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1

Evolutionary Algorithms (EAs) are successfully applied to optimization tasks,
but theoretical knowledge is still far behind practical experience. In recent years,
advances in the theoretical analysis of the computational time complexity of EAs
have been made. However, this kind of theory often focuses on simple single-
individual EAs such as the (1+1) EA (e.g., Garnier, Kallel, and Schoenauer
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Abstract

Evolutionary Algorithms (EAs) are successfully applied for optimiza-
tion in discrete search spaces, but theory is still weak in particular for
population-based EAs. Here, a first rigorous analysis of the (u+1) EA
on pseudo-Boolean functions is presented. For three example functions
well-known from the analysis of the (1+1) EA, bounds on the expected
runtime and success probability are derived. For two of these functions,
upper and lower bounds on the expected runtime are tight, and on all
three functions, the (u+1) EA is never more efficient than the (1+1) EA.
Moreover, all lower bounds grow with . On a more complicated function,
however, a small increase of p provably decreases the expected runtime
drastically.

For the lower bounds, a novel proof technique is developed. The
stochastic process creating family trees of individuals is investigated and
relationships with well-known models of random trees, e. g., uniform ran-
dom recursive trees, are established. Thereby, a known theory on random
trees is transferred to the analysis of EAs. Moreover, generalizations of
the technique are applicable to more complex population-based EAs.
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(1999), Droste, Jansen, and Wegener (2002), Wegener (2002)). Therefore, it
does not explain the utility of populations employed in many real-world EAs.
In the context of multi-objective optimization, populations are used to maintain
a set of solutions close to Pareto-optimal solutions or even a subset of a Pareto
set. Indeed, for simple multi-objective evolutionary algorithms, first runtime
analyses have been presented recently (e.g., Laumanns, Thiele, Zitzler, Welzl,
and Deb (2002), Giel (2003)). These analyses, however, do not explain the
utility of populations satisfactorily if we consider the scenario of single-objective
optimization. There, a population is meant to maintain implicit parallelism and
to explore different regions of the search space.

We focus on single-objective optimization in discrete search spaces, in par-
ticular on the maximization of pseudo-Boolean functions f: {0,1}"™ — R. Here,
some analyses of the impact of crossover operators on the runtime are known
(e.g., Storch and Wegener (2003), Jansen and Wegener (2001c)). Compared
with this, results on population-based EAs where mutation is the only search
operator are somewhat weak. Runtime analyses for steady-state EAs using
fitness-proportional selection and a standard mutation as single search oper-
ator have been performed by Jansen and Wegener (2001b) and Witt (2003).
Recently, Storch (2004) presented runtime analyses for steady-state EAs using
uniform selection and diversity-maintaining operators. Moreover, He and Yao
(2002) studied some variants of (u+p) EAs. However, results on the time com-
plexity of standard (u+\) EAs using uniform selection for reproduction hardly
exist for pu > 1, i. e., non-trivial sizes of the parent population. Up to now, only
results on corresponding (1+\) EAs (Jansen and De Jong (2002)) are known.

The aim of this paper is to contribute to a theory of standard (u+XA) EAs
with ¢ > 1 in discrete search spaces. Here, we start with the simple case
A = 1 and consider a (u+1) EA that is a generalization of the (1+1) EA for
the search space {0,1}", and follow the research line started for this (141) EA.
Therefore, we study the behavior of the (u+1) EA on example functions and
compare the obtained results with those for the (1+1) EA. To this end, a new
and general proof technique for bounding the expected runtime of the (u+1) EA
from below is developed. An advantage of the new technique is that it has not
been designed for a special mutation operator. In particular, we are able to
analyze the (u+1) EA with a global search operator that may flip many bits. In
other contexts, analysis of EAs is much more difficult with a global than with
a local search operator (for such examples see, e.g., Wegener and Witt (2003),
He and Yao (2003)).

The paper is structured as follows. In Section 2, we define the (u+1) EA
and the considered example functions. Moreover, we introduce the tool of fam-
ily trees that is essential throughout the paper. In Section 3, simple upper
bounds on the expected runtime of the (u+1) EA on the example functions
are presented. In Section 4, we describe the new lower bound technique. We
apply the technique in Section 5 to prove lower bounds on the expected runtime
and bounds on the success probability. These bounds are tight for two of the
examples. Moreover, they show that on all three examples, the (p+1) EA is
asymptotically never more efficient than the (1+1) EA. However, it is a com-



mon belief that a population helps to better explore the search space, and it
is important to find an example where the (u+1) EA with u > 1 outperforms
the (141) EA. Therefore, a function where an increase of p by a sublinear
factor decreases the expected runtime drastically, namely from exponential to
polynomial, is identified in Section 6. We finish with some conclusions.

2 Definitions

We obtain the (u+1) EA for the maximization of functions f: {0,1}" — R
as a generalization of the well-known (141) EA (see Droste, Jansen, and We-
gener (2002)). As for continuous search spaces, a pure (1) evolution strategy
should do without recombination and should employ a uniform selection for re-
production. As usual, a truncation selection is applied for replacement. The
mutation operator should be able to search globally, i.e., to flip many bits in
a step. Therefore, a standard mutation flipping each bit with probability 1/n
seems the most sensible. These arguments lead to the following definition of the
(u+1) EA.

Definition 1 ((u+1) EA)

1. Choose  individuals 9 € {0,1}", where i € {1,...,u}, uniformly at
random. Let the multiset X(© = {20 . 2"} be the so-called initial
population at time 0. Let t := 0.

2. Repeat infinitely

(a) Choose some x from the population X® at time t uniformly at ran-
dom.

(b) Create x' by flipping each bit of x independently with probability 1/n.
Let X' be the population obtained by adding ' to X,

(c) Create X the population at time t+ 1, by deleting an individual
with lowest f-value from X' uniformly at random.

(d) Sett:=t+1.

We have kept the (u+1) EA as simple as possible and refrain from employing
diversity-maintaining mechanisms. The (u+1) EA with g =1 is very similar to
the (1+1) EA but differs in one respect. If an individual created by mutation has
the same f-value as its father, either of both is retained with equal probability.

As usual in theoretical investigations, we leave the stopping criterion of the
(u+1) EA unspecified and analyze the number of iterations (also called steps)
of the infinite loop until the current population for the first time contains an
optimal individual, i. e., one that maximizes f. The sum of this number and the
population size u is denoted as the runtime of the (u+1) EA and corresponds
to the number of function evaluations executed so far (a common approach in
black-box optimization, cf. Droste, Jansen, Tinnefeld, and Wegener (2003)).



Throughout the paper, we consider only p = poly(n), i.e., values of u bounded
by a polynomial of n.

We study the (u+1) EA on the following example functions. The well-
known function ONEMAX(z) = 1 + -+ + z,, counts the number of ones of a
string z € {0,1}", and LEADINGONES(z) = > i, H;Zl x; counts the number of
leading ones. The function SPC(x) (short path with constant fitness) introduced
by Jansen and Wegener (2001a) equals n—ONEMAX(z) if « cannot be written as
1%0"~ for any i. It equals 2n if x = 1™ and n+1 otherwise. SPC is of particular
interest since it is necessary to search within a plateau of constant fitness to
find an optimal string. Here, it should be studied whether the exploration of
the plateau benefits from the population.

To elucidate the utility of the (u+1) EA’s population, throughout the paper,
we compare the (u+1) EA with u parallel runs of the (141) EA. The total cost
(neglecting initialization cost) of ¢ steps of the (u+1) EA corresponds to the cost
raised by p parallel runs of the (14+1) EA up to time ¢/u. Thus, if we consider
a (u+1) EA at time ¢, we denote p parallel runs of the (141) EA considered at
time t/p as the corresponding parallel run.

In order to derive runtime bounds for the (u+1) EA, it is helpful to consider
the so-called family trees of the individuals from the initial population (this
concept has been introduced in a different context by Rabani, Rabinovich, and
Sinclair (1998) and already been analyzed for a different population-based EA by
Witt (2003)). Fix an arbitrary such individual z. If z is mutated, a descendant
of x is produced. More generally, we can visualize the descendants of x and their
descendants by the family tree T;(z) at time ¢ as follows. Ty () contains only the
root x. T;(x) contains T;_1(z) and the additional edge {v, w} if w is the result
of a mutation of the individual v at time ¢ — 1 and v is contained in T;_1(x).
The tree T3(z) can contain individuals that have already been deleted from the
population at time ¢. When studying family trees (and subgraphs of them),
we often omit the time index ¢t. Note that the (u+1) EA describes an infinite
stochastic process, implying that the process growing the family trees Ti(z) is
infinite as well for at least one x from the initial population.

Finally, all nodes in a family tree are different individuals, but many indi-
viduals in a family tree may represent the same search point s € {0,1}"™. For
an individual z (in a family tree), we call the search point s € {0,1}"™ that is
associated with = the string of x or say that x is/carries the string s.

