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Abstract. This article presents statistical techniques for the design and
analysis of evolution strategies. These techniques can be applied to other
search heuristics such as genetic algorithms, simulated annealing or par-
ticle swarm optimizers. It provides guidelines for the comparison of differ-
ent algorithms on artifical test functions and on real-world optimization
problems. Statistical experimental design techniques to improve the in-
tegrity and comparability of experiments are proposed. Interpreting the
run of an optimization algorithm as an experiment, design of experi-
ments (DOE), response surface methods (RSM), and tree-based regres-
sion methods can be applied to analyze and to improve its performance.
We recommmend to base the comparison of algorithms on “tuned” algo-
rithms and not on their “standard” parameterizations.

1 Introduction

At present, it is intensely discussed which type of experimental research method-
ologies should be used to improve the acceptance and quality of evolutionary
algorithms (EA). A broad spectrum of presentation techniques makes new re-
sults in evolutionary computation (EC) almost incomparable. Discussions and
sessions related to this subject took part during the congress on evolutionary
computation (CEC) and on the genetic and evolutionary computation confer-
ence (GECCO). I.e., how to promote good standards and quality of research
in the field of EC was discussed during the international society for genetic
and evolutionary computation (ISGEC) workshop on standards at GECCO in
2002 [1]. Eiben and Jelasity (2002) explicitely list four problems resulting from
this situation:

– the lack of standardized test-functions, or benchmark problems,
– the usage of different performance measures,
– the impreciseness of results, and therefore no clearly specified conclusions,

and
– the lack of reproducibility of experiments.

EC shares these problems with other scientific disciplines [3]. Solutions from
these other disciplines, that have been successfully applied for many years, might
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Table 1. Evolution strategy compared to simulated annealing. First runs with “stan-
dard” parameterizations discussed later on. Best value from 5,000 iterations. The object
variables xi were initialized as shown in Eq. 4.

Problem Dimension Global optimum ES SANN

Sphere 12 0 1.378548e − 36 9.936222e − 08
Rosenbrock 12 0 0.02246728 0.0001481394

be transferable to EC. Here we can mention: statistical design of experiments
(DOE) [4], design of computational experiments to test heuristics [5, 6], experi-
mental algorithmics [7], experimental designs for simulation [8], or deterministic
computer experiments [9].

In this chapter, we first start with a comparison of two stochastic global opti-
mization methods. This comparison is based on real optimization data, but it is
kept as simple as possible for didactical purposes. An evolution strategy is com-
pared to simulated annealing (SANN) [10, 11]. The first experiments are based on
the “standard” parameterizations found in the literature [11, 12]. These parame-
terizations will be discussed later on. The results presented in Tab. 1 might lead
to the conclusion that the ES outperforms the SANN on the sphere function
whereas the SANN method works better on Rosenbrock’s “banana” function.
Modifying the exogenous parameters of the ES, i.e. replacing the comma selec-
tion with the plus selection and reducing the initial step-size from 3.0 to 0.3 leads
to a different result: the best value found now reads 5.027801e− 08. This might
lead to the conclusion that ES perform better than SANN in any case. However,
it is still an open question what happens if the parameter values of the SANN
are improved or if repeat optimization runs are performed. But before we start
performing repeat runs, we should determine how many repeats are necessary
to obtain significant results.
The remainder of this article1 deals with questions related to these problems and
provides a methodology to perform comparisons in a statistically sound manner.

Optimization runs can be regarded as experiments. In our approach, an ex-
periment consists of a problem and its related fitness function, an algorithm, and
a quality criterion: we will use design of experiments, regression analysis, and
generalized linear models, to improve and compare algorithms’ performances.
The main focus in this paper lies on natural problem classes: its elements are
problems that are based on real-world optimization problems in contrast to ar-
tificial problem classes [2].

The approach presented here is based on DOE methods and can be used to
solve the following tasks:

Investigation: Analyzing and tuning models and optimization criteria: i.e. what
are important parameters, what should be optimized?

1 This article is an extended and updated version of [13].
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Comparison: Comparing the performance of competing search heuristics such
as evolutionary algorithms, simulated annealing, particle swarm optimization
etc.

Conjecture: It might be good to demonstrate performance, but it is better to
explain performance. Understanding and further research, based on statistics
and visualization techniques, play important roles in the approach presented
in this paper. Cohen et al. (2000) mention some reasons why experiments
should complement the theoretical analysis: theories may have holes, obser-
vations may suggest new theories and theories can be tested by experiments
(see also Fig. 1). Gregory et al. (1996) performed an interesting study of
dynamic scheduling that demonstrates how synergetic effects between ex-
periment and theory can evolve. The methodology presented in their study
is closely related to our approach.

Quality: Improving the robustness of the results obtained in optimization or
simulation runs. Robustness includes insensitivity to exogenous factors that
can affect algorithms’ performance, and minimization of the variability around
the obtained solutions [16].

Hence, the approach presented here might be interesting for optimization prac-
titioners who are confronted with a complex real-world optimization problem in
a situation where only few preliminary investigations are possible to find good
parameter settings [17, 18]. Kleijnen and Pala (1999) describe a competition, or-
ganized by the Business Section of the Netherlands Society for Statistics and
Operation Research: only 32 runs are permitted to obtain the maximum output
for a given simulation model by selecting the best combination of six inputs.
Furthermore, DOE is applicable a priori to tune different parameter settings of
two algorithms to provide a fair comparison. Additionally, these methods can
be used in other contexts to improve the optimization runs, i. e. to generate
systematically feasible starting points that are better than randomly generated
initial points.

Our approach differs from the following eight approaches:

1. Classical design of experiments as used in industrial optimization. We will
consider “optimization via simulation”: a simulation model equipped with a
fitness function defines an optimization problem. Therefore, simulation and
optimization will be used equivalently throughout the remainder of this ar-
ticle. DOE techniques must be adapted if applied to simulation models since
stochastic simulation uses pseudo-random numbers. Randomness is replaced
by pseudo-randomness. As common or antithetic seeds can be used, the sim-
ulation practitioner has much more control over the noise in the experiments
and can control the source of variability [18]. The different simulation runs
for one specific factor combination can be performed under exactly the same
conditions. Blocking and randomization, important techniques to reduce the
systematic influence of different experimental conditions, are unnecessary in
computer-based simulation. The random number seed is the only random
element in a random simulation model.
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Fig. 1. Relationship between theory and practice. Practice can benefit from theory and
vice versa. Demonstrating good results is only the first step in the scientific process,
whereas nature’s reality can be seen as the judge of a scientific theory.

2. Meta-EA approaches, see, e.g., [12, 20]. Meta-algorithms might locate good
parameter sets, though without providing much insight as how sensitive per-
formance is to parameter changes.

3. Schaffer’s study of control parameters of GA [21]. Schaffer proposes a com-
plete factorial design experiment that requires 8, 400 run configurations, each
configuration was run to 10, 000 fitness function evaluations. In contrast to
this, we propose an approach that requires a small amount of fitness function
evaluations only. Furthermore, our approach takes the underlying problem
instance into account and does not draw any conclusions that are problem
independent.

4. Parameter control as introduced in [22]. Parameter control deals with param-
eter values that are changed during the optimization run. This is in contrast
to our approach that is based on parameter values that are specified before
the run is performed. The assumption that specific problems require specific
EA parameter settings is common to both approaches [23].

5. The exemplary study of simulated annealing by David Johnson’s group [24,
25]. Regarding this study, our approach is related to the discipline experi-
mental algorithmics [26]. Thus it can be added to the category “assessment
of heuristics” as classified in [7]. Experimental algorithmics offers methodolo-
gies for the design, implementation, and performance analysis of computer
programs for solving algorithmic problems. Different from this approach, our
goal is to provide methods for very complex real-world problems, when only
a few optimization runs are possible, i.e. optimization via simulation. The
elevator supervisory group controller study discussed in [27] required more
than a full week of round-the-clock computing in a batch job processing
system to test 80 configurations.

6. Empirical modeling of genetic algorithms as presented by [28]. Their method-
ology has a different goal than our approach: we are trying to tune an evo-
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lutionary algorithm with the fewest amount of experiments, whereas Myers’
and Hancock’s approach requires 129, 600 program runs.

7. François’ and Lavergne’s statistical approach [29]. They demonstrate the
applicability of generalized linear models to design evolutionary algorithms.
This approach is similar to [28]. Again, data sets of size 1, 000 or even more
are necessary, although a simplified evolutionary algorithm with two param-
eters only (Moses) is designed.

