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1 Introduction

A common approach in the field of EA design is to translate the real-world problem into
a standard representation. A disadvantage of this mapping between the phenotype and
genotype is that the effects of genetic operators on the phenotype space are difficult to
determine and that problem knowledge is not considered. Another approach is to use the

concept of the Metric Based Evolutionary Algorithm (MBEA) [1]:

e The domain knowledge is expressed by a metric on the phenotype space, such that
similar individuals according to the metric have similar fitness values.

e The metric on the phenotype space is preserved by the coding function for the
genotype space.

e The genetic operators (mutation, recombination) are designed in consideration of a
set of formal requirements (bias free operation, locality, reachability, feature preser-
vation).

In the field of fuzzy modelling an appropriate metric for the distance between fuzzy rules
is a difficult problem, especially if rules of different lenghth are used. A first approach has
been made by heuristic assumptions about the effect of modifications of a fuzzy rule [5,6].
The disadvantage of this approach is that the spatial position of the rules is neglected
and that the defined distance measure is not directly utilized for the mutation operator.
In this paper, a distance measure is described that considers the spatial situation and can
be much better exploited for the design of the mutation operator. It is developed for the
evolutionary rule search in the Fuzzy-ROSA' method [2-4].

In Section 2, the elements of the search space are defined and the problem of finding an
appropriate distance measure is discussed. In Section 3, the distance measure is defined by
a relation vector and a cumulating distance value. Figures illustrate the distance measure.
How this distance measure can be used for the mutation operator is explained in Section
4. Section 5 gives a conclusion.
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2 Elements of the search space and their interrelation

The elements of the search space are premises (if-clauses) of fuzzy rules like

IF (X1 = a15) A (Xy = a42)))
THEN (Y = bs)

with P input variables X1, X5,..., X,,..., Xp, output variable Y, linguistic input values
ay, and linguistic output values by. The conclusions of the rules are not included in the
search space as it is more efficient to evolve only the premises and then to combine all
possible conclusions [4].

Admissible premises are

G
(/\ (Ko@) = av(w)vku(w))>

~v=1

with Xv(a) 7é Xv(ﬁ)

for all o, € INwith 1 < o, < G and G < G4,- The value G is called combination
depth, the value G,,,, maximum combination depth. The constraint prevents that one
variable is considered more than once in a premise.

The premises with G < P (the number of linguistic expressions is smaller than the number
of input variables) are called generalizing premises. The variables that are not considered
can adopt any value.

We consider linguistic expressions (X, = a,x,) that are represented by one-dimensional
normal and convex fuzzy sets M, ;, with membership functions M, 4, (x,) and

D,
Z KA, 5, (l‘v) =1

ky=1

for all values x, of the variable X,. D, > 2 is the number of fuzzy sets of the input
variable X,. Then a generalised premise is represented by the following P-dimensional
fuzzy set:

S((U(l)v kv(l))a ceey (U(G), ku(G))) =

{((1'17 L2y - ,l’p); Ms(xlv L2y, J}P)) |/“LS = /\ </’LMy('y)7k,U(,y) (xv(ﬁ))> } :

~v=1

Each generalising premise covers several complete input situations. A complete input
situation is described by

V(1 k) (20ks), o (Pokp)) o=

{((xlvx?v s 7xP);/~LV(x17x27 s 7xP)) |/~LV = /\ </~LMv,kv (xﬁ)}

v=1
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with
pv(zy,...,xp) < ps(xy, ..., xp)

for all values of xy,...,zp. Consequently, the interrelation of a set of generalising premises
can be very complex. To exploit the whole information, a distance measure must be defi-
ned that bases on the calculation of distance and similarity measures of multidimensional
fuzzy sets. However, this approach has two essential drawbacks:

e The calculation is very time consuming.

e Such distance and similarity measures can be used if two premises are given. Ho-
wever, they are improper to evolve a new premise from an existing premise by a
mutation operator.

To overcome these drawbacks, the relation of two premises is reduced to essential charac-
teristics and the different dimensions are separated.

3 Relation vector

The relation of a premise S to a premise S, can be described by a relation vector
Rel(Sl, 52) = (Tl, oy ooy Tyyen. ,TP)

with r, the characterizing value (defined below) for the dimension X,. In this way, the
main spatial relations are represented. The advantage over one aggregated relation value
is that starting from one premise, a second premise can be constructed.

