UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE
COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

Population Size vs. Runtime of a Simple
Evolutionary Algorithm

Carsten Witt

No. CI-156/03

Technical Report ISSN 1433-3325 October 2003

Secretary of the SFB 531 - University of Dortmund - Dept. of Computer Science/XI
44221 Dortmund - Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

Population Size vs. Runtime of a Simple
Evolutionary Algorithm

Carsten Witt*
FB Informatik, LS 2
Univ. Dortmund
44221 Dortmund, Germany
carsten.witt@uni-dortmund.de

October 8, 2003

Abstract

Evolutionary algorithms (EAs) find numerous applications, and practical
knowledge on EAs is immense. In practice, sophisticated population-based
EAs employing selection, mutation and crossover are applied. In contrast,
theoretical analysis of EAs often concentrates on very simple algorithms
like the (14+1) EA, where the population size equals 1. In this paper,
the question is addressed whether the use of a population by itself can
be advantageous. A population-based EA that does neither make use
of crossover nor any diversity-maintaining operator is investigated on an
example function. It is shown that an increase of the population size
by a constant factor decreases the expected runtime from exponential to
polynomial. Thereby, the so far best known gap is improved from super-
polynomial vs. polynomial to exponential vs. polynomial. Moreover, it is
proved that the exponential and polynomial runtime bounds occur with a
probability exponentially close to one if the population size is a constant
resp. a small polynomial. Finally, a second example function, where only
a small population leads to a polynomial runtime, and a hierarchy result
on the appropriate population size are presented.

1 Introduction

Evolutionary algorithms (EAs) are successfully applied in many areas, and ex-
perimental knowledge on EAs is immense. Yet, the theoretical knowledge on
the design and analysis of EAs is far behind practical knowledge. A common
approach to learn how evolutionary algorithms work is to analyze simple EAs
for the maximization of functions. Here, we restrict ourselves to the case of
pseudo-Boolean (fitness) functions f: {0,1}" — R.

The simplest EA investigated so far is probably the well-known (1+1) EA
(see, e.g., Droste, Jansen, and Wegener (2002); Garnier, Kallel, and Schoe-
nauer (1999); He and Yao (2003); Wegener and Witt (2003)). It incorporates

*The author was supported by the Deutsche Forschungsgemeinschaft (DFG) as a part of
the collaborative research center “Computational Intelligence” (SFB 531).

a population of size 1 and, yet, is surprisingly efficient for many problems.
We address the question when true populations, i.e., population sizes larger
than 1, are helpful in EAs. Early attempts to find functions where a genetic
algorithm (GA) with a true population and a crossover operator outperforms
the (1+1) EA (in terms of the expected runtime) were unsuccessful (Mitchell,
Forrest, and Holland (1992)). The same authors showed for their so-called royal
road functions that even simple hillclimbers outperform the GA (Mitchell, Hol-
land, and Forrest (1994)). Functions demonstrating the use of a crossover
operator have been presented lately (Jansen and Wegener (2001b); Storch and
Wegener (2003); see also Dietzfelbinger, Naudts, van Hoyweghen, and Wegener
(2003)). However, this does not explain why a true population by itself can
be advantageous. Therefore, we investigate EAs in which mutation is the only
search operator and which do not employ diversity-maintaining mechanisms.
For such EAs, we try to estimate the appropriate population size for example
functions.

A similar approach has been described recently for (1+\) strategies by
Jansen and De Jong (2002), who have shown that A = 1 is an optimal choice for
some well-studied functions. On the other hand, the authors have presented an
example function where a (1+\) strategy with A > 1 outperforms the (1+1) EA
drastically. Yet, only offspring population size is considered in their paper. The
influence of population size in an EA in which also a true parent population
is maintained and which does not make use of crossover has been studied by
Jansen and Wegener (2001b). The authors have proved rigorously that their
EA outperforms the (1+1) EA on a specific function and have shown a runtime
gap that is superpolynomial vs. polynomial. Further studies of the impact of
population size on runtime have been presented by He and Yao (2002, 2003).
However, the results obtained by the authors are based on EAs that employ
mechanisms for maintaining diversity, single-individual EAs that use only a lo-
cal search operator, or EAs that employ crossover. None of this is needed in the
population-based EA that we will consider here. Instead, we widen the result by
Jansen and Wegener (2001b) and exhibit a function where an EA with a large
population size outperforms the same EA with a small population size (and also
the (14+1) EA) and where the runtime gap is even exponential vs. polynomial.
Moreover, the exponential and polynomial runtimes are proved to occur with
probability exponentially close to 1, and the population size where the expected
runtime changes from exponential to polynomial is asymptotically tight.

The paper is structured as follows. In Section 2, we define the EA and the
function that we study in the forthcoming sections. Moreover, we supply some
basic technical lemmas. In Section 3, we show an exponential lower bound on
the expected runtime for population sizes of order O(1). The probability of a
polynomial runtime is exponentially small, and the expected runtime remains
exponential if the population size is bounded by en'/? for some small enough
constant ¢ > 0. In Section 4, we prove an O(un®/?logn) bound on the expected
runtime for the same function when the population size u is at least 3n1/2. Here,
the probability of a runtime of w(un®?logn) is exponentially small. The proof
in Section 4 utilizes a theory on random trees, which is of interest on its own. To

make the paper self-contained, the required analysis of random trees is included
in Appendix A.

In Section 5, we depict a reverse example, where a small population leads
to a polynomial runtime whereas a large population leads to an exponential
runtime. Finally, in Section 6, we develop a hierarchy result for a class of
functions where the expected runtime of the GA changes from exponential to
polynomial if its population size is of order ©(nF~1/ 2) for an adjustable integer k.
We finish with some conclusions.

2 Definitions

The population-based evolutionary algorithm that we study is quite simple. It
can be considered as an elitist steady-state GA with population size p employing
fitness-proportional selection for reproduction, inversely proportional selection
for deletion (meaning that worse individuals are more likely to be deleted)
and standard bitwise mutation with probability 1/n like in the well-known
(14+1) EA. Since these settings are common for genetic algorithms, we call our
EA a Steady-State GA (or briefly the GA) even if it does not incorporate a
crossover operator.

Definition 1 (The Steady-State GA)

For i :=1 To u Do
Choose z; € {0,1}" uniformly at random.
Repeat infinitely
Choose y € {z1,...,x,} such that
Probly — ;) — f(a:)/ S0, f(z).
Create z,41 by flipping each bit of y
independently with probability 1/n.
Rearrange {z1,...,2,41} such that
f(z1) is maximal and f(z,1) minimal.
Choose y € {x,...,x,41} such that

—) — fle)+f(@pg1)—f() :
Prob(y = ;) S G f) (@) and delete it.

Since, in the deletion step, z1 is always kept, the GA is elitist. We do
not need to specify which of the best individuals (if there is more than one) is
retained by the elitist strategy since our analyses will work for any choice of
a best individual. If we set 4 = 1 and demand in the deletion step that the
newly created individual is kept if its f-value equals the one of its father, we
obtain the well-known (1+1) EA out of our GA. Moreover, our GA resembles
the one considered by Jansen and Wegener (2001a). Yet, we do not introduce
techniques to avoid duplicates or other mechanisms for maintaining diversity.
We remark here that the theorems presented in this paper can also be proven
for variants of our GA. For instance, all results remain valid if we replace
the selection for replacement with a deterministic plus-selection. We stick to
the fitness-proportional selection for deletion since we consider it to be more
common for genetic algorithms.

The current runtime of the GA is measured by the sum of the initializa-
tion cost p and the total number of iterations (also called steps) of the infinite
loop up to now. Since only one evaluation of the objective function per itera-
tion is necessary, the runtime corresponds also to the number of f-evaluations.
This is a common approach in black-box optimization (see Droste, Jansen,
Tinnefeld, and Wegener (2003)). However, one might not want to neglect the
computational effort spent within an iteration. In this case, one may multiply
the number of f-evaluations by the population size . Since only polynomial
values of p are considered, this does not influence the qualitative result of a
polynomial-vs.-exponential gap.

One may object that the GA has been stated without a stopping criterion.
Finding a reasonable stopping criterion is a problem that is relevant in practice.
For our theoretical investigations, we consider the random time X until the
current population of the GA contains at least one optimal individual for the
first time, i. e., some z € {0,1}" such that f(x) is maximal. Then we say briefly
that the GA has reached the optimum. We call Xy the runtime of the GA and
study its expectation E(X) and the success probability Prob(X; < t) for ¢t > 0.

