
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

On the Utility of Populations

Thomas Jansen

No. CI-102/00

Technical Report ISSN 1433-3325 November 2000
Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/XI
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence”, at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

On the Utility of Populations

Thomas Jansen∗

FB Informatik, LS 2, Univ. Dortmund, 44221 Dortmund, Germany
jansen@ls2.cs.uni-dortmund.de

Abstract

Evolutionary algorithms (EAs) are population-based search heuristics often used
for function optimization. Typically they use selection, mutation, and crossover as
search operators. On many test functions EAs are outperformed by simple hill-
climbers. Therefore, it is investigated whether the use of a population and crossover
is at all advantageous. In this paper it is rigorously proven that the use of a pop-
ulation instead of just a single individuum can be an advantage of its own even
without making use of crossover. This establishes the advantage of EAs compared
to (random) hill-climbers on appropriate objective functions.

1 Introduction

Evolutionary algorithms (EAs) are a broad class of different randomized search heuristics
all stemming from natural evolution. The probably best-known examples are genetic
algorithms (GAs) (Goldberg 1989), evolution strategies (Schwefel 1995), and evolutionary
programming (Fogel 1995). Typically, a population of points in the search space is evolved
in generations using selection, mutation, and crossover. However, it is reported (Juels
and Wattenberg 1995) that simple random mutation hill-climbers are able to outperform
much more sophisticated EAs. This raises the question for what problems EAs clearly
outperform such hill-climbers. We concentrate on the optimization of discrete, static
objective functions, here. For continuous search spaces, especially for the sphere functions,
some results are known. Beyer (1993, 1995a, 1995b) shows that as far as local performance
on the sphere function is concerned the use of populations cannot help. In the case of
a noisy environment things are different. Arnold and Beyer (2000) argue how the use
of populations can be helpful in a noisy environment and increase the efficiency of the
search. Jansen and Wegener (1999) prove that a genetic algorithm can by far outperform
a random mutation hill-climber. This result relies heavily on the use of uniform crossover.
Therefore, it remains open whether the use of a population alone, even without crossover,
can be advantageous. Obviously, if one takes only the number of generations needed
before a global optimum is found into account, it is trivial to prove that this is the case.
But this is in some sense cheating: at least using a non-parallel computing environment
the number of generations alone is no appropriate measure for the computational effort.
This is due to the fact that in each generation typically the whole population is used
to guide the search. Therefore, the size of the population has to be taken into account,
too. We apply as performance measure the number of function evaluations until a global

∗supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Collaborative Research
Center “Computational Intelligence” (SFB 531)

1

optimum is found for the first time. Thus, we assume that the computational effort of
the whole EA is proportional to the number of function evaluations. This holds at least
for typical EAs.

We compare the performance of a certain genetic algorithm that we will define precisely
in the next section with the so-called (1+1) EA. This simple evolutionary algorithm
employs a “population” of size 1, bit-wise mutations and the plus-selection, known from
evolution strategies. Therefore, it can be taken to be a kind of random mutation hill-
climber. On typical functions, the (1+1) EA outperforms other well-known hill-climbers
as steepest ascent oder next ascent hill-climber (Mitchell 1995). This holds especially for
the example function considered here.

In the next section we give formal definitions of the (1+1) EA and the genetic algorithm
considered. We try to get an intuitive understanding of circumstances when the use of
a population can be advantageous. Then we define a class of example functions that
capture these circumstances. In Section 3 we derive the expected run time of the (1 + 1)
EA asymptotically exact and give the expected run time for the GA in a simple special
case. We prove these results in simple, understandable way. In the following section,
Section 4 we generalize the results for the GA and can thereby prove an enormous gap
between the expected run times. Finally, in Section 5 we draw some conclusions and
discuss what is still open.

2 Definitions

The (1+1) EA is perhaps the most simple EA, using a population size of just 1 and
mutation, only. The selection mechanism used is the plus-selection known from evolution
strategies. This simple algorithm is subject of intense research, see Mühlenbein (1992),
Rudolph (1997), Droste, Jansen, and Wegener (1998), Garnier, Kallel, and Schoenauer
(1999) for example. For the sake of clarity we give a formal definition. We assume that
we want to maximize some objective function f : {0, 1}n → R.

Algorithm 1 (The (1 + 1) EA).
1. Choose x ∈ {0, 1}n uniformly at random.

2. Create y by flipping each bit in x independently with probability 1/n.
3. If f(y) ∨ f(x), then set x := y.
4. Continue at 2.

Since the (1+1) EA uses a kind of degenerated population of size 1 and accepts only
strings with at least equal function value it can be regarded as a kind of random mutation
hill-climber. Note, however, that since in each step it generates any x′ ∈ {0, 1}n as child
y with positive probability, it cannot get stuck in any local optima. This distinguishes
the (1+1) EA from other hill-climbing algorithms.

