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Abstract. Evolutionary Algorithms (EAs) are population-based ran-
domized optimizers often solving problems quite successfully. Here, the
focus is on the possible effects of changing the parent population size.
Therefore, new functions are presented where for a simple mutation-
based EA even a decrease of the population size by one leads from an
efficient optimization to an enormous running time with an overwhelm-
ing probability. This is proven rigorously for all feasible population sizes.
In order to obtain these results, new methods for the analysis of the EA
are developed.

1 Introduction

Evolutionary Algorithms (EAs) are a broad class of general randomized search
heuristics. The probably best-known types of EAs are Genetic Algorithms and
Evolution Strategies (see, e.g., Bick, Fogel, and Michalewicz (1997)). Their area
of application is as huge as their variety and they have been applied successfully
in numerous situations. Here, we consider the problem to maximize pseudo-
Boolean functions f, : {0,1}" — IR(J)r . We remark that analysis in discrete
search spaces differs substantially from that in continuous ones.

With regard to populations, the problems how to choose its size and how to
find a method to preserve the diversity are well known. If the size of the popu-
lation or its diversity are too small, the EA is likely to stagnate in local optima.
On the other hand, the EA is likely to waste much time on the evaluation of
unnecessary elements, if the population or diversity are too large. Many ideas
have been presented to cope with the difficulty of the correct choice of these pa-
rameters and they all have shown their usefulness in experiments, e.g., niching
methods, multistarts, and many more. In order to understand the success of EAs,
theory often investigates the behavior of simple EAs on typical or constructed
problems. These artificial problems are often developed to illustrate particular
effects of EAs or one of their components at best. Our aim is to illustrate conve-
niently that the choice of the parent population size may be critical. Therefore,
we develop functions where even a decrease of the parent population size by
one leads from an efficient optimization with an overwhelming probability to an
enormous running time.

* This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as a part
of the Collaborative Research Center “Computational Intelligence” (SFB 531).
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We estimate the efficiency of a randomized algorithm. Therefore, let T4, be
the random number of function evaluations until algorithm A first evaluates an
optimal search point of f,,. If the expected value of T4, is polynomially bounded
in the dimension of the search space n, we call A efficient on f, and inefficient,
if the expected value of Tl ¢, is at least exponentially bounded. Finally, we call
A totally inefficient on fy, if after exponential many steps the probability that
an optimal search point has been evaluated, remains exponentially small. In this
particular situation a polynomially bounded number of (parallel) (independent)
multistarts of A is inefficient. Moreover, we are interested in asymptotical results
with respect to n.

We investigate one of the best-known EAs. This is the so-called (u+)\) EA
working with a parent population of size 4 > 1 and an offspring population of
size A > 1. Surprisingly, on many typical functions even the (1+1) EA is quite
efficient. Indeed, Jansen and De Jong (2002) considered the role of the offspring
population size. They presented functions where a decrease of this parameter
leads to enormous differences in the optimization time. Jansen and Wegener
(2001b) have shown something less strong for the role of the parent population
size. Witt (2003) improved this result.

We develop functions f,, ¢ where the considered mutation-based (p+1) EA
is totally inefficient, if the parent population has size u < d. However, if the
population has size pu > d, the EA is efficient. We introduce such functions for
alld € {1,...,n°} and every constant ¢ > 0. And we call d the threshold value of
the population size. In order to prove these results rigorously, we present simple
but powerful methods to analyze this EA. They extend the so-called method of
f-based partitions and help to upper bound the expected optimization time of
the (u+1) EA on a particular function (see Wegener (2002)).

The paper begins in Section 2 with an introduction of the investigated steady-
state (u+1) EA. Section 3 presents the desired extensions on the method of
f-based partitions and Section 4 exhibit our first results. These results handle
only the threshold value of the population size one and do not satisfy all the
desired properties but they illustrate some of the main effects which occur. We
divide the possible threshold values of the population size d into three domains.
For convenience, we consider them in an unnatural order later.

— The first domain encloses d € {1,...,[n/(c1logn)] — 1} for some constant
c1 > 0. These are investigated in Section 7.
— The second domain encloses d € {[n/(c1logn)],...,[n/ca]} for some constant

cg > 0. These are investigated in Section 5.

