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Abstract

In the �eld of data{based fuzzy modeling two approaches are predominately

applied: Firstly, the optimization of an entire rule base by minimizing the model-

ing error and secondly to incrementally set up the rule base by individual tested

rules. Following the second approach the search space increases exponentially

with the number of input variables. On the other hand, due to the limited

amount of available data, the search space becomes more and more sparsely

populated. Therefore, part of the possible rules are no longer supported by any

data set and can be neglected in the search process. The tree{oriented rule

search concept, presented in this paper, takes advantage of this fact and leads to

a drastically reduced computational e�ort.

1 Introduction

The applicability of data{based fuzzy modeling methods depends strongly on an accept-
able computing time, especially if many linguistic variables and values are considered.
However, few of the fuzzy modeling methods, proposed in literature, can be applied
to high dimensional problems. Especially, approaches for optimizing the complete rule
base are often not practicable for more than a handful of input variables. For more
complex problems a suitable approach is to test and rate single rules, in respect to
the data. This reduces the problem of �nding a good rule base to the much smaller
problem of �nding individual relevant rules.

The tree{oriented rule search concept, presented in this paper, is integrated in the
Fuzzy{ROSA method (FRM) [1, 2, 3, 4]. However it can easily be transferred to other
approaches, if the following constraints are ful�lled: The approach must be based on

�This research was sponsored by the Deutsche Forschungsgemeinschaft (DFG), as part of the
Collaborative Research Center 'Computational Intelligence' (531) of the University of Dortmund
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testing individual rules and be able to handle generalizing (incomplete) rules. These
rules need not to consider all the linguistic input variables provided and therefore the
length (combination depth) of the premises may di�er (Section 2.1).

Here, for simpli�cation logical conjunctions of output variables are not considered.
Then the complexity arises predominantly from the number of input variables and
their linguistic values. Therefore, in the following, the in
uence of the output variables
is neglected and only the premises are considered.

On the one hand, the number of possible premises increases exponentially with the
number of input variables. On the other hand, the number of available data sets is
strictly limited in most applications. In this case, the number of data sets per premise
decreases drastically if the combination depth is increased. By exceeding a certain
combination depth, a large number of the premises are no longer supported by any
data set and when combined with any conclusion will not pass the rule test. If further
linguistic expressions are added to such a premise in order to generate a more special
premise, the derived premise is also not supported by the data. Thus, it needs no
longer be considered in the generation process. The tree{oriented rule search concept
takes advantage of this fact.

The paper is organized as follows: In order to obtain a more precise impression of the
present search space, the number of possible premises is compared to the number of
premises that need to be tested on average (Section 2). In Section 3 we describe the
tree{oriented search concept in detail. Finally, the e�ciency of the tree{oriented search
concept is compared to a previous approach by hand of a benchmark problem and a
real world application.

2 Search Space Structure

In this section the size of the search space, i.e., the total number of possible premises,
is speci�ed by combinatorial calculations. At �rst the underlying structure of rules
is introduced in Section 2.1. As mentioned above, the number of data sets is usually
limited. Taking this into account, the maximum number of premises that can be sup-
ported by the available data sets is calculated. Finally, for a simple case an estimation
is made of the number of hypotheses that must be tested on average.

2.1 Structure of Rules

The fuzzy rules considered here are of the Mamdani type [5, 3]:

IF P THEN C with P = e1 ^ : : : ^ ec and C = eY (1)
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The premise P consists of a conjunction1 of c linguistic expressions e referring to input
variable Xi and the conclusion C is a linguistic expression eY referring to the output
variable Y . The number of linguistic expressions c is called the combination depth. A
linguistic expression e is de�ned by Xi = sij, where Xi denotes the i-th input variable
and sij the j-th linguistic value for this variable. The Si linguistic values (sets) sij
are de�ned by membership functions �ij(xi), where xi denotes a real (crisp) input
value of the variable Xi. A linguistic output expression is de�ned analogously. The
number of linguistic expressions in the premise can be restricted by the maximum
combination depth cmax, which is usually chosen to be smaller than the number V of
input variables. The premise of a rule can also be interpreted as a linguistic input
situation. If c = cmax = V , i.e., each linguistic variable is considered, we speak of a
complete input situation and rule, respectively. Otherwise, if c < cmax, we speak of an
incomplete or generalizing input situation and rule, respectively. In the following, the
n-th data set is de�ned by the tuple dn = ( xn1 ; : : : ; x

n
V ; y

n) and D is the total number
of data sets.