We want to compare the efficiency of the (1+1) EA with that of an evolutionary
algorithm that uses a real population but no crossover. We want to prove that such an
EA can indeed be superior to the simple (1+1) EA. On the one hand, we would like
to have an EA for this purpose that is a kind of “standard EA” except for neglecting

2

crossover. On the other hand, it is immediately obvious that advantages due to the use of
a population can only occur if the population does not converge too rapidly. Therefore,
we would like to apply some mechanism that helps us to maintain at least some minimal
degree of diversity. There are numerous more or less complicated mechanisms to do so,
see Bäck, Fogel, and Michalewicz (1997) for an overview. A very simple mechanism is
avoidance of duplicates as suggested and investigated by Ronald (1998). An even simpler
and computationally less expensive mechanism is avoidance of replications as used by
Jansen and Wegener (1999). Avoidance of replications means that it is ensured, that
every child is subject to a mutation flipping at least 1 bit or to crossover. We will see that
this weak and computationally cheap mechanism is sufficient to maintain an acceptable
degree of diversity.

The EA we use is an elitist steady-state GA, using fitness-proportional selection for re-
production, bit-wise mutations with probability 1/n (just as the (1+1) EA), no crossover,
reverse proportional selection for deletion, and deletion after insertion. We use population
size N and leave the concrete choice of N open for the moment. Again, for the sake of
clarity, we give a formal definition.

Algorithm 2 (The Genetic Algorithm).
1. For i := 1 To N Do Choose xi ∈ {0, 1}n uniformly at random.

2. Repeat

3. Choose y ∈ {x1, x2, . . . , xN} such that Prob (y = xi) = f(xi)/
N∑

j=1

f(xj).

4. Create xN+1 by flipping each bit in y independently

with probability 1/n.
5. Until xN+1 6= y.
6. Sort {x1, x2, . . . , xN+1} such that f(x1) ∨ f(x2) ∨ · · · ∨ f(xN+1) holds.

7. Choose z ∈ {x2, x3, . . . , xN+1} such that

Prob (z = xi) = (f(x1) + f(xN+1) − f(xi)) /
N+1∑
j=2

(f(x1) + f(xN+1) − f(xj)).

8. Remove z from {x2, x3, . . . , xN1}.
9. Continue at 2.

Our intuitive idea for the origin of an advantage for the GA compared to the (1+1)
EA is the following (Rowe 2000). Assume we have a function that mainly consists of an
easy to follow path to a local optimum that has second best function value. Then a direct
mutation to a global optimum is needed. The expected waiting time for such a mutation
can be quite large depending on the Hamming distance between the local and a global
optimum. Since the GA uses a population and the relative weak proportional selection,
it has a good chance to “diffuse” the population around the local optimum. Therefore,
some members of the population have a smaller Hamming distance to a global optimum
what can lead to a quicker finding of this global optimum. We now formally define a class
of objective functions with such properties and prove for some members of this class that
they have the desired properties such that the (1+1) EA is outperformed by the GA. The
function class is a modified, in the first place scaled version of Jumpk as used by Jansen
and Wegener (1999) to exemplify the utility of uniform crossover.

3

Definition 3. The function SJumpk,s : {0, 1}n → R (short for ScaledJump) is defined
for any n ∈ N, s ∈ N \ { 1},k ∈ {1, 2, . . . , n } by

SJumpk,s(x) :=

{
s‖x‖1 if (‖x‖1 � n − k) ∨ (‖x‖1 = n)

sn−k + n − k − ‖ x‖1 otherwise,

for each x ∈ {0, 1}n where ‖x‖1 denotes the number of ones in x.

3 First Results

The results for the (1+1) EA follow more or less directly from the investigations of the
(1+1) EA on Jumpk by Jansen and Wegener (1999). For the sake of completeness we
present full proofs here, too.

Theorem 4. The expected run time of the (1 + 1) EA on SJumpk,s : {0, 1}n → R for
k ∈ {2, 3, . . . , n } and s ∈ N \ { 1} is Θ

(
nk
)
.

Proof. We begin with an upper bound on the expected run time. Consider levels of strings

li := {x ∈ {0, 1}n | ‖ x‖1 = i}

for i ∈ {0, 1, . . . , n }. Note, that for all i and all x, y ∈ li we have SJumpk,s(x) =
SJumpk,s(y) since SJumpk,s is a symmetric function. Furthermore, for all i 6= j and all
x ∈ li and all y ∈ lj we have SJumpk,s(x) 6= SJumpk,s(y). Thus, once the (1 + 1) EA
leaves some level li (that is we have x ∈ li, y /∈ li and SJumpk,s(x) > SJumpk,2(y)) no
string from li can ever become current string. Let pi denote the probability that in one
generation the (1+1) EA accepts a string within level lj with j 6= i as new current string
given that the current string belongs to li. Clearly, then

n−1∑

i=0

1

pi

is an upper bound on the expected run time. For i < n − k it is sufficient to mutate
exactly one of the n − i bits with value 0. For i > n − k it is sufficient to mutate exactly
one of the i bits with value 1. This yields pi ∨ min {i, n − i} 1s

n
(1− 1/n)n−1 for i 6= n− k.

For i = n− k we have pi = 1 /nk(1− 1/n)n−k, since the only way to increase the function
value is to mutate exactly the k bits with value 0 leading to the unique global optimum.
Thus, we have

(
1 − 1

n

)1−n

·






∑

0�i�n/2

i6=n−k

n

n − i


 + nk


 = O

(
nk
)

as upper bound on the expected run time.

4

Now, we prove a lower bound on the expected run time. We simplify the analysis a
bit by considering the expected number of steps until we have x ∈ ln−1 ∪ ln for the first
time instead of the expected run time. After random initialization this is the case with
probability 1 − (n + 1) /2n.