To prove the main result of this paper, we investigate the GA on a specially
designed fitness function that exemplifies the use of populations and the influ-
ence of population size. The function is almost separable and can always be
written as the sum of two functions, defined on disjoint subsets X; and Xs of
the whole variable set, respectively. These variables from X; and X5 each have
optimal assignments, which we call goals. Normally, after random initialization,
the GA is able to search for the goals of X; and X5 in parallel. However, as
soon as search points that are optimal in one of the variable sets are found, the
fitness landscape changes. We design the changes such that the goals play the
following role.

If the second goal is reached before the first one, the GA is likely to get stuck
in a local optimum. If the first one is reached before the second one, we have
found a globally optimal search point. For small populations, the second goal
is usually reached before the first one, leading to a large optimization time with
high probability. If we increase the population size, the average progress to the
second goal in a step becomes smaller whereas the progress towards the first goal
is virtually independent of the population size. This holds since the progress
to the first goal influences the f-value much stronger than the progress to the
second one and since the GA chooses fitness-proportionally. If the population
is large enough, the first goal is usually reached before the second one.

Let us make these ideas precise. In order to be able to show exponential
bounds, we artificially scale the influence of one of the two variable sets expo-
nentially. In practice, one may hope that the population size in GAs is relevant
for functions that are in some respect similar to our function. Similar means
that the function is separable with respect to two goals, one of which influences
the function value stronger than the other one.

Now we define f: {0,1}" — R. Let £ := [n'/2/400] and m := n — L.
Moreover, let £* := [n'/2/(800 - logn)]. We divide strings (individuals) = =
(x1,...,2y) € {0,1}" into their prefix (z1,..., %) of length m and their suffix
(®m+1,-..,2n) of length ¢. By PO(x) := >_" | x;, we denote the sum of the

4

prefix bits, i.e., the number of prefix ones. We want the suffix to be of shape
1°0°~" and count 4, the number of its leading ones, then. Thus, we define

LSO(z) := Zf:é 2':0 ZTm41+4j as the number of leading suffix ones. If the

suffix of a string z is of the desired form 1°0°~%, we say that z is shapely, and
malformed otherwise. W.1.0.g., m is divisible by 3. Now let

PO(z) + n™LSO@+) if 3 shapely and PO(z) < 22,
f(z) := { pmt+PO@) LSO(z) if = shapely and 27”1 <PO(z) < 2Tm T

n .
n— % otherwise.

We have to discuss the structure of f. First, observe that f(z) is always
positive. In all three cases, the function is separable with respect to the prefix
and suffix bits. The first two cases apply to strings x whose suffix is shapely.
Consider the first case. With respect to the prefix bits, we have the well-known
ONEMAX function. With respect to the suffix bits, we have to maximize the
number of leading 1-bits. Apart from the exponential scaling, the latter function
is also known as the LEADINGONES function (see Droste, Jansen, and Wegener
(2002)). Maximizing the number of leading suffix ones (LSOs) can be viewed
as the above-mentioned first (and more important) goal whereas setting the
number of prefix ones (POs) to 2m/3 is the second goal. If the number of LSOs
equals £ and PO(x) = 2m/3, we obtain the maximum f-value of 2m/3+n™¢+1),

In the second case of f’s definition, the f-value is the sum of two terms
that depend exponentially on the number of POs and linearly on the number of
LSOs, respectively. Any shapely string where 2m/3 < PO(z) < 2m/3+4¢* has
a larger f-value than each a’ where PO(z’) < 2m/3 and LSO(2') < ¢, i.e., than
each 2’ from the first case having a non-optimal suffix. If PO(z) = 2m/3 + ¢*
and LSO(z) = ¢, we obtain a locally maximal string with second-best f-value
pmeH2m/34+8 L However, a globally maximal string has 2m/3 POs. Hence,
such a string has Hamming distance ¢* = Q(nl/Q/log n) to a second-best one,
wherefore escaping from the local optimum typically takes a long time.

The remaining points, which lead to the case “otherwise”, have more than
2m/3 + ¢* POs or a malformed suffix. Their f-value is very low and increases
with respect to the number of zeros in both the prefix and suffix bits. This
is meant to help the GA to find a shapely string after random initialization.
The f-value of strings with more than 2m/3 + ¢* POs is so low to guarantee
that the Hamming distance of a second-best and an optimal string is at most
¢* in the prefix bits, which will be relevant for upper bounds (Section 4). Fi-
nally, we remark that evaluation of f(x) is possible in polynomial time for each
x €{0,1}"™.

If our GA is employed to maximize f, it reaches with overwhelming prob-
ability a population such that all individuals contain at most 2m/3 POs, all
individuals are shapely and no individual is optimal (we call such a population
an ordinary population). Therefore, it is important to study the selection prob-
abilities of the Steady-State GA for ordinary populations and the function f.

Concerning ordinary populations, it is crucial to note that an individual’s
number of POs virtually does not influence the selection probabilities of the
GA. We denote by the random variable M for a population X = (z1,...,2,)

the index in {1,...,u} of the individual chosen for mutation (regarding the
fitness function f). Likewise, we denote by D for an enlarged population ¥ =
(y1,---,Yus1) the index in {1,..., 4+ 1} of the individual chosen for deletion.
We write p = poly(n) to denote that p is bounded by some polynomial of n.
Since populations are unordered multisets, the following statements of Lemma 1
and Lemma 2 hold for arbitrarily assumed orders of the considered populations.

Lemma 1 Let X = (x1,...,2,) be an ordinary population and x; and x; two
individuals in X such that LSO(z;) = LSO(z;). Then

Prob(M = j)

1 — p—m)
" ~ Prob(M =1)

<1+ n—m)

Proof: According to the definition of the Steady-State GA (Definition 1),

Prob(M =) _ f(z,)
Prob(M =1i) f(z;)’

Since X is ordinary, the f-value is the sum of two terms that depend linearly on
the number of POs and exponentially on the number of LSOs. More precisely,
we have f(z;) = PO(z;) +n™SO@I+Y and f(x;) = PO(x;) +nmLS0@)+) —
PO(z;) + n™ISO@)+T) | Hence, f(x;)/f(x;) = 14+ n=m). O

Moreover, we show that it is very unlikely to select individuals for mutation
whose LSO-value is not maximal or to select individuals for deletion whose
LSO-value is maximal.

Lemma 2 Let X = (z1,...,x,) be an ordinary and Y = (y1,...,yu+1) be an
enlarged ordinary population. Let {x and fy be the mazimum LSO-value for
the individuals from X and Y, respectively. Moreover, let there be at least one
yi in'Y such that LSO(y;) < ly. If u = poly(n) then Prob(LSO(zy) = lx) =
1 —n=2") " Moreover, Prob(LSO(yp) = fy) = O(n™"™) for arbitrary p.

Proof: For the first statement, we refer to the GA’s selection probability for
reproduction (Definition 1). Obviously, the probability of choosing some indi-
vidual with maximal number of LSOs becomes minimal if ;4 — 1 individuals x;
fulfill LSO(z;) = ¢x — 1 and PO(z;) = 2m/3. Hence,

Prob(LSO ¢) e
= > == 1 - B " *
rob((zar) = £x) = poly(n) - (2m/3 + nméx) 4 pmlx+1) !

Similarly, Prob(LSO(Yp) = ¢y) becomes maximal if ¥ contains p individuals
with LSO-value ¢y. Consider the probability for deletion. Then, by counting in
the nominator only the term for the worst individual, which has an LSO-value
of at most £y — 1,

n™Y +4m/3

Prob(LSO(yp) = by) < D) O(n™™).

3 An Exponential Lower Bound for Small Popula-
tions

In this section, we show that the GA is very inefficient on the function f if too
small populations are used.

Theorem 1 With probability at least 1 — 2*9("1/2), the Steady-State GA with
w = O(1) requires at least 20(n'/?) steps to optimize f.

Proof: The proof idea is that with high probability, the GA reaches a popula-
tion containing at least one individual with 2m/3 + ¢£* POs (hereinafter called
prefiz-optimal individual (POI)) without ever generating ¢ leading ones in the
suffix of an individual. This can be shown since optimizing the prefix takes an
expected number of O(n) steps if 4 = O(1) whereas optimizing the suffix takes
Q(nf) expected steps in any case. Since each globally optimal individual has
Hamming distance Q(¢*) = Q(n'/2/logn) to a POI, reaching the optimum from
a POI requires an exponential waiting time with high probability.

The formal proof uses the proof idea of identifying a typical run of the GA.
We show that the probabilit/y of not observing a typical run is exponentially
small, more precisely 2-2(n'%) " The typical run is divided into three epochs.
The first epoch lasts until the population contains at least one shapely indi-
vidual with at most 2m/3 4+ ¢* POs, the second one ends when the current
population contains a POI for the first time, and the third one is finished when
the optimum is reached. Typically, the third epoch takes the long waiting time
of 22" The run is not typical if the optimum is reached before the third
epoch.

