
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

On the Analysis of Dynamic Restart Strategies for
Evolutionary Algorithms

Thomas Jansen

No. CI-177/04

Technical Report ISSN 1433-3325 September 2004

Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/XI
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.



On the Analysis of Dynamic Restart Strategies

for Evolutionary Algorithms

Thomas Jansen

George Mason University, Fairfax, VA 22030, USA
tjansen@gmu.edu

Abstract. Since evolutionary algorithms make heavy use of randomness
it is typically the case that they succeed only with some probability. In
cases of failure often the algorithm is restarted. Of course, it is desirable
that the point of time when the current run is considered to be a failure
and therefore the algorithm is stopped and restarted is determined by
the algorithm itself rather than by the user. Here, very simple restart
strategies that are non-adaptive are compared on a number of exam-
ples with different properties. Circumstances under which specific types
of dynamic restart strategies should be applied are described and the
potential loss by choosing an inadequate restart strategy is estimated.

1 Introduction

Evolutionary algorithms (EAs) are randomized search heuristics applicable to
a wide range of problems. We concentrate on optimization here though we do
not think that the considerations presented are limited to that case. Due to the
random elements employed in EAs one typically observes behavior that varies
from run to run. In order to increase the probability of finding a good or even
optimal solution of the considered optimization problem, it is common practice
to do restarts. Then the choice of the point of time when the EA is stopped and
restarted is crucial. In principle, one can distinguish three different classes of ways
to choose a restart strategy just like for other parameters in EAs, e. g., mutation
probability or population size [1]. The first class is a static setting where a certain
number of steps is fixed in advance. Then one can discuss whether it is better
to spend a lot of time in one long run or in multiple short runs [10]. Unlike
other parameters such a static decision is unusual for restarting. The second
class comprises dynamic restart strategies. Here, the point of time for restarts is
determined by some fixed schedule that depends on the number of steps counted
over all runs or, equivalently, on the number of steps in the current run and the
sum of number of steps in all previous runs. In spite of the increased flexibility
compared to static choices dynamic restart strategies are seldom used in EAs. A
practical example proving the usefulness of dynamic, yet non-adaptive, strategies
are cooling schedules used for simulated annealing [9]. What is common practice
for determining the point of time for restarts are strategies from the third class,
namely adaptive restart strategies. Here, the restart strategy may depend on
the complete history of the current and all previous runs. There are various
different implementations ranging from quite simple ones to quite sophisticated
statistical approaches [7]. We note that for EAs it is not necessary to restart the



algorithm completely. Partial restarts in the sense of re-initializing parts of the
population are possible [11]. Since we concentrate on restart strategies and not
on the underlying search algorithm, we will not discuss such mixed strategies.

We consider dynamic restart strategies, although they are not that commonly
used. We do this for several good reasons. Obviously, the three classes of strate-
gies form a hierarchy: static choices can be seen as degenerated dynamic ones,
dynamic strategies can be described as degenerated adaptive ones. Note that
self-adaptive strategies are a special case of adaptive strategies. Considering this
hierarchy we believe that it is sensible to prove results on the simpler cases be-
fore analyzing the more complex classes. Second, due to their simpler structure
such strategies are analyzable and allow for rigorous proofs of non-trivial state-
ments. Third, it will turn out that already simple dynamic restart strategies can
increase the performance of an EA enormously. Finally, typical adaptive restart
strategies explicitly express some assumptions about the objective function and
are therefore relatively easy to fool by constructing functions that do not meet
these assumptions. In fact, we will present one example where dynamic restart
strategies can be far superior to adaptive strategies that wait until the EA “gets
stuck” before restarting it.

Next we discuss briefly the baseline of theoretical analysis of EAs and build
our model in accordance to this. In Sect. 3 we present the EA we use to exemplify
our restart strategies and the different dynamic restart strategies we analyze. In
Sect. 4 we describe our example functions and motivate our choices. In Sect. 5
we derive results on one single run of the EA considered. We use these results
for the comparison of the dynamic restart strategies in Sect. 6.

