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0 Summary, Conclusions and Outlook (german) 
Die sequenzspezifische Markierung von DNA ist von besonderer Bedeutung in der 

Biotechnologie und der Bioanalytik. Sie stellt eine große Herausforderung dar, da definierte 

DNA-Sequenzen erkannt und anschließend kovalent modifiziert werden müssen. 

Verschiedene Ansätze zur sequenzspezifischen Erkennung von DNA, wie die Triplehelix-

Bildung mit Oligonukleotiden oder PNA, die spezifische Erkennung der kleinen Furche mit 

Polyamiden und die Erkennung von DNA mit entwickelten Zink-Finger-Proteinen sind an 

einem Punkt angelangt, an dem gegebene Sequenzen erkannt werden können. Allerdings 

werden diese Systeme nur in Ausnahmefällen mit reaktiven Gruppen versehen und zur 

sequenzspezifischen DNA-Markierung eingesetzt. Mit der Entwicklung eines neuen Aziridin 

Kofaktors für die N6-Adenin-DNA-Methyltransferase (MTase) M·TaqI wurde bereits die 

kovalente sequenzspezifische Markierung von DNA ermöglicht. Dieses „Sequenzspezifische 

Methyltransferasen Induzierte Labeling“ von DNA (SMILing DNA) sollte anhand aller drei 

Klassen von DNA MTasen demonstriert werden. Es wurde gezeigt, dass nicht nur M·TaqI 

sondern auch die C5-Cytosin-DNA-MTase M·HhaI und die N4-Cytosin-DNA-MTase 

M·BcnIB die Kupplung von N-Adenosylaziridin (AZ) mit DNA katalysieren. Alle diese 

Reaktionen sind sequenzspezifisch und belegen die generelle Anwendbarkeit der SMILing-

Technologie (Abb. 0.1). 
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Abb. 0.1: Generelle Anwendung von N-Adenosylaziridin (AZ) als neuer Kofaktor für alle Klassen von DNA 

MTasen. 
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Eine Optimierung der Reaktionsgeschwindigkeit der M·TaqI-katalysierten Kupplungsreaktion 

zwischen DNA und AZ wurde durch Variation des pH-Wertes der Reaktionslösung erreicht. 

Es konnte gezeigt werden, dass die Reaktionsgeschwindigkeit mit der Abnahme des pH-

Wertes zunimmt. Das kann mit einer Aktivierung des Aziridinringes durch Protonierung des 

Aziridinstickstoffs erklärt werden. Eine Modifikation von AZ an der 8-Position scheint keinen 

Einfluss auf die maximale Reaktionsgeschwindigkeit der Kupplungsreaktion zu haben. Des 

weiteren konnte gezeigt werden, dass das starke Nukleophil DTT bis zu einer Konzentration 

von 1 mM keinen messbaren Einfluss auf die Kupplungsreaktion hat. 

Zusätzlich konnte die sequenzspezifische Markierung von Plasmid-DNA mit dem 

dansylierten Aziridinkofaktor DAZ in einer M·TaqI-katalysierten Kupplungsreaktion 

demonstriert werden (Abb. 0.2, A). Weiterhin wurde gezeigt, dass M·HhaI die Kupplung des 

dansylierten Kofaktors DAZ mit Plasmid-DNA ebenfalls katalysiert (Abb. 0.2, B). Dies 

veranschaulicht exemplarisch, dass N8-modifizierte Aziridinkofaktoren auch mit der Cytosin-

spezifischen DNA MTase M·HhaI zur Markierung von DNA verwendet werden können. 
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Abb. 0.2: Sequenzspezifische Fluoreszenzmarkierung von Plasmid-DNA mit dem dansylierten AZ Kofaktor DAZ. 

Plasmid-DNA Markierung mittels M·TaqI und M·HhaI. Die M·TaqI-katalysierte Kupplung von DAZ an kurze 

Duplex-Oligonukleotide wurde schon im Detail analysiert (Pljevaljļiĺ, 1999). 