Consider the first epoch, which starts with initialization and is finished when
a shapely individual with at most 2m/3 + ¢* POs (i. e., not leading to the case
“otherwise” in the definition of f) is created or the optimum is reached. We
call the creation of an individual as described a success. Clearly, the fraction
of shapely individuals among all individuals is (¢ + 1)/2°. Since the initial
individuals are drawn uniformly at random, the probability of a success in
the initialization is at most u(¢ + 1)27¢ = 2-2n"") gince u = O(1). Hence,
we assume the GA to start with p malformed individuals, and the run is not
typical otherwise. To estimate the time ¢* until a success occurs, we consider the
maximum f-value in the population as a potential. Due to the elitist selection
mechanism of the GA, the potential cannot decrease. Moreover, the time until
a success is bounded above by the time until the potential becomes at least n.
Due to the definition of f in the case “otherwise”, we can apply results on
the analysis of linear functions (see Droste, Jansen, and Wegener (2002)). The
expected time until reaching at least potential n is O(nlogn) if we count only
the steps choosing an individual with maximum f-value. Since such a step
occurs with probability at least 1/u according to Definition 1 and since the
mutation operator is independent of the selection operator, the expected time
until reaching at least potential n is O(unlogn). By Markov’s inequality, the
time is bounded by cunlogn for some constant ¢ with probability at least

1/2, and, by repeating independent trials, potential at least n is reached with
probability at least 1 — 27¢ within at most fcunlogn = O(ulfnlogn) steps.

We prove that the first shapely individual with at most 2m/3 4+ ¢* POs
(created at the random time ¢*) is likely to have not too many LSOs. Consider
the set S consisting of all malformed strings and all strings with more than
2m/3 + £* POs, i.e., those strings leading to the case “otherwise” in the def-
inition of f. Each initial individual of the GA is drawn uniformly at random
from S if it is from S. We introduce the subset S’ < S consisting of all strings
from S having at least [2¢/3] (not necessarily leading) ones in the suffix. By
elementary counting arguments, |S’|/|S| = 279, Since u = O(1), this implies
that the probability of choosing an initial individual z from S’ is 27%®) even if
we know that z is from S. Consider the random string z’ created by mutation
of a string x that was drawn uniformly at random from S. If we know that 2’ is
also from S, the symmetry of the mutation operator implies that 2’ is uniform
over S as well. In particular, it is from S’ with probability 2~

However, if the GA creates a sequence of individuals from S starting with a
population from S, the elements of this sequence are not distributed uniformly
over S. Instead, the selection operators prefer individuals with less ones since
the f-value increases if the number of ones of a string from S is decreased. Since
|S’| < |S]/2 and S’ contains all the strings from S with ¢ suffix ones for any
i€ {]2¢/3],...,¢}, an inductive argument yields that the probability of hitting
a string from S’ even decreases in the considered sequence of steps. Hence, any
string created before the first one outside S contains at most 2¢/3 suffix ones
with probability 1 —27%®_ The probability of flipping at least ¢ /12 bits in one
step is bounded above by (é/”m)n*g/12 < 1/(£/12)! = 2=l according to
Stirling’s formula (see Feller (1971)). We have t* = O(ufnlogn) with proba-
bility 1 — 279 and, therefore, t* is a polynomial with this probability. Since
flipping at least /12 bits has probability 2-Q(tlogd) i 4 polynomial number of
steps, the shapely individual with at most 2m/3 + ¢* POs created at time t¢*
has less than 2¢/3 4 £/12 < 3¢/4 LSOs with probability 1 — 27%® . In the
following, we assume this to have happened. This completes the analysis of the
first epoch.

In the beginning of the second epoch, we have at least one shapely individual
with an f-value of at least n™. Hence, by Definition 1, the probability of
choosing a malformed individual for mutation is bounded by n/n™ = n—Sm)
now. For the second and also for the third epoch, we assume no malformed
individual to be ever chosen. Now we divide the second epoch into phases of
length s (which value is left open for the moment), and want the GA to increase
the number of POs of some individual to at least 2m/3 + ¢* in a phase. To
estimate the time until this event, we introduce again a potential P, defined
as the number of POs of an individual with maximum f-value in the current
population. If the number of POs of two individuals differs, so does their
f-value. Hence, P is well defined. Now it is crucial to note that due to the
definition of f and elitist selection, the P-value cannot decrease in a step where
the mutation does not increase the number of LSOs. We call steps increasing
the number of LSOs bad since only they can lead to a decrease of P. A phase

of s steps is called bad if it contains at least one bad step, and good otherwise.
In good phases, we can control the potential P. Hence, we want to find a good
phase in which the GA increases P to 2m/3 + ¢*, i.e., creates a POI, without
generating an optimal individual. Afterwards, we have to bound the overall
number of bad steps in preceding bad phases to exclude the event of reaching
the optimum. Let us assume for the moment that we have a good phase that
starts with a non-optimal population. We claim that by its end, we have, with
a probability of at least 1 — 272" at least one POI in the population. (This
may finish the phase prematurely, i.e., lead to an actual phase length of less
than s.)

In the good phase, we investigate so-called helpful steps increasing the
P-value by 1, and we only have to consider P-values of at most 2m/3 + £*.
Hence, the probability of a helpful step is at least the probability of flipping
exactly one prefix zero in an individual with maximum f-value, i.e., at least

n—1

GRS PY e R

w\3 n n
for some constant ¢ > 0 (recall that m = n—o(n) and p = O(1)). Within [m/c|
steps, we expect at least m helpful steps, and by Chernoff bounds (see Motwani
and Raghavan (1995)), with probability at least 1—2~("), the number of helpful
steps is bounded below by 2m/3 + ¢* if the phase is not finished prematurely.
Hence, we set s := [m/c]. As suggested, this implies the considered good phase
to end with at least one POI with probability 1 — 2%,

We still have to take into account the bad steps. The probability of a
bad step is bounded by 1/n since it is necessary that the leftmost suffix zero
flips. Moreover, s = O(n). Hence, the probability of a bad phase is at most
1—-(1-1/n)® <, for some constant ¢ < 1. The event of some phase being
bad is independent of the event of some other phase being bad. Therefore, the
probability of observing at least £c/8 bad phases in a row is at most (¢/)%/8 =
2~ Moreover, the expected number of bad steps in a total number of

le le m In e
) s (Zo) () <24 S
(8 >8_<8 ><c+)_8+8

steps is at most (¢n/8 + lc/8)/n = /8 + o(1). Altogether, the probability of
at least ¢/6 bad steps within the phases is 27) as well (by Chernoff bounds).
Hence, we can work under the condition that we observe a total number of at
most ¢/6 bad steps within at most fc/8 bad phases, which condition does not
increase the probability that a step within these phases is bad. At most £/6 bad
steps flip a total number of at most ¢/5 bits with probability at least 1 — 2~
according to Chernoff bounds. Since we consider only shapely individuals with
at most 3¢/4 LSOs, this implies that the number of LSOs of any individual does
not exceed 3¢/4 + ¢/5 < ¢ with probability 1 — 2~ until the good phase. So
far, the probability of a typical run has been bounded by 1 — 2*9("1/2), i.e., the
third epoch is entered with the mentioned probability.

Throughout the third epoch, we have at least one POI in the population.
The epoch is finished when the optimum is reached. We consider events that

are necessary to reach the optimum if we exclude steps that flip many bits. The
probability of flipping at least £*/2 bits in one step is bounded by 1/(¢*/2)! =
9~ Un'2) Working under the assumption that a step flips at most £*/2 bits, it
is necessary that the optimum is reached by mutating some individual with at
most 2m/3+¢* /2 POs. However, the probability of choosing such an individual
for mutation is bounded above by

l+ nm€+2m/3+€*/2

—)

=N = 279(’”1/2)

K nme+2m/3+L*

since the population contains at least one POIL. (The probability of choosing
an individual with at most 2m/3 POs and less than ¢ LSOs is even smaller.)
Altogether, the probability of observing in a step of the third epoch an event
leading to optimization is bounded above by 20 n!/?), Finally, the probability
of such an event within 257" steps of the third epoch is bounded by 9= Q') if
the constant ¢ is small enough. This completes the analysis of the third epoch
and, since the probability of a typical run has, altogether, been bounded by
1-— 279("1/2), also the proof. O

Theorem 1 applies also to the simple (1+1) EA since it is contained in
Definition 1 if 4 = 1. Besides, it implies that even multistart variants of the
(14+1) EA and the GA with g = O(1) fail with probability exponentially close
to 1 within polynomially many steps if the number of instances is bounded by
any polynomial. Moreover, we conjecture that more complicated GAs (even
with a crossover operator) are likely to require an exponential time on f if their
population is small, e. g., a constant.

