UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE
COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

Towards a Theory of Randomized Search Heuristics

Ingo Wegener

No. CI-169/04

Technical Report ISSN 1433-3325 February 2004

Secretary of the SFB 531 - University of Dortmund - Dept. of Computer Science/XI
44221 Dortmund - Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

Towards a Theory of Randomized Search
Heuristics

Ingo Wegener*

FB Informatik, LS 2, Univ. Dortmund, 44221 Dortmund, Germany
wegener@ls2.cs.uni-dortmund.de

Abstract. There is a well-developed theory about the algorithmic com-
plexity of optimization problems. Complexity theory provides negative
results which typically are based on assumptions like NP#P or NP#RP.
Positive results are obtained by the design and analysis of clever algo-
rithms. These algorithms are well-tuned for their specific domain. Prac-
titioners, however, prefer simple algorithms which are easy to implement
and which can be used without many changes for different types of prob-
lems. They report surprisingly good results when applying randomized
search heuristics like randomized local search, tabu search, simulated an-
nealing, and evolutionary algorithms. Here a framework for a theory of
randomized search heuristics is presented. It is discussed how random-
ized search heuristics can be delimited from other types of algorithms.
This leads to the theory of black-box optimization. Lower bounds in
this scenario can be proved without any complexity-theoretical assump-
tion. Moreover, methods how to analyze randomized search heuristics,
in particular, randomized local search and evolutionary algorithms are
presented.

1 Introduction

Theoretical computer science has developed powerful methods to estimate the
algorithmic complexity of optimization problems. The borderline between poly-
nomial-time solvable and NP-equivalent problems is marked out and this holds
for problems and their various subproblems as well as for their approximation
variants. We do not expect that randomized algorithms can pull down this bor-
der.

The “best” algorithms for specific problems are those with the smallest
asymptotic (w.r.t. the problem dimension) worst-case (w.r.t. the problem in-
stance) run time. They are often well-tuned especially for this purpose. They
can be complicated, difficult to implement, and not very efficient for reasonable
problem dimension. This has led to the area of algorithm engineering.

Nevertheless, many practitioners like another class of algorithms, namely so-
called randomized search heuristics. Their characteristics are that they are

* This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part
of the Collaborative Research Center “Computational Intelligence” (SFB 531), the
Collaborative Research Center “Complexity Reduction of Multivariate Data Struc-
tures” (SFB 475), and the GIF project “Robustness Aspects of Algorithms”.

— easy to implement,

— easy to design,

— often fast although there is no guaranteed upper bound on the expected run
time,

— often producing good results although there is no guarantee that the solution
is optimal or close to optimal.

Classical algorithm theory is concerned with guarantees on the run time (or
the expected run time for randomized algorithms) and with guarantees for the
quality of the results produced by the algorithm. This has led to the situation
that practitioners work with algorithms which are almost not considered in the
theory of algorithms.

The motivation of this paper is the following. If randomized search heuristics
find many applications, then there should be a theory of this class of algorithms.
The aim is to understand how these algorithms work, what they can achieve and
what they cannot achieve. This should lead to the design of better heuristics,
rules which algorithm is appropriate under certain restrictions, and an at least
partial analysis of these algorithms on selected problems. Finally, these results
can be used when teaching randomized search heuristics.

The problem is that we are interested in “the best” algorithms for an op-
timization problem and we do not expect that a randomized search heuristic
is such a best algorithm. It seems to be impossible to define precisely which
algorithm is a randomized search heuristic. Our solution to this dilemma is to
describe an algorithmic scenario such that all known randomized search heuris-
tics can work in this scenario while most problem-specific algorithms are not
applicable in this scenario. This black-box scenario is presented in Section 2.
There it is shown that black-box algorithms can be interpreted as randomized
decision trees. This allows the application of methods from classical complexity
theory, in particular, lower-bound methods like Yao’s minimax principle.

This new framework allows a general theory of black-box algorithms includ-
ing randomized local search, tabu search, simulated annealing, and evolutionary
algorithms. Theoretical results on each of these classes of randomized search
heuristics were known before, e.g., Papadimitriou, Schaffer, and Yannakakis
(1990) for local search, Glover and Laguna (1993) for tabu search, Kirkpatrick,
Gelatt, and Vecchi (1983) and Sasaki and Hajek (1998) for simulated annealing,
and Rabani, Rabinovich, and Sinclair (1998), Wegener (2001), Droste, Jansen,
and Wegener (2002), and Giel and Wegener (2003) for evolutionary algorithms.

Lower bounds on the complexity of black-box optimization problems are pre-
sented at the end of this paper, in Section 9. Before, we investigate what can
be achieved by randomized search heuristics, in particular, by randomized local
search and evolutionary algorithms. The aim is to present and to apply methods
to analyze randomized search heuristics on selected problems. In Section 3, we,
therefore, discuss some methods which have been applied recently and, after-
wards, we present examples of these applications. In Section 4, we investigate
the optimization of degree-bounded polynomials which are monotone with re-
spect to each variable. It is not known whether the polynomial is increasing or

decreasing with x;. Afterwards, we investigate famous problems with well-known
efficient algorithms working in the classical optimization scenario. In Section 5,
we investigate sorting as the maximization of sortedness. The sortedness can
be measured in different ways which has influence on the optimization time of
evolutionary algorithms. In Section 6, the single-source-shortest-paths problem
is discussed. It turns out that this problem can be handled efficiently only in
the model of multi-objective optimization. In Section 7, the maximum matching
problem is investigated in order to show that evolutionary algorithms can find
improvements which are not obtainable by single local operations. Evolutionary
algorithms work with two search operators known as mutation and crossover. In
Section 8, we discuss the first analytic results about the effectiveness of crossover.
The results on the black-box complexity in Section 9 show that the considered
heuristics are close to optimal — in some cases. We finish with some conclusions.

