly
less than (1/4)n, otherwise it is 0. Clearly, Pareto optimal solutions have at
least (3/4)n ones. By Chernoff bounds (e.g., Motwani and Raghavan (1995)),
the probability of choosing an initial string z with i < (2/3)n ones is 1 —e~(")
i.e., exponentially close to 1. If this happens and 7 is odd, the objective value of
x is (0,0). The Hamming neighbors have objective values (i — 1,0) or (i + 1,0)
and dominate x. One of them is created first and replaces = in the population.
Now, either by the initial step or by the first mutation, the algorithm is in the
situation that the number of ones in the only individual x in the population
is even and at most (2/3)n. All Hamming neighbors of « have objective values
(0,0) and are dominated by x. Hence, the population gets stuck with an over-
whelming probability before it reaches any point in the Pareto set. Therefore,
SEMO has no finite expected runtime in the general case of an arbitrary f. In
our example, restarts (multiple runs) do not help much since the probability of
choosing a bad initial point is exponentially close to 1. The same applies to a
variant of the local SEMO in Laumanns, Thiele, Zitzler, Welzl, and Deb (2002)
called FEMO (Fair Evolutionary Multi-objective Optimizer). We conclude that
local search strategies can only be applied if we have some intuition of the op-
timization problem that suggests that such strategies are not very likely to get
trapped.

In this paper, we focus on the global SEMO. In contrast to local search
strategies, the population of the global SEMO will not get stuck in local optima
forever. Local search strategies are typically easier to analyze than global search
strategies. Nevertheless, the analysis of local search strategies can give insight
into the problem at hand and is often a good starting point for the analysis
of global search strategies. Sometimes it is easier to understand the main ideas
of a proof when discussing the local SEMO first. Our first step is to study
the expected runtime of the global SEMO in the worst case, i.e., the expected
runtime if the objective function is chosen by an adversary. It is easy to see that
for n = 1, the runtime of the global SEMO is at most 2. In the remainder of
this paper, we assume that the dimension n of the Boolean decision space is at
least 2.



Theorem 1. For any f: {0,1}" — R™, the expected runtime E(Ty) of the
global SEMO is bounded above by (1 + o(1))n™. There are functions f where
E(Tyf) > n".

The proof of Theorem 1 employs the following lemma.

Lemma 1. Given a set A of at least n?M°8™1 points in {0,1}" and a point
x € {0,1}™\ A. For more than half of the points in A, the Hamming distance to
x is at most n — [logn].

Proof. The number of points y € {0,1}" with Hamming distance H(y, z) = k is
(%). The number of points with a Hamming distance to z of at least n— [logn]+1

RN ETES

n—[logn]+1<k<n

Consequently, A contains at least n2Meen! — plloenl > (1/2)p2Mogn] points y
with H(z,y) < n — [logn]. O

Proof (Proof of Theorem 1). Whenever the global SEMO produces an offspring
y such that f(y) is in the Pareto front F* and f(y) ¢ f(A), the algorithm adds
y to A. As y is Pareto optimal, y will never be removed from A. Before A is a
set of representatives for the Pareto front, such an individual y exists. At time ¢,
let Y; € X* be the set of Pareto optimal decision vectors whose corresponding
objective values are not yet represented by any decision vector in A;. Formally,
we define the target set Y; by Y; := X*\ f~1(f(A;)). The algorithm would accept
each y; € Y; in the next mutation step. During a run of the algorithm, ¥; D Y; 1,
holds only if a new Pareto optimal point is added to A; and otherwise Y; = Y; 1.
We define Ay to be the empty population in the initialization step (Step 0) and,
therefore, Yo = X*. Let X* =Yy D --- D Yr, = ? be the random sequence of
target sets produced by the algorithm. Note that, for k = |F*|, there are exactly
k + 1 mutually distinct sets X* = Y¥;, D -+ D Y;, = 0 in this sequence and
|Yi;| > j. Let E(T;;) denote the expected number of steps spent for the set Y;,.
Then the expected runtime is
E(Ty)= ) E(T,)+E(T,).
k>j>2

The probability that the initial step selects a Pareto optimal search point is
% > 221(y; | —1). For t > 1, let # € A; denote the individual selected for
mutation and let Y; = {y1,...,¥|y;|} be the target set at time ¢. There is at most
one y; € Y; such that the Hamming distance H(z,y;) = n, namely if y; = T.
In all other cases, H(x,y;) is at most n — 1. Hence, the probability that the
algorithm creates an offspring in Y; is lower bounded by

Z (1/n)H(m,yj)(1 _ 1/n)n7H(mvyj)

1<5<|Ye|

> > (/)i 1-1/n) =

1<j<[Ye| -1

n—1

(D/t| - 1))

nn



and for |Y;,| > 2 the expected value E(Tj;) is at most W‘W Since

Y;.| > 7, we have
\Yi,| = J,

BTy < - 3 L B 2)

n—1

Now we estimate the right-hand side of the last equation according to two cases.

The first case is k > n?M°2"1 4 1. We consider the steps when the target set
is Y;,, i.e., the algorithm has discovered k — 1 representatives for k—1 = |F*| —1
points of the Pareto front before. Hence, |A| = k — 1 > n2Mognl and there is
only one point 2’ in the Pareto front that is not in f(A). Let z € f~1(2/) = Y;,.
By Lemma 1, the probability that the algorithm selects an individual in A such
that the Hamming distance to x is at most n — [logn]| is at least 1/2. Thus,
E(T;,) is bounded above by

((1/2)(1/n)n—[log7ﬂ (1 — 1/71) [IOgnW)_l < Qenn—[log'rﬂ.

Using k = |F*| < |X*| < 2™, we can upper bound (2) by

n" 2 1 _ Hgn_l 2e
niljz;ji_l_’_2enn [logn] <n" ( — + nﬂog"]) .
The last expression is strictly smaller than n™ for n large enough since the
harmonic number Han_1 is bounded by In(2" — 1) + 1 < 0.7n + 1.

The second case is k < n21°8™1 When the target set is Y;,, the probability
that the next mutation step creates a point in this set is at least 1/n™. In the
initial step, the probability is at least k/2™ > 1/n". Hence, E(T;,) < n™, and
(2) is bounded by

n Kk
1 Hy 1
Tt = () = e
using Hy—1 <Iln(k —1)+1< 0.7logn2Megnl 41 < 1.4[logn]? + 1.
For the lower bound, we consider the function

fay={ I = J] a—=)

1<i<n  1<i<n

Obviously, the objective space is F = {(0,0),(1,0),(0,1)} and only (0,0) is
not maximal. Let x be the Pareto optimal decision vector found first by the
algorithm, i.e., either x = 0™ or x = 1™. Since x dominates all decision vectors
found before, the population now is A = {z}. The Hamming distance to the
second Pareto optimum 7 is n. Hence, the expected waiting time is n”. a



Theorem 1 states a ©(n™) bound in the worst case. Note that the upper
bound is independent of the number of objectives m and that the lower bound
is obtained from a bicriteria problem. In Section 6 we will present for each
d € {2,...,n} a bicriteria problem such that the expected runtime of the global
SEMO is ©(n?). The conclusion is that if we only consider expected runtimes,
bicriteria problems are not easier for the local SEMO than problems with a high-
dimensional objective space. There are bicriteria problems among the hardest
problems. The scenario of multi-objective optimization includes the scenario of
single-objective optimization. The (141) EA is perhaps the most fundamental
evolutionary algorithm for single-objective optimization in the Boolean decision
space {0, 1}". Interestingly, it has the same expected runtime ©(n") in the worst
case (Droste, Jansen, and Wegener (2002)). If applied to a monocriteria prob-
lem, the global SEMO behaves almost like the (1+1) EA. One can also obtain
Q(n™) bounds from some monocriteria problems that have been analyzed for
the (1+1) EA, e.g., the problem DISTANCE cousidered in Droste, Jansen, and
Wegener (2002).

