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Abstract

The modeling of the behavior of human process operators using fuzzy methods is
well established in technical applications. We investigate whether these fuzzy
strategies can also be successfully applied for modeling the manner in which a
musician interprets a piece of music. For L. v. Beethoven’s composition “Fiir
Elise” we set up a base of 150 fuzzy rules that relate to features laid down explic-
itly or implicitly in the score, and produce situation-dependent variations of the
volume and time points of the start and end of the notes. For sensitive processing
of these rules advanced fuzzy-strategies are applied. The interpretation obtained is
encouraging. We are aware that human artistry in interpreting music is much more
sophisticated than what we can presently imitate. However, we consider it as a
challenge, not an a priori fruitless question, to determine to what extent it is pos-
sible to automate the interpretation of music by fuzzy methods. At the same time,
we consider the problem, due to its complexity, as being an ideal test bed for
evaluating existing and developing advanced fuzzy methods.

Keywords: fuzzy systems, knowledge-based fuzzy, data-based fuzzy, modeling,
TOR defuzzification, positive and negative rules, interpretation of music.

1 Introduction

For thousands of years music has been an essential ingredient of human culture. Therefore, it
has always been a major challenge to exploit recent technical achievements to assist, or re-
place, human skills in the field of music. For example, in the past, mechanical devices such as
musical clocks were developed. The interesting question nowadays is to exploit electronic de-



vices, especially the enormous potential of computers, for such purposes. The use of elec-
tronic devices for storing played music and for rendering it again with adjustable loudness,
amplification of the different frequencies, tempo and sounds, has long been state of the art.
Moreover, the MIDI-technique allows storage of a piece of music in the form of a MIDI-file.
This involves a list of commands that may be generated live while a musician plays a piece of
music on a MIDI-instrument or may be derived directly from the score. To play the music,
these commands are fed into a MIDI-player (consisting of a software MIDI-Player and a
MIDI-instrument). The conventional MIDI-technique allows manipulation of these commands
so that the general loudness, tempo and sound of the played notes can be adjusted. Moreover,
it is possible to adjust these parameters individually note by note. Consequently it is, in prin-
ciple, possible to create any desired interpretation of a piece of music that is given in the form
of'its score. However, this requires considerable experience and patience.

An interesting question is to what degree it is possible to automate the interpretation of music.
Some approaches to this have already been published [1-8, 12-16]. Our approach differs with
respect to the goals and the applied methods. Our starting point is that many fuzzy methods
have been developed which allow modeling of human operator behavior in the control of a
technical process [17-20]. Compared with other approaches, such as that based on neural net-
works or on case-based reasoning, the fuzzy approach has some advantages. It allows consid-
eration of the two types of knowledge that determine the actions of a process operator: con-
scious knowledge that a process operator can express in words, and knowledge about which
they are not conscious. These considerations suggest that there are many similarities between
the actions of a process operator and a musician who interprets music. Therefore, considering
the fuzzy modeling of the behavior of a process operator and of a musician, who interprets
music, as essentially the same problem, we strive for progress in two directions (Fig. 1). On
the one hand we want to exploit fuzzy methods that have proved to be successful in technical
applications for music interpretation. We are interested in the question of how far-reaching
the fuzzy approach is for these purposes.
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Figure 1: Pianist and fuzzy system interpreting a piece of music (top and bottom, respectively). Challenging
questions: To what extent can the fuzzy system assist/replace the pianist? What further developments
of fuzzy methods are meaningful for adequate interpretation of music?

On the other hand we realize that the art of interpreting music has been developed and refined
for centuries, much longer than the art of manually controlling an industrial process. Conse-
quently, it has now reached a very sophisticated state. This makes the problem of generating a



fuzzy music interpretation system an ideal test bed for demonstrating both the potential and
the drawbacks of existing fuzzy methods.