2 The Scenario of Black-Box Optimization

The aim is to describe an algorithmic scenario such that the well-known ran-
domized search heuristics can work in this scenario while it is not possible to
apply “other algorithms”. What are the specific properties of randomized search
heuristics? The main observation is that randomized search heuristics use the
information about the considered problem instance in a highly specialized way.
They do not work with the parameters of the instance. They only compute pos-
sible solutions and work with the values of these solutions. Consider, e.g., the
2-opt algorithm for the TSP. It starts with a random tour 7. In general, it stores
one tour 7, cuts it randomly into two pieces and combines these pieces to a new
tour 7’. The new tour 7’ replaces iff its cost is not larger than the cost of .
Problem-specific algorithms work in a different way. Cutting-plane techniques
based on integer linear programming create new conditions based on the val-
ues of the distance matrix. Branch-and-bound algorithms use the values of the
distance matrix for the computation of upper and lower bounds and for the cre-
ation of subproblems. This observation can be generalized by considering other
optimization problems.

Droste, Jansen, and Wegener (2003) have introduced the following scenario
called black-box optimization. A problem is described as a class of functions.
This unifies the areas of mathematical optimization (e.g., maximize a pseudo-
boolean polynomial of degree 2) and combinatorial optimization. E.g., TSP is
the class of all functions fp : X, — Rar where D = (d;;) is a distance matrix,
X, is the set of permutations or tours, and fp(w) is the cost of © with respect
to D. Hence, it is no restriction to consider problems as classes JF,, of functions
f S, — R. The set S, is called search space for the problem dimension n. In
our case, S, is finite. A problem-specific algorithm knows F,, and the problem
instance f € F,,. Each randomized search heuristic belongs to the following class
of black-box algorithms.

Algorithm 1 (Black-box algorithm)

1. Choose some probability distribution p on S, and produce a random search
point 1 € Sy, according to p. Compute f(x1).

2. In Step t, stop if the considered stopping criterion is fulfilled. Otherwise,
depending on I(t) = (x1, f(x1),..., 211, f(xt—1)) choose some probability
distribution pr) on S, and produce a random search point x; € S according
to pr(). Compute f(x).

This can be interpreted as follows. The black-box algorithm only knows the
problem F,, and has access to a black box which, given a query x € S,,, answers
with the correct value of f(x) where f is the considered problem instance. Hence,
black-box optimization is an information-restricted scenario. It is obvious that
most problem-specific algorithms cannot be applied in this scenario.

We have to take into account that randomized search heuristics stop without
knowing whether they have found an optimal search point. Therefore, we inves-
tigate black-box algorithms without stopping criterion as an infinite stochastic
process and we define the run time as the random variable measuring the time
until an optimal search point is presented as a query to the black box. This is
justified since randomized search heuristics use most of their time for searching
for an optimum and not for proving that it is optimal (this is different for exact
algorithms like branch and bound).

Since queries to the black box are the essential steps, we only charge the
algorithm for queries to the black box, i.e., for collecting information. Large
lower bounds in this model imply that black-box algorithms cannot solve the
problem efficiently. For most optimization problems, the computation of f(x) is
easy and, for most randomized search heuristics, the computation of the next
query is easy.

The disadvantage of the model is that we allow all black-box algorithms in-
cluding those which collect information to identify the problem instance. After-
wards, they can apply any problem-specific algorithm. MAX-CLIQUE is defined
as follows. For a graph G and a subset V' of the vertex set V let fa(V') = |V/|,
if V' is a clique in G, and fg (V') = 0 otherwise. Asking a query for each two-
element set V' we get the information about the adjacency matrix of G and
can compute a maximum clique without asking the black box again. Finally, we
have to present the solution to the black box. The number of black-box queries
of this algorithm equals (g) + 1 but the overall run time is exponential. Hence,
our cost model is too generous. For upper bounds, we also have to consider the
overall run time of the algorithm. Nevertheless, we may get efficient black-box
algorithms which cannot be considered as randomized search heuristics, see, e.g.,
Giel and Wegener (2003) for the maximum matching problem. Hence, it would
be nice to further restrict the scenario to rule out such algorithms. The second
observation about randomized search heuristics is that they typically do not
store the whole history, i.e., all previous queries and answers or, equivalently,
all chosen search points and their values. Randomized local search, simulated
annealing, and even some special evolutionary algorithms only store one search
point (and its value). Then the next search point is computed and it is decided

which of the two search points is stored. Evolutionary algorithms typically work
with populations, i.e., multisets of search points. In most cases, the population
size is quite small, typically not larger than the problem dimension.

A black-box algorithm with space restriction s(n) can store at most s(n)
search points with their values. After a further search point is produced and
presented to the black box, it has to be decided which search point will be
forgotten. This decision can be done randomly. We can conclude that the black-
box scenario with (even small) space restrictions includes the typical randomized
search heuristics and rules out several algorithms which try to identify the prob-
lem instance.

Up to now, there are several lower bounds on the black-box complexity which
even hold in the scenario without space restrictions (see Section 9). Lower bounds
which depend strongly on the space bound are not known and are an interesting
research area.

We have developed the black-box scenario from the viewpoint of well-known
randomized search heuristics. In order to prove lower bounds it is more appropri-
ate to describe black-box algorithms as randomized decision trees. A determin-
istic black-box algorithm corresponds to a deterministic search tree. The root
contains the first query and has an outgoing edge for each possible answer. In
general, a path to an inner node describes the history with all previous queries
and answers and contains the next query with an outgoing edge for each possible
answer. A randomized decision tree is a probability distribution on the set of
deterministic decision trees. Since S,, is finite and since it makes no sense to re-
peat queries if the whole history is known, the depth of the decision trees can be
bounded by |S,|. It is easy to see that both definitions of black-box algorithms
are equivalent.