 

Ein genereller Syntheseweg, unter Verwendung einer photolabilen Schutzgruppe, ermöglichte 

die einfache Zugänglichkeit zu unterschiedlich modifizierten Kofaktoren. Damit ist der Weg 

zu unterschiedlich dekorierten Kofaktoren geebnet. Die neue Syntheseroute wurde zur 
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Synthese eines biotinylierten Aziridinkofaktors (BAZ) und eines mit dem Fluorophor Cy5 

modifizierten Aziridinkofaktors (Cy5AZ) verwendet. Beide Kofaktoren binden mit einer 

Affinität, die vergleichbar ist mit der Affinität des natürlichen Kofaktors AdoMet, an die 

DNA-MTase M·TaqI. Der biotinylierte Aziridinkofaktor BAZ konnte in einer M·TaqI-

katalysierten Reaktion sequenzspezifisch auf kurze als auch auf lange DNA übertragen 

werden (Abb. 0.3). Die sequenzspezifische Biotinylierung erfolgt unter kompletten Umsatz 

des DNA-Eduktes. Besonders interessant an dieser Reaktion ist, dass auch indirekte 

Markierungssysteme, wie das hier verwendete Biotin-Streptavidin-System, mit der SMILing-

Technologie kombiniert werden können. 
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Abb. 0.3: Sequenzspezifische Biotinylierung von Plasmid-DNA mit dem biotinyliertem AZ Kofaktor BAZ. Die 

Biotinylierung ist auch mit kurzen Duplex-Oligonucleotiden gelungen. 

 

Eine Kristallstruktur des Komplexes ausgehend von M·TaqI, DNA und BAZ konnte belegen, 

dass wie erwartet die exozyklische Aminogruppe von Adenin, in der Erkennungssequenz von 

M·TaqI, mit dem biotinylierten Aziridinkofaktor kovalent verbunden ist, was die 

Sequenzspezifität der Reaktion eindeutig belegt. Des weiteren konnte durch interne 

Funktionalisierung von DNA mittels SMILing ein System zur Selektion von 

Desoxyribozymen entwickelt werden. In Zusammenarbeit mit der Arbeitsgruppe von Dr. 

Andres Jäschke (FU Berlin), konnte gezeigt werden, dass ein Pool von DNA-Sequenzen mit 

Biotin markiert werden kann. Diese Methode stellt meiner Kenntnis nach den einfachsten 

Weg zur spezifischen internen Funktionalisierung von DNA dar. Außerdem konnte die 

biotinylierte DNA als Templat in der PCR eingesetzt werden. Somit sollte es prinzipiell 

möglich sein intern funktionalisierte DNA-Pools für die Selektion neuartiger, modifizierter 

Desoxyribozyme, mit zusätzlichen Funktionalitäten, einzusetzten. 

In Anbetracht der Tatsache, dass es eine Vielzahl von verschiedenen DNA-MTasen gibt, 

erscheint es möglich eine grosse Zahl von unterschiedlichen DNA-Sequenzen zu markieren. 
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Da die Aziridinkofaktoren allgemein für MTasen entwickelt wurden und da die 

Kofaktorbindungstasche von MTasen konserviert ist, erscheint es wahrscheinlich, dass die 

neue Kofaktorfamilie auch für MTasen von anderen Biomolekülen geeignet ist. 

Allerdings wurde die Modifizierung von AZ an der 8-Position speziell für M·TaqI gewählt. 

Auch wenn dabei darauf geachtet wurde, dass eine Vielzahl weiterer MTasen diese an der 8-

Position modifizierten Kofaktoren verwenden könnten, gibt es trotzdem MTasen, die z.B. eine 

Modifikation an der 7-Position bevorzugen sollten (siehe Tabelle 3.1b). Für diesen Fall muss 

eine neue Syntheseroute zu an der 7-Position modifizierten Aziridinkofaktoren entwickelt 

werden. Damit würde auch das SMILing mit diesen Enzymen ermöglicht werden. Des 

weiteren könnte die Reaktionsgeschwindigkeit der Markierungsreaktion erheblich verbessert 

werden. Die größte Reaktionsgeschwindigkeitskonstante, die für die M·TaqI-katalysierten 

Kupplungsreaktionen zwischen DNA und AZ erzielt werden konnte, beträgt 0,6 h-1. Damit ist 

die Reaktionsgeschwindigkeit der Kupplungsreaktion um zwei Größenordnungen kleiner als 

die Geschwindigkeit der Reaktion mit dem natürlichen Kofaktor AdoMet. Deshalb muss 

weitere Arbeit in die Erhöhung der Reaktionsgeschwindigkeit gesteckt werden. Ein 

Ansatzpunkt könnte eine Modifizierung der Aziridineinheit der Kofaktoren sein. Bei der 

Entwicklung der Kofaktoren wurde die Methioninseitenkette des natürlichen Kofaktors 