2.1.1 Restrictions

The FRM and similar approaches allows us to introduce the following restrictions, in
order to prohibit the generation of undesired or infeasible rules. To preserve maximum

exibility, these restrictions can be activated optionally.

Combination Restriction: The default is to prohibit the combinations of linguistic ex-
pressions that refer to the same linguistic variables, because a premise of the type
IF "temperature is high" AND "temperature is low" is usually not interpretable.

Complement Restriction: In the FRM each linguistic expression can be used in a
negated form to formulate premises of the type if IF "temperature is not high".
This restriction is activated as the default, because only few of the common fuzzy
tools can process negated statements.

Minimal Data Support: The "trustworthiness" of a rule depends strongly on the
number of supporting data sets. In the FRM the (total) data support �totsup of a
given premise is de�ned by the sum over the degrees of membership for each data
set �totsup =

PD
n=1

Vc
k=1 �ikjk(x

n
ik
). This restriction allows us to de�ne a minimal

data support �min
sup . The default value of the minimal data support is chosen as

one. The number of supporting data sets ds with
Vc
k=1 �ikjk(x

s
ik
) > 0 is denoted

with Dsup.

1In the FRM, the logical AND is realized by the product [6]
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2.2 Search Space Analysis and Construction

The size of the search space, i.e. the total number of possible premises P pos
tot , increases

with the number V of input variable, the number Si of linguistic values of the variable
Xi and the maximum combination depth cmax. For the general case, described in [7], it
can be complicated to determine P pos

tot . Therefore, the following assumptions are made:

� The combination and complement restriction are activated and

� each linguistic variable has the same number of linguistic values (sets) S.

Due to the activated restrictions, each input variable can occur in only one linguistic
expression in the premise of the rule. Based on this fact, the number of possible
premises P pos

c for a certain combination depth c can be calculated as follows

P pos
c =

 
V

c

!
� Sc : (2)

The number of possible combinations for the given input variables is calculated by
the �rst factor in Eq. 2 and the second factor considers the in
uence of the di�erent
linguistic values of the input variables. The total number of possible premises P pos

tot is
the result of a summation over all combination depths

P pos
tot (cmax) =

cmaxX
c=1

P pos
c with cmax � V : (3)

To compare the total number of possible premises P pos
tot with the estimated total number

P sup
tot of premises that can be supported by the given data sets, the following assump-

tions are made:

� the partition of the linguistic values is de�ned as hard, i.e., not overlapping

� the number of data sets is D , and

� the distribution of the data sets is presumed to be the worst case, i.e., the maxi-
mum possible number of premises is supported.

The maximum number of premises Pmax
c of a given combination depth c that can be

supported by a single data set is calculated as

Pmax
c =

 
V

c

!
: (4)
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In comparison to Eq. 2, the number of linguistic values has no in
uence, because
only one linguistic value of each variable is supported by a data set, due to the hard
partition.

In the fuzzy case an additional factor 2c has to be considered in Eq. 4, assuming
that a crisp value xi supports maximal two sets sij1 and sij2. On the other hand,
considering a supporting data set ds the average activation

Vc
k=1 �ikjk(x

s
ik
) of a premise

can be roughly estimated by (1=2)c, if normal convex fuzzy sets are assumed, whose
membership degrees add up to one in each point. Furthermore, the number Dsup of
supporting data sets used for the rule test and rating [8, 6], is based on the sum over
the activations of the premise (see Section 2.1.1). This two e�ects compensate each
other partly and as shown in our experiments, the hard case is a good approximation.

