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Abstract

The investigation of genetic and evolutionary algorithms on Ising model prob-
lems gives much insight how these algorithms work as adaptation schemes. The
Ising model on the ring has been considered as a typical example with a clear build-
ing block structure suited well for two-point crossover. It has been claimed that
GAs based on recombination and appropriate diversity-preserving methods outper-
form by far EAs based only on mutation. Here, a rigorous analysis of the expected
optimization time proves that mutation-based EAs are surprisingly effective. The
(1 4+ X) EA with an appropriate A-value is almost as efficient as usual GAs. More-
over, it is proved that specialized GAs do even better and this holds for two-point
crossover as well as for one-point crossover.

1 Introduction

Nowadays, genetic algorithms (GAs) and evolutionary algorithms (EAs) are mainly ap-
plied as optimization algorithms. Holland (1975) has designed GAs as adaptation systems.
The building block hypothesis (see Goldberg (1989)) claims that GAs work by combining
different building blocks in different individuals by crossover (or recombination). There
is a long debate on the role of mutations in this context.

Naudts and Naudts (1998) have presented the Ising model as an interesting subject for
the investigation of GAs and EAs. Ising (1925) has described the model now called Ising
model to study the theory of ferromagnetism. In its most general form, the model consists
of an undirected graph G' = (V| E) and a weight function w: E — R. Each vertex i € V
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has a positive or negative spin s; € {—1,+1}. The contribution of the edge e = {i,j}
equals fy(e) := s; - s; - w(e). The fitness f(s) of the state s equals the sum of all f,(e),
e € E, and has to be maximized. A GA or EA can be considered as a process adapting to
better fitness or as an algorithm maximizing f. In this paper, we have chosen the language
from optimization.

The Ising problem in its general form is NP-hard. Nevertheless, there are quite effi-
cient algorithms for this problem (Pelikan and Goldberg (2003)). For the investigation of
the adaptation capabilities of simple GAs and EAs, one is interested in the case where
w(e) =1 for all e € E. By an affine transformation, we consider the state space {0,1}"
instead of {—1,41}". The fitness f(s) equals the number of monochromatic edges. As an
optimization problem, the problem is trivial. The states 0™ and 1" are optimal and they
are the only optimal states for connected graphs. Connected monochromatic subgraphs
are schemata of high fitness and, therefore, building blocks. However, the fitness function
has the property of spin-flip symmetry, i.e., f(s) = f(5) for all states s and their bit-
wise complement 5. Therefore, 0-colored building blocks compete with 1-colored building
blocks. This property of fitness functions has also been discussed for other functions,
e.g., the “hierarchically if and only if” function H-IFF (Watson (2001), Dietzfelbinger,
van Hoyweghen, Naudts, and Wegener (2003)).

The Ising model on the ring is of particular interest. The ring is a graphon V' = {1,...,n}
with edges {i,7i + 1}, 1 < i < n — 1, between neighbored vertices and the turn-around
edge {n, 1}. Building blocks are also blocks in the string (if the positions 1 and n are con-
sidered as neighbored) and two-point crossover can cut out a building block. Extensive
experiments on GAs for this problem have been reported by van Hoyweghen (2002), van
Hoyweghen, Goldberg, and Naudts (2002), and van Hoyweghen, Naudts, and Goldberg
(2002). These papers contain also discussions how the algorithms work and some theo-
retical results but no run time analysis. In recent years, the rigorous run time analysis
of EAs has led to interesting results. Most of this research is devoted to mutation-based
algorithms (a good example is Droste, Jansen, and Wegener (2002)) but there are also
results on steady-state GAs (Jansen and Wegener (2001, 2002)). Here, this approach is
applied to the Ising model on the ring.

Sections 2, 3, 4, and 5 analyze mutation-based algorithms. Experiments have led to the
conjecture that these algorithms are quite inefficient for the Ising model. The authors
of the papers mentioned above do not explicitly state such a conjecture but they and
many others have argued in discussions that mutation-based EAs will need exponential
optimization time. In Section 2, we analyze randomized local search (RLS) flipping one
bit per step and applying a plus-strategy for selection. This simple algorithm finds the
optimum in an expected number of O(n?) steps and the constants in the O-term are
surprisingly small. Based on this analysis, a similar bound is obtained in Section 3 for
the (14+1) EA. There, the usual mutation operator is applied to create new search points.
Hence, mutation-based EAs are much more efficient than conjectured.

Both, RLS and (1+1) EA, are sequential and produce one offspring per generation. In
Sections 4 and 5, we analyze parallel variants of these algorithms, parallel RLS (PRLS)



and the (1 + \) EA, respectively. They produce A offspring per generation and select a
best individual. For A = n/logn, the expected optimization time consists of O(n?logn)
generations and O(n?) fitness evaluations. This analysis follows the line of research started
by Jansen and De Jong (2002) and Jansen, De Jong, and Wegener (2003). In Section 6,
we compare our results with the experiments on GAs.

