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Abstract

Elevator supervisory group control (ESGC) is a complex combinato-
rial optimization task that can be solved by modern search heuristics.
To reduce its complexity and to enable a theoretical analysis, a simpli-
fied ESGC model (S-ring) is proposed. The S-ring has many desirable
properties: Fast evaluation, reproducibility, scalability, and extensibility.
It can be described as a Markov decision process and thus be analyzed
theoretically and numerically. Algorithm based validation (ABV), as a
new methodology for the validation of simulation models, is introduced.
Based on ABV, we show that the S-ring is a valid ESGC model. Finally,
the extensibility of the S-ring model is demonstrated.

Introduction

Today’s urban life cannot be imagined without elevators. The central part of
an elevator system, the elevator group controller, assigns elevator cars to ser-
vice calls in real-time while optimizing the overall service quality, the traffic
throughput, and/or the energy consumption. The elevator supervisory group
control (ESGC) problem can be classified as a combinatorial optimization prob-
lem [1, 2, 3]. It reveals the same complex behavior as many other stochastic
traffic control problems, i.e. materials handling systems with automated guided
vehicles (AGVs). Due to many difficulties in analysis, design, simulation, and
control, the ESGC problem has been studied for a long time. First approaches
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were mainly based on analytical methods derived from queuing theory, whereas
currently computational intelligence (CI) methods and other heuristics are ac-
cepted as state of the art [4, 5].

In this article we propose a simplified ESGC system, the sequential ring (S-
ring). The S-ring is constructed as a simplified model of an ESGC system using
a neural network (NN) to control the elevators. Some of the NN connection
weights can be modified, whereby testing different weight settings and their
influence on the ESGC performance is enabled. The performance of one specific
NN weight setting �x is based on simulations of specific traffic situations, which
automatically lead to stochastically disturbed (noisy) objective function values
f̃(�x). Since it is difficult for an optimization algorithm to judge the fitness f(�x)
of one ESGC configuration, the determination of the optimal weight setting
�x∗ is not trivial. Direct search methods that rely on the direct comparison of
function values face the problem of modifying the weights without generating
too many infeasible solutions.

The S-ring was introduced as a benchmark problem to enable a comparison of
ESGC algorithms, independently of specific elevator configurations [6, 3]. Re-
sults from the S-ring, obtained with low computational costs, should be trans-
ferable to more complex ESGC models.
In the following, we will present different techniques to answer the question
whether the S-ring is a simplified, but valid ESGC simulation model. We pro-
pose a new validation methodology that takes the optimization algorithm for
the simulation model into account. Tuning the optimization algorithm on the
simplified simulation model results in a good parameter setting for the optimiza-
tion algorithm. This setting is also applicable to the complex simulation model.
Thus, improved algorithm parameter settings obtained from simulation results
on the S-ring should be transferable to real ESGC problems. S-ring simulations
might give valuable hints for the optimization of highly complex elevator group
controller optimization tasks.

The remainder of this article is organized as follows: In Sec. 1, we introduce
the elevator group control problem. Section 2 discusses S-ring basics, whereas
Sec. 3 presents simulation and analysis techniques. Section 4 demonstrates the
validity of this model simplification. The extensibility of the S-ring model is
demonstrated in Sec. 5. The final section combines a summary with an outlook.

1 The Elevator Supervisory Group Controller
Problem

Fig. 1 shows the key role of an elevator group controller: It determines the floors
where the cars should go to. The elevator controllers handle the functions inside
the car, such as door control, measurement of the car load, and car calls. Since
the group controller is responsible for the allocation of elevators to hall calls,
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Figure 1: Elevator group controller architecture. Passengers can give hall calls,
the group controller assigns elevators to passengers. From [7]

a control strategy to perform this task in an optimal manner is required. The
main goal in designing a better controller is to minimize the time passengers
have to wait until they can enter an elevator car after having requested service.
This time-span is called the waiting time. The so-called service time additionally
includes the time a passenger stays within the elevator car.