The mapping to the single dimensions is illustrated in Figure 1. In Figure 1 (a) the
premises are represented by their a-cuts S, of the associated fuzzy sets S with a = 0.5:

So = {(x1, 29y ooy xp)|ps(@1, 22, oo, Tyy ... xp) > ).
In Figure 1 (b) the premises are represented by their variable-specific a-cuts S? with
o =0.5:
SYi=Aayus(xr, ey o xy, o xp) > o)

Though we usually use the product as AND operator, here, the minimum is used because
of the easier presentability of rectangular areas. The analogically defined 0.5-cuts V,, and
V¥ of the complete input situations are represented by enclosing lines.

For determination of the characterizing values r, of two premises S; and S5, four cases

are distinguished:

1. No coverage, no contact:

The variable-specific a-cuts SY, and S, cover no joint a-cut V.V and are not neigh-

boured (middle diagram of Figure 1 (b)).
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(a) Spatial relation. (b) Mapping to single dimensions.
Figure 1: Example for mapping a spatial relation of two premises to the single dimensions.

2. Contact:

The variable-specific a-cuts S?; and S?, are neighboured. This would be if in the
middle diagram of Figure 1 (b) the a-cut S!, was one position further left.

3. Partial coverage:
The variable-specific a-cuts S¥; and SY, cover a joint a-cut V.V (top diagram of
Figure 1 (b)).

4. Complete coverage:

The variable-specific a-cuts S?; and S?, cover the identical a-cuts V' (bottom
diagram of Figure 1 (b)).

On this basis, the characterizing value r, is given by?

0 : complete coverage
1 : partial coverage
P4+1 : contact
(P+1)P+1 : no coverage, no contact

Ty =

Taking only four distinct values has the following advantages:

2The explanation for these values demands the definition of the cumulative distance value. Therefore,
it is given right behind the definition of the cumulative distance value A(Sy, Ss).



o A further distinction of partial coverages in smaller and larger ones causes that the
number of fuzzy sets of the variables play an important role. Following the idea, that
small mutations lead to small distances and occur more often than large mutations,
the values of variables with a few fuzzy sets are more frequently mutated than those
of variables with a higher number of fuzzy sets. This can lead to an undesirable
bias.

o Quantifying the case 'no coverage, no contact’ is not reasonable as all belonging pos-
sibilities S, have nothing in common with S?, and will anyway reach independent
fitness values as there are no common data points supporting the different premises.

The relation vector (r1,rg,...,7y,...,7p) can be interpreted as a distance vector. The
higher the values of the vector are the more differ the positions of S; and S, with respect
to the individual dimensions. The values (P + 1) and ((P + 1)P + 1) are chosen to get a

well interpretable cumulative distance value:

P
A(S,52) = Z Ty

v=1

If in all P dimensions there is a partial coverage with r, = 1, then there is A(S5y,52) =
P which i1s smaller then the cumulative distance value for one dimension with contact
r, = P+ 1 and all the other dimensions with r, = 0 (A(S1,5;) = P+ 1). And if in all
P dimensions there is a contact with r, = P + 1, then there is A(S1,52) = P(P + 1)
which is smaller then the cumulative distance value for one dimension with no coverage
and no contact with r, = (P4 1)P + 1 and all other dimensions with r, = 0 (A(Sy, 52) =
(P+1)P+1).

In Figure 2 and Figure 3 the relation of one selected premise S to all other possible
premises is illustrated. The associated relation vectors and distance values are specified.

4 Distance-based mutation

The distance measure is used to mutate a premise S; to a new premise S,.,. The quan-
tity of mutation is interpreted as distance value 0 < Ay < Appmae With Ay € IN and
AMmar = [(P + 1)P + 1)G] + [P — G]. The first part of the sum in squared brackets
represents the cumulated distance values for the G dimensions of the G linguistic expres-
sions of 57 that all have in an extreme case no coverage no contact. The second part of
the sum in squared brackets represents the cumulated distance value for the remaining
P — (G dimensions that have in an extreme case a partial coverage.