Our paper is organized as follows. In section 2 we summarize the facts required for the MIDI-
technique. In section 3 we present our fuzzy system, which allows interpretation of piano mu-
sic that is given in the form of a score. We have focused on piano music to limit the complex-
ity of the problem. We only have to manipulate the volume and the timing of the beginning
and ending of each tone, not its sound. We show that in this application, conventional defuzzi-
fication strategies have an inherent deficiency and show how this is overcome using an ad-
vanced defuzzification strategy. In section 4 we outline possible refinements and further de-
velopments of our system. Finally, our conclusions are presented in section 5.

2  Use of MIDI-data

First, when speaking about music we mean sounds. There are at least two formats we use to
work with sounds: audio and MIDI-data. Audio data, such as is stored on a CD, contains all
the physical information (all the amplitudes of all the frequencies) associated with a sound. In
contrast to this, MIDI-data can be considered as commands that are used for activating sounds
on electronic music instruments. We consider only MIDI-data in this study.
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Figure 2: Score (a), corresponding MIDI-data (b), and visualization of the MIDI-data (c).

Figure 2 (a) shows a musical score. The corresponding MIDI-data (Fig. 2 (b)) are composed
of global commands (which are valid for the whole piece) mainly concerning the tempo and
the key signature, and an ordered list of locally effective commands, each of which designates
an action (note on, note off, pedal on and pedal off) together with the specification of certain
attributes. The local commands define the channel for which the command is valid (not de-
picted in Fig. 2 (b)). Furthermore, they define, in the case of a note command, the pitch and
the volume of the note, and in the case of the pedal command, the intensity of the pedal. The
value of AT defines the time interval that has to elapse after the execution of the preceding



local command until the current local command is executed. Figure 2 (c) is a visualization of
the above local MIDI-commands.

Generation of MIDI-data and MIDI-playing

We can distinguish between the following methods of generating a MIDI-file, which contains
the MIDI-data.

The notes can be entered via a graphical user interface onto the note-line (editing the
score). It is a similar procedure to a music composer writing notes on a sheet of paper.
Once the writing is finished, the composer can save the work as a MIDI-file. Many extra
features can be entered by this method of editing (e.g., crescendo, accelerando, pedal,

ppp).

Another method is to play the notes directly on a MIDI-instrument so that a musician can
hear what he or she is recording (recording the notes). Two modes are possible: step-by-
step recording, where the notes are entered one by one, and “live-recording”, where the
notes are played in real time.

MIDI-playing means rendering a MIDI-file on a MIDI-instrument. Once a MIDI-file is cre-
ated, one can only change the main tempo, the main volume for each MIDI-channel, and the
MIDI-effects (e.g., glissando for a violin) for each channel while playing.

MIDI-elaboration of an interpretation

Often a musician receives a MIDI-file that is inadequate for his or her taste: either the pre-
sented interpretation is unsatisfying or it is a “mechanically played” piece of music (such as
those we find in waiting-loops or in games). In this case, the musician can modify the MIDI-
file manually. He or she can input, for example, global commands that apply global fixed or
random variations of volume and tempo, or such variations individually, note by note.

Obviously the elaboration of an interpretation using existing MIDI-facilities requires consid-
erable expenditure. We have to modify the volume, the time of the start and end of each note
individually, either manually note by note, or by playing the piece repeatedly until the inter-
pretation is satisfactory.

Our goal is to exploit fuzzy methods to provide much more comfortable and transparent
means to generate a satisfactory interpretation automatically, or to elaborate it interactively.

3 The General Scheme

Figure 3 shows the general scheme of our system. The input is the information contained in a
score (block 1). The outputs are MIDI-files that can be fed into a MIDI-player (not depicted in
Fig. 3). Details are explained below.

3.1 Hardware and Software Components

For the system depicted in Fig. 3, we use a PC and the software tool DORA. This Windows-
oriented software covers a broad spectrum of features that serve for the design and the online-



use of controllers [21]. Compared with other existing tools, such as MATLAB/Simulink,
DORA allows the design of considerably more flexible and more advanced fuzzy systems,
such as fuzzy systems with TOR defuzzification, defuzzification by inference filter, and two-
way fuzzy systems, and allows processing not only of conventional recommending (positive)
rules but also of negative rules that express warnings and/or prohibitions [17, 18]. For render-
ing (MIDI-playing) of MIDI-files we use software MIDI-player (we realized it in PASCAL),
a MIDI-interface on the PC (soundcard) and a MIDI-electronic piano.
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Figure 3: System for generating MIDI-files that represent a mechanical, an improved mechanical, and a fuzzy
interpretation of a piece of music. The input of the system is the score of the piece of music.

