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Abstract. Evolutionary and genetic algorithms (EAs and GAs) are
quite successful randomized function optimizers. This success is mainly
based on the interaction of different operators like selection, mutation,
and crossover. Since this interaction is still not well understood, one is
interested in the analysis of the single operators. Jansen and Wegener
(2001a) have described so-called real royal road functions where simple
steady-state GAs have a polynomial expected optimization time while
the success probability of mutation-based EAs is exponentially small even
after an exponential number of steps. This success of the GA is based
on the crossover operator and a population whose size is moderately
increasing with the dimension of the search space. Here new real royal
road functions are presented where crossover leads to a small optimiza-
tion time, although the GA works with the smallest possible population
size — namely 2.

1 Introduction and History

Genetic algorithms (GAs) and evolution strategies (ESs) have many areas of
application. Here we consider the maximization of pseudo-boolean functions
fn : {0, 1}n → IR+

0 . The success of GAs and ESs depends on the interaction of
the different operators, among them the so-called search (or genetic) operators
which create new individuals from existing ones. A search operator working on
one individual is called mutation and a search operator working on two (or more)
individuals is called crossover. We only investigate the best-known crossover op-
erators namely one-point crossover and uniform crossover. There have been long
debates whether mutation or crossover is “more important”. This paper does not
contribute to this debate. Our purpose is to investigate when and why crossover
is essential.

The problem of premature convergence and the problem to maintain diversity
in the population are well known. There are many ideas how to cope with these
problems: multi-starts, fitness sharing, niching, distributed GAs, and many more.
They all have shown their usefulness in experiments. It has also been also possible
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to analyse highly specialized GAs on some functions. However, the rigorous
analysis of GAs is still in its infancy. This motivates the investigation of special
properties of single operators (like the takeover time).

The success of GAs is based on the use of populations and the use of crossover
operators. Holland (1975) has discussed why crossover is a good search opera-
tor. This has led to the building-block hypothesis and the schema theory (see
also Goldberg (1989)). We are interested in a rigorous analysis and we concen-
trate on the following parameters: TA,f describes the random number of fitness
evaluations until the algorithm A evaluates an optimal search point for f . The
expected optimization time E(TA,f) is the expected value of TA,f and the success
probability function t → Prob(TA,f ≤ t) describes the probability of a successful
search within a given number of steps. An algorithm is called efficient if the ex-
pected optimization time is polynomially bounded (with respect to the problem
dimension n) or if at least the success probability within a polynomial number
of steps converges to 1 (with respect to n). Crossover is essential for a sequence
f = (fn) of fitness functions if a simple GA (without specialized modules) is
efficient while all mutation-based evolutionary algorithms (EAs) are not effi-
cient. Mitchell, Forrest, and Holland (1992) have looked for such functions and
presented the so-called royal road functions RRn,k : {0, 1}n → IR+

0 . The input
string a is partitioned to m blocks of length k each where m = n/k is an integer.
Then RRn,k(a) equals the number of blocks of a containing ones only. This is a
nice example function since it seems to be a “royal road” for the building-block
hypothesis and the application of one-point crossover. However, Mitchell, Hol-
land, and Forrest (1994) (see also Mitchell (1996)) have shown that this intuition
is wrong. Crossover is not essential when optimizing the royal road functions.
Other “GA-friendly” functions like H-IFF (see, e.g., Watson and Pollack (1999))
have been presented but their analysis is not rigorous. Some rigorous analysis
has been performed for highly specialized GAs (see, e.g., Dietzfelbinger, Naudts,
van Hoyweghen, and Wegener (2002)). Jansen and Wegener (2001a) have pre-
sented so-called real royal road functions for uniform crossover and for one-point
crossover and proved rigorously that the expected optimization time of a sim-
ple steady-state GA is polynomially bounded while each mutation-based EA
needs exponential time until the success probability is not exponentially small.
The results hold for populations of size n but not for populations whose size is
independent of n.