Assume we have x ∈
⋃

n−1<i‖n−k

li. Then, we have SJumpk,s(x) > SJumpk,s(y) for

all y ∈ ln−1. Thus, after some steps of the (1 + 1) EA we have x ∈ ln−k ∪ ln. The
probability to have y ∈ ln is bounded above by 1/n2. We know from the proof of the
upper bound that the expected number of steps needed to reach x ∈ ln−k is bounded
above by O (n log n), given that we do not encounter y ∈ ln. By Markov’s inequality with
probability 1 − 1/ log n we reach x ∈ ln−k within O

(
n log2 n

)
steps. The probability to

reach y ∈ ln within O
(
n log2 n

)
steps is bounded above by O

((
log2 n

)
/n
)
. Thus, with

probability

(
1 − 1

log n

)
·
(

1 − O

(
log2 n

n

))
= 1 − O

(
1

log n

)

we reach some x ∈ ln−k in this case.
Now, assume that we have x ∈

⋃
0‖i<n−k

. If we encounter some y ∈ lj with n − k <

j < n − 1, we get this y as new current string x. Then, we reach some x ∈ ln−k with
probability 1 − O (1 /log n) as we just saw above. The probability to reach y ∈ ln in one
step is bounded above by 1/nn−i < 1/nk. Thus, we concentrate on the probability to
encounter y ∈ ln−1. In each generation this probability is upper bounded by

(
n − i

1

)
1

nn−i−1
+

(
i

1

)
1

nn−i+1
= O

(
n − i

nn−i−1

)
.

Note that n − i − 1 ∨ k holds. If we have i � n − 4, we have

O

(
n − i

nn−i−1

)
= O

(
1

nn−i−2

)
= O

(
1

n2

)

as upper bound. Otherwise we have

O

(
n − i

nn−i−1

)
= O

(
1

nn−i−1

)
= O

(
1

nk

)

as upper bound. Therefore, the probability to encounter some y ∈ ln−1 within O
(
n log2 n

)

steps is bounded above by O
((

log2 n
)
/n
)

in any case.
We conclude that with probability 1 − O(1/ log n) some x ∈ ln−k becomes current

string of the (1 + 1) EA. If this happens, only a direct mutation to y ∈ ln leads to a
number current string x. Such a mutation occurs with probability O

(
1/nk

)
Thus, we

have Ω
(
nk
)

as lower bound on the expected run time.

Obviously, the simple (1+1) EA is able to optimize SJumpk,s quite efficiently, at least
for small k. Note, that the size of s does not matter for this algorithm. This is different for

5

the GA, which uses a fitness-sensitive selection mechanism, namely proportional selection.
Since the (1+1) EA is already quite fast on SJumpk,s for small values of k, it is astonishing
that the GA can outperform it even for k = 2. We concentrate on the special case
SJump2,n2, first. This is useful, since in this simpler case it is easier to develop the
methods and insights that will yield the result in more general cases, too. Here, however,
no too big advantage is possible. But we will prove a smaller asymptotic bound on the
expected run time given an appropriate choice of the population size.

Theorem 5. The expected run time of Algorithm 2 with population size N = b
∧

nc on
the function SJump2,n2 : {0, 1}n → R is bounded above by O

(
n3/2

)
.

Before we prove the result on the GA we consider two events that are of special
interest and both have to do with selection. First, we are interested in a lower bound on
the probability to select some member of the population with a certain function value as
parent.

Lemma 6. Consider Algorithm 2 on the function SJumpk,s. Assume that x is a member
of the current population. Let f1 and f2 denote the function value of the current best and
current second best members of the population. Consider the selection in line 3 of the
algorithm.

a) The probability to select some member y of the current population with

SJumpk,s(y) = SJumpk,s(x)

is bounded below by SJumpk,s(x)/(Nf1).

b) The probability to select some member y of the current population with

SJumpk,s(y) = f1

is bounded below by 1 − (f2N)/f1.

Proof. a) Let S denote the sum of the function values of the current population, i. e.

S :=

N∑

i=1

SJumpk,s(xi).

Let r denote the number of members of the current population with function value
SJumpk,s(x), i. e.

r := |{xi | (1 � i � N) ∧ (SJumpk,s(xi) = SJumpk,s(x))}| .

Since we are interested in lower bounds, we may assume that we have r = 1. This
can be seen as follows. The probability that we select an individuum with function
value SJumpk,s(x) equals

rSJumpk,s(x)

S
.

6

If we remove some string y with SJumpk,s(y) = SJumpk,s(x) from the popula-
tion and replace it with some string z with SJumpk,s(z) 6= SJumpk,s(x), then the
probability to select a string with function value SJumpk,s(x) equals

(r − 1)SJumpk,s(x)

S − SJumpk,s(x) + SJumpk,s(z)
.

We have

rSJumpk,s(x)

S
− (r − 1)SJumpk,s(x)

S − SJumpk,s(x) + SJumpk,s(z)

=
SJumpk,s(x) · (S − rSJumpk,s(x) + rSJumpk,s(z))

S (S − SJumpk,s(x) + SJumpk,s(z))
∨ 0

since obviously S ∨ rSJumpk,s(x) holds and we have SJumpk,s(a) ∨ 0 for all
a ∈ { 0,1}n. Therefore, it follows via induction that we can assume r = 1 without
loss of generality.