2 Performance Analysis of EAs

We consider exact optimization of static pseudo-Boolean functions f : {0, 1}n →
IR. We assume that f is defined for all n ∈ IN (or at least infinitely many) and
are interested in the asymptotic behavior of an EA on f for n growing to infinity.
We neglect the choice of a stopping criterion and assume that the EA eventually
finds some global optimum with probability 1 within some number of steps as
in fact many EAs do [15]. Formally, let pf,t(n) denote the probability that some
fixed EA optimizes an objective function f : {0, 1}n → IR in at most t steps. For
all choices pf,t(n) is monotonic increasing with t. We consider only EAs where
pf,t(n) is strongly monotonic increasing and lim

t→∞
pf,t(n) = 1 holds for all f .

One typical measure is the expected optimization time, i. e., the expected
number of steps until some global optimum is found. Sometimes a function f is
typically efficiently optimized by some EA whereas in very rare cases it needs ex-
tremely long to optimize f . The expected optimization time may be exponential
in this case, misleadingly indicating that f is difficult for this EA. However, when
applying an appropriate restart strategy, this cannot happen: Assume that after
some number of steps Ts the EA has success probability pf,Ts

(n) where Ts is
not too large and pf,Ts

(n) is not too small. Then a restart strategy stopping and
restarting the EA after Ts steps leads to an acceptable expected optimization
time of Ts/pf,Ts

(n).



Note, that in our approach we do not pose some limit on the computational
cost that optimization may take. This is fundamentally different from studies
where the computational cost is fixed and the goal is to find a restart strat-
egy that maximizes the expected gain while respecting this limit [2, 5, 10]. Our
approach is more similar to the analysis of algorithms, where one is interested
in the run time of an algorithm needed to perform a well-defined task without
imposing a predefined limit of the time the algorithm may spend.

3 Algorithmic Framework

In principle, any EA can serve as basis for the comparison. In order to allow
for an easy comparison it is desirable that the EA itself is well understood and
easy to analyze. However, it should exhibit a behavior that can be assumed to
be typical for EAs. This rules out extremely simple constructs like pure random
search that show no similarity to common EAs. We consider the (1+1) EA to
be a good compromise. It uses a population of size 1, bit-wise mutation with
mutation probability 1/n, and a deterministic selection, known as plus-selection
from evolution strategies. This algorithm is often studied and well-understood
[3, 6, 14, 15]. It is known that it often performs at least comparable to much
more complicated and sophisticated EAs [8, 12]. We do not claim that the (1+1)
EA behaves like more sophisticated EAs that may use crossover. But there are
objective functions where more sophisticated EAs behave like the (1+1) EA
on the classes of functions we introduce in the next section. Then, the restart
strategies we investigate will have the same effects on the EAs as they have on
the (1+1) EA. Thus, simplifying the analysis by choosing a simple EA does not
restrict the applicability of the obtained results.

Algorithm 1 ((1+1) EA with dynamic restarts)
1. r := 0
2. r := r + 1; tr := 0 Choose x ∈ {0, 1}n uniformly at random.

3. Create y from x by independently for each bit flipping it

with probability 1/n.
4. If f(y) ≥ f(x), then x := y.
5. tr := tr + 1
6. If restart(r) = tr, then continue at 2 else continue at 3.

Let T denote the minimal value of
∑

ti when x is some global maximum.
Then, we analyze the expected optimization time E (T ). We concentrate on
restart strategies where the length of intervals between two consecutive points of
time when a restart is done is increasing, thus each run not being shorter than
the preceeding run. This seems reasonable since long runs are a potential waste
of time when already short runs have a good success probability. We consider
two types of increasing dynamic restart strategies to be of special interest.

Definition 1. An additive restart strategy restarta: IN → IN is defined by s0, s ∈
IN and is given by restarta(r) := s0 +(r−1) ·s. A multiplicative restart strategy
restartm: IN → IN is defined by s0 ∈ IN, s ∈ IR with s > 1 and is given by
restartm(r) :=

⌈

s0 · s
r−1

⌉

.



In order to further simplify our considerations we investigate one special
additive restart strategy ra and one special multiplicative restart strategy rm,
only. We believe that important properties of additive and multiplicative restart
strategies in general are captured by these two examples.