4 LOTZ — Leading Ones Trailing Zeroes

The LOTZ function has been studied in Laumanns, Thiele, Zitzler, Welzl, and
Deb (2002) for the local SEMO and a variant of the local SEMO called FEMO.
FEMO employs the same mutation operator as the local SEMO. Flipping exactly
1 bit in each step simplifies the analysis of these algorithms for this function.
The effect is that the population size is bounded by 1 until the first point in
the Pareto set is discovered, and then the algorithms explore the Pareto set
without accepting solutions that are not Pareto optimal. Both properties do not
carry over to the global SEMO. The selection mechanism of FEMO has been
adapted to the LOTZ function, and in fact FEMO performs better on LOTZ. The
expected runtimes for the local SEMO and FEMO are ©(n?) and ©(n?logn),
respectively. In this section, we show that using independent bit flips with SEMO
(i.e., the global SEMO) does not increase the runtime substantially. Moreover,
the runtime is O(n?®) with a probability exponentially close to 1. It is not known
whether independent bit flips increase the runtime of FEMO for LOTZ.

Definition 8. The functions LO,TZ: {0,1}" — N and LOTZ: {0,1}" — N2
are defined by

LO(z) = ZH:E]-,
TZ(z) = ZH(lij),

LOTZ(z) := (LO(z), TZ(z)).

LO(z) is the number of leading ones in = and TZ(z) the number of trailing
zeroes. We define the relation < in N2 according to (1) and consider the partially
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ordered objective space (N2 N LOTZ({0,1}"), =) and the preordered decision
space ({0,1}™, <porz). In the remainder of this section, we omit the subscript
“LOTZ” in our notation.

Proposition 1. The Pareto front F* is the set {(i,n —4) | 0 <i < n}, and the
Pareto set X* is the set of all strings 1°0"~%, 0 < i < n. The Pareto set X* is
the only set of representatives for the Pareto front F*.

Proof. The set {(4,7) |0<i+j <n, i+j#n—1} is the objective space, and
only the elements (i,n — i), 0 <14 < n, are not dominated by any other element.
Obviously, LOTZ ' (i,n — i) is the singleton set {1?0""}. O

Proposition 2. Let A be a set of representatives for an approximation set A’.
The cardinality of A is at most n+ 1. If A # X*, the cardinality of A is at most
n.

Proof. As |A| = |A’], it suffices to show |A’| < n+ 1. The characteristic function
of the objective space F' C {0, ...,n}? can be viewed as a triangular matrix with
1-entries at (4,7), 0 < i+ j <nand i+ j # n — 1. The row index i gives the
number of leading ones, the column index j the number of trailing zeroes. Since
A’ is an approximation set, i.e., no element in A’ is dominated by any other
element in A’, there is at most one element from each of the n + 1 rows in A’.
The same applies to columns. This shows that |[A'| < n+1. Assume |[A'| = n+1.
Then A’ chooses exactly one element in each row and each column. Hence, the
characteristic function of A’ can be viewed as a permutation matrix. As A’ C F,
the 1-entries in the permutation matrix are also 1-entries in the triangular matrix
representing F. It is easy to see that there is only one choice for A’, namely all
elements placed on the diagonal (i,n — 1), 0 < ¢ < n. Hence, A’ = F™*. a

Theorem 2. The expected runtime of the global SEMO for LOTZ is O(n®). The
runtime is O(n®) with a probability 1 — e~
Proof. As the Pareto set X* is the unique set of representatives for F* (Propo-
sition 1), the population becomes static if A = X*. It can change at any time
before this event happens. We discern two epochs in a typical run of the algo-
rithm. The first epoch starts after the initialization and is finished by the step
producing the first individual x € X*. The following epoch lasts until A = X*.
First we show that a phase of s := [en3] steps finishes the first epoch with a
probability 1 — e~*™). We consider the initial individual 2° and the (random)
sequence of individuals z!', 22, 23, ... in the first epoch such that z**! causes «*
to leave the population (because z'*! = z%). When the dominating individual
x't1 is created, either the number of leading ones compared to z* is increased and
the number of trailing zeros compared to z; is not decreased or vice versa. That
implies that there are at most n individuals in the above sequence that starts
with z!. If an offspring dominates its parent then it will be accepted and replace
the parent individual. We estimate the probability to create z**! in the next step
by the probability that 2* is chosen for mutation and the algorithm flips either
only the leftmost 0 or only the rightmost 1. We call this event a success. Using
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Proposition 2, the probability of a success is at least (1/n)-2-(1/n)-(1—1/n)"~1 >
2/(en?). Within the first phase, the expected number of successes is at least 2n.
By Chernoff bounds, the probability of less than n successes is e ("), The first
phase of s steps finishes the first epoch with a probability exponentially close to
1. To obtain an upper bound on the expected number of steps, we observe that
our estimations also hold if we start a new phase with a population of up to n
non-optimal solutions. The expected number of phases is upper bounded by 2.
This implies that the expected number of steps in the first epoch is O(s) = O(n?).

Next we show that, starting with at least one Pareto optimal element in A,
after a phase of s’ = [2en®] steps, X* = A with a probability 1 — e~("). The
Pareto set can be viewed as a path from 0™ to 17 that visits all strings 1°0™ ¢,
0 < i < n. Obviously, each individual on the path has at least one Hamming
neighbor on the path. As long as A # X*, there exists at least one z € A
with a Hamming neighbor 2’ € X*\ A and by Proposition 2, |[A| < n holds. The
probability of creating 2’ in the next step is at least (1/n)-(1/n)-(1—1/n)""1 >
1/(en?). Within s’ steps of a phase, the expected number of such successes is at
least 2n. Using Chernoff bounds again, the probability of less than n successes
is e~ Analogously to the first epoch, the expected number of steps is O(n?),
too.

Combining the results for both epochs yields the bounds in the theorem. 0O

As mentioned before, an expected runtime of ©(n®) has been proved by
Laumanns, Thiele, Zitzler, Welzl, and Deb (2002) for the local SEMO. The
authors have also proved that the runtime is Q(n?) with probability 1 — e $2n)
In the proof of Theorem 2, we have only considered mutation steps where solely
one bit flips. Therefore, our lower bounds on the probability of a success in
the first and second epoch also hold for the local SEMO. We obtain that the
runtime of the local SEMO is O(n?) with a probability 1 — e~*(®), Combining
both results yields the following corollary. Additionally, we obtain an alternative
proof for the O(n?) bound of the expected runtime of the local SEMO.