Hence, the steady-state GA needs a population of moderate size and the ap-
propriate crossover operator to be efficient. This raises the question of whether
populations without crossover can be essential and the question of whether
crossover needs populations whose size grows with n in order to be essential.
Jansen and Wegener (2001b) have presented functions where mutation-based
EAs working with large populations are efficient while all mutation-based EAs
with population size 1 are not efficient. Here we answer the second question by
presenting real royal road functions for populations of size 2.

More precisely, we describe in Section 2 a steady-state GA (called (2+1)GA)
working with the smallest possible population size allowing crossover, namely
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population size 2. This GA is not specialized. It only guarantees that the popu-
lation contains two different individuals. In Section 3, the real royal road function
for uniform crossover and constant population size is presented. It is proven that
the (2+1)GA is efficient in the sense, that the success probability after a poly-
nomial number of steps is 1− o(1), i.e., converging to 1 as n → ∞ (Theorem 4).
Each mutation-based EA needs exponential time until the success probability is
not exponentially small (Proposition 1). In Section 4, the function is changed
into a real royal road function for one-point crossover and population size 2. The
(2+1)GA needs only a polynomial number of steps to reach a success probability
of 1−o(1) (Theorem 6), but the expected optimization time grows exponentially.
The reason is that with small probability some bad event happens. This event
implies a very large optimization time leading to the large expected optimiza-
tion time. Therefore, we present in Section 5 a strong real royal road function for
one-point crossover and population size 2. For this function the (2+1)GA even
has a polynomially bounded expected optimization time (Theorem 11) while
mutation-based EAs still need exponential time until the success probability is
not exponentially small (Proposition 7). We finish with some conclusions.

2 The Steady-State (2+1)GA

We describe a simple steady-state GA working on the smallest possible popula-
tion size allowing crossover namely population size 2.

(2+1)GA

Initialization: Randomly choose two different individuals x, y ∈ {0, 1}n.
Search: Produce an individual z, more precisely,

– with probability 1/3, z is created by mutate(x),
– with probability 1/3, z is created by mutate(y),
– with probability 1/3, z is created by mutate(crossover(x, y)).

Selection: Create the new population P .
– If z = x or z = y, then P := {x, y}.
– Otherwise, let a ∈ {x, y, z} be randomly chosen among those individuals

with the worst f -value. Then P := {x, y, z} − {a}.
The reader may wonder why all three possibilities of the search step have prob-
ability 1/3. This choice is not essential. Our results hold for all probabilities
p1, p2, p3, even if they are based on the fitness of x, y, and z as long as they are
bounded below by a positive constant ε > 0.

We apply the usual mutation operator flipping each bit independently with
probability 1/n. In Sections 4 and 5, we apply the usual one-point crossover
but create only one child, i.e., choose i ∈ {1, . . . , n − 1} randomly and set
crossover(x, y) := (x1, . . . , xi, yi+1, . . . , yn). Here the order of x and y is cho-
sen randomly. In Section 3, we apply uniform crossover where each bit of the
child is chosen from each of the parents with probability 1/2.
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3 Real Royal Roads for the (2+1)GA and
Uniform Crossover

Before presenting our new function we emphasize that our purpose is to prove
rigorously that the (2+1)GA can outperform all mutation-based EAs. As in
many other cases, the first example functions with certain properties are artificial
fitness functions designed only to prove the results under considerations.

Our example function has one area of global optima and two local optima
of different fitness. It should be difficult to create a globally optimal point by
mutation of one of the local optima, but it should be easy to do so by uniform
crossover of the two local optima. Hence, the GA has to realize a population
consisting of the local optima. The fitness function gives hints to reach the
better local optimum first. Since we have always two different individuals, one
of them is only close to the local optimum and gets hints to look for the second
local optimum. These ideas are now made precise.