Definition 2. The additive restart strategy ra is defined by s0 = n log n, s =
n log n. The multiplicative restart strategy rm is defined by s0 = n log n, s = 2.

The length of the first run of the (1+1) EA is s0 = n log n for both strategies.
This choice is motivated by the fact that optimization of any function that has
a unique global optimum takes Ω(n log n) steps on average [3]. Therefore, we
consider it to be counterproductive to stop the (1+1) EA earlier.

4 Example Functions

We want to compare dynamic restart strategies in different situations. Thus we
are interested in functions exemplifying different situations as clearly as possible.
This can be done best with artificial, constructed objective functions. We are
only interested in functions where at least a perfect restart strategy can achieve
polynomial expected optimization time. Note, though, that the choice of an
inappropriate restart strategy can cause an overall inefficient optimization.

Definition 3. For n, k ∈ IN with k = O (1) let the functions SPk: {0, 1}n → IR,
SP2k: {0, 1}n → IR, and HSP:{0, 1}

n → IR be defined by

SPk(x) :=















n · (i + 1) if x = 1i0n−i with
i ∈ {0, k, 2k, . . . , dn/(3k)e k},

n −
n
∑

i=1

xi otherwise,

SP2k(x) :=























n · (i + 1) if
(

x = 1i0n−i
)

∨
(

x = 0n−i1i
)

with
i ∈ {0, k, 2k, . . . , (dn/(3k)e − 1) k},

n · (n + 1) if x = 1i0n−i with i = dn/(3k)e k,

n −
n
∑

i=1

xi otherwise.

HSPk(x) :=



























n · (i + 1) if x = 1i0n−i

with i ∈ {0, k, 2k, . . . , dn/(3k)e k},

n +
n
∑

i=1

xi if x1 = x2 = · · · = xd2n/3e = 0,

n −
n
∑

i=1

xi otherwise.

For SPk there is a kind of short path starting in 0n. All points on the path
are of the form 1i0n−i and are formed of dn/(3k)e consecutive blocks of length
k. If a block consists only of 1-bits and this holds for all blocks to its left, too,
this is rewarded by n. For all points not on the path, each 1-bit in the string
reduces the function value by 1 making the first point of the path easy to find.
Obviously, the expected optimization time E (T ) will increase with k.



SP2k is very similar to SPk but with two short paths, both starting in 0n.
One of the form 1i0n−i leading to the unique global optimum, the other of the
form 0i1n−i leading to a local optimum. For symmetry reasons, the (1+1) EA
will reach the local optimum in about half of the runs. Then, a direct mutation
of at least (2/3)n − k bits is necessary to reach the optimum. Thus, the (1+1)
EA is very efficient in about half of the runs and very inefficient in about the
other half of the runs and thus very inefficient on average.

HSPk has a short path similar to the function SPk which is easy to find.
However, since once being at the beginning of the path it is much more likely to
go away from the path then to follow it, we expect that the success probability
pHSPk,t(n) is rather small for each t = nO(1).

5 Analysis Without Restarts

First, we investigate the behavior of the (1+1) EA without restarts. Results on
the success probability pf,t(n) are useful when analyzing restart strategies. The
more precise the upper and lower bounds on the success probability are, the
more precise statements on the expected optimization time of the (1+1) EA in
combination with different restart strategies can be concluded.

Theorem 1. There exist two constants c1, c2 ∈ IR+, such that given n, k ∈ IN
with k = O (1) for the (1+1) EA on SPk: {0, 1}n → IR the following holds:

∀t ≤ c1 · n
k+1: pSPk,t(n) = e−Ω(n)

∀t ≥ c2 · n
k+1: pSPk,t(n) = 1 − e−Ω(n)

Proof. We consider a run and divide it into two disjoint phases. The first phase
starts with the random initialization and ends when the current string x for the
first time is of the form 1i0n−i with i ∈ {0, k, 2k, . . . , dn/(3k)e k}. The second
phase starts when the first phase ends and ends when the current string x is
equal to the unique global optimum. We claim that the probability that the first
phase does not end within the first