8. Design and analysis of computer experiments as introduced in [9], where the
deterministic output of a computer experiment is modeled as the realization
of a stochastic process. This approach differs significantly from our approach,
the same applies to design and analysis of computer experiment (DACE)
methods [30].

Despite the differences mentioned above, it might be beneficial to adapt some of
these well-established ideas from other fields of research to improve the accep-
tance and quality of evolutionary algorithms.

Although the no free lunch theorem (NFL) for search states that there does
not exist any algorithm that is better than another over all possible instances
of optimization problems, this result does not imply that we should not com-
pare different algorithms. Keeping in mind that we are considering problems of
practical interest, the reader may refer to the discussion in [31–33].

Hence, the main contribution of this paper is to propose an answer to the
complex questions: how to determine strategy parameters for search algorithms
that are suitable to optimize efficiently and effectively real–world optimization
problems? And, how can two different optimization algorithms be compared in
a statistically sound manner? Thus, we can provide at least partial answers to
the problems mentioned by Eiben and Jelasity. These answers will be given from
the view-point of an optimization practitioner.

Drawing conclusions from the experimental data is an important part of the
approach presented here. This approach will be referred to as the “experimental
analysis of search heuristics” throughout the rest of this paper.

This paper is structured as follows: section 2 describes how evolution strate-
gies (ES), as a special class of evolutionary algorithms, can be parameterized [10].
Hence, the run of an ES can be treated as an experiment. Different measures to
compare stochastic optimizers for complex real-world problems are discussed in
Sec. 3. Section 4 is devoted to DOE methods that are used to tune and compare
different optimization run configurations. Comprehensive examples for tuning
and comparison are presented in Sec. 5. Section 6 discusses the limits of our
approach. A summary and an outlook are given in Sec. 7.

2 Evolution Strategies

2.1 Evolutionary Algorithms as Experiments

The popularity of evolutionary algorithms has steadily increased in the last
four decades. There are many degrees of freedom when starting an optimiza-
tion run: as other search algorithms such as simulated annealing [34] or particle
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swarm optimization [35, 36], an EA requires the determination of parameters
such as the population size before the optimization run is performed. The op-
timization of real-world problems requires good initial parameters, since many
real-world problems are computationally expensive, e.g., “optimization via simu-
lation” [37–39]. Therefore only a few optimization runs are possible, that should
be performed with “good” parameter settings. Optimization practitioners are
interested in determing a good parameter setting with a minimum amount of
optimization or simulation runs. The choice of an adequate parameter setting,
or EA design, can be based on expert knowledge. But in many cases there is no
such knowlegde available.

DOE techniques can be applied to optimization algorithms such as evolution-
ary algorithms, considering the run of an algorithm as an experiment, gaining
insightful conclusions into the behavior of the algorithm and the interaction
and significance of its parameters. The first two steps in this analysis are called
screening and modeling. In a third step, we can use response surface methods
(RSM) to improve significant parameter settings (optimization) [16]. Therefore,
DOE methods, combined with response surface methods, might lead to an im-
proved EA design.

From the viewpoint of an experimenter, factors can be defined as param-
eters, variables, and behavioral relationships, that can be changed during an
experiment. How factors can be interpreted from a statistical point of view will
be discussed in Sec. 4. Generally, there are two different types of factors that
influence the behavior of an optimization algorithm: problem specific factors,
i.e. the fitness function, and algorithm specific factors, i.e. the population size.
The latter can be divided into endogenous and exogenous factors. Exogenous
factors, or “exogenous strategy parameters” as they are called in [10], are kept
constant during the optimization run, whereas endogenous strategy parameters,
i.e. standard deviations2, are modified by the algorithms during the run.

2.2 Evolution Strategies: Algorithm Specific Factors

The methodology presented in this paper leads to results that are tailored for
one specific algorithm–optimization problem combination. In a similiar man-
ner as [40] mention the nonsense of speaking of a problem complexity without
considering the parameterization of the optimization algorithm, we cannot dis-
cuss the behavior of an algorithm without taking the underlying problem into
account. Our experimental design approach is transferable to any kind of EA
design or even any parameterizable stochastic search algorithm such as simu-
lated annealing, tabu search or genetic algorithms. To give an example, we will
analyze evolution strategies.

Beyer and Schwefel (2002) provide a comprehensive introduction to this spe-
cial class of EA. An indepth discussion of evolutionary algorithms and other
direct search methods can be found in Schwefel’s seminal book “Evolution and
2 Standard deviations will be laxly referred to as “step-width” or “mutation

strenghts”.
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Table 2. Default settings of exogenous parameters of a “standard” evolution strategy.
From [12]. Bäck does not recommend to use this “standard” without reflection. He
additionally presents a kind of default hierarchy that includes four parameterizations
for simple and complex algorithms and suggests to perform experiments. Hence, our
approach can be seen as an extension of Bäck’s methods. Problems may occur, when
these “standards” are blindly adopted and not adjusted to the specific optimization
problem.

Symbol Factor Parameter Range Default Values

µ P Number of parent individuals IN 15
ν = λ/µ S Offspring-parent ratio IR+ 7

σ
(0)
i InitS Initial standard deviations IR+ 3

nσ NSigma Number of standard deviations. D denotes
the problem dimension

{1, D} D

cτ TauMult Multiplier for individual and global muta-
tion parameters

IR+ 1

ρ Rho Mixing number {1, µ} µ
rx XReco Recombination operator for object vari-

ables
{i, d} d (discrete)

rσ SReco Recombination operator for strategy vari-
ables

{i, d} i (intermediate)

κ K Maximum age IR+ 1

Optimum Seeking” from 1995. This book is a slightly extended version of Schwe-
fel’s PhD thesis from 1975 that was published under the title “Numerische Opti-
mierung von Computer-Modellen mittels der Evolutionsstrategie”[43], and trans-
lated into English four years later [44].

An ES-algorithm run can be described briefly as follows: the parental popu-
lation is initialized at time (generation) t = 0. Then λ offspring individuals are
generated in the following manner: a parent family of size ρ is selected randomly
from the parent population. Recombination is applied to the object variables
and the strategy parameters. The mutation operator is applied to the resulting
offspring vector. Selection is performed to generate the next parent population.
A termination criterion is tested. If this criterion is not fulfilled, the generation
counter (t) is incremented and the process continues with the generation of the
next offspring.

In the following, we extend the classical (µ/ρ +, λ) ES notation to an ex-
perimental design vector representation. We consider the parameters or control
variables mentioned below:

1. Number of parent individuals: µ.
2. Number of offspring individuals: λ. Based on µ and λ, the selection pressure

ν is defined as the offspring–parent ratio λ/µ. For given µ and ν values, λ is
calculated as µ · ν and rounded to the nearest whole number.

3. Initial mean step sizes (standard deviations of the mutations of the decision
variables): σ

(0)
i , i = 1, . . . , nσ.

The algorithms’ performance may increase if problem specific σ
(0)
i values for
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each dimension are chosen. To prevent an exponential blow up in the num-
ber of ES parameterizations, we assume scaled object variables. Therefore,
only one initial step size is necessary for all dimensions: σ(0) = σ

(0)
i ∀ i ∈

{1, . . . , D}. The relevance of this parameter decreases with an increasing
number of permitted iteration steps. Unfortunately, many real-world opti-
mization problems permit only a small number of iterations. Therefore, the
selection of an adequate σ(0) value might improve the performance.

4. Number of standard deviations: nσ with 1 ≤ nσ ≤ D. D denotes the problem
dimension.

5. Multiplier for the individual mutation (learning) parameter and the global
mutation parameter: cτ .
The law of large numbers implies that the average overall step size of a
parent and of its offspring do not differ very much for D � 1. Introducing
an overall step size (global mutation parameter) τ0 and individual step sizes
(individual mutation parameter) τ might avoid this effect. The value cτ is
used as a scaling parameter for τ0 and τ :

τ0 = cτ/
√

2D and τ = cτ/

√
2
√

D.

Mutation is based on the extended log-normal rule, that enables learning
perpendicular mutation ellipsoids [10]:

σ(t+1) = exp(τ0N0(0, 1)) ·
(
σ

(t)
1 exp(τN1(0, 1)), . . . , σ(t)

D exp(τND(0, 1))
)

,

where σ(t) denotes the step length vector3 at iteration t, and N (0, 1) is the
realization of a normally distributed random number with variance one and
expectation zero. Although cτ = 1 leads to “standard” values that can be
found in the literature [45]: τ0 = 1/

√
2D and τ = 1/

√
2
√

D, we cannot
recommend this parameterization. I.e., high dimensional fitness functions
might require completely different τ resp. τ0 values.