It would be even more interesting to obtain also bounds on the expected optimization
time of GAs. We are not able to do this for the GAs used in experiments which apply
an island model to preserve diversity. We analyze in Section 7 the GA introduced by
Culberson (1992) and known as GIGA (Gene Invariant GA) and in Section 8 an idealized
GA with fitness sharing. Both algorithms are tailored to cope with the given problem and
perform better than RLS and the (1+1) EA. Their expected number of fitness evaluations
is O(n?). We finish with some conclusions.

2 The Expected Run Time of Randomized Local
Search

Randomized Local Search (RLS) chooses the first search point x € {0,1}" uniformly at
random. Afterwards, it chooses a position ¢ € {1,...,n} uniformly at random, computes
x’ by flipping bit i of =, and replaces x by 2" iff f(2') > f(x). We are interested in the
expected number of f-evaluations until z € {0",1"}.

Instead of maximizing f, we investigate the equivalent problem of minimizing the number
¢ of monochromatic blocks on the ring. This number is even for non-optimal points and
has to be decreased from at most n to 1. For 2 < i < n and i even, let ¢;(n) be the
expected time until ¢ is decreased if we start with a worst search point with ¢ blocks. We
estimate the expected run time by the sum of all ¢;(n) and the term 1 for the initialization
step.

By the pigeon-hole principle, there is one block whose length is bounded above by N :=
|n/i]. We investigate a shortest block B of the first search point z. A flip of a bit in
the middle of a block is not accepted. If ¢ is not decreased, the length of B can change
at most by 1 per step. We distinguish relevant steps (either decreasing i or changing
the length of B) from the other steps called non-relevant. First, we only investigate the
relevant steps. It is possible that some block B’ # B gets shorter than B and vanishes
earlier. Pessimistically, we ignore this. Only if B grows to length N + 1 we switch our
interest to another block whose length is at most N. Pessimistically, we assume that this
length equals N. Then we obtain the following Markoff chain on {0,1,..., N} where the
state j describes the length of the considered block. Pessimistically, we start at N. If
j€42,...,N—1}, by symmetry, p(j,j — 1) = p(j, 7+ 1) = 1/2. By the discussion above,
“state N + 17 is replaced by N and p(N,N — 1) = p(N, N) = 1/2. State 1 is untypical,
since there are two bits whose flip increases the block length but only one decreasing it.
Hence, p(1,0) = 1/3 and p(1,2) = 2/3. We stop when reaching state 0. Let Ty (j) be the
expected time until reaching state 0 when starting in state j.



Lemma 2.1: Ifj > 1, Ty(j) =4N —1+ NN —1) — (N —j+ 1)(N —j).

Proof: We fix N and omit the index N. Obviously, T(0) = 0. We prove by induction
that
T@G)=2-(N-j+1)+T( 1),

if j > 2. By the law of total probability,
T(N)=1+4+(1/2)-T(N)+(1/2)-T(N —1)
implying that T'(N) =2+ T(N — 1). If j < N, by induction hypothesis,
T(G) = 14 (1/2)- TG+ 1)+ (1/2)-T( ~ 1)
= 1+ (N=))+(1/2)-T(G)+(1/2)-T(G—1).
Solving for T'(j), this proves the claim. Finally,
T1) = 1+ (1/3)-T(0)+ (2/3)-T(2)
1+(2/3)-(2-(N—-=1)+1T(1))
implying that 7'(1) = 4N — 1. This proves the lemma for j = 1 and, if j > 2,
T(G)=2 (N—j+1)+2-(N—j+2)+-+2- (N—1)+4N -1 (%)
which implies the lemma. O

For later purposes, we state that T is monotone increasing and concave, i.e.,
Tn(j+1) = Tw(j) < Tn(j) —Tn(j — 1)

The last statement follows directly from equation ().

In order to estimate the expected number of relevant steps, it is sufficient to sum up all
Tnyi)(In/i]), i€ I:={j |2 <j<n,jeven}. Since Tny(N)= N?+ 3N — 1, we obtain

ZT(W/Z'J) < nzZ(l/i2)+3nZ(1/’i)—Ln/2J
< 0411-n>+15-nlnn+n.

In the last step, we have used the following arguments. The sum of all 1/i, 1 <7 < n is
bounded by Inn + 1, the sum for the even i is less than half of this. The bound for the
sum of all 1/i?, i even, has been obtained analytically.

In order to estimate the number of all steps, we are interested in the probability that a
step is relevant. This is easy since we consider only one block B. There are 4 positions
such that the length of B changes if one of the corresponding bits flips and the length of
B is at least 2. If B has length 1, there are only 3 such positions. The expected waiting
time until one of k bits flips is exactly n/k. In order to get good bounds, we estimate the
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expected number of relevant steps where the block length equals 1. Since the probability
of reaching state 0 and finishing a phase equals 1/3, the expected number of steps in state
1 equals 3 independent of 7. Hence, (3/2)n of the relevant steps have to be multiplied
by n/3 and the other ones by n/4 to obtain an upper bound on the expected run time.
Because of our rough estimate of the sum of all 1/i,47 € I, we can omit the term 1 for the
initialization and obtain the following result.