— And the third domain encloses d € {[n/c2] +1,...,n°} for every constant
¢ > 0. These are investigated in Section 6.

We finish with some conclusions.

2 The Steady-State (u+1) EA

The considered mutation-based steady-state (u+1) EA works with a natural
and weak method to preserve diversity. It just avoids duplicates of elements in
the population. This technique can be understood as a special niching method.
Moreover, in this case the population structure is not only a multiset but a set.
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(p+1) EA
1. Choose p different individuals z; € {0,1}™, 1 <4 < y, uniformly at random.
These individuals constitute the population P, i.e., P = {x1,...,x,}.

2. Choose an individual z from the population P uniformly at random.
Create y by flipping each bit in z independently with probability 1/n.
3.IfygP,ie,y#ax; forali, 1 <i<upu,
then let z € P U {y} be randomly chosen among those individuals with the
worst f-value and let the population be P U {y} — {z}, goto 2.,
else let the population be P, goto 2.

Obviously, only populations of size p < 2™ are possible. In Step 2, the parameter
1/n is the standard choice for mutations.

We remark that the theorems of Sections 5, 6 and 7 hold, if fitness-pro-
portional selection (z;, 1 < i < p, is chosen with probability f(z;)/ > f_; f(zk))
instead of uniform selection (z;, 1 < i < p, is chosen with probability 1/u) is
used in Step 2. Furthermore, it is irrelevant which of the elements with smallest
f-value is deleted in Step 3.

3 Methods for Upper Bounds on the Expected
Optimization Time for the (u+1) EA

We present two extensions for the (u+1) EA of the method of f-based partitions
(see Wegener (2002)). These extensions can easily be combined. At first, we recall
the original method of f-based partitions that is a simple proof technique which
helps to upper bound the expected running time of the (1+1) EA to optimize a
particular function.

Given A,B C {0,1}", A,B # 0, the relation A <; B holds, iff f(a) <
f(b) for all a € A, b € B and a pseudo-Boolean function f. Moreover, we call
(A1,..., Am; f) an f-based partition, iff Ay,..., A, is a partition of {0,1}" and
Ay <5 --- <f Ay, holds. Furthermore, A,, merely consists of optimal elements
a, ie., f(a) = max{f(b)|b € {0,1}"}. Finally, let p(a), a € A;, i < m, be
the probability that a mutation of a creates some b € A;1 U---U A, and let
p(4;) == min{p(a)|a € A;}, i < m, i.e., p(A;) constitutes a lower bound on the
probability to leave A;. Given an f-based partition (Ay,..., Ap; f), the expected
optimization time of the (14+1) EA is bounded above by

1 +p(A1)_1 + - +p(Am—1)_1

Our first extension of this method for the (u+1) EA allows to disregard
areas of the search space at the expense of the population size. It is even not
necessary to know the areas, only their sizes. Therefore, let (Ay,..., Ap; f; A)
be the variant (1) of f-based partitions where Ay, ..., A,, is only a partition of
A C {0,1}™ but all other constraints still hold.

Theorem 1. Let Ay C {0,1}" and (A1,..., Am; f;{0,1}" — Ag) be given. The
expected optimization time of the (u+1) EA, where u > |Ao| + 1, is bounded

above by
p(L+p(A) "+ 4 p(Ap-1) )
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Proof. The initialization evaluates u different elements. There always exist at
least p—|Ag| > 1 individuals in the population which do not belong to Ag. These
are at worst all elements of A; after the initialization. Once the (u+1) EA has
left A;, i < m, this area will never be reached again, i.e., at least one element
of the population belongs to A;11 U---U A,,. Since the probability to select an
individual of the population that belongs to A;, i < m, is lower bounded by
1/u, the expected number of fitness evaluations is bounded by up(A;)~! until
an element of A;;1U---UA,, is created. At worst, this is an element of 4;;;. O

If Ag =0 and p =1, we have the original method for the (1+1) EA.

For the original method it is essential that A; <; A;11, + < m, holds.
We weaken this condition at the expense of the population size. Therefore, let
(A1, ..., Am; fib1, ... bm—1), b; > i+ 1, be the variant (2) of f-based partitions
where Ai,..., Ay, is a partition of {0,1}™ but it just holds A; <; Ay, ¢ < m.
Furthermore, A,, still merely consists of optimal elements.