The study of randomized decision trees has a long history (e.g., Hajnal (1991),
Lovész, Naor, Newman, and Wigderson (1991), Heiman and Wigderson (1991),
Heiman, Newman, and Wigderson (1993)). Usually, parts of the unknown input
x can be queried and one is interested in computing f(z). Here we can query
search points and get the answer f(z). Usually, the search stops at a leaf of the
decision tree and we know the answer to the problem. Here the search stops at
the first node (not necessarily a leaf) where the query concerns an optimal search
point. Although our scenario differs in details from the traditional investigation
of randomized decision trees, we can apply lower-bound techniques known from
the theory on decision trees. It is not clear how to improve such lower bounds
in the case of space restrictions.

3 Methods for the Analysis of Randomized Search
Heuristics

We are interested in the worst-case (w.r.t. the problem instance) expected (w.r.t.
the random bits used by the algorithm) run time of randomized search heuristics.
If the computation of queries (or search points) and the evaluation of f (often

called fitness function) are algorithmically simple, it is sufficient to count the
number of queries.

First of all, randomized search heuristics are randomized algorithms and
many methods used for the analysis of problem-specific randomized algorithms
can be applied also for the analysis of randomized search heuristics. The main
difference is that many problem-specific randomized heuristics implement an
idea how to solve the problem and they work in a specific direction. Randomized
search heuristics try to find good search directions by experiments, i.e., they try
search regions which are known to be bad if one knows the problem instance.

Nevertheless, when analyzing a randomized search heuristic, we can develop
an intuition how the search heuristic will approach the optimum. More precisely,
we define a typical run of the heuristic with certain subgoals which should be
reached within certain time periods. If a subgoal is not reached within the con-
sidered time period, this can be considered as a failure. The aim is to estimate
the failure probabilities and often it is sufficient to estimate the total failure
probability by the sum of the single failure probabilities. If the heuristic works
with a finite storage and the analysis is independent from the initialization of
the storage, then a failure can be interpreted as the start of a new trial. This
general approach is often successful. The main idea is easy but we need a good
intuition how the heuristic works.

If the analysis is not independent of the contents of the storage, the heuristic
can get stuck in local optima. If the success probability within polynomially
many steps is not too small (at least 1/p(n) for a polynomial p), a restart or
a multistart strategy can guarantee a polynomial expected optimization time.
It is useful to analyze search heuristics together with their variants defined by
restarts or many independent parallel runs.

The question is how we can estimate the failure probabilities. The most often
applied tool is Chernoff’s inequality. It can be used to ensure that a (not too
short) sequence of random experiments with results 1 (success) and 0 (no success)
has a behavior which is very close to the expected behavior with overwhelming
probability. A typical situation is that one needs n steps with special properties
in order to reach the optimum. If the success probability of a step equals p,
it is very likely that we need ©(n/p) steps to have n successes. All other tail
inequalities, e.g., Markoff’s inequality and Tschebyscheff’s inequality, are also
useful.

We also need a kind of inverse of Chernoft’s inequality. During N Bernoulli
trials with success probability 1/2 it is not unlikely (more precisely, there is a
positive constant ¢ > 0 such that the probability is at least ¢) to have at least
N/2+ N 1/2 guccesses, i.e., the binomial distribution is not too concentrated. If
a heuristic tries two directions with equal probability and the goal lies in one di-
rection, the heuristic may find it. E.g., the expected number of steps of a random
walk on {0,...,n} with p(0,1) = p(n,n—1) = land p(i,i—1) = p(i,i + 1) = 1/2,
otherwise, until it reaches n is bounded by O(n?). A directed search starting in
0 needs n steps. This shows that a directed search is considerably better but a

randomized search is not too bad (for an application of these ideas see Jansen
and Wegener (2001b)).

If the random walk is not fair and the probability to go to the right equals p,
we may be interested in the probability of reaching the good point n before the
bad point 0 if we start at a. This is equivalent to the gambler’s ruin problem.
Let ¢t := (1 — p)/p. Then the success probability equals (1 —¢%)/(1 — t™).

There is an another result with a nice description which has many appli-
cations. If a randomized search heuristic flips a random bit of a search point
x € {0,1}", we are interested in the expected time until each position has been
flipped at least once. This is the scenario of the coupon collector’s theorem. The
expected time equals ©(nlogn) and large deviations from the expected value are
extremely unlikely. This result has the following consequences. If the global opti-
mum is unique, randomized search heuristics without problem-specific modules
need 2(nlogn) steps on the average.

In many cases, one needs more complicated arguments to estimate the fail-
ure probability. Ranade (1991) was the first to apply an argument now known
as delay-sequence argument. The idea is to characterize those runs which are
delayed by events which have to have happened. Afterwards, the probability of
these events is estimated. This method has found many applications since its
first presentation, for the only application to the analysis of an evolutionary
algorithm see Dietzfelbinger, Naudts, van Hoyweghen, and Wegener (2002).

Typical runs of a search heuristic are characterized by subgoals. In the case of
maximization, this can be the first point of time when a query = where f(z) > b
is presented to the black box. Different fitness levels (all where f(z) = a) can
be combined to fitness layers (all x where a1 < f(x) < as). Then it is necessary
to estimate the time until a search point from a better layer is found if one has
seen a point from a worse layer.