6. Mixing number: ρ. The mixing number denotes the size of the parent family
that is chosen from the parent pool of size µ to create one offspring.

7. Recombination operator for object variables: rx.
There exists a broad variety of recombination operators. Although [12] al-
ready describes 7 different types: no recombination, discrete (dominant),
panmictic discrete, intermediate, panmictic intermediate, generalized inter-
mediate, and panmictic generalized intermediate, this listing is by far not
complete.4 Beyer (1996) calculates the global arithmetic mean (center of
mass of the ρ parent vectors) in contrast to other recombination schemes
that determine the arithmetic average of 2 parent vector coordinates chosen
out of ρ [12, 20]. Our analysis takes Beyer’s recombination scheme from 1996

3 For the sake of simplicity, we will use no arrows to denote vectors in this article.
It will generally be clear from context whether a variable is a vector or a scalar
quantity.

4 I.e., it does not include the recombination operator that was used in [42].
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into account, since it is used in a recent publication [10]. Therefore, we con-
sider discrete (d) and intermediate (i) recombination methods that depend
on the mixing number ρ. The mixing number is treated as a qualitative fac-
tor with two levels: b denotes the bisexual scheme with ρ = 2, whereas m is
the multisexual recombination scheme with ρ = µ.
The discrete recombination scheme is often recommended as a rule of thumb
for the object variables. We do not recommend this, but suggest to chose the
recombination operator for each specific optimization problem anew. This is
in accordance with empirical results found by Kursawe, but in contradiction
to theoretical results from [46].

8. Recombination operator for strategy variables: rσ.
9. Selection mechanism, maximum life span: κ.

Plus-strategies (µ + λ), and comma-strategies (µ, λ) can be generalized by
introducing the parameter κ that defines the maximum age (in generations)
of an individual. If κ is set to 1, we obtain the comma-strategy, if κ equals
+∞, we model the plus-strategy.5

The following vector notation provides a compact description of an ES parameter
design [10, 47]:

pES =
(
µ, ν, σ(0), nσ, cτ , ρ, rx, rσ, κ

)
. (1)

This representation will be used throughout the rest of this article and is summa-
rized in Tab. 2. This table shows the capital letters that were used to denote the
variables in the figures and in the regression models, and also typical parameter
settings6. The “standard” parameterization from [12] reads:

pSTD =
(
µ = 15, ν = 7, σ(0) = 3, nσ = D, cτ = 1, ρ = µ, rx = d, rσ = i, κ = 1

)
.

(2)
Each ES-run requires the specification of at least one random seed r0 (see Eq. 5).
Experimental conditions in computer based optimization include the random
variates that are used during the optimization run to generate new candidate so-
lutions. Variance reduction techniques such as common random numbers (CRN)
are based on the idea that alternative configurations should be compared under
similar conditions. Thus, in the comparison of different run configurations the
same random seed is used. CRN and other variance reduction techniques are
discussed in detail in [48].

For each of the µ different parents at generation 0, a starting vector x
(0)
j , j =

1, . . . , µ, has to be selected and a stop criterion has to be specified in addition to
the parameters mentioned so far. These parameters are considered as problem
and not algorithm specific in our approach.

5 The symbol “∞”, that represents a plus-strategy for the κ variable, is encoded as
“-1”.

6 Bäck (1996) states that the setting of σ(0) depends on the particular objective func-
tion. σ(0) = 3, however, turns out to be a reasonable choice even if nothing is known
about the objective function.
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A vector notation can be used for the optimization and problem specific
parameters such as the fitness function f , the problem dimension D, the initial
values for the variables to be optimized x(0) = (x(0)

1 , . . . , x
(0)
D ), the number of

iterations (function evaluations) Ntot, or the number of repeats for each scenario
Nexp. The vector

d = (f, D, x(0), Ntot, Nexp, . . .) (3)

denotes the corresponding design configuration. The initial values x
(0)
i were set

as denoted in Eq. 4. An optimization run configuration consists of the problem
specific design configuration, e.g. represented by d as shown in Eq. 3 and the
parameter design configuration p, e.g. as shown in Eq. 1.

In the following sections, we will discuss how different algorithms can be
compared. Based on these considerations we are able to apply DOE methods
to improve the behavior of the ES for a given optimization configuration. This
task can be interpreted as the determination of optimal values of p∗ for a given
problem design d or as an analysis of a regression meta-model [49].

3 Performance Measures to Compare Stochastic
Optimizers

Before we can compare two algorithms, we have to specify a concrete measure
for their comparison. Two main measurements play an important role in this
context: effectivity and efficiency. Effectivity deals with the question whether
the algorithm produces a desired effect. On the other hand, the measurement
can be based on efficiency: does the algorithm produce the desired effects without
waste?

There are many different measures for the goodness of an algorithm, i.e. the
quality of the best solution, the percentage of runs terminated successfully, the
number of iterations or time steps required to obtain the results, the robustness
of the algorithm, or the distance between the best and the easiest found solutions.
The performance measure under consideration should lead to a comparison well-
defined, algorithmic, reproducible, and fair [50]. We list some typical measures
to demonstrate that there is no canonical rule. If not mentioned explicitely, we
will consider single criteria optimization problems defined as min{f(x) : x ∈ ID}
with f : ID → IR and ID ⊆ IRD.

– The mean best fitness can be defined as the average value of the best fitness
values found at termination for one specific run configuration. Considering
the quality of the best solution, it is a common practice to show a graph of
the solution quality versus time.

– The first hitting time of an ε-environment of the global optimum of the
objective function y∗ can be defined as the expectation of the random time
Tε = min{t ≥ 0 : B(t) ≤ y∗ + ε} with ε ≥ 0, where B(t) is the best fitness
function value known to the ES at time-step t [51]. As the best solution
found during the complete run may not belong to the final population, this
measure is of special interest when comma-strategies are analyzed.
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– The hitting time of an ε-environment of y∗ is also applicable to real-world
optimization problems, where the exact optimum can only be approximated
with a finite accuracy. Schwefel proposes the definition of an explicit border
to determine successful runs or failures [52, 41].

– If the optimal solution is known, the percentage of run configurations ter-
minated successfully (success rate) can be used to measure the performance
of an algorithm [53]. This is related to an approach suggested by [41]: Test
after each generation, if the interval of uncertainty of the variables has been
reduced by at least 90 %: |x(t)

i − x∗
i | ≤ 1

10 |x(0)
i − x∗

i |, for i = 1, . . . , D,
where x∗ denotes the optimum and the values xi were initialized as

x
(0)
i = x∗

i +
(−1)i

√
n

, for i = 1, . . . , D. (4)

Eiben and Jelasity (2002) discuss the relationship between success rate and
mean best fitness. We will present a model based on the success rate in
Sec. 4.6.

– Time-dependent measures such as the performance profile can be used to
determine the computational effort [54].

– A measure to compute the quality-effort relationship can be defined as the
ratio r0.05 = t0.05/t best, where t0.05 denotes the time to produce a solution
within 5 % of the best-found fitness function value, and tbest is the time to
produce that best value [55].

– Robustness can be defined in many ways, i.e. as a good performance over
a wide range of instances of one test problem or even over a wide range of
different test problems.

– To measure the algorithm speed, the average number of evaluations to a
solution can be used. The maximum number of evaluations can be used for
runs finding no solutions.

– Schwefel (1988) defines the convergence velocity c as a progress measure of
a single run as the logarithmic square root of the ratio of the best func-
tion value in the beginning f (0) and after t generations/iterations f (t): c =
log(

√
f (0)/f (t)). The normalized convergence velocity can be defined as

D/t · c [20].
– Finally, we can annotate that [5] discuss performance measures for parallel

algorithms.

Since runtimes depend on the computer system, measures for computational
effort might be advantageous: Counting operations, especially for major subtasks
such as fitness function calls can be mentioned in this context explicitly.

Schaffer et al. (1989) propose a technique to determine the total number of
iterations Ntot and to prevent ceiling effects (a ceiling effect occurs when the
fitness function values are nearly as good as possible): the number k belongs
to the set N , if at least 10% of the parameter design configurations p located
the optimum y∗ at least on average every second time after k iterations. The
number of fitness function evaluations at which to compare different optimization
algorithms is chosen as Ntot = min{N} mod 1000.
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We use the quality of the best solution found during an optimization run as
a performance measure and propose two different approaches: the first approach
(see Sec. 4.6) is based on the performance values found during the run, whereas
the second approach interprets the number of successful runs as a random vari-
able having a binomial distribution (see Sec. 4.6).

