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Abstract

A static parameter EA working on continuous search space may be regarded as general homo-
geneous Markov chain. The �nite case problem of determining the transition matrix turns into the
problem of �nding (approximating) a transition probability function (kernel). This function should
de�ne the probabilities of moving from the starting point to any set of positive measure in the space.
Considering a (1 + 1) EA with square uniformmutation in the two-dimensional real space, we analyze
the transition kernel for the inclined plane model.

1 Introduction

A good introduction to Evolutionary Algorithms (EAs) theory could be provided by the analysis of
random walk. Unfortunately, even the most exhaustive monographs on random walk con�ne to the
case of discrete search space only - see, e.g. (Spitzer, 1976) - which is of little help when considering
the continuous case. On the other hand, one of EAs' relatives, Simulated Annealing, is known to have
theoretical convergence results, even for the continuous search space (Haario and Saksman, 1991). Yet,
there are two major impediments making that approach inappropiate for extrapolation. First, the proof
from (Haario and Saksman, 1991), involving a double chain convergence procedure (considering a chain
of homogeneous Markov chains, each of them converging to a stationary distribution, gathering in a
string that converges to a distribution concentrated on the optimal points) does not imply convergence
in probability for the practical algorithm (even in in�nite time). Second, that result relies strongly on
the special selection form given by the Boltzman distribution, which is not used in EAs.

On the other hand, both the Robins-Monroe family of algorithms usually referred to as stochastic
approximation (Wasan, 1969), and the martingale approach to random search algorithms performed in
(Rapple, 1989) could be criticized for assuming a certain positive success rate at each iteration, which
corresponds to local rather than global behaviour.

Depart from the quoted references, we intend to develop an EA theory based on its associated transition
probability function. To start with, we consider the two-dimensional real space and �x 0 =: (0; 0) as the
starting point of the algorithm. Let fzigi�1 be a sequence of independent identically distributed random
variables, distributed uniformly inside the square of area one and center zero. Then a static-parameter

0Work supported by the Collaborative Research Center "Computational Intelligence" (SFB 531), Dortmund University.

1



(1,1) EA in the plane (which coincides with a random walk) is de�ned by the random variable Yn, for
all n � 1:

Yn = 0 +
nX
i=1

zi =
nX
i=1

zi (1.1)

Obviously, the sequence fYngn�1 de�nes a Markov chain in the plane. We need next the notion of
transition probability function (Nummelin, 1984). For the purpose of the subsequent analysis, the case
of two-dimensional real space and associated Borel �-algebra of sets is su�cient. We shall also use its
one-dimensional version, with a straightforward understanding.

De�nition 1.1 A function P : R2 � B(R2) ! [0; 1] is said to be a transition probability function
(kernel) if P (w; �) is a probability on B(R2) for all w 2 R2, and P (�; A ) is a random variable on R2 for
all A 2 B(R2).

As for the optimization task, we consider the inclined plane model, describing the simplest dependence
between the objective function and the variables of an n-dimensional real space. Following (Schwefel,
1995), we orient the coordinate system so that the plane only slopes in the direction of x1 axis (thus
x1 = 1 would correspond to the minimum) and consider the origin as the starting point of the (1+1)
EA.

2 (1+1) EA on the inclined plane

In this section we consider the (1+1) EA with square uniform mutation starting in zero, as in Section
1. Depart from random walk, the transition kernel of the one-step (1+1) EA is no longer continuous
with respect to the Lebesgue measure on the plane. This comes from the elitist property - as formalized
for the continuous case by (Rudolph, 1997) - which makes the associated probability law to have an
atom at zero (a point of discontinuity for the distribution function). Namely, the algorithm is allowed
to move only to the right (see also �gure 1), any unsuccessful (that is, to the left) mutation making the
EA stagnate in the initial point 0.

The associated one-step transition kernel can be described as a sum of two measures, one singular (also
called Dirac) and one continuous (note that d stands for the Lebesgue measure, both on the plane and
on the real line, as previously)

P ((x; y); A ) =
1

2
�(x; y)(A) + 1(x;x+ 1

2
)�(y� 1

2
;y+ 1

2
) � d(A)

=
1

2
�(x; y)(A) + d((x; x+

1

2
)� (y �

1

2
; y +

1

2
) \ A); for all A 2 B(R2)

(2.1)

We shall frequently use the one-dimensional version of (2.1) corresponding to the progress along the
x-axis and also its 'density-like' expression, namely

P (x;A) =
1

2
�x(A) + d((x; x+

1

2
)\ A); for all A 2 B(R) (2.2)

P (x; du) =
1

2
�x(u) + 1(x;x+ 1

2
] � du (2.3)
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where the �rst term from (2.2) 'carries' only the (Lebesgue) null set fxg.