The maximum number of supported premises P sup
c of the given combination depth c

and the total number P sup
tot is given by:

P sup
c = min(D � Pmax

c ; P pos
c ) and P sup

tot =
cmaxX
c=1

P sup
c ; (5)

where the number of supported premises P sup
c is limited to the maximum number of

possible premises P pos
c . As shown in Fig. 1, for a given combination depth c0 the num-

ber of supported hypotheses P sup
c0 is smaller than the number of possible premises P pos

c0 .
Applying the tree{oriented search concept presented in Section 3, some of the premises
need not be specialized and consequently not all premises of the following combination
depth are generated. The number of premises P save

c=c0+1 not tested is di�cult to deter-
mine, because it depends on the order in which the premises are generated. Therefore,
P save
c and the number of generated premises P gen

c are estimated by calculating the
average number of premises not tested

�P save
c =

P pos
c�1 � P sup

c�1

P pos
c�1

� P pos
c and �P gen

c = P pos
c � �P save

c ; with 1 < c0 < c : (6)

Consequently, the total number of premises P gen
tot that must be generated can be esti-

mated by

�P gen
tot (cmax) = P pos

tot (cmax)� �P save
tot ; with �P save

tot =
cmaxX
c=c0+1

�P save
c : (7)

The total number of possible premises P pos
tot is calculated using Eq. 3 and �P save

tot denotes
the estimated total number of premises not tested.
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2.2.1 Example

The numbers of possible, supported, saved and generated premises are illustrated in
Fig. 1 for the following example: number of input variables V = 20, number of
linguistic values per input variable S = 5, and number of data sets D = 10000.
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Figure 1: (Total) number of possible, supported, saved, and generated premises as
functions of the (maximum) combination depth

Considering the left side of Fig. 1, after the critical combination depth c0 is exceeded, it
can be seen that the number of generated premises �P gen

c decreases in a similar manner
as the number of supported premises P sup

c with increasing combination depth c. Due
to this fact, the increase of the total number of generated premises �P gen

tot is dramatically
smaller than the increase of the total number of possible premises P pos

tot (right side of
Fig. 1).

3 E�cient Complete Rule Search

There are two main approaches for the implementation of a complete rule search.
Firstly, all possible premises can be set up and tested (rule{oriented). Secondly, we
can set up and test all rules which are supported by the given data sets (data{oriented).
In both cases it is guaranteed, that all relevant rules are found, because if no data sets
support a rule, latter cannot pass the relevance test.

The computational e�ort arises mainly from the testing of the rules. For the rule{
oriented approach the number of possible premises P pos

tot is given by Eq. 3. As discussed
above, in the fuzzy case each data set supports 2c �Pmax

c premises with the combination
depth c (compare to Eq. 4). Consequently the possible number P dat

tot of premises in the
data{oriented approach is given by
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P dat
tot =

cmaxX
c=1

P dat
c with P dat

c = 2c �D � Pmax
c ; (8)

where P dat
c denotes the number of possible premises of a certain combination depth c

in the data{based approach.
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Figure 2: (Total)number of possible premises as function of the (maximum) combina-
tion depth for the rule- and data{oriented approach

In Fig. 2 the two approaches are compared for the same example as used in Section
2.2.1. It can be seen that for lower combination depths c < 10 the computational
e�ort of the data{oriented approach is higher. For higher combination depths the
rule{oriented approach is more time consuming. According to Fig. 1 for combination
depth c > c0 = 6 both approaches test more premises than supported in average after
Eq. 7.

It should be noted, that the data{oriented approach can be improved by a mechanism
for avoiding repeated testing of premises. On the other hand, such a mechanism can
also become very time consuming due to the higher number of premises. Therefore we
favorite the tree{oriented search concept presented in the next section.

3.1 Tree{Oriented Complete Search (TOCS)

In the tree{oriented complete search (TOCS), premises are set up and tested with
respect to all linguistic output values (rule{oriented). The TOCS concept is based on
the linguistic expressions (see Section 2.1). Therefore, the latter are numbered serially:
~e1 = ( X1 = s11; ~e2 = ( X1 = s12); : : : ; ~eE = ( XV = sV SV ) , where the total number
of linguistic expressions is denoted by E =

PV
i=1 Si. Starting from the �rst linguistic

expression ~e1 all more special premises are generated as diagrammed in Fig. 3.