3.2 The Temporal Variables of Notes

A piece of music can be considered as an ordered list of notes that is characterized by certain
attributes such as the note pitch, volume, and the values of two time values. The two time val-
ues define the time of the start and the end of the note. We modify these time values by the
manipulation of two other time values. The value tempo defines the number of milliseconds
per standard note (e.g., a quarter of a note or a whole note). The value duration defines the
duration of the note, expressed as a fraction of the value tempo. If we set, for instance, for all
notes the same value tempo, each note-beginning is at a precise moment in the time base. In
this case the note-endings can still be varied individually by manipulating the value duration.



If the duration of an individual note is reduced — say from 150 ms to 100 ms — the beginning
of all subsequent notes will be 50 ms earlier, but their tempos and durations will not be af-
fected.

By manipulating the duration value, legato can be realized: for this to occur, a note must end
exactly where the next note begins. We also provide the option superlegato, which means that
a note ends a little after the next note begins. To realize staccato, a note ends considerably be-
fore the next note begins.

3.3 Mechanical Interpretation

Our starting point is a piece of music that is laid down in the score. We encode the score and
feed it into the PC. Here, we consider the composition “Fiir Elise” by L. v. Beethoven. The
first bars are shown in Fig. 3, block 1. The encoded information for the piece of music is di-
vided into two sections. The first refers to the “naked” notes and specifies the pitches (e.g., e,
d, a, ...), and the time of the start and the duration of each note (compare with Fig. 2). The
second section, derived from additional notations in the score, supplies additional information
concerning tempo, note ties, legato, non-legato, staccato, volume and pedal. In the first step of
information processing we consider only the first section of the information (Fig. 3, block 2)
and superimpose it with default values for tempo, volume and pedal (Fig. 3, blocks 3 and 4).
As a result, a MIDI-file is generated (Fig. 3, block 5) that represents a mechanical interpreta-
tion: It is played by the MIDI-player in a monotonous manner, without variations of tempo
and volume (Fig. 4, top).
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Figure 4: Mechanical, improved mechanical, and fuzzy interpretation

3.4 Improved Mechanical Interpretation

In the second step of information processing, an additional information block (Fig. 3, block 6)
is used to modify the mechanical interpretation. We use a selectable look-up table (Fig. 3,
block 7), which translates each symbol type of the additional notation for the whole piece into
a fixed modification of the mechanical interpretation. Superimposing these modifications
(Fig. 3, block 8) to the mechanical interpretation, we obtain a MIDI-file (Fig. 3, block 9),



which represents an improved mechanical interpretation (Fig. 4, middle). This means we can
now hear all music symbols that are explicitly contained in the score. However, it is still not
music that would be played by a human pianist.

3.5 Fuzzy Interpretation

To improve the interpretation, we introduce situation-dependent modifications. For this we
have consulted music experts and the music literature and established a set of recommenda-
tions concerning the interpretation of classical piano music in the form of 150 qualitative
rules, such as:

IF < the position of a short right-hand note is close
before a change from “major” to “minor” >
THEN < reduce tempo considerably > (1)

IF < right-hand note is part of a long decreasing
sequence of notes
AND the position of this note is in the middle
of the theme >

THEN < reduce volume a little > (2)

IF < there is no pedal symbol
AND there is a pause in left hand >

THEN < release pedal > 3)
These rules have the general form
IF < condition > THEN < recommendation > (4)

The conditions, which specify the rule premises, refer to certain context-dependent features or
values of variables that are not necessarily explicitly visible in the score. The conclusions of
the rules recommend modifications of the volume, of the tempo, and of the duration of the in-
dividual notes, and of the activation, the intensity and the releasing of the pedal (compare with
Fig. 4).