To simplify the notation we assume that m := n/6 is an even integer. Let
|x| be the length of x, ‖x‖ := OneMax(x) := x1 + · · · + xn denote the number
of ones of x, and 0k a string of k zeros. The Hamming distance H(x, y) equals
the number of indices i where xi �= yi. A path is a sequence a1, . . . , ap such that
H(ai, ai+1) = 1 and the points ai are pairwise distinct. The definition of the
new real royal road function Ru

n (u indicates that we use uniform crossover) is
based on a path P and a target region T . The path P = (a0, . . . , a7m) contains
7m + 1 search points: For i ≤ 6m let ai := 0n−i1i and for i = 6m + j let
ai := 1n−j0j . Let Ru

n(ai) := n + i for all i �= 5m and Ru
n(a5m) := n + 8m. This

implies that we have two local optima on P , namely a∗ := a5m and a∗∗ := a7m.
If the (2+1)GA first finds a∗, the second individual can search for a∗∗. Hence,
we like to have a good chance of creating an optimal search point by uniform
crossover from a∗ and a∗∗. Let T contain all points b14mc where |b| = |c| = m
and ‖b‖ = ‖c‖ = m/2. Uniform crossover between a∗ = 0m15m and a∗∗ = 15m0m

preserves the 4m ones in the middle part. The probability of creating m/2 ones
in the prefix equals

(
m

m/2

)
2−m = Θ(1/m1/2) (by Stirling’s formula). The same

holds independently for the suffix. Hence, the probability that uniform crossover
on {a∗, a∗∗} creates a target point and mutation does not destroy this property
equals Θ(1/m) = Θ(1/n). Now we give a complete definition of Ru

n which is
illustrated in Figure 1. Let P1 := (a0, . . . , a5m−1) and P2 := (a5m+1, . . . , a7m).

Ru
n(x) :=




15m if x ∈ T
14m if x = a∗

6m + i if x = ai ∈ P1 ∪ P2

6m − ‖x‖ if x ∈ R := {0, 1}n − P − T

Proposition 1. Evolution strategies (without crossover) need with probability
1 − o(1) exponentially many steps w.r.t. n to optimize Ru

n.
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0n

1n

← level of all x where ‖x‖ = k

R ↓ increasing fitness
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↑ T

�

a∗∗
�

a∗

Fig. 1. An illustration of Ru
n.

We omit the proof of this proposition. The probability to create a target
point by mutation from a path point is exponentially small. Hence, one has to
search within R for a small target where the fitness function only gives the advice
to decrease the number of zeros. This makes it exponentially unlikely to hit T .
A complete proof follows the lines of the proof of Proposition 6 of Jansen and
Wegener (2001a).

Lemma 2. The probability that the (2+1)GA does not find a search point from
P2 ∪ T ∪ {a∗} within c1n

2 steps is 2−Ω(n) (c1 an appropriate constant).

Proof. We consider the fitness levels Li, 1 ≤ i < 11m, containing all search
points x where Ru

n(x) = i. These fitness levels contain all search points outside
P2 ∪ T ∪ {a∗}. Each of these search points has a better Hamming neighbor. A
population P = {x, y} belongs to Li if max{f(x), f(y)} = i. The probability to
leave Li is at least the probability of choosing the right individual for the right
1-bit-mutation and, therefore, at least p = 1/(3en). The steps where crossover is
chosen can be ignored. They only may increase the success probability. Hence,
we have to wait for at most 11m successes in an experiment where each trial has
a success probability of at least p. Therefore, the result follows by an application
of Chernoff bounds (see, e.g., Motwani and Raghavan (1995)). �	
Lemma 3. If the population contains a∗, the probability that the (2+1)GA does
not find an optimal search point, namely a search point from T , within c2n

2 steps
is 2−Ω(n) (c2 an appropriate constant).