AdoMet aus Gründen der einfacheren Synthese vernachlässigt. Die Aminosäureseitenkette ist 

für die Funktion von AdoMet jedoch sehr wichtig, was auch daran ersichtlich wird, dass 5’-

deoxy-5’-dimethylthioadenosin ein sehr schlechter Kofaktor ist. Die Methioninseitenkette 

scheint die Aufgabe zu haben, die Methylgruppe des Kofaktors in Richtung des nukleophilen 

Akzeptors zu positionieren. Die Aziridinkofaktoren besitzten jedoch keine Seitenkette an der 

Aziridineinheit, die den Aziridinring in eine für die Reaktion günstige Position orientieren 

könnte. Die Betrachtung der Kristallstruktur des Komplexes aus M·TaqI, DNA und BAZ 

erlaubt es, einen Kofaktor vorzuschlagen, der am Aziridindreiring eine Hydroxymethyl-

Gruppe trägt, die diese Aufgabe erfüllen könnte. Die Hydroxyl-Gruppe könnte eine neue 

Wasserstoffbrücke zum Protein ausbilden und damit den Aziridinring fixieren, so das die 

Reaktionsgeschwindigkeit aufgrund einer eingeschränkten Flexibilität des Aziridinrings 

erhöht werden könnte. Weiterhin könnte eine Aktivierung des Aziridinringes durch Erhöhung 

der Elektrophilie erreicht werden. Dazu könnte eine elektronenziehende Gruppe, wie z.B. eine 

Cyano Gruppe, an den Ring angebracht werden. Eine solche Modifikation könnte allerdings 

auch den Aziridinring soweit aktivieren, dass nicht katalysierte Hintergrundreaktionen mit 

DNA, die mit den bisherigen Aziridinkofaktoren nicht beobachtet wurden, auftreten. 
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Außerdem wäre zur Etablierung der SMILing-Technologie wichtig, die Nützlichkeit der 

Aziridinkofaktoren mit anderen MTasen zu untersuchen. Dazu gehören nicht nur weitere 

DNA-MTasen sondern auch MTasen anderer Substrate, wie z.B. Protein-MTasen oder RNA-

MTasen. Damit würde der Weg zu einem SMILing von weiteren Biopolymeren eröffnet und 

das Anwendungsspektrum von SMILing enorm erweitert sein. 

Eine weitere Frage die in dieser Arbeit beantwortet wurde, ist die Anwendbarkeit von 

2-Aminopurin-haltiger DNA zur Untersuchung von Enzymen die einen Basenausklapp-

mechanismus besitzen. Bis jetzt ist nicht geklärt worden, ob die beobachtete 2-Aminopurin-

Fluoreszenzänderung in der Tat auf ein Herausklappen des Fluorophors aus der DNA und 

exakt den gleichen Basenausklappmechanismus zurückgeführt werden kann. Im Fall von 

M·TaqI zum Beispiel, erscheint es anhand der Kristallstruktur des Komplexes aus M·TaqI, 

DNA und einem Kofaktoranalog nicht möglich, dass die Position des ausgeklappten Adenins 

von einem 2-Aminopurin-Rest eingenommen werden kann, da die Aminogruppe von 

2-Aminopurin zu einer sterischen Überlappung mit einer Aminosäureseitenkette des Enzyms 

führen würde. Deshalb wurde die Kristallstruktur von M·TaqI, DNA mit 2-Aminopurin an der 

Zielposition und dem Kofaktoranalog AETA bestimmt. Die Kristallstruktur zeigt, dass sich 

der 2-Aminopurin-Rest tatsächlich in einer extrahelikalen Position befindet, jedoch im 

Vergleich zur natürlichen Base leicht im aktiven Zentrum verschoben ist. Damit konnte 

erstmalig mit einer Kristallstruktur gezeigt werden, dass DNA, die 2-Aminopurin an der 

Zielposition enthält, eine gute Sonde für die Detektion und Beobachtung des durch DNA-

modifizierende Enzyme verursachten Basenausklappens ist. 