If the population is larger than a constant, more precisely p < cn*/“ for
some constant ¢, we can still prove an exponentially large expected optimization
time for our GA, albeit we can prove only an exponentially small probability
for exponential runtimes.

1/2

Corollary 1 There is a constant ¢ > 0 such that the Steady-State GA with
population size p < en’? needs an expected runtime of 22! 4o optimize f.

Proof: We prove that the GA requires at least ¢t = 29(n'/?) steps with a
probability of at least p = 279 if ¢ is small enough. Hence, ¢ can be bounded
below by 2¢n"? for some constant ¢ > 0, and p can be bounded below by
9=¢"i = 9=¢"en'’? {1 some large enough constant ¢’ > 0. If we choose ¢ small
enough, the product of these lower bounds is still bounded below by 20(n!/?)
This will imply the corollary.

The proof of the open claim follows the same structure as the proof of
Theorem 1 such that we only describe the places where different arguments are
needed. The analysis of the first epoch and third epoch can be carried out in
the very same way since for the related estimations, p = poly(n) is sufficient.
For the second epoch, the probability of a helpful step is now bounded below by
c*/p, for some constant ¢* > 0. In a phase of length s := [mu/c*], we expect
at least 2m/3 4 ¢* increases of the P-value with probability at least 1 — 2—n),
However, the probability of this single phase being good is only bounded below

10

by (1 —1/n)* > e~2#/¢", This implies that the second epoch, now consisting of
only a single phase, ends with probability at least e 2#/¢" at a population with
at least one POI and no individual with at least 3¢//4 LSOs. The third epoch
lasts 22('*) steps with probability 1 — 20t/ Altogether, this implies that
the number of steps is at least 20('?) with a probability of at least 2-0m O

4 A Polynomial Upper Bound for Large Populations

In view of the proof of Theorem 1, it seems important for the GA to maximize
the number of LSOs before increasing the number of POs beyond 2m/3. In
fact, the use of a large population leads to a better exploitation of the primary
goal of maximizing the number of LSOs.

Theorem 2 With probability at least 1 — 2_9(”1/2), the Steady-State GA with
p > 302 and p = poly(n) optimizes f in O(ulnlogn) steps. Its expected
runtime is bounded by O(ulnlogn).

In conjunction with Corollary 1, this means that pu = [3n/2] seems to be
the best choice. At least for u = w(n?logn), the initialization cost of the GA
becomes larger than the upper runtime bound O(n?logn) that we obtain for

p= [3n'/2].

Proof: Observe that the initialization cost p is always covered by the claimed
runtime bounds. For the first statement of the theorem, the proof idea is again
to identify a typical run of the GA, described as follows. Since the population
size is large, we expect mutations that increase the number of POs to distribute
among many individuals (as opposed to Theorem 1). This is due to the fact
that individuals with maximal LSO-value are likely to produce copies, lead-
ing quickly to populations where many individuals have the same LSO-value.
Conversely, the number of mutations necessary to reach maximal LSO-value
remains approximately the same compared to Theorem 1. If each individual
receives few mutations increasing its PO-value, it is likely that the maximal
LSO-value is reached before the PO-value exceeds 2m/3.

Formally, we consider the following typical run. The arguments for the
analysis of the first epoch in the proof of Theorem 1 tell us that the GA creates
at least one shapely individual after O(ufnlogn) steps with a probability at
least 1 — 273¢. (This non-asymptotic estimation will matter latter.) Let t*
denote the first point of time with a shapely individual in the population. The
prefix of an individual is uniformly distributed over {0, 1}" in the initialization,
the f-value before time t* increases as the number of POs decreases, and the
prefix is irrelevant for an individual to be shapely. Therefore, an inductive
argument yields that each prefix bit of an individual at time t* contains a
l-entry with probability at most 1/2. This implies by Chernoff bounds that
each individual at time ¢* (and, especially, the shapely one) has at most 7m /12
POs with probability 1 — x2-%() =1 — 279 gince pu = poly(n). We assume
this property to hold at time ¢*.

11

Starting at time t*, we consider a predefined phase of length at most s :=
[4eln], i.e., s = ©(n3/?). To avoid confusion, we call this the s-phase. Our aim
is to prove that the run of the GA complies with the following two properties
with probability at least 1 — 20/,

e Within the s-phase, no individual has more than 2m/3 POs,

e there is at least one step in the s-phase where an individual with ¢ LSOs
is generated. The s-phase is finished after such a step.

We will see that an optimal individual is easy to find after the s-phase has been
finished according to the properties.

To analyze the probability of the intersection of the two events, we first study
the second property assuming that the first property holds. We introduce for
the current population the potential L, describing the maximal number of LSOs
for the population’s individuals. Note that we assume all populations to contain
at least one shapely individual. Furthermore, since we assume no individual of
the population to have more than 2m/3 POs, elitist selection guarantees that
the L-value does not decrease. We call an individual whose number of LSOs
equals the current L-value mazximal. If the phase contains at least £ so-called
good steps where a maximal individual (MI) is chosen for mutation and where
merely the leftmost suffix zero flips, an individual with ¢ LSOs is created.

According to Lemma 2, the probability of choosing an MI for mutation is
at least 1 — n~ ™) since p = poly(n). The probability of flipping the leftmost
suffix zero is at least (1/n)(1 — 1/n)"~! > 1/(en), and the probability of a
good step is still (1 —o(1))/(en). The assumption that the first property holds
does not influence these probabilities since prefix and suffix bits are treated
independently. We can ignore the event that the s-phase is finished prematurely,
i.e., after less than s steps. By Chernoff bounds, the probability of at least ¢
good steps within [4efn] steps is bounded by 1 — e 9%¢/4-o0) = 1 — 2-0n'/?),
This completes the proof for the second property of the s-phase.

For the first property, we consider an arbitrary but fixed individual z from
the population at time t*. If x is mutated, a descendant of z is produced. More
generally, we can visualize the descendants of x and their descendants by a
family tree Ty(z) at time t as follows. Tj«(z) contains only z. Ti(x) contains
Ti—1(x) and the additional edge {v,w} if w is the result of a mutation of the
individual v at time t—1 and v is contained in T;_1(x). Note that the tree T} (x)
may contain individuals that have already been deleted from the population at
time t. We consider x as the root of Ti(x) and are interested in the depth
of Ti(x) and, especially, of Tj«;s(z). For convenience, we say that x reaches
depth j iff T;(z) has depth j at the considered time step t.

Now our goal is to show that no individual from the population at time ¢*
reaches a depth of more than n/15 within s steps with probability 1 — 2 8(n),
This implies by Chernoff bounds that each descendant of any individual x at
time ¢* differs from z in at most m/12 bits with probability 1—2~*" since n/15
mutations flip at most m /12 bits with probability 1—2-%(m) = 1-2-%")_ Since
each considered x contains at most 7m/12 POs, flipping m/12 bits does not

12

suffice to increase the number of z’s POs to more than 2m/3 with probability
1 — 272" This will imply the first property.

To show the claim that depth n/15 is not exceeded, we consider the growth
of the family tree T;(z) for any fixed = more carefully. In all following considera-
tions, we can assume that we have ordinary populations since otherwise the first
property is violated or we are done. According to Lemma 2, the probability of at
least one deletion of an MI within s steps is bounded by O(sn~"™) = 2~ Xnlogn)
if there is still a non-MI in the population, and the probability of not choosing
an MI for mutation is bounded by sn~ M) = 2-8(nlogn) We assume these
events not to occur, which implies that w.l.0.g., z is an MI.

Consider the epoch starting at t* until the step that L increases for the
first time. In this epoch, we ignore some unwanted steps, namely the steps
choosing an MI for mutation and creating a non-MI by this mutation. By our
assumptions, the resulting individual will never be chosen again. We call the
corresponding node in a family tree a dead node. No other nodes are called dead
even if they correspond to individuals that have already been deleted from the
population. If we ignore only the dead nodes, we underestimate the depth of z’s
final family tree at most by 1. In the following, we will analyze the probability
of choosing any other node in the current family tree. Let u := 3n'/?, i.e., u is
our lower bound on pu from the theorem.

According to the current population in the epoch, we distinguish two cases
(which do not need to occur both). The first case is that the population contains
at least one non-MI. Then it can happen that the probability of choosing a node
from 2’s family tree is very large, e. g., even 1 —n =" Consider a step in the
first case and let v be the current size of the tree (ignoring dead nodes). Clearly,
v < s = poly(n). If the step does not choose a descendant of = then it neither
deletes descendants of x from the population nor alters the family tree of z
because the population contains a non-MI. If a descendant of x is chosen, the
corresponding node is chosen from the tree almost uniformly with probability at
most (1+n"%) /v due to Lemma 1 and the property v = poly(n), and a new
son is appended to it. All nodes of the resulting tree are MIs by our assumptions.
If still the first case holds in the next step affecting the tree, we are in the
analogous situation for v 4+ 1 nodes. We conclude for the steps of the first case
that the process growing x’s family tree is very similar to a random recursive
tree, see Definition 2 in Appendix A. The only exception is exponentially small
deviations from uniformity of the nodes’ selection probabilities.