Consider now the n-th linguistic expression ~en. For the combination depth c = 1 the
premise is given by P = ~en . Based on this premise, rules are set up by combining it
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Figure 3: The tree{oriented complete search (TOCS). Starting from a given premise
the necessary specialization (generation) steps are indicated in the box. First the re-
strictions are checked. If the premise is restricted, the branch need not to be considered
any more. Then the premise is tested. A result of the test are the supporting data sets,
which are taken as a data base in the next specialization step. Finally, a new term is
added to the premise.

with all linguistic output values as conclusions. The chosen test and rating strategy is
applied, and each rule found relevant is added to the rule base.

Then a new linguistic expression ~en+1 is added to the premise, until the maximum
combination depth c0max is reached. In order to avoid infeasible premises the maximum
combination depth is set as c0max = min(cmax; E � n). If the TOCS is applied in this
way, all possible rules are set up and tested. By activating combination restriction
and minimal data support (Section 2.1), the TOCS can be speeded up drastically as
follows:

� A rule is unreasonable in the sense of combination restriction, if two linguistic
expressions refer to the same linguistic variable. If this occurs at a certain point,
the premise remains restricted, even if it is specialized. Consequently, this branch
need not be considered further.

� Rules with a high combination depth are more likely to be not supported by any
data sets. Therefore, if a rule is not supported, no more specialized rule with
additional linguistic expressions based on that rule can be found relevant. This
means that if such a point is reached in a branch of the TOCS, the branch need
not be followed further. The computational savings are estimated in Section 2.2.

� Following one branch, a decreasing number of supporting data sets need to be
considered. Therefore, the rule test and rating [8, 6] can be implemented very
e�ciently by considering only the Dsup supporting data{sets.
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It should be noted that it is also possible to design a tree{oriented search in which rules
restricted by the combination restriction are not set up. On the other hand, the TOCS
presented here is more 
exible and the computational e�ort to check the restrictions
can be neglected in comparison to rule test and rating.

4 Results

In this section the e�ciency of the TOCS is studied based on simulations by means
of a benchmark problem and a real world application. In the following we give a brief
description of the chosen examples and the used hard- and software.

4.1 Examples and Simulation Enviroment

In order to examine the search behavior of the TOCS in di�erent search spaces, we
choose two examples with a very di�erent data density, i.e. number of data sets D
divided by the total number of possible P pos

tot . In the following description the (maxi-
mum) number of input variables V , the number of linguistic expressions (sets) S per
input variable and the number of data sets D are denoted in brackets, for specifying
the search space

wine (V = 13 ; S= 5 ; D= 178): A classi�cation problem based on data sets2 that
result from chemical analyzes of wine, grown in the same region in Italy, but
derived from three di�erent cultivators. The analysis determines the quantities
of 13 constituents found in each of the three types of wines. The number S of
linguistic values (sets) per variable is �ve.

load prediction (Vmax = 7 ; S= 7 ; D= 35040): The prediction of the electrical load,
required by the consumer in a service area, is essential for the operating e�ciency
and safety of a power control system. Here we consider only the simpli�ed task
to predict the load one time step ahead, based on the actual and the previous
time steps. The number of variables depends on the maximum time depth V =
tmax+1. The maximum time depth is given by the maximum combination depth
tmax = cmax � 1.

All results are obtained on a Pentium 200 MHz (MMX), 128 MB RAM with the
Winrosa 2.0 software tool3. For comparison of our results we use the complete search
shortened (CSS) [9], which is comparable to the TOCS, if the minimal data support
restriction and support data base are not considered.

2UCI Repository of Machine Learning Databases
http://www.ics.uci.edu/ mlearn/MLRepository.html

3The TOCS is only available in the expert version. More informations and demo software:
http://esr.e-technik.uni-dortmund.de/winrosa/winrosa.htm
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4.2 E�ciency of the Tree{Oriented Complete Search (TOCS)

The computational e�ort arises predominately from the total number of tested premises
P test
tot . This number

4 can be calculated by P test
tot = P pos

tot � P res
tot , where P

res
tot denotes the

total number of restricted premises. As described in Section 4.1 the number of restricted
premises P res

tot depends on the chosen search method.