One should notice the fact that for all �xed x; y 2 R, formulas (2.1)-(2.2) de�ne probability measures
with respect to A. Yet, it is not obvious that P (�; A ) is a measurable function, for any Borel setA. This
is made clear by the following lemma. For simplicity we consider just one dimension and a set A of the
form A = ( a; b). For two dimensions, one should notice that movements are independent with respect
to the x and y axis, which makes the contribution of the y-term to be multiplicative.

Lemma 2.1 Let [a; b) be a �xed interval of the real line. The restriction to the x-axis of the transition
kernel corresponding to the (1+1) EA with uniform mutation of 'radius' 1=2 is a measurable function,
given by

P (x; [a; b)) =

8>>>><
>>>>:

0 , x < a� 1
2

minfx+ 1
2 ; b g�a , x 2 [a� 1

2 ; a )
1
2 +minfx+ 1

2 ; b g�x , x 2 [a; b)

0 , x � b:

(2.4)

Proof.
On each branch in (2.4) we have the probability for the one-step EA to move from x to [a; b), calculated
in general as the Lebesgue measure of the intersection between [a; b) and the 1=2-radius interval centered
in x, formula (2.2). The only case to watch out for is x 2 [a; b), where the non-Lebesgue factor 1=2
is added, as the probability of remaining in x due to elitism. (We assume progress direction to the
right.) Next, as each branch function is measurable with respect to x, so is P (x; [a; b)). And as B(R) is
generated by the intervals of type [a; b), P (�; A ) is measurable for any Borel setA. �

The following result shows that the product measure d � P is absolutely continuous with respect to d,
which will be used in characterizing the n-step transition functions Pn.

Lemma 2.2 Let A 2 B(R) be a set with d(A) = 0 . Then
R
P (x;A)dx = 0 .

Proof. Z
P (x;A)dx =

Z

A

P (x;A)dx+

Z

AC

P (x;A)dx

The function under the second integral sign from the sum is always zero, for P (x; �) restricted to
B(Rnfxg) is absolutely continuous with respect to Lebesgue measure - as stated by formula (2.2) - thus
it will not carry A with d(A) = 0. So the corresponding integral will be zero and, keeping in mind that
for any x , P (x; �) is a probability, the remaining term readsZ

A

P (x;A)dx �

Z

A

1dx = d(A) = 0

�

Now we can consider the n-step transition kernel Pn. Assume as usual that the algorithm starts in
zero, and furthermore restrict the search to the real line. Applying the chain rule we get the following
characterization.

P 2(0; A ) =

Z
P (0; dx )P(x;A) =

1

2
P (0; A ) +

1=2Z

0+

P (x;A)dx for all A 2 B(R)
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The only discontinuity point of this kernel is zero. This stands not only for P 2 but for any power Pn

with n � 1, as stated by the following.

Proposition 2.3 Let P be the kernel of a one-dimensional (1+1) EA and A 2 B((0;1)) with d(A) = 0 .
Then, for any n � 1 we have:

Pn(0; A ) = 0 (i)Z
Pn(x;A)dx= 0 : (ii)

Proof.
The case n = 1 corresponds to de�nition (2.2) (i), respectively to lemma 2.2 (ii). Next, applying the
chain rule to Pn and assuming by induction that the statement holds for n � 1, we get

Pn(0; A ) =

Z
P (0; dx )Pn�1(x;A) =

1

2
Pn�1(0; A ) +

1=2Z

0+

Pn�1(x;A)dx

� 0 +

Z
Pn�1(x;A)dx = 0

�

Returning to the inclined plane model, we shall derive in the following an exact formula for the n-step
progress of the (1+1) EA along the x-axis by calculating the probability of reaching in n iterations the
Sn rectangle, Sn = f(x; y) : n�1

2 � x < n
2 ; jyj <

n
2g for all n � 1. A representation of the progress

regions fSng for n = 1 ;4 is given in �gure 1.
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Figure 1: Regions of progress for the (1 + 1) EA on the inclined plane model

To this end, we start with a rather intuitive result, stating that the transition kernel P is invariant to
translations along the progress axis. Let S1

n = [n�12 ; n2 ) be the x-projection of Sn, for all n.