Theorem 2.2: The expected number of steps until RLS finds an optimum for the Ising
model on the ring is bounded above by

Tris(n) = 0.103 -7 +0.375-n* - (Inn + 1).
This bound is pessimistic in the following aspects:

— the first search point can have less than the maximal number of blocks,
— the first search point with i blocks can contain a block which is shorter than |n/i],

— larger blocks can get shorter than the considered block.

In any case, the bound of Theorem 2.2 is surprisingly small when considering the discus-
sions about this problem. Experiments have shown that, in the case i = 2, the shorter
block has an average block length of 0.28n when reaching this phase. We can prove a
lower bound on the expected run time only under a reasonable assumption.

Theorem 2.3: Starting with two blocks of length en and (1—¢)n, 0 < e < 1/2 a constant,
the expected number of steps until RLS finds an optimum for the Ising model on the ring

is O(n?).

Proof: Since there are only two blocks, our analysis for the upper bound considers always
the shorter one. The expected number of relevant steps equals T7,,/2)(en) = O(n?) and
has to be multiplied by n/4 to obtain the expected number of steps (for 3 steps we have
to multiply by n/3). This leads to the expected number of ©(n?) steps. O

3 The Expected Run Time of the (14+1) EA

The (1+1) EA can be considered as the simplest evolutionary algorithm. It works like
RLS with the exception of the search operator. The mutant z’ is obtained from x by
flipping each bit of x independently of the others with probability 1/n. Steps without
flipping bits do not count since they do not lead to a fitness evaluation. Let e = 2.718. ..
be the Eulerian constant.

Theorem 3.1: The expected number of steps until the (1+1) EA finds an optimum for
the Ising model on the ring is bounded above by T(111)(n) = (e —1)- (14 0(1)) - Trrs(n) <
0.177 - n® + o(n?).



Proof: We use the same ideas as in the proof of Theorem 2.2. In particular, we concen-
trate our analysis on the length of one block and we consider first only relevant steps,
i.e., steps changing the length of the chosen block. We investigate another block if the
chosen block has a length larger than [n/i]. The main idea is that we do not estimate
the number of steps directly but we compare the (1+1) EA with RLS. For this purpose,
we investigate some stochastic processes “between” RLS and the (141) EA.

We start with RLS* which applies the search operator of the (1+1) EA but only mutants
x' where exactly one bit has flipped are considered for selection. Then the expected run
time increases by the expected waiting time for a step flipping exactly one bit. Let X,
be the random variable counting the number of flipping bits. Then X, is asymptotically
Poisson distributed with parameter A = 1. Since we do not consider steps without flipping
bits, let Y be Poisson distributed with A = 1 and let Y* have the distribution of ¥ under
the condition Y > 1. Then

Prob(Y*=1) = Prob(Y =1]Y >1)=Prob(Y =1)/Prob(Y > 1)
= e /(1l-eH=1/(e—1).

Hence, the expected waiting time until Y* = 1 equals e — 1. The corresponding waiting
time for X, is bounded by (e — 1) - (1+ o(1)). This indeed is the essential factor why the
(1+1) EA is slower than RLS. If the number of blocks is not too large, the probability
that a step flipping more than one bit is relevant is much less than the corresponding
probability for steps flipping one bit. The reason is that the other flipping bits typically
increase the number of blocks.

Nevertheless, there are relevant steps flipping more than one bit and there are relevant
steps changing the length of the considered block by more than 1. For each search point
z let p; (x) be the probability that the next step is accepted and produces a search point
where the length of the considered block B has been increased by k and let p, (z) be
the corresponding probability for decreasing the length of B. We know from Section 2
that p; (z) may be larger than p, (z). To simplify the analysis, we investigate two further
stochastic processes called (141) EAgy,, and RLSy,. They are based on the algorithms
(14+1) EA and RLS, respectively, but, if p (z) > p; (x), the probability of increasing the
length of B is decreased to p, (x). As before, we consider another block if the length of
B is larger than |n/i]. First, RLS}, is obviously faster than RLS*. We show that the
expected run time of the (14+1) EAgy,, is bounded by the upper bound proven for RLS*
and, therefore, also for RLSY, | and, later, we compare the (141) EA and the (14+1) EAyp,.

sym

Let A; be the algorithm working ¢ steps like the (141) EAgy,, and afterwards like RLS?

sym*
We prove by induction on t that the expected run time of A; is not larger than the
upper bound obtained for RLS*. This is true for t = 0, since Ay = RLS? For the