On the basis of this value, a mutation vector Mut = (my,ms,...,mp) is constructed that
is interpreted as relation vector. First the frequencies of the four different elements of the



mutation vector are calculated:

#H(m,=(P+ 1P +1
#(m, =P +1
#(m, =1

#(m, =0

) int(Ayp/((P+1)P 4+ 1)) =int(Q1) = N3

) = min[min[P — Ns,int(mod(Q1)/(P 4+ 1)], G — N3] = N,
) = min[P — Ns— Ny,mod(Q) — (P + 1)Ny] = Ny

) = P—Ny— Ny — Ny = No

The minimum functions are necessary, as not for all values of Ap; a relation vector is
existent. For Ny maximally P — N3 dimensions are left for mutation and for Ny maximally
P — N3— N,. For Ny remain P— N3 — Ny — N; dimensions. For N; the combination depth
of 51 must be additionally considered as no more mutations of this kind are possible as
linguistic expressions are left in the premise S;. The function int gives the integer value
of a quotient and the function mod the residual of a division.

The mutation values m, are allocated to the places of the mutation vector in three steps:

1. The mutation values m, = P+ 1 and m, = (P +1)P + 1 are randomly allocated to
places that refer to variables X, that are considered in the premise 5.

2. The remaining mutation values m, = 1 are randomly allocated to the remaining
places.

3. All not allocated places get the mutation value m, = 0.

An additional difficulty in the allocation process is that the combination depth of the
premise must not exceed (G,,,,. Thus, the following cases must be distinguished:

o If #(m, =1)+#(m, =P+ 1)+ #(m, = (P+1)P +1) < Gpaw — G, then the

allocation can be done as described above.

o If#(m,=1)+#(my,=P+1)+#(m, =(p+1)P+1) > G — G, then step two

of the allocation process must be refined.

— I #(m,=1) <Gpouw+ G =2(#(my, =P+ 1)+ #(m, = (p+1)P + 1)), then
the uprounded value of (G' — Gpap + #(m,, = 1))/2 is the number of mutation
values m, = 1 that must be allocated randomly to places that refer to variables
X, that are considered in the premise S;. The remaining number of mutation
values m, = 1 that are allocated randomly to the remaining places.

— I #(my,=1) > Guaw + G=2(#(my, =P+ 1)+ #(m, = (p+1)P + 1)), then
#(my = 1) = (Grae + G —=2(#(my, = P+ 1)+ #(m, = (p+1)P+1))) mutation

values m, = 1 must not be allocated.?

3This number can also be substracted in the calculation of #(m, = 1). Then this distinction is
superfluent in the allocation process.



In this way, the distance value Ay of the mutation vector Mut is either equal to the value
of Ay or adopts the next smallest possible value. Consequently, for all Ay;y < Apro there

The premise 5, is constructed from 5; along the following mutation rules:

1. m, =0:

There is no change with regard to the variable X,. The definite mutation value is
m,, = m, = 0.

2. m, = 1:

(a) If X, is considered in the premise, the associated linguistic expression is deleted.

(b) If X, is not considered in the premise, a linguistic expression (X, = a,x,) is
inserted. The linguistic value «a, j, is randomly chosen from the possible values
with equal probability.

The definite mutation value is m, = m, = 1.

3. m, =P+ 1:

The associated linguistic value a, , of the variable X, is changed to a neighgboured
value. If there are two neighboured values, then one is chosen randomly from the
two options with equal probability. The definite mutation value is m; =m, = P+1.

4. m,=(P+1)P+1:

The associated linguistic value a, 4, is changed to another value, but not to a neighg-
boured value. The definite mutation value is m; =m, = (P+1)P + 1. If there
are only neighboured values, then these are accepted. The definite mutation value
is m, = P+ 1. The values are chosen randomly with equal probability.

The resulting distance value between the premise S; and 5, 1s

P
A(S1, Spew) = Y _my, < App < Ay
v=1

In Table 1 an example illustrates the distance-based mutation. The premise

(X1 = a13) A ( Xy = aap)))

of a problem with ten input variables, D, = 5 and G,,,, = 6 is mutated by different
values of Ayy.

An alternative possibility is to choose directly a mutation vector Mut instead of a distance
value Ap;. The advantage is that the allocation time might be lower. However, the
disadvantage is that the quantity of mutation is a function of several random functions
and thus, the interaction is unclear.



Table 1: Mutations of the premise 5, =
6) on the basis of 23 randomly chosen values of Ajs sorted in ascending order.