Consider the second case of the epoch, when the population contains MIs
only. By our assumptions, this case, once entered, is not left until the end of
the epoch. Now descendants of x can be deleted from the population, and the
number of nodes in z’s family tree that correspond to individuals in the current
population can even become zero. Nevertheless, we know that each node from
the current tree is chosen with probability at most (1 +n~%0"))/u < 2/u (for
large enough n) since Lemma 1 can be applied to a population of size at least u
and consisting of MIs only. Altogether, in the whole epoch, the probability of
choosing a node from the current tree is bounded by (14n=%0) /v < 2/v (for
large enough n), when v is the current size of the tree without dead nodes, or it is
at most 2/u. Once the latter case is valid, it holds until the end. We have given

13

the whole process growing the family tree a new name, namely 2/u-constrained
RRT (Definition 3), and Lemma 7 provides upper bounds on its depth. Note
that the model of a 2/u-constrained RRT counts only the relevant steps in the
epoch, namely the steps adding non-dead nodes to the family tree.

Up to here, we have only modeled a single epoch until L is increased. All
subsequent epochs between L-increasing steps can be modeled in the very same
way if we consider the first individual with the new L-value as the new root
of the family tree and ignore all nodes created before. This is possible since
they will never be chosen again. (It is even possible that x’s family tree cannot
grow any more since the new L-value was achieved by a node belonging to a
different family tree.) Altogether, the depth of Ty« s(z) is bounded by the sum
of the depths of the at most ¢ independent 2/u-constrained RRT's created in
the single epochs. Lemma 8 contains an estimate for this. We invoke it with a
value of ¢t := s = [4efn] and k := £ = [n'/2/400] and obtain

Tt 7 [4eln]

28e
+ 6kH, < 312

< [=°¢ ~1/2
+6(Inu+1) < (1200+O(n)> n,

U
which is smaller than n/15 — 1 (reserving 1 for the dead nodes) if n is large
enough. Hence, using the notation of Lemma 8, Prob(D(k,t) > n/15 —1) =
2~ Q(t/u)+O(klogt) — 9-n) which completes our analysis of z’s family tree.
Since p = poly(n), the probability of any family tree’s depth exceeding n/15 is
270" a5 well. This completes the proof for the first property of the s-phase.

An individual with ¢ LSOs and at most 2m/3 POs is nearly optimal. Eli-
tist selection guarantees that the maximum number of POs in the population
cannot decrease after the s-phase has been finished according to the described
properties. Therefore, we consider the maximum f-value of the population
again as a potential like in the first epoch. Given that we mutate an individual
with maximum f-value, the probability of increasing the potential is bounded
below by some constant since we have at least m/3 prefix zeros. Hence, a similar
reasoning to the analysis of the good phase from the proof of Theorem 1 yields
that the GA reaches the optimum after another O(un) steps with probability
at least 1 — e %/4. For the ensuing considerations, we bound the sum of all
considered failure probabilities more precisely by 2e~9¢/4=0(0) 4 9—=2(n) 4 9-3¢
which is at most 272¢ if n is large enough. The total length of epochs and
phases has been bounded by O(ufnlogn). Altogether, we have proved the first
statement of the theorem.

Finally, we have to prove the statement on the expected runtime of the
GA. To this end, we have to consider any possible initial populations. If the
initial population consists only of individuals covered by the third case of f’s
definition, we can apply again the results on the optimization of linear functions
(cf. Theorem 1). Hence, whatever the initial population is like, we arrive at a
population containing at least one shapely individual with at most 2m/3 + ¢*
POs after an expected number of O(unlogn) steps. Afterwards, we distinguish
three cases with respect to the individual * with the maximum f-value for the
current population. The first case occurs if LSO(z*) = ¢ and PO(z*) < 2m/3,
the second case if LSO(z*) < ¢ and PO(z*) < 2m/3 and the third one if
PO(z*) > 2m/3. In the first case, we apply the arguments from the preceding

14

paragraph to bound the expected time until reaching the optimum by O(un).
In the second case, we use the analysis of the above-described second property
of the s-phase and obtain that an expected time of O(¢n) is sufficient to leave
the second case. Pessimistically, we assume to be in the third case afterwards.
Then the f-value increases with respect to the number of LSOs and POs and
is larger than the value of any individual of the second case. Hence, in the
third case, elitist selection guarantees that we arrive at a population containing
at least one locally optimal individual with 2m/3 + ¢* POs and ¢ LSOs after
O(pun+ uln) = O(uln) expected steps if the first case (including the optimum)
is not reached before.

We have proved that, after O(ufn) expected steps, the current population
contains at least one locally optimal individual if we are not done before, and
it is sufficient to create an optimal individual by flipping £* POs in a locally
optimal individual. The probability of choosing a locally optimal individual for
mutation and flipping £* POs is at least

£* n—e*
Loy (21 _ o-(logn)-*~O(log) ~ o
7] n n o

for n large enough since u = poly(n). The expected time until such a mutation
happens is, therefore, at most 2¢ if n is large enough. Hence, the expected time
until creating an optimal individual is bounded above (for n large enough) by
2+ O(ubn). As proved on the preceding pages, the runtime is O(ufnlogn) with
probability at least 1 —272¢ otherwise. The product of the failure probability’s
bound 272¢ and the runtime bound 2¢ 4 O(ufn) is o(1). O

We have seen that the proof of Theorem 2 makes heavy use of the proper-
ties of the selection for reproduction. It is crucial that individuals with larger
f-value get a better chance of being mutated since, otherwise, the exploitation
of the primary goal of maximizing the LSO-value would not benefit from the
population. The properties of the selection for replacement are not that im-
portant. We only have to make sure that MIs are very unlikely to be deleted if
there are still non-MIs and that the operator is elitist. Hence, the results from
the previous sections would even hold for a deterministic plus-selection.

5 An Example with Opposite Results

In contrast to the results from the last sections, we are interested in an example
where the use of a population is harmful, i. e., leads to an exponential runtime,
whereas the (1+1) EA and GA with u = O(1) are efficient. This can be proven
for a function where the role of local and global optima has been exchanged
compared to the function f. We reuse the notations from Section 2 here. For
any constant ¢ > 1, define

m(LSO(z : 2m
PO(z) + n™ISO@+) if & shapely and PO(x) < =2,

@ n™+PO@) L 1.90(z) if x shapely and 25” <PO(z) < %’

c\T) =

g nm(+2) if x shapely and PO(x) = [Tm 1
n—3" otherwise.

15

On malformed strings, f and g. are identical. In the following, we only discuss
shapely strings and assume ¢ = 1 for convenience. The value of g; differs from
the value of f only on strings z with PO(z) = 2m/3 + ¢*. These yield the
maximum g;-value of n™(*+2). Strings x with LSO(z) = ¢ and PO(z) < 2m/3
lead to a gi-value of PO(z)+n™*+1 | which is second-best if PO(z) = 2m/3. All
remaining strings have some g;-value that is by a factor of at least Q(n™/3-¢"~1)
smaller than n™(¢+1).

If ¢ > 1, the optimal number of POs changes from 2m/3+4-¢* to [2m/3+£* /c],
and the case of very bad strings with a g.-value of at most n contains more
members. This is the only difference compared to g;. If we are in the first case
of the definition of g., we obtain the same value as on f. Since c is assumed to
be a constant, the preceding asymptotic statements from the case ¢ = 1 remain
valid. The Hamming distance of an optimal and a second-best string is at least
0% /e = Q(n'/? /log n).

The properties of g and its similarities to f lead to the following theorems,
whose proofs are based on those of Theorem 1 and Theorem 2.

Theorem 3 Let ¢ > 1 be a constant. With probability at least 1 — 2*9("1/2),
the Steady-State GA with p > 3n'/2 and = poly(n) requires at least 2f2(nlogn)
steps to optimize g.

Proof: We call individuals where LSO(z) = ¢ and PO(x) < 2m/3 suffiz-
optimal. According to the proof of Theorem 2, the GA reaches a population
containing at least one suffix-optimal individual before reaching the optimum
(at PO(z) = [2m/3+¢*/c]) with probability at least 1 —2-92("%) Now we can
apply an argument similar to the analysis of the second epoch from the proof
of Theorem 1.