Since many optimization runs produce fitness function values that do not
follow a Gaussian distribution, our conclusions will be based on generalized linear
models (GLM) in this case. On the other hand, if the performance results are
Gaussian, or can easily be transformed to Gaussian distributed values, classical
analysis of variance (ANOVA) or regression models can be recommended.

4 Analysis: Design of Experiments

4.1 Experiments

Pre-experimental planning has a long tradition in other scientific disciplines.
For instance, [57] present a checklist for the pre-experimental planning phases
of an industrial experiment that covers the following topics: Objectives of the
experiment, relevant background on response and control variables, a list of
response variables and control variables, a list of factors to be “held constant”,
known interactions, proposed analysis techniques etc. The differences between
analytical and empirical studies are discussed in [58]. A good empirical work
must pass the following tests: it must be both convincing and interesting [58].
Moret (2002) gives a good characterization of “interesting”: “always look beyond
the obvious measures!” In this context, we recommend to include factors that
should have no effect on the response such as the random seed r0, see Eq. 5, in
the model.

As we have classified important parameters of evolution strategies in Sec. 2,
and have defined a measure for their comparison in Sec. 3, we can conduct
experiments to assess the significance of single parameters such as population size
or selective pressure. We should keep in mind that optimization runs are treated
as experiments: we begin by formulating a hypothesis, then set up experiments
to gather data that either verify or falsify this hypothesis. We will use guidelines
from experimental algorithmics in our experimental studies [7]:

(G-1) Question: state a clear set of objectives. Formulate a question or a hypothesis.
A typical question reads “Is the selective pressure ν = 5 a good choice for
the optimization problem under consideration?”.

(G-2) Data collection: after an experimental design is selected, simply gather data.
Do not modify the hypothesis until all data have been collected.

(G-3) Analysis: analyze the data to test the hypothesis stated above.
(G-4) Next Cycle: in the next cycle of experimentation a new hypothesis can be

tested, i.e. “ν = 5 is a good choice, because. . .”

This procedure is in accordance with Popper’s position that “knowledge re-
sults when we accept statements describing experience that contradict and hence
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refute our hypotheses; thus a deductive rather than an inductive relation holds
between theoretical knowledge and experience. Experience teaches us by cor-
recting our errors. Only hypotheses falsifiable by experience should count as
scientific” [59].

4.2 How to Choose Exogenous Parameters

Johnson suggests to explain the corresponding adjustment process in detail, and
therefore to include the time for the adjustment in all reported running-times to
avoid a serious underestimate [50]. An important step to make this procedure
more transparent and more objective is to use DOE techniques: they provide
an algorithmical procedure to tune the exogenous parameter settings for the
algorithms under consideration before the complex real-world optimization task
is optimized or two algorithms are compared.

Besides the improved performance of an algorithm, fine-tuning of exogenous
parameters might reveal information about its robustness. This may lead to new
insights in the role of the offspring-parent ratio ν, or the relationship between
recombination and mutation operator. Experimental design provides an excellent
way of deciding which simulation runs should be performed so that the desired
information can be obtained with the least amount of experiments [60, 61, 17,
49, 48].

4.3 Basic DOE Terminology

The input parameters and structural assumptions, that define a simulation model
are called factors, the output value(s) are called response(s). The different values
of parameters are called levels. Levels can be qualitative, i.e. selection scheme, or
quantitative, i.e. population size. An experimental design is a set of factor level
combinations. Kleijnen defines DOE as “the selection of combinations of factor
levels that will be simulated in an experiment with the simulation model”[62].
One parameter design setting, cf. Eq. 1, is run for different pseudo-random num-
ber settings, resulting in replicated outputs. We will discuss linear regression
models and their extensions, the so-called generalized linear models [63, 64].

4.4 Linear Regression Models

Generally, a simulation model can be represented as follows:

y = f1(z1, . . . , zk, r0), (5)

where f1 is a mathematical function, e.g. f1 : IRk+1 → IR: given the values of
the argument zi and the random number seed r0, the simulation program yields
exactly one value. The Taylor series expansion yields the first order approxima-
tion y = f2 =

∑k
i=1 βizi. The last equation is the basis for regression models

based on simulation data. Our goal is to use least square methods to estimate
the linear model

y = Xβ + ε, (6)
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Fig. 2. Central composite design with axial runs. a =
√

2 gives a spherical CCD, that
is: all factorial and axial design points are on the surface of a sphere of radius

√
2.

where y denotes a column vector with the n responses, ε is the vector of n error
terms, and β denotes is the vector with q parameters βj (n ≥ q).7 X is the (n×q)
matrix of independent regression variables. x0 is the dummy variable equal to
1, the remaining q − 1 variables correspond to the simulation parameters z.
Therefore, we obtain the (n × q) regression matrix

X =




1 x11 x12 · · · x1,q−1

...
...

1 xi1 xi2 · · · xi,q−1

...
...

1 xn1 xn2 · · · xn,q−1




. (7)

Experimental settings (designs), where the regression matrix X satisfies XX ′ =
nI, are called orthogonal.8 The least squares estimate of the regression coeffi-
cients in Eq. 6 is

β̂ = (X ′X)−1X ′y. (8)

Orthogonal designs simplify the computations. They lead to uncorrelated regres-
sion coefficients (Cov(βi, βj) = 0) and to a minimal variance of the predicted
response in the region of interest. In the following, we use orthogonal designs
with two factors for each level: 2k factorial designs and 2k−p fractional factorial
designs, and orthogonal design where center points and axial points are added
to the 2k design: central composite designs (CCD) with axial runs (Fig. 2).

The commonly used one-factor-at-a-time method, where certain factors are
varied one at a time, while the remaining factors are held constant, provides an
7 The normality assumption (the error term ε has expectation E(ε) = 0 and variance

V (ε) = σ2) is discussed in Sec. 4.6.
8 X ′ denotes the matrix transpose of X.
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estimate of the influence of a single parameter at selected fixed conditions of the
other parameters. Such an estimate may only have relevance under the assump-
tion that the effect would be the same at other settings of the other parameters.
This requires that effects of variables behave additively on the response over
the ranges of current interest. Furthermore, interactions cannot be determined.
Therefore, we do not recommend to use this method.

Factorial designs are more efficient than one-factor-at-a-time designs [17].
The variance stays unaltered in one-factor-at-a-time designs, whereas in facto-
rial designs the variance decreases as the total number of experiments increases:
we make use of each observation when we estimate an effect. If the influence of
variables is not additive, factorial designs provide more precise results. Further-
more, unlike the one-factor-at-a-time method, factorial designs can detect and
estimate interactions that measure the non-additiveness. Box et al. (1978) give
an instructive example that explains the weakness of the classical one-factor-at
a time design.
An important objection against 2k designs is that non-linear effects remain undis-
covered. But, this point does not apply in our case: we use 2k designs to get an
overview over the effects and their interactions, not to obtain the exact values.
Furthermore, techniques to measure the goodness of the model fit can be applied.

A variable x is called standardized, if x ranges between −1 and +1. The
original variables with range [l, h] can be standardized using the linear transfor-
mation x = a + bz with a = (l + h)/2 and b = (l− h)/2. In the remainder of this
article zi are the original or natural variables, whereas xi are the standardized
or coded variables.

Hence, the entry −1 in the regression matrix denotes a factor at its low level,
and +1 a factor at its high level. The intuitive definition of a main effect of a
factor A is the change in the response produced by the change in the level of
A averaged over the levels of the other factors. The average difference between
the effect of A at the high level of B and the effect of A at the low level of B is
called the interaction effect AB of factor A and factor B.

4.5 Tuning

Generally, we suggest the following three-stage approach: screening – modeling
– optimization. Before some examples are discussed in detail (see Sec. 5), the
general outline is given.

1. Screening: Only the main effects but no interactions are considered. There-
fore, we recommend fractional-factorial 2k−p designs. These are orthogonal
designs and require a moderate number of experiments. This means that
the regression coefficients can be determined independently. If we cannot
differentiate between two effects, these effects are called confounded. A 2k−p

design is of resolution R if no q-factor effect is confounded with another
effect that has less than R − q factors [60]. Roman numerals denote the
corresponding design resolution. Our first experiments are based on resolu-
tion III designs (see Tab. 3). These designs ensure that no main effect is
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confounded with any other main effect, but main effects can be confounded
with two-factor interactions. These designs provide unbiased estimators of
the regression coefficients of a first-order model and can easily be augmented
to designs that enable the estimation of a second-order regression model, see
also the next but one stage in our approach: optimization [18].