The fitness alone does not provide the information that “controls” or “di-
rects” the search. As in the case of classical algorithms, we can use a potential
function g: S, — R (also called pseudo-fitness). The black box still answers the
query = with the value of f(x) but our analysis of the algorithm is based on
the values of g(x). Even if a randomized search heuristic with space restriction
1 does not accept search points whose fitness is worse, the g-value of the search
point stored in the memory may decrease. We may hope that it is sufficient that
the expected change of the g-value is positive. This is not true in a strict sense.
A careful drift analysis is necessary in order to guarantee “enough” progress
in a “short” time interval (see, e.g., Hajek (1982), He and Yao (2001), Droste,
Jansen, and Wegener (2002)).

Altogether, the powerful tools from the analysis of randomized algorithms
have to be combined with some intuition about the algorithm and the problem.
Results obtained in this way are reported in the following sections.

4 The Optimization of Monotone Polynomials

Each pseudo-boolean function f: {0,1}"™ — R can be written uniquely as a

polynomial
flx) = Z wa H x; .

AC{1,..n} i€A

Its degree d(f) is the maximal |A| where wy # 0 and its size s(f) the number
of sets A where wy # 0. Already the maximization of polynomials of degree 2
is NP-hard. The polynomial is called monotone increasing if wyq > 0 for all A.
The maximization of monotone increasing polynomials is trivial since the input
1™ is optimal. Here we investigate the maximization of monotone polynomials of
degree d, i.e., polynomials which are monotone increasing with respect to some
Z1y...,%n Where z; = x; or z; = 1 — x;.

This class of functions is interesting because of its general character and
because of the following properties. For each input a and each global optimum
a* there is a path a9 = a,...,a, = a* such that a;;; is a Hamming neighbor
of a; and f(a;4+1) > f(ai), i.e., we can find the optimum by local steps which
do not create points with a worse fitness. Nevertheless, there are non-optimal
points where no search point in the Hamming ball with radius d — 1 is better.
We investigate search heuristics with space restriction 1. They use a random
search operator (also called mutation operator) which produces the new query
a’ from the current search point a. The new search point a’ is stored instead of
aif f(a') > f(a).

The first mutation operator RLS (randomized local search) chooses ¢ uni-
formly at random and flips a;, i.e., aj = 1 — a; and @} = a; for all j # i. The
second operator EA (evolutionary algorithm) flips each bit independently from
the others with probability 1/n. Finally, we consider a class of operators RLS,,
0 < p < 1/n, which choose uniformly at random some . Then a; is flipped with
probability 1 and each aj, j # 14, is flipped independently from the others with
probability p. Obviously RLSy = RLS. Moreover, RLS; /,, is close to EA if the
steps without flipping bit are omitted.

For all these heuristics, we have to investigate how they find improvements.
In general, the analysis of RLS is easier. The number of bits which have a correct
(optimal) value and influence the fitness value essentially is never decreased. This
is different for RLS,, p > 0, and EA. If one bit gets the correct value, several
other bits can be changed from correct into incorrect. Nevertheless, it is possible
that a’ replaces a. Wegener and Witt (2003) have obtained the following results.

All heuristics need an expected time of ©((n/d) - 2¢) to optimize monotone
polynomials of size 1 and degree d, i.e., monomials. This is not too difficult to
prove. One has to find the unique correct assignment to d variables, i.e., one has
to choose among 2¢ possibilities, and the probability that one of the d important
bits is flipped in one step equals @(d/n). In general, RLS performs a kind of
parallel search on all monomials. Its expected optimization time is bounded
by O((n/d) - log(n/d + 1) - 2%). It can be conjectured that the same bounds
hold for RLS,, and EA. The best known result is a bound of O((n?/d) - 2¢) for

RLS,, d(f) < clogn, and p small enough, more precisely p < 1/(3dn) and
p < a/(n/?logn) for some constant o > 0. The proof is a drift analysis on the
pseudo-fitness counting the correct bits with essential influence on the fitness
value. Moreover, the behavior of the underlying Markoff chain is estimated by
comparing it with a simpler Markoff chain. It can be shown that the true Markoff
chain is only by a constant factor slower than the simple one.

Similar ideas are applied to analyze the mutation operator EA. This is es-
sentially the case of RLS;/,, i.e., there are often several flipping bits. The best
bound for degree d < 2logn — 2loglogn — a for some constant a depends on the
size s and equals O(s - (n/d) - 2%).

For all mutation operators, the expected optimization time equals ©((n/d) -
log(n/d+1)-29) for the following function called royal road function in the com-
munity of evolutionary algorithms. This function consists of |n/d| monomials of
degree d, their weights equal 1 and they are defined on disjoint sets of variables.
These functions are the most difficult monotone polynomials for RLS and the
conjecture is that this holds also for RLS, and EA. The conjecture implies that
overlapping monomials simplify the optimization of monotone polynomials.

Our analysis of three simple randomized search heuristics on the simple class
of degree-bounded monotone polynomials shows already the difficulties of such
analyses.

5 The Maximization of the Sortedness of a Sequence

Polynomials of bounded degree are a class of functions defined by structural
properties. Here and in the following sections, we want to discuss typical algo-
rithmic problems. Sorting can be understood as the maximization of the sorted-
ness of the sequence. Measures of sortedness have been developed in the theory of
adaptive sorting algorithms. Scharnow, Tinnefeld, and Wegener (2002) have in-
vestigated five scenarios defined as minimization problems with respect to fitness
functions defined as distances d.~(7) of the considered sequence (or permuta-
tion) 7 on {1,...,n} from the optimal sequence 7*. Because of symmetry it is
sufficient to describe the definitions only for the case that 7* = id is the identity:

— INV(7) counts the number of inversions, i.e., pairs (i,7) with ¢ < j and
(i) > 7(j),

— EXC(m) counts the minimal number of exchanges of two objects to sort the
sequence,

— REM(r) counts the minimal number of removals of objects in order to obtain
a sorted subsequence, this is also the minimal number of jumps (an object
jumps from its current position to another position) to sort the sequence,

— HAM(7) counts the number of objects which are at incorrect positions, and

— RUN(7) counts the number of runs, i.e., the number of sorted blocks of
maximal length.