Theorem 2. (Ay,...,An; f;b1,...,bm—1) is given and let

viz= Y |Aj| foralli<m

1<j<i,b;>i

The expected optimization time of the (u+1) EA, where p > max{v; |j < m}+1,
is bounded above by

,u(l +p(A) "+ +p(Am—1)71)

Proof. After initialization, the population contains at worst only elements that
belong to A;. At most the elements of A; where j < 4 and b; > ¢ have an
f-value at least as large as the worst element of A;, i < m, but belong to
Ay U---UA;_1. By definition, these are at most v; elements. Therefore and since
> max{v;|j < m}+1> v +1, once the (u+1) EA has reached A;, i < m,
this area will never be given up again, i.e., at least one element of the population
belongs to A; U---U A,,. The expected number of fitness evaluations is bounded
by up(A;)~! until an element a € A;, i+1 < j < m, is created. Since a is either
optimal or it holds u > v; 4 1, the element a will be inserted in the successive
population. a

Ifb, =i+ 1, i <m, and g = 1, we have the original method for the (1+1) EA
again.

4 First Results

Here, we only consider the threshold value of the population size one. The pre-
sented functions in this section do not satisfy all the desired properties. But we
make observations that help to identify functions in the following sections where
all these properties hold. To obtain these results for all threshold values of the
population size, the functions have to be modified in different manners.
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1" = a[n]

increasing fitness . .
! g "/ increasing fitness

level of all x where ||z|| =r

On = a[o]

Fig. 1. An illustration of PONEP,,.

Our example functions for the threshold value of the population size one
consist of one global optimum agionar and one local optimum aigcar Which is the
second-best search point. We call ajocal a peak, too. The Hamming distance
H(z,y) of two search points z and y equals the number of indices ¢ where
x; #Zyi. U H(z,y) =1, we call z and y Hamming neighbors. A path (of length r)

is a sequence of search points ayq), .. ., a[._1) where a;; and af;;1] are Hamming
neighbors and the elements are pairwise distinct. The two search points aglobal
and ajoca) are lying on a path ajg, - .., apy (of length n + 1) that leads from the

zero string to the one string. It is agiobal := @[] and aiocal *= a[p—[n/3]] and they
have (inevitably) Hamming distance [n/3]. The functions have the additional
property that with an overwhelming probability the path is first entered in front
of ajocal- Therefore, during a typical run of the investigated EA ajoca) is cre-
ated before agiobal is reached. If the population consists only of the second-best
search point aiocal, the probability is extremely small to produce agiohal, since
their Hamming distance is large. But if the population consists of at least one
more individual, these elements search forward on the path and find the global
optimum efficiently. We remark that the functions are influenced by the short
path functions of Jansen and Wegener (2001a).

To define the functions, let 0* denote the string of k zeros and ||z| the
number of ones in z. To simplify the notation, let m := [n/3]. Now, we can give
a complete definition of PONEP,, (Path with ONE Peak) illustrated in Fig. 1.

n+1 ifaczO”_ilizzam,Ogignandi;ﬁn—m
PONEP,(7) :={ 2n—1/2 if 2 = 01" = ajp_p
n—||z|| otherwise

We begin our considerations with populations of size p > 2. The result is proven
in two different ways to demonstrate different interpretations of the local opti-
mum. The first proof uses Theorem 1 while the second one uses Theorem 2.

Theorem 3. The expected time until the (u+1) EA, where pn > 2, has optimized
PONEP,, is bounded above by O(un?).