Corollary 1. The expected runtime of the local SEMO for LOTZ is ©(n?). The

runtime is ©(n>) with a probability 1 — e~ ™).

5 MOCO — Multi-objective Counting Ones

The OneMax function, also called CountingOnes function, counts the number
of ones in a bitstring x = z1,...,2,, and the aim is to maximize the number of
ones. We denote this function by ||z||. The following bicriteria problem MOCO
(multi-objective counting ones) has been introduced in Thierens (2003).

Definition 9. For p(z) = 2#@ and n = 4k, the function MOCO: {0,1}" —
[~1,1]? is defined by

MOCO(z) = (cos p(z),sin ¢(z)).
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Fig. 1. MOCO for n = 16.

Based on approximate calculations and experimental results, Thierens (2003)
conjectures that the expected runtimes of both the local and global SEMO are
of the order of n? logn. We prove that the expected runtime of the local SEMO
is non-finite and the expected runtime of the global SEMO is nf2("™). Considering
expected runtimes, MOCO is almost a worst-case example for both algorithms.
Yet, the empirical study in Thierens (2003) suggests that the observed runtimes
are typically polynomial and presumably of the order of n? log n. The main goal
of this section is to formalize this conjecture and to present corresponding proofs.

We prepare our analysis of the runtimes by considering a partitioning of
the decision space into four regions (Fig. 1) as defined in Thierens (2003). The
condition n = 4k has been assumed for the ease of presentation: The objectives
take the same values on rising and falling edges of the sine and cosine function,
and, importantly, they hit the maxima and minima. Otherwise the following
partitioning has to be defined more carefully. (The same or a similar condition
is implicitly assumed in Thierens (2003).)

Region I (0 < ||z|| < n/4): Both sine and cosine are non-negative in this
region. For each search point in Regions II-IV, at least one objective is
non-positive. Therefore, no point in the region is dominated by any point
in Regions II-IV. The second objective (sin) strictly increases and the first
objective (cos) strictly decreases with the number of ones. Hence, for any
two points  and y in this region, either z =yoco ¥ or z ||moco y holds.
Therefore, all points in Region I belong to the Pareto set.

Region II (n/4 < ||z|| < n/2): In this region, a point with ¢ ones is domi-
nated by any point with less than ¢ ones in Region II. Hence, any point with
n/4 ones is a maximal element in this region. It is also a maximal element
in the entire decision space X, i.e., a Pareto optimum.

Region III (n/2 < ||z|| < 3n/4): For all points  and y in this region, either
Z =Mmoco Y or Z ||moco y holds. Every point in this region is dominated by
every point in Region I. Hence, there are no Pareto optima here.

Region IV (3n/4 < ||z|| < n): In this region, a point with i ones is domi-
nated by every point with more than ¢ ones. Hence, the point with n ones
is the only maximal element in this region. Since the point with n ones and
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the point with n zeroes in Region I have the same objective values, the first
point is a Pareto optimum.

The following proposition summarizes our discussion of the four regions.

Proposition 3. The Pareto set X* is the set {x | 0 < ||z|| <n/4 VvV ||z|| = n}.
The Pareto front F* is the set {(cosp(i),sinp(7)) | 0 < i < n/4}.

The next proposition implies that the population size of the local and global
SEMO is bounded by n/4+1 at any time. This bound is tight as the cardinality
of the Pareto front is n/4 + 1. One can certainly give better bounds for specific
situations, however, the use of better estimates would not improve our results
substantially.

Proposition 4. Let A be a set of representatives for an approrimation set A’.
The cardinality of A is at most n/4+ 1.

Proof. We only have to show |A’| < n/4 + 1. Our partitioning of the decision
space induces a partition of the objective space if we define that the objective
vector (1,0) belongs to Region I. Each region contains n/4 objective vectors. For
convenience, we use the same names for corresponding regions in the decision
space and objective space.

Any two objective vectors in Region II are comparable. Hence, there is at
most one vector from Region II in A’, and the same applies to Region IV. Now
we distinguish two cases. The first case is that there is no vector from Region I
in A’. There are at most n/4 vectors from Region III, and there is at most
one additional vector from Region II and Region IV each. As any vector from
Region IT dominates at least the vector (—1,0) in Region III, there are at most
n/4 4+ 1 objective vectors in A’. The second case is that there is at least one
vector from Region I in A’. As each of the vectors in Region I dominates every
vector in Region III, A’ contains no vector from Region III and at most n/4 from
Region I. There is at most one additional vector from Region IT and at most one
additional vector from Region IV in A’. If there is a vector from Region IV, it
excludes at least the vector (1,0) in Region I from A’. O

Theorem 3. The local SEMO has no finite expected runtime for MOCO, and
the expected runtime of the global SEMO is n(™)

Proof. For the first statement, let the random variable T" denote the runtime of
the local SEMO. Then E(T) equals

> t-Prob(T'=t) = Y Prob(T >1). (3)

t>0 t>1

There is a positive probability of 27" that the initial point has n ones. Starting
there, the mutation operator can only create offspring with n — 1 ones, which
are dominated by the initial point. Therefore, the population cannot cross the
border to Region ITI. Thus, Prob(T > t) is lower bounded by 27" for all ¢. Hence,
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the right-hand side of (3) diverges. We remark that any initial point with more
than 3n/4 ones leads to the same result.

For the second statement, let 7" now denote the runtime of the global SEMO,
and let A; denote the event that the initial search point has exactly i ones. By
Theorem 1, E(T) is finite. It can be bounded below in the following way.

E(T) = Y E(T'| Aj)-Prob(4;) > E(T | A,) Prob(4,).  (4)

0<i<n

Now we assume that the algorithm has selected an initial point with n ones. The
point is Pareto optimal and weakly dominates all points with at least n/2 ones.
Hence, the mutation step has to flip more than n/2 ones into zeroes in order to
generate a new point that will be accepted. The probability of this event in a
single mutation step is

k n—k n/2
”> <1> < 1) <”> <1> e
E : - 1—= E — <2"n =n )
24 1<k<n <k n " 0Sen \F/ AT

implying E(T | A,) = n*(™). Hence, the right-hand side of (4) is n®*(™ .2—" =
nn) | O

IN

If n is not very small, the expected runtimes of the local and global SEMO
do not reflect the behavior observed in practice. Therefore, we are seeking for
results that bound the probability that a run finds a solution in a certain time.
We shall see that the runtimes of both variants of SEMO are ©(n?logn) with
high probability.