Zusammenfassend kann gesagt werden, dass SMILing DNA großes Potential für die 

Biotechnologie, die medizinische Diagnostik (Mutationsdetektion) und die Nanotechnologie 

besitzt. Weitere Untersuchungen werden zeigen, ob SMILing DNA auf SMILing von anderen 

Biopolymeren erweitert werden kann. 
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1 Introduction 
 

Life of all species is governed by processes at the molecular level. The cell is the molecular 

factory of life and contains vital biomolecules such as nucleic acids and proteins. Despite the 

wealth of information acquired over the last decades regarding the processes taking place in 

the cellular world, an enormous amount of work still has to be accomplished in order to 

understand the detailed rules of life. A major task in investigating this world of 

microstructures is to make them visible, thus providing insight into structures and 

mechanisms. Different methodologies have been developed and an immense amount of 

structural information has been accumulated using light microscopy, electron microscopy, X-

ray crystallography and NMR spectroscopy. X-Ray crystallography, which enables us to 

determine the structures of biomolecules at atomic resolution, is contributing greatly to our 

understanding of biomolecular structures and their mode of interaction. Since 1953, when 

Watson and Crick published the first model of DNA structure (Watson & Crick, 1953), X-ray 

crystallography has made enormous advances, culminating in the determination of the crystal 

structure of such large complexes of proteins and nucleic acids such as the ribosome 

(Clemons et al., 1999; Ban et al., 2000; Schluenzen et al., 2000). Additionally, advanced 

NMR techniques are accelerating this collection of high resolution structural information, and 

the completion of the different genome sequencing projects emphasizes further that the need 

for even more structural information is essential for the understanding of cellular function. 

Besides questions concerning the structure and function of cellular machineries, mechanistic 

aspects are of major interest. In some cases, these questions have been addressed using kinetic 

crystallography by employing caged compounds as molecular triggers (Schlichting & Goody, 

1997). More frequently, in view of the limits of kinetic crystallography, other methods have 

been applied to understand biomolecular mechanisms. In this respect intrinsic physical 

properties of the biopolymers or specifically conjugated reporter molecules, such as 

fluorescent dyes, have been utilized for visualization of and monitoring catalytic activity. The 

attached reporter molecule must be chosen such as it does not interfere with the structure of a 

biopolymer or hinder the interaction with other molecules. Molecules modified in such a 

manner are then suitable for in vitro and in vivo monitoring of biomolecular events. Two 

highlights of this visualization technique were the observations of myosin movement relative 

to actin (Finer et al., 1994) and the rotation of F1-ATPase (Noji et al., 1997). 
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Hence, specific labeling of proteins, nucleic acids or other biomolecules is of particular 

interest to scientists working in biophysics, biochemistry and molecular biology. Bearing in 

mind the size of biopolymers and the different reactivities of their monomeric units, this is a 

challenging task. In addition to the labeling of enzymes, there is great interest in the labeling 

of DNA, the cellular carrier of genetic information. A specific challenge is the sequence-

specific labeling of DNA. 

 

1.1 Sequence-specific recognition and labeling of DNA 

DNA carries the genetic information of life and thus is responsible for the unity between 

members of successive generations. The special double helical structure of DNA enables an 

organism to preserve and pass a stable pool of information from one generation to the next 

allowing the organism to maintain its identity relatively unchanged over millions of years. 

DNA comprises two complementary polynucleotide molecules which are wound around each 

other in an antiparallel fashion forming a double helix. The four nucleobases adenine (A), 

thymine (T), guanine (G) and cytosine (C) are stacked perpendicularly to the helical axis and 

point to each other forming the so called Watson-Crick base pairs (bp) in which A forms 

hydrogen bonds with T and G with C. Additional stability of the biopolymer is achieved by 

base stacking of adjacent bases. The twist of the backbone defines a major and a minor groove 

whereby the sugar-phosphate backbone defines the diameter of the grooves and the edges of 

the bases act as a floor. DNA exists in diverse double helical conformations like the A-, B- 

and Z-form DNA. Different parameters like water content, salt concentration and even 

sequence of the nucleobases define the final three-dimensional shape of DNA (Fig. 1.1). 

However, the B-form is the most relevant one in biological systems and will be considered for 

further discussions. The information content of DNA is encoded in the sequence of the four 

nucleobases. Evolution has produced specialized enzymes which can copy the DNA or 

transfer the stored information into other biopolymers. DNA polymerases replicate DNA by 

using one polynucleotide strand as a template for the synthesis of the complementary daughter 

DNA strand. RNA polymerases transcribe DNA into mRNA which is then translated on the 

ribosome into a protein. In viruses, reverse transcriptases form DNA from RNA. This flow of 

biological information is expressed in Scheme 1.1. 
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Fig. 1.1: Three ideal structures of A-DNA (A), B-DNA (B) and Z-DNA (C). The structures were generated using 

the program NAMOT and are composed of 20 bp in each case. Red spheres denote the sugar phosphate 

backbone in which phosphorous is highlighted in magenta. The bases are colored in light blue. 