Proof. By the selection procedure, the population will contain a∗ until a search
point of T is created. The probability to create some a ∈ P2 from a∗ is bounded
below by p = 1/(3en). Afterwards, P = {a∗, ai}, i > 5m. We now consider
the level defined by the index i until P ⊆ {a∗, a∗∗} ∪ T . The probability to
increase i is bounded below by p in each step. Finally, the probability to create
some target point from the population {a∗, a∗∗} equals by our arguments above
Θ(1/n). Moreover, only target points are accepted if P = {a∗, a∗∗}. Hence, we
have to wait for 2m + 1 successes in experiments where each trial has a success
probability of Θ(1/n). Therefore, Lemma 3 follows by the same arguments as
Lemma 2. �	



6 Tobias Storch and Ingo Wegener

Theorem 4. The success probability that the (2+1)GA with uniform crossover
optimizes Ru

n within cn2 steps, c an appropriate constant, is 1 − O(1/n).

Proof. Applying Lemmas 2 and 3 we are left with the problem whether the
(2+1)GA creates a search point from P2 before a search point from T ∪ {a∗}
(called bad event). It is sufficient to bound the probability of the bad event by
O(1/n). Here we have to cope with the “undesired” effects of uniform crossover.
Remember that all search points of P2∪T∪{a∗} contain 4m ones in their “middle
part“.

By Chernoff bounds, the probability that the initial population contains a
search point with more than (7/2)m ones is exponentially small. As long as no
point from P ∪T is created, we only have search points with at most (7/2)m ones
if we start with such strings. Hence, each of the search points has at least m/2
wrong bits in the middle part. The probability to correct a wrong bit by uniform
crossover is at most 1/2 and the probability to correct it by mutation is 1/n.
Hence, it is very likely to create a search point ai, i ≤ (15/4)m, before creating
a point from P2 ∪ T ∪ {a∗} ∪ {ai | (15/4)m < i < 5m} (the failure probability is
exponentially small). We can repeat these arguments to prove that at some point
of time the population contains ai and aj , 0 ≤ i < j < 4m. Uniform crossover
applied to ai and aj creates some ak, i ≤ k ≤ j. Therefore, better points are
created by mutation from some ak, k < 4m. The probability of creating some
point of P2 ∪{a∗} is exponentially small. Thus, we will obtain in O(n2) steps ai

and aj , 4m ≤ i < j < 5m, with overwhelming probability. Then better points
are created from some ak, 4m ≤ k < 5m. In this case, there is exactly one
(5m − k)-bit mutation to create a∗ and exactly one (5m − k + l)-bit mutation,
1 ≤ l ≤ 2m, to create the point a5m+l from P2. The probability of the (5m− k)-
bit mutation equals q1 := (1/n)5m−k(1 − 1/n)n−5m+k and the probability of
all the (5m − k + l)-bit mutations, 1 ≤ l ≤ 2m, altogether is the sum q2 of all
(1/n)5m−k+l(1−1/n)n−5m+k−l. Since, q2/q1 = O(1/n), the probability to create
a point from P2 before creating a point from T ∪ {a∗} is altogether bounded by
O(1/n). �	
Having this essential result we can play with the definition of Ru

n. Let Ru
n,k be

the variant of Ru
n where a5m+1, . . . , a5m+k belong to the region R. Proposition

1 and Lemma 2 hold also for Ru
n,k. In Lemma 3, we now have to wait for the

event to flip the right k + 1 bits of a∗ to obtain a5m+k+1. The expected time for
this is bounded above by enk+1. After c2n

k+1 log n steps the probability of not
creating a point of P2 is bounded above by

(
1 − 1

enk+1

)c2nk+1 log n

≤ e−(c2/e) log n .

This can be made smaller then 1/nk by choosing c2 appropriately. However, in
the proof of Theorem 4 now q2/q1 = O(1/nk), since we need at least (k + 1)-bit
mutations to create points from P2. This leads to the following result.