The probability of creating an optimal individual by the direct mutation
of a suffix-optimal one is bounded by 1/(£*)! = 2=}, The probability of
choosing an individual that is worse than a suffix-optimal one for mutation is
even bounded by

l+ nm€+2m/3+€*fl

_ o —Q(m) _ 9—Q(nlogn)
nmé+m =n =2 ’

implying a waiting time of 22("1°8™) with probability at least 1 — 2— %) O
Theorem 4 Let ¢ > 1 be a constant. With probability at least 1 — 2_9(”1/2),
the Steady-State GA with i = O(1) optimizes g. within O(n3/?) steps. If ¢ is
large enough, its expected runtime is also bounded by O(n3/2).

Proof: We apply the following arguments from the proof of Theorem 1. With
probability 1 — 2*9("1/2), the first shapely individual created by the GA has at
most 3¢/4 LSOs, and such a population is reached after an expected number of
O(punlogn) = O(nlogn) steps. Afterwards, since ¢ > 1, it arrives at a popu-
lation containing at least one shapely individual with [2m/3 + ¢*/c] POs after
at most O(¢) phases of length O(n), i.e., after O(n%/?) steps, with probability
1 —2-Un"?) This completes the proof of the first statement.

16

For the statement on the expected runtime, note that a second-best individ-
ual with 2m/3 POs and £ LSOs is created after an expected number of O(n3/?)
steps if no shapely individual with more POs is created before. This follows by
taking into account the time until reaching a shapely individual and summing
up the expected times of O(¢n) to maximize the number of LSOs and of O(n) to
increase the number of POs to 2m/3 (cf. the proof of Theorem 2). Afterwards,
it is sufficient to select an individual with maximum g.-value, to flip [¢*/c|
prefix zeros and to leave the suffix unchanged in order to reach the optimum.
The related probability is bounded below by

£* Je+1 n—~L*/c
l (l) <1 o l) — 276*(10gn)/070(10gn) — 27n1/2/(20)70(10g n)’

wAn n
and the expected time till this event, therefore, by on'/?/(2c)+0(0gn) Tf e
choose c large enough, the product of the failure probability’s bound 9~ Q(n'/?)
and the described upper bound is o(1). O

Remark: One may wonder if the expected runtime on g. can remain a
polynomial if y is larger than a constant. However, we believe that this is not
the case by having again a look at the proof of Theorem 2. The bad steps
mentioned there affect individuals that are drawn nearly uniformly from the
population. Moreover, since the influence of the number of POs is so small,
the number of POs is close to uniform in those individuals whose number of
POs differs from P. Hence, the probability of a bad step resetting P to a
value around m/2 seems to converge to one if p is greater than a constant.
This would imply that the probability of reaching a second-best individual and
getting caught in a local optimum would be become too large for the expected
runtime to be a polynomial.

6 A Hierarchy Result

For the function f described in Section 2, we have shown that a population size
< en'/2, ¢ some constant, leads to an exponential expected runtime whereas
w> 3n'/2 leads to a polynomial expected runtime. This means that we have
determined the asymptotically exact threshold size ©(n'/2) where the expected
runtime switches from exponential to polynomial.

It is possible to extend the described result to a hierarchy result where
the threshold size of the population is adjustable, namely ©(n*~1/2) for an
arbitrary constant integer k¥ > 1. To accomplish this, we design a class of
functions f, k > 1, that serve as a generalization of f. The main difference
is that it takes on average ©(n*) steps until a success in the suffix bits occurs,
which is is achieved by considering leading 1-blocks instead of leading ones
there. We reuse the notations from Section 2 and assume ¢ = k - £, for the sake
of simplicity. Now we divide the suffix of strings into ¢ consecutive blocks of
length k each. For a string x € {0,1}", we say that x is shapely if its suffix
is of shape 10~ for some i > 0, i.e., the first 7 blocks consist of ones only
and the remaining entries of zeros, and it is called malformed otherwise. The

17

number of leading 1-blocks in the suffix (leading suffix blocks of ones) is given
by LSBi(z) = 3t%; [I%g' @mr14j. Note that for k = 1, the definition of
shapeliness equals the one from Section 2, and LSB;(z) = LSO(z). Now let

PO((L‘) + nm(LSBk(CE)+1) if ¢ Shapely and PO({L‘) < QTm’
fe(z) = { n™6APO@) L 1.8B, () if = shapely and QTW <PO(z) < 2Tm e

n .
n— % otherwise.

Clearly, fi(x) = f(x). Consider the case k > 1 and assume that x is a shapely
string with at most 2m/3 POs. If LSBy(z) < ¢ then at least k suffix zeros have
to be changed to increase the fi-value. The structure of local and global optima
is the same as for the function f. Therefore, we are able to show straightfor-
ward generalizations of Theorem 1, Corollary 1 and Theorem 2. Moreover, it
is obvious that Lemma 1 and Lemma 2 carry over to fi if we consider the
LSBj-value instead of the LSO-value.

Theorem 5 Letk > 1 be a constant. With probability at least 1—2*9("1/2), the
Steady-State GA with u = O(1) requires at least 20(n'/?) steps to optimize fi.
There is a constant ¢ > 0 such that the GA with pn < en*~Y2 needs an expected
runtime of 20(n'/?),

Proof: For the first statement, the proof of Theorem 1 can be copied with the
following changes. The fraction of shapely individuals among all individuals is
only (£x +1)/2¢ < (¢ +1)/2°. The probability of a bad step is bounded by
1/n* < 1/n since the k leftmost suffix zeros have to flip. In the third epoch,
the probability of choosing an individual with at most 2m/3 + ¢*/2 POs for
mutation is bounded by

O + nm€k+2m/3+€*/2
' nmle+2m/3+£*

)

which is again 2-0n'"?) This completes the proof of the first statement.

For the second statement, we apply an argument for a single phase of the
second epoch as in the proof of Corollary 1. The probability of a helpful step is
bounded below by ¢* /u for some constant ¢* > 0. Since the probability of a bad
step is at most 1/n*, the probability of a single phase of length s := [mpu/c*]
being good is bounded below by (1—1/n*)® > e~ 20/(e ™™ Since p < enk=1/2,
this lower bound is at least e=2¢""/*/¢"_ If ¢ is chosen small enough, the product
of the last expression and the runtime of 22n'%) that is necessary after the
good phase with probability 1 — 9-2n""?) is still bounded below by 20(n'?) O

Theorem 6 Let k > 1 be a constant. With probability at least 1 — 2*9("1/2),
the Steady-State GA with pn > 3n*=Y2 and p = poly(n) optimizes fi within
O(ufn*logn) steps. Its expected runtime is bounded by O(ufn*logn).

Proof: The proof of Theorem 2 can be copied with the following changes. The
length of the s-phase starting at time ¢* is set to s := [4efn*]. The potential L
corresponds to the LSBg-value rather than the LSO-value, and all applications

18

of Lemma 1 and Lemma 2 refer to the LSBy-value. The probability of a step
increasing the L-value is now bounded below by (1/n*)(1—1/n)"% > 1/(en*),
and the probability of a good step, therefore, at least (1 — o(1))/(en®). We
estimate the largest possible L-value by ¢. By Chernoff bounds, an individual
with maximal L-value is created within the s-phase with probability at least
1 — e 9/4=0(0) again.

To show that depth n/15 of a family tree is not exceeded, we carry out the
same arguments as in the proof of Theorem 2 and apply Lemma 8. The only
new parameters are t = s = [4e/n*] and u = 3n*~1/2. Hence, ignoring ceils
and floors, 7t/u is upper bounded by the very same value as in the proof of
Theorem 2, and 7t/u+ 6kH, is still at most n/15— 1 (for n large enough) since
u is a polynomial of n.

In the proof of the expected runtime, nearly no changes are required. The
expected time until leaving the so-called second case, meaning that a best in-
dividual has less than ¢ LSOs and at most 2m/3 POs, can now be bounded
by O(¢n*), and, using analogous arguments, the expected time until reaching
a locally optimal individual by O(ufn*). Since k is a constant, the product of
this upper bound and 272 is still o(1). O

7 Conclusions

We have shown that a population-based EA without recombination and with-
out diversity-maintaining operators can outperform the (1+1) EA and the same
population-based EA with a small population drastically. We have proved an
exponential gap for the expected runtime on an explicitly defined function. The
derived runtime bounds hold with probability exponentially close to 1, ruling
out efficient optimization by multistart variants in the case of small populations,
and the population size where the expected runtime changes from polynomial
to exponential has been determined asymptotically tight. Moreover, we have
presented a reverse result where only small populations allow efficient optimiza-
tion. Finally, we have described a hierarchy result, where populations of size at
most enf~Y2 k> 1 and ¢ some small constant, lead to exponential runtimes
whereas populations of size at least 3n*~1/2 allow polynomial runtimes. Our
results help to understand the role of population size in EAs.