((Xl = Cl173) A (X4 = Cl472)) (DU = 5 and Gmax =

AM Mut AM/ Snew A(Sla Snew)
0 (0,0,0,0,0,0,0,0,0,0) 0 (X;=da13)A(X4=as) 0
0 (0,0,0,0,0,0,0,0,0,0) 0 (X;=da13)A(X4=as) 0
0 (0,0,0,0,0,0,0,0,0,0) 0 (X;=ay3)A(Xs=ass) 0
1 (0,0,0,0,0,0,0,1,0,0) 1 (Xl == Cl173) A (X4 == Cl472) 1
A (Xg = Cl&l)

1 (0,0,1,0,0,0,0,0,0,0) 1 (Xl = aq 3) A (Xg == Cl375) 1
/\(X4 = Cl472)

2 (0,1,0,1,0,0,0,0,0,0) 2 (Xl = Cl173) A (X2 = Cl275) 2

2 (0,0,0,0,0,0,0,0,1,1) 2 (Xl == Cl173) A (X4 == Cl472) 2
A (Xo = ags) A (Xio = a10,4)

2 (0,0,1,0,0,0,1,0,0,0) 2 (Xl == Cl173) A (Xg == Cl373) 2
A (X4 == Cl472) A (X7 == Cl771)

3 (0,0,0,1,0,1,0,0,1,0) 3  (X;=ay3) A (Xe = ae1) 3
A (Xg = dg 4)

3 (1,0,0,0,1,1,0,0,0,0) 3  (Xi=as2)A(X5=ass) 3
A (X = ags)

4 (0,1,1,1,0,0,0,0,1,0) 4 (Xl :a13)/\(X2 —Cl24) 4
A (X3 =aza) A (Xo = ags)

4 (0,0,1,0,0,1,0,1,1,0) 4 (Xl :Cl173)/\(X3 :Cl371) 4
A (Xg = ago) A (Xe = ag4)
A (Xg = Cl&l) A (Xg = dg 1)

6 (1,0,1,0,0,1,1,1,0,1) 6 (X3:a372)/\(X4:a472) 1
A (X6 == Cl673) A (X7 == Cl775)
A (Xs =as1) A (Xio = a102)

7 (1,1,0,1,1,1,0,1,1,0) 7 (X2 :Cl271)/\(X5 :Cl574) 7
A (X6 = Cl675) A (Xg = Cl&l)
A (Xg = Cl973)
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12

25

31

52

67

139

172

(1,1,1,1,0,1,0,1,1,1)

(1,0,0,1,1,1,1,1,1,1)

(11,0,0,0,0,1,0,0,0,0)

(11,0,1,11,0,0,0,1,1,0)

(11,1,0,11,0,1,1,0,0,1)

(11,1,1,11,1,1,0,0,0,0)

(11,0,1,11,0,1,0,1,1,0)

(11,1,0,112,1,0,1,0,1,0)

(112,1,1,11,0,0,0,1,0,1)

8

8

12

25

26

26

26

127

127

(Xy =az1) N (X3 =ass)

A (X6 = Cl673) A (Xg = dag 4)
A (Xo = ag3) A (X0 = a10,4)
(X5 =asa) N\ (Xo = as5)

A (X7 =ars) N (Xs = asq)
A (Xg = ags) A (Xio = ai0,2)
(X1 =a14) N (X4 = aq2)

A (X6 = lg 4)

(X1 =a12) N\ (X3 = asz2)

ANXy = ag3) N (Xs = asq)
A (Xg = a9,1)

(X1 =a14) N (X2 = az;1)
A(Xy = as1) N (Xe = ae2)
A X7 =ars) A (Xio = ai0,2)
(X1 =a12) N (X2 = az3)
ANXs =as1) N (Xy = aqy)
A (X5 = Cl574) A (X6 == Cl671)
(X1 =a14) N (X3 =as;y)
A (X4 = Cl471) A (X6 == Cl674)
A(Xs =asi) N (Xg =ags)

A (X4 = a4 4) A (X5 Cl573)
A (X7 = Cl773) A (Xg = Cl971)
(X1 =a11) N (X2 = az;1)
A(Xs =asz) N (X4 =aus)
A(Xs = asz2) A (X1 = a10,2)