The search space is the set of permutations and the function to be minimized
is one of the functions d,~. We want to investigate randomized search heuristics

related to RLS, and EA in the last section. Again we have a space restriction
of 1 and consider the same selection procedure to decide which search point is
stored. There are two local search operators, the exchange of two objects and the
jump of one object to a new position. RLS performs one local operation chosen
uniformly at random. For EA the number of randomly chosen local operations
equals X + 1 where X is Poisson distributed with parameter A = 1.

It is quite easy to prove O(n?log n) bounds for the expected run times of RLS
and EA and the fitness functions INV, EXC, REM, and HAM. It is sufficient to
consider the different fitness levels and to estimate the probability of increasing
the fitness within one step. A lower bound of £2(n?) holds for all five fitness func-
tions. Scharnow, Tinnefeld, and Wegener (2002) describe also some ©(n?logn)
bounds which hold if we restrict the search heuristics to one of the search oper-
ators, namely jumps or exchanges. E.g., in the case of HAM, exchanges seem to
be the essential operations and the expected optimization time of RLS and EA
using exchanges only is ©(n?logn). An exchange can increase the HAM value
by at most 2. One does not expect that jumps are useful in this scenario. This is
true in most situations but there are exceptions. L.e., HAM(n,1,...,n—1)=n
and a jump of object n to position n creates the optimum.

An interesting scenario is described by RUN. The number of runs is essen-
tial for adaptive mergesort. In the black-box scenario with small space bounds,
RUN seems to give not enough information for an efficient optimization. Exper-
iments prove that RLS and EA are rather inefficient. This has not been proven
rigorously.

Here we discuss why RUN establishes a difficult problem for typical random-
ized search heuristics. Let RUN(7) = 2 and let the shorter run have length .
An accepted exchange of two objects usually does neither change the number
of runs nor their lengths. Each object has a good jump destination in the other
run. This may change ! by 1. However, there are only [jumps decreasing [but
n — [jumps increasing [. Applying the results on the gambler’s ruin problem it
is easy to see that it will take exponential time until [drops from a value of
at least n/4 to a value of at most n/8. A rigorous analysis is difficult. At the
beginning, there are many short runs and it is difficult to control the lengths of
the runs when applying RLS or EA. Moreover, there is another event which has
to be controlled. If run 7 follows r; and the last object of r; jumps away, it can
happen that r; and 7o melt together since all objects of ry are larger than the
remaining objects of 1. It seems to be unlikely that long runs melt together.
Under this assumption one can prove that RLS and EA need on the average
exponential time on RUN.

6 Shortest-Paths Problems

The computation of shortest paths from a source s to all other places is one
of the classical optimization problems. The problem instance is described by a
distance matrix D = (d;j) where d;; € RT U {oc} describes the length of the
direct connection from 7 to j. The search space consists of all trees T rooted at

s := n. Each tree can be described by the vector vy = (v7,...,vl_,) where v}

is the number of the direct predecessor of 7 in T'. The fitness of T’ can be defined
in different ways. Let dr(i) be the length of the s-i-path in T. Then

— fr(v) = dr(1) + - -+ dr(n — 1) leads to a minimization problem with a
single objective and

— gr(v) = (dr(1),...,dr(n — 1)) leads to a minimization problem with n — 1
objectives.

In the case of multi-objective optimization we are interested in Pareto optimal
solutions, i.e., search points v where gr(v) is minimal with respect to the partial
order “<” on (R U {oo})""L. Here (a1,...,an—1) < (b1,...,bp—1) iff a; < b;
for all j. In the case of the shortest-paths problem there is exactly one Pareto
optimal fitness vector which corresponds to all trees containing shortest s-i-paths
for all i. Hence, in both cases optimal search points correspond to solutions of
the considered problem.

Nevertheless, the problems are of different complexity when considered as
black-box optimization problems. The single-objective problem has very hard
instances. All instances where only the connections of a specific tree T have
finite length lead in black-box optimization to the same situation. All but one
search points have the fitness oo and the other search point is optimal. This
implies an exponential black-box complexity (see Section 9).

The situation is different for the multi-objective problem. A local operator
is to replace v} by some w ¢ {i,vl}. This may lead to a graph with cycles
and, therefore, an illegal search point. We may assume that illegal search points
are marked or that dp(i) = oo for all ¢ without an s-i-path. Again, we can
consider the operator RLS performing a single local operation (uniformly chosen
at random) and the operator EA performing X + 1 local operations (X Poisson
distributed with A = 1). Scharnow, Tinnefeld, and Wegener (2002) have analyzed
these algorithms by estimating the expected time until the algorithm stores a
search point whose fitness vector has more optimal components. The worst-case
expected run time can be estimated by O(n3) and by O(n?dlogn) if the depth
(number of edges on a path) of an optimal tree equals d. This result proves the
importance of the choice of an appropriate problem modeling when applying
randomized search heuristics.

7 Maximum Matchings

The maximum matching problem is a classical optimization problem. In order to
obtain a polynomial-time algorithm one needs the non-trivial idea of augmenting
paths. This raises the question what can be achieved by randomized search
heuristics that do not employ the idea of augmenting paths. Such a study can
give insight how an undirected search can find a goal.