To use such rules, we have to specify what is meant quantitatively by the qualitative linguistic
values, such as short, long, middle or a little. For this, we use the concept of fuzzy member-
ship functions. It allows us to express to what degree 1, , with 0 < 4, <1, the premise of a

rule R, is met. The value p; (called degree of activation of rule k) determines to what degree

the recommendation of the rule £ is taken into account in the superposition of the recommen-
dations of all activated rules. The following points are essential for our approach:

e We do not provide rules such as “bar 3 has to be played piano”, but rather we use gen-
eral rules. Each rule influences the interpretation globally (with respect to many bars)
and also makes sense for other compositions of related style.

e The use of context-based conditions in the rule premises, in combination with the
fuzziness (softness) of the membership functions, allows the production of sensitive
modifications of interpretation.



The desired fuzzy interpretation is generated by the following information processing steps.
First, the encoded information of the score is pre-processed in order to evaluate the values of
predefined variables/features that are considered in the rule premises (Fig. 3, block 10, and
Fig. 5). Second, these values are fed into the fuzzy modifier (Fig. 3, block 11). This is a fuzzy
system (Fig. 1, left) consisting of a fuzzification unit, the rule base, an inference machine, and
a defuzzification unit. Third, the output values of the fuzzy modifier are refined by a post-
processing unit (Fig. 3, block 12): it exhibits transparent tuning parameters that allow interac-
tive adjustment of the output values of the fuzzy modifier, live by ear, to satisfy individual
taste. Finally, the output values of the post-processing unit are superimposed (Fig. 3, block
13) on the improved mechanical interpretation. In addition, the superposition unit exhibits
transparent parameters for live tuning. As a result, we obtain the fuzzy interpretation (Fig. 3,
block 14).
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Figure 5: Input and output variables of the fuzzy modifier.

4 Details and Refinements

4.1 Membership Functions

For the modeling of each linguistic input (output) value we use up to four (10) membership
functions in the form of overlapping triangles or trapezoids (singletons). We can modify the
distribution of the input and output membership functions interactively for tuning purposes,
beginning with equally distributed membership functions. However, as this tuning option re-
quires adjustment of a large number of parameters and does not work online, we prefer to use
the tuning parameters of the post-processing and superposition units (sections 4.3 and 4.4).

4.2 Defuzzification

Let the output membership function referring to an output value u, produced by all activated

rules, be given by r singletons, {,ui,ul- }, i=1,2,.., r,where u; is the position and x; the ac-

tivation of the i-th singleton:

M, if u=u;
plu) = 0, otherwise
’ ' )

The prescriptions
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are the most common strategies for deriving an unequivocal real output value from g (u). The

first, the MAX (maximum) defuzzification, selects the best supported (most recommended)
value u. The second, the COG (center of gravity) defuzzification gives a compromise.

This music interpretation problem shows that both the MAX and COG defuzzifications have
an essential limitation. Let the fully activated rule R; produce the output singleton

{1y =1, u; = 2} that recommends to the degree u, =1, a medium (u; =2) increase of the
volume for some bars. Let the partly activated rule R, produce the output membership func-
tion {,uz =0.8, u, = 1}, which recommends, to the degree 0.8, a small (u, =1) increase of the

volume at the beginning of a bar (Fig. 6). Then it is obvious that if both rules are activated si-
multaneously, the resulting increase of volume should be greater than medium. More gener-
ally, here we need a defuzzification strategy that superimposes equi-directional recommenda-
tions of the individual rules so as to amplify each other. Neither the MAX nor the COG de-
fuzzifications have this property. These considerations suggested the introduction of the TOR
(torque) defuzzification

-
UTOoR = pz Hil;
= (8)

where p is a scaling factor [17, 18]. Figure 6 illustrates that this defuzzification has this de-
sired property. (For p = 1, the resulting output value uypp corresponds to the torque induced

by the masses g; considering their positive or negative distances from the neutral point u =

0.) This is the reason we use the TOR defuzzification method predominantly.