In Figure 4 (left) the number of tested premises P test
tot for the di�erent search methods

is compared to the number of possible premises P pos
tot and the estimated number of

generated premises P gen
tot after Equation 7.
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Figure 4: Empirical results for the example wine for the di�erent search methods: In
the left chart the number of tested premises is compared to the number of possible
premises P pos

tot and the estimated number of generated Premises P gen
tot . The dependency

of the computing time from the maximum combination depth cmax is shown in the
right chart.

It can be seen that the complete search tests all possible premises. In comparison the
number of premises tested by the TOCS is drastically smaller (factor 343 for cmax = 7).
For the same maximum combination depth the generation time for the complete search
is 723 times higher than for the TOCS. The factor two for the save of computing time
compared to the save of tested premises arises from the support data base, i.e. the rule
test in the TOCS need not to consider all data sets for cmax > 2 (compare to Section
3).

Furthermore it can be seen that the our estimation for the generated premises P gen
tot

is conservative in the sense that the actual number of tested premise P test
tot is always

smaller. A possible explanation is, that the worst case for data distribution is underlaid

4The Winrosa 2.0 software tool indicates the total number of generated rules Rgen and the total
number of inadmissible rules Rres. The corresponding number of tested premises can be calculated
as follows: P test

tot = ( Rgen �Rres)=SY , where SY denotes the number of linguistic values (sets) of the
output variable. Thereby we assume, that only one output variable is considered and consequently
each premise has to be tested in respect to all linguistic output values.
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for the calculation of P gen
tot in Section 2.2. However, the estimation and the simulation

show a similiar behavior. First, the number of testet/generated premises increases ex-
ponentially. Then, if a certain maximum combination depth is exceeded the number
of tested/generated premises and also the computing time is nearly constant. Conse-
quently, if this critical point can be reached it is possible to �nd all relevant rules with
a maximum combination depth up to cmax = V .

Considering now Figure 4, in this example this critical point is not reached yet, due
to the much larger amount of data sets. Nevertheless the save of computing time is
factor 739 for a maximum combination depth cmax = 7, even though the save of tested
premises is only factor nine. In this example the save of computing time for the lower
combinations depths is predominately caused by the decreasing number of support
data sets Dsup (compare to Section 3).
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Figure 5: Empirical results for the example load for the di�erent search methods: In
the left chart the number of tested premises is compared to the number of possible
premises P pos

tot and the estimated number of generated Premises P gen
tot . The dependency

of computing time from the maximum combination depth cmax is shown in the right
chart. Di�erent from the example wine, here the number of variables V = cmax depends
on the maximum combination depth.

4.3 In
uence of the Minimal Data Support

For the results presented so far the default value �min
sup = 1 has been chosen for the

minimal data support restriction. By increasing it, more premises are restricted and
this leads to a smaller search space, i.e. less premises have to be generated and tested.
However, if a critical value for the minimal data support is exceeded, not all relevant
rules are found.

In Figure 4 (left) the number of tested premises P test
tot applying the TOCS is compared to

the estimated number of generated premises P gen
tot after Equation 7 for di�erent values
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�min
sup of the minimal data support. It can be seen that the search space for �min

sup = 8 is
26 times smaller than for �min

sup = 1. Also the computing time in the same case is still
eleven times smaller (right chart of Figure 4). For higher values of the minimal data
support not all relevant rules are found, (e.g. 98.4 % for �min

sup = 9). It has to be noted,
that the critical value depends on the problem by hand and the chosen rule test [8].
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Figure 6: Empirical results for the example wine depending on the minimal data
support �min

sup : In the left chart the number of premises tested by the TOCS is compared
to the estimated number of generated Premises P gen

tot . The dependency of the computing
time from the minimal data support �min

sup is shown in the right chart.

5 Summary

The tree{oriented complete search (TOCS) presented in this paper leads to a drasti-
cally reduced computational e�ort in sparsely populated search spaces. This is due
to the fact, that not all possible rules of a certain combination depth are supported
by data sets and therefore need not to be considered further in the search process.
An estimation is made based on search space structure analysis for the number rules,
which need not to be tested by taking advantage of this fact. Our simulations validate
the theoretical results, by hands of a benchmark problem and a real{world application.
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