Once there is a search point = with ||z|| = 4 in the population A, no other
search point with 7 ones can enter A because some element of A weakly dominates
it. This holds true even if = is removed from A later. Thus, throughout a run
of the local or global SEMO, at most one individual with 7 ones, 0 < ¢ < n,
occurs in A. In the remainder of this section, we use the following notation. For
a specific run, let 2 denote this individual with i ones (if such an individual
occurs in A in the run). At any time, 2'°% denotes the individual with the least
number of ones in the current population, and 2" denotes the individual with
the largest number of ones. Clearly, 'V and 2" change with time and depend
on the random decisions of the algorithm.

Theorem 4. For any polynomial p(n) > 0, the runtime of the local SEMO for
MOCO is O(n?logn) with a probability of at least 1 — 1/p(n).

Proof. In this proof, we partition a run of the algorithm into three consecutive
epochs and show that each of the first two epochs is finished successfully in time
O(n?) with a probability 1 — e~ Let d denote the degree of the polynomial
p(n). We prove that the final epoch takes O(n?logn) steps with a probabil-
ity of at least 1 — 1/n®*2 for n large enough. Taking into account the failure
probabilities in the first two epochs, the overall success probability is at least
1—1/n%1 > 1—1/p(n) for n large enough.
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The first epoch lasts until the first individual with less than n/2 ones is
contained in the population. We show that the first O(n?) steps produce such a
point with probability 1 — e~ ). otherwise we consider the run unsuccessful.
The expected number of ones of the initial search point equals n/2, and large
deviations from the expected value are unlikely: By Chernoff bounds, the initial
point has less than (9/16)n ones with a probability 1 —e~*("). There is nothing
to show if the initial point has less than n/2 ones. So we only consider the case
that the number of ones is at least /2 and less than (9/16)n. We name a step of
the algorithm relevant if z'°% or zM&" is selected for mutation. By Proposition 4,
a step is relevant with a probability of at least 1/(n/4+ 1), and in the first
(1/8)n? + (1/2)n steps subsequent to the initial step, the expected number of
relevant steps is at least n/2. By Chernoff bounds, there are at least |(6/16)n]
relevant steps with probability 1 —e ("), Now we consider the phase containing
the first |(6/16)n] relevant steps (including the non-relevant steps inbetween)
that starts right after the initial step. The phase is finished prematurely if an
offspring with less than n/2 ones is created. Non-relevant steps never decrease
|z!°%|| or increase [z"8"|| because the algorithms flips only a single bit. Only
relevant steps may do so. Clearly, in the phase, the condition n/2 < ||z!o%| <
|zheh|| < (15/16)n holds. By our discussion of Region II, III, and IV, it is
clear that no search point with at least (9/16)n ones and at most (15/16)n
ones dominates the initial point, and that every relevant step of the phase that
decreases ||z!°% || produces an offspring that enters the population. Given that a
step is relevant, the probability that it selects !°% and flips a one into a zero is
at least 1/4 because the algorithm selects individuals uniformly and z'°" has at
least n/2 ones. By Chernoff bounds, ||2'°%|| decreases by at least (1/16)n to less
than /2 in [(6/16)n] relevant steps with a probability 1 — =),

The second epoch lasts until the first Pareto optimal point with at most
n/4 ones is created. For each search point with less than n/2 ones, the second
objective (sin) is positive, and for each point with at least n/2 ones in Region III
and IV, the second objective is non-positive. Therefore, no point with at least
n/2 ones weakly dominates any point with less than n/2 ones. Thus, if a step in
this epoch selects z'°% and flips a one, it produces an offspring that replaces z'°%
and becomes 7'°% in the new population. Since ||2'°%|| > (1/4)n, the probability
of this event is at least 1/(n/4+1)-(1/4) = 1/(n+4). In the next (1/2)n?+2n
steps, the expected number of such events is at least n/2. By Chernoff bounds,
the probability of at least n/4 such events is 1 — e~ ") Thus the duration of
the second epoch is O(n?) with the desired probability.

Unless 2° is the initial individual, z* is an offspring either of 2°+! or 2'~!. Let
z* be the individual with at most n/4 ones that appears in A first. The aim of the
third epoch is to produce the points 2/, ..., 2"/* and the points z¢~1, ..., 2°.
(We pessimistically assume that the search point z° has to be produced.) For
¢+ 1 < i < n/4, the probability that the next step produces the next z° is
lower bounded by 1/(n/4 + 1) - (n —i)/n > 3/(n + 4). By Chernoff bounds,
the next O(n?) steps produce all z/*', ... "/* with probability 1 — e=("),
Let I be the set of the ¢ bit positions of the ones in z¢. Now we call a step
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relevant if the algorithm selects the individual zlov = gt for some 1 < 4 < £,
for mutation. Whenever a relevant step mutates a new bit position in I, z*~!
is created. Now the scenario is similar to the coupon collector’s problem. The
probability that the next step is relevant and mutates a specific position in I is
at least 1/(n/4 + 1) - (1/n) = 4/(n? + 4n) =: p. The probability that position
J € I has not been flipped in a relevant step in a phase of r := ((d+3)/p) lnn =
O(n?logn) steps is at most (1 —p)” < e~ (@+3) I — p=(d+3) The probability of
the union of these events is at most 37/ n=(4+3) < (1/4) . n~(@+2)_ Taking into
account the failure probability e (") for z*1 ... /%, the failure probability
of this epoch is bounded by n~(4*+2), for n large enough. O

Our upper bound O(n? logn) for the local SEMO holds with a high probabil-
ity, i.e., polynomially close to 1. The next theorem states that the lower bound
(n?logn) holds even with an overwhelming probability, i.e., exponentially close
to 1.

Theorem 5. For every constant € < 1, the runtime of the local SEMO for
MOCO is Q(n?logn) with a probability 1 — e~ "),

Proof. By Chernoff bounds, the initial search point has more than n/4 ones with
a probability of at least 1 —e (") Starting with an initial point with more than
n/4 ones, there might be a chance that the image of the population does not
converge to the Pareto front. For our lower bound, we can ignore this case and
assume that at some point of time, the first individual with at most n/4 ones is
created. As the algorithm flips only 1 bit in each step, it will be an individual
with exactly n/4 ones. The remaining runtime of the algorithm is lower bounded
by the time to produce the individuals /A gt (Note that we must not
include x° because there is a chance that 2" is created.) A step of the algorithm
can only produce the next individual in this series if it selects the individual
with the lowest number of ones and flips a one into a zero. Let the time ¢ = 0 be
the step in which z!”/8] is created. At that time, the population contains more
than n/8 Pareto optima, namely xln/81 /4 We call a step at time ¢ > 0
relevant if it selects z!° for mutation. Let I be the set of the |n/8] bit positions
of the ones in z"/8). W.l.o.g. let I = {1,...,|n/8]}. The next Pareto optimum
is only created if a relevant step mutates a new position in I, i.e., a position
that has not been flipped in a relevant step prior to the current step. Now we
consider a phase of s := | (1 —¢)(n?/8 —1)Inn| = Q(n?logn) steps that start at
time ¢t = 1. Our aim is to estimate the probability that the phase is successful,
i.e., that it produces z"/31=1 1. Call this event S. The situation is similar
to a coupon collector’s problem where all but one coupon have to be collected.
Let A;, 1 < i< |n/8], denote the event that the bit at position ¢ € I has flipped
at least once in a relevant step of the phase. Then S is the event that at least
|n/8] — 1 of the events Ay,..., A}, /s occur, i.e., Prob(S) equals