3 Upper Bounds

The first two of following upper bounds on the expected runtime of the (u+1) EA
are not too difficult to obtain. The proofs use potential functions, a straightfor-
ward generalization of the proof technique of artificial fitness layers (cf. Wegener
(2002)).

Theorem 1 Let u = poly(n). Then the expected runtime of the (u+1) EA on
LEADINGONES is bounded above by p+3en-max{uIn(en),n} = O(unlogn+n?).



Proof: Note that the term p reflects the cost of initialization. We measure the
progress to the optimum by the potential L, defined as the maximum LEADING-
ONES value of the current population’s individuals. To increase L, it is sufficient
to select an individual with value L (hereinafter called a best individual) and to
flip the leftmost zero. The selection and the mutation operator of the (u+1) EA
are independent. Hence, if there are ¢ best individuals, the probability of the
considered event is at least
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and the waiting time is at most epn/i. The potential has to increase at most n
times. Estimating i by 1 would lead to an upper bound of p + eun? on the
expected runtime.

However, the (u+1) EA can produce replicas of individuals. If the number
of best individuals is i, the probability of creating a replica of a best individual

is bounded below by
i ( 1 ) " i
—(1=-=] >—.
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Furthermore, if ¢ < p, this replica replaces a worse individual and increases the
number of best ones. Assume pessimistically that L does not increase until we
have at least min{n/In(en), u} best individuals. The expected time for this is

at most
n/In(en)—1

Z H < 2ep(In(n/In(en)) + 1) < 2epln(en).

1
i=1
Now the expected time to increase L is at most eun/(min{n/In(en), u}). Alto-
gether, the expected runtime is at most

eun
min{n/In(en), u}
as suggested. ([
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By the preceding proof, we have also shown the following corollary, which
will turn out to be useful later.

Corollary 1 Let = poly(n). Then the expected time until the (u+1) EA on
LEADINGONES creates an individual with k leading ones is bounded above by
p~+ 3ek - max{uIn(en),n}.

Now we study the well-known ONEMAX problem. Interestingly, we require
somewhat more complicated arguments to show upper bounds on the expected
runtime. This was also the case when Jansen and De Jong (2002) showed
corresponding upper bounds for the (1+\) EA.

Theorem 2 Let n = poly(n). Then the expected runtime of the (u+1) EA on
ONEMAX is bounded above by u+ Seun + enln(en) = O(un + nlogn).



Proof: The proof idea is similar as in Theorem 1. Let L be the maximum
ONEMAX value of the current population. In contrast to LEADINGONES, the
probability of increasing L depends on L itself. Since each individual has at
least n — L zeros, the considered probability is bounded below by
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if the population contains at least ¢ individuals with value L.

By the same elementary calculations as in the proof of Theorem 1, the time
until the population contains at least min{n/(n—L), u} individuals with value L
is bounded above by 2epIn(en/(n — L)) if L does not increase before. If we sum
up these expected waiting times for all values of L, we obtain (using Stirling’s
formula) a total expected waiting time of at most

reyes
enL) = 2eu ln(eTZ ) < 2epIn(e®™) = deun.

After the desired number of individuals with value L has been obtained, the
expected time for increasing L is at most

eun eun

min{p,n/(n— L)} - (n— L)  min{u(n — L),n)}"

Hence, the expected waiting time for all L-increases is at most

n—1
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and the total expected runtime, therefore, at most p + enln(en) + 5Seun. (]

For SPC, we can only prove a (seemingly) trivial upper bound. Surprisingly,
it will turn out later that this bound is at least almost tight. For the proof, the
tool of family trees comes into play.

Theorem 3 Let i = poly(n). Then the expected runtime of the (u+1) EA on
SPC is bounded by O(un?).

Before preceding to the proof, we introduce some notions. In the run of the
(u+1) EA on SPC, there is a first point of time where all individuals of the
current population are so-called plateau strings, i. e., individuals of shape 1?0™ %,
i €{0,...,n}. (Note that we allow 7 = n whereas the string 1" is not from the
plateau of constant fitness. Maybe it would be more precise to call these points
path points since 1°0"~* is a connected path. We stick to the notion of plateau
strings to avoid confusions with paths within family trees studied later.) Let tp1a
denote this point of time. The random variable 1, = 0 has finite expectation
and may take even extreme values such as 0, i. e., the initial population consists



only of plateau strings. With high probability, however, ty. occurs later, and
the population at time tp1, does not yet contain an optimal string.

Steps that occur after time ¢,1, and produce individuals outside the plateau,
i.e., not of shape 1°0" ¢, immediately delete the created individual. We now
study the family trees of the population at some time ¢ > t,,. Let = be
such an individual and let y be a node in its family tree. If the individual
corresponding to y has been deleted by time t, we call the path from x to y
dead, and alive otherwise. There is always at least one alive path in some
family tree. Now consider an alive path at some time. The event that the path
is currently alive imposes conditions on the mutations creating the nodes on
the path. After time tp1a, €. ., & path cannot be alive if it contains individuals
outside the plateau. Moreover, the following Lemma 1 is crucial. To avoid
any misunderstandings in its formulation, we emphasize here that we consider
a random object without any further conditions if we speak of “any object” in
the context of a set of random objects. Hence, e. g., “any path” in Lemma 1 will
mean that we consider a random path that can be thought of as being chosen
uniformly from the corresponding family tree.

Lemma 1 Consider the (u+1) EA on SPC. Let 29 be any individual from
the population at time t > tp1a, and let p* be any path in the family tree of z(©
at time t' > t. Let s, ..., s denote the strings along p*. If p* is alive and
s@ £ 1™ for 0 < i < £, the sequence 59, ..., s© has the same distribution as
the sequence of strings of the (1+1) EA on SPC in the time steps 0,..., ¢ if it
starts with s°) and does not create 1" by time £.

Proof: Let (@, ... 2 be the nodes of the path p*. We prove the claim
by induction on ¢ € {0,...,¢}, where the base case i = 0 is trivial. For the
induction step, let 0 < i < ¢ and assume that the node x(9), carrying s(), has
been created and is alive. The latter is necessary for p* to be alive at time ¢’
Now the lemma imposes exactly the following set of conditions for the induction
step.

e A step occurs that chooses (¥ for mutation, creates a candidate s’ # 1"
for s(t1) by the mutation and does not delete the node @’ carrying s'.

e If i+1 < £, 2/ is not deleted until a step occurs that chooses 2z’ and
produces z(i12); if i +1 = ¢, 2’ is not deleted by time ¢'.

e The node 2’/ equals the node z(it1) on the path p*.

Let A denote this set of conditions. If A holds, s’ is called s*t1. W.1.0.g., we
assume that the first node z’ fulfilling the first two properties also satisfies the
third property since we do not make any assumptions on the time steps between
t and t’ where p*’s nodes are created and since the mutations in different steps
of the (u+1) EA are independent of each other. Since we study time t' > ¢pia,
Condition A forces s’ to be a plateau string different from 1”. This also holds
for the current strings of the (1+1) EA up to time £. Hence, in the mutation



producing s(*1, both the mutation operator of the (u+1) EA and the (1+1) EA
are conditioned on the event that some 1¥0"~* k # n, is produced.

To study the distribution of s(**1) more carefully, recall that the (u+1) EA
chooses for deletion uniformly from the set of worst individuals. Now, since all
individuals of shape 170777, j # n, have the same SPC value, the event that
a path with such an individual at its end dies is independent of the value of j.
Hence, Condition A does not depend on j. Let p(j, k) be the probability of the
(u+1) EA’s mutation operator changing s of shape 170"~/ into some s’ of
shape 1%0"~* where j,k # n. By the definition of independence, we obtain
p(j,k)|A = p(4,k). This means that k follows the same distribution both with
and without Condition A. The (1+1) EA has the same mutation operator as
the (u+1) EA, and a mutation changing 170"~/ into 1¥0"~*, where j, k # n,
is always accepted. Since s(¥) has the same distribution as the corresponding
string of the (141) EA, the induction step follows. O

Proof of Theorem 3: Let x be an arbitrary individual from the population
at time tp1, and let T'(x) be its family tree. We want to show that the following
property P holds. The expected time until at least one path in T'(z) reaches
length & or until all paths in 7'(z) are dead is bounded above by 4euk for all k,
or the optimum is reached before. This will imply the theorem for the following
reasons. We will show that E(tpa) = O(unlogn). Moreover, we will apply
Lemma 1 in the following way. We consider a random path within 7'(xz) up to
the first occurrence of 1™. It follows that the probability of obtaining 1" on a
path of length ¢+ 1 within T'(z) equals the probability that the (14+1) EA with
starting point x creates 1™ within ¢ 4 1 steps. By the results of Jansen and
Wegener (2001a), this implies that the optimum is obtained after an expected
path length of O(n?) in a family tree. By Markov’s inequality, a path length
of O(n?) is sufficient to reach the optimum with probability at least 1/2. Since
at least one path remains alive forever, this implies according to P that with
probability at least 1/2, the optimum is reached after O(un?) expected steps. In
the case of a failure, we can repeat the above argumentation with an individual
from some time ¢ > tp12. The expected number of repetitions is bounded above
by 2 such that the optimum is reached after an expected number of O(un?)
steps.