1
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-3 -2 -1 ‘ 1 T 2 T 3

Ucoe T Uror

Upmax

Figure 6: Defuzzification of an output membership function representing two equi-directional recommenda-
tions of two rules. The values uy; =1.55, u =2 and urpp = 2.8 are obtained by the COG,

MAX, and TOR defuzzifications, respectively.

max
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4.3 Post-processing Unit

The fuzzy modifier is designed so that the value range for each output variable is normalized
within the range —1<u < +1. Here, u > 0 means that the volume (or the tempo, or the dura-
tion) of a right-hand (or left-hand) note should be increased (# <0 means that it should be
decreased).

The post-processing unit transforms the output values u of the fuzzy modifier into the value

1—exp(—cu) . S
) gla)+b T exo(—o) exp(=0) ifu>0
"= 1—exp(cu)
g(a)+—-d P ir <0

where a, b, ¢, d are tuning parameters with nonnegative values that are specified individually
for each output variable of the fuzzy modifier. Here, £(a) is a random variable that allows the
production of random variations of volume, tempo, and duration of the notes. The amount of
these variations may be adjusted via the parameter a. We provide this random option because
a pianist will never be able to control his or her playing perfectly to accord with his or her de-
sired interpretation. Marked random variations of volume and time values will always be pre-
sent to a greater or lesser extent.

The values b and d define the value range for # . In the case of &(a) =0, this is given by

—d <u < b. Consequently, we can adjust via b and d the general intensity of the influence of
the fuzzy modifier. The value d determines the slope of the function #(u), especially for

small values of u. Thus, we can adjust to what extent small variations of u produce noticeable
(hearable) effects.

4.4 Superposition Unit

In the MIDI-data, the volume of a tone is encoded by an integer variable k£ with 0 <k <127.
We superimpose these values k£ of the improved mechanical interpretation and the output # of
the post-processing unit using

mqk+%qaz7—m]ﬁﬁ>o
k=40 it =0
Intlk + 2L k] if <0

d (10)

where Int[z] rounds the element z to the nearest integer less than or equal to z. Here, ¢ is a
tuning parameter with 0 < g <1, which allows adjustment of the intensity of the influence of

the fuzzy modifier.

We encode the tempo of a tone by positive values x (milliseconds). These values x of the im-
proved mechanical interpretation are superimposed with the corresponding outputs # of the
post-processing unit according to
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Uy
A p
x=10 (11)

where p is a positive tuning parameter. This approach provides that the increase and decrease
of x, which are produced by the values * u, are symmetrical on a logarithmic scale of x.

Finally, we encode the duration of a tone by positive values y with 0< y <1 (ratio of the

nominal duration of the note). These values y of the improved mechanical interpretation are
superimposed with the corresponding outputs # of the post-processing unit according to

i)’
$=Min| 1.1,10”
(12)

where p is a positive tuning parameter. (Here we allow p >1 to realize superlegato, which
means that a preceding note ends a little after the next note begins.)

5 Ongoing and Possible Refinements

5.1 Improved Tuning Unit

The approach (9), (10) works satisfactorily, however we consider it a first estimate. It should
be refined by suitable experiments. Furthermore, the value range of the variable ©# may possi-
bly be restricted in a more natural manner by using the Einstein sum

a®b=-a+bh

ab
1+~

e (13)

to determine the total activation of each singleton at position u; (by summing the individual

contributions produced by all activated rules that have the same conclusion) and to evaluate
the sum (8).

5.2 Use of Negative Rules

The type (4) rules discussed so far are positive rules that produce recommendations. We proc-
ess these rules as usual by a conventional Mamdani fuzzy system. More transparency for the
processing of qualitative knowledge is obtained if negative rules in the form of