⌈

2en2
⌉

steps is bounded above by e−n/4.
We ignore steps ending the first phase by leading to some 1i0n−i with i > 0.
Obviously, this can only increase the probability of not ending the first phase.
The current string x has Hamming distance d(x) to the all zero string 0n with
d(x) > 0. The probability that the child y has Hamming distance at most d(x)−1
to 0n is bounded below by (1/n)(1 − 1/n)n−1 ≥ 1/(en), since it is sufficient to
mutate exactly one 0-bit in x. Such a child y has larger function value and will
replace x. After at most n such replacements the Hamming distance is reduced
to 0 and the first phase ends. Thus we are in the situation that we make random
experiments where each experiment is a success with probability at least 1/(en).
The expected number of success in

⌈

2en2
⌉

trials is lower bounded by 2n. By

Chernoff bounds [13] the probability not to have at least n successes in
⌈

2ne2
⌉

trials is bounded above by e−n/4.
We claim that the probability that the second phase does not end within the

first
⌈

2enk dn/(3k)e k
⌉

steps of this phase is bounded above by e−n/12. In the



second phase mutating exactly at most k 0-bits in the first block in x that con-
tains 0-bits yields a child y that replaces x. The probability of such a mutation is
bounded below by (1/n)k(1−1/n)n−k ≥ 1/

(

enk
)

. After at most dn/(3k)e k such
steps the global optimum is found. We argue as above and see that the proba-
bility not to have at least dn/(3k)e k such steps within 2enk dn/(3k)e k steps is
bounded above by e−dn/(3k)ek/4. Together this proves the second statement.

We now know that the number of different points in the search space encoun-
tered before x becomes some point 1i0n−i with i ∈ {0, k, 2k, . . . , dn/(3k)e k}
is bounded above by

⌈

2en2
⌉

with probability 1 − e−n/4. Thus, the probabil-
ity that for the first x of such form i ≥ n/12 holds is bounded above by
2en2 · (n/4)/

(

n
n/12

)

< e−n/12. Thus, with probability at least 1− e−n/12 at least

n/4 blocks that are all zero have to become all one. In a mutation that flips
one all zero block thereby generating an all one block, other blocks might flip as
well. However, the probability that in such a step l additional blocks become all
one is bounded above by (1/n)kl. Thus, we expect in n/9 such steps in total less
than (n/9) + (1/n)kl−1 blocks to become all one. Due to Chernoff bounds, the
probability that in total more then (2n/9)+2(1/n)kl−1 < n/4 blocks become all
one is bounded above by e−n/25. One such step has probability at most 1/nk.
Thus, we expect to have at most n/20 such mutations in nk+1/20 steps. Again
by Chernoff bounds, the probability to have at least n/10 such mutations in
nk+1/20 steps is bounded above by e−19n/1000. This implies that with probabil-
ity 1 − e−9n/500 after nk+1/20 steps the global optimum is not reached. ut

Similarities between SPk and SP2k yield a similar result and allow us to reuse
parts of the proofs of Theorem 1 in the proof of the next theorem.

Theorem 2. There exist two constants c1, c2 ∈ IR+, such that given any n, k ∈
IN with k = O (1) for the (1+1) EA on SP2k: {0, 1}n → IR the following holds:

∀t ≤ c1 · n
k+1: pSP2k,t(n) = e−Ω(n)

∀t ≥ c2 · n
k+1: pSP2k,t(n) = 1/2 − O (1/n)

∀t ≤ nn/4: pSP2k,t(n) = 1/2 − Ω (1/n)

Proof. The first statement can be proved similarly to the proof of the first state-
ment in Theorem 1. The proof of the second statement is similar to the proof
of the second statement of Theorem 1. We extend the first phase until the first
point of time when the (1+1) EA reaches some x with SP2k(x) > SP2k (0n).
Since the path 1i0n−i contains one more element then the path 0i1n−i, the first
x on the path belongs to the 1i0n−i with probability at least 1/2. We consider
one step where x changes and want to estimate the probability that the path
is left in favor of the other path. Assume that x = 1i0n−i is the current string.
Then at least 2i bits have to mutate simultaneously in order to change the path.
The probability for such a mutation is bounded above by 1/n2i. In order to reach
the next point on the path it is sufficient to mutate at most k bits in the next
block that contains some 0-bits. The probability for such a mutation is bounded
below by (1/n)k(1− 1/n)n−k ≥ 1/

(

enk
)

. The value of i depends on the current



position of the path. It is at least k in the beginning and is increased by at least
k after each such step. Thus, the probability to leave the path before reaching
the optimum is bounded above by 2e/n.