R
induction step, we compare A; and A;; ;. They are identical for the first yt steps and
we consider the (random) search point z after ¢ steps. The probability of a relevant
step is for the (1+1) EAg,, not smaller than for RLS; . We compare the algorithms
conditioned to some events and prove the claim for each of the cases. If the next step is

neither relevant for A; nor for A;;4, the claim is obvious since the upper bound for RLS*



only depends on the length of the considered block. The perhaps larger probability of a
relevant step of A, is only in favor for A,.;. Finally, we have to compare the effect of
relevant steps. Instead of having steps changing the length of B by +1 and —1 (with the
same probability), we now may change the length of B by +k and —k (with the same
probability). Afterwards, we apply RLS,, in both cases. The upper bound for RLS*
(and also RLSY,,), namely the function Ty from Section 2 is increasing and concave (see
Figure 1). Therefore, a +k-step instead of a +1-step reduces the expected run time, i.e.,
(TG+k)+T(G—k)/2<(TGHG+1)+T(—1))/2,if k > 2. For t — oo, we obtain the

claim.

(1)

j—37—-25—-1 35 7+1j+25+3 l

Figure 1: The function T

Finally, we have to compare the (14+1) EA and the (1+1) EAy,,. We investigate a phase
of length n™/2. By Markoff’s inequality, the probability that the (1+1) EAy,, needs more
than n™/2 steps is O(n~'/2) = o(1). In this case, we repeat the arguments for the next
phase leading to an additional 1+ o(1) factor. In the following, we investigate a phase of
length n"/2. Events which altogether have a probability of o(1) can be ignored since then
the phase can be considered as unsuccessful also leading to a 1 + o(1) factor.

Let k£ be the length of the considered shortest block B, w.l.o.g. a block of ones. If
k > 4, the string contains 0*111¥-4110%. We consider the substrings 0*11 and 110*. The
probability that a phase contains a step with at least four flipping bits at these positions



is o(1) and this event can be ignored. Steps with at most three flipping bits at these
positions do not eliminate one of the blocks. The situation is symmetric with respect to
lengthenings and shortenings of B.

We are left with the situation £ < 3. Recalling the analysis of RLS in Section 2, it is
easy to obtain the result that the (1+1)*EAy,,, has an expected number of O(n) steps
where £ < 3. By Markoff’s inequality, we can ignore runs where this number is larger
than n*?2. The probability that a phase contains a step with at least two flipping bits in
the substring 0*1%0% is o(1).

Finally, decreasing the length of B from k to 0 does not imply that we decrease the
number of blocks. A new block may be created somewhere else. The probability of no
bit flipping elsewhere is at least e~!. Hence, with a probability of 1 —e~! we are still in
the same situation as before, i.e. , we have the same value of k£ € {1,2}. This happens
on average e/(e — 1) times, each time increasing the expected time by O(n?). Hence, we
have proved the theorem. O

It is worth noticing that we were not able to prove such a small bound by analyzing the
(141) EA directly. It was helpful to analyze the simpler algorithm RLS and to compare
RLS and the (141) EA.

Finally, we prove a lower bound similarly to the lower bound of Theorem 2.3.

Theorem 3.2: Starting with two blocks of length en and (1—e)n, 0 < € < 1/2 a constant,
the expected number of steps until the (1+1) EA finds an optimum for the Ising model on
the ring is ©(n?).

Proof: The upper bound is contained in Theorem 3.1. For the lower bound, we know
that the probability of a relevant step equals ©(1/n) since we have exactly two blocks.
Hence, it is sufficient to prove a bound of (n?) on the number of relevant steps. Such a
bound holds for RLS. We have seen in the proof of Theorem 3.1 that the (1+1) EA may
gain from steps changing the block length by more than 1.

Again we compare the stochastic processes (1+1) EAg, and RLSgy,, with each other.
They are faster than (14+1) EA and RLS, respectively. Hence, it is enough to prove the
lower bound for the (141) EAg,,. With the same arguments as in the proof of Theorem 3.1
we obtain the result that the expected number of relevant steps of RLSyyy, is only by an
additive term of O(n) smaller than the corresponding number for RLS. Let 7{(7) be the
expected number of relevant steps of RLSgy,, starting with two blocks where the shorter
one has length j. Then, by Lemma 2.1 and the considerations above,

Ti(j) =>n*/d—cn— (nf2 —j+1)(n/2 — j)

for some constant c. Let T;°(j) be the expected number of relevant steps of RLSY,, which

works for ¢ relevant steps like the (14+1) EAgy,, and then like RLSgy,. We prove by
induction that