Now, we see that the probability to select some member of the population with
function value SJumpk,s(x) is bounded below by

SJumpk,s(x)

SJumpk,s(x) + (N− 1)f1

∨ SJumpk,s(x)/f1

N
=

SJumpk,s(x)

Nf1

as claimed.

b) As for a) we assume that there is exactly one string x with SJumpk,s(x) = f1 in the
current population. Then, we have S � f1 + (N− 1)f2 so that we have

f1

f1 + (N− 1)f2

∨ f1/f2

f1/f2 + N
= 1 − 1

f1/(Nf2) + 1
∨ 1 − f2N

f1

as a lower bound as claimed.

The other aspect of selection is selection for deletion in line 7. Here, we are interested
in an upper bound on the probability to select some member of the extended population
with a certain function value for deletion.

Lemma 7. Consider Algorithm 2 on the function SJumpk,s. We make the following
assumptions about the current population:

• The population contains N + 1 strings.

• The current best member of the population contains exactly n − k ones.

• There is exactly one member x of the population which contains exactly j ones,
where we have n − k < j < n .

7

Consider the selection in line 7 of the algorithm.

a) The probability to select x is bounded above by 2/N .

b) If there is at least one member of the population with less than n− k ones, then the
probability to select x is bounded above by 1/(s + N).

Proof. a) The probability to select x for deletion is obviously maximal, if on the one
hand the number of ones in x, j, equals n− 1, since then SJumpk,s(x) is as small as
possible, and on the other hand the sum of all function values is as large as possible.
Therefore, we can concentrate on the case that x contains exactly n − 1 ones and
all other members of the population contain exactly n − k ones. In this case the
probability to select x equals

sn−k

(N − 1)sn−k + sn−k
=

1

N − (N − 1)(k − 1)/sn−k
� 2

N

as claimed.

b) The population contains x, at least one string with less then n−k ones and at least
one string with n−k ones. The probability to select x is maximal, if there is exactly
one string with n− k − 1 ones in the population, if all other strings contain exactly
n − k ones and, as above, x contains exactly j = n − 1 ones. Therefore,

sn−k−1 + k − 1

sn−k−1 + k − 1 + sn−k + (N− 2)sn−k−1
=

1 + (k − 1)/sn−k−1

s + N − 1 + (k − 1)/sn−k−1
� 1

s + N

is an upper bound on the probability to select x.

Proof of Theorem 5. We use a population size of N = b
∧

nc and assume for the sake of
notational simplicity that we have N = b

∧
nc =

∧
n. The generalization to the other cases

is trivial. We describe a kind of typical run that ends when the unique global optimum
becomes member of the current population for the first time. We divide that run into two
disjoint phases and estimate the expected length of each phase. The first phase begins
after random initialization and ends when a string with n − 2 ones or the unique global
optimum becomes member of the current population for the first time. The second phase
begins after the first phase and ends when the unique global optimum becomes member
of the current population for the first time. Note, that in the second phase we always
have at least one string with n − 2 ones in the population. This is due to the elitism
employed in the GA.

The expected length of the first phase is O (n log n). This is easy to see. We estimate
the probability to select the current best member of the population as parent in line 3.
Either the whole population consists of N strings that all have current best function

8

value, or we have f2/f1 = O (1 /n2). In the first case we obviously select such a parent
with probability 1. In the latter case, we apply Lemma 6 b). Thus, we have

1 − O

(
N

n2

)
= 1 − O

(
1

n3/2

)

in any case as a lower bound for selecting the current best member of the current popula-
tion for reproduction. Due to the elitistic replacement strategy the current best member
of the population cannot be replaced. Therefore, we can pessimistically ignore steps where
some other member of the population is chosen as parent. Now, consider the case that
the chosen parent is the current best member of the population and contains i bits with
value 1. Then, we have a probability of at least (n − i)/n(1 − 1/n)n−1 to create a child
y with larger function value. Thus, the expected waiting time for improving the current
best member of the population is bounded above by

n3/2

n3/2 − 1
· en

n − i
= O

(
n

n − i

)

in this situation. We sum up these expected waiting times and get

n−1∑

i=0

O

(
n

n − i

)
= O (n log n)

as upper bound on the expected length of the first phase. Note, that these considerations
do not depend on the initial population.

In the second phase we are especially interested in three special events. First, we
investigate the probability that we introduce a string with exactly n−1 ones in the popu-
lation when there is no such string present in one generation. Second, we are interested in
the probability to remove the only occurrence of a string with exactly n− 1 ones without
introducing the global optimum instead in one generation. Finally, we investigate the
probability to create the global optimum in one generation given that at least one string
with exactly n − 1 ones is present in the current population.

We consider the current population and distinguish three different “states” it can be
in. Note, that each of these three states does not represent one special population but a
large number of different populations that all have some property in common. If no string
in the current population has more than n − 2 ones we say the GA is in state A. If the
string with the maximal number of ones in the current population contains n − 1 ones,
we say the GA is in state B. Finally, if the global optimum is member of the current
population we speak of state C. We want to derive an upper bound on the expected
number of generations the GA needs to “reach state C”, i. e. to have a population that
satisfies the defining condition of state C.