The proof of the third statement is a combination of the proof of the second
statement in this proof and of the second statement in the proof of Theorem 1.
The path 0i1n−i is entered and not left with probability (1/2) − O (1/n). Once
the local optimum 0(dn/(3k)e−1)k1n−(dn/(3k)e−1)k is reached, a mutation of at
least (2/3)n − k bits is necessary. Such a mutation has probability at most
n−(2/3)n−k. Thus, the probability that such a mutations happens within nn/4

steps is bounded above by n(n/4)−(2/3)n+k ≤ n−n/3. ut

HSPk and SPk are similar, too. But in HSPk the Hamming distance to the
path can be increased by having 1-bits in the right third of x. Thus, it is possible
not to reach the path at all. This implies important differences.

Theorem 3. There exist two constants c1, c2 ∈ IR+, such that given any n, k ∈
IN with k = O (1) for the (1+1) EA on HSPk: {0, 1}n → IR the following holds:

∀t ≤ c1 · n
k+1: pHSPk,t(n) = e−Ω(n)

∀t ≥ c2 · n
k+1: pHSPk,t(n) = Ω

(

1/nk
)

∀t ≤ nn/4: pHSPk,t(n) = 1 − O
(

1/nk
)

Proof. The first statement can be proved similarly to the proof of the first state-
ment in Theorem 1. For the second and third statement it is crucial to give
estimations of the probability for reaching the path 1i0n−i. We know from the
proof of Theorem 1 that it is unlikely to find the path far from its beginning in
0n. From the ballot theorem [4] it follows that in fact with probability d2n/3e /n
the all zero string 0n is found. Now, let as assume that the current string x is 0n.
Then, the next child that replaces its parent can either be a point 1i0n−i on the
path or some point y different from 0n with y1 = y2 = · · · = yd2n/3e = 0. Note,
that once a path point is reached all subsequent current strings can only be path
points. Obviously, the probability to reach a path point is bounded above by
n−k +n−2k +n−3k + · · · = O

(

1/nk
)

while we reach some other point with prob-
ability at least (1/3)(1− 1/n)n−1 = Ω(1). On the other hand, the probability to
reach the path is bounded below by (1/n)k(1 − 1/n)n−k = Ω

(

1/nk
)

. Thus, the

first point reached is on the path with probability Θ
(

1/nk
)

. Once on the path
the path is never left and we conclude from the proof of Theorem 1 that with
probability 1 − e−Ω(n) within Θ

(

nk+1
)

steps we reach the global optimum.

For the third statement it is sufficient to note that the Hamming distance
to points on the path can only increase. In particular, as long as the Hamming
distance to the path is bounded above by n/6, the Hamming distance is increased
with probability Ω(1) in each step. Thus with probability 1−O

(

1/nk
)

the point

0d2n/3e1bn/3c is reached before reaching any point on the path. Then, a mutation
of at least bn/3c bits simultaneously is necessary to reach the path and the third
statement follows similar to the proof of Theorem 2. ut



6 Comparison of Dynamic Restart Strategies

Now we apply the results from the previous section to obtain results for the (1+1)
EA with restarts. These results represent the behavior of such dynamic restart
strategies for any EA with a success probability converging to 1, converging to
some positive constant, and converging to 0 polynomially fast, like the (1+1)
EA on SPk, SP2k, and HSPk, respectively.

Theorem 4. For n, k ∈ IN with k = O (1) the (1+1) EA with dynamic restart
strategy rm has expected optimization time E (T ) = Θ

(

nk+1
)

on SPk.