An important aspect is the changing traffic pattern we can observe throughout
the day in an office building [8]. There is ‘up-peak’ traffic in the morning when
people start to work and symmetrically we observe ‘down-peak’ traffic in the
evening. Most of the day there is ’balanced’ traffic with much lower intensity
than at peak times. ‘Lunchtime’ traffic consists of two - often overlapping -
phases where people first leave the building for lunch or head for a restaurant
floor, and then get back to work. The ESGC problem subsumes the following
problem: How to assign elevators to passengers in real-time while optimizing
different elevator configurations with respect to overall service quality, traffic
throughput, energy consumption etc.

Fujitec, one of the world’s leading elevator manufacturers, developed a controller
that is trained by use of a set of neuro-fuzzy controllers. Each controller repre-
sents control strategies for different traffic situations [8]. The NN structure and
the neural weights determine a concrete control strategy. The network structure
as well as many of the weights remain fixed, only some of the weights on the
output layer can be modified and optimized. A discrete-event based elevator
group simulator permits computing the controller’s performance. This highly
complex ESGC simulation model will be referred to as the ‘lift model’ (or simply
‘lift’) throughout the rest of this paper.

The identification of globally optimal NN weights is a highly complex task since
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the objective function topology is highly non-linear and highly multi-modal. It
is stochastically disturbed due to the nondeterminism of service calls, and dy-
namically changing with respect to traffic loads. Gradient based optimization
techniques cannot be applied successfully to this optimization problem. The
computational effort for single simulator runs limits the maximum number of
fitness function evaluations to the order of magnitude 104. The objective func-
tion considers different traffic patterns described in the previous section. A
handling capacity of n passengers per hour at 30s means that the elevator sys-
tem is able to serve a maximum of n passengers per hour without exceeding
an average waiting time of 30s. Beielstein et al. [9] applied evolution strategies
(ES) to determine optimal NN weights. The best individuals produced by the
ES were assigned handling capacities at 30, 35, and 40 seconds. This results in a
multi-criterion optimization problem. The different objectives are aggregated to
obtain a single-criteria optimization problem by averaging handling capacities
and then subtracting from 3000 pass./h to obtain a minimization problem. The
latter value was empirically chosen as an upper bound for the given scenario.
The resulting fitness function reads: F (�x) = 3000.0 − f�a(�x), where f�a is the
average handling capacity (pass./h), �a is the parameter design of the evolution
strategy optimization algorithm, and �x is a 36 dimensional vector that specifies
the real-valued NN weights. F (�x) is called the ‘inverse handling capacity’.

In general, ESGC research results are incomparable, since the elevator group
control per se is not appropriate as a ‘benchmark problem’:
– Elevator systems have a very large number of parameters that differ widely
among buildings, elevator models, manufacturers etc.
– Elevator cars have complex rules of operation, and even slight differences,
e.g. in door operation or in the conditions for changing the traveling direction,
can affect the system performance significantly. Even the smallest elevator
system has a very large state space, making a direct solution infeasible, thus no
exact solutions are available for comparison.
– The sophisticated ESGC rules are usually trade secrets of the manufacturers,
and cannot made commonly available for research.

In principle, the optimization practitioner can cope with the complexity of the
ESGC problem in two different ways: The problem can be simplified or resources
can be used extensively (i.e. parallelization, see, e.g. [10]). We will concentrate
on the first strategy and present a simplified ESGC model. Ideally, a simplified
ESGC model should comply with the following requirements: It enables fast
and reproducible simulations and is applicable to different building and traffic
configurations. Furthermore it must be a valid simplification of a real elevator
group controller and thus enable the optimization of one specific controller policy
and the comparison of different controller policies. The simplified model should
be scalable to enable the simulation of different numbers of floors or servers.
It should be extensible, so that new features (i.e. capacity constraints) can be
added. Last but not least, the model is expected to favor a theoretical analysis.
We propose a model that conforms to all these requirements in the next section.
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Figure 2: The S-ring as an elevator system. The sites are numbered from 0 to
n − 1.