To prove P, we only have to consider the case that there is always at least
one alive path for x within 4euk steps. For a current point of time, we define
the following potential L. Let S be the set of those currently alive successors
of z that will always have an alive descendant within 4euk steps. Then L is
defined to denote the length of a longest path leading from x to an individual
from S. A special property of the potential L is that it depends on the future,
but is a function mapping each current point of time to a value. Moreover,
by definition, L cannot shrink in the run of the (u+1) EA, and there is the
following sufficient condition for increasing L. An individual z’ defining the
current L-value is chosen for mutation, a child from the plateau is produced,
and z’ is deleted from the population before its child is deleted. The probability
is 1/p for the first event, (1 — 1/n)™ > 1/(2e) for the second event since it is



sufficient to produce a replica, and 1/2 for the third one since the considered
individuals have the same SPC value. Hence, the expected time to increase L
is bounded above by 4eu, implying that an alive path reaches length k after an
expected number of at most 4euk steps.

We still have to show that E(tp1.) = O(unlogn). If the population contains
at least one plateau string, there is the following sufficient condition for increas-
ing the number of plateau strings: The (u+1) EA chooses a plateau string and
produces a replica of it. Hence, by similar arguments as in the proof of Theo-
rem 1, the population is filled up by plateau strings after an expected number
of O(ulog p) = O(plogn) steps. Otherwise, the value of any individual x of the
population is given by n—|ONEMAX(z)|. Then the expected time until creating
a plateau string is bounded above by the expected time until minimizing the
number of ones in at least one individual, i.e., by O(unlogn). 0

4 A General Lower Bound Technique

For lower bounds on the runtime, we consider the growth of the family tree for
any initial individual of the (u+1) EA. Upper bounds on the depth of family
trees always follow from the selection mechanism of the (u+1) EA, which selects
the individual to be mutated uniformly from the current population. Therefore,
it is possible to model the stochastic process growing a family tree as follows.

Definition 2 (1/p-tree) Let p := pi o, t,u > 0, be a sequence of probability
distributions such that the support of p. is a subset of {0,1,...,u}. A p-tree
at time 0 consists only of the root. A p-tree Ty at time t > 1 is obtained from
a p-tree Ty;_1 as follows. Let u be the number of nodes of T;—1. Sample v by
Di—1,u- If v >0, append a new leaf to the v-th inserted node of Ty_1; otherwise,
let Tt = thl-

A p-tree is called a 1/p-tree if pyo(v) < 1/p for all v > 0.

A p-tree at time t can have less than ¢t + 1 nodes since p can put some
probability on 0. In principle, the growth of a family tree of the (u+1) EA on a
given function can be modeled by the stochastic process called p-tree. However,
we cannot specify the distributions py ,, exactly since it is too difficult to predict
whether and, if so, which individuals corresponding to nodes from a tree are
deleted. Recall that nodes corresponding to deleted individuals are nevertheless
kept in the family tree forever but cannot produce any descendants. Hence, in
the (u+1) EA, deleted nodes have probability 0 of being chosen and alive nodes
have probability 1/u. This is modeled by the class of processes that we call
1/p-tree.

The following lemma contains an interesting result for the depth of 1/ u-trees.
Its technical proof is included in Appendix A.2.

Lemma 2 Let D(t) denote the depth of a 1/u-tree at timet. For allt > 0 and
d >0, Prob(D(t) > d) < (t/p)?/d!. Moreover, Prob(D(t) > 3t/u) = 2~ /1,



Lemma 2 states that with overwhelming probability, a family tree of the
(1+1) EA becomes asymptotically no deeper than the total number of mutations
performed in a single run of the corresponding parallel run. The tree can become
wide, but a flat tree means that few mutations lie on any path from the root
to a node in the tree. Hence, if the depth is small, this means that a leaf is
an individual that is with a high probability similar to the root. This makes
the optimization of even simple functions very unlikely if the tree is not deep
enough. The following result is tight for some simple functions such as ONEMAX
(if p is not too small).

Theorem 4 Let u = poly(n) and let f be a function with a unique global op-
timum. Then the expected runtime of the (u+1) EA on f is Q(un + nlogn).
Moreover, the success probability within some cun steps, ¢ > 0, is 2~

Proof: The lower bound Q(nlogn) follows for p < logn/2 by a generalization
of the Coupon Collector’s Theorem that has been described by Droste, Jansen,
and Wegener (2002, Lemma 10) for linear functions and the (14+1) EA. To
adapt the corresponding argumentation, we have to estimate the probability
that some bit 7 € {1,...,n} has the wrong value in all initial individuals. Since
p < logmn/2, this probability is at least n~1/2. By Chernoff bounds (see Motwani
and Raghavan (1995)), at least y/n/2 bits are wrong in all initial individuals
with probability 1 — 2=/ Therefore, assuming that there are \/n/2 such
positions, the probability that no mutation flips a bit from at least one of these
positions within ¢ := (n — 1)(lnn)/2 steps is bounded below by

£\ Vn/2 V)2
1 1 s
1—(1-(1-= >1-(1-— >1_e U2
n vn

which implies that ¢ steps are required with probability at least 1 — e
2—Q(Vn)

For the lower runtime bound Q(un), we set up a phase of length s := |cpun|
for some constant ¢ > 0 and show that the (u+1) EA requires at least s steps
with probability 1 — 27" if ¢ is small enough. The proof idea is as follows.
In s steps, a family tree created by the (u+1) EA has to reach (with high
probability) a certain depth to optimize f. However, the probability of reaching
this depth is very small.

Let = be an arbitrary initial individual. We consider the infinite random
process of building its family tree. Let T;(z) denote the tree at time ¢. According
to Lemma 2, the probability that Ts(x) reaches depth at least 3cn is 2—%2n),
Now the aim is to prove that with probability 1 — 2= a depth of at least
3cn is necessary for optimization (if ¢ is small enough).

In the infinite process of building the tree T'(x), we consider the event that a
node v with optimal f-value is inserted. The aim is to show that each such v is at
a large depth with overwhelming probability. Each initial individual is created
uniformly at random. By Chernoff bounds, the root x has Hamming distance
at least n/3 to the unique optimal string (represented by v) with probability

-1/2 _
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1 — 279" Consider the path p, from z to v. We claim that with probability
1 — 272" jts length is at least n/4. This follows by considering a sequence
of n/4 strings where each string is the result of a mutation of its predecessor
by means of the (u+1) EA’s mutation operator. Each bit in each string in this
sequence is flipped independently with probability 1/n. Hence, the expected
Hamming distance of any two strings in this sequence is at most n/4, and, by
Chernoff bounds, it is less than n/3 with probability 1 — 2= Since the
nodes on each path in the trees T;(z) form such a random sequence of strings,
the claim follows.

The (u+1) EA does not stop when the optimum is reached. Therefore,
in Ts(x), there may be several paths leading from x to an optimal node. Since
we study lower bounds on their length, we only have to consider paths whose
end point is the first optimal node on the path. Let p, be such a path with end
point v. We obtain that the optimal node v cannot be successor or predecessor of
the optimal node v’ on another path p,s of this kind. Hence, at most yu different
paths of this kind can be created even if we investigate the set of all family
trees Ts(x) for each individual x of the initial population. Since p = poly(n),
the probability that there is a node with optimal f-value at depth less than n/4
in a family tree is still 272", If ¢ is small enough, n/4 is at least 3cn. Since the
sum of all failure probabilities is 272(") the proof of the theorem is complete.

O

Theorem 4 covers the wide range of unimodal functions. For a larger subclass
of the class unimodal functions (including linear functions), the (1+1) EA’s
expected runtime is at most O(nlogn). With respect to this class, Theorem 4
states that the (u+1) EA is at most by a factor of O(logn) more efficient than
the corresponding parallel run.

For more difficult functions (which means that the (14+1) EA has a larger
expected optimization time than O(nlogn)), the proof concept of Theorem 4
can be carried over to show larger lower bounds also for the (u+1) EA. However,
we have to derive better lower bounds on the depth of a family tree such that
more structure of the function f and of the encountered search points comes into
play. In various circumstances, we have already exploited that many individuals
in a family tree can be the same string s € {0,1}". This leads to the definition
of so-called monochromatic subtrees. Note that our notion of subtrees refers to
connected subgraphs of a tree, which do not need to contain any leaves of the
original tree.

Definition 3 (Monochromatic Subtree (MST)) A subtree of a family tree
1s called a monochromatic subtree if all of its nodes are the same string.