Theorem 5. The success probability that the (2+1)GA with uniform crossover
optimize Ru

n,k within cnk+1 log n steps, c an appropriate constant, is 1−O(1/nk).
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4 A Variant for One-Point Crossover

In order to obtain a real royal road function for the (2+1)GA and one-point
crossover we can consider an appropriate variant of Ru

n. The probability of cre-
ating 1n by one-point crossover from a∗∗ = 15m0m and a∗ = 0m15m is bounded
below by a positive constant. The idea is to make 1n the only target point which
cannot be reached easily by mutation from a point on P2. For this reason we
replace the path between a∗ and a∗∗ by a path which is far away from 1n. The
function R1

n is defined in the same way as Ru
n with two exceptions. The target

set T is replaced by T := {1n}. The points (a5m+1, . . . , a7m) are now defined
by a5m+2i−1 := 1i0m−i15m−i+10i−1 and a5m+2i := 1i0m−i15m−i0i , 1 ≤ i ≤ m.
Then the points of P2 have 5m or 5m + 1 ones and are far from 1n and far from
the typical points created in the initialization step. Thus Proposition 1 also holds
with the same arguments for R1

n.

Theorem 6. The success probability that the (2+1)GA with one-point crossover
optimizes R1

n within cn2 steps, c an appropriate constant, is 1 − O(1/n).

Proof. It is easy to prove the claims of Lemmas 2 and 3 also for R1
n. The old

proofs can be used without changes. If the population consists of ai and aj ,
0 ≤ i < j < 4m, we can use the arguments of the proof of Theorem 4 to
conclude that the probability of creating a point from P2 before creating a point
from T ∪ {a∗} is bounded by O(1/n). Let x and y be the search points of the
initial population. All search points from P2 have 4m ones in their middle part.
By Chernoff bounds, the probability that x and y have not at least m/2 common
zeros in this middle part is exponentially small. In order to obtain a search point
from P2 it is necessary to flip each of these positions at least once. In a phase of cn
steps the probability of not flipping a bit at a special position equals (1−1/n)cn

and the probability of flipping it is therefore 1 − (1 − 1/n)cn and thus bounded
above by a constant ε < 1. Since the bit positions are treated independently
by the mutation operator, the probability of flipping m/2 given positions is
exponentially small. (These calculations are related to the coupon collector’s
theorem (see Motwani and Raghavan (1995)).) If this event does not happen
we are in the situation of the fitness function 6m − ‖x‖ = n−OneMax(x).
The standard analysis of OneMax leads to the result that we can expect after
cn steps a population of two search points of at most m ones. Each step has
a constant probability of decreasing the number of ones in the population. By
Chernoff bounds, cn steps for an appropriate c are enough to decrease the number
of ones from at most 11m ones to at most 2m ones. The failure probability again
is exponentially small. If both search points have at most m ones, crossover can
only create a seach point with 2m ones and even then the probability of creating
4m ones by mutation is exponentially small. Hence, we create some ai and aj ,
0 ≤ i < j < 4m, before some point from P2 with a probability exponentially
close to 1. �	
With the same notations and arguments leading to Theorem 5 we can prove a
similar theorem for R1

n,k.
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5 Real Royal Roads for the (2+1)GA and
One-Point Crossover

The aim is to define a real royal road function R1∗
n for the (2+1)GA and one-

point crossover which even has the property that the expected optimization time
of the (2+1)GA is bounded by some polynomial p(n). This implies by Markoff’s
inequality a success probability of at least 1/2 within 2p(n) steps. Since the
bound on the expected optimization time holds for all initial populations, the
success probability within O(p(n) log n) steps can be bounded by 1 − O(n1/k)
for each constant k.