2 S-ring Basics

When passengers give a hall call, they simply press a button. Therefore, only
a one bit information for each floor is sent to the ESGC. It appears intuitively
correct to map the whole state of the system to a binary string. The system
dynamics is represented by a state transition table and can be controlled by a
policy. The sequential-ring model (S-ring model) has only a few parameters:
The number m of elevator cars, the number n of queues, and the passenger
arrival rate p [8, 6]. A 2-bit state (si, ci) is associated with each site. The si bit
is set to 1 if a server is present on the ith floor, to 0 otherwise. Correspondingly,
the ci bit is set to 0 or 1 if there is no waiting passenger resp. at least one waiting
passenger. Fig. 2 depicts a typical S-ring configuration. The state at time t is
given as

x(t) := (c0(t), s0(t), . . . , cn−1(t), sn−1(t)) ∈ X = IB2n, (1)

with IB := {0, 1}. A transition probability function f , a decision function δ,
and a reward function r are used to determine the dynamics of the system. A
look-up table as shown in Tab. 2 can be used to represent f , δ, and r in a
compact manner. We will give a formal definition of the S-ring in the appendix
(Def. 2).

The state evolution is sequential (S-ring stands for sequential ring), scanning the
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Table 1: The triple in the first column represents the state of the actual site:
Customer waiting, server present, and server present on the next floor. The
probability of a state change to the state in the fourth column is given in the
second column. Columns three and five denote the decision and the reward
respectively. I.e., the server has to make a decision (to ‘take’ or to ‘pass’ the
customer) if there is a customer waiting (1xx), and if there is a server present
on the same floor (11x) but no server on the next floor (110).

ξ(t) Prob π(x) ξ(t + 1) ∆r

000 1 − p 000 0
p 100 −1

100 1 100 0
010 1 − p 001 0

p 0 101 −1
1 010 0

110 1 0 101 0
1 010 +1

001 1 − p 001 0
p 101 −1

101 1 101 0
011 1 011 0
111 1 011 +1

sites from n−1 down to 0, and then again around from n.1 At each time step, one
of the floor queues is considered, where passengers may arrive with probability
p. Therefore, the triple ξ(t) := (ck(t), sk(t), sk′ (t)), with k ∈ {1, . . . , n} and
k′ := 1 + (k + 1)mod n is updated: If the queue has both a customer and a
server present, the server makes a decision to ‘take’ (1) or ‘pass’ (0) the customer
according to a policy π (see Def. 3 and Def. 4 in the appendix). In case of a
‘take’ decision, the customer enters the car, and the server stays there; in the
‘pass’ case, or if there is no customer, the server steps to the next site. As the
rules of operation are very simple this model is easily reproducible and suitable
for benchmark testing.2

Despite the model’s simplicity, it is hard to find the optimal policy π∗ even
for a small S-ring; the real π∗ is not obvious, and its difference from heuristic
suboptimal policies is non-trivial.

If the set of states and the set of observations are identical, the model is called
fully-observable [11] and the observation function o uses global information. In
the following we will also use the partially-observable or the unobservable case.

1The up and down elevator movements can be regarded as a loop. This motivates the ring
structure.

2A reference implementation of the S-ring model can be requested from the authors: {tom,
preuss}@Ls11.cs.uni-dortmund.de.
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Next we will introduce some elementary policies:
– The most obvious heuristic policy is the greedy one: When given the choice,
always serve the customer: πg(o) ≡ 1. Rather counter-intuitively, this policy is
not optimal, except in the heavy traffic (p > 0.5) case. This means that a good
policy must bypass some customers occasionally. The greedy policy does not
take any information about the state of the system into account.
– The random policy is another trivial policy that leads to rather poor results.
For some given σ ∈ [0, 1], we can define πr(o) = 0 with probability (w. pr.) 1−σ,
and 1 otherwise. Actions based on the random-policy require no information
about the actual system state.
– A quite good heuristic policy, that takes information about the actual state
of the system into account, is the balance-policy: πb(o) = 0, if sn−1 = 1, and
1 otherwise. The intention is to put some distance between servers by passing
when there is another tailing server, letting it serve the customer: Waiting
customers on the (n − 1)th floor queue are not served by the leading server,
thus a gap is created between the leading and the following server. Balancing
the positioning of the servers, πb is significantly better than πg for medium
values of p.
– Finally, we present the perception policy representation: Let θ : IR → IB define
the Heaviside function (see Def. 5), and x = x(t) be the state at time t (see
Eq. 1), and y ∈ IR2n be a weight vector. A linear discriminator, or perceptron,
πp(x) = θ(< yT , x >), can be used to present the policy in a compact manner.
The perception presentation can be used to encode the other policies mentioned
above. Variants of this policy require information on the complete state of the
current system, since the state vector x is used.