The problem instance of a maximum matching problem is described by an
undirected graph G = (V, E). A candidate solution is some edge set £’ C E.
The search space equals {0, 1} for graphs with m edges and each bit position

&~ P &~ P — &~ P — & — -k
\\x// \\X// \\x// N4 \\x//
\/ \/< >\/< \/<)\/<
hy & %50 »—® 0 ®» - - &= » - -« GV
. < Y < Y.< Yo <
RN (72BN [N [N [N
—€ - —o—¢ - —»— ¢ - —»— € - —»—€¢-——9»—o
——
Knn

Fig. 1. The graph Gj ¢ and an augmenting path.

describes whether the corresponding edge is chosen. Finally, fq(E') = |E'|, if
the edges of E’ are a G-matching, and fo(E’) = 0 otherwise. A search heuris-
tic can start with the empty matching. We investigate three randomized search
heuristics. Randomized local search RLS flips a coin in order to decide whether
it flips one or two bits uniformly at random. It is obvious that an RLS flipping
only one bit per step can get stuck in local optima. Flipping two bits in a step,
an augmenting path can be shortened by two edges within one step. If the aug-
menting path has length 1, the matching can be enlarged by flipping the edge on
this path. The mutation operator EA flips each bit independently with probabil-
ity 1/m. This allows to flip all bits of an augmenting path simultaneously. The
analysis of EA is much more difficult than the analysis of RLS since more global
changes are possible. Finally, SA is some standard form of simulated annealing
whose details are not described here (see Sasaki and Hajek (1988)).

Practitioners do not ask for optimal solutions, they are satisfied with (1+¢)-
optimal solutions, in particular, if they can choose the accuracy parameter € > 0.
It is sufficient to find a (1+ ¢)-optimal solution in expected polynomial time and
to obtain a probability of 3/4 of finding a (14 ¢)-optimal solution within a poly-
nomial number of steps. Algorithms with the second property are called PRAS
(polynomial-time randomized approximation scheme). Giel and Wegener (2003)
have shown that RLS and EA have the desired properties and the expected run
time is bounded by O(mQ[l/E]). This question has not been investigated for SA.
The observation is that small matchings imply the existence of short augmenting
paths. For RLS the probability of a sequence of steps shortening a path to an
augmenting edge is estimated. For EA it is sufficient to estimate the probability
of flipping exactly all the edges of a short augmenting path. These results are
easy to prove and show that randomized search heuristics perform quite well for
all graphs.

The run time grows exponentially with 1/¢. This is necessary as the following
example shows (see Figure 1). The graph G, ¢ has h- (¢ + 1) nodes arranged as
h x (¢ 4+ 1)-grid. All “horizontal” edges exist. Moreover, the columns 2 and
2i + 1 are connected by all possible edges. The graph has a unique perfect
matching consisting of all edges ((¢,25 — 1), (¢,25)). Figure 1 shows an almost
perfect matching (solid edges). In such a situation there is a unique augmenting

path which goes from left to right perhaps changing the row, in our example
(2,5),(2,6),(2,7),(2,8),(1,9), (1,10). The crucial observation is that the free
node (2,5) (similarly for (1,10)) is connected to h + 1 free edges whose other
endpoints are connected to a unique matching edge each. There are h + 1 2-bit-
flips changing the augmenting path at (2,5), h of them increase the length of the
augmenting path and only one decreases the length. If h > 2, this is an unfair
game and we may conjecture that Gy ¢, h > 2, is difficult for randomized search
heuristics.

This is indeed the case. Sasaki and Hajek (1988) have proved for SA that
the expected optimization time grows exponentially if h = £. Giel and Wegener
(2003) have proved a bound of 222(0) on the expected optimization time for each
h > 2 and RLS and EA. The proof for RLS follows the ideas discussed above.
One has to be careful since the arguments do not hold if an endpoint of the
augmenting path is in the first or last column. Moreover, we have to control which
matchings are created during the search process. Many of the methods discussed
in Section 3 are applied, namely typical runs analyzed with appropriate potential
functions (length of the shortest augmenting path), drift analysis, gambler’s ruin
problem, and Chernoff bounds. The analysis of EA is even more difficult. It is
likely that there are some steps where more than two bits flip and the resulting
bit string describes a matching of the same size. Such a step may change the
augmenting paths significantly. Hence, a quite simple, bipartite graph where the
degree of each node is bounded above by 3 is a difficult problem instance for
typical search heuristics.

Our arguments do not hold in the case h = 1, i.e., in the case that the graph
is a path of odd length. In this case, RLS and EA find the perfect matching
in an expected number of O(m*) steps (Giel and Wegener (2003)). One may
wonder why the heuristics are not more efficient. Consider the situation of one
augmenting path of length @(¢) = ©O(m). Only four different 2-bit-flips are
accepted (two at each endpoint of the augmenting path). Hence, on the average
only one out of ©(m?) steps changes the situation. The length of the augmenting
path has to be decreased by ©(m). The “inverse” of Chernoff’s bound (see
Section 3) implies that we need on the average ©(m?) essential steps. The reason
is that we cannot decrease the length of the augmenting path deterministically.
We play a coin tossing game and have to wait until we have won ©(m) euros.
We cannot lose too much since the length of the augmenting path is bounded
above by m.

The considerations show that randomized search heuristics “work” at free
nodes v. The pairs ((v,w), (w,u)) of a free and a matching edge cannot be
distinguished by black-box heuristics with small space bounds. Some of them
will decrease and some of them will increase the length of augmenting paths.
If this game is fair “on the average”, we can hope to find a better matching in
expected polynomial time. Which graphs are fair in this imprecise sense?

There is a new result of Giel and Wegener showing that RLS finds an optimal
matching in trees with n nodes in an expected number of O(n%) steps. One can
construct situations which look quite unfair. Then nodes have a large degree.