IF < condition > THEN < warning /veto > (14)

are also provided. These can be processed together with the positive rules by a two-way fuzzy
system with hyperinference [17, 18]. It is well known that a conventional Mamdani fuzzy sys-
tem is a universal approximator, and consequently allows production of any desired in-
put/output characteristic. Therefore, the use of negative rules, in principle, will not lead to
new characteristics. Essentially the use of negative rules provides more transparency in the
processing of qualitative knowledge.
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For instance, suppose that in the interactive process of refining the interpretation we have de-
signed a set of 20 positive rules that recommend certain situation-dependent modifications of
the volume. Let us further assume that we want the volume variation not to be too large for
notes that belong to the theme. If we provide positive rules only, we can realize this in princi-
ple by adding the condition “AND note does not belong to the theme” to the premises of all
20 positive rules, and set up additional positive rules for notes belonging to the theme. How-
ever, instead of this costly and non-transparent procedure, we can leave the original 20 posi-
tive rules untouched and add only one single negative rule:

IF < note belongs to the theme >
THEN < u = large is FORBIDDEN >. (15)

If this rule is fully activated, its output membership function is given by ™ (u) = 4. (u),
where 14,0, (1) is the membership function that models the linguistic value large (Fig. 7,
left). Let z" (1) be the output membership function (in the form of singletons) produced by
all activated positive rules. Then, the hyperinference produces from u*(u) and u~ (u) a

membership function z(u) given by z(u) = u" (u) A—u~ (1), or resulting from the strong
or the weak veto strategy [17, 18]. Choosing the weak veto hyperinference, we obtain a result-
ing output u(u) where singletons {ui,ui} of u*(u) with large values of | ;| are sup-

pressed as shown in Fig. 7, right.

+

,u;(u\,tj 7 (u) M
. ]
| 1

Figure 7: Output membership functions g% (u) and g~ (u) produced by positive rules and one negative rule,

u

-
- L

-1 1

respectively (left). Membership function g(u) resulting from processing u* (1) and g~ (u) by the
weak-veto hyperinference (right). The application of the TOR defuzzification to u(u) produces a

smaller output value, compared with applying it to z* (u).

Applying the TOR defuzzification, the volume variations for notes in the theme are reduced
compared with a situation where we have the same output z” (1) of the positive rules and no

activation of the negative rule. What we wish to stress here, is that the use of negative rules
supplies a much more transparent means of modifying the interpretation than if we are re-
stricted to the use of positive rules only.

5.3 Data-based Approach

So far, we have set up the rules by use of expert knowledge. However, this knowledge-based
approach only allows exploitation of that knowledge of which a musician is conscious. How-
ever, the interpretation of a good pianist is not only created by conscious knowledge, but also
by unconscious emotions. In this respect there are similarities between a pianist and a human
process operator who manually controls a technical process, partly by applying conscious



13

rules, partly by following his or her unconscious experience. To access this unconscious
knowledge, data-based methods for rule generation have been developed [19, 20]. These
methods have proved successful in many technical applications.

Given a piece of music in the form of a MIDI-file that results from the live performance of a
musician, these methods should allow extraction of the applied interpretation rules. Given the
human interpretation in the form of a CD, such data-based rule extraction is far more difficult,
but not a priori utopian. In both cases, an essential problem is to find relevant input variables
for the rules, input variables that allow the specification of situations that are relevant for in-
terpretation purposes. So far, we have chosen these variables considering the knowledge of
experts (compare with Fig. 5). In the problem of modeling the musical interpretation of a mu-
sician, it may be that one has no idea on which features the interpretation is based. To over-
come this problem, data-based methods may be applied that allow specification of relevant
sets of variables if a large number of potentially relevant variables is given [22, 23].

6 Conclusions and Related Works

We presented “Fiir Elise” performed by our system to a class of music students. The music
was rated as “a good performance of a good pupil who has had piano lessons for about four
years”. We consider this to be encouraging. The state now reached is satisfactory for trivial
music purposes such as telephone waiting-loops or computer games. For such applications it
is of interest that our fuzzy interpretation does not require charges for the authorship of the in-
terpretation, in contrast to a human’s interpretation. Naturally, for more demanding purposes,
there is still considerable work to be done. However, we wish to stress the following points.
We designed the rules considering mainly “Fiir Elise”. However, the application of these rules
to “Alla Turka” by W. A. Mozart also produces an acceptable interpretation. This means, it is
possible to set up general rules, which can be applied to many pieces of music of a similar
style. With our system, people who have musical inspiration but are not able to play an in-
strument, especially inexperienced and handicapped persons, can work out an interpretation
and so express their emotions. Moreover, the system can be used for lessons. It allows dem-
onstration of how a piece of music sounds if a specific rule of interpretation is applied.