2. Modeling: Interactions are taken into account. At this stage, resolution IV or
resolution V designs are recommended. A linear approximation (see Eq. 6)
may be valid in a sub-domain of the full experimental area. In RSM, we deter-
mine the direction of improvement using the “path of the steepest descent”
(minimization problem) based on the estimated first-order model [49]. The
path of the steepest descent is perpendicular to the fitted first-order model.
If no further improvement along the path of the steepest descent is possible,
we can explore the area by fitting a local first-order model and obtain a new
direction for the steepest descent. This step is repeated several times until we
find the expected optimum area. There the linear model is inadequate and
shows significant lack-of-fit. We cannot determine a direction of improved
response in this case.

3. Optimization: Central composite designs and CCDs with additional axial
runs, that require a relatively high number of runs, are often used at this
experimental stage. They can be combined with response surface methods.
We apply the standard techniques from regression analysis for meta-model
validation [65]. A second-order model can be fitted in the expected opti-
mum area. The optimal values are estimated by taking the derivatives of
the second-order regression model. We combine in our approach DOE and
RSM techniques, that are adapted to the special needs and restrictions of
the optimization task.

As randomness is replaced by pseudo-randomness, we do not recommend to
exclude outliers from the regression analysis. I.e., the decision whether the set
of solutions Y = {y1 = 3, y2 = 3, y3 = 3} or Z = {z1 = 0, z2 = 3, z3 = 6} is
better depends on the optimization task. Removing the potential outliers z1 or
z3 from Z may destroy valuable information.

4.6 Generalized Linear Models

Linear models, regression analysis, and analysis of variance as discussed so far
are applicable to problems having errors that are Gaussian. In many situations
the optimization practitioner has to face response values that follow some skewed
distribution or have non-constant variance. To deal with non-normal responses,
data transformations are often recommended, although the choice of an adequate
transformation can be difficult. Draper and Smith (1998) discuss the need for
transformation and present different transformation methods. Since the trans-
formation may result in incorrect values for the response value, i.e. log Y , if
Y < 0, generalized linear models provide an alternative [64].

The linear model, see Eq. 6, with independent normal Yi variables that have
constant variance σ2 and expectation E(Y ) = µ, where µ = Xβ, is a special
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case of the generalized linear model (GLM) with the following components [64]:
– Response variables Yi that are assumed to have a distribution from the expo-
nential family, and
– a monotone link function g that determines the relationship between the mean
µ and the linear predictor: g(µ) = Xβ.
The GLM regression model is given by E(Y ) = µ = g−1(Xβ).

A Model Based on the Quality of the Best Solution We will give some
hints on how to perform the regression analysis based on GLMs: Histograms
can give first indications, whether or not it might be adequate to use a specific
distribution (i.e. a Gamma distribution might be better suited than the Gaus-
sian distribution). Next we can consider quantile-quantile-plots (QQ-plots) or a
Kolmogorov–Smirnoff test (KS test) to support the assumption. Stepwise model
selection, by adding or removing terms, can be used to find a more parsimonious
regression model [63] and to estimate the regression coefficients. The statistical
software package R provides functions such as stepAIC that automate this se-
lection process. Functions such as qq.plot can be used to plot the data against
any reference distribution [66].

A Logistic Regression Model Based on the Success Rate Whether or
not the optimization run has located a pre-specified optimum can be used as a
performance measure for algorithms. In this case, where the outcome variable can
take only two values, a linear regression model is not appropriate, but a logistic
regression model might be adequate. Let D denote the set of all parameter
designs and P the set of all problem configurations. Each (optimization run,
problem)-combination generates a binary response value: D × P → {0, 1}, with
d ∈ D and p ∈ P as defined in Eq. 1 and Eq. 3 respectively. As Nexp optimization
runs for each factor-level setting will be performed, the number of successful runs
can be seen as a random variable having a binomial distribution.

For an introduction into logistic regression the reader is referred to [67].
Myers and Hancock (2001) present an example that uses a genetic algorithm
to solve consistent labeling problems. The logistic regression model might also
be applicable if the outcome variable is disturbed by noise as in the elevator
simulation model (this model will be discussed later).

4.7 Tree Based Methods

Breiman et al. (1994) introduce regression trees as a “flexible non-parametric
tool to the data analyst’s arsenal.” They are used for screening variables and for
checking the adequacy of regression models [69]. The construction of regression
trees can be seen as a type of variable selection [63]. Consider a set of predictor
variables X and a quantitative response variable Y . A regression tree is a col-
lection of rules such as “if x1 ≤ 5 and x4 ∈ {A, C}, then the predicted value of
Y is 14.2”, that are arranged in a form of a binary tree (see, e.g., Fig. 3). Recur-
sively splitting the data in each node builds up a binary tree. The partitioning
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| P<9.5

K:a

P<4.5

S<4

S<5

S<3
InitS<1

K:a
S<4

-104.900  -93.570  -64.220

 -20.540  -12.250  -48.470
 -92.680

 -41.330
  -8.285  -37.760

Fig. 3. Experiment ES4. Tile tree plot visualizing tree regression. Evolution strategy
optimizing the 12 dimensional sphere function. P stands for the population size µ, K
denotes the selection mechanism κ, S the selective pressure µ, and InitS stands for the
initial step size σ(0). Further symbol names are explained in Tab. 2. The left subtree
of a node contains the configurations that fulfill the condition in the node. It is easy to
see that smaller populations improve the algorithm’s performance. The corresponding
experiment is described in Sec. 5.1. A nonuniform spacing was chosen: more important
node splits result in larger spaces between nodes.
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algorithm stops when the node is homogeneous or the node contains too few ob-
servations. Compared to linear models, tree-based models are easier to interpret
when qualitative and quantitative predictors are in the model. The endpoint for
a tree is a partition of the space of possible observations. The S-Plus function
tile.tree is used to display class probabilities across the leaves of a tree.

5 Examples

In the following examples we will investigate minimization problems f : ID →
IR, ID ⊆ IRD. The region of interest is defined as

I := [a1, b1] × . . . × [aD, bD] ⊆ ID, (9)

with the center point zi = (ai + bi)/2, i, . . . , D, as depicted in Fig. 2. The
optimization response is approximated in the region of interest by the first-order
regression model y = Xα + ε, or by the coded model y = Xβ + ε, cf. Eq.6.

Imagine a situation in which an optimization practitioner can only perform
a few preliminary experiments to find a suitable ES parameter setting. Since the
ES discussed in Sec. 2 has 9 different exogenous parameters, a full factorial 2k

design would require 512 optimization runs. Thus, the experimenter decides to
set up a 29−5

III fractional factorial design, that requires only 16 optimization runs.
The first 4 = 9 − 5 columns in the design matrix are identical to the columns
of a full factorial 24 design matrix. The remaining four columns are constructed
by “multiplications” that are based on the defining relations [61]: E = ABC,
F = BCD, G = ACD, H = ABD, and J = ABCD. The resulting design is
shown in Tab. 3. Box et al. (1978) give rules for constructing fractional factorial
designs.

5.1 Tuning: Evolution Strategy and Sphere Function

The 12 dimensional sphere function f : IRD → IR, y = f(x) =
∑D

i=1 x2
i , has

been chosen to demonstrate the experimental analysis methodology.9
(G-1) Question: is the standard ES parameterization a reasonable choice to op-
timize the sphere function?
(G-2) Data collection: based on the standard ES configuration from Tab. 2, the
29−5
III fractional factorial design from Table 5 was used (Experiment ES1). The

9 As D = 12 was used in other contexts, see e.g. [70], this setting was chosen to
improve the comparability.
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regression matrix reads:

X =

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1 -1 -1 -1 -1 -1 -1 -1 -1 1
1 1 -1 -1 -1 1 -1 1 1 -1
1 -1 1 -1 -1 1 1 -1 1 -1
1 1 1 -1 -1 -1 1 1 -1 1
1 -1 -1 1 -1 1 1 1 -1 -1
1 1 -1 1 -1 -1 1 -1 1 1
1 -1 1 1 -1 -1 -1 1 1 1
1 1 1 1 -1 1 -1 -1 -1 -1
1 -1 -1 -1 1 -1 1 1 1 -1
1 1 -1 -1 1 1 1 -1 -1 1
1 -1 1 -1 1 1 -1 1 -1 1
1 1 1 -1 1 -1 -1 -1 1 -1
1 -1 -1 1 1 1 -1 -1 1 1
1 1 -1 1 1 -1 -1 1 -1 -1
1 -1 1 1 1 -1 1 -1 -1 -1
1 1 1 1 1 1 1 1 1 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

. (10)

The interval [−1Level, + 1Level] from Tab. 4 contains the recommended value
from Tab. 2: i.e., we have chosen the region of interest I1 = [10, 20] for µ, as
the recommended value µ = 15 lies in the interval I1. Performing a stepwise
model selection by AIC gives the first-order model with coefficients10 for the
coded variables in Tab. 4

log(y) = −46.38+0.7795x1+1.222x2+1.555x3+0.846x4−1.909x7−1.05x9. (11)

Regression analysis reveals that x1, x2, x3, x4, and x7 are significant at the 99%
level.11

Before we start the search along the path of the steepest descent, the ad-
equacy of the regression model is checked, and a check for interactions is per-
formed. Interactions between the factors result in lack-of-fit, that can be detected
by analysis of variance (ANOVA) methods. For instance, the performance of plus
strategies might be improved by increasing the population size on the one hand,
whereas comma strategies require a higher selection pressure on the other hand.
If this occurs, both strategies will be treated separately.