Proof. (using Theorem 1) Let Ag := {a[p—m)} and (A1, ..., A2n_1; PONEP,;
{0,1}™ — Ap) be the variant (1) of f-based partitions where
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{a|PONEP,(a) =i} ifl1<i<mn
A; =< {ap_ny} fn<i<2n—-m
{ap—nt1} if 2n —m <i < 2n
Hence, for the element of As,_,,_1 a special 2-bit mutation creates the element
of As,,_., and for the elements of A;, i < 2n — 1 and ¢ # 2n — m — 1, at least
one special 1-bit mutation creates an element of A;;1. Therefore, it holds

1/n*)(1—1/n)"2>1/(en?) fi=2n—m—1
p(di) 2 { (1/n)(1 —=1/n)" 1 >1/(en) otherwise

It holds 1 > |Ag| + 1 = 2. Hence, an application of Theorem 1 leads to an
expected optimization time of at most z1(1 + en® + (2n — 3)en) = O(un?). O

Proof. (using Theorem 2) Let (Aq,..., Asp; PONEP,;b1,...,b2,-1) be the vari-
ant (2) of f-based partitions where

A {a|PONEP,(a) =i} ifl<i<n __7{271 iti=2n—-m
S {agi—ng ) ifn<i<2n > " li+1 otherwise

Hence, it holds
o — =0 ifl1<i<2n-m
‘| |A2n—m| =1 otherwise

and p(4;) > 1/(en), 1 < i < 2n, since for every element of A;, i < 2n, at least
one special 1-bit mutation creates an element of A;41. It holds p > max{v; |j <
2n} + 1 = 2. Hence, by Theorem 2 the expected optimization time is bounded
above by (1 + (2n — 1)en) = O(un?). O

Theorem 4. With a probability of 1 — O(1/n) the (1+1) EA needs an exponen-
tial time 22" to optimize PONEP,,. The expected time until the (141) EA has
optimized PONEP,, is bounded below by 2.

Proof. By Chernoff bounds (see, e.g., Motwani and Raghavan (1995)), the prob-
ability is exponentially small that the initial element consists of more than
n —m — [n/7] ones. From then on, at most an element of {a||lal]| < n —m —
[n/T]}U{ao, ..., apm} is accepted as population. Each af;), i > n—m, consists of
at least n—m ones. Hence, a mutation of an element of {a | ||a|| < n—m—[n/7]}
has to change at least [n/7] bits to create af;, i > n — m. The probability for
such a mutation is bounded by (1/n)!"/71 = 2=2(")_ Therefore, when first an el-
ement of {af, ), - . ., } is produced this happens with an exponentially small
failure probability by a mutation of aj,, _,,—x}, & > 1. Exactly one k-bit mutation
of ap,—m—1) generates ap,_p, and one (k + [)-bit mutation produces ap,— 4,
1 <1 < m. The probability of the k-bit mutation equals (1/n*)(1-1/n)""* = ¢
and of all the (k + {)-bit mutations together ;" (1/n*T)(1 —1/n)"~F=! =: gs.
Since q2/q1 = O(1/n), the probability to create aj,_, before af;), i > n —m, is
altogether bounded by 1 — O(1/n). But if aj,,_p, is the individual of the popu-
lation, just a special m-bit mutation generates the global optimum aj,). This is
the only element that has an at least as large f-value as the local optimum. The
probability for such a mutation is (1/n)™(1 — 1/n)"~™ = 2720, O
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5 Medium Threshold Values of the Population Size

Now, we consider larger threshold values of the population size. Therefore, we
enlarge the peak. Of course, as a result, it is not a real peak at all. We play with
the definition of PONEP,, and identify threshold values of the population size
that satisfy the desired properties.

Let PONEP,, 4, 1 < d < m = [n/3], be the variant of PONEP,, where the
d search points ap,_m]; - -, an—m+d—1] have f-value 2n — 1/2. Thereby, these
elements form the new peak.

Similar to Theorem 3, the expected optimization for the (u+1) EA on
PONEP,, 4, if p > d + 1, is bounded by O(un?). In the proof using Theorem 2
it holds max{v;|j < 2n}+1 = d + 1, since an appropriate choice of b; is now