The S-ring Model as an Optimization Problem

The ‘optimization via simulation’ approach requires the definition of a perfor-
mance measure for the simulation model. The long-run time-average number
Q of customers in the system or in the queue are commonly used performance
measures in queuing theory [12]. Consider a simulation run of a queuing system
over a period of time T . The steady-state time-average number Q is

Q := lim
T→∞

∫ T

0 Q(t)dt

T
w.pr. 1. (2)

The basic optimal control problem is to find such a policy π∗ for given S-ring
configuration S ∈ S (see Def. 2), that the expected number of sites with waiting
passengers, that is the steady-state time-average as defined in Eq. 2, in the
system is minimized:

π∗ = arg min
π

Q(π). (3)

Equivalently, a policy π is optimal, if it maximizes the expected reward. The
general S-ring problem: For a given S-ring S, find the optimal policy π∗, can be
modified to the
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Problem 1 (Perceptron S-ring problem) For a given S-ring S, find the
weight vector y ∈ IR2n that represents the optimal policy π∗.

Since the perceptron S-ring problem relies on the fitness function F : IR2n → IR,
it can serve as a benchmark problem for many optimization algorithms [6, 13].
In general, π can be realized as a look-up table of the system state x and π∗

is found by enumerating all possible π and selecting the one with the lowest Q.
Since this count grows exponentially with n, the naive approach would not even
work for any but the smallest cases.

3 Analysis and Simulation of the S-ring system

The S-ring system can be interpreted as a Markovian decision process. Let
x(t) ∈ X denote the state of the S-ring system at time-step t, where X denotes
the state space of the S-ring system. A single state transition describes the
changes of the system, if the kth floor queue is considered. A transition cycle
describes the changes of the system, if the n sites (k = n − 1, n − 2, . . . , 2, 1, 0)
are considered in sequence. The N different system states can be enumer-
ated using the function snum : IB2n → {0, 1, . . . , 22n} defined as snum(x(t)) :=∑n

i=1 2i−1(si + 2n−1ci), and the function slegal, that determines the feasibility
of a state (

∑n
i=1 si = m).

If the kth floor queue is scanned, the corresponding state transition can be
described by an S-ring single state transition matrix Pk. The matrix element
(pij) defines the state transition probability from state i to state j. The single
state transition matrices can be multiplied to obtain the transition cycle matrix:
P :=

∏n
i=1 Pn−i+1. Based on P, we can determine the limiting state probability

distribution.

Example 1 Even the simplest non-trivial case with n = 3 floors and m = 2
elevators requires 23 · (

3
2

)
= 24 different states. Based on the limiting state

probability distribution πlim and on the vector c, that contains at its ith position
the number of customers when the system is in the ith state, we can determine
the value Q for the greedy strategy as < πlim, c >= 3 · p2/(p4 − p3 + 2p2 + 1).
E.g., if we chose p = 0.3, we obtain Q = 0.2325.

The S-ring can be seen as a partially-observable Markov decision process (POMDP)
(see Def. 6). The unobservable MDP (UMDP) is a subclass of the POMDP: No
information on the state of the system is available. The S-ring equipped with
the random or with the greedy policy is an UMDP.
The complete state of the system is known to the observer at each time point
in the fully observable Markov decision process (MDP). The perceptron S-ring
is an MDP.
POMDPs can be formulated as optimization problems: I.e. for a given POMDP,
the decision maker selects the policy that gives the maximum expected fitness
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Arrival Departure

Figure 3: Event graph. The thin arrow represents an event at the beginning
(arrival) scheduling an event at the end of the arrow (departure) immediately.
The heavy arrows indicate that the event at the beginning of the arrow may
schedule the event at the end of the arrow.

function value. There exist several dynamic programming approaches for solv-
ing POMDP problems: Standard algorithms are value iteration and policy iter-
ation [14, 15, 16, 17, 18]. A solution by dynamic programming and by numerical
methods such as Q-learning, Kiefer-Wolfowitz stochastic approximation and an
evolution strategy [19] is presented in [3].