Obviously, all nodes in a monochromatic subtree have the same f-value. It
is interesting that the stochastic process creating an MST sometimes equals
the process for a so-called (uniform) random recursive tree, a model of random
trees well known from the literature (e. g., Pittel (1994); Smythe and Mahmoud
(1995)). This relationship will allow us to apply the known theory on RRTs. We
obtain an RRT of any desired size by means of the following stochastic process.
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Definition 4 (Random Recursive Tree (RRT)) An RRT at time 0 con-
sists only of the root. An RRT T} at time t > 1 is obtained from an RRT Ty 1
by uniformly at random choosing one of its nodes and appending a new leaf to it.

Note that the RRT at time ¢ > 0 consists of exactly ¢ + 1 nodes. The
processes generating MSTs and RRTs coincide only if the (u+1) EA is able to
choose uniformly from the set of nodes of the MST. Since deleted individuals
are nevertheless kept in the family tree, this property can only be guaranteed if
the individuals of the considered MST are still present in the population.

Lemma 3 Let T* be a monochromatic subtree of a family tree and let V' be the
set of nodes of T*. If the (u+1) EA does not delete any individual from V until
the creation of the last node of T* then T™* is an RRT.

Proof: We consider the process of building 7™, studying only the steps ¢ of the
(u+1) EA choosing nodes from the subset Ny C V of already created nodes.
Let r € {0,1}"™ be the string of the first node that is inserted into 7™, i.e., r is
the color of the MST T*. Since all nodes, i.e., individuals, in V' remain present
in the population by the end of the procedure, the selection mechanism of the
(u+1) EA implies that each of these steps chooses the father of some new node
uniformly at random from the set V.

However, the result of such a step can be a node that is a different string
than r. We call this event the creation of an external node. External nodes are
not attributed to T*. Since all nodes in T* are the same string r, the event
of creating an external node is independent of the choice of the father. There-
fore, we can ignore the steps creating external nodes. The next step complies
again with the process of creating an RRT. By induction, the monochromatic
subtree T™* is created according to the rules for an RRT. (I

If the (u+1) EA deletes individuals of an MST from the population, it
chooses these, by the definition of an MST and the (u+1) EA, uniformly from
the alive nodes of the MST. Hence, the earliest inserted nodes have the highest
chances of having been deleted by any fixed time ¢. Early inserted nodes are
close to the root. This implies that an MST that is affected by deletion steps is
typically deeper than an RRT of the same size. We can make this precise by con-
sidering generalized RRT's, namely so-called p-marked random trees (p-marked
RTs).

Definition 5 (p-marked RT) Let piy, t,u > 0, be a sequence of probability
distributions such that the support of py., is a subset of {0,...,u}. A p-marked
RT at time 0 consists only of the unmarked root. A p-marked RT Ty at timet > 1
is obtained from a p-marked RT T;_1 in two steps. First, an unmarked node
is chosen uniformly at random and a new, unmarked leaf is appended. Let U
denote the set of unmarked nodes after this step. Then u* is sampled according
to pi_1,ju|-1, @ subset S* C U of size u* is chosen uniformly at random, and
all nodes in S* are marked.
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Again, a tree at time t has exactly ¢ + 1 nodes, only the unmarked ones
of which can become fathers of new nodes. The concept of marked nodes has
been introduced since it seems to be the easiest way of modeling those nodes of
family trees that correspond to deleted individuals. It is crucial that for all p; ,,
the set of newly marked nodes is, by definition, uniform over the yet unmarked
ones. We postulate that always at least one node remains unmarked since the
tree could not grow any more otherwise.

Lemma 4 A monochromatic subtree of a family tree is a p-marked RT.

Proof: Like in the proof of Lemma 3, we concentrate on the steps choosing
nodes from the subset of already created nodes of T*. Likewise, we can ignore
steps creating external nodes.

Between the steps adjoining nodes to the already created part of T, it is
possible for the (u+1) EA to eliminate one or more individuals, i.e., nodes
from the subtree. Since all nodes of T* are the same string, the set of deleted
nodes is chosen uniformly. Finally, the next step chooses uniformly from the
set of undeleted nodes. Hence, the whole process of growing T™ is modeled by
Definition 5. (|

We will show that the probability of a p-marked RT with ¢ nodes reaching
depth d is, for any p, at least as large as the respective probability of an RRT.
Let for a p-marked RT and an RRT at time ¢ the measures D*(¢, ) resp. D(t, 1)
denote the depth of the node that was inserted at time i. Then the following
technical lemma holds. Its proof is contained in Appendix A.1l.

Lemma 5 For allt,i,d >0 and i <t, Prob(D*(t,i) > d) > Prob(D(t,i) > d).

Since lower bounds on the depth of ordinary RRT's are well known (see, e. g.,
Lemma 9 in Appendix A.1), we have developed new tools for lower bounding the
depth of MSTs and, therefore, of family trees. Upper bounds are still provided
by Lemma 2.

5 More Special Lower Bounds

Combining the tools developed so far yields a new proof method for the analysis
of the (u+1) EA. In Section 5.1, we exemplify the new proof method for the
well-studied LEADINGONES function. In Section 5.2, we apply the technique
again to prove lower bounds for the function SPC.

5.1 Lower Bound for LeadingOnes

Theorem 5 Let y = poly(n). Then the expected runtime of the (u+1) EA
on LEADINGONES is Q(unlogn +n?). Moreover, the success probability within
some cunlogn steps, ¢ >0, is 2-(n)

13



Proof: The bound Q(n?) follows by means of the analysis of the (1+1) EA on
LEADINGONES described by Droste, Jansen, and Wegener (2002, Theorem 17).
This analysis can directly be applied to the potential L from the proof of The-
orem 1, i.e., the maximum LEADINGONES value of the (u+1) EA’s current
population. The probability of increasing L is at most 1/n and at least the
rightmost n — L — 1 bits are uniformly distributed in each individual of the
population. This is again a consequence of the (u+1) EA’s deletion operator.
Therefore, the estimations for the number of so-called free-riders carry over to
the potential L.

The basic idea for the bound Q(unlogn) is the same as in Theorem 4. We
show that for some small enough constant ¢ > 0, the (u+1) EA requires at
least s := |cunlogn] steps with probability 1 — 2-(") Now we consider the
family tree Ts(x) obtained after s steps for an arbitrary initial individual z. By
Lemma 2, it suffices to show that a depth of at least 3cnlogn is necessary for
optimization with probability 1 — 27",

For notational convenience, let f := LEADINGONES. During the process
of building the tree T'(z), we consider the event that a node v with optimal
f-value n is inserted. Since all initial individuals are uniform over {0,1}", the
root  has an f-value of at most n/2 with probability 1 — 272 Consider
the path p, from x to v. W.l o.g., the f-value is non-decreasing along p,. As
mentioned above (shown by Droste, Jansen, and Wegener (2002)), the bits after
the leftmost zero are, in each string on p,,, uniformly distributed. Moreover, the
f-value has to increase by at least n/2 along p, with probability 1 — 2—%2(n)
Together with the above-mentioned analysis of free-riders, it follows that at least
n/6 different strings lie on p, with probability 1 — 2= We call the nodes
that are different strings than their fathers subtree roots. For a subtree root r,
we denote by T*(r) the maximal MST rooted at r. Observe that all nodes of
T*(r) are below r in the tree T'(x). Now we work under the assumption that p,
contains at least n/6 subtree roots.

Consider the event that a subtree root r # v is created, and let ' denote the
random next subtree root on p,. By Lemma 4, the MST T*(r) is a p-marked
RT, and ' is some node inserted into (but not not attributed to) a p-marked RT.
Considering the construction of T*(r), we prove that 7/ is likely to be created
late during this process. The probability of mutating a string with value f(r)
to a better string is bounded above by 1/n. Hence, with probability at least
1/2, the first n/2 steps that choose a father in the already existing MST create
nodes with at most the same value as the root. Since producing a replica of
a string has probability (1 — 1/n)™ > 1/(2e), the expected number of replicas
within n/2 steps is at least n/(4e). By Chernoff bounds, with probability at
least 1/2—27%" T (r) receives at least n/(8e) nodes before an individual with
larger value than f(r) is appended. Hence, with probability at least 1/ 2—2-%(n),
the node r’ has a distance to r that is bounded below by the depth of the at
least n/(8e)-th node of a p-marked RT.