.._{271 f2n—m<i<2n—m+d—1
‘7 li+1 otherwise

We investigate the situation u < d and assume d < [n/cg] for an appropriate
constant co > 0. Due to the proof of Theorem 4 the probability is exponentially
small that an element of the initial population consists of more than n — m —
[n/7] ones. Furthermore, q2/q; = O(1/n%), since we have to compare (k +1)-bit
mutations, 0 < | < d, with (k 4+ d + [)-bit mutations, 0 < I < m — d. After
that, one element of {ap,—p]; ..., an—m+i—1]} and some elements of {a||lal <
n—m—[n/T]}U{ajy, ..., ap—m-1]} constitute the population. We claim that
it typically takes longer to reach the end of the path than to fill up the peak.
More precisely, we lower bound the failure probability that within [2eun?/cs]
steps the population consists of some elements of {aj,_m), - -, Ajn—m+d—1]} only.
Since we suppress the chance to create ap, during these steps, we also have to
lower bound the probability for this event. Both probabilities are exponentially
small. So, with a failure probability of max{O(1/n%),2=%™} the (u+1) EA,
where 1 < d, needs an exponential time to optimize PONEP,, 4.

Since it holds 1 < d, there exists an element af, 4] € P, 0 <1 < d, at least
until the population consists of elements of {ap,—m],--.,an—myd—17} only. A
special 1-bit mutation of a correct individual of the population creates an element
Ap—m+y & P, 0 < 1 < d. This element is also inserted into the population.
Therefore, we are in a similar situation as in an experiment where the success
probability is bounded by 1/(eun) in each of [2eun?/cy] trials. By Chernoff
bounds the probability is exponentially small that less than u, 1 < d < [n/ca],
successes occur.

The probability is bounded above by 1/n’ to produce ap+j, J = 0 and
0 <1+ j < n, by a mutation of a where ||a|| <. At least j special bits have to
change for this event. Hence, let aj,,_p1x) € P, k > 0, and app—mqnq5 € P, for
all j > 1. Since the population consists of elements of {a | ||a| <n—m—[n/7]}U
{ag, .- ap—myr } and n—m—[n/7] < n—m+k—(u—1), there is at most one
individual in the population that consists of at most n—m+k—1,0 <[ < pu—1,
ones. So, the probability to create af, 4+, is bounded by Zluz_ol 1/(pnith) <
2/(pun?). At the beginning k¥ = d — 1 holds at best. By Chernoff bounds the
probability is exponentially small to create af,) within [2eun?/ca] steps, if ¢ is
large enough.
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Theorem 5. With a probability of 1 — 27" the (u+1) EA, where u < d,
needs 2" steps to optimize PONEP,, 4, [n/(cilogn)] < d < [n/ca] for every
constant ¢c; > 0 and an appropriate constant co > 0. The expected optimization
time of the (u+1) EA, where u > d + 1, is bounded above by O(un?).

6 Large Threshold Values of the Population Size

We consider even larger threshold values of the population size. Therefore, we
enlarge the peak more and play more extensively with the definition of PONEP,,.
When we investigated the (u+1) EA, u < d, on PONEP,, 4, we claimed that with
an overwhelming probability the peak is filled up before the end of the path is
reached. In order to retain this property now, we slow down the arrival at the
end of the path, since the peak is larger and thereby, it takes longer to fill it up.

To simplify the notation let m := [n/3] and s := [n/ca] where ¢y is the
positive constant of the previous section. Let PONEP,, 4., s < d < n€, for a
constant integer ¢ > 1, be the variant of PONEP,, where aj, 4517, 0 <1 <
m—s—1andl mod (c+1) # —1, have f-value n— ||aj,—ps1q|- Thus, the path
behind the peak consists of | (m—s)/(c+1) | gaps of size ¢ and possibly one further
gap of smaller size. These gaps slow down the arrival at the global optimum. But
the path is not a real one at all. Furthermore, beside ap,_pm);- -+, Gn—mts—1]
the elements ay, 0 < I < d — s, have f-value 2n — 1/2. Thereby, all these
elements form the new peak. But before we describe the appearance of a(),
1 <1 < d- s, we remember the Gray Code. The (¢-digit) Gray Code Gy,
¢ € IN, maps the integer z, 0 < x < 2¢ — 1, (bijective) to the binary space
{0,1}%. But in contrast to Binary Code the values x and = + 1 always have
Hamming distance one, H(G(z), Gy(x +1)) = 1 for all 0 < x < 2° — 1. Similar
to Binary Code G(0) = 0° holds. We define ay- The element a(;y, 1 <1 < d—s,
equals gs—1 -+ go0™*1" ™™ if G 1(gs—1---go) = I. It holds | < n® < 25 — 1,
if n is large enough. The mentioned properties of the Gray Code claim that
H(aqy,aq41)) =1, 1 <1 <d—s, and H(app—m), aq1)) = 1.