The definition of R1∗
n is influenced by the function R1

n. We modify R1
n in the

following way. All ai, where i = 5m + 2j − 1 and 1 ≤ j ≤ m, i = 5m + 2 or
i = 5m + 4, now belong to the bad region R. Finally, all other individuals ai,
i > 5m, have the same fitness 13m and define a plateau of constant fitness. The
full definition of R1∗

n is:

R1∗
n (x) :=




15m if x ∈ T := {1n}
14m if x = 0m15m =: a0

13m if x ∈ {ai := 1i0m−i14m1m−i0i | 3 ≤ i ≤ m} =: P
6m + i if x = 0n−i1i, 0 ≤ i < 5m
6m − ‖x‖ otherwise

The following result can be proved like Proposition 1.

Proposition 7. Evolution strategies (without crossover) need with a probability
exponentially close to 1 exponentially many steps w.r.t. n to optimize R1∗

n .

Finally, we analyse the (2+1)GA with one-point crossover on R1∗
n .

Lemma 8. The expected time until the population of the (2+1)GA contains a
search point from Q := P ∪ T ∪ {a0} is bounded by O(n2). With a probability of
1 − O(1/n6) this search point is contained in T ∪ {a0}.

Proof. As in the proof of Theorem 6 we get an expected time of O(n2) for
creating a search point from Q. Again we have to create with overwhelming
probability the search point from Q by mutation of some 0n−i1i, 0 ≤ i < 5m. The
probability that this happens for some i ≤ 4m is exponentially small. Otherwise,
H(0n−i1i, a3) = H(0n−i1i, a0)+6 and we have to compare k-bit mutations with
(k + 6)-bit mutations. Hence, we can apply the same arguments as in the proof
of Theorem 5. �	

Let us first consider what happens if the population contains only individuals of
P . Remember that all these individuals have the same fitness.

Lemma 9. If the population contains only search points from P , the expected
time until the population of the (2+1)GA contains an element from T ∪ {a0} is
bounded by O(n9).
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I II III IV V

ai 1 · · · 1 0 · · · 0 0 · · · 01 · · · 1 1 · · · 1 0 · · · 0
aj 1 · · · 1 1 · · · 1 0 · · · 01 · · · 1 0 · · · 0 0 · · · 0
ai 1 · · · 1 0 · · · 0 0 · · · 01 · · · 1 1 · · · 1 0 · · · 0

length i j − i n − 2j j − i i

Fig. 2. One-point crossover between ai and aj resp. aj and ai.

Proof. We only have to consider the situation where the population consists of ai

and aj , 3 ≤ i < j ≤ m. A step is called essential if a search point is created, which
has a chance of being accepted for the next population, namely a search point
from Q−{ai, aj}. The probability of producing ai±d, d ≥ 1, 3 ≤ i±d ≤ m, from
ai by mutation equals Θ(1/n2d), since we consider a special 2d-bit mutation. In
order to investigate mutate(crossover(ai, aj)) resp. mutate(crossover(aj , ai)) we
describe the search points in Figure 2.

If the cut position falls into Region I or Region V (including the borders),
we obtain ai or aj, altogether each of them with the same probability. If the cut
position falls into Region III (including the borders) we obtain 1i0m−i14m1m−j0j

or 1j0m−j14m1m−i0i, for Region II we obtain some 1i0s−i1j−s0m−j14m1m−j0j

or 1s0m−s14m1m−i0i, i < s < j, and for Region IV some 1i0m−i14m1m−s0s,
or 1j0m−j14m1m−j0j−s1s−i0i, i < s < j. The situation is almost symmetric if
3 ≤ i < j ≤ m. More precisely, the following individuals have the same chance
to be created by crossover and a following mutation from the pair (ai, aj):

– ai−d and aj+d (as long as i − d ≥ 3 and j + d ≤ m) and
– ai+d and aj−d (as long as i + d ≤ j − d).

And at least one bit has to flip to obtain an element from Q − {ai, aj} from
crossover(ai, aj) resp. crossover(aj , ai). Hence, the total probability of an essen-
tial step is bounded by O(1/n) and Ω(1/n2). In order to prove the lemma it is
sufficient to show a bound of O(n7) on the number of essential steps until a0 or
1n is produced.