How deep is the at least k-th node such that & > n/(8e) within a p-marked
RT? We know it if the tree is an ordinary RRT. Then, according to Lemma 9
and Chebyshev’s inequality, the depth is at least (logn)/2 with probability
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at least 1/2 (for n large enough). By Lemma 5, the same statement holds
also for a p-marked RT. Altogether, the distance of » and 7’ on p, is at least
(logn)/2 with probability at least 1/4 — o(1). Since the process creating T*(r')
is independent of the process creating T*(r), we can apply Chernoff bounds.
Since at least n/6 choices for r are available on p,, at least n/25 subtree roots
have their successive subtree roots at distance at least (logn)/2 with probability
1 — 279%™ Altogether, the length of p, is at least n(logn)/50 with probability
1—27%m),

By the same arguments as in the proof of Theorem 4, we have to study
at most p paths leading to an optimal node. Hence, since p = poly(n), the
probability that there is a node with f-value n at depth less than n(logn)/50
in a family tree is still 27", If ¢ is small enough, the bound n(logn)/50 is at
least 3cnlogn. Finally, the sum of all failure probabilities is 22", (I

We have seen that the waiting time ©(n) required by the (1+1) EA for an in-
crease of the LEADINGONES-value translates into a factor ©(ulogn) within the
runtime of the (u+1) EA provided that p = Q(n/logn). A similar correspon-
dence seems to hold for a generalization of LEADINGONES called LOBy, (leading
ones blocks) studied by Jansen and Wiegand (2003). For constant b € N, let

LOBy(z) := Z?:/}{ 231:1 z; — ONEMAX(z). The ONEMAX part of LOBy(x)
implies that after a short time and with high probability, each current string of
the (1+1) EA and the (u+1) EA is of shape 120" ~% for some i. To create a
string with higher LOBj-value, a mutation of probability ©(n ") is necessary
and sufficient. It seems that the arguments from the proofs of Theorem 1 and
Theorem 5 can be generalized in a straightforward manner. We conjecture that

the expected runtime of the (u+1) EA on LOB; equals ©(n® + unlogn).

5.2 Lower Bound for SPC

It is interesting to study in how far the exploration of the plateau of constant
fitness posed by the function SPC benefits from the population of the (u+1) EA.
Therefore, in this section, we will derive a lower bound on the expected runtime
of the (u+1) EA on SPC. In fact, the main idea will be to analyze situations
where the whole population consists of individuals from the plateau of constant
fitness. Unfortunately, the following lower runtime bound does not match the
upper bound from Theorem 3. Note, however, that the lower bound is Q(n?),
implying that the (u+1) EA is asymptotically never more efficient than the
(141) EA on SPC.

Theorem 6 Let = poly(n). Then the expected runtime of the (u+1) EA on
SPC is lower bounded by Q(un3/log p). Moreover, the success probability within
some cun®/log ju steps, ¢ > 0, is 92— Slog? )

The main proof idea is the same as in the proof of Theorem 5. By Lemma 2,
the probability of a family tree’s depth reaching at least 3cn®/logu within a
phase of |cun3/log 1] steps is 9—n?/log 1) However, we will prove that a depth
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of at least 3cn?/log i is necessary for optimization with probability 1 — 9~ log? 1)
in every family tree.

To this end, we fix an arbitrary initial individual z. We consider the event
that while creating its family tree T'(x), a path p* emerges from the root to
a node that is the optimal string 1”. For technical reasons, we are interested
in nodes that are still far away from 1™ and 0™ and study only a subpath p**
of p* with the following properties: All strings on p** are of shape 1'0"~% with
n/4 <i < 3n/4. Of course, there is a non-zero probability that no such path p**
exists. However, our goal is to show that with high probability, such a p** exists
and has length at least 3cn?/log u if ¢ is small enough. The latter is proven in
two steps. First, we show that with high probability, the strings of the nodes
change Q(n?/logp) times along p**. Second, the distance of two nodes with
different strings is Q(n) with probability ©(1).

To be able to investigate p**, we concentrate on points of time where the pop-
ulation contains plateau strings, i. e., individuals of shape 1°0"~%, i € {0,...,n}.
Let tp11 denote the first point of time such that at least one plateau string exists.
Moreover, let ¢, still denote the first point of time such that p plateau strings
are in the population. Recall that the optimum may have been reached before.
We prove that this is very unlikely.

Lemma 6 With probability 1 — 2= all populations up to (and including)
time tpia contain only individuals with at most 3n/5 ones.

Proof: First of all, we prove that all individuals up to time ¢,;; have at most
4n /7 ones with probability 1 — 2-(")  To show this, the following arguments
are needed. Since the initial individuals are drawn uniformly at random and
= poly(n), the probability that there exists an initial individual with more
than 5n/9 ones is bounded above by 27" according to Chernoff bounds. Be-
fore time ¢p11, the fitness function SPC(z) equals n— """, ;, also called ZERO-
Max. Hence, the selection mechanism of the (u+1) EA implies that the mini-
mum number of zeros in the population cannot decrease up to time tp;; — 1. By
the same arguments as in the proof of Theorem 3, we have E(t,11) = O(unlogn)
and, by Markov’s inequality and the fact that independent phases may be re-
peated, tp1; = O(un?logn) with probability 1 — 272" Since flipping a linear
number of bits in at least one out of at most O(un?logn) steps of the (u+1) EA
has probability 2-%(?1°g7) due to p = poly(n), the plateau string created at
time ¢p11 has at most 4n/7 ones, and the other individuals have at most 5n/9
ones with probability 1 —2~%(") In the following, we assume this event to have
happened.

By similar arguments as in the proof of Theorem 1, the expected num-
ber of steps from from time ¢, until time ¢,1, is O(plog p). Moreover, this
time is bounded by O(u+/nlogu) with probability 1 — 2-2V") gince we can
apply Markov’s inequality and repeat independent phases. Since no family
tree becomes deeper than O(y/nlog i) in this number of steps with probability
1 — 272" according to Lemma 2, we can estimate the number of ones in
the individuals (which are plateau strings) in the population at time tp1,. Since
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w = poly(n) holds and O(y/nlogn) steps flip only a total number of O(y/nlogn)
bits with probability 1 — 22V according to Chernoff bounds, no individual
at time tp1, has more than 3n/5 ones with probability 1 — 2—QVn), O

Now we can study p**, a subpath of the path p* with some nice structure.
To cope with the case that p does not grow with n, we always have to be careful
when applying O-notation with respect to u.

Lemma 7 With a probability of at least max{1 — 9~ (log? m.Q(1)}, there is a
subpath p** of p* such that all nodes of p** are created at time ty1, or later, p**
contains only strings 1°0"~" where n/4 < i < 3n/4 and the strings along p**
change Q(n?/log i) times.

Proof: Let v be the last string on p* that is created up to (and including)
time tp1a. According to Lemma 6, it contains at most 3n/5 ones with probability

1—2-20"") From time tpla On, an individual that is outside the plateau is
deleted immediately after its creation. Hence, v and all its successors on p* are
plateau strings since p* could not lead to an optimal string otherwise. Since
flipping a linear number of bits in one step has probability 2~("1°87) it follows
that with probability 1 — 27" there is a successor v* of v on p* that has at
least n/3 and still at most 2n/3 ones. Hence, with probability 1 — 2_9("1/2),
we have identified a starting point v* for p** that is created at time ¢y, or
later. The path p** ends at the first string that is not of shape 1°0"~% with
n/4 < i < 3n/4. Now we have to show that with high probability, at least
Q(n?/log 1) nodes on p** are different plateau strings than their fathers.

The string 1°0"~%, n/3 < i < 2n/3, of the starting node v* has Hamming
distance ©(n) to the optimal string 1. We want to show that the random walk
describing the different strings of nodes on p** is similar to a fair random walk
on the line of length ©(n). For the latter random walk, it is well known that a
distance 2(n) to its starting point is not overcome within ©(n?/log ;1) steps with
probability 1—2~218" 1) We consider the first at most s := |n2/(50(log u41))]
nodes on p** that are different strings than their fathers. Each considered string
is the result of a mutation of some 10" % into some 17077, j # i. In contrast
to the mentioned random walk, it may be the case that |j —i| > 1.

We consider the event that the i-th bit of a string 1°0"~? is flipped. Then it
is most likely to obtain 1°~*0"~#*! by the mutation. To create a plateau string
1i=1=kgn=i+1+k for some k > 1, the bits i — k,...,i — 1, so-called additionally
flipping bits, have to be flipped simultaneously. The corresponding probability
is bounded above by 1/n* for the (u+1) EA’s mutation operator. An analogous
statement holds for the case that the (i + 1)-st bit is flipped. The expected
number of additionally flipping bits in s steps is, therefore, bounded above by
S s/nt < 2n/(50(log u+1)), and the probability of n/24 additionally flipping
bits is 272 according to Chernoff bounds. This will be used later on.

Next, we assume no mutation to flip at least n/4 bits at least once within
s steps, which holds with probability 1 —2~("1°2")  Now, given the event that
some 1°0"~%, where n/4 < i < 3n/4, is mutated to a different plateau string,
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the probability of flipping bit ¢ and bit ¢ + 1 is the same. Hence, the probability
of obtaining a string with more than ¢ ones is the same as the probability of
obtaining less ones, and we have established a correspondence to a fair random
walk. In s steps, we expect s/2 steps increasing and s/2 steps decreasing the
number of ones provided no string with less than n/4 or more than 3n/4 ones
is encountered in these steps. We call the latter event a failure. The probability
that there is a surplus of n/24 increasing or decreasing steps is bounded both
by 2208’ 1) apd by 1—Q(1) according to Chernoff bounds if no failure occurs.
Recall that v* has at least n/3 and at most 2n/3 ones. Using the above analysis
of additionally flipping bits, we obtain that the probability of creating 1°0™ ¢,
where i < n/4 or i > 3n/4, within the s mutations is r113Lx{2*Q(1°g2 M, 1-Q(1)},
which justifies the assumption that no failure occurs. (I

Now it remains to estimate the distance of two nodes on p** that are different
strings than their fathers. Like in the proof of Theorem 5, we call such nodes
subtree roots. Let r be a subtree root other than the last one on p**. Like
in the previous section, we can again investigate the maximal monochromatic
subtree T*(r) rooted at r. To lower bound its depth, the probability of mutating
a plateau string 1°0" ¢ into a different plateau string is essential. It is bounded
above by 2/n since bit ¢ or bit ¢ + 1 has to flip. Asymptotically, this equals
the upper bound on the probability of creating a new subtree root in the proof
of Theorem 5. Hence, by the arguments there, we could immediately derive
the lower bound Q(un?) on the expected runtime of the (u+1) EA on SPC.
However, the distance of two subtree roots can be bounded below by more
direct arguments.