Trees with many nodes of large degree have a small diameter and/or many
leaves. A leaf, however, is unfair but in favor of RLS. If a leaf is free, a good
2-bit-flip at this free node can only decrease the length of each augmenting path
containing the leaf. The analysis shows that the bad unfair inner nodes and the
good unfair leaves together make the game fair or even unfair in favor of the
algorithm.

8 Population-Based Search Heuristics and Search with
Crossover

We have seen that randomized local search RLS is often efficient. RLS is not
able to escape from local optima. This can be achieved with the same search
operator if we accept sometimes worsenings. This idea leads to the Metropolis
algorithm or simulated annealing. Another idea is the mutation operator EA
from evolutionary algorithms. It can perform non-local changes but it prefers
local and almost local changes. In any case, these algorithms work with a space
restriction of 1.

One of the main ideas of evolutionary algorithms is to work with more search
points in the storage, typically called population-based search. Such a population
can help only if the algorithm maintains some diversity in the population, i.e.,
it contains search points which are not close together. It is not necessary to
define these notions rigorously here. It should be obvious nevertheless that it is
more difficult to analyze population-based search heuristics (with the exception
of multi-start variants of simple heuristics).

Moreover, the crossover operator needs a population. We remember that
crossover creates a new search point z from two search points x and y. In the
case of S,, = {0,1}", one-point crossover chooses ¢ € {1,...,n — 1} uniformly
at random and z = (1,...,%i,Yit1,.-.,Yn). Uniform crossover decides with
independent coin tosses whether z; = x; or z; = y;. Evolutionary algorithms
where crossover plays an important role are called genetic algorithms. There
is only a small number of papers with a rigorous analysis of population-based
evolutionary algorithms and, in particular, genetic algorithms.

The difficulties can be described by the following example. Assume a popula-
tion consisting of n search points all having k& ones where k > n/2. The optimal
search point consists of ones only, all search points with k£ ones are of equal
fitness, and all other search points are much worse. If k is not very close to n, it
is quite unlikely to create 1™ with mutation. A genetic algorithm will sometimes
choose one search point for mutation and sometimes choose two search points
x and y for uniform crossover and the resulting search point z is mutated to
obtain the new search point z*. Uniform crossover can create 1" only if there is
no position ¢ where x; = y; = 0. Hence, the diversity in the population should
be large. Mutation creates a new search point close to the given one. If both stay
in the population, this can decrease the diversity. Uniform crossover creates a
search point z between x and y. This implies that the search operators do not
support the creation of a large diversity. Crossover is even useless if all search

points of the population are identical. In the case of a very small diversity, mu-
tation tends to increase the diversity. The evolution of the population and its
diversity is a difficult stochastic process. It cannot be analyzed completely with
the known methods (including rapidly mixing Markoff chains). Jansen and We-
gener (2002) have analyzed this situation. In the case of k = n — ©(logn) they
could prove that a genetic algorithm reaches the goal in expected polynomial
time. This genetic algorithm uses standard parameters with the only exception
that the probability of performing crossover is very small, namely 1/(cnlogn)
for some constant c. This assumption is necessary for the proof that we obtain
a population with quite different search points.

Since many practitioners believe that crossover is essential, theoreticians are
interested in proving this, i.e., in proving that a genetic algorithm is efficient in
situations where all mutation- and population-based algorithms fail. The most
modest aim is to prove such a result for at least one instance of one perhaps even
very artificial problem. No such result was known for a long time. The royal road
functions (see Section 4) were candidates for such a result. We have seen that
randomized local search and simple evolutionary algorithms solve these problems
in expected time O((n/d) - log(n/d + 1) - 2%) and the black-box complexity of
these problem is £2(2%) (see Section 9). Hence, there can be no superpolynomial
trade-off for these functions. The first superpolynomial trade-off has been proved
by Jansen and Wegener (2002, the conference version has been published 1999)
based on the results discussed above. Later, Jansen and Wegener (2001a) have
designed artificial functions and have proved exponential trade-offs for both types
of crossover.

9 Results on the Black-Box Complexity of Specific
Problems

We have seen that all typical randomized search heuristics work in the black-
box scenario and they indeed work with a small storage. Droste, Jansen, and
Wegener (2003) have proved several lower bounds on the black-box complex-
ity of specific problems. The lower-bound proofs apply Yao’s minimax principle
(Yao (1977)). Yao considers the zero-sum game between Alice choosing a prob-
lem instance and Bob choosing an algorithm (a decision tree). Bob has to pay for
each query asked by his decision tree when confronted with the problem instance
chosen by Alice. Both players can use randomized strategies. If the number of
problem instances and the number of decision trees are finite, lower bounds on
the black-box complexity can be obtained by proving lower bounds for determin-
istic algorithms for randomly chosen problem instances. We are free to choose
the probability distribution on the problem instances.

The following application of this technique is trivial. Let .S,, be the search
space and let f,, a € S, be the problem instance where f,(a) = 1 and f,(b) =0
for b # a. The aim is maximization. We choose the uniform distribution on all
fa, a € Sy, A deterministic decision tree is essentially a decision list. If a query
leads to the answer 1, the search is stopped successfully. Hence, the expected

depth is always at least (|S,| + 1)/2 and this bound can be achieved if we query
all a € S,, in random order.

This example seems to be too artificial to have applications. The shortest-
paths problem (see Section 6) with a single objective contains this problem
where the search space consists of all trees rooted at s. Hence, we know that
this problem is hard in black-box optimization. In the case of the maximization
of monotone polynomials we have the subproblem of the maximization of all
2124 where z; € {x;,1 — x;}. The bits at the positions d + 1,...,n have no
influence on the answers to queries. Hence, we get the lower bound (2% + 1)/2
for the maximization of polynomials (or monomials) of degree d. This bound is
not far from the upper bound shown in Section 4.