Prob ((AQﬂﬂALn/gJ) U---u (Al m'-'ﬂALn/ngl)).
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As the probability of the union of events is upper bounded by the sum of the
probabilities of each event, and each event has the same probability, we have

Prob(S) < [n/8] Prob(A1N---NAp,/s-1)
= |n/8] Prob(A;) Prob(Az | A1) Prob(As | A1 N Ag)---
PrOb(Al_n/SJ—l |Ain---N Al_n/SJ—2)'

The condition A; N --- N A; implies that there are k > ¢ steps in the phase in
which bit position 741 is not flipped. In the remaining s—k steps, the probability
to select 2'°% is at most 8/n, and the probability to mutate a specific bit position
is 1/n. Thus, for all i € I,

Prob(Ai 1 | A1N---NA) <1—(1-8/n?)F
< 1— (1 . 8/712)8 < 1— e—(l—e) Inn < 1— 1/n1—6'

Hence,
PI‘Ob(S) < (Tl/g)(l o 1/n175)n/871 < eln(n/S)f(n/Sfl)nE’1 _ efQ(nE)'

The sum of the last failure probability and the failure probability in the initial
—Q(nf)

step is e . a

The next step is to show that our results for the local SEMO (Theorem 4
and Theorem 5) carry over to the global SEMO. Our upper bound for the global
SEMO (Theorem 6) is of the same quality as in the case of the local SEMO.
Only the lower bound (Theorem 7) is slightly weaker. Yet, it still guarantees
time Q(n?logn) with high probability.

Lemma 2. For the mutation operator of the global SEMO and 0 < e <1 a
constant, the following holds. The probability that any of at most polynomially
many (in n) mutation steps flips at least n® bits is n~ "),

Proof. The probability that a single mutation step flips at least £ > 0 bits is at

most . .
N A N A o~k nk+k
k n - K = \k

In a series of polynomially many steps, say cn® where ¢ > 0 and d > 0 are
constants, the probability that any step flips at least k bits is upper bounded by
the sum of the probabilities for each step. The latter is at most e~ * btk . cpd =

e~ kInktktdlnntlne For k= pf, the last expression is e~ (0" Inn) — =Q(n%)

Theorem 6. For any polynomial p(n) > 0, the runtime of the global SEMO for
MOCO is O(n?logn) with a probability of at least 1 — 1/p(n).

Proof. This proof has the same structure as the proof of Theorem 4. We show
that the success probability of each epoch is essentially unchanged.
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We show that n?/4 + n steps produce a search point with less than n/2
ones with probability 1 — e=%(") We call a step relevant if either z!'°% or zhigh
is selected for mutation. The expected number of relevant steps is at least n
and, by Chernoff bounds, the probability of at least (21/32)n relevant steps is
1 — e 20 We consider a phase starting with the step right after the initial
step up to the |(21/32)n|th relevant step. Since the selection mechanism selects
individuals uniformly at random, each relevant step selects z'°% with probability
1/2. By Chernoff bounds, at least (9/32)n relevant steps select 2'° and at most
(12/32)n relevant steps select 28" with a probability 1 —e~ ™). Since 2'°% has
at least n/2 ones, every step mutating #'°V decreases the number of ones with
a probability of at least (n/2)(1/n)*(1 —1/n)""1 > 1/(2¢) > 1/6. Thus, |z'°¥||
decreases an expected number of at least (1/6)(9/32)n = (3/2)(n/32) times
by at least 1. By Chernoff bounds, the sum of the decreases is at least (n/32)
with a probability 1 — e~*(™). The initial search point has less than (17/32)n
ones with a probability 1 — e~ We show that ||z'°%| is unlikely to increase
in any step of the phase. This could only happen if ||zM&b(| > (31/32)n. By
Lemma 2, our phase of O(n?) steps has no step flipping at least (1/64)n bits
with a probability of at least 1—n~?("). As we can exclude that ||z"&"|| increases
by at least (1/64)n in a step, there must be a point of time where ||z™&b| is at
least |(3/4 + 1/64)n| and at most [(3/4 4 2/64)n]. Since there can be at most
one individual from Region IV in A, |28} can only increase if 218" is selected
for mutation, i.e., in a relevant step. We pessimistically assume that |z"&h||
initially is |(3/4 + 2/64)n] = [(25/32)n|. Since the number of zeroes in z"8h
is at most n/4, in at most (12/32)n relevant steps selecting 28" there are at
most (3/32)n? chances to flip a zero into a one. The expected number of flipping
zeroes is at most (3/32)n. By Chernoff bounds, at most (5/32)n new ones are
created with a probability 1 — e~*("). The phase is finished successfully with a
probability of 1 — e~?(),

In the second epoch, the probability of a successful step is lower bounded by

(V6 ()

By Chernoff bounds, the next O(n?) steps produce a point with at most n/4
ones with a probability 1 — e~%("),

For the last epoch, let 2 denote the first individual with ¢ < n/4 ones. The
probability to create the next individual % in z/*1,..., 2™/* in the next step is

at least ) .
1 n—1 l 171 S 3 '
n/4+1\ 1 n n ~ e(n+4)

By Chernoff bounds, the next O(n?) steps produce all z°*!, ... ,z™/* with prob-
ability 1 —e~("). Now we consider the points z¢~1, ..., 2. Initially, we set j = ¢
and call a step relevant if 27 is selected for mutation. If solely a one flips in a
relevant step, we decrease j by 1 regardless of the offspring x’ being accepted or
not. If 2’ is not accepted, there is already an individual 27! in A. (Note that z
is not necessarily the individual with the least number of ones.) If the offspring
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x' is not accepted, we identify each one in 2’ with a one in z7~!. This way, we
can track each one of the original point x¢ in the points z7, j < ¢, although the
positions of the ones vary. Now it is clear that each one of the original point z*
can decrease j by 1. The probability that the next step is relevant and flips solely
a specific one is at least

1 A N
n/d+1\n n = en?tden ¥

The probability that in any of r := [((d + 3)/p)Inn] = O(n? logn) steps a spe-
cific one does not decrease j is at most (1 — p)” < n~(?+3) The probabilities
that there is a one among the at most n/4 ones of x‘ that does not decrease j is
upper bounded by the sum of the corresponding probabilities ZZ:/% n—(d+3) <
(1/4)n=(4+2), Taking into account the failure probability for z‘*',... z™/4,
O(n?logn) steps finish the last epoch with a probability 1 — n~(@+2), O

Theorem 7. The runtime of the global SEMO for MOCO is Q(n?logn) with a
probability 1 — O(1/+/n).

Proof. Analogously to the proof of Theorem 5 we show that the exploration of
Region I takes Q(n?logn) steps in a typical run. Our first aim is to show the fol-
lowing property. With probability 1—O(1/+/n), there is a point of time where the
number of individuals in Region I is at least n,/300 and n'/® < ||z1°%|| < 2n!/8,
or the runtime is at least n?logn anyway.