Lemma 8 With probability (1), the distance of any two consecutive subtree
roots on p** is Q(n). This holds independently of previous subtree roots on p**.

Proof: First of all, we consider the superpath p*, excluding the last node (which
is 1™). Let r be a random node on p* created at time ¢p1, or later. Now, we can
apply Lemma 1 with z(°) := r. Hence, we know that the successor of r is the
result of a mutation under the condition that its predecessor, a plateau string,
is changed again into a plateau string different from 1.

We already know that the unconditional probability of changing a plateau
string into a different plateau string is bounded above by 2/n. The probability of
changing a plateau string into a plateau string is bounded below by (1—-1/n)" >
1/(2e) since a replica is sufficient. Hence, the probability that the successor of r
on p* differs from its father is bounded above by 4e/n. Consequently, the first
n/(8e) successors of r on p* are the same string as r with probability at least 1/2.

Actually, rather than p*, we consider the subpath p**. By definition, this
is created at time t,1, or later as desired. However, also by definition, only
strings of shape 1'0"~%, where n/4 < i < 3n/4, are created on p**, and the
strings along p** change Q(n?/log ) times. The first condition only increases
the probability of creating a replica, and the second one does not influence the
distance of subtree roots on p**. Finally, the above statement on the successors
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of r holds also if r is a subtree root since the definition of a subtree root only
implies a condition on its predecessor. Therefore, the distance of a subtree root
and the next subtree root on p** is at least n/(8e) with probability at least 1/2.
This holds independently of previous subtree roots due to the independence of
the steps of the (u+1) EA. O

Proof of Theorem 6: Assuming that the event of Lemma 6 holds, we only
introduce an error term of 2-2(vV?), We start with the trivial case p = O(1).
Then by Lemma 7, there exists a constant ¢ > 0 such that with probability (1),
at least cn? mutations changing plateau strings into different plateau strings are
necessary. Each such mutation has probability O(1/n). The theorem follows by
Chernoff bounds.

Now let g = w(1). Then we combine Lemma 7 and Lemma 8. Let p* still
be a path that leads to an optimal node in some family tree T'(x). Assume that
the strings along an appropriate subpath p** according to Lemma 7 change
Q(n?/log ) times. Then the expected number of consecutive subtree roots at
distance Q(n) is Q(n?/log ). Since Lemma 8 holds independently of previous
subtree roots, we can apply Chernoff bounds. We obtain that with probability
1 — 2-9n*/log #), the number of consecutive subtree roots at distance Q(n) is
Q(n?/log ), and therefore, p*’s length is at least Q(n?/logu). By the prereq-
uisites of Lemma 7, we obtain that p*’s length is Q(n?/log u) with probability
1 — 2—Q(log® )

By the same arguments as in the proof of Theorem 4, we have to study at
most p paths leading to an optimal node. Hence, the probability of there being
at least one such path of length less than ¢ := ¢/n®/log i, ¢’ > 0 some constant,
is still 2~ %(log” 1) By Lemma 2, the probability of a family tree’s depth reaching
at least u := 3cn?/log u within a phase of |cun®/log | steps, where ¢ > 0 is
some constant, is 2-Qn*/log i) — 9-0(og” ) gince = poly(n). If we choose ¢
small enough and n large enough, u is smaller than /. (I

The lower and upper bounds for the (u+1) EA on SPC derived so far are
still by a factor of ©(1/logp) away. We should discuss what an asymptoti-
cally tight bound could look like. First of all, it is helpful to study p parallel
runs of the (1+1) EA on SPC. It follows by a modification of the Theorem
of DeMoivre/Laplace (Raab and Steger (1998)) that the probability of at least
n/2 + a(n)y/n successes in n independent Bernoulli trials with success prob-
ability 1/2 each is still bounded below by 1 — 2-2a(n)?) jf a(n) = w(l) and
a(n) = o(n'/?). This means that the success probability of a single run of the
(141) EA within some en?/\/log pu steps, ¢ > 0 a constant, is still (1/u), and the
expected runtime of the parallel runs O(un?® /\/log 11). This might suggest that an
asymptotically tight bound for the (u+1) EA is also of order ©(un3/polylog (1)),
supporting the bound of Theorem 6. In any case, the (u+1) EA is, up to loga-
rithmic factors w.r.t. u, as inefficient as the corresponding parallel run.

On the other hand, one can gain insight on the truth by looking for alterna-
tive proofs of a lower bound on the expected runtime of the (u+1) EA on SPC.
Now we want to identify subtrees of a family tree that die early and hence do
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not contain predecessors of an optimal node. Consider a population P; at some
time ¢ > tp1. and before reaching the optimum, assume that all individuals in
P, have still at most 3n/4 ones and let & € P, be arbitrary. We study the cre-
ation of the family tree T'(x), ignoring nodes that are outside the plateau. Note
that T'(x) is not assumed to be monochromatic. We model the random walk
that describes the number of alive nodes within T'(z) by the Markov chain A
on the state space {0,...,u} with starting state 1. In this random walk, we
only count steps changing the number of alive nodes within 7'(x). Suppose that
the number of alive nodes in T'(z) equals ¢ > 1. Then both the probability
of increasing the number of its alive nodes and the probability of decreasing it
equal (¢/p)((p—14)/(p+ 1)), i.e., the random walk is symmetric at this state.
However, state 1 is special. The definition of the (u+1) EA implies that there is
always at least one subtree that is not completely dead. In the Markov chain A,
we ignore this. Under this simplifying assumption, we obtain two absorbing
states for the random walk.

We are interested in the time until absorption. This is the fair Gambler’s
Ruin problem (Feller (1971)). The expected time until absorption equals p in
this scenario, and, by Markov’s inequality, the time is at most u? with proba-
bility 1 — 1/pu. If state p is reached, this means that the family tree rooted at
any other ' € P; is completely dead. Hence, under the simplifying assumption,
each family tree T'(x), where z € P, is dead after O(u?) steps with probability
at least 1 —1/p. Indeed at least one of these subtrees must remain alive forever.
For any z € P, this means that its family tree is still alive after p? steps with
probability at most 2/pu.

We consider two cases w.r.t. p. Let = O(n3/2%) for some constant & > 0.
Then 2 is asymptotically smaller than the minimum depth of the subtree T'(z)
that is required for optimization with probability 1 — o(1/poly(n)) according to
Lemma 7 and Lemma 8. This means that with probability 1 — O(1/u), T(x)
dies completely before 1™ can be created in the tree. This would imply that
as long as the current population is still far away from optimality, an expected
fraction of Q((u —1)/p) of all steps is wasted. Hence, a lower bound Q(un?) on
the expected runtime of the (u+1) EA on SPC seems to hold in this case.

Unfortunately, this proof idea breaks down if p = w(n3/2/log uu). However,
for large values of p, e. g., = Q(n3+¢) for some constant e > 0, one can observe
the following. By the Gambler’s Ruin model, it holds that with probability
1/ pudte/2, T(x) contains p31+¢/2 alive nodes at least once before dying completely.
To return from state p>+/2 to state 0, it takes Q(uSt¢) steps with constant
probability, which is larger than O(un?), the upper bound on the expected
runtime. If we consider all individuals € P, we obtain that an expected
number Q(u/2) of its individuals always have an alive descendant within O(un?)
steps. Of course, the random walks describing the number of alive nodes within
different subtrees T'(x) are not independent since a large number of alive nodes
in one tree implies a small number in all other trees. But if u is large enough,
it seems to be the case that with high probability, a polynomial number of
Py’s individuals always has an alive descendant within O(un?) steps. This is a
situation similar to the above-mentioned parallel run. Additionally using the
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arguments concerning property P from the proof of Theorem 3, one would arrive
at an upper bound of O(un®/polylog(y)) on the expected runtime.

We conjecture that an asymptotically tight bound on the expected runtime
of the (u+1) EA on SPC is of order ©(un?®/max{log(y/f(n)),1}) for some
function f(n) similar to n®.