Let us consider a Markov chain with three states S0, S1, and S2. We are interested in
the first hitting time of S0 starting in S2. For X, Y ∈ {S0, S1, S2} we denote by pX,Y the
transition probability for a state transition from X to Y .

We assume pessimistically that we have pS2,S0 = 0. This can obviously only enlarge
the first hitting time of S0. Since we are interested in the first hitting time of S0, only,

9

we can assume pS0,S0 = 1, so pS0,S2 = pS0,S1 = 0 follows. Due to our assumptions we have
pS2,S1 + pS2,S2 = 1, so we can replace pS2,S2 by 1− pS2,S1 . In the same way we can replace
pS1,S1 by 1 − pS1,S2 − pS1,S0. The resulting Markov chain can be visualized as follows.

S2 S1 S0

pS1,S0pS2,S1

1 − pS2,S1 11 − pS1,S2 − pS1,S0

pS1,S2

Let the random number of transitions starting in S2 leading to S0 be denoted by TS2 .
Let the random number of transitions starting in S1 leading to S0 be denoted by TS1 .
Then we have

E (TS2) = (1 − pS2,S1) (1 + E (TS2)) + pS2,S1 (1 + E (TS1))

which leads to

E (TS2) =
1

pS2,S1

+ E (TS1) .

For E (TS1) we have

E (TS1) = (1 − pS1,S0 − pS1,S2) (1 + E (TS1)) + pS1,S0 + pS1,S2 (1 + E (TS2))

leading to

E (TS1) =
1

pS1,S0

+
pS1,S2

pS2,S1 · pS1,S0

.

We look for an upper bound on the expected absorption time and thus need an upper
bound on pS1,S2 and lower bounds on pS2,S1 and pS1,S0 . In order to obtain meaningful re-
sults, we connect the described Markov chain to the genetic algorithm we consider. First
of all, the defining conditions of the three different “states” of the GA are obviously not
sufficient to describe unambiguously exactly one population. In fact, there are for each
such “state” a lot of different populations that satisfy the according defining condition.
The probability to reach some population that meets condition B in one generation start-
ing from a population that meets condition A depends on the specific population the GA
starts in. The same holds for all other “transition probabilities.

If we associate A with S2, B with S1, and C with S0 we have the following. If the
minimal number of zeros a member of the current population has equals i, then the
population satisfies a condition that is associated with Si. We choose values for pS2,S1,
pS1,S0, and pS1,S2 in the following way. Let PA denote the set of all populations that
satisfy condition A. Let PB and PC denote the according sets for conditions B and C.
We denote the change from a population P1 to another population P2 in one generation

10

by P1 → P2. We want pS2,S1 to be a lower bound on the probability to come from a
population satisfying condition A to a population satisfying condition B, i. e.

pS2,S1 � min

{ ∑

P2∈PB

Prob (P1 → P2) | P1 ∈ PA

}
.

We want pS1,S0 to be a lower bound on the probability to come from a population satisfying
condition B to a population satisfying condition C, thus we want to have

pS1,S0 � min

{ ∑

P2∈PC

Prob (P1 → P2) | P1 ∈ PB

}
.

Finally, we want pS1,S2 to be an upper bound on the probability to come from a population
satisfying condition B to a population satisfying condition A, that is

pS1,S2 ∨ max

{ ∑

P2∈PA

Prob (P1 → P2) | P1 ∈ PB

}
.

Such lower bounds for pS2,S1 and pS1,S0 are easy to find. To introduce a string with
exactly n − 1 ones into the population can be achieved in the following way. First, one
selects the current best member of the population, which is a string with exactly n − 2
ones. As in the first phase, we either have the the whole population consists of strings
with n−2 ones and have current best function value. In this case we obviously select such
a string with probability 1. Otherwise, we apply Lemma 6 b). We have f1 = f2 = n2(n−2)

or f1 = n2(n−2) and f2 � n2(n−3). Thus, the probability for this event is bounded below by
1− N/n2 in any case. Then exactly one of the two bits with value zero is mutated. This
event has probability (2/n)(1 − 1/n)n−1. Finally, this child is not deleted from the (at
this moment enlarged) population. We apply Lemma 7 a) and have 1 − 2/N as a lower
bound. Therefore, we have

(
1 − 1

n3/2

)
· 1

2en
·
(

1 − 2∧
n

)
= Ω

(
1

n

)

as a lower bound for pS2,S1.
For pS1,S0 we consider the case that a string with n − 1 ones is selected as parent

and the only bit with value 0 is mutated, only. The probability to select such a string is
bounded below by

n2(n−2) − 1

Nn2(n−2)
=

1∧
n
− 1

n2(n−2)+1/2
∨ 1

2
∧

n

due to Lemma 6 a). Thus, we have

1

2
∧

n
· 1

n

(
1 − 1

n

)n−1

= Ω

(
1

n3/2

)

11

as a lower bound on pS1,S0.
Finally, we need an upper bound for pS1,S2. Obviously, a necessary condition for the

event we consider is that the only string with n − 1 ones that is in the population is
selected for deletion. We distinguish two different cases. First, assume that at least one
of the strings in the set {x2, x3, . . . , xN+1} (in line 7 of Algorithm 2) contains less than
n − 2 ones. This can be due to the fact that such a string was already member of the
population or due to the fact that such a child was created. In this case the probability to
select the string with n − 1 ones for deletion is bounded above by 1/n2 due to Lemma 7
b). Thus, in the case that a string with less than n − 2 ones is created by mutation we
have 1/n2 as an upper bound on pS1,S2 .