The initial point has more than n/4 ones with a probability 1 — e
Then we wait for the event that a point with at most 2n'/8 ones is created,
i.e., [|[#1°| < 2n!/%. If this takes at least n?logn steps, we are done. Otherwise
we consider a phase of [n2/50] steps subsequent to the step that created the
first individual with at most 2n'/® ones. At any time, let ¢ be the smallest
number in {||z°¥]|,...,n/4} such that 2971 is in A but z9 is still missing. If
that number g does not exist, the number of individuals in Region I is at least
n/4 —2n'/® > n/300 for n large enough. In this case, we consider the phase
finished. In the phase, a step is called relevant if it selects either 29~1 or any of
the two individuals with the two least numbers of ones, but at most 2n'/® ones.
At least the individual z'°% fulfills these conditions. Hence, the probability of a
relevant step is at least 1/(n/4+1) > 15/(4n) for n large enough. The expected
number of relevant steps in [n?/50] steps is at least (3/40)n—1, and, by Chernoff
bounds, there are at least n/20 relevant steps with a probability 1 — e~ We
finish the phase after the |n/20]|th relevant step if this step is prior to the
|n2/50]th step. A relevant step selects 297! for mutation with a probability of
at least 1/3. Whenever 2971 is selected, the probability to create 29 by mutation
is at least (3n/4)(1/n)(1 —1/n)""1 > 3/(4e) > 1/4 because x9~! has at least
3n/4 zeroes. Thus, we expect at least n/240 — 1/12 new individuals in Region I
in [n/20] relevant steps. By Chernoff bounds, with probability 1 —e~*(") there
are at least n/300 (new) individuals in Region I after at most n?/50 steps of the
phase.

—Q(n)_
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We still have to show that no individual with less than n'/8 ones has been
created — neither in the phase nor in any of at most n?logn steps before the
phase. A step is called bad if it either selects an individual with at most 3n!/8
ones and decreases the number of ones by at least 3 or if it selects an individual
with more than 3n'/® ones and flips more than n'/® bits. By Lemma 2, the
probability that the second event occurs in the steps between the initial step
and the end of the phase is at most n=Un'"*) The first event can only happen
in the phase. We estimate the probability that a mutation step decreases the
number of ones of an individual with at most ¢ < an® ones by at least k < 4,
0 <e<1and a >0 a constant. Letting j denote the number of flipping ones,
it is at most

S (- teg
J/ AT vV kS

k<j<i

k, (e—1)k a NI k, (e—Dk
<a'n j;o (n(l_e)) <2a"n , ()

for n large enough. Hence, given that a step has selected an individual with at
most 3n'/® ones, it decreases the number of ones in the selected individual by at
least 3 with a probability of at most 54n~2/8. Thus, the probability that the sec-
ond event occurs in the phase is at most 54n=2'/8.n2 /50 = O(n=5/%), and there
is no bad step prior to the end of the phase with probability 1 — O(n*‘r’/g). Now
we work under the condition that there is no bad step. That means, individuals
with at most 2n'/® ones are offspring of individuals with at most 3n'/® ones,
and if an individual with at most 3n'/® ones is selected, ||2'°V|| decreases by at
most 2. In the phase, the value ||z'°V|| can only decrease if one of the two individ-
uals with the smallest numbers of ones is selected, i.e., in a relevant step. Hence,
the individual with at most 2n'/8 ones that is created first has at least 2n'/8 — 1
ones. At least [ (1/2)n'/®| relevant steps that decrease ||z'°%|| (by at most 2) are
required in the phase to create an individual with at most n'/® ones. We pes-
simistically assume that each relevant step selects one of the two individuals with
the least numbers of ones. For a step that has selected an individual with at most
3n'/8 ones, let A be the event that it decreases the number of ones by at least 1,
and let B be the event that it is not bad, i.e., the number of ones decreases
by at most 2. We estimate the conditional probability that the number of ones
decreases by at least 1 given that the step is not bad. By (5), Prob(A4) < 6/n7/®
and Prob(B) > 1—54/n2/8. Hence, Prob(A | B) < Prob(A)/Prob(B) < 7/n7/8
for n large enough. Thus, |n/20] relevant steps in a good phase have an expected
number of at most n/20-7/n7/8 = (7/20)n'/® such decreasing steps and, by Cher-
noff bounds, with probability 1 — e=%("""") this number is at most [(1/2)n'/8].
No individual with less than n'/8 ones has been created when the phase is over
with probability 1 — O(n*‘r’/ 8). Taking also into account the failure probability in
the initial step and the probability that the population in Region I does not grow
to size n/300, the first aim is reached with a probability of at least 1 —O(1/y/n).
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Now we assume that a situation in accordance with the second condition of
our first aim has been reached. That means, n'/® < ||z'°V|| < 2n!/%, and there
are at least n/300 individuals from Region I in A. The optimization process is
not finished before 2! has been created. We consider a new phase consisting of
the next s = [(1/16)(n?/300 — 1)Inn| = Q(n?logn) steps and claim that this
phase will not produce z! with probability 1 —O(1/y/n). This is our second aim.
First we show that a newly created individual 2'°V is a direct offspring of the
former z'°% with high probability. We call the phase clean if this condition is
not violated. In other words, in a clean phase, no individual with strictly more
than [|2'°%|| ones produces an offspring with strictly less than ||'°%|| ones. This
property can only be violated if at least n'/8 bits flip in an individual with more
than 3n'/8 ones or if the number of ones decreases by at least 2 in an individual
with at most 3n'/® ones excluding z'°V. The probability that the first event
occurs in the phase is n—SUn'®) by Lemma 2. Each step selects an individual
with at most 3n'/® ones with a probability of at most 3n'/8/(n/300) = 900n~7/8,
and, by (5), the probability to decrease the number of ones by at least 2 is at
most 18n~'4/%. The probability that the second event occurs in the phase is at
most 900n~"/% - 18n~14/% . (n2/(16 - 300)) Inn < 4n~>/8Inn. Thus, the phase is
clean with probability 1 — O(1/+/n). In the following, we assume that none of
the two events occurs in the phase, i.e., the phase is clean. This condition does
neither affect the probability to select z'°% for mutation nor the probability that
a bit flips when '°% has been selected. Now we argue analogously to the proof
of Theorem 5. Let I be a set of [n'/®] bit positions of ones in 2'°% by the time
that the phase begins. W.l.o.g., let I = {1,...,[n'/8]}. Let A; denote the event
that the bit at position i flips at least once in the steps that select z'°¥. Then
the phase can only create x! if at least [n'/8| — 1 of these events A4; happen. Let
S be the event that x! is created in the phase. Then Prob(S) is at most

PI‘Ob ((AQ n---N ALnl/SJ) y---u (Al n---N ALnl/SJ,I))
S \_nl/8J PI‘Ob(Al n---N ALnl/SJ_l)
since the union of events is upper bounded by the sum of the probabilities of each
event, and the events A; have equal probabilities. In the case of independent bit
flips, the events A; are independent events. Therefore,
nl/8)_
Prob(S) < [n'/®] Prob(Ay)---Prob(Apuss;_1) = [n"/%](Prob(4y))" 7