Proof. The lower bound follows from Theorem 1. For the upper bound we con-
sider the first uninterrupted run of length at least c2n

k+1 where c2 is the constant
from Theorem 1. After d(k log n) − (log log n) + log c2e restarts we have one run
of at least this length. The expected number of such runs before the global
optimum is found is bounded above by 2. Thus, E (T ) is bounded above by
∑d(k log n)−(log log n)+log c2e+1

i=0 2i · n log n ≤ 8c2 · n
k+1. ut

The order of growth of E (T ) with rm is optimal. Thus, for an easy to optimize
function it is good to have a restart strategy quickly increase the length of runs.

Theorem 5. For n, k ∈ IN with k = O (1) the (1+1) EA with dynamic restart
strategy ra has expected optimization time E (T ) = Θ

(

n2k+1/ log n
)

on SPk.

Proof. We can proof the upper bound similar to the proof of Theorem 4. After
⌈

c2n
k/(log n)

⌉

restarts, we have a run of length at least c2n
k+1. Thus, E (T ) is

bounded above by
∑dc2nk/(log n)e+1

i=1 i · n log n < 2c2
2 · n

2k+1log n.
For the lower bound we consider the first

⌊

c1n
k/(log n)

⌋

runs of the (1+1)

EA. All runs have length at most
⌊

c1n
k/(log n)

⌋

· n log n ≤ c1n
k+1. Thus, all

runs have success probability e−Ω(n). The total length of theses runs is at least
∑bc1nk/(log n)c

i=1 i · n log n = Ω
(

n2k+1

log n

)

. ut

In comparison with rm the restart strategy ra performs poorly. This is due
to the long time that is needed to have runs of sufficient length.

Theorem 6. For n, k ∈ IN with k = O (1) the (1+1) EA with dynamic restart
strategy rm has expected optimization time E (T ) = Θ

(

nk+1
)

on SP2k.

Proof. The proof can be done in the same way as the proof of Theorem 4. ut

Theorem 7. For n, k ∈ IN with k = O (1) the (1+1) EA with dynamic restart
strategy ra has expected optimization time E (T ) = Θ

(

n2k+1/ log n
)

on SP2k.

Proof. The proof can be done in the same way as the proof of Theorem 6. ut

Using additive or multiplicate restart strategies, it makes no difference for
the order of growth of E (T ) whether the success probability converges to 1 or
to some positive constant.

Theorem 8. For n, k ∈ IN with k = O (1) the (1+1) EA with dynamic restart
strategy rm has expected optimization time E (T ) = 2Ω(n/ log n) on HSPk.



Proof. Due to Theorem 3, on average Θ
(

nk
)

runs of length > c1n
k+1 are needed

to optimize HSPk. After n/ log n restarts the last run has length 2n/ log nn log n.
Since this is o

(

nn/4
)

, the success probability for each run is still o
(

1/nk
)

. So,
the optimum is not found after these restarts with probability 1 − o(1). ut

Theorem 9. For n, k ∈ IN with k = O (1) the (1+1) EA with dynamic restart
strategy ra has expected optimization time E (T ) = Θ

(

n2k log n
)

on HSPk.

Proof. The proof of the upper bound follows roughly the same lines as the proof
of the upper bound of Theorem 5. After

⌈

c2n
k/(log n)

⌉

restarts the length of the
run (and all following runs) is bounded below by c2nk+1. Thus, this run and all
following runs have success probability Θ

(

1/nk
)

according to Theorem 3. Thus,
the expected number of runs that is needed on average is bounded above by
O

(

nk + nk/(log n)
)

= O
(

nk
)

. Then the total length of all runs is O
(

n2k log n
)

.
The lower bound can be proved in the same way. What is needed additionally

is the third statement from Theorem 3. As in the proof of Theorem 8 we see
from there that the steps taken after the

(

c2n
k+1

)

-step in all runs do not add
something significant to the success probability since we are considering only a
polynomial number of runs and a polynomial number of steps. ut

Compared to ra the strategy rm performs very poorly. This is due to the
fact that the length of the runs increases so quickly. Thus, for difficult functions
where the probability of finding an optimum at all is very small even for quite
long runs additive restart strategies are preferred.