Comparing our approach for automating the interpretation of music with already existing
methods [1-7, 13-16], we conclude that the main goal of all the works mentioned is to create
an interpreted classical music that could be played by humans. Due to the authors’ biases, mu-
sic for saxophone [3, 4], piano [1, 14-16], and violin [12] have been investigated. As far as we
know, the most successfully generated music systems [1-4, 14-16] are based on collected mu-
sical examples, performed by a musician. The intention of others has been to construct rules
that convert the written score, complemented with special symbols and marks, to a musically
acceptable performance via a musical synthesizer [6]. The musical “facts” are also available
via spectral analysis [3, 4], statistical methods (autocorrelation) [5, 7], and MIDI-format [16].
This information, together with musical rules chosen from music theory [8-11] and the ex-
perience of the authors, allows similar cases to be found in the collected examples, and based
on these cases, a new piece of music to be modified [4, 16].

Our approach is different. We start from the score, and set up general rules that create situa-
tion-dependent variations of the volume, the tempo and the duration of the notes. It is essen-
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tial that we use so-called incomplete rules, which means that each rule considers specific as-
pects such as “note is part of the theme”. Consequently, usually several rules, which consider
quite different aspects, are activated simultaneously and contribute to the interpretation of the
note considered. The advantage of this approach is that with few rules we can describe a huge
number of different situations. For example 20 rules, which may be either fully activated or
not activated, allow us to differentiate between 2° situations. Consequently, we believe that
our approach, based on incomplete rules, supplies more insight and allows a more transparent
interaction with a human than a case-based approach as in [1-4, 14-16], which consider each
case (situation) as a whole. The price we have to pay for our approach is that the superposi-
tion of the contributions of the different rules has to be more sophisticated. A mere averaging,
as in the case-based approaches, is inadequate.

It is interesting to realize that our system may serve for data compression. Note that the total
opus of Bach, together with many interpretation rules, fits on one single CD. Instead of the
current situation of only being able to vary the volume and the relation of high and low fre-
quencies of the tones, people may select the desired mode of interpretation. For example, the
style of Horowitz or of Volodos, or a selectable mixture of both, may be chosen and adapted
to the listener’s taste by activating predesigned rules.

We consider it an open question as to what extent and how quickly these goals will be
reached. In any case, the complexity of these problems will induce further developments of
fuzzy modeling strategies such as in the creation of TOR defuzzification.

References

[1]  P. Blashill: The Creative Professor, Inc. The Magazine for Growing Companies, September 2001

[2] C. Cope: Computer Modeling of Musical Intelligence in AMI. Computer Music Journal, 16 (2), pp. 69 —
83,1992

[3] R.L.deMantaras and J. L. Arcos: The Synthesis of Expressive Music: Challenging CBR Application. In:
ICCBR 2001, LNAI 2080, pp. 16 — 26, Springer Verlag, Berlin, Heidelberg, 2001

[4] R.L.de Mantaras and J. L. Arcos: An Interactive Case-Based Reasoning Approach for Generating Ex-
pressive Music. Applied Intelligence, 14(1), Southwest Texas State University, USA, Kluwer Academic
Publishers, pp. 115 — 129, January-February, 2001

[5] P. Desani and S. de Vos: Autocorrelation and Study of Musical Expression. In: Proceedings of the 1990
International Computer Musical Conference, San Francisco, 1990

[6] A. Friberg: Generative Rules for Music Performance: A Formal Description of a Rule System. Computer
Music Journal, 15 (2), pp. 56 — 71, 1991

[7] H. Katayose: Expression Extraction in Virtuoso Music Performances. In: Proceedings of the Tenth
International Conference on Pattern Recognition, Washington DC, IEEE Computer Society Press, 1990