The probability that a bit at a specific position i € I of z!°% flips at least once in
the phase can be estimated in the following way. The individual z'°% is selected
with probability at most 1/(n/300) and the bit flips with probability 1/n. Hence,

PI“Ob(Az) S 1_(1_300/n2)(1/16)(n2/300—1)lnn S 1_6—(1/16)lnn — 1_n—1/16,
for all i € I. Now we have
Prob(S) < 711/8(1_n_1/16)L"WJ_1 < /B n—((In'/*]=1)/n/1%) _ —@!/1%),

Hence, the second phase of (n?logn) steps fails to produce x! with probability

1-0(1/y/n). 0
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6 A Test Function

The functions considered in this section are inspired by the well-known function
x> (22, (x — 2)?). The latter often serves as a test function for algorithms that
work in the continuous decision space R (e.g., Srinivas and Deb (1994)). We
adapt this function to the Boolean decision space in two different ways. The first
variant is based on the CountingOnes function uses a kind of unary encoding of
integer numbers, the second one the standard binary encoding.

Definition 10. For = x,_1,...,29 € {0,1}", let ||z|| = > "q<;<,_1 i denote
the number of ones in x and BV(z) = > y,c,_, ©:2° the binary value of x. The
functions fop, 0 <a <b<mn, and gop, 0 <a <b<2"—1, are defined by

fan(@) = ((lz] — a)?, (|lz]| — b)?),
gap(z) = ((BV(z) — a)?, (BV(z) — b)?).

For both functions, the goal is to minimize the two objectives. We adapt the
basic definitions to the case of minimization. In particular, we redefine (1) by
yRz:eViiy > 2.

Proposition 5. The Pareto set and Pareto front of fq are
X*={xla<|z| <b} resp. F*={(G*b—-a—i)*]|0<i<b—a}.
Proof. Any point x with ||z|| < a (||z]| > b) is not Pareto optimal since the value

of both objectives decreases as ||z|| increases (decreases) by 1. Consider a point
2, a < ||z]] < b. We show that z is not dominated by any point w, i.e., z is Pareto

optimal. If ||z = ||w]| then z =, , w. If ||z|| < [lw| then (||z]| —a)? < (|w]| —a)?
holds and implies z Zy, , w. If ||z]| > |Jw|| then (||z]| —b)* < (]w|| — b)? holds
and implies z Ay, , w. For all z with ||z|| = a + i, the corresponding objective
vector is (((a +1i) — a)?, ((a +1i) — b)?). 0

Proposition 6. The Pareto set and Pareto front of ga, are
X*={2]|a<BV(z) <b} resp. F*={(*b—a—1i)?)]|0<i<b—a},
and | X*| = |F*|.
Proof. Can be carried out analogously to the proof of Proposition 5. ]
Theorem 8. The expected runtime of the local and global SEMO for fq 4 is
O(nlogn +n(b— a)log(b— a)).

Note that b—a+1 is the cardinality of the Pareto front. If a and b are constants
(as in z — (22, (z — 2)?)), the expected runtime is O(nlogn).
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Proof. In this proof, all bounds are derived for the global SEMO but they also
hold for the local SEMO because we merely consider mutation steps where a
single bit flips. We partition the process into two epochs. The first epoch is the
time before the first search point in the Pareto set is produced and the second
epoch is the remaining time until the image of the population is exactly the
Pareto front.

For the first epoch, note that the population size |A| is bounded by 2. At
any time, there is at most one search point #'°¥ such that ||2!°V|| < a because
any other point with this property would either dominate z'°% or be dominated
by 2'°%. For the same reason, there is at most one search point 28" such that
|zh81|| > b. Let € A in the first epoch. From a local point of view, the aim for =
is to increase (decrease) the number of ones if ||z|| < a (]|z]| > b) . If we consider
only x, the scenario is similar to the situation where the (141) EA optimizes
the function OneMax (ZeroMax) (Droste, Jansen, and Wegener (2002)). At any
time, let  be the individual in the population such that d = |||z| — al| takes
the smaller value; ties broken arbitrarily. The d-value is non-increasing in the
first epoch since d? is the first objective of individual =, and x can only be
dominated by a new individual with a d-value that is not larger. Notice that
we can always specify d bits of x such that flipping these bits would decrease
the d-value to 0. The probability that the d-value decreases in the next step is
lower bounded by the probability that the next step chooses x for mutation and
flips solely one bit out of d specified bits in z. The latter probability is at least
(1/2)d(1/n)(1 —1/n)"~1 > d/(2en). The expected time until the first Pareto
optimal search point is produced is at most

2
Z % = 2enH, = O(nlogn),
n>d>1

where H,, denotes the nth harmonic number.

We argue that for each point of time ¢ < T, , in the second epoch, the size of
the population is at most b — a. If there are only Pareto optimal search points in
the population, this property follows from Proposition 5 as A # X* in the second
epoch. Now consider the case that there are non-Pareto optimal points in A. We
have already seen that there are at most two individuals z'°%, zhi8h € {0, 1}"— X~
in the population, where ||!°V|| < a and ||z"8"|| > b. If only one of them exists,
say z'°% (implying a > 1), then we have to show that there are strictly less than
b — a points of the Pareto set in the population. As the minimum value of the
first objective of z!° is 1, we can exclude at least all points in X* whose first
objective takes a value of 0 or 1, i.e., all points z € X* with ||z|| € {a,a + 1}.
The remaining b — a — 1 points in the Pareto front are represented by at most
that many individuals. If only 28" exists (implying b < n), we can exclude all
points x € X* with ||z|| € {b—1,b} using analogous arguments. If both 2!°" and
xhigh exist, we can exclude all points in X* with ||z|| € {a,a+1,b—1,b}. In the
last case, there are at most b — a — 3 Pareto optimal points in the population
plus z'°% and zhish,
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Now we estimate the probability p;, a < ¢ < b, that a search point with ¢
ones is created in the next step, given that there is already a search point x in
the population with ¢ — 1 or ¢ + 1 ones. The algorithm selects = for mutation
with a probability of at least 1/(b — a). The probability that the mutation step
creates a string with exactly 7 ones from a string with ¢ — 1 ones is at least
(n—i+1)(1/n)(1—1/n)""1; the probability that the mutation step creates such
a string from a string with i 4+ 1 ones is at least (i + 1)(1/n)(1 — 1/n)"~1. We
only underestimate the probability p; if we use the bounds

n—it+l 1 1\n—1 n—itl ¢
b—a 5(1 - ﬁ) 2 (b—a)ne if i > n/2’

v

Di

i+1 1 1\n—1 i+1 e s
lzzf_aﬁ(l - ﬁ) > (bia)ne if7 < n/2

Let T; denote the waiting time until a string with ¢ ones is created given that a
string with ¢ — 1 or ¢ + 1 ones has been created before. Then E(T;) is at most
1/p;. Let j be the number of ones of the first point in the Pareto set created by
the algorithm. The expected duration of the second epoch is at most

E(Tj1) + -+ E(To) + E(Tj1) + -+ E(Ty).