Starting from the center point x1 = x2 = x3 = x4 = x5 = x6 = 0 in the coded
variables or Z1 =

(
µ = 15, ν = 7, σ(0) = 3.0, nσ = 1, cτ = 1, ρ = m, rx = d, rσ = i, κ = 1

)
in the original variables, we perform a line search (Experiment ES2) in the di-
rection of the steepest descent that is given by −(β̂1, . . . , β̂D). To determine
the step-sizes ∆xi, we select the variable xj that has the largest absolute re-
gression coefficient: j = arg maxi |β̂i|. The increment in the other variables is
∆xi = −β̂i/(|β̂j |/∆xj), i = 1, 2, . . . , k; i 
= j. The model includes five quantita-
tive variables (µ, ν, σ(0), cτ ) and four qualitative variables (nσ, rx, rσ, κ).
10 µ and ν are treated as quantitative factors, their values are rounded to the nearest

whole number to get a set of working parameters.
11 If not mentioned explicitly, we shall refer to significance as significance at the 99%

level.
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Table 3. Fractional factorial 29−5
III design. This design is used for screening the ES

parameters. Concrete values are shown in Tab. 5

A B C D E=ABC F=BCD G=ACD H=ABD J=ABCD

1 − − − − − − − − +
2 + − − − + − + + −
3 − + − − + + − + −
4 + + − − − + + − +

5 − − + − + + + − −
6 + − + − − + − + +
7 − + + − − − + + +
8 + + + − + − − − −
9 − − − + − + + + −

10 + − − + + + − − +
11 − + − + + − + − +
12 + + − + − − − + −
13 − − + + + − − + +
14 + − + + − − + − −
15 − + + + − + − − −
16 + + + + + + + + +

Table 4. Evolution strategy: symbols and levels. Values chosen with respect to the
default settings from Tab. 2.

Symbol Factor Standardized −1 Level +1 Level Type

µ P x1 10 20 quantitative
ν S x2 5 10 quantitative

σ(0) InitS x3 1 5 quantitative
nσ NSigma x4 1 12 qualitative
cτ TauMult x5 1 2 quantitative
ρ Rho x6 b m qualitative
rx XReco x7 i d qualitative
rσ SReco x8 i d qualitative
κ K x9 −1 1 qualitative



22

Table 5. Fractional factorial design for evolution strategies.

µ ν σ(0) nσ cτ ρ rx rσ κ

1 10 5 1 1 1 2 i i 1
2 20 5 1 1 2 2 d d -1
3 10 10 1 1 2 10 i d -1
4 20 10 1 1 1 20 d i 1

5 10 5 5 1 2 10 d i -1
6 20 5 5 1 1 20 i d 1
7 10 10 5 1 1 2 d d 1
8 20 10 5 1 2 2 i i -1

9 10 5 1 12 1 10 d d -1
10 20 5 1 12 2 20 i i 1
11 10 10 1 12 2 2 d i 1
12 20 10 1 12 1 2 i d -1

13 10 5 5 12 2 2 d d 1
14 20 5 5 12 1 2 i i -1
15 10 10 5 12 1 10 d i -1
16 20 10 5 12 2 20 i d 1
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Fig. 4. Experiment ES2. Steepest descent (plus selection). 12 dimensional sphere. Max-
Iter = 5,000. 5 repeats. Stopping rule: σ(0) < 0. Lines are shown to enhance readability.
The dotted line shows the median, the solid line the mean of the response from 5 repeat
runs. The comma selection variant exhibits a similar behavior.
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Table 6. Experiment ES2. Steepest descent (plus selection). 12 dimensional sphere
function. See also Fig. 4.

σ(0) ν µ σ(0) ν µ Mean Median
Steps Coded Coded Coded Original Original Original Response Response
∆ x1 x2 x3 z1 z2 z3 log(y) log(y)

0 0 0 3.0 8 15 −1.784 −1.856
∆ −0.2 −0.15 −0.1 2.6 7 14 −3.169 −3.577
2∆ −0.4 −0.3 −0.2 2.2 7 14 −3.184 −3.531
3∆ −0.6 −0.45 −0.3 1.8 6 14 −4.231 −4.435
4∆ −0.8 −0.6 −0.4 1.4 6 13 −5.018 −5.339
5∆ −1.0 −0.75 −0.5 1.0 6 12 −6.445 −6.497
6∆ −1.2 −0.9 −0.6 0.6 5 12 −7.451 −8.298
7∆ −1.35 −1.05 −0.7 0.2 5 12 −8.359 −8.915

For qualitative factors with significant effects the “better” levels were chosen.
The values of qualitative factors with small effects on the response were chosen
rather subjectively. Tab. 6 shows the numerical values, whereas Fig. 4 displays
the change in the response during the line search. Before the initial sigma value
σ(0) becomes negative, the search is stopped. The improved (original) parameter
vector reads:

Z2 =
(
µ = 12, ν = 5, σ(0) = 0.2, nσ = 1, cτ = 1, ρ = m, rx = d, rσ = i, κ = 1

)
.

A 24 full factorial design (µ, ν, σ(0), κ) that was chosen next (Experiment ES3),
reveals that only the factors µ and ν have significant effects on the response.
As µ and ν are important factors, a central composite design with axial runs is
used in the following step (Experiment ES4). The CCD combines a 2k factorial
design with nF runs, nC center runs, and 2k axial runs. The distance a of the
axial run points from the design center was set to

√
2. As all the factorial and

axial design points are on the surface of a sphere of radius
√

2, this design is
called a spherical CCD, see Fig. 2.

The corresponding regression tree model is shown in Fig. 3 and can be read as
follows: To predict the fitness from a given parameter configuration, one follows
the path from the top node (root) of the tree to a leaf. For instance, starting from
the top node and following the left branches (population size µ less than 9.5, plus
selection: κ, population size µ less than 4.5, and selective pressure ν less than 4)
the terminal node with a predicted fitness function value of log(y) = −104.9 is
reached.

The plus selection scheme is advantageous in this case. The parameters pop-
ulation size µ, selective strength ν, and initial standard deviations σ(0) are the
subject of the further analysis. We can conclude from the regression analysis that
was based on a 23 central composite design (Experiment ES5) that a further de-
crease of the population size and of the selective pressure might be beneficial:
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Estimate Std. Error t value Pr(>|t|)

(Intercept) -141.4920 2.6745 -52.90 <2e-16 ***

P 5.4705 0.1881 29.08 <2e-16 ***

S 6.9551 0.4703 14.79 <2e-16 ***

InitS 2.0380 1.0452 1.95 0.058 .

The initial step-size σ(0) has no significant effect any more. This result corre-
sponds with the conclusions that might be drawn from the tree based regression
analysis. Figure 5 shows a design plot of the median of the response y at each
of the levels of the factors in the first experiment. The horizontal line indicates
the treatment median of the data. It is obvious that the factors µ and ν have a
strong effect on the response.

Instead of performing a second line search, we use a CCD with axial runs to
take a closer look at the fitness landscape (Experiment ES6). Each configuration
was repeated 10 times. The resulting graph is shown in Fig. 6. A comparison
of these results to the results from the same design with 50 repeats showed no
significant difference.

The final ES parameterization reads:

Z3 =
(
µ = 3, ν = 1, σ(0) = 0.1, nσ = 1, cτ = 1, ρ = m, rx = i, rσ = i, κ = −1

)
.

(G-3) Analysis: a numerical comparison of the first

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.007042 0.037910 0.049710 0.068540 0.092020 0.197100

and the improved function values

Min. 1st Qu. Median Mean 3rd Qu. Max.