For several problems, we need lower bounds which hold only in a space-
restricted scenario since there are small upper bounds in the unrestricted sce-
nario:

O(n) for sorting and the distance measure INV,
— O(nlogn) for sorting and the distance measures HAM and RUN,
O(n) for shortest paths as multi-objective optimization problem (a simula-
tion of Dijkstra’s algorithm),
— O(m?) for the maximum matching problem.

Finally, we discuss a non-trivial lower bound in black-box optimization. A
function is unimodal on {0,1}" if each non-optimal search point has a better
Hamming neighbor. It is easy to prove that RLS and EA can optimize unimodal
functions with at most b different function values in an expected number of
O(nb) steps. This bound is close to optimal. A lower bound of £2(b/n®) has
been proved by Droste, Jansen, and Wegener (2003) if (14 §)n < b = 2°(™ (an
exponential lower bound for deterministic algorithms has been proven earlier by
Llewellyn, Tovey, and Trick (1989)). Here the idea is to consider the following
stochastic process to create a unimodal function. Set pg = 1™, let p;+1 be a
random Hamming neighbor of p;, 1 < ¢ < b — n. Then delete the circles on
Do, P1, - - - to obtain a simple path qg, q1, Finally, let f(¢;) = n+i and f(a) =
ay + --- + a, for all a outside the simple path. Then it can be shown that
a randomized search heuristic cannot do essentially better than to follow the
path.

Conclusion

Randomized search heuristics find many applications but the theory of these
heuristics is not well developed. The black-box scenario allows the proof of lower
bounds for all randomized search heuristics — without complexity theoretical as-
sumption. The reason is that the scenario restricts the information about the
problem instance. Moreover, methods to analyze typical heuristics on optimiza-
tion problems have been presented. Altogether, the idea of a theory of random-
ized search heuristics developed as well as the theory of classical algorithms is
still a vision but steps to approach this vision have been described.

References

1. Dietzfelbinger, M., Naudts, B., van Hoyweghen, C., and Wegener, 1. (2002). The
analysis of a recombinative hill-climber on H-IFF. Submitted for publication in IEEE
Trans. on Evolutionary Computation.

2. Droste, S., Jansen, T., and Wegener, I. (2003). Upper and lower bounds for ran-
domized search heuristics in black-box optimization. Tech. Rep. Univ. Dortmund.
3. Droste, S., Jansen, T., and Wegener, 1. (2002). On the analysis of the (1+1) evolu-

tionary algorithm. Theoretical Computer Science 276, 51-81.

4. Giel, O. and Wegener, 1. (2003). Evolutionary algorithms and the maximum match-
ing problem. Proc. of 20th Symp. on Theoretical Aspects of Computer Science
(STACS), LNCS 2607, 415-426.

5. Glover, F. and Laguna, M. (1993). Tabu search. In C.R. Reeves (Ed.): Modern
Heuristic Techniques for Combinatorial Problems, 70-150, Blackwell, Oxford.

6. Hajek, B. (1982). Hitting-time and occupation-time bounds implied by drift analysis
with applications. Advances in Applied Probability 14, 502-525.

7. He, J. and Yao, X. (2001). Drift analysis and average time complexity of evolutionary
algorithms. Artificial Intelligence 127, 57-85.

8. Jansen, T. and Wegener, I. (2001a). Real royal road functions — where crossover
provably is essential. Proc. of 3rd Genetic and Evolutionary Computation Conf.
(GECCO), 375-382.

9. Jansen, T. and Wegener, 1. (2001b). Evolutionary algorithms — how to cope with
plateaus of constant fitness and when to reject strings of the same fitness. IEEE
Trans. on Evolutionary Computation 5, 589-599.

10. Jansen, T. and Wegener, I. (2002). The analysis of evolutionary algorithms — a
proof that crossover really can help. Algorithmica 34, 47—66.

11. Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. (1983). Optimization by simulated
annealing. Science 220, 671-680.

12. Llewellyn, D.C., Tovey, C., and Trick, M. (1989). Local optimization on graphs.
Discrete Applied Mathematics 23, 157-178.

13. Lovdsz, L., Naor, M., Newman, 1., and Wigderson, A. (1991). Search problems in
the decision tree model. Proc. of 32nd IEEE Symp. on Foundations of Computer
Science (FOCS), 576-585.

14. Papadimitriou, C.H., Schaffer, A.A., and Yannakakis, M. (1990). On the complexity
of local search. Proc. of 22nd ACM Symp. on Theory of Computing (STOC), 438—445.

15. Rabani, Y., Rabinovich, Y., and Sinclair, A. (1998). A computational view of
population genetics. Random Structures and Algorithms 12, 314-330.

16. Ranade, A.G. (1991). How to emulate shared memory. Journal of Computer and
System Sciences 42, 307-326.

17. Sasaki, G. and Hajek, B. (1988). The time complexity of maximum matching by
simulated annealing. Journal of the ACM 35, 387-403, 1988.

18. Scharnow, J., Tinnefeld, K., and Wegener, I. (2002). Fitness landscapes based on
sorting and shortest paths problems. Proc. of 7th Conf. on Parallel Problem Solving
from Nature (PPSN-VII), LNCS 2439, 54-63.

19. Wegener, 1. (2001). Theoretical aspects of evolutionary algorithms. Proc. of 28th
Int. Colloquium on Automata, Languages and Programming (ICALP), LNCS 2076,
64-78.

20. Wegener, I. and Witt, C. (2003). On the optimization of monotone polynomials by
simple randomized search heuristics. Combinatorics, Probability and Computing, to
appear.

21. Yao, A.C. (1977). Probabilistic computations: Towards a unified measure of com-
plexity. Proc. of 17th IEEE Symp. on Foundations of Computer Science (FOCS),
222-227.