6 An Example where p > 1 is Essential

In the previous sections, we have shown for example functions that the (u+1) EA
can only be slightly more efficient than its corresponding parallel run. Moreover,
it is never more efficient than a single run of the (141) EA on all of these
functions, and it becomes less and less efficient for increasing values of u.

However, it is common belief that the population of the (u+1) EA helps
to better explore the search space. We can make this precise in some respect
for an example function, which is similar to that considered by Witt (2003) for
an elitist steady-state GA with fitness-proportional selection. Assume that in
a subspace {0,1} of the search space, an optimal setting for LEADINGONES
is sought, while in the subspace {0,1}"*, an optimal setting for ONEMAX is
sought. If £ is not too small, the (1+1) EA normally finds the optimal setting for
ONEMAX faster than for LEADINGONES. On the other hand, by the results from
the Sections 3-5, the expected runtime of the (u+1) EA is O(ullogn + ¢n) for
the LEADINGONES part and Q(u(n—¢)) for the ONEMAX part. For £ = /n and
= Q(n), e.g., this means that the (u+1) EA is faster on the LEADINGONES
part. This can be explained since now the subspace of the ONEMAX part is
better explored but less exploited than the other subspace. If the function
leads to an isolated local optimum if the ONEMAX part is optimized first, the
(141) EA is expected to behave inefficiently. Moreover, if a global optimum is
reached if the LEADINGONES part is optimized first, we expect the (u+1) EA
to be efficient.

The following function has been defined with this idea in mind. Let strings
x € {0,1}™ be divided into a prefix (x1,...,2s) of length m and a suffix
(Tmst,---,Ty) of length £. Let £ := [n'/?], i.e., m = n —o(n). W.lo.g.,
m is divisible by 3. For a string = € {0,1}", we define PO(z) := 21 + -+ + a4,
as the number of prefix ones. Let LSO(x) := Zf:ol H;ZO Tm+145 be the num-
ber of leading suffix ones. Finally, let b := 2m/3 + [n'/2/(80010og®> n)]. Then
let

| PO(z) + n? - LSO(x) if PO(z) < 2m/3,
J(@) = n2¢ —n-|PO(z) — b| + LSO(x)  otherwise.

We have to discuss the structure of f. The first case occurs if x has few POs.
Then the f-value is strongly influenced by the number of LSOs. The optimum
f-value of n?¢ +2m/3 is achieved if LSO(z) = ¢ and PO(z) = 2m/3. However,
if PO(z) < 2m/3 and LSO(z) < ¢, the f-value is at most n?(¢ — 1) + 2m/3,
which is less than n?¢ — nb, a lower bound on the value in the second case, i.e.,
if PO(x) > 2m/3. If PO(z) = b and LSO(x) = ¢, we have a locally optimal
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string with f-value n?¢ + ¢. The Hamming distance to any better string is
b—2m/3 = Q(n'/?/log? n), which suggests that escaping from a local optimum
is hard. In fact, the (14+1) EA is likely to get stuck here, and even multistarts
do not help. For the following theorem, recall that there is a slight difference
between the (1+1) EA and the (u+1) EA with p = 1.

Theorem 7 With probability at least 1 — 2= 0n'/?/10g ") on the function f, both
the runtime of the (1+1) EA and of the (u+1) EA with u =1 are 20n'/?/logn)

Proof: The proof idea is very simple. We show that the evolutionary algorithm
is likely to create a string with b POs at some time. Afterwards, it has to
overcome a Hamming distance of at least b — 2m/3 in one step in order to
create an optimal string. This takes a long time with high probability. In the
following, we conduct the proof only for the (1+1) EA. One can easily verify
that all considerations remain valid also for the (u+1) EA with u = 1 since it
does not matter whether equal-valued strings are rejected or not.

The initial string of the (1+1) EA has at most £/2 LSOs with probability
1— 2742 = 1 — 2790"/*/logn)  We assume to start with such a string. In
the following, we divide the run into consecutive phases of length 4e(n — 1) and
expect the (1+1) EA to increase the number of POs to b in one of the phases. We
have to be careful since the number of POs of the current string of the (1+1) EA
can decrease if a so-called bad step that increases the number of LSOs occurs.
Assume for the moment that a so-called good phase of length 4e(n — 1), i.e.,
without bad steps, occurs and that the LSO-value is still less than ¢. Then at
most b decreases of the distance |[PO(x) — b| are sufficient to create a string
with b POs. The probability of a decrease of this absolute value is bounded
below by ((m —b)/n)(1 —1/n)""! > 1/(4e) (for n large enough) since there are
always at least m — b > n/4 bits available whose flipping decreases |[PO(z) — b|
and increases the f-value. Hence, the phase contains at least b decreases with
probability at least 1 — 272" according to Chernoff bounds.

We still have to analyze the effects of bad steps. The probability of a
step being bad is bounded by 1/n since it is necessary that the leftmost suf-
fix zero flips. Hence, the probability of a good phase is bounded below by
(1 —1/n)*=1 > e=4¢ = (1). This implies that the good phase is preceded
by at most £/8 bad phases with probability at most (1 — e~4¢)¢/8 = 2-2),
Since ¢n/8 mutations flip at most £/6 bits with probability 1 — 290 we can
work under the assumption of observing at most ¢/8 bad phases and a total
number of at most £/6 bad steps before the good phase. This assumption does
not increase the probability of a bad phase.

It can still happen that ¢/6 bad steps increase the number of LSOs to ¢
since an LSO-increasing step can contain many free-riders, i.e., 1-bits after the
leftmost suffix zero. However, as a consequence of the analysis of LEADINGONES
by Droste, Jansen, and Wegener (2002), the entries right of the leftmost suffix
zero always form a uniformly distributed random string. This implies that the
probability of at least ¢/3 free-riders is 2= Together with the assumption
of having at most £/2 LSOs in the beginning, we have proved that the number
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of LSOs does not reach ¢/2 + ¢/3 4+ ¢/6 = £ until the good phase. Up to here,
we have proved that with probability 1 — 2~ a string with b POs is created
before the optimum is reached.

The definition of f implies that no string with more than 2m/3 (except b)
POs is accepted when a string with b POs has been reached. Hence, it is
necessary that at least 2m/3 — b > n'/2/(8001log® n) bits flip in one step of the
(14+1) EA. The probability of this event is bounded above by

n 1\ 2m/3=b 1 1/
( ) . (_) - _ 90t/ /logn)
2m/3—b n = (n'/2/(80010g> n))!

according to Stirling’s formula. Therefore, the probability of observing this

event within some 2¢'/*/logn steps is 2-9n'?/logn) if = > ( is chosen small
enough. Altogether, we have proved that the runtime is at least 99(n'/?/log n)
with probability 1 — 2-2(n'/*/logn)_ 0

On the other hand, a polynomial-size population allows an efficient opti-
mization.

Theorem 8 Let p > n/ln(en) and p = poly(n). With probability at least
1— 2790 logn) e (u+1) EA optimizes f within O(un>/?/logn) steps. Its
expected runtime is bounded by O(un).

Proof: For the first claim, we use the same proof idea as for Theorem 1. Assume
for the moment that all individuals have at most 2m/3 POs at any time, which
means that always the first case of the definition of f holds. Then we can use the
potential L, defined as the maximum number of LSOs in the current population.
Due to the properties of f in its first case, the potential cannot decrease, and no
individual with L LSOs can be deleted if the current population still contains
individuals with less LSOs. Hence, we are in the same situation as if optimizing
LEADINGONES such that the expected time until creating an individual with
£ LSOs (hereinafter called a success) is bounded by p+3eun'/? In(en) according
to Corollary 1. (Here, u > n/ln(en) is essential.) By Markov’s inequality, the
time is bounded by t* := |7eun'/?In(en) | with probability at least 1/2. As the
analysis from the proof of Theorem 1 holds for arbitrary initial populations, we
can repeat independent phases of length ¢*. This means for any constant ¢ > 0
that the probability of no success within a number of [en'/2/In(en)| phases of
length t*, i.e., within at most 7ceun steps, is at most g—en'/?/logn (if n is large
enough).

After the first success, at least one individual with ¢ LSOs always remains
in the current population. It is sufficient to reach the optimum by increasing
the number of POs of such an individual to m. By the standard arguments
used throughout the paper, we obtain that the expected value of the time for
this to happen is bounded by O(un). Moreover, by the same arguments as in
the preceding paragraph, this time is bounded above by O(un?/?/logn) with a

probability of 1 — 2~2(n*/*/logn)_
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We estimate the probability of the event that no individual ever has more
than 2m/3 POs within s := |7ceun] steps, i.e., until the time where a suc-
cess occurs with high probability. We do this by a similar approach as in the
proof of Theorem 4. According to Lemma 2, no family tree reaches a depth of
at least 2lcen with probability 1 — 27%("). No initial individual has at least
7m/12 POs with probability 1 — 2=%(")_ If we choose, e.g., ¢ < 1/768, we
have |21cen] < 63n/768 < 64n/768 = n/12, i.e., the probability that at most
|21cen | mutations flip a total number of at least m /12 bits is bounded by 2~(")
according to Chernoff bounds. Altogether, this bounds the probability of more
than 2m/3 POs within s steps by 2-92") We remark here that the probability
of obtaining more than 2m/3 POs before ¢ LSOs has altogether been bounded
by 9-n'/*(c=o(1))/logn  Gince the sum of all considered failure probabilities is
9—n'/?/log ") the first statement of the theorem has been proven.