5.324e-64 1.155e-59 1.252e-57 6.472e-51 7.544e-56 5.165e-49

reveals a significant improvement. The left boxplot in Fig. 7 shows a graphical
comparison of the first and the improved design. As we have found a better pa-
rameterization, we will answer Question (G-1) in the negative. Thus, a (3+3)-ES
with one step-size, intermediate recombination of object and strategy parame-
ters works better than the “standard” ES presented in [12]. This result is not
surprising, since this standard was chosen as a “good” parameterization on av-
erage for many problems and not especially for the sphere model.
(G-4) Next cycle: as function values become rather small, numerical character-
istics of the machine the program is running on (i.e. the machine’s precision),
and the ceiling effect might influence our analysis. Therefore, we examine more
complex optimization problems in the following.

The result found so far does not justify the conclusion that Z3 is the optimal
design. The intention of this paper is to give the optimization practitioner a
framework on how to set up algorithms with working parameter configurations.
Further optimization of Z3 is possible, but this is beyond the intention of this
paper.
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Fig. 5. Experiment ES5. Design plot. 12 dimensional sphere. Plus strategy. MaxIter =
5,000. 5 repeats. The regression tree analysis (not shown here) reveals a similar result.

Fig. 6. Experiment ES6. Spline plot. 12 dimensional sphere. MaxIter = 5,000. 10 re-
peats. CCD with axial runs. 12 dimensional sphere. MaxIter = 5,000. 10 repeats.
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5.2 Tuning: Evolution Strategies and Rosenbrock’s Function

The 2-dimensional “banana” function after [71] f(x1, x2) = 100(x2−x2
1)

2 +(1−
x1)2 will be the subject of the next analysis.
(G-1) Question: is the standard ES parameterization a reasonable choice to op-
timize Rosenbrock’s function?
(G-2) Data collection: the 29−5

III fractional factorial design (Tab. 5) reveals that
the plus strategy outperforms the comma strategy for this specific optimiza-
tion run configuration. As we can neglect the corresponding factor κ, a 28−4

IV

fractional factorial design was used to analyze the remaining eight factors (Ex-
periment ES7).
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Fig. 7. Box plot. Comparison of the first (left) and improved (right) configurations. ES:
12 dimensional sphere, Rosenbrock 2 dimensional. SANN: Rosenbrock 2 dimensional.
MaxIter = 5,000. 80 repeats.

Tree based regression and further analysis lead to the improved parameter
setting

Z1 =
(
µ = 4, ν = 9, σ(0) = 1.0, nσ = 1, cτ = 1, ρ = m, rx = i, rσ = i, κ = −1

)
.

The response surface generated by a 22 full factorial design with center points
(Experiment ES8) leads to the improved ES parameterization:

Z2 = (µ = 5, ν = 10, σ(0) = 0.37, nσ = 1, cτ = 1, ρ = b, rx = d, rσ = i, κ = −1).
(12)
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The boxplot in the center of Fig. 7 compares the fitness distributions of the
initial and the improved algorithm.
(G-3) Analysis: since we have found a parameterization for an ES that per-
forms significantly better than the ES with the standard parameterization, we
have to negate (G-1). (G-4) Next cycle: as we have obtained a “good” solution
(cf. Eq. 12), we decided to stop the parameter optimization process here.

Table 7. Simulated annealing. Full factorial 23 design

A B C tmax temp parscale

1 − − − 5 5 1
2 + − − 10 5 1
3 − + − 5 10 1
4 + + − 10 10 1

5 − − + 5 5 2
6 + − + 10 5 2
7 − + + 5 10 2
8 + + + 10 10 2

5.3 Comparison: Evolution Strategy and Simulated Annealing

The method SANN is taken from the freely available software package R [66]. It
is by default a variant of simulated annealing given in Belisle (1992). Simulated-
annealing belongs to the class of stochastic global optimization methods and
uses only function values. It also works for non-differentiable functions. This
implementation uses the Metropolis function for the acceptance probability.The
next candidate point is generated from a Gaussian Markov kernel with scale
proportional to the actual temperature. Temperatures are decreased according to
the logarithmic cooling schedule as given in [11]. The three exogenous parameters
for the standard simulated annealing are shown in Tab. 8.
(G-1) Question: do the default values from Tab. 8 provide a good parameterization
for the SANN algorithm to optimize Rosenbrock’s function?
(G-2) Data collection: starting from the default configuration

pSANN = (t = 10, m = 10, s = 1) ,

the improved parameter vector reads: pSANN∗ = (t = 1, m = 10, s = 0.2). The
response from the improved SANN reads (Experiment SANN1):

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.242e-07 1.736e-05 4.871e-05 1.943e-04 1.882e-04 3.476e-03.

(G-3) Analysis: since we have found a parameterization that performs signifi-
cantly better than the SANN with the standard parameterization from Tab. 8,
we have to negate (G-1).
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(G-4) Next cycle: as we have obtained a “good” solution, we decided to stop the
parameter optimization process here.

Table 8. Exogenous parameters for the standard simulated annealing (SANN). De-
scription taken from the R documentation [66].

Symbol Factor Parameter Default Values

t temp Controls the SANN method. Starting temperature
for the cooling schedule

10

m tmax Number of function evaluations at each tempera-
ture for the SANN method

10

s parscale A vector of scaling values for the parameters.
Optimization is performed on par/parscale and
these should be comparable in the sense that a
unit change in any element produces about a unit
change in the scaled value.

(1, 1, . . . , 1) ∈ RD

Now that we have tuned the evolution strategy and the simulated annealing,
we are able to compare their performances.
(G-1) Question: do the tuned ES and the tuned SANN reveal a similar perfor-
mance while optimizing Rosenbrock’s function?
(G-2) Data collection: no further data have to be collected, the comparison can
be based on the data generated in the previous experiments.
(G-3) Analysis: A graphical comparison of the fitness values obtained from the
ES

Min. 1st Qu. Median Mean 3rd Qu. Max.

8.941e-18 2.350e-11 5.565e-09 8.310e-05 6.084e-06 1.873e-03

and the SANN algorithm with improved parameter settings for the 2 dimensional
Rosenbrock function is shown in Fig. 8. Boxplots (A) and (B) in Fig. 9 show a
comparison, that might lead to the conclusion that evolution strategies attain
better results than SANN while optimizing Rosenbrock’s function.
(G-4) Next cycle: keeping in mind that this comparison is only valid for the
experimental settings mentioned above, it might be interesting to extend these
investigations for a better understanding.

5.4 Tuning: Evolution Strategy and Elevator Group Control

In the previous sections, we have applied DOE methods to artificial test func-
tions. The following example illustrates how these methods can be applied to
real-world optimization problems. We have chosen the elevator supervisory group
(ESGC) problem to demonstrate the applicability of the experimental analysis
approach to real-world optimization problems. The ESGC problem subsumes the
following problem: how to assign elevators to passengers in real-time while op-
timizing different elevator configurations with respect to overall service quality,
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Fig. 8. Comparison of the improved parameter settings. 2 dimensional Rosenbrock
function. MaxIter = 5,000. 50 repeats.
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Fig. 9. Comparison of the improved ES (A) and SANN (B) parameter settings. 2
dimensional Rosenbrock function. Standard ES (C) and tuned ES (D) optimizing the
ESGC problem.
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traffic throughput, energy consumption etc. One main goal in designing a better
controller is to minimize the time passengers have to wait until they can enter an
elevator car after having requested service. This time-span is called the waiting
time. The following simulations are based on a controller that was developed by
Fujitec, one of the world’s leading elevator manufacturers. It is trained by use of a
set of neuro-fuzzy controllers. The neural network (NN) structure and the neural
weights determine a concrete control strategy for different traffic situations [72,
27]. The network structure as well as many of the weights remain fixed, only some
of the weights on the output layer can be modified and optimized. A discrete-
event based elevator group simulator permits computing the controller’s perfor-
mance. The identification of globally optimal NN weights is a highly complex
task since the objective function topology is highly non-linear and highly multi-
modal. It is stochastically disturbed due to the nondeterminism of service calls,
and dynamically changing with respect to traffic loads. Gradient based optimiza-
tion techniques cannot be applied successfully to this optimization problem. The
computational effort for single simulator runs limits the maximum number of fit-
ness function evaluations to the order of magnitude 104. The problem parameters
read in vector notation: dESGC =

(
D = 36, x

(0)
i = (−1)i/

√
D, Ntot = 1000

)
.