17 () = T5(G) = ¢t/n



for some constant ¢. Having proved this claim it is easy to obtain the lower bound.
By Markoft’s inequality, there is a constant d such that the considered algorithms have
a success probability of at least 1/2 after dn? relevant steps. Then we have saved an
expected number of O(n) relevant steps. If the (14+1) EAg,,, was not successful in such a
phase, it starts again with some value of 7. We can repeat the arguments and the expected
number of phases is at most 2 leading to an expected saving of only O(n) steps. Hence,
it is sufficient to prove the claim above. For a relevant step, the probability to change
the block length by a constant k equals ©(1/n*71). Since the success probability after
n®/? relevant steps is 1 — 2*9("1/2), we can ignore relevant steps changing the block length
by at least 4. They have a probability of O(n~'/2) within n%/? steps and in the case of
such a step we use a lower bound of 0. Comparing T}, ,(j) with T;(j), we apply the fact
that the lower bounds for 7;(j) and T (5 — 1) differ by n — 25 + 2. Let p;, 1 < i < 3,
be the probability that a relevant step changes the block length by 7. By our remark
above, p; + ps + p3 = 1. The following inequalities hold if all 7 (k*) are defined, i.e. ,
0 < k* < n/2. Then, by induction hypothesis and the law of total probability,
Tra () = =dt/n+(p/2)- (T5(G = 1) + T5(j + 1))
+(p2/2) - (T (7 = 2) + 157 +2)) + (ps/2) - (T5 (7 = 3) + T5(1 + 3)).

Now
Ti(—2) = Tg(G—1)—(n=2(—1)),
Ti(i+2) = Tg(j+1)+(n—2(j +2)), and
Ti(i-2)+Ti(+2) = TEG— 1)+ T5( + 1)~ 6.
Similarly,

3G =3)+T5(G+3) =Ty — 1) +T5( +1) — 16.
Altogether, since T3 (j) = (1/2) - (T3 (5 — 1) + T3 (5 + 1)),

TinG) 2 —ct/n+(1/2) - (TG - D)+ T +1) = '/n
> d(t+1)/n+1T5(),
if ¢ is chosen in an appropriate way. This proves the claim and the theorem. O

4 The Expected Number of Generations of Parallel
RLS

A GA works with a population of s(n) individuals and, in most cases, run time is defined
as the number of generations. The number of fitness evaluations is larger by a factor of
s(n). For RLS and the (1+1) EA, the number of generations equals the number of fitness
evaluations. In order to have a fair comparison with GAs, we consider population-based
RLS and (141) EA. Parallel RLS (PRLS) or (1+X) RLS creates A children from the parent
x using the search operator of RLS. The children are created independently. Selection



chooses z if all children are worse and chooses one of the fittest children uniformly at
random otherwise.

Let = be a search point with ¢ blocks. The probability of a step changing the length of
the considered block B is at least 3/n and the probability of a step creating a child with
at least the same fitness as = is at most 2i/n.

For A = n, there is, on average, a constant fraction of steps creating at least one child
changing the length of B and not creating more than 4¢ children with ¢ blocks. Therefore,
the probability of a relevant step is €2(1/7). The expected number of relevant steps with
i blocks is bounded above by O(n?/i?) (see Lemma 2.1). Hence, (14+n) RLS needs an
expected number of O(n?/i) generations with strings with ¢ blocks. Considering all even
i < n, this leads to O(n?logn) generations and O(n?®logn) fitness evaluations. In the
following we improve this result.

Theorem 4.1: The expected number of generations until (1+|n/logn]|) RLS finds the
optimum for the Ising model on the ring is bounded above by O(n?logn) and the expected
number of fitness evaluations by O(n?).

Proof: It is sufficient to investigate the number of generations since each generation
consists of |n/logn| fitness evaluations. Let B be the considered block (as in the sections
before). The probability that no child shortens or lengthens B equals (1 — ¢/n)"/oen] =
1 — O(1/logn), where ¢ € {3,4} depends on the length of B. In any case, the expected
waiting time for a generation with a child changing B equals ©(logn). If x contains i
blocks, the expected number of children with the same number of blocks as x is O(i/logn)
and the probability that this number is bounded by O(i/logn) is at least 1/2 (Markoff’s
inequality).

If i > logn, the probability of choosing a child where B is changed, if such a child is
created, is Q(logn/i). The waiting time for such a step is O(i/logn). Hence, ecach step
has a probability of €2(1/i) of being relevant. We can continue as in the case of A = n to
obtain a bound of O(n%logn) on the expected number of generations.

If i < logn and one child changes B, the probability that all other children have more
blocks equals (1 —©(i/n))"/18m=1 which is bounded below by a positive constant. Then
the generation is relevant. Hence, the expected waiting time for a relevant generation
equals ©(logn) and the expected number of generations is bounded by O((n*logn)/:?).
Considering all i < logn and even, this gives an additional term of O(n?logn). O

5 The Expected Number of Generations of the
(1+)) EA

The (14)X) EA applies the search operator of the (1+1) EA and produces independently
A children from the parent which is the only individual of the current population. We
have to be careful with the selection operator. It is likely that many children are a replica
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of the parent. In order to guarantee exploration of the search space, we select the parent
x only if all children y # = have a worse fitness than x. Otherwise, we randomly select
an individual among the fittest children y # x.

