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Abstract. In the �eld of data{based fuzzy modeling, the complexity of
applications and the amount of data to be processed have grown con-
tinuously. Thus, the computational e�ort for solving these applications
has also increased drastically. In order to meet this challenge, parallel
computing approaches are applied. The task here is the optimization of
data{based generated fuzzy rule bases. For this kind of application the
�tness evaluation of an individual is very time consuming. Here, a par-
allel genetic algorithm is applied to solve the optimization problem in
an acceptable amount of time. Furthermore, it will be analyzed how the
quality of the results changes with the use of multi{population models
or neighborhood models. This will be illustrated by two example appli-
cations.

1 Introduction

In recent years, many methods for the di�erent data{mining techniques have
been developed. One �eld of data mining is fuzzy modeling. Fuzzy modeling is
quiet popular, because it is possible to generate comprehensible models of high
quality. Here, we use the Fuzzy{ROSA1 method [7] for fuzzy modeling. It is
based on testing single fuzzy rules for their capability of describing a relevant
aspect of the system to model. The idea of testing only single fuzzy rules, in
contrast to testing complete fuzzy rule bases, makes it possible to handle highly
complex systems. On the other hand, because the �nal fuzzy rule base of the
model is built of rules, which have been tested independently, there is still space
for improvements. The optimization problem here, consists of �nding the optimal
selection of rules, in order to obtain a small rule base and a high quality of the
model.

Here, for the rule base optimization a genetic algorithm is used. Even though,
for more complex applications it can take an unacceptable amount of time for the
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rule optimization, because of the time consuming �tness calculations. Sometimes
the result of the optimization is not satisfying also. Therefore, we apply and
adapt a parallel genetic algorithms with the aim to gain not only a speedup but
also better results. Therefore di�erent population models, like multi{population
models or neighborhood models, are analyzed with respect to the speedup and
the quality of the results.

First, we give a short overview over the Fuzzy{ROSA method. In the next
section di�erent models of parallel evolutionary algorithms are discussed. Finally,
three di�erent models of parallel evolutionary algorithms are applied to two fuzzy
modeling problems. By an empirical comparison we try to �nd out the best
parallel model for a rule base optimization within the Fuzzy{ROSA method.

2 The Fuzzy{ROSA Method

In this section the basic ideas of the Fuzzy{ROSA method are brie
y presented
and the starting point for the parallelization is described.

2.1 Concept of rule generation

The starting point of fuzzy modeling is the existence of data describing the in-
put/output behavior of the system under consideration. The basic idea of the
rule generation process is to apply a relevance test to single IF/THEN state-
ments to assess their ability to describe a relevant aspect of the system under
consideration [8, 2, 4]. This allows not only to get transparent and comprehensi-
ble rule bases, but reduces the immense problem of �nding a good rule base to
the much smaller problem of �nding single relevant rules.

Instead of complete rules that consider every input variable in each premise,
generalizing rules are used that consider only a part of the input variables in the
premise. The advantage of generalizing rules is that they cover not only one but
several input situations and usually, less rules are necessary. For a high number
of variables, an adaptive evolutionary search concept [5, 12] is used to �nd the
relevant fuzzy rules in the search space of IF/THEN statements. An online rule
reduction removes redundant rules during the rule generation process.

In comparison to methods that directly search for an optimal rule base [1,10,
11,3], the computing time of this approach is also practicable for applications
with more than a handful variables. Even an industrial problem with 149 input
variables has been successfully solved [13]. A potential drawback is, that the
search for single relevant fuzzy rules does not consider the quality of the �nal
fuzzy rule base. Therefore, the �nal rule base can be optimized with respect to
the quality of the fuzzy model (see next section).

2.2 Concepts for optimization

After a fuzzy rule base has been obtained there are remaining free parameters,
that can be used for optimization. These include the parameters of the fuzzy



system, like logical operators or defuzzi�cation and the shape and the position
of the membershipfunctions. For our application the combination of the rules
seems to be most promising for a optimization. The aim is to �nd a rule base,
which is as small as possible and models the input/output behavior of the system
as good as possible. For this combinatorial problem we use a genetic algorithm
approach for optimization [6].

Given a rule base of r rules, the individuals of the genetic algorithm are a
binary string with r bits. Each bit represents the status of a single rule. Each
rule can be included in the rule base or excluded from the rule base. As the
optimization has two objectives (small and good rule base), a weighting factor
w can be chosen to de�ne the priority of the two criterions [6]. In order to
calculate the �tness of one individual the number of active rules and the quality
of the model are needed. Evaluating the quality of the model means to simulate
the fuzzy model with all learning data points and to calculate the di�erence
between the simulated output and the original value at the corresponding point.
This is usually, as mentioned before, very time consuming. The recombination
used is 4{point crossover with a recombination rate of 0.6. The mutation rate
was 1=r.