The conclusions drawn from the theoretical and numerical analyses might be
complemented by simulation experiments. The S-ring can be treated as a
discrete-event-simulation model [12]. An arrival event schedules a departure
event without any intervening time, whereas other events occurring at time ti
are scheduled at time ti+1 := ti + 1. Based on the event-graph method, where
each event is represented by a node, and directed arrows show how events are
scheduled from other events, the S-ring can be presented as shown in Fig. 3 [20].
A flowchart for the departure event is shown in Fig. 4. An event-based vari-
ant of the S-ring was implemented in simlib. simlib is a C-based simulation
‘language’, that provides functions to accumulate and to summarize simulation
data, to schedule events, and to generate random variates [21].

4 The S-Ring Model as a Valid ESGC Model

The complete validation process requires subjective and objective comparisons
of the model to the real system [21, 12]. Subjective comparisons are judgments
of experts (‘face validity’), whereas objective tests compare data generated by
the model to data generated by the real system. Building a model that has a
high face validity, validating the model assumptions, and comparing the model
input-output transformations to corresponding input-output transformations for
the real system can be seen as three widely accepted steps of the validation
process [22].

Important similarities of the S-ring with real elevator systems have been ob-
served by experts: Both are found to show suboptimal performance when driven
with simple greedy policies. They exhibit a characteristic instability, commonly
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called bunching in case of elevators.

In the following we will consider input-output transformations more detailed.
The model is described by the function:

f : (Z, D) → Y (4)

Thus values of the uncontrollable input parameters Z and values of the control-
lable decision variables (or of the policy) D are mapped to the output measures
Y . The model can be run using generated random variates Zi to produce the
simulation-generated output measures. E.g. the S-ring model takes a policy and
a system configuration and determines the expected average number of floors
with waiting customers in the system using the generated random variates that
determine a customer arrival event. If real system data is available, a statistical
test of the null hypothesis can be conducted:

H0 : E(Y ) = µ is tested against H1 : E(Y ) �= µ, (5)

where µ denotes the real system response and Y the simulated model response.
We will extend these standard validation techniques by introducing a new ap-
proach, that takes the choice of an optimization algorithm into account. The
main idea is based on the observation that the complexity of a model can only
be seen in relation to the associated optimization algorithm [23]: The functions
Hn,b : {0, 1}n → {0, 1} defined by Hn,b(b) = 1 and Hn,b = 0 if a �= b (‘needle in a
haystack’) can be extremely difficult for (standard) genetic algorithms, whereas
they are simple for the degenerated search heuristic that generates the solution
b deterministically.
We additionally assume that every problem requires a specific algorithm param-
eter setting �a [24]. The vector �a includes the exogenous parameters such as the
population size in evolutionary algorithms or the starting temperature for the
cooling schedule in simulated annealing. François and Lavergne [25] introduce
a methodology that classifies problem classes based on the parameterization of
the underlying optimization algorithm. This methodology is extended in the
following to ‘optimization via simulation’ approaches. We will give a definition
first:

Definition 1 (Algorithm based equivalence) Let the regression model E(Y ) =
Xβ model the functional relationship between the algorithm A and its expected
performance E(Y ) for the optimization problem P . α denotes a new variable
that specifies the underlying optimization problem P . Two optimization prob-
lems P1 and P2 are equivalent with respect to an algorithm A (P1 ≡A P2),
if there are no interactions between the model parameters β and the problem
parameter α.

Remark 1 P1 ≡A P2 does not require that the main effect of α is insignificant.