Our analysis of the (14+1) EA in Section 3 was based on a comparison with RLS. The
analysis of (14+X) RLS in Section 4 essentially was an analysis of the waiting time for a
relevant generation. We obtain asymptotically the same results for the (14+X) EA. In a
relevant step, the probability distribution describing how the length of B changes is the
same for the (14+1) EA and the (14+)X) EA and it is the same for RLS and (14+X) RLS.
Hence, the arguments of Section 3 can be applied and lead to the following result.

Theorem 5.1: The expected number of generations until the (1+|n/logn|) EA finds the
optimum for the Ising model on the ring is bounded above by O(n*logn) and the expected
number of fitness evaluations by O(n?).

6 A Comparison with GA Experiments

We have no doubt that crossover can play an essential role for the Ising model on the ring.
A theoretical fundament for this argument will be presented in Sections 7 and 8. Here, we
want to argue that mutation-based EAs are better than expected in many papers. Van
Hoyweghen (2002) claims that “the presence of spin-flip symmetry in the one-dimensional
[sing model prevents an unspecialized GA to find an optimum in a reasonable amount of
time.” Van Hoyweghen, Goldberg, and Naudts (2001) indicate in this context that “the
Ising model shows that for a certain class of optimization problems niching becomes a
necessity for a GA to solve these problems.” Our results have shown that unspecialized
EAs solve this problem in reasonable time. The upper bounds on the expected run times
of RLS (0.103n? + 0.375n%*(Inn + 1) and even 117,957 for n = 100) and of the (1+1) EA
(by a factor of 1.72 slower than RLS) show this even for populations of size 1. The time
bounds are much better, namely O(n?logn), if n/logn children are generated in parallel.
Hence, the optimization is finished in a reasonable amount of time without any niching.
Van Hoyweghen (2001) has considered the case of GAs for n = 100 and a population size
of 100. The best parameters for tournament selection and two-point crossover lead to an
average number of 35,857 generations. This can be decreased to 10,881 using SAWing
(Stepwise Adaptation of Weights). With an Island model and a distributed GA there
is a good chance that 10,000 generations suffice. In all these cases a population of size
s(n) > 100 is used. In general, it is claimed that a population size of 10.9n%57 suffices.
These algorithms need less generations than the mutation-based algorithms examined in
this paper but they do not beat RLS with respect to the expected number of fitness
evaluations (at least for n = 100).
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7 The Expected Run Time of GIGA

Although mutation-based algorithms are surprisingly efficient for the Ising model on a
ring, it is believed that GAs can be faster. It is difficult to analyze the effect of crossover if
one is interested in the expected optimization time. We are not able to analyze distributed
GAs. Therefore, we analyze GAs which are specialized to work on the Ising model on the
ring. We cannot expect to obtain the same good time bounds for unspecialized GAs.

In this section, we analyze a simple variant of GIGA (Gene Invariant Genetic Algorithm)
introduced by Culberson (1992) and also called (1+1) GA by Dietzfelbinger, van Hoy-
weghen, Naudts, and Wegener (2003). The population has size 2 and consists of a search
point x € {0,1}" and its bitwise complement Z. In the initialization step, x is chosen
uniformly at random. Later, a new pair of search points (y,7) is produced from (z,T)
by crossover. Since f(x) = f(T), the new pair (y,7y) replaces (z,T) if f(y) > f(x) (or
equivalently, if y has not more monochromatic blocks than x). Since we want to cut out
a block in z and to replace it by its bitwise complement, two-point crossover seems to
be the appropriate recombination operator. Let us consider the effect of crossover at the
positions j and k, 0 < j < k < n. A position p is called border of z, if z, # z,41 or
x, # x1 if p=0. Let ¢ be the number of blocks of x.

Case 1: The positions j and k are not borders. Then y has i + 2 blocks and (y,7) is not
accepted.

Case 2: Exactly one of the positions j and k is a border. Then y also has 7 blocks and
(y,7) is accepted but the fitness is not changed.

Case 3: The positions 7 and k are borders. If i > 2, y has ¢+ — 2 blocks. If i« = 2, y has
one block. In any case, (y,7) is accepted and the fitness is improved.

As long as x is not optimal, ¢+ > 2 and there are (;) among (g) pairs of positions which
lead to an improved fitness. Hence, the expected optimization time can be bounded above
by (remember that [ = {i |2 <i <mn,i even})

2(G)/G) - Sy

el i€l

= n(n—l)Z(iil—%> <0.70-n-(n—1).

icl

Moreover, the expected i-value of the initial search point is n/2 and, by Chernoff bounds,
the probability that it is larger than n/3, is 1 — 27" Hence, we get a lower bound on
the expected optimization time if we compute the same sum for alli € I' := {i | i <n/3,i
even}. Altogether, we have obtained the following result.