Now, we consider the second case, where except for the one string x with n−1 ones all
other members of the population contain exactly n−2 ones. First of all, the probability to
select this string x for deletion is bounded above by 2/N due to Lemma 7 a). We consider
two sub-cases with respect to the parent of the newly created child. If the parent is a
string with n − 2 ones, then the probability to create a child with n − 2 ones is bounded
above by 2/n, since at least one of the two bits with value zero has to flip. Otherwise,
either a child with a number of ones that is different from n − 2 is created or we have
the case of a replication that is not allowed due to the definition of Algorithm 2. If, on
the other hand, the parent is the only string with n − 1 ones, it is obviously a necessary
condition that this string is selected for reproduction. The probability of such a selection
is bounded above by

n2(n−2) − 1

Nn2(n−2)
� 1∧

n

due to Lemma 6 a). Therefore, we have

max

{
1

n2
,

2∧
n
· 2

n
,

2∧
n
· 1∧

n

}
=

2

n

as an upper bound on pS1,S2 in any case.
We combine what we have and get

E (TS2) = O
(
n3/2

)

leading to

E (TS1) = O (n) + O
(
n3/2

)
= O

(
n3/2

)

which is also an upper bound on the expected length of the second phase. Together with
the upper bound on the expected length of the first phase we obtain the desired result.

We see, that the GA optimizes SJump2,n2 on average Ω (
∧

n)-times faster than the
(1+1) EA. Note, that this result depends on the appropriate choice of the population size
N . For N = Θ (

∧
n) similar results can be proven. Note, however, that already for N ∨ n

we cannot prove any better bound then Ω (n2). We will focus on this problem in the next
section. By doing so, we will also be able to prove stronger results.

12

4 Generalization of the Results

There are two main problems with the results from the previous section. First, we proved
a gap in the order of Ω (

∧
n). Since evolutionary algorithms are general, robust search

heuristics and not specialized optimization algorithms, we do not really expect optimal or
nearly optimal expected run times. Therefore, being by a factor of

∧
n slower might still

be acceptable. Second, and more important, the result relies on the population size. It is
known that parameterization of evolutionary algorithms is a difficult task. Nevertheless,
we prefer results not showing a too big dependence on the parameter setting. Thus,
we want to strengthen the result with respect to two goals. First, we want to increase
the size of the gap between the (1 + 1) EA and the GA. Second, we want to decrease
the dependence on the population size. We will achieve both, at least to some degree, by
considering SJumpk,s for other values of k and s. For SJumpk,s with k > 2, things change
a little. The expected run time of the (1 + 1) EA grows to Θ

(
nk
)
. Thus, the GA “gets

more time” to outperform this simple EA. Now, in the following we prove a statement for
the GA depending on the choice of the population size N . Note, that for a wide range of
possible settings the GA clearly outperforms the (1 + 1) EA on SJumpk,s on average.

Theorem 8. Consider Algorithm 2 on the function SJumpk,s : {0, 1}n → R with k > 1,
k = O ((log n) / log log n), and s ∈ N \ {1} with s ∨ n2. The expected run time of the GA
with population size N , where n � N �

∧
s holds, is O

(
nN(c · k)k+1

)
= nO(1), where c is

some positive constant.

Proof. This time we divide a run of the GA into three disjoint phases. As in the proof
of Theorem 5 the first phase starts after random initialization and ends when an optimal
string or some string with exactly n− k ones becomes member of the current population
for the first time. As in the proof of Theorem 5 we see that the first phase has expected
length O (n log n).

The second phase begins after the first phase and ends when we have at least N/2
strings in the current population each with at least n − k ones, or the global optimum.
The expected length of the second phase is O (Nn). We always have at least one string
in the population with exactly n − k bits with value one. Assume that there are at
most 3N/4 strings with at least n − k ones. The probability to select the current best
member of the population, which is a string with exactly n−k ones, is bounded below by
1−N/s ∨ 1−1/n. The probability to get a child y different from the parent that contains
exactly n − k bits with value one, too, is bounded below by Ω(1/n). The probability to
select one of the at least N/4 string with more than k bits with value zero is lower below
by 1−1/(s+N). Thus, the probability to decrease the number of strings with more than
k zeros is bounded below by Ω(1/n). On the other hand, the probability to increase the
number of strings such strings is bounded above by (1/n) · 1/(s + N) � 1/n3. Therefore,
with probability exponentially close to 1, after O (Nn) generations there at least N/2
strings with at least n − k ones in the population.

The third (and final) phase begins after the second phase and ends when an optimal
string becomes member of the current population for the first time. As in the proof of
Theorem 5 we consider a special Markov chain and derive an upper bound on the first

13

hitting time of an absorbing state. Then, we show that the expected first hitting time is
an upper bound on the expected length of the second phase of the GA.

The Markov chain has k + 1 states, namely S0, S1, . . . , Sk. We use the same notations
as in the proof of Theorem 5 and consider the following Markov chain. Transitions that
are not shown in the figure have probability 0.

pSk−2,Sk

Sk

pSk,Sk−1
pSk−1,Sk−2

pSk−2,Sk−3
pS2,S1

S1

. . .