(G-1) Question: is the standard ES parameterization a reasonable choice to op-
timize the ESGC problem?
(G-2) Data collection: the first step in our analysis is based on the generic 29−5

III

fractional factorial design (Tab. 3 and Tab. 5). Screening reveals that σ(0),nσ,
cτ , rx, and κ are important factors (Experiment ES9). As the function values are
disturbed by noise, a logistic regression with a binary response Z (success/failure
as described in Sec. 3) was chosen [53]: Z = 1, if Y < 200 and Z = 0 otherwise.
Based on regression tree analysis and on a logistic regression model, we obtained
the improved parameter vector:

Z1 =
(
µ = 2, ν = 5, σ(0) = 5, nσ = 36, cτ = 2, ρ = b, rx = d, rσ = i, κ = 1

)
.

(G-3) Analysis: The standard parameterization from Tab. 2 leads to the following
response values (16 repeats)

Min. 1st Qu. Median Mean 3rd Qu. Max.

193.2 202.3 210.1 209.3 213.5 231.1,

whereas the improved algorithm was able to find the following results:

Min. 1st Qu. Median Mean 3rd Qu. Max.

125.8 134.9 140.0 144.6 146.5 194.0.

The boxplots on the right in Fig. 9 compare the performance of the standard ES
configuration to the performance of the tuned ES. As we were able to enhance
the algorithm’s performance significantly after only a small number of simula-
tion runs, we have to negate (G-1).
(G-4) This example illustrates, how to improve algorithms’ performance for com-
plex real-world optimization problems. Advanced investigations might lead to
further improvements and are the subject of current research.
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6 Discussion of the Method

The method proposed in this paper may fail for many reasons, e.g. if a problem
is too hard for an algorithm or if the algorithm is very sensitive to parameter
changes. However, any methodology to determine a good parameter setting will
fail in this case.

The optimization practitioner is interested in robust algorithms that show a
good performance over a wide range of parameter settings. Although standard
parameterizations as shown in Tab. 2 can give valuable hints, difficulties may
arise in the selection of the area of interest I, cf. Eq. 9. The first order model
that is used to approximate the response surface function locally, may be inad-
equate. This can be solved by decreasing the size of the region of interest, by
approximating the response function by a second-order model, or by increasing
the number of repeats.

The choice of a stopping rule for the line search is not trivial. The simplest
rule ends the line search when no further improvement is observed. This rule
is not optimal under noise that occurs in many real-world optimization prob-
lems [73]. Fortunately, the problems mentioned here are well-known optimization
problems and the subject of current research.

Carrying our approach to an extreme, one might conclude that every opti-
mization problem requires a specific algorithm. This is in fact true, but develop-
ing an algorithm maybe very time consuming, so that the practitioner may prefer
the tuning of an already existing algorithm. Anyhow, even the new algorithm
can be tuned with the methodology presented in this paper.

7 Summary and Outlook

This paper introduces a framework that can be used to improve the acceptance
and quality of research in the field of evolutionary computation. It summarizes
state of the art techniques for EA parameter tuning, that can be beneficial in
the following situations:

– Real-world optimization problems permit only a few preliminary experiments
to find good EA parameter settings. Since the commonly used “one factor
at a time approach” is rather inefficient and ineffective, we recommend DOE
methods.

– As demonstrated in Sec. 5, there exist no “standard” parameterization for
EA and related algorithms. Each algorithm should be tuned a priori to enable
a fair and more objective comparison of different optimization algorithms.

Referring to the methodology proposed by [29], GLM are used to handle re-
sponses that are not Gaussian. If the responses are normally distributed, classical
regression analysis can be applied [17]. Henceforth, a regression tree approach
was proposed as a valuable tool to detect significant effects.

The experimental results from Sec. 5 lead to new questions and conjectures
such as: “The ESGC problem requires relatively large initial step-sizes in con-
trast to the sphere function and to Rosenbrock’s function. Is this behavior caused
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by many local optima?” Hence, combining experimental data with exploratory
techniques to visualize and analyze structure helps to set up empirical studies
that provide answers to relevant research questions and might lead to new theo-
ries. A similiar approach is used in the highly recommendable book “Stat Labs
- Mathematical Statistics Through Applications” by Nolan and Speed (2000).
The case studies presented in their book should raise interesting scientific ques-
tions. Figuring out how to answer a question is the starting point for developing
a theory.

The “experimental analysis of search heuristics” methodology presented here
is related to other empirical approaches that are based on experiment design and
explorative data analysis. It provides a good starting point for further analysis of
search heuristics and is a valuable framework for understanding and improving
these algorithms.
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Dr. Kovač, Hamburg, October 1997.

52. J. Hyslop. A note on the accuracy of optimisation techniques. The Computer
Journal, 15, 2, (5):140, 1972.

53. T. Beielstein, J. Dienstuhl, C. Feist, and M. Pompl. Circuit design using evolu-
tionary algorithms. In David B. Fogel, Mohamed A. El-Sharkawi, Xin Yao, Garry
Greenwood, Hitoshi Iba, Paul Marrow, and Mark Shackleton, editors, Proceedings
of the 2002 Congress on Evolutionary Computation CEC2002, pages 1904–1909.
IEEE Press, 2002.

54. E. D. Dolan and J. J. More. Benchmarking optimization software with performance
profiles. Technical Report ANL/MCS-P861-1200, Argonne National Laboratory,
2001.

55. R. Barr, B. Golden, J. Kelly, M. Rescende, and W. Stewart. Designing and report-
ing on computational experiments with heuristic methods. Journal of Heuristics,
1(1):9–32, 1995.

56. Hans-Paul Schwefel. Evolutionary learning optimum–seeking on parallel computer
architectures. In A. Sydow, S. G. Tzafestas, and R. Vichnevetsky, editors, Systems
Analysis and Simulation, volume 1, pages 217–225. Akademie–Verlag, Berlin, 1988.

57. D. E. Colemann and D. C. Montgomery. A systematic approach to planning for a
designed industrial experiment. Technometrics, 35:1–27, 1993.

58. R. Anderson. The role of experiment in the theory of algorithms. In Proceedings of
the 5th DIMACS Challenge Workshop, volume 59 of DIMACS: Series in Discrete
Mathematics and Theoretical Computer Science. American Mathematical Society,
1997.

59. I. C. Jarvie. Popper, Karl Raimund. In E. Craig, editor, Routledge Encyclope-
dia of Philosophy. Routledge, London, 1998. Retrieved November 19, 2003, from
http://www.rep.routledge.com/article/DD052SECT2.

60. G. E. P. Box, W. G. Hunter, and J. S. Hunter. Statistics for experimenters. Wiley
series in probabilty and mathematical statistics: Applied probability and statistics.
Wiley, 1978.

61. G. E. P. Box and N. R. Draper. Experimental Model Building and Response Sur-
faces. Wiley, 1987.

62. J. P. C. Kleijnen. Experimental designs for sensitivity analysis of simulation mod-
els. In A. W.Heemink et al., editor, Proceedings of EUROSIM 2001, 2001.

63. J. M. Chambers and T. H. Hastie, editors. Statistical Models in S. Wadsworth &
Brooks/Cole, Pacific Grove, California, 1992.

64. P. McCullagh and J.A. Nelder. Generalized Linear Models. Chapman and Hall,
2nd edition, 1989.

65. N. R. Draper and H. Smith. Applied regression analysis. Wiley series in probability
and statistics. Wiley, New York, 3rd edition, 1998.

66. R. Ihaka and R. Gentleman. R: A language for data analysis and graphics. Journal
of Computational and Graphical Statistics, 5(3):299–314, 1996.



36

67. D. Collett. Modelling Binary Data. Chapman and Hall, 1991.
68. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and

Regression Trees. Wadsworth, 1984.
69. T. M. Therneau and E. J. Atkinson. An introduction to recursive partitioning using

the rpart routines. Technical Report 61, Department of Health Science Research,
Mayo Clinic, Rochester, 1997.

70. Thomas Beielstein, Sandor Markon, and Mike Preuß. Algorithm based validation
of a simplified elevator group controller model. In T. Ibaraki, editor, Proc. 5th
Metaheuristics Int’l Conf. (MIC’03), pages 06/1–06/13 (CD–ROM), Kyoto, Japan,
2003.

71. H.H. Rosenbrock. An automatic method for finding the greatest or least value of
a function. Comp. J., 3:175–184, 1960.

72. S. Markon. Studies on Applications of Neural Networks in the Elevator System.
PhD thesis, Kyoto University, 1995.

73. E. Del Castillo. Stopping rules for steepest ascent in experimental optimiza-
tion. Communications in Statistics. Simulation and Computation, 26(4):1599–
1615, 1997.

74. D. Nolan and T. Speed. Stat Labs – Mathematical Statistics Through Applications.
Springer, New York, 2000.