 

DNA RNA Protein
 

Scheme 1.1: Flow of biological information. 

 

Throughout all organisms there exists a single genetic code which correlates the sequence of 

the nucleobases with the polypeptide sequence. A corresponding code for the recognition of 

DNA sequence by proteins has not yet been found. Specific DNA sequences are obviously 

recognized by different proteins in an idiosyncratic manner. Thus, a sequence-specific 

recognition of DNA is essential for reading out information which demonstrates the 

importance of sequence-specificity. 

In order to label DNA covalently in a sequence-specific manner it is necessary first to 

recognize DNA specifically. This sequence-specificity is mostly obtained by specific 

interactions with the nucleobases because they define this unique storage system. 
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1.1.1 Binding of small molecules to DNA 

Generally, four different binding modes of small molecules with duplex DNA can be 

distinguished. Firstly, non specific binding to the phosphate backbone via electrostatic 

interaction. Secondly, specific binding of molecules to either groove of DNA by hydrogen 

bonding to the nucleobases. Thirdly, specific intercalation of aromatic planar molecules 

between two base pairs via Van der Waals interactions. A fourth mode is a specific binding to 

DNA as a result of a special DNA conformation caused by the nucleobase sequence. 

Since it is known that information in DNA is stored in its base sequence, it is of great interest 

to target sequences specifically, thus, the latter three binding modes are of interest. In order to 

target a unique site within the human genome a minimum of 15-16 contiguous base pairs have 

to be addressed (Dervan, 1986), which demonstrates that the size of the targeted sequence is 

essential for specificity. Several approaches have been examined to address the question of 

sequence-specific recognition of DNA by small molecules. The most important of those will 

be shortly presented. 

An obvious approach to sequence targeting is to make use of the common Watson-Crick base 

pairing rules. For that purpose novel nucleic acids have been designed which contain the 

natural nucleobases but consist of a modified backbone. The peptide nucleic acids (PNAs), 

consisting of a peptide backbone, are of particular interest as they form stable hybrids with 

DNA and RNA. As the hybrids show even greater stability than homogenous DNA duplexes 

these novel nucleic acid analogues may seem interesting for strand exchange and thus for 

specific recognition of DNA. However, the natural DNA structure is disrupted by this way of 

targeting. In order to avoid drastic structural changes of DNA, other methods have to be 

applied. 

In the early 1960s Lerman found that planar aromatic molecules can intercalate DNA 

(Lerman, 1961) and a great effort has been made to find intercalators which specifically bind 

DNA for a range of different purposes. Classical intercalators place themselves between two 

base pairs lengthening the B-form DNA and showing a preference for 5’-pyrimidine-purine-3’ 

steps (Braña et al., 2001). The fluorescent intercalator ethidium bromide (1) for example is 

still widely used for visualization of DNA in agarose gels (Fig. 1.1.1a). The fluorescence of 

the ethidium compound is even increased while stacked within DNA, however ethidium 

bromide doesn’t show a sequence-specificity. 
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Fig. 1.1.1a: Classical DNA intercalator ethidium bromide (A) and typical agarose gel after electrophoresis and 

staining of DNA with ethidium bromide (B). 

 

Intercalating agents inhibit polymerases and topoisomerases and since the first antibiotics and 

antitumor agents useful for chemotherapy were found among them, the search for new 

intercalators has made great progress. By creating bis- and poly-intercalators connected by 

different linkers specific sequences could be targeted. Bailly and co-workers have shown that 

nitro- and amino-substituted elinafide, a bisnaphthylimide, with antitumor activity binds 

sequence-specifically to DNA (Bailly et al., 1996). A recent example of a sequence specific 

intercalator was reported by the Iverson group. The authors present a peptide linked bis-

intercalator recognizing d(GGPyPuCC)2 (Guelev et al., 2001), where Py stands for pyrimidine 

and Pu for purine. The specificity is obtained by a peptide linker which lies in the major 

groove. Iverson and co-workers previously described an altered specificity by modifying the 

peptide linker (Guelev et al., 2000) opening possibilities to target different specific sequences. 

Utilizing a fluorescent intercalator, one could imagine sequence-specific labeling, which 

however, considerably modifies the structure of B-form DNA and is not covalent. 

Furthermore, the binding constants of intercalators are in the high micromolar range which 

represents a rather weak binding compared to protein-DNA interactions. Nevertheless, the 

binding of the bis-intercalator presented by the Iverson group is obviously due to peptide 

linker-major groove contacts. This suggests that a single intercalator can be used to recognize 

two base pairs but rather that recognition of multiple base pairs is obtained by specific 

molecule-groove interactions. 