Remark 2 If P1 ≡A P2, then an optimization algorithm A with parametriza-
tion �a shows a similar behavior on problem P1 and problem P2.
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Figure 5: Schematic representation of algorithm based validation. A regression
model describes the functional relationship between the parameter setting of an
algorithm and its expected performance. Two optimization problems are equiv-
alent, if there are no interactions between the problem and model parameters.

Eq. 4 can be written equivalently as fP,Q : (Z,�a) → Y, where Y is the perfor-
mance of an algorithm with the exogenous parameter setting �a for the problem
P and the quality function Q.
Similar to the test from Eq. 5 the following statistical test to identify equivalent
problems can be performed: The null hypothesis H0 : α = 0, is tested against
the alternative H1 : α �= 0 (P1 and P2 are not equivalent).

Our goal is to show that the S-ring model is a valid ESGC-model, so that we can
transfer results from the S-ring to the lift model. The first step in algorithm
based validation (ABV) requires the selection of an optimization algorithm.
Evolution strategies (ES), that are applicable to many optimization problems,
have been chosen in the following [19, 26]. Recent publications propose gen-
eralized linear models (GLMs) [27, 25] or regression trees [28]. GLM analysis
provides a unified approach for linear and non-linear models with both normal
and non-normal responses. A generalized linear model that is based on the
Gamma distribution and the canonical link is used in the following analysis.
A factor L with two levels {Sring, Lift} is introduced to check for interactions
between algorithm parameters and L. Starting from the over fitted model we
perform a backward elimination procedure.3 The final model shows that there
are no significant interactions between the problem L and other factors.4 We

3The model search (determination of the predictors, their orders and interactions) can be
based on the Akaike Information Criterion (AIC). Backward elimination starts with an over-
fitted model, whereas forward selection adds a new variable to the model at each stage of the
process.

4Another way to test for interactions between the factor L and other factors is to compare
two nested models M2 ⊂ M1. M1 includes interactions between L and other factors of the
reduced model, whereas interactions are omitted in M2. M1: Y ∼ Function * model is
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Figure 6: Two NN controllers dealing with different update methods
(sequential=1, random=2, quasi-parallel=3) and arrival rates on an S-ring with
20 floors and 6 servers. Left hand: Default controller, all weights are 1.0, right
hand: ES-optimized controller. Each point represents a simulation run with
1 million steps. Lower values are better. Planes are only added to enhance
visibility.

can conclude that the S-ring problem and the lift problem are equivalent with
respect to ES. Therefore the S-ring model can be seen as a valid simplification of
the lift model. Rem. 2 justifies the development of a simplified ESGC model: An
improved (tuned) parameterization �a of algorithm A and problem P1 (S-ring)
can be applied to optimize the complex optimization problem P2 (lift).

5 S-ring Model Extensions

The S-ring model has been introduced as simplified elevator system model with
very limited parameters and features. To improve our understanding of its
applicability, it makes sense to explore two types of changes to this model.
Firstly, effects of mechanisms looking inappropriate compared to a real elevator
system shall be investigated. Secondly, features not existent in the S-ring model
but obviously present in the real-world situation may be subsequently added to
find out if they influence the design of a controller significantly.

For our experiments, we used a default NN controller with all weights set to
1.0 and a previously optimized controller that had been adapted to an arrival
rate of 0.3. The (10+50)-ES performing the optimization was allowed 50,000

compared to M2: Y ∼ Function + model. The symbol ‘+’ denotes independent factors
and the symbol ‘*’ denotes interactions between two factors. ANOVA indicates that there is
no significant difference if interactions between L and the other factors are included.
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Figure 7: Default (left) and optimized NN controller performance on a wide
range of arrival rates and server capacities on an S-ring with 20 floors and 6
servers. Each point represents a simulation run with 1 million steps.

evaluations with 1,000 simulation steps each. We used self-adaptation with
τ = 0.3, σ ∈ [0.01, 1.0] and re-evaluation of surviving parents.

The S-ring model has been defined in a way that favors its analysis as Markov
decision process: Within a full circle, floor states are updated in sequence. Alter-
natively, one can imagine random order or even quasi-parallelism. The general
behavior of our model must remain stable whatever variant is chosen because
the update order of the real system we want to model is usually not known
beforehand. We cannot yet prove that this is true for all possible configurations
and controllers, but simulations done so far (see Fig. 6) indicate that the S-ring
behavior is very similar for different update orders.