7 Conclusions

We presented a framework for the evaluation of restart strategies different from
other settings: We compared the expected optimization time instead of fixing
the computational cost in advance. We restricted ourselves to dynamic restart
strategies, which are more complex than fixing some point of time for a restart
but less complex than adaptive restart strategies. We know that in applications
adaptive restart strategies are “state of the art.” But we believe that it makes
sense to begin theoretical investigations with a simpler and still interesting class.

We described two classes of dynamic restart strategies and investigated one
additive strategy and one multiplicative strategy in detail. We employed the
simple (1+1) EA as the underlying search algorithm and presented three classes
of example functions with very different success probabilities. The time that is
typically spent optimizing these examples can be controlled via a parameter k.

We saw that it made almost no difference whether the success probability
within a polynomial number of steps is near to 1 or some other positive constant.
In both cases rm, which quickly increases the length of each run, is superior.
However, if the success probability stays close to 0 very long, ra is by far superior.
For ra the expected optimization is polynomial, for rm it is exponential. It is
easy to see that all functions that can be optimized with multiplicative restart
strategies in expected polynomial time can be optimized with additive restart



strategies in expected polynomial time, but the degree of the polynomial can be
larger. Here the quotient was of order Θ

(

nk/ log n
)

, with k any positive integer.
We saw that considering expected optimization time is reasonable when com-

paring restart strategies. The investigation of adaptive restart strategies within
this framework is subject to future research. Also open is the empirical compar-
ison of ra and rm not only on our examples but also in practical settings.

Acknowledgments

The author thanks Paul Wiegand for helpful discussions. The author was sup-
ported by a fellowship within the post-doctoral program of the German Aca-
demic Exchange Service (DAAD).

References

1. Th. Bäck. An overview of parameter control methods by self-adaptation in evolu-
tionary algorithms. Fundamenta Informaticae, 35:51–66, 1998.

2. E. Cantú-Paz. Single vs. multiple runs under constant computation cost. In Proc.

of he Genetic and Evolutionary Computation Conf. (GECCO 2001), page 754.
Morgan Kaufmann, 2001.

3. S. Droste, Th. Jansen, and I. Wegener. On the analysis of the (1+1) evolutionary
algorithm. CI 21/98, SFB 531, Univ. Dortmund, 1998. To appear in: TCS.

4. W. Feller. An Introduction to Probability Theory and Its Applications. Wiley, 1968.
5. A. S. Fukunaga. Restart scheduling for genetic algorithms. In Parallel Problem

Solving from Nature (PPSN V), LNCS 1498, pages 357–366. Springer, 1998.
6. J. Garnier, L. Kallel, and M. Schoenauer. Rigorous hitting times for binary muta-

tions. Evolutionary Computation, 7(2):173–203, 1999.
7. M. Hulin. An optimal stop criterion for genetic algorithms: A Bayesian approach.

In Proc. of the Seventh International Conf. on Genetic Algorithms (ICGA ’97),
pages 135–143. Morgan Kaufmann, 1997.

8. A. Juels and M. Wattenberg. Hillclimbing as a baseline method for the evaluation of
stochastic optimization algorithms. In Advances in Neural Information Processing

Systems 8, pages 430–436. MIT Press, 1995.
9. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-

ing. Science, 220:671–680, 1983.
10. S. Luke. When short runs beat long runs. In Proc. of he Genetic and Evolutionary

Computation Conf. (GECCO 2001), pages 74–80. Morgan Kaufmann, 2001.
11. J. Maresky, Y. Davidor, D. Gitler, Gad A., and A. Barak. Selectively destructive

restart. In Proc. of the Sixth International Conf. on Genetic Algorithms (ICGA

’95), pages 144–150. Morgan Kaufmann, 1995.
12. M. Mitchell, J. H. Holland, and S. Forrest. When will a genetic algorithm out-

perform hill climbing? In Advances in Neural Information Processing Systems.
Morgan Kaufmann, 1994.

13. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

14. H. Mühlenbein. How genetic algorithms really work. Mutation and hillclimbing.
In Proc. of the 2nd Parallel Problem Solving from Nature (PPSN II), pages 15–25.
North-Holland, 1992.

15. G. Rudolph. Convergence Properties of Evolutionary Algorithms. Dr. Kovač, 1997.