For the statement on the expected runtime, we have to consider the case
that an individual has more than 2m/3 POs at some time. By similar argu-
ments as in the proof of Theorem 7, it is easy to see that such a situation is
reached after an expected number of O(un) steps if the optimum is not reached
before. Similarly as in the proof of Theorem 7, we can show that an individ-
ual with b POs is created after another O(un) expected steps. It follows by
standard arguments that afterwards, O(uf) expected steps suffice to create a
locally optimal individual, and another O(ulog ) = O(ulogn) expected steps
are enough to create a population full of locally optimal individuals. Here, we
pessimistically assume the optimum not to be reached before.

The Hamming distance of a locally optimal individual and a globally optimal
one is h :=b—2m/3 < n'/2/(800log” n) + 1. Hence, it is sufficient to flip at
most n'/2/(8001log”n) + 1 selected bits in order to create a globally optimal
string from a locally optimal one. The corresponding probability is bounded
below by

h n—nh
(l) <1 B l) _ o(~logn)(n"/?)/(8001og> n)~O(1) _ 5-n"/?/(80010gn)~0(1)
n n

The expected waiting time for such a mutation, therefore, is bounded above
gn'/?/(80010gn)+O(1)  We have calculated above that the probability that an
individual with more than 2m/3 POs exists before ¢ LSOs are obtained is at
most 2~/ *(1=0(1)/(76810gn) fo1 our choice of ¢. The product of this upper
bound on the failure probability and the upper bound on the expected time in
the failure case is o(1). The total expected runtime of the (u+1) EA on f is,
therefore, at most O(un) + o(1) = O(un). O

Conclusions
We have presented a first analysis of the (u+1) EA for pseudo-Boolean functions

by studying the expected runtime on three well-known example functions. For
two of these, we have derived asymptotically tight bounds, and in all three cases,
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© = 1 leads asymptotically to the lowest runtime. In contrast to this, we have
identified a function where the (u+1) EA outperforms the (1+1) EA and its
multistart variants drastically provided that > n/In(en).

To prove lower bounds, we have developed a new technique. This technique is
not only limited to the (u+1) EA. The upper bounds on the depth of family trees
are independent of the mutation operator and even of the search space, and the
lower bounds derived in the proofs of Theorem 4 and Theorem 5 hold for every
selection operator choosing uniformly from individuals of the same fitness. For
different selection-for-reproduction mechanisms, the concept of 1/p-trees can be
adapted. Nevertheless, the most interesting direction seems to be an extension
to (u+A) strategies by a combination with the existing theory on the (14+X) EA.
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A Analyses of Special Random Trees
A.1 Depth Estimations for Generalized RRT's

Definition 5 contains a model of a stochastic process generating random trees,
so-called p-marked RTs. If p; ,, = 0 for all £ and u, a p-marked RT is an ordinary
RRT as stated in Definition 4. In fact, no marking process p can prevent the
trees from getting at least as deep as ordinary RRTs. To show this, we consider
for a p-marked RT at time ¢ the measure D*(¢,4), namely the random depth
of the node that was inserted at time ¢, ¢ € {0,...,t}. Let D(¢,i) denote the
corresponding measure for an ordinary RRT. For the sake of completeness, we
state results on its expectation and variance. For a proof, see Smythe and
Mahmoud (1995).

Lemma 9 Let H; denote the i-th Harmonic number. Then E(D(t,7)) = H;.
Moreover, Var(D(t,i)) < H;.

Lemma 5 relates tail bounds for D*(¢,¢) and D(t,4).

Proof of Lemma 5: The proof relies on properties of the selection mechanism
growing the p-marked RT. For a p-marked RT at time ¢, let C}; be the random
variable that equals j if the next inserted node (which is not present until the
tree at time ¢t + 1) gets the node that was inserted at time j as its father.
For ordinary RRTs, the distribution of the corresponding random variables is
uniform over {0,...,t}. However, the model of a p-marked RT implies that
Prob(Cy = j) > Prob(Cy = j — 1) for all j € {1,...,t}. This follows from the
distributions p; ,, which select the u* nodes to be marked uniformly from the
set of unmarked nodes. Therefore, the node inserted at time ¢ — 1 has at least
the same probability of being marked by time ¢ as the node inserted at time 1.
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The node inserted at time ¢ has depth at least d iff its father has depth at
least d — 1. By the law of total probability, we obtain a recurrence,

1—1
Prob(D*(t,i) > d) = Y _ Prob(C;_y = j) - Prob(D*(t,5) > d — 1),
j=0

and prove the claim of the lemma by induction on ¢ for arbitrary ¢ and d. The
base cases i = 0 and ¢ = 1 are trivial. For ¢ > 2, the induction hypothesis allows
us to write

1—1
Prob(D*(t,i) > d) > Y Prob(C;_y = j) - Prob(D(t,5) > d — 1).
§=0

Below, we will prove that the Prob(D(¢,j) > d — 1) are non-decreasing w.r. t. j.
Since the same holds for the Prob(C;_; = j) and since the Prob(C;_1 = j) sum
up to 1, the above sum is bounded below by

1—1
E > Prob(D(t,j) > d — 1) = Prob(D(t,i) > d),
1

j=0

which proves the induction step.

We still have to prove that Prob(D(t,j) > d—1) > Prob(D(t,j—1) > d—1).
The claim follows by a generalization of the following argument. Given an urn
with blue and red balls, the probability of choosing a red ball cannot decrease if,
after drawing a ball, we add another ball of the color of the drawn ball to the urn.
Formally, the right-hand side of the inequality equals the probability p, of the
event F,. of choosing a node at depth at least d — 2 from the tree present at time
j—2, and the left-hand side equals the probability p; of the corresponding event
E; at time j — 1. According to the rules for ordinary RRTSs, p, can be written
aspr = k/(j—1) for some k € {0,...,j—1}. If E, occurs, the probability of E;
in the next step is increased, namely to (k+1)/j. Otherwise, the probability is
at least k/j. Since E, occurs with probability p,, the law of total probability
yields

k+1 k k(k+1) k k2
pp2pr——+1=p) = = 70—+ ——
j ( ) oG- 5 -1
K+ k+k(G-1D) -k kEQ45-1) ok _
JiG=1) JiG=1) j—1 h
This proves the claim and, therefore, the lemma. (I

A.2 Depth Estimations for 1/u-trees

We use a combinatorial approach to estimate the depth of 1/u-trees, introduced
in Definition 2, and study the following measures.
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Definition 6 Let L(t,d) denote the number of nodes at depth d in a 1/u-tree
at time t. Let E(t,d) := E(L(t,d)) denote its expectation.

The following basic relations hold.

Lemma 10 Consider a 1/p-tree. Then

E(t,0) =1 fort >0,
E(0,d) =0 ford>1,
E(t,d) <Y Ig BGIZD - gort > 1,d > 1.

M

Proof: The first two equalities follow by the definition of p-trees. For the
third relation, observe that L(i,d) cannot decrease for increasing values of i.
Moreover, L(i + 1,d) differs from L(i,d) if and only if a node from depth d — 1
is chosen at time 7 to be the father of the newly inserted node. If L(i,d — 1)
equals j, this happens with probability at most j/u according to the definition
of 1/u-trees. Hence, by the law of total probability,

The inner sum represents the definition of E(i,d — 1), proving the inequality. O

Using these relations, we are able to derive tail bounds on D(t), denoting
the depth of a 1/u-tree at time ¢t. These bounds are stated in Lemma 2.

Proof of Lemma 2: For D(t) > d to occur, L(t,d) > 1 is necessary and
sufficient. Since, by Markov’s inequality, Prob(L(t,d) > 1) < E(t,d), the lemma
follows if we establish the inequality

E(t,d) < - (—)d (1)

for any ¢t > 0 and d > 0.

For d = 0, the statement holds according to Lemma 10. For the induction
step from d to d + 1, we apply the inequality from Lemma 10 and the induction
hypothesis to obtain

t—1 . t d+1

1 1 /1 t
Eit,d+1)<— — | - .
(hd+ )_u;d!(u) —d! ””O/ d+1) (u)

The estimation by the integral holds since we can identify its lower sum ZZ 0t
The second claim of the lemma is an easy consequence of the first one by
means of Stirling’s formula. Setting d := 3t/u, we obtain

1 /d\* 1 d\?
Prob(D(t) > d) < E<_> §—2~ed-dd1/2.<§) — 9-9(d).
\Y[%
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As a simple corollary of Lemma 2, we obtain that the expected value of D(t)
is bounded by O(t/pu).
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