[8] F. Lerdahl and R. Jackendoff: A Generative Theory of Tonal Music. The MIT Press Series on Cognitive
Theory and Mental Representation, Cambridge, MA, 1983

[9] F. Lerdahl and R. Jackendoff: An Overview of Hierarchical Structure in Music. In: Stephan M.
Schwanaver and David A. Levitt, editors, Machine Models of Music, MIT Press, Cambridge, MA, pp.
289 —312,1993

[10] E. Narmour: Beyond Schenkerism. University of Chicago Press, 1997

[11] E. Narmour: The Analysis and Cognition of Basic Melodic Structures: The Implication-Realization
Model. University of Chicago Press, 1990

[12] G. de Poli, A. Roda and A. Vidolin: Note-by-Note Analysis of the Influence of Epressive Intentions and
Musical Structure in Violin Performance. New Music Research, 27 (3), pp. 293 — 321, 1998



[13]

[14]

[15]

[17]
[18]

[19]

[20]

[21]

[22]

15

J. Sunberg, A. Askenfelt and L. Fryde: Musical Performance: A Synthesis-by-Rule Approach. Computer
Music Journal, 7 (1), pp. 37 — 43, 1983

G. Widmer: Modelling the Rational Basis of Musical Expression. Computer Music Journal, 19 (2), pp. 76
—96, 1995

G. Widmer: Applications of Machine Learning to Musical Research: Empirical Investigations into the
Phenomenon of Musical Expression. In: R. S. Michalski, I. Bratko and M. Kubat editors, Machine Learn-
ing and Data Mining: Methods and Applications, Wiley, Chichester, UK, 1998

G. Widmer: Using Al and Machine Learning to Study Expressive Music Performance: Project Survey and
First Report. Al Communication, 14 (3), pp. 149 — 162, 2001

H. Kiendl: Fuzzy Control methodenorientiert. Oldenbourg-Verlag, Miinchen, 1997

H. Kiendl: Decision Analysis by Advanced Fuzzy Systems. In: J. Kacprzyk, L. Zadeh, editors, Computing
with Words in Information/Intelligent Systems, pp. 223 — 242, Physica-Verlag, Heidelberg, 1999

T. Slawinski, A. Krone, P. Krause and H. Kiendl: The Fuzzy-ROSA Method: A Statistically Motivated
Fuzzy Approach for Data-Based Generation of Small Interpretable Rule Bases in High-Dimensional
Search Spaces. In: M. Last, A. Kandel, H. Bunke, editors, Data Mining and Computational Intelligence,
pp. 141 — 166, Physica-Verlag, Heidelberg, 2001

T. Slawinski, J. Praczyk, U. Schwane, A. Krone and H. Kiendl. Data-based Generation of Fuzzy Rules for
Classification, Prediction and Control with the Fuzzy-ROSA Method. In: European Control Congress
(ECC’99), Karlsruhe, volume CD-ROM, 1999

A. Krone, P. Krause, T. Slawinski and R. Knicker: WINROSA 2.0 and DORA for Windows 6.2. In:
Symposium Identification (SYSID) 2000, Santa Barbara, USA, pp. 521 — 526, Elsevier Science, Amster-
dam, The Netherlands, 2000

D. Schauten, B. Nicolaus and H. Kiendl: Evolutionires Verfahren zur Selektion relevanter Merkmalssitze
fiir die datenbasierte Fuzzy-Modellierung. In: Proceedings 11. Workshop Fuzzy-Control des GMA-FA.
5.22, Universitdt Dortmund, 2001. VDI/VDE GMA-FA. 5.22, Wissenschaftliche Berichte Forschungs-
zentrum Karlsruhe, pp. 133 — 147, 2001

D. Schauten, B. Nicolaus and H. Kiendl: An Evolutionary Concept for Selecting Relevant Sets of Input
Variables for Data-Based Fuzzy Modeling. In: Proceedings of the European Symposium on Intelligent
Technologies, Hybrid Systems and their Implementation on Smart Adaptive Systems (EUNITE ’01),
Puetro de la Cruz, Tenerife, Spain, December 13-14, 2001