Theorem 7.1: The expected number of steps until GIGA with two-point crossover finds
an optimum for the Ising model on the ring is bounded above by 0.70 - n - (n — 1) and
bounded below by 0.69 - n? — o(n?).
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We can generalize GIGA to (14+)\) GIGA where A offspring pairs are produced inde-
pendently and a best one is chosen if it is not worse than the parent. We analyze the
(14+n) GIGA. The probability of producing a better offspring is bounded below by a pos-
itive constant, if i > n'/2, and by Q(i?/n), otherwise. Hence, the expected number of
generations equals ©(n).

Theorem 7.2: The expected number of generations until the (1 + n) GIGA with two-
point crossover finds an optimum for the Ising model on the ring equals ©(n), the expected
number of fitness evaluations equals ©(n?).

We have seen that we have to hit the borders in order to improve the fitness. This is more
difficult if the number of borders is small. Using k-point crossover for k£ > 3 or uniform
crossover is, therefore, worse than two-point crossover. What about one-point crossover?
This can be interpreted as two-point crossover where the first border is fixed to j = 0. If
j = 0 is not a border and the cut point k is a border, the new pair (y,7) has the same
fitness and is accepted. Moreover, j = 0 is a border of (y,7). If j = 0 is a border, the
next offspring is accepted in any case. If one-point crossover does not hit a border, the
offspring has the same fitness but position 0 is no longer a border. If £ hits a border, we
have improved the fitness. Hence, if position 0 is not a border, we improve the fitness, if,
within two subsequent steps, we hit a border. This probability is i/(n — 1) for the first
step (since 0 is not a border) and (i — 1)/(n — 1) for the second step (since 0 is a border).
A phase consists of one step if 0 is not a border and we do not hit a border and it consists
of two steps otherwise. The expected number of phases of length 2 equals (n—1)/(i — 1).
Altogether, the expected number of steps until the fitness is increased equals

m—12 n—-1 n*-=3n+2+in—1i
— + = —
i-(i—1) i i-(i—1)

which is close to the corresponding value for two-point crossover. Hence, the expected
number of fitness evaluations equals ©(n?). The (14+n) GIGA with one-point crossover
needs an expected number of ©(n) generations. If 0 is not a border, only an offspring,
where 0 is a border, is accepted. For n offsprings, the success probability is bounded
below by a positive constant. Then, in the next step, the probability that at least one
offspring has a better fitness is again bounded below by a positive constant. This leads to
the surprising result that one-point crossover is almost as efficient as two-point crossover
for the Ising model on the ring.

Theorem 7.3: The expected number of fitness evaluations until GIGA or the (14+n) GIGA
with one-point crossover finds an optimum for the Ising model on the ring equals ©(n?).
For the (14 n) GIGA, the number of generations equals ©(n).
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8 The Expected Run Time of a GA with Fitness
Sharing

The variant of GIGA analyzed in Section 7 is highly specialized. Diversity in the popu-
lation of size 2 is guaranteed by choosing always individuals with the maximal Hamming
distance. Here, we consider a GA with the unusual small population size 2 where diversity
is supported by fitness sharing. Populations are multisets. In fitness sharing, the closeness
of x and y is measured by

S(z,y) = max{l — d(z,y)/o,0}

where d is an appropriate distance measure and o is a critical value deciding when x and
y are so far from each other that they do not share fitness. In our case, d is the Hamming
distance and o := n since we like to produce individuals with large Hamming distance.

Then, for population P,
=Y S(z,y).

yepP

The shared fitness of x in the population P is defined by

[z, P) = [f(x)/S(x, P)

if f is the real fitness. Finally, the fitness f(P) is defined as the sum of all f(z, P), = € P.
The following GA applies two-point crossover to produce two children and mutations

flipping each bit independently with probability 1/n.

Algorithm 8.1: (Steady-state GA with population size 2 and fitness sharing)

1.) The initial population P consists of two individuals chosen independently and uni-
formly at random.

2.) Selection for reproduction. Both individuals z and y are chosen.

3a.) ' := mutate(x), y' := mutate(y), P’ := PU{z',y'}.

)
3.) Offspring creation. One of the Steps 3a and 3b is chosen uniformly at random.
)
3b.)

(Z,7) = two-point-crossover(z,y), z’ := mutate(Z), v’ := mutate(y), P’ :== P U

{ﬂf,y}'

4.) Selection of the next generation. Choose a population P C P’ of size 2 with the
maximal f(P)-value.

Since we work with populations of very small size, it is not too time-consuming to choose
in Step 4 a population with the largest f-value. This reflects the real idea behind fitness
sharing. The shared fitness of the population should be large. For large populations of
size n'/? or n, there are exponentially many possible successor populations if we have
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produced the same number of offspring. Therefore, many algorithms only compare the
f(x, P")-values.