Some interesting questions have been left open. The results presented in this
paper carry over to some variants of the studied GA. Regarding the selection
for replacement, the results would even hold for a deterministic plus-selection.
However, all results rely on the fitness-proportional selection-for-reproduction
mechanism of the GA. The impact of different operators for the selection for
reproduction, e. g., of a uniform selection such as in (u+1) strategies, deserves
further theoretical investigations.

Acknowledgements

The author thanks Stefan Droste, Oliver Giel, and Ingo Wegener for suggestions
for improvement.

19

A Random Trees

Random recursive trees are a model of random trees studied extensively in
probability theory (Pittel (1994); Smythe and Mahmoud (1995)). We obtain a
random recursive tree of any desired size by means of the following stochastic
process.

Definition 2 (Random Recursive Tree (RRT)) An RRT at time 0 con-
sists only of the root node. An RRT T; at time t > 1 is obtained from an RRT
Ti_1 at time t — 1 by choosing uniformly at random some node v from Ty_1 and
adding a new leaf as the son of v.

Note that the RRT at time ¢t > 0 consists of exactly ¢ + 1 nodes. The RRT
from Definition 2 is sometimes (and more precisely) called the uniform random
recursive tree. We omit the adjective “uniform” here. Many (extremal) prop-
erties of RRTs are well known. For instance, Pittel (1994) shows the expected
depth of an RRT with ¢ nodes to equal elnt, and there are exact formulas for
the expected number of leaves, expected outdegree of nodes etc.

RRTs can help to model the so-called family tree of an individual x in popu-
lations that contain more and more descendants of . However, our populations
are bounded by some maximum size u > 1. If we keep all individuals in the
family tree of x forever, there must be nodes in the tree that correspond to
individuals that have already been deleted from the population. If the selection
mechanism of a population-based EA chooses all individuals present in the pop-
ulation uniformly with probability 1/u, we can sometimes still conclude that
each node from the family tree is chosen as the father of a new node with prob-
ability at most 1/u. To allow for deviations from uniformity, we upper bound
the actual probabilities by 2/(t + 1) and 2/u. This leads to the definition of
so-called 2/u-constrained random recursive trees (2/u-constrained RRTSs).

Definition 3 (p-RRT, 2/u-constrained RRT) Let p := (pt)i>0 be a se-
quence of probability distributions on {0,...,t}. A p-RRT at time O consists
only of the root. A p-RRT T; at time t > 1 is obtained from Ti_1 by sampling,
according to pi—1, some t* € {0,...,t—1} and appending a new leaf to the node
inserted at time t*.

A p-RRT is called a 2/u-constrained RRT if there is an integer u > 1 such
that py assigns to each element of {0, ... ,t} a probability of at most 2/(t + 1) if
t <u—1 and at most 2/u otherwise.

Again, the tree at time ¢ possesses t + 1 nodes. Obviously, more than one
stochastic process leads to 2/u-constrained RRTs. Up to time u, the process
of a 2/u-constrained RRT is very similar to the process of an ordinary RRT in
terms of Definition 2. The only exception is that the father of the new node
does not need to be chosen uniformly but with at most twice the corresponding
probability. However, after time u, we allow much larger probabilities than in
ordinary RRT's. Despite this, we are still able to provide useful estimates for the
distribution of the depth of 2/u-constrained RRTs. The corresponding analyses

20

rely on the following random variables, whose notation has been borrowed from
Arya, Golin and Mehlhorn (1999).

Definition 4 Let L(t,d) be the number of nodes at depth d in a 2/u-constrained
RRT at time t. Let E(t,d) := E(L(t,d)) denote its expectation.

First of all, we consider the case ¢ < w, i.e., the 2/u-constrained RRT is
similar to an ordinary RRT. The expected depth of ordinary RRTs can be de-
termined exactly using analyses of Poisson processes (Pittel (1994)). However,
to derive tail bounds on the depth for our variant of RRTs using estimates
for E(t,d), we adopt a combinatorial approach presented by Arya, Golin and
Mehlhorn (1999), being more amenable to the reader familiar with asymptotic
analysis. Note that the calculations in the proof of Lemma 4 mainly repeat the
mentioned authors’ analyses for the special case of a random circuit of fan-in 1.

Lemma 3 Consider a 2/u-constrained RRT. Then

E(t,0) =1 fort>1,
E0,d) =0 ford>1,
E(t,d) < E(t —1,d) + 220D for 1 < <, d > 1.

Proof: The first and second relation hold by Definition 3. For the third re-
lation, observe that L(¢,d) differs from L(t — 1,d) if and only if a node from
depth d—1 is chosen at time ¢ —1 to be the father of the newly inserted node. If
L(t—1,d—1) equals i, this happens, according to Definition 3, with probability
at most 2i/t since t < u. Hence, by the law of total probability,

o .
2
E(t,d) < E(t —1,d)+Y_ Prob(L(t — 1,d — 1) = i) - 71
i=1
Since the sum contains the definition of E(t — 1,d — 1), the right-hand side
equals E(t — 1,d) +2E(t — 1,d — 1)/t as suggested. O

Using these relations, we are able to derive bounds on E(t,d). Throughout
the section, we write H; = > _:_, 1/i to denote the ¢-th Harmonic number.

Lemma 4 For 0 <t <wu andd >0,

E(t,d) <

Proof: We assume that the third relation from Lemma 3 is an equality and
holds even for ¢ > u. Upper bounds on this modified E(t,d) will yield upper
bounds on the original E(t,d) for ¢ < u. Now we introduce the generating
function Eq(z) = ;% E(t,d)z" for the (modified) E(¢,d). Then

1
Eyz)=14z+2’+ - = ,
1—=z
2 xT
Ey(x) = 1—/Ed_1(y) dy ford>1. (1)
-z
0

21

The first equality follows immediately by the identity E(t,0) = 1 from Lemma 3.
To prove the second equality (1), we use the second identity of Lemma 3 to
show that E4(x) = > 2, E(t,d)z" if d > 1. Hence, for d > 1, the third relation
(assumed to hold with equality) of Lemma 3 yields

oo

l%m):EZEuﬂhf:EZ(EQ—Ldy%ﬂ%t_;d_D>.ﬂ

t=1

[ee] t+1
=z-Y E(td)a' +22Etd—1) T
t=0 t=0

T

=z FEylz +2§:Etd—1%/ydy—x Ey(x +2/Eg1)dy
t=0 0

The last equality follows by the Monotone Convergence Theorem (cf. Kingman
and Taylor (1966)). Subtracting z-E4(x) and dividing by 1—x finally proves (1).
Now we prove by induction on d that
(—2In(1 — z))?
d'(1—x)
The base case d = 0 is obvious. For the induction step, we use (1) and the
induction hypothesis, writing

x r —21n(1 — d-1
Eq(x) = 1 E x /Edl(y) dy = 1 f x / ((;1— gl)'(lyz)y) “
" 0

__ o y))dr _ (2m—a)?
0

Eqy(z) =

T d-1)(1—=z) d (1 —z)

Using this closed formula, we want to extract E(t,d), the coefficient of ' in
the series expansion of E4(z). To do this, we introduce the Taylor expansion
—In(1 —z) =32, 2" /i and calculate

=

=z ¢ > 1 :
(_hl(l_x))d: <Z_> :Z Z — | T
: ? : 1122 " 1g
=1 =1 11,..ytg>1
i1+-+ig=1
The last equality follows by convolution of the series. This implies that the
factor (—In(1 — 2))¥/(1 —z) = (= In(1 — z))¢ - 332, 2" (for |z| < 1) from the
above closed formula can be written as

1 [e'¢) [e'¢) % 1
T " 2l | = T CCi,
B2 w=k)(50) 2% =)
1,058 >1 Jj=0 i=1 \j=0 j1,....Ja>1
11+ tig=1 Jit-+ia=g
where the last equality follows again by convolution. Therefore, E(t,d), the
coefficient of ¢ in F4(x), is given by

d
od 1 od 1 od 1
t.d . S < = - == b
E(t,d) = d Z o d! Z 109 - -1 d! (Zz>
015000y8g>1 1<iq,...,0q<t

i1 tig<t

d
The last expression equals %. Since our assumptions were valid for t < wu,

so is the obtained upper bound. O

Now we come to the times ¢ > u + 1, when the probability of choosing a
node from a 2/u-constrained RRT is only bounded by 2/u.

Lemma 5 Consider a 2/u-constrained RRT. If t > u+1 and d > 1,

2B(t —1,d — 1)
+ :
u

E(t,d) < E(t —1,d)

Proof: This proof follows the same structure as the proof of the third relation
of Lemma 3. Since t > u+1, the probability of choosing some father at time t—1
is now bounded by 2/u according to Definition 3. O

Now we are able to combine the results obtained so far in order to provide
an estimate for E(t,d) that is valid for all ¢.