3 Parallel Evolutionary Algorithms

There are di�erent approaches for parallel evolutionary algorithms proposed in
literature [14]. These range from just using sequential algorithms in parallel
to developing parallel variants based on biological paradigms. By using struc-
tured populations a parallelization can change the quality of the results. Besides
thoughts about the structural approach it has to be decided whether to im-
plement the algorithm synchronous or asynchronous. Synchronous means, that
after each generation the parallel processes are synchronized. In contrast, if an
asynchronous algorithm is used, a modi�cation of the standard selection mecha-
nism is needed, because there are no �xed generations anymore. In the following
sections, we present the methods used in our work. A formal description of pop-
ulation structures can be found in [14].

3.1 Master{Slave Model

The easiest way to parallelize an evolutionary algorithm is to calculate the �tness
of the individuals in parallel. The �tness calculation of the individuals are inde-
pendent of each other and the evaluation often needs the main part of processing
time in one generation. This is especially true for our application as described
in 2.2. Thus, a synchronous implementation of this approach di�ers not from
a sequential approach regarding functionality. A nearly linear speedup can be
expected, if the time needed for one �tness calculation is large compared to the
time needed for communication.



3.2 Pollination Model

The pollination model is a multi{population model. A population of � individ-
uals is divided into p subpopulations Qi. Each subpopulation exchanges certain
individuals with their neighbor subpopulations (Fig. 1). Thus, the paralleliza-
tion is exploited on the level of populations. This concept introduces additional
parameters for the evolutionary algorithm:

{ Isolation Time f : The frequency of the exchanges between the subpopu-
lations

{ Exchange Volume: The number of individuals exchanged
{ Type of Individuals:Which individuals are exchanged (e.g. best individ-
ual, random individual)

{ Integration of Individuals:Which individuals are replaced (e.g. replace-
ment of the worst)

QQ
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Fig. 1. Example of a pollination model.

Because of the low communication needed here, a nearly linear speedup can be
expected, too. Considering the quality of the result, we expect an increase in the
quality, because of the greater diversity maintained by the subpopulations.

3.3 Neighborhood Model

In the neighborhood model the parallelization is performed on the level of in-
dividuals. Between the individuals a neighborhood relation is de�ned, which
determines which individuals can recombine with each other. The selection is
applied locally within these neighborhoods also. It is guaranteed that the infor-
mation of each individual can be spread to every point in the population through
overlapping neighborhoods (Fig. 2). Here, the following parameters have to be
chosen:
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Fig. 2. Example of a neighborhood model.

{ Size of Grid: The size of the grid strongly depends on the available parallel
computer

{ Number of Individuals per Process: Because the number of processors
is strongly limited, several neighboring individuals can be mapped to a single
processor. This increases the load of each processor. On the other hand it
increases the possible number of individuals and reduces the overhead in
communication.

This concept contains many aspects of massive parallelism. There is no global
control instance, the processes are independent of each other and the communi-
cation is locally limited.

4 Application of Parallel Evolutionary Algorithms

We have chosen two examples, which di�er greatly in size, to see how the parallel
evolutionary concepts work.

{ HEAT: The �rst example is the modeling of an heat exchanger in an in-
dustrial process. Therefore, the task is to model the output variable on the
basis of three process variables. There are 1126 data points for training.
Four, 6 and 9 fuzzy sets are de�ned for the input variables and 9 fuzzy sets
are de�ned for the output variable. The rule generation process results in 55
rules. Thus, the search space for the optimization is 255 = 3 :6� 1016

{ SAT: As the second example, the benchmark problem 'landsat satellite im-
age'2 [9] is chosen. The original landsat data is from the NASA and contains
the intensities of four spectral bands for 82 x 100 pixels, each pixel covering
an area on the ground of approximately 80*80 meters. Each pixel belongs

2 ftp: ics.uci.edu in /pub/machine-learning-databases



to one of seven classes: red soil, cotton crop, gray soil, damp gray soil, soil
with vegetation stubble, very damp gray soil, mixture. The task is to classify
the soil of each pixel on basis of the intensities of the four spectral bands
of the pixel and its 8 neighbors. Thus, it is a classi�cation problem with 36
continuous input variables and six output classes (the class 'mixture' is not
considered). There are 4435 data points in the training set and 2000 data
points in the test set. Nine fuzzy sets are de�ned for each input variable.
The maximum number of input variables considered in a premise is �xed at
six. The rule generation process results in 27701 relevant generalizing fuzzy
rules that must be reduced in the second step. First the data-based con
ict
reduction method is applied, which results in a reduced number of rules of
2403. Thus, the search space for the optimization is 22403 = 2 :96� 10722