An obvious difference between real-world elevator cars and S-ring ones is that
the latter have infinite capacity. Previously, we assumed that it is reasonable
to neglect capacities for a wide range of parameter settings. Simulation runs
depicted in Fig. 7 show that this is indeed the case. Only for extreme pas-
senger flows congestion occurs and waiting customers sum up to large numbers.
However, the turning point can be shifted upwards with a good controller policy.

6 Summary and Outlook

We proposed a simplified elevator supervisory group controller, the so-called
S-ring. The S-ring can serve as a helpful benchmark problem for evaluating and
comparing search heuristics. Different techniques for its analysis and simula-
tion were presented. A new method was developed to validate the S-ring as an
ESGC model by taking an optimization algorithm into account. Furthermore,
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we demonstrated how new features can easily be added to the S-ring.
The current work can be extended by implementing different parallel optimiza-
tion strategies. Additionally, this methodology is transferable to other traffic
systems or, more general, other distributed control problems. Hence, we hope
that the S-ring is an interesting real-world related optimization problem for
other researchers.
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Definitions

Definition 2 (S-ring) The S-ring is the tuple

S = (n, m,X , x0,A,O, f, o, r, g),

where n ∈ IN and m ∈ IN are the number of queues and servers respectively. X ,
A, and O denote finite set of states, actions and observation respectively, o is
an observation function, and x0 denotes the initial state. X is defined as the
set of binary vectors

x = (sn−1, . . . , s0, cn−1, . . . , c0) ∈ IB2n

with
∑n−1

i=0 si = m. Let g(t) : IN+
0 → {0, 1, 2, . . . , n − 1} be the function that

determines the number of the floor queue scanned at time step t:

g(t) := n − 1 − (t mod n). (6)

h : X ×IN+
0 → IB3 is a helper function, that extracts three bits (customer present

on the actual floor, server present on the actual floor, and server present on the
next floor) from the state vector x:

h(x, t) :=(cg(t), sg(t), sg(t−1)) (7)

=(x2n−1−g(t), xn−1−g(t), xn−1−(g(t−1) mod n)).

The transition probability function

f : X ×A× IN+
0 ×X → [0, 1] (8)

defines probabilities for a state transition from state x to state x′ depending on
the action a performed. Finally,

r : X × X × IN+
0 → ZZ (9)

is the reward function. S denotes the set of all possible S-ring configurations.
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Definition 3 (Decision rule) A decision rule is a mapping from observations
to actions:

δ : O → A, δ(o) = {0, 1}. (10)

Definition 4 (Policy) A sequence (δ0, δ1, δ2 . . .) of decision rules is called a
policy.

Definition 5 (Heaviside Function)

θ(z) =
{

0, if z < 0
1, if z ≥ 0,

(11)

Definition 6 (POMDP) A partially-observable Markov Decision Process (POMDP)
M is a tuple M = {X , x0,A,O, f, o, V }, where:

• X denotes a finite or countable set of states, x0 ∈ X is the initial state,
A denotes a set of actions, and O denotes a set of observations. If not
mentioned otherwise, the Markov assumption is made in general: Each
state has all information necessary to predict the next event and action.

• f : X × A × X → [0, 1] defines probabilities for a state transition from
state x to state y depending on the action a performed. f(x, a, y) is the
probability that state y is reached from state x on action a. Therefore,
each action can be represented by a state transition table of size N × N ,
or by a state transition matrix P k with entries (pk

ij) as defined in Eq. 1.
The probabilities in the transition matrix take also exogenous effects into
account.

• o : X → O denotes the observation function: The corresponding set of
observations O can be interpreted as a set of messages sent to the decision
maker after an action is completed [18].

• And finally, the value function V : H → IR. If V is time-separable, then
it can be written as a combination of the reward function r and the cost
function c, that are defined as follows:

r : X → IR, and c : X ×A → IR. (12)
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