Our bounds for E(Ty) and E(T;,) are the largest, namely (b—a)ne/1. For E(Ty)
and E(T,_1), they are (b — a)ne/2 and so on. Hence, the last sum is upper
bounded by the sum of the b — a largest bounds. The latter is at most

1 1 1 1
(ba)ne-2<1+§+§+~'+m)

=2en(b—a)H{p—a)j21 = O(n(b—a)log(b—a)+n). O

If we switch to the standard bit representation of integer numbers, the func-
tion turns intractable for the local SEMO. The reason is that there can be large
Hamming cliffs which are not negotiable for the local mutation operator. Also
for the global SEMO the function can become much harder. We show that, for
each d € {2,...,n}, one can choose a and b such that the expected runtime of
the global SEMO is ©(n?).

Theorem 9. Let a =25 —1, b=2%, and 1 <k <n — 1. The expected runtime
of the global SEMO for ga is ©(n**1). Moreover, for 0 < ¢ < 1, the runtime
is at least n°*tY) with a probability of at least 1 — m and at most n*t2
with a probability 1 — e~

Proof. According to Proposition 6, the Pareto front is F* = {(0,1),(1,0)}, and
the Pareto set is X* = {BV '(a),BV ()} = {07 %1% 0"~+~110*} where
BVfl(i) denotes the bit representation of a non-negative integer i. We parti-
tion the run of the algorithm into two consecutive epochs. The first epoch lasts
until the first Pareto optimal search point BV~'(a) or BV~!(b) is created. For
the first epoch, we prove only a weak upper bound because the second epoch
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dominates the runtime; however, we must take care that our bound holds with
a probability 1 — e~

Note that the population size | A| is bounded by 2 in the first epoch. There is
at most one search point z'°% such that BV(z'°") < a because any other point
with this property would either dominate '°V or be dominated by z'°%. For the
same reason, there is at most one search point 28" such that BV (z"8h) > b.
We subdivide the first epoch into two subepochs such that the first subepoch
lasts until an individual = with BV (z) < 2¥*1 is created. Clearly, the population
is A = {zM#h} in the first subepoch. If solely the leftmost one of z"&" flips,
BV (z"8h) is at least halved. We call this event a success in the first subepoch.
The probability that a step is a success is (1/n)(1 — 1/n)"~! > 1/(ne). As the
initial value of BV (2"81) is at most 2" — 1, a number of n — (k + 1) successes are
sufficient in the first subepoch. In the second subepoch, the binary value of each
individual in A is less than 2**1 i.e., all prefix bits corresponding to the weights
2n=1 .. 2k+1 are 0-bits. For z € A, let d(x) := min{| BV(x) — a|,| BV(x) — b|},
and let d(A) = min{d(x),x € A}, i.e., d(A) is the smallest distance from a point
in A to a point in the Pareto set in terms of binary values. At any time, let z € A
be the point with the smaller d(x)-value; ties broken arbitrarily. Note that if
is removed from A, a new individual with a d-value that is not larger enters
the population at the same time. Consequently, the d(A)-value only decreases
with time. If BV(z) > b then x, = 1 and d(4) = BV(z) —b =Y c;cp T2
Flipping solely the leftmost 1-bit in the suffix xx_1,...,20 reduces the d(A)-
value at least by a factor of 1/2. If BV(z) < a then z;, = 0 and d(A) = a —
BV(z) = Y gcicn_1(1 — ;)2%. Flipping solely the leftmost 0-bit in the suffix
Tk_1,...,%o reduces the d(A)-value at least by a factor of 1/2. The algorithm
selects = for mutation with a probability of at least 1/2. Hence, the next step
decreases the d(A)-value at least by a factor of 1/2 with a probability of at least
(1/2)(1/n)(1 — 1/n)"~t > 1/(2en). We call this event a success in the second
subepoch. A number of k successes are sufficient for the second subepoch, and
less than n successes are sufficient for the first epoch. In a sequence of 12n?
steps, the expected number of successes is at least 2n and, by Chernoff bounds,
the probability of less than n successes is e 2",

By the time that the second epoch starts, the algorithm has found either
BV~ '(a) or BV_!(b) first. The point BV~*(a) (BV (b)) dominates all other
points in the decision space except BV~!(b) (BV~'(a)). Therefore, the popula-
tion is {BV~!(a)} or {BV~*(b)}, and no offspring except BV ! (b) resp. BV~ *(a)
will be accepted. Only a mutation step flipping solely the k+1 rightmost bits cor-
responding to the weights 2%, ..., 2° will be accepted. The corresponding proba-
bility is (1/n)F*1(1 — 1/n)"~*+1 Tt is upper and lower bounded by 1/n*+! and
1/(en**1), respectively. Thus, the expected waiting time for this event is upper
and lower bounded by the expectations of random variables following the geo-
metric distribution with parameter 1/(en*+1) and 1/(n**1), respectively. Hence,
the expected runtime (for both epochs) is ©(nF+1).

The probability that a number of steps in the second epoch succeeds in
producing the second Pareto optimal point is upper bounded by the sum of the
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success probabilities in each step. Hence, the probability that the first nc(k+1)
steps in the second epoch are not successful is lower bounded by

1
n(1—c)(k+1)"

_ c(k+1) _ 1 _
n(k+1)n =1

Remember that the first epoch is finished after 12n*+! steps with an overwhelm-
ing probability 1 — e~ ("), The first nF*2 — 12n**1 steps in the second epoch
succeed in finding the second Pareto optimum with a probability of at least

nht2_1opk+?

1 ~Q(n)

Although one of the two Pareto optima is found quickly by the algorithm
(almost surely in time O(n?)), a large Hamming distance to the second Pareto
optimum ensures a large (expected) runtime. For k& = ©(n), the runtime is
n®(™) with a probability exponentially close to 1. Apparently, the global and
local SEMO would not always find the same Pareto optimum first. Multiple
runs could help to detect the entire Pareto set if each instance of the algorithm
is halted after 12n? steps and non-dominated solutions in the union of the final
populations are computed.

7 Conclusion

The runtime of simple multi-objective evolutionary algorithms (MOEAs) can
be analyzed. In the worst case, the global SEMO has an expected runtime of
O(n™) that matches the expected worst-case runtime of simple EAs working
in the scenario of single-objective optimization. The expected worst-case run-
time is independent of the dimension of the objective space. Moreover, for each
d € {2,...,n}, we have exhibited a bicriteria problem such that the expected
runtime of the global SEMO is ©(n?). Explicit bounds on the expected runtime
for simple objective functions can be derived, e.g., for the problem LOTZ (lead-
ing ones trailing zeroes). In many situations, bounds on the runtime that hold
with high probability can be derived. Applied to the problem MOCO (multi-
objective counting ones), the global and local SEMO have very large resp. non-
finite expected runtimes but the runtimes are ©(n?logn) with high probability.
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