The property of Watson-Crick base pairs to form additional hydrogen bonds in either groove 

of the DNA double helix (Hélène & Lancelot, 1982) and the discovery by Rich and co-

workers that nucleic acids are able to form triple helices (Felsenfeld et al., 1957) was used for 

sequence-specific targeting. Independently, the groups of Dervan in Pasadena (California) and 
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Hélène in Paris (France) targeted double stranded DNA with oligonucleotides which bind in 

the major groove (Moser & Dervan, 1987; Le Doan et al., 1987). These triple helix forming 

oligonucleotides (TFO) bind preferentially to polypurine·polypyrimidine sequences. Besides 

the usual Watson-Crick base pairing within the double helix now a third strand binds via 

Hoogsteen hydrogen bonding in the major groove of DNA. The bases of the third strand 

combine in the so-called pyrimidine motif in which T binds to an AT-bp and a protonated C 

binds to a GC-bp (Fig. 1.1.1b). The orientation of the third strand is parallel to the purine rich 

strand as denoted by the plus minus symbols. 
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Fig. 1.1.1b: Hydrogen bond patterns formed within the pyrimidine motif. 

 

Additionally to the pyrimidine motif, Beal et al. found the purine motif in which A binds to an 

AT-bp and G binds to a GC-bp (Fig. 1.1.1c). In the purine motif the third strand binds anti-

parallel to the purine rich strand via reverse-Hoogsteen hydrogen bonding (Beal & Dervan, 

1991). 
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Fig. 1.1.1c: Hydrogen bond patterns formed within the purine motif. 
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Finally, there is a mixed pyrimidine-purine motif in which GGC and TAT triples are formed. 

However, in spite of the different motifs the TFO approach remains limited to purine rich 

sequences. Further, the formed triple helices are not very stable to temperature and pH 

changes. These problems were partly overcome by introducing other nucleobases in the 

TFO’s like 5-methylcytosine instead of cytosine (Lee et al., 1984). Further stabilization of the 

triple helix can be obtained by the use of ribonucleotides instead of deoxyribonucleotides for 

the TFO (Escudé et al., 1992; Shimizu et al., 1992) or the use of intercalators which specially 

bind to triple helices (Escudé et al., 1998). The main purpose of all these triple helical 

structures was to inhibit protein-DNA interactions, especially on promoter sequences as 

proposed in the anti-gene strategy (Hélène, 1991). This was intended to be an alternative to 

the anti-sense strategy (Hélène & Toulmè, 1990). However, results from the Dervan group 

with bifunctional molecules consisting of a TFO as sequence recognition element and an 

attached DNA alkylating agent such as N-bromoacetyl, which alkylates the N7-position of 

guanine in a sequence-specific manner (Povsic & Dervan, 1990; Povsic et al., 1992), suggest 

that TFO’s can be used as labeling tools. Also the recently presented results from Parel et al. 

who used the fluorescent nucleobase 2-aminopurine within a TFO (Parel & Leumann, 2001), 

demonstrate that this approach can be used to specifically label purine rich sequences. 

However, the complete TFO represents a very large label and thus the anti gene strategy 

proposed by Hélène is probably a more suitable application of TFO’s, unless new strategies 

are developed. 

A very stable form of triplexes can be obtained with PNA. Interestingly, PNA does not 

preferentially form classical triplexes with double-stranded DNA as described above but a 

triplex invasion complex (2PNA/DNA; Nielsen & Egholm, 1999). Here a homo-purine, 

double-stranded DNA can be targeted most effectively with bis-PNA connected with an 

ethylene glycol type linker. The homo-purine strand of DNA forms Watson-Crick hydrogen 

bonds with one PNA strand and Hoogsteen hydrogen bonds with the other. The other DNA 

strand does not form any hydrogen bonds in the targeted sequence. Therefore, a triplex 

invasion complex can only be formed after opening of the DNA double helix. Once formed, 

the complex does not dissociate for hours which emphasizes its stability. The chemical 

structure of a PNA molecule and a triplex invasion complex are shown in Fig. 1.1.1d.  
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Fig. 1.1.1d: Chemical structure of a PNA molecule (A) and a schematic representation of a triplex invasion 

complex (B). The DNA molecule is black, the PNA molecule is red. 