Lemma 6 Consider a 2/u-constrained RRT. Then
E(t,d) < & - (2H, +2)" fort>0,d>0,
where 0! = 1.

Proof: We prove the inequality by induction on d and t. First consider the
case d = 0. It follows by Lemma 3 since the upper bound equals 1 in this case.

For the induction step from d — 1 to d > 1, we have to consider all values
of t and to carry out another induction on ¢. For ¢t < u, the inequality follows
from Lemma 4. For the induction step from ¢t — 1 to ¢, we assume ¢t > u+ 1 and
use the recurrence from Lemma 5. We obtain, by the induction hypothesis for
t—1,

d d—1
1 2t —2 2 1 2t —2
E(t,d) <= (2H, +—=) +2. —— (2H,+ —=
! u u (d—1)! u
!

d

1 ot —2\¢ 24 ot — 2\ 4!
b (o 22) 2 (o 22))

d U u U

d
1 2t

The last inequality follows by means of the Binomial Theorem if we expand
2H, + 2t/u as (2H, + (2t — 2)/u) 4+ 2/u and consider only the first two terms.
This completes the induction step for ¢ and, therefore, for d. O

The result of Lemma 6 can easily be transferred into a tail bound on the
distribution of the depth.

Lemma 7 Let D(t) be the depth of a 2/u-constrained RRT at time t and let
d > 6t/u+ 6H,. Then Prob(D(t) > d) < (§)%.

23

Proof: W.1l.0.g., dis an integer. For D(t) > d to occur, L(t,d) > 1 is necessary

(and sufficient). Since, by Markov’s inequality, Prob(L(t,d) > 1) < E(t,d), the

lemma follows if we establish the inequality E(t,d) < ()¢ for arbitrary ¢.
Application of Stirling’s formula on the inequality of Lemma 6 yields

ed 2t ¢
Elt,d < —|(2H,+—] .
)< G (2042

According to our assumptions, this is upper bounded by

d d

e 2t e\d
— . (2H,+= <(_)
(6H, + 6t/u)d (“+u> !

as suggested. O

In our applications, we are confronted with random tress that can be mod-
eled as a concatenation of 2/u-constrained RRTs. Therefore, we consider k in-
dependent 2/u-constrained RRTs, where the i-th RRT, ¢ € {1,...,k}, possesses
t; nodes, and introduce the random variables D; for the height of the i-th tree.
Let D(k,t) := Zle D; be the sum of their heights, and let ¢ := Zle t; be the
total number of nodes. Furthermore, assume that the assumption t* = 20(t/v) ig
met. Then it is not too difficult to show that E(D(k,t)) = O(t/u+ kH,). How-
ever, we want to show that this upper bound holds with high probability. Since
we can bound the expectation of each D;, we could apply Hoeffding bounds to
show that the bound on D(k,t) holds with probability 1 — 2-(#/w)"*) Byt
we can do better by taking into account the knowledge of the D;’s distribution
from Lemma 7.

Lemma 8 Let D(k,t) be the sum of the heights of k independent 2/u-con-
strained RRTs with o total number of t nodes. Then

t/u—O(klogt
Prob(D(k,t) > 7t /u + 6kH,) < (g) fumO®s) o —au/w+okiog),
Proof: Denote the number of nodes of the i-th RRT, i € {1,...,k}, by ¢; and
consider its depth D;. If we choose d; := 6(t; —1)/u+ 6H,, (taking into account
that ¢; nodes are present at time ¢; — 1), Lemma 7 yields for all d > d;

Prob(D; > d) < (g)d

For each fixed outcome of the D;-values such that D(k,t) > 7t/u + 6kH,, we
will bound the probability of this outcome by 2~ %(#/u)+O0(klogt) = Afterwards, we
will estimate the number of such outcomes to prove the lemma.

Let (e1,...,ex) be an outcome where ey + -+ + e > Tt/u + 6kH,. Let
k* be the number of e; where e; > d; and assume w.l.0.g. that e; > d; for
i€ {l,...,k*}. According to the definition of the d; and e;, we have epx11 +
<+ e < 6t/u+ 6kH,, implying k* > 1 and e; + -+ + eg= > t/u. Due to the
independence of the RRT's, the probability of this event is at most

(@)@ = @ =)

24

which bounds the probability of each considered outcome of the e;-values.

It remains to estimate the number of outcomes. Obviously, D(k,t) can
take at most ¢ values. A trivial estimation yields at most t* different ways of
representing a single value of D(k,t) as a sum of k non-negative integers and,
altogether, we have at most t**1 outcomes. Hence, the total probability of the
event D(k,t) > 7t/u + 6kH, is at most

)

ey (g)t/u B <§>t/u0(klogt)

which is 272(t/W+0Kklogt) gince o/3 < 1. O

We could improve the upper bound of Lemma 8 by a factor of 2~ klogk) jf
we estimated the number of outcomes in its proof more carefully. However, k
is too small in our applications for this to make an asymptotic difference.

References

Arya, S., Golin, M. J., and Mehlhorn, K. (1999). On the expected depth of
random circuits. Combinatorics, Probability and Computing, 8, 209-228.

Dietzfelbinger, M., Naudts, B., van Hoyweghen, C., and Wegener, 1. (2003).
The analysis of a recombinative hill-climber on H-IFF. To appear in IEEE
Transactions on Evolutionary Computation.

Droste, S., Jansen, T., Tinnefeld, K., and Wegener, 1. (2003). A new framework
for the valuation of algorithms for black-box optimization. In Proc. of Foun-
dations of Genetic Algorithms 7 (FOGA 2002), 253-270. Morgan Kaufmann.

Droste, S., Jansen, T., and Wegener, I. (2002). On the analysis of the (1+1)
evolutionary algorithm. Theoretical Computer Science, 276, 51-81.

Feller, W. (1971). An Introduction to Probability Theory and its Applications.
Wiley, New York.

Garnier, J., Kallel, L., and Schoenauer, M. (1999). Rigorous hitting times for
binary mutations. FEvolutionary Computation, 7(2), 173-203.

He, J. and Yao, X. (2002). From an individual to a population: An analysis
of the first hitting time of population-based evolutionary algorithms. IEEFE
Transactions on Evolutionary Computation, 6(5), 495-511.

He, J. and Yao, X. (2003). Towards an analytic framework for analysing
the computation time of evolutionary algorithms. Artificial Intelligence,
145(1-2), 59-97.

Jansen, T. and De Jong, K. (2002). An analysis of the role of offspring pop-
ulation size in EAs. In Proc. of GECCO 2002, Genetic and Evolutionary
Computation Conference, 238-246.

25

Jansen, T. and Wegener, 1. (2001a). On the utility of populations. In Proc.
of GECCO 2001, Genetic and Fvolutionary Computation Conference, 1034—
1041.

Jansen, T. and Wegener, 1. (2001b). Real royal road functions — where crossover
provably is essential. In Proc. of GECCO 2001, Genetic and Evolutionary
Computation Conference, 375-382.

Kingman, J. F. C. and Taylor, S. J. (1966). Introduction to Measure and Prob-
ability. Cambridge University Press.

Mitchell, M., Forrest, S., and Holland, J. H. (1992). The royal road for genetic
algorithms: Fitness landscapes and GA performance. In Varela, F. J. and
Bourgine, P. (eds.), Towards a Practice of Autonomous Systems: Proceedings
of the First European Conference on Artificial Life, 245-254. MIT Press,
Paris.

Mitchell, M., Holland, J. H., and Forrest, S. (1994). When will a genetic algo-
rithm outperform hill climbing. In Cowan, J. D., Tesauro, G., and Alspector,
J. (eds.), Advances in Neural Information Processing Systems, vol. 6, 51-58.
Morgan Kaufmann.

Motwani, R. and Raghavan, P. (1995). Randomized Algorithms. Cambridge
University Press.

Pittel, B. (1994). Note on the heights of random recursive trees and random
m-ary search trees. Random Structures and Algorithms, 5(2), 337-348.

Smythe, R. T. and Mahmoud, H. M. (1995). A survey of recursive trees. Theory
of Probability and Mathematical Statistics, 51, 1-27.

Storch, T. and Wegener, I. (2003). Real royal road functions for constant popu-
lation size. In Proc. of GECCO 2003, Genetic and Evolutionary Computation
Conference, no. 2724 in LNCS, 1406-1417.

Wegener, 1. and Witt, C. (2003). On the optimization of monotone polynomials
by the (1+1) EA and randomized local search. In Proc. of GECCO 2003,
Genetic and Evolutionary Computation Conference, no. 2723 in LNCS, 622—
633.

26