If i = 3, the probability that the next essential step produces a0 by mutation
from ai is bounded by Ω(1/n5). Hence, the expected number of essential steps
with a population containing a3 until a0 is included in the population is bounded
by O(n5). We are done by proving a bound of O(n2) on the number of essential
steps until the population contains a3, a0, or 1n if we start with ai and aj ,
3 ≤ i < j ≤ m.

For this purpose, it is sufficient to prove that for a phase of cn2 essential
steps, c an appropriate constant, there is a probability of at least a constant
ε > 0 that we produce a3, a0, or 1n. We ignore the chance of producing a0 or 1n.
Let {ai′ , aj′} be the population created from {ai, aj} in an essential step. The
gain of this step is defined by (i′ + j′)− (i + j). To produce ai−d or aj+d, d ≥ 2,
mutation alone has to flip 2d bits and the mutation following a crossover at least
2d bits. Hence, this happens with a probability of Θ(1/n2) in an essential step.
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There is a probability of
(
1−Θ(1/n2)

)cn2

≤ ε′ where ε′ < 1 is a constant that the
phase does not contain such a step. This implies that {ai, aj} can create only ak,
i− 1 ≤ k ≤ j + 1. Further, the probability of good steps of length 1 (ai → ai−1,
aj → aj−1) is the same as the probability of bad steps of length 1 (ai → ai+1,
aj → aj+1). This even holds for steps of length d, d ≥ 2 (aj → aj−d, ai → ai+d).
However, if we produce aj from ai, we cannot accept the copy of aj . This does
not disturb the symmetry since with the same probability we produce ai from
aj . If j = m, aj+1 does not exist. This disturbs the symmetry but supports a
positive gain.

The steps of length 1 can be considered as independent coin tosses with
success probability 1/2. Applying Chernoff bounds, Θ(n2) coin tosses are enough
to have a surplus of n wins with a probability of at least a constant ε′′ > 0. For
each fixed point of time the probability that the steps of length d, d ≥ 2, lead
to a non-negative gain is by symmetry at least 1/2 (it is not exactly 1/2, since
the total gain of these steps may be 0). This implies that we create a3 with a
probability of at least ε in one phase if c is chosen large enough. (Since the search
points a3, . . . , am are a plateau of constant fitness of R1∗

n , we have used some
ideas contained in the paper of Jansen and Wegener (2001c).) �	
Lemma 10. If the population contains a0 and some aj, 3 ≤ j ≤ m, the proba-
bility for the (2+1)GA that the population contains 1n or a0 and am within the
next cn4 steps, c an appropriate constant, is bounded below by some constant
ε > 0.

Proof. We can apply many ideas of the proof of Lemma 9. The probability of cre-
ating some ak, 3 ≤ k ≤ m, by mutation of a0 is bounded by O(1/n6). Further, the
probability of producing aj±d, d ≥ 2, by mutation of aj is bounded by O(1/n4).
Let us investigate the effect of crossover, namely mutate(crossover(a0, aj)) and
mutate(crossover(aj , a0)). We are in the same situation as in Figure 2 but now
i = 0. Thus, Region I and Region V are empty. If the cut position falls into
Region III (including the borders) we obtain 0m14m1m−j0j or 1j0m−j14m1m.
To produce aj±d, d ≥ 1, the first (or the last) 3 ≤ j ± d ≤ m bits of the
string and d of the last (or the first) m bits must flip by the mutation following
crossover. For each of these cut positions, this leads to a probability of O(1/n4)
for a successful crossover. If the cut position falls into Region II, we obtain some
0s1j−s0m−j14m1m−j0j (II.a) or 1s0m−s14m1m (II.b), 0 < s < j, and for Re-
gion IV we obtain some 0m14m1m−s0s (IV.a) or 1j0m−j14m1m−j0j−s1s (IV.b),
0 < s < j. For (II.a) and (IV.b) we distinguish the cases s ≥ 2 and s = 1.
Case 1. s ≥ 2. To obtain aj±d at least four bits have to flip in the mutation
following crossover:

– the first 2 resp. last 2 ones, since s ≥ 2,
– at least one other special bit of the first resp. last m positions, since d ≥ 1,
– at least d ≥ 1 special bits of the last resp. first m positions.