In the following, the pollination model and the neighborhood model are com-
pared to the master{slave model, which correspond to a serial genetic algorithm.
Di�ering from standard genetic algorithms, we used a (� + �) evolutionary al-
gorithm approach as the selection scheme. The sizes of the populations used are
given in the graphics. The parallel computer used, is a SGI Origin 2000 with
16 processors. For better comparison the �tness is shown against the number of
�tness calculations and not against the number of generations. The other im-
portant quantity, besides the quality of the results, is the e�ciency as a measure
for the speed gain. The e�ciency is calculated by

E�ciency =
SpeedUp

#processors
(1)

with

SpeedUp =
#�tness calculationsparallel � timeserial

timeparallel � #�tness calculationsserial
. (2)

4.1 Pollination Model

First, we analyzed the behavior of the pollination model. Therefore, di�erent
numbers p of subpopulations and di�erent isolation times f were chosen. The
best individuals of the subpopulations are exchanged and the worst individuals
are replaced in the corresponding subpopulation. Fig. 3(a)3 shows the results for
di�erent numbers of subpopulations for HEAT. Here, �ve experiments have been
carried out for each parameter set and the average of the results has been taken.
We see, that the pollination model, synchronous or asynchronous, gives better
results, but converges slower than the master{slave model. The synchronous
algorithm has a slight advantage over the asynchronous algorithm referring to
the �nal results. Fig. 3(b) shows, that the e�ciency of the pollination model is
higher than the e�ciency of the master{slave model and thus is faster.

If the in
uence of the isolation time is analyzed, we can see, that higher
isolation times lead to better results. On the other hand we can see, that with less

3 In the following, the number behind the graph in the legend indicates the ranking
of the result after the last �tness calculation.



subpopulations, the convergence behavior of the pollination model improves, but
does not reach the convergence behavior of the master slave model. Overall, the
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Fig. 3. Results for the pollination model for HEAT

usage of the pollination model supplies better results in the end, because of the
higher diversity due to the subpopulations. On the other hand, the convergence
is slower than the serial algorithm in terms of �tness calculations. On the other
hand, through the enhanced e�ciency, it needs less time to reach the �nal results.

The results for SAT are shown in Fig. 4. Looking at Fig. 4(a), we �nd, that
the pollination model has no advantage over the serial algorithm with respect to
the quality. On the other hand, the e�ciency of the pollination model is higher
than the e�ciency of the master slave model (Fig. 4(b)). Due to the complexity of
SAT, the experiments are very time consuming. Thus, as we can see, the �tness
has not settled after 10000 �tness calculations. It is questionable if the �nal
results of the pollination models are better than the results of the master{slave
model.

4.2 Neighborhood Model

For the usage of the neighborhood model, we analyzed the e�ects of di�erent
numbers of individuals and processors. Here, a comma selection is used and the
neighborhood consists of the direct neighbors only. Fig. 5(a) shows the results
for HEAT. The best result is achieved for 36 individuals on 9 processors. The
e�ciency for this con�guration is good in comparison to the other con�gura-
tions here (Fig. 5(b)). But, comparing it to the e�ciencies in 4.1, we can see,
that this model is rather slow. The reason for the low e�ciency is the high
demand on communication. When using the neighborhood model for SAT the
same problems occur as described in 4.1. Again the area of convergence is not
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Fig. 4. Results for the pollination model for SAT
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Fig. 5. Results for the neighborhood model for HEAT

reached. However, we can see in Fig. 6(a) that the master{slave model converges
faster than the neighborhood models. The e�ciency is higher than the e�ciency
in HEAT, because the ratio between the time for one �tness calculation to the
communication time is higher. But, the e�ciency is still lower than the e�ciency
of the master{slave model or the pollination model.

Comparing the pollination model and the neighborhood model, we conclude,
that the pollination model is more advantageous in our case, concerning the
reached �tness and the e�ciency.
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Fig. 6. Results for the neighborhood model for SAT

5 Conclusions

The time needed for all �tness calculations necessary for the optimization of
a fuzzy rule base with a genetic algorithm reaches easily dimension, where the
use of a parallel computer can be justi�ed. The use of a parallel computer does
not only speedup the optimization process but gives also the opportunity to
use structured populations. These can change the quality of the results. To test
di�erent approaches and �nd satisfying parameter settings of the parallel evolu-
tionary algorithms, we have chosen two examples (HEAT and SAT) of di�erent
complexity.Besides the master{slavemodel, the pollinationmodel and the neigh-
borhood model have been applied and adapted to the examples. For the HEAT
example, it has been shown, that the pollination model has advantages in the
quality and the e�ciency over the master{slave model. The neighborhood model
shows some disadvantages in the results. The SAT examples shows similar re-
sults. In the future, further examination concerning the choice of the parameters
of the parallel evolutionary algorithms have to be done. The SAT example has
shown, that here more simulations are necessary to test the long term behavior
of the parallel evolutionary algorithms for complex applications.
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