12

25

26

26

127

127




5 Conclusions

In this paper, a new distance measure for premises has been developed. It allows to measu-
re the distance between generalizing fuzzy premises according to their spatial interrelation
in the space of the input variables. By concentrating to the essential characteristics of
this interrelation and separating the different dimensions, this distance measure can be
directly used for the mutation of premises. In this way, small mutation quantities cause
small distance values and vice versa. The application of this distance measure will further
improve the realization of a Metric Based Evolutionary Algorithm (MBEA) in the field
of fuzzy modelling. In a next step, simulations are necessary to judge if an improved
distance measure will cause improved search results.
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( ) Rel(Sl,Sz) = (1,0,0), (51,53) = ( ) Rel(Sl, ) = (1 0 1) with ¢ = 7,8,9,
(0,1,0), Rel(51,S5;) = (0,0,1) with ¢ = Rel(51,5;) = (0,1, )Wlthj— 10, 11 12
4,56 and A(S1,5;) = 1 with j = and A(Sl,Sk):2W1thk’_78
2,3,...,6.
Q Q
Salsal legil a 1l
>
Sal?
/
(C) Rel(Sl,SZ) = (1, 1, 1) and A(Sl,SZ) = (d) Rel(Sl,Sm) = (4,0,0),
3 with ¢ = 13,14, 15. Rel(S1,517) = (0,4,0) and A(Sy, S;) =4
with ¢ = 16, 17.
< S S S
Sa 20 Sa 2l “a22 a 28
Sv1s 50265a27 So1
1
Sy 19 1=
° =1 I
So 25 T Seat
Se24 - a 30
So 23 ! Ser29
(e) R@l(Sl,Slg) = (4,1,0), (f) Rel(Sl,S) = (4 1 1) with ¢ =
Rel(Sl,Slg) = (1,4,0), Rel(Sl,SZ) = 26 27 28 Rel(Sl, ) (1 ) with
(4,0,1) with ¢ = 20,21, 22, 1 = 29,30,31 and A(51 Sk) = 6 with
Rel(S51,5;) = (0,4, 1) with k=26,...,31.

i=23,24,25 and A(Sy,S,) =5
with k = 18,19, ...,25.

Figure 2: Examples for relation vectors and distance values (part 1). A point represents a
premise that covers one complete input situation, a line a premise that covers three com-
plete input situations, and an angle a premise that covers nine complete input situations.

The value 4 results from P + 1 and the value 13 from (P + 1)P + 1 with P = 3.
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34
S033
(a) Rel(S1,S32) = (4,4,0), (b) Rel(S1, Ss6) = (13,0,0),
Rel(S1,S;) = (4,4,1) with ¢ = 33,34,35 Rel(S1, Ss7) = (0,13,0) and A(Sy, S;) =
and A(S7, S32) = 8, A(S1,S5:) =9. 13 with ¢ = 36, 37.
S Q QS
“ad2 <qg38 “a 48
Sa40 41 Sa46 4 i
I 1
Swso .
|
N T
’Sasa45 L T T T Ses0
° 14 —— = —
|
a 43 Sa49
(C) Rel(Sl,Sg,g) = (13, 1,0), (d) Rel(Sl,SZ) = (13, 1, 1) with ¢ =
Rel(Sl,Sg,g) = (1,13,0), Rel(Sl,SZ) = 46,47,48, Rel(Sl,Sj) = (1,13,1) with
(13,0, 1) with ¢ = 40,41, 42, J = 49,50,51 and A(Sy,S;) = 15 with
Rel(S1,5;) = (0,13,1) with k =46,47,...,51.
J =43,44,45 and A(S1,S;) = 14
with & = 38,39,...,45.
S S
~a 56 S a 63
S5 % Suer 12
L, L
” 0
P (] \
/\.’ ~ S 60 P
Sa/ Ve Sy ™ z
52 P ] /| Sa 59 | ()
- 58 7
Suss . Sus? *
(e) Rel(Sy1, Ss2) = (13,4,0), (f) Rel(S1,Se0) = (13,13,0),
Rel(Sl,Sg,g) = (4, 13,0), Rel(Sl,SZ) = Rel(Sl,SZ) = (13, 13, 1) with
(13,4,1) with ¢ = 54,55, 56, i=61,62,63 and A(S1, Sso) = 26,
Rel(S1,5;) = (4,13,1) with i = 57,58, 59 A(Sy, S;) =27.

and A(Sy,Sk) = 17 with k = 52,53,
A(S1, ) = 18 with k = 54,55, ..., 59.

Figure 3: Examples for relation vectors and distance values (part 2).
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