 

In addition to the major groove of DNA, the minor groove can also be targeted, as the 

nucleobases exhibit free valences therein. The possibilities of the different base pairs to form 

additional hydrogen bonds in the minor groove are shown in Fig. 1.1.1e. 
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Fig. 1.1.1e: Free valences of Watson-Crick base pairs in the minor groove (adapted from Dervan & Bürli, 1999) 
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The nucleobase pairs either display one hydrogen bond donor (2-H of guanine) and two 

acceptors (GC and CG pair) or three hydrogen bond acceptors (AT and TA pair). Several 

natural products like chromomycin, actinomycin D or distamycin bind in the minor groove. 

Only distamycin and the structurally related netropsin, two oligopeptides containing 

N-methylpyrrole (Py) units, consist of repeating building blocks which are fairly simple to 

mimic (Fig. 1.1.1f, A). This led the group around Dervan to investigate the so-called 

lexitropsins (information reading oligopeptides). The convex structure of distamycin and 

related molecules fits nicely in the concave minor groove suggesting a structure based 

recognition (Fig. 1.1.1f, B; Coll et al., 1987). However, NMR studies on distamycin in 

complex with DNA, revealed that distamycin can bind in the minor groove of DNA with 

either one or two molecules (Pelton & Wemmer, 1989; Chen et al., 1994). The two 

distamycin molecules are arranged in an anti-parallel fashion and pairwise arrangement of the 

Py units allows recognition of a specific base sequence. 
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Fig. 1.1.1f: Distamycin (A) and crystal structure of distamycin in complex with DNA (B). 

 

Based on these observations, Dervan and co-workers developed the hairpin polyamides which 

bind specifically the DNA minor groove. Mimicking distamycin, the hairpin polyamides are 

composed of Py units connected via amide bonds. Two polyamide oligomers are connected 

by γ-aminobutyric acid (Mrksich et al., 1994). This arrangement allows two Py units to bind 

pairwise to one base pair in the minor groove. In addition to the Py units present in the natural 

lexitropsins, Dervan et al. introduced the aromatic amino acids N-methylimidazole (Im) and 

3-hydroxy-1-methylpyrrole (Hp) units in order to be able to distinguish all four possible base 

pair combinations (White et al., 1998). Extending this approach, the Dervan group introduced 

β-alanine instead of a Py/Py pair at appropriate positions to adjust the curvature of the 

polyamides to the minor groove curvature (Trauger et al., 1996; Wang et al., 2001) in order to 

recognize larger DNA sequences. A model of the binding pattern of hairpin polyamides to 
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DNA is shown in Fig. 1.1.1g. The carboxamide hydrogens make specific contacts to N3 of A 

and O2 of T, thus, recognizing AT and TA base pairs, respectively. The nitrogen of 

N-methylimidazole allows interaction with the 2-NH2 of guanosine, thus, recognizing GC 

base pairs. The 3-hydroxy-1-methylpyrrole unit distinguishes an AT from a TA base pair 

because the additional hydroxyl group favours T over A for steric reasons and forms an 

additional hydrogen bond to O2 of T. Therefore, the appropriate pair-wise arrangement of the 

different aromatic amino acids allows recognition of specific sequences. This approach to 

sequence-specific recognition of DNA via the minor groove represents a powerful tool to 

target specifically a given DNA sequence, especially when the hairpin polyamides are 

combined with triple helix forming oligonucleotides extending its versatility to target both the 

minor and the major groove (Szewczyk et al., 1996a; Szewczyk et al., 1996b). Similar to the 

TFO approach, the polyamide approach can be used to target special sequences of promoters. 

However, the latter is more suitable for targeting the most important transcription factor 

recognition sequences (Dervan, 2001). In terms of labeling, the attachment of an alkylating 

agent to hairpin polyamides, leads to sequence specific alkylation of the N3-position of 

adenine (Tao et al., 1999; Wurtz & Dervan, 2000). However, like the TFO, the polyamides 

represent quite a big label. In addition, they bind in the minor groove of DNA and thus may 

seem more suitable for blocking DNA binding proteins than solely for labeling. An advantage 

of both polyamides and oligonucleotides in comparison to the intercalating agents, is their 

high binding affinity to DNA which is in the nanomolar to picomolar range. 
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Fig. 1.1.1g: Hydrogen bonding pattern of a hairpin polyamide 

 to a DNA hexamer (adapted from Dervan & Bürli, 1999). 