Lemma 2.4 For all n � 1 , k < n , m � 1 and x � k
2 we have

Pm(x; S1
n) = Pm(x�

k

2
; S1

n�k)
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Proof.
We �x arbitrary n and k < n and proceed with induction after m. For n = 1 formula (2.4) provides

P (x; S1
n) = P (x; [

n� 1

2
;
n

2
)) =

8>>>><
>>>>:

0 , x � n�2
2

x+ 1
2 �

n�1
2 , x 2 (n�22 ; n�12 )

1
2 +

n
2 � x , x 2 [n�12 ; n2 )

0 , x � n
2 :

=

8>>>><
>>>>:

0 , x� k
2 �

n�k�2
2

(x� k
2) +

1
2 �

n�k�1
2 , x� k

2 2 (n�k�22 ; n�k�12 )
1
2 +

n�k
2 � (x� k

2) , x� k
2 2 [n�k�12 ; n�k2 )

0 , x� k
2 �

n�k
2 :

= P (x�
k

2
; [
n� k � 1

2
;
n� k

2
)) = P (x �

k

2
; S1

n�k):

Assume now that the property holds up to m� 1, and calculate

Pm(x; S1
m) =

Z
P (x; du)Pm�1(u; S1

n) =

Z
P (x; du)Pm�1(u�

k

2
; S1

n�k)

=

Z
P (x�

k

2
; du )Pm�1(u�

k

2
; S1

n�k) = Pm(x�
k

2
; S1

n�k)

where the last equalities come from the induction hypotheses, cases m� 1 and 1. �

The following is essential for characterizing the n-step transitions.

Proposition 2.5 Let x 2 S1
1. For all n � 1 we have

Pn(x; S1
n+1) =

1

n!
xn

Proof.
We proceed by induction. For n = 1 we apply formula (2.4) with [a; b) = [12 ; 1) and get

P (x; [
1

2
; 1)) = x+

1

2
�
1

2
= x

5



Next, assume the condition holds for n � 1 and calculate

Pn(x; S1
n+1) =

Z
P (x; du)Pn�1(u; S1

n+1) =

=
1

2
Pn�1(x; S1

n+1) +

Z x+ 1

2

x
Pn�1(u; S1

n+1)du =

where the �rst term is zero because S1
n+1 is not accesible from x <

1

2

=

Z 1

2

x
Pn�1(u; S1

n+1)du+

Z x+ 1

2

1

2

Pn�1(u; S1
n+1)du =

where �rst term is again zero, then lemma 2.4, the change u�
1

2
= v and induction provide

=

Z x+ 1

2

1

2

Pn�1(u�
1

2
; S1

n)du =

Z x

0
Pn�1(v; S1

n)dv =

Z x

0

1

(n � 1)!
vn�1dv =

1

n!
xn

�

A simple result makes the step to the two-dimensional case, namely

Lemma 2.6 Let k � 0 and (x; y) 2 Sk. Then, for all n � 1 we have

Pn((x; y); Sn+k) = Pn(x; S1
n+k)

Proof.
Induction after n. For n = 1 formula (2.1) provides

P ((x; y); Sk+1) =
1

2
�(x; y)(Sk+1) + d((x; x+

1

2
)� (y �

1

2
; y +

1

2
) \ Sk+1)

=
1

2
�(x)(S

1
k+1) + 1 � d((x; x+

1

2
) \ S1

k+1) = P (x; S1
k+1)

Assume the equality holds for n � 1 and calculate

Pn((x; y); Sn+k) =

Z
P ((x; y); dw)Pn�1(w; Sn+k)

=
1

2
�(x; y)(w)P

n�1((x; y); Sn+k) +

Z x+ 1

2

x
du

Z y+ 1

2

y� 1

2

Pn�1((u; v); Sn+k)dv

=
1

2
Pn�1(x; S1

n+k) +

Z x+ 1

2

x
du

Z y+ 1

2

y� 1

2

Pn�1(u; S1
n+k)dv

=
1

2
Pn�1(x; S1

n+k) + 1 �

Z x+ 1

2

x

duPn�1((u; v); Sn+k)

=

Z
P (x; du)Pn�1(u; Sn+k) = Pn(x; Sn+k)
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Now we can state the main result for the inclined plane model.

Theorem 2.7 Let k � 0 and (x; y) 2 Sk. Then, for all n � 1 we have

Pn(0; Sn) =
1

n! 2n

Proof.
According to lemma 2.6 it is su�cient to prove the one-dimensional result. We have

Pn(0; S1
n) =

Z
P (0; dx )Pn�1(x; Sn) =

Z 1

2

0
P (0; dx )Pn�1(x; Sn)

=

Z 1

2

0
P (0; dx )

xn�1

(n� 1)!
=

Z 1

2

0

xn�1

(n� 1)!
dx =

1

n! 2n

where in the last line proposition 2.5 and the fact that S1
n is not attainable from 0 in n � 1 steps were

essential. �

The following corollary generalizes the analysis to the case of (1 + 1) EA with r-size mutation.

Corollary 2.8 If mutation is uniformly distributed inside the square of area r2

Pn(0; Sr
n) =

1

n! 2n

where in this case Sr
n = f(x; y) : r(n�1)

2 � x < nr
2 ; jyj <

nr
2 g

Proof.
If one carries the same reasoning leading to theorem 2.7 but integrating from 0 to r=2 along the x-axis,
respectively from �r=2 to r=2 along the y-axis, and divide by a factor of r2 each time P appears in the
calculation, the conclusion is straightforward.
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