This again leads for each of these cut positions to a probability of O(1/n4) for
a successful mutate-crossover step.
Case 2. s = 1. Here we can guarante only three flipping bits at selected positions.
We can use the same arguments but have to take into accout that s = 1. However,
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the case s = 1 refers to only one cut position of crossover. This leads to a
probability of O(1/n3) for a successful mutate-crossover step.
For (II.b) and (IV.a) the mutation following a crossover has to flip k+ |s−k| bits
to generate ak. This leads for s �= 3 to a probability of O(1/n4) and for s = 3
to a probability of O(1/n3) for a successful mutate-crossover step. Therefore,
since each cut position has the same probability of 1/(n− 1), altogether we get
a probability of

(n − 3) · O(1/n4) + 2 · O(1/n3)
n − 1

= O(1/n4)

for creating some ak. Hence, the probability of a successful crossover or a mu-
tation flipping 4 or even more bits is bounded by O(1/n4). The probability of
including am in the population can be analysed in the same way as the proba-
bility of including a3 in the proof of Lemma 9. �	

Theorem 11. The expected time until the (2+1)GA has optimized R1∗
n is bound-

ed above by O(n6).

Proof. By Lemmas 8 and 9, an expected number of

(
1 − O(1/n6)

)
O(n2) + O(1/n6)max

(
O(n2), O(n9)

)
= O(n3)

steps are enough to obtain a population containing a0 or 1n. In the second case
we are done. Otherwise, the population will contain a0 until it has optimized R1∗

n .
If the second indidividual of the population does not equal some aj , 3 ≤ j ≤ m,
a 6-bit mutation will create one from a0, what needs an expected time of O(n6).
By Lemma 10 the expected time until the population then contains a0 = 0m15m

and am = 15m0m is bounded by O(n4). Afterwards, the probability of creating
1n is at least 1/(10e) (choose crossover, its cut position s in the middle, namely
s ∈ {m, . . . , 5m} and do not mutate any bit). Hence, with a probability of 1−o(1)
we produce 1n before am is replaced by some aj , 3 ≤ j ≤ m− 1. In this case, we
can repeat the arguments. The expected number of these phases is 1 + o(1). �	

We also have defined a real royal road function for uniform crossover where also
the expected time of the (2+1)GA is polynomially bounded. The construction
of the function and the analysis of the (2+1)GA are more complicated than the
results presented here. The reason is the following. If uniform crossover is applied
to two search points a and b with a small Hamming distance, the same result can
be obtained with a not too small probability by mutating a or b. If the Hamming
distance is large, each point which can be created by uniform crossover from a
and b has an exponentially small probability of being created. This differs from
one-point crossover where each possible search point has a probability of at least
1/(n−1) to be created. This implies that uniform crossover can be useful only if
there are many good search points “between a and b”. This again makes it more
difficult to control the “undesired effects” of uniform crossover — in particular,
in small populations.
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Conclusions

The question whether crossover without special methods to ensure the diversity
of the population and without a population whose size grows with the dimen-
sion of the search space can improve a mutation-based EA significantly has been
solved. Fitness functions have been presented where a simple GA with population
size 2 is efficient while mutation-based EAs need with overwhelming probability
exponentially many steps. Efficiency is defined as a success probability of 1−o(1)
within a polynomial number of steps or even as a polynomial expected optimiza-
tion time. The most important types of crossover, namely uniform crossover and
one-point crossover, have been investigated. These are the first results to prove
for some examples that crossover can be essential even for populations of size 2.
Nevertheless, in most cases of application, it is useful to have larger populations
and some method to preserve the diversity in the population.
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