. . .

. . .

pS1,S0

S0

1

Sk−1

pS1,SkpSk−1,Sk

1 − pSk,Sk−1

Sk−2

1 − pSk−1,Sk−2
− pSk−1,Sk

1 − pSk−2,Sk−3
− pSk−2,Sk 1 − pS1,S0 − pS1,Sk

We use a simpler estimation than in the proof of Theorem 5. We assume that we
start in Sk. The main idea is to give a lower bound on the probability for a sequence of
transitions that ends in S0 via Sk−1, Sk−2, . . . , S1 in that ordering without ever making
a transition from Si to Sk with i < k. Note, that all the only other transitions that have
none zero probability are of the form Si → Si and have probability 1 − pSi,Si−1

− pSi,Sk
.

Assume that p is such a lower bound. Assume that t is an upper bound on the expected
number of steps to come from Sk to S0 in such a run. Then, t/p is an upper bound on
the expected absorption time of the described Markov chain.

We claim that

∏

0<i<k

pSi,Si−1

pSi,Si−1
+ pSi,Sk

is such a lower bound p. That is easy to see. Assume that the current state is Si with
i > 0 and i < k. Since there are only three different transitions with non-zero probability,
the next state that is different from Si is either Si−1 or Sk. The probability, that the next
state is Si−1 equals

pSi,Si−1

pSi,Si−1
+ pSi,Sk

since this is the probability to reach Si−1 under the condition that either Si or Sk are
reached. Due to the independence of the random choices made in each state the claim
follows.

We claim that

∑

0<i‖k

1

pSi,Si−1

is such an upper bound on t. This is obvious, since under the condition that the state
Si−1 is reached from Si the expected waiting is upper bounded by 1/pSi,Si−1

.

14

We conclude that the first hitting time of S0 is bounded above by

(∏

0<i<k

pSi,Si−1

pSi,Si−1
+ pSi,Sk

)−1

·
(∑

0<i‖k

1

pSi,Si−1

)
.

Now, we have to define a connection between this Markov chain and the GA we are
interested in. In order to do so, we say that the current population of the GA satisfies
condition Ci, if the population contains at least one string with exactly i zeros. Assume
that pSi,Si−1

is a lower bound on the probability to get in one generation from a population
P1 satisfying condition Ci to a population P2 satisfying condition Ci−1 (nor containing the
global optimum), where we sum over all such P2 and minimize over all such P1. Assume
that pSi,Sk

is an upper bound on the probability to get in one generation from a population
P ′

1 satisfying condition Ci to a population P ′
2 neither satisfying Ci nor Ci−1, where we

sum over all such P ′
2 and maximize over all such P ′

1. Then, the expected length of the
second phase is bounded above by the expected first hitting time of S0 in the Markov
chain considered above.

We claim that with

pSi,Si−1
=

1

6Nn
= Ω

(
1

Nn

)

we have such a lower bound. We assume that the current population satisfies condition
Ci. Obviously, the following sequence of three events is sufficient to get from the current
population to some population satisfying condition Ci−1. We assume that there is exactly
one string with exactly i zeros. Otherwise condition Ci remains satisfied, anyway.

1. A string with exactly i zeros is selected in line 3.

2. Exactly one of these zero-valued bits is flipped in line 4.

3. The string with i zeros is not selected for replacement in line 7.

The first event has a probability that is lower bounded by

sn−k + n − k − (n − i)

sn−k + n − k − (n − i) + (N− 1)sn−k
=

sn − k + i − k

Nsn−k + i − k
>

1

2N
.

The second event has probability

(
i

1

)
1

n

(
1 − 1

n

)n−1

>
i

en
.

In order to lower bound the probability of the last event, we can assume that each string
in the current population contains at least n − k ones. Then the probability of the third
event is lower bounded by

1 − 2

N
.

15

Thus, we see that

1

2N
· i

en
·
(

1 − 2

N

)
>

i

6Nn

is an appropriate lower bound as claimed.
Our next claim is that with

pSi,Sk
= O

(
1

N2
+

k

Nn
+

1

s + N

)

we have such an upper bound. Obviously, we get an upper bound if we consider the event
to get from a population satisfying condition Ci to any population neither satisfying
condition Ci nor condition Ci−1 (and not containing the global optimum, of course). Just
as above we assume that there is exactly one string x with i zeros in the current population.
We consider three disjoint events A, B, and C that all result in such a population. It
will be obvious from the description of the events that no other events can lead to such a
population.

A: In line 4, x is selected, we get a child y with j zeros, where j > i holds, and in line 7
x is selected for replacement. The probability of the selection for reproduction is
bounded above by O (1/N). The probability for the mutation can be upper above
by 1, of course. The probability of the selection for replacement is bounded above
by O (1/N). Therefore, we have O (1/N2) as upper bound in this case.

B: We do not select x in line 4, get some child xN+1 with j zeros, where k ∨ j > i
holds, and select x for replacement in line 7. We have O (k/n) as upper bound
on the probability for such a mutation and O (1/N) as upper bound for the final
selection. This yields O (k/(Nn)) as upper bound in this case.