We investigate the situation 4 > d+ 1. An application of Theorem 2 leads to
an expected optimization time of O(un*?). To show this, we define a sequence
of the elements of the path and the peak

S = (a[O]a <o Qn—m—1]5 A(d—s)y - - + 3 A1) An—m]s An—m+1]5 - - -5 An—m+s—1]>
Alp—m+s—14(c+D)]s -+ s Un—m+s—14+[(m—s)/(c+1)] (c+1)]s a[n])
=: (50, + s Sn—m+dt[(m—s)/(c+1)])

We choose the partition induced by the areas

A { {a|PONEP, g c(a) =14} ifl1<i<n
Y {sient ifn<i<2n—m+d+|(m—s)/(c+1)]
and analogously to the previous section for an appropriate choice of the b; it holds
max{v; | j < 2n—m-+d+|(m—s)/(c+1)|}+1 = d+1. Hence, for i = 2n—m—1
we consider the Hamming distance of s;_,, = Afp—m—1] and Sjyqg—s—n = An—m]
and otherwise of the element of A; and an appropriate element of A;;1. So,

L f1/(en)  if1<i<Z2m—m+d—1
(4:) 2 { 1/(en*)  otherwise
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Now, we investigate the situation p < d. Similar to the arguments that
led to Theorem 5, the probability is exponentially small that an element of
{ap—mis—14ker) |1 < kB < [(m = s)/(c+ 1)]} U{ap} is created before
an element of the peak {ap,—m];- -, @n—m+s—1],a(1), - - - » G(d—s) }- Furthermore,
by Chernoff bounds the failure probability is exponentially small that after
[2eunct1] steps the population consists of elements with f-value 2n — 1/2
only. Hence, let app—mis—14k(c+1)) € P, k = 1, and app—mos—14(k+5)(c+1)] &
P, for all j > 1. Since the Hamming distance of a), 1 < | < d — s, and
An—mts—1+4(k+j)(c+1)] 15 at least s, the probability is bounded by 2/(un’(¢t1)
to create ajn—mys—14(k45)(c+1)]- By Chernoff bounds the probability is exponen-
tially small that ap,) is created within [2eunct'] steps.

Theorem 6. With a probability of 1 — 27" the (u+1) EA, where u < d,
needs 2°") steps to optimize PONEP,, 4., [n/c2] < d < n® for an appropriate
constant co > 0 and every constant integer ¢ > 1. The expected optimization
time of the (u+1) EA, where p > d + 1, is bounded above by O(un<t?).

7 Small Threshold Values of the Population Size

At first, we consider again the threshold value of the population size one only.
But here, the presented functions satisfy the desired properties. After these are
proven, we extend our observations up to threshold values of the population size
of [n/(c1logn)] —1 for an appropriate constant ¢; > 0. Our results for PONEP,,
do not satisfy the desired properties, since the probability to jump over the peak
is just O(1/n). We modify PONEP,, that such a situation occurs numerous
times. More precisely, our example functions consist of many peaks and paths
between them that are also called bridges. Together with elements leading to
the first peak these form the new path. The global optimum is again located
at the end of this path. Typically, the path is first entered in front of the first
peak and no shortcuts are taken. This means that never a peak and the bridge
located behind it are jumped over. Thus, with an overwhelming probability, at
least once a peak is produced before the global optimum is found. Similar to
the behavior on PONEP,,, the probability is exponentially small to leave a peak,
if the population consists of this peak only. But if there is at least one more
individual in the population, these elements search forward on the path and find
the next peak efficiently. This goes on until the global optimum is found.

At first, we define the peaks. Therefore, we divide an element z of length
n into [logn] + 1 disjoint blocks. Block j, 0 < j < [logn] — 1, encloses the
[n/(4logn)| =: s bits xjs11,...,2(j4+1)s and the last block [logn| the remaining
bits Z[iog n]s41s - - - Tn. With block j, 0 < j < [logn] — 1, we associate a bit

Tiq = {ZjSH I Zjsp1 = = 2(41)s
@) undefined otherwise
Let a;), 0 <i < 2Mogn] _1 be the element where each a), 0 < j < [logn]—1,
=

is not undefined, furthermore Gﬁégn] (afi)(Tlog n]—1) * * - A[3)(0)) and block
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increasing fitness . .
! g "/ increasing fitness

level of all x where ||z|| =r

On
Fig. 2. An illustration of PLINPS,,.