Let the population P consist of the individuals x and y with a Hamming distance of
d = d(P). Let i(z) be the number of borders within the individual z and let i = i(P) :=
i(z) +i(y). Then f(z) =n —i(z) and

n —i(x) n —i(z)
fle, P) = 1 —H(z,z)/n+1—H(x,y)/n - 2—d/n
and 2 — i
1) = 2—d/n

Hence, we can increase P by decreasing i and/or by increasing d. As long as we do not
decrease 7, we hope to increase d. If d = n, we have two complementary individuals and
two-point crossover is a good operator to decrease i (see Section 7). Since 0 < f(P) < 2n
and f cannot decrease because of the plus-strategy for selection, we try to analyze the
expected time until f has been increased at least by a constant additive term c. For this
purpose, we classify the possible populations P:

— type OPT contains all P where ¢ < 1, i.e., at least one individual is optimal,
— type A(i), i > 2, contains all P where ¢ = i(P) and d = n,

— type B contains all P where 2 <7 <n and d < n, and

— type C contains all P where i > n and d < n.

Theorem 8.2: The expected number of fitness evaluations until the steady-state GA with
population size 2 and fitness sharing finds an optimum for the Ising model on the ring is

bounded above by O(n?).

Proof: All populations of type A(7) have the same fitness 2n — i. After having increased
the fitness, we will never accept a population of type A(i). Moreover, if P = {z,y} is
of type A(i), then y = T. The expected waiting time until two-point crossover creates a
population P’ of type A(i—4) is bounded by O(n?/i?), see Section 7. Then f(P')— f(P) =
4. The probability of performing Step 3b and flipping no bit by mutation is bounded below
by a positive constant. Hence, the expected time with populations of type A(7) is bounded
above by O(n?/i*) and the expected time with populations of type A is bounded above
by O(n?).

For populations of type B or C, we prove that the probability of increasing the fitness by
at least 1/4 is bounded below by Q(1/n). We have to wait for at most 8n of such steps
which proves the theorem.

Let P = {x,y} be of type B. Since d < n, x # 7. Let j be the rightmost position where
z; = y;. Then x4 # y;+1 (where n + 1 is identified with 1 since we are on a ring).
W.lo.g x; = x4 and y; # y;j+1. With a probability of €2(1/n), we choose Step 3a and
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only bit j is flipped when producing 3. Then f(y') > f(y) and H(z,y") = H(z,y) + 1.
The population P’ = {z, '} is a possible successor population and

/ 2n —1 2n —1

HP)=f(P) = 2—(d+1)/n 2—d/n
2n—1)-(2—d/n)—(2n—1)-(2—d/n—1/n) >1
(2—(d+1)/n)-(2—d/n) 4

since the numerator equals 2—i/n > 1 (i < n for type B populations) and the denominator
is at most 4.

Let P = {x,y} be of type C. Since i > n, w.l.o.g. i(x) > n/2. Then = has more than
n/2 + 1 monochromatic blocks and, therefore, at least one block B of length 1. With a
probability of €2(1/n), we choose Step 3a and only the bit of B is flipped when producing
2'. Then f(2') = f(x) +2 and H(2',y) > H(z,y) — 1. The population P’ = {2/, y} is a
possible successor population and

2n — (i — 2) 2n —1

2—(d—1)/n 2—d/n

 @n—i+2)-2—-d/n)—-(2n—1)-(2—d/n+1/n) -
2—-(d=1)/n)-(2—=d/n) -

since the numerator equals (4—2d/n)—(2—i/n) >i/n > 1 (i > n for type C populations)

and the denominator again is at most 4. This finishes the proof of the theorem. O

fP) = f(P) =

1
47

Finally, we can consider a GA with population size 2 and fitness sharing which produces
P|,..., P, by performing Step 3 n times independently in parallel. Then it selects a
population P C P/ for some ¢ which has the largest f(P)-value. For populations of type
B or type C, the probability of producing a population whose fitness is by an additive
term of at least 1/4 better is then ©(1). The proof of Theorem 7.2 shows that the expected
number of generations with populations of type A is bounded by O(n). Hence, we obtain
the following result.

Theorem 8.3: The expected number of generations until the GA with population size 2,
fitness sharing, and n pairs of offspring per generation finds an optimum for the Ising
model on the ring is bounded above by O(n).

Conclusions

The Ising model is a good model to analyze the adaptation capabilities of EAs and GAs.
In particular, the Ising model on the ring leads to surprising results. Mutation-based
algorithms and even randomized local search are much more efficient than expected in
the GA community. This is especially true if we consider the number of generations in
the case of producing more than one offspring. Nevertheless, recombination can decrease
the expected optimization time. This has been proved rigorously for two specialized GAs
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which work with very small populations. It is an open problem to analyze generic GAs
with niching for the Ising model on the ring.

Acknowledgement. Thanks to Carsten Witt for discussions on the paper, in particular,
those leading to Theorem 3.2.
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