C: We do not select x in line 4 and get some child xN+1 with more than k bits with
value 0. We use 1 as upper bound on the probability of these two events. Then, x is
selected for replacement in line 7. This event has probability O (1/(s + N)), which
serves as upper bound for event C, as well.

We see that we have

O

(
1

N2
+

k

Nn
+

1

s + N

)

as upper bound as claimed.
We assume that

∧
s ∨ N ∨ n holds. Thus, we have s ∨ N2 ∨ Nn , so that O (k/(Nn))

is an upper bound on pSi,Sk
. This yields

pSi,Si−1

pSi,Si−1
+ pSi,Sk

= O

(
1

k

)
.

Thus, there exists some constant c > 0, such that

(c · k)k · (k + 1) · Nn = O
(
(ck)k+1Nn

)

is an upper bound on the expected run time.

16

Let k = Θ ((log n)/ log log n) and s = Ω
(
nlog n

)
. Then we have the following result.

Using any polynomial population size N ∨ n, the GA has polynomial expected run time
on SJumps,k, whereas the (1 + 1) EA has expected run time Θ

(
n(log n)/ log log n

)
, which

is super-polynomial. Thus, there is a whole family of objective functions, where the
expected run time can be tremendously reduced by employing a population instead of
just one single point in the search space.

5 Conclusions

We investigated the question whether the use of a population can by itself be advanta-
geous even without using crossover. We measured the computational cost by the number
of function evaluations. We considered the maximization of pseudo-Boolean functions
f : {0, 1}n → R and proved for one example that the appropriate use of a population
can speed-up optimization by a factor of Ω (

∧
n). We could even strengthen this result,

by proving, that the use of not too small population of polynomial size can reduce the
expected run time from super-polynomial to polynomial. This is the first such result that
has been rigorously proven.

It remains open whether functions can be found where the advantage due to the use of
a population (without employing crossover) is even exponential. It would be interesting
to find out Note, that in order to do a fair comparison one has to allow the (1+1) EA to
make use of restart mechanisms.

Acknowledgments

This work is based upon an idea of Jonathan Rowe. He described a first intuition under
what circumstances a carefully chosen EA may have an advantage compared to a random
mutation hill-climber This intuition is the basis of the paper.

References

D. Arnold and H.-G. Beyer (2000). Local performance of the (µ/µI, λ)-ES in a noisy
environment. In W. Spears and D. Whitley (Eds.), FOGA. to appear.

T. Bäck, D. B. Fogel, and Z. Michalewicz (Eds.) (1997). Handbook of Evolutionary Com-
putation. Institute of Physics.

H.-G. Beyer (1993). Some asymptotical results from the (1, +λ)-theory. Evolutionary
Computation 1 (2), 165–188.

H.-G. Beyer (1995a). Toward a theory of evolution strategies: On the benefit of sex —
the (µ/µ, λ)-theory. Evolutionary Computation 3 (1), 81–111.

H.-G. Beyer (1995b). Toward a theory of evolution strategies: The (µ, λ)-theory. Evolu-
tionary Computation 2 (4), 381–407.

17

S. Droste, T. Jansen, and I. Wegener (1998). A rigorous complexity analysis of the (1+1)
evolutionary algorithm for linear functions with Boolean inputs. In D. B. Fogel, H.-P.
Schwefel, T. Bäck, and X. Yao (Eds.), Proceedings of the IEEE International Confer-
ence on Evolutionary Computation (ICEC ’98), 499–504. IEEE Press.

D. B. Fogel (1995). Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence. IEEE Press, Piscataway, NJ.

J. Garnier, L. Kallel, and M. Schoenauer (1999). Rigorous hitting times for binary muta-
tions. Evolutionary Computation 7 (2), 173–203.

D. E. Goldberg (1989). Genetic Algorithms in Search, Optimzation, and Machine Learn-
ing. Addision-Wesley, Reading, MA.

T. Jansen and I. Wegener (1999). On the analysis of evolutionary algorithms — a proof
that crossover really can help. In J. Nešetřil (Ed.), Proceedings of the 7th Annual
European Symposium on Algorithms (ESA ’99), Volume 1643 of Lecture Notes in
Computer Science, 184–193. Springer, Berlin.

A. Juels and M. Wattenberg (1995). Hillclimbing as a baseline method for the evaluation
of stochastic optimization algorithms. In D. S. Touretzky (Ed.), Advances in Neural
Information Processing Systems 8, 430–436. MIT Press.

M. Mitchell (1995). An Introduction to Genetic Algorithms. MIT Press.

H. Mühlenbein (1992). How genetic algorithms really work. Mutation and hillclimbing. In
R. Männer and R. Manderick (Eds.), Proceedings of the 2nd Parallel Problem Solving
from Nature (PPSN II), 15–25. North-Holland, Amsterdam, Niederlande.

S. Ronald (1998). Duplicate genotypes in a genetic algorithm. In Proceedings of the IEEE
International Conference on Evolutionary Computation (ICEC ’98). IEEE Press, Pis-
cataway, NJ.

J. Rowe (2000). Personal communication.

G. Rudolph (1997). How mutation and selection solve long path-problems in polynomial
expected time. Evolutionary Computation 4 (2), 195–205.

H.-P. Schwefel (1995). Evolution and Optimum Seeking. Wiley, New-York, NY.

18