[logn] consists of ones only. Therefore, in exactly all bits of one block j, 0 < j <
[logn| —1, the elements af;) and af;41], 0 < i < 2Mogn] 1 differ. The bridge be-
tween ap) and afit1] consists of Qi k] 2= O[],1 " O], js+kB[it1),s+k+1 " O[i+1],ns
0 < k < s. Finally, the elements aj_ 3 := 0n=k1% 0 < k < n — [logn]s, lead
from 0™ to the first peak ajo;. We remark that the functions are influenced by
the long path functions of Rudolph (1997), but ours are short, of course.

S = (a[fl,o]a <o Q[—1,n—[logn]s—1]> @[0]> A[0,1]5 - - - » A[0,5—1]>» A[1]» A[1,1]5 - - -+ »
Q[2Mogn] 3 s—1]s A[2Mogn] 2], Q[2Mlogn] —2 1] - - - s A[2[logn] —2 s—1]5
Q[2M10g 7] _1]) = (So, <oy Spgs(2Mesn] —[logn]—1)

describes the whole path. Now, we can give a complete definition of PLINPS,,
(Path with LiNear in n many Peaks) illustrated in Fig. 2.

n+s+i if x =s; and x = af; for some j

PLINPs,(z) :=< n+1 if z = s; and = # a;) for every j
n—||z|| otherwise

Theorem 7. The expected time until the (u+1) EA, where p > 2, has optimized
PLINPS,, is bounded above by O(un?/logn).

Proof. The proof is similar to that of Theorem 3 using Theorem 2. We choose
the partition induced by the areas

A {a| PLINPS,(a) =i} ifl1<i<n
ST {sisn) if n <i<2n+s(2M°8" —[logn] — 1)

Hence, it holds p > max{v; |j < 2n + s(2M1°8"1 —[logn] — 1)} +1 =2 if

b i+1 ifi#2n— ([logn] + j)s for every j
T li+s ifi=2n— ([logn] + j)s for some j

and 1 < i < 2n + s(21°8"1 — [logn] — 1). If we consider the areas 4; and A, 1,
it holds p(A4;) > 1/(en). So, by Theorem 2 the expected optimization time is
bounded above by p(1+ (2n+ s(2M1°8"1 — [logn] — 1) — 1)en) = O(un?/logn).

O

We consider a technical lemma that summarizes one main property of PLINPS,,.

Lemma 8. For 0 < i < 2M°¢"1 1 and all ¢ where PLINPS,,(c) > PLINPS,, (af;)
it holds a) H(af;,c) > s and b) H(ay_1,x,c) > s for arbitrary k.
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Proof. The element ¢ can only be af;yy, | > 1, or aj;yy, ;) for arbitrary j.

a) The elements af; and aj;4 differ in all bits of at least one block. Therefore, it
is H(af;, ajiy) > s and since by construction of a; all bits in each block have the
same value, it holds H(a), ajiyq ;) > min{H(ap), ajipy), H(ap), ajivi41))} > s
b) Due to the situation described in a) it is H(a[z 1,k @fig)) > min{H(ag_q,
a[zH]) H(a ag)s Al )} > s and it is H(a Afi—1,k]5 Afitl, j]) > mm{H(a[Z 1,k a[Hl]),
H(ap—1 4], ajipi417) = min{ H(ap_1y, ajig), H(ap-1), apivi11), Hlag), apivg),
H(a[i]7a[i+l+1])} > S. O

Theorem 9. With a probability of 1 — 2~ the (141) EA needs 2% steps
to optimize PLINPS,,.