 

Although enormous progress has been made in the field of sequence-specific recognition of 

DNA during recent decades, chemists are just starting to understand and make use of the 

possibilities provided by these approaches. However, none of the methods for sequence-

specific recognition is yet suitable for sequence-specific labeling of DNA with small reporter 

groups. 

 

1.1.2 Labling of DNA 

In principle, modified oligodeoxynucleotides are prepared by either chemical or enzymatic 

methods. The standard chemical method to synthesize specifically labeled short 

oligonucleotides is the phosphoramidite solid-phase synthesis of DNA designed by Letsinger 

and improved by Caruthers (Caruthers et al., 1987). The method is used in state-of-the-art 

DNA synthesizers and can be applied for the incorporation of modified phosphoramidites into 
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short oligonucleotides. The modified phoshoramidite can either already contain the reporter 

group or the phosphoramidite consists of a linker with a terminal functional group which can 

be modified with different reporter groups postsynthetically. The latter procedure is still a 

popular route which is revealed by a recent publication by Sheppard and co-worker (Dey & 

Sheppard, 2001). Other chemical modifications of nucleic acids can be achieved, by bisulfite-

catalyzed transaminations of the N4-amino group of cytosines, bromination of the C5-position 

of pyrimidines and the C8-position of purines followed by reactions with derivatized amines 

or the photochemical reaction of azides like photobiotin with nucleotides, to name just a few 

(Kessler, 1992). Apart from the solid-phase synthesis of DNA which is limited to 50-100 

monomeric units in reasonable yields, the chemical methods are not sequence specific. 

Enzymatic labeling methods make use of DNA-polymerases or terminal transferases. 

Homogenous labeling can be achieved by incorporation of modified nucleoside triphosphates 

(NTP) using Klenow polymerase (random primed labeling), Escherichia coli DNA 

polymerase I (nick translation) or Taq DNA polymerase (Polymerase chain reaction, PCR). In 

the latter case, the modified nucleotides can either be incorporated directly into DNA or 

incorporated within chemically synthesized primers. The use of terminal transferases for 

labeling can result only in end-labeled DNA. The trivial prerequisite for all these enzymatic 

labeling methods is that the modified NTP is recognized and incorporated by the enzymes. 

Unfortunately, none of these methods are sequence specific. The only possibility to label large 

DNA fragments specifically would be a tedious combination of solid-phase synthesis of a 

short modified oligonucleotide which could be incorporated enzymatically into DNA using 

ligases. However, none of these different labeling methods allow a simple sequence-specific 

labeling of large DNA. 

 

1.2 DNA binding proteins  

Nature has evolved many different proteins which interact with DNA. Essential processes 

require the recognition of specific DNA sequences by a variety of proteins. Many of those 

exert their effect by binding to appropriate locations and in some cases changing the DNA 

conformation. Others, like polymerases, nucleases, glycosylases, integrases, recombinases or 

DNA methyltransferases covalently modify DNA. All of them specifically recognize DNA by 

different protein-DNA interactions. Most of the proteins interact via the major groove with 

DNA because the major groove provides more space than the minor groove to the incoming 

protein and the free hydrogen bond valences within the major groove make an unequivocal 
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differentiation between the different base pairs possible. The best characterized structural 

motifs of proteins for specific DNA recognition, the helix-turn-helix motif, the zinc finger 

motif and the leucine zipper motif, will be briefly presented. 

The Helix-Turn-Helix motif (Fig.1.2, A) primarily found as a common recognition motif of 

procaryotic transcription activator/repressor proteins comprises two parallel α-helices which 

are connected by a β-turn region containing four amino acids of which glycine is in the 

second position. The loop region is not directly involved in DNA recogntion but either 

stabilizes the two helices relative to each other allowing interaction between the two or 

supports the formation of homo and heterodimers, respectively (Li et al., 1995; Wilson et al., 

1995). The DNA recognition is achieved by one of the two α-helices which binds the major 

groove interacting sequence-specifically with the nucleobases by amino acid-nucleobase 

contacts. 

The zinc finger motif (Fig.1.2, B), a predominant eucaryotic DNA binding motif, was 

discovered in Xenopus transcription factor IIIA (Klug & Rhodes, 1987). TFIIIA contains 

several zinc finger motifs which consist of two invariant Cys residues, two invariant His 

residues and several conserved hydrophobic residues. The invariant Cys and His residues 

coordinate tetrahedrally a Zn2+ ion. In some zinc fingers the invariant His residues are 

exchanged for two Cys residues and the Zn2+ ion is coordinated by four