Proof. When first an element of {s,,_[1ogn]s = Q[0]s - - - s Spys(2M08n1 —[logn]—1) } 1S
produced this happens similar to the proof of Theorem 4 with an exponentially
small failure probability by a mutation of aj_1 ,_fiogn)s—], K = 1. We analyze
the situation that the population is aj_1 n_[10gn1s—&]; ¥ = 1, 0T af; s—x], @ > 0. By
Lemma 8 the probability is bounded by |S|(1/n)* = 2= to create an arbitrary
element ¢ where PLINPS,,(¢) > PLINPS,,(a[;41]). Furthermore, again similar to
the proof of Theorem 4, the probability to create aj; 41,y for an arbitrary [ before
aji+1] is bounded by O(1/n). If the population is af), 0 < i < oflogn] _ 7
by Lemma 8 the probability is exponentially small to create an element ¢ #
aj;) where PLINPS, (c) > PLINPS,,(af;]). Hence, the probability to produce the
global optimum before an element aj;), 0 < i < 2Mognl _ 1 is bounded by

279(") + O(l/n)2hogn171 _ 279(") 0

We consider threshold values of the population size of up to [n/(cilogn)] —1
for an appropriate constant ¢; > 0. Therefore, we play with the definition
of PLINPs,,. This is done similar to the changings of PONEP,, that led to
PONEP,, 4. We enlarge the peak. Let PLINPS,, 4, 1 < d < [n/(c1logn)], be the
variant of PLINPS,, where beside a;, 0 < i < 2Mognl _ 1 the elements afi, s
1 <k < d, have f-value PLINPS,(af;). So, these elements form the new peaks.

The arguments that led to Theorems 5 and 7 bound the expected optimiza-
tion time for the (u+1) EA on PLINPS,, 4, if > d + 1, by O(un?®/logn).

The result of Theorem 9 also holds for the (u+1) EA on PLINPs, 4, if
p < dand d < [n/(cilogn)] for an appropriate constant ¢; > 0. The path
is reached at its beginning. If the population consists only of elements of the
peak {ap, a1, ---50[,a-1)), 0 < i < 2Mlogn] _ 1 by Lemma 8 the probabil-
ity is exponentially small to create an element ¢ ¢ {aj;), a1, - - -, afi,4—1)} Where
PLINPS,, 4(c) > PLINPS,, 4(af;)), if c; is large enough. Otherwise, let s, € P but
sj ¢ Pforall j > k. If sy, = ay; ), | > d, similar to the arguments that led to The-
orems 5 and 9, the probability to produce an element of {aj41,q);- .., Cb[i+1,sf1]}
before an element of {aj417,afi+1,1]5- - -, a[i41,4—1)} is bounded by O(1/n?) =
O(1/n). If s, = a) or sp = apy, [ < d the fallure probability is bounded by
2~%n/logn) — O(1/n) that after [2eun?/(c; logn)] steps the population consists
of elements of {af;, af; 1, ..., aj;,4-1)} only. And the probability is also bounded
by O(1/n) that within these steps an element of {afit1], afy1,1]5- - -5 Q[it1,5-1]}
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is created. Therefore and since for both situations of s; the probability is ex-
ponentially small to produce an arbitrary element ¢ where PLINPS, 4(c) >
PLINPS,, q(aji+17), the probability to produce the global optimum before the
population consists only of some elements of some peak {aj;, aj;,1), - - @[i,a—1)}

0 < i< 2Meen] _ 1 is again bounded by 2= 4 O(1/n)2" "' =1 = 2-2()

Theorem 10. With a probability of 1—2~") the (u+1) EA, where u < d, needs
29%n) steps to optimize PLINPS, 4, 1 < d < [n/(c1logn)] for an appropriate
constant ¢1 > 0. The expected optimization time of the (u+1) EA, where p >
d + 1, is bounded above by O(un3/logn).

Conclusions

We have proved that functions exist where a simple mutation-based EA is effi-
cient iff the population size p > d and is totally inefficient iff 4 < d. This has been
proven rigorously by specifying some functions for all values of d polynomially
bounded in the dimension of the search space. These results form a typical so-
called hierarchy result. We have developed methods to analyze the investigated
EA. These help to upper bound the expected optimization time. The question
if the smallest possible increase of the population size may be advantageous has
been answered positively. However, in most cases of application such a sensitive
decrease of the population size does not have such enormous effects. But these
results support the importance of a correct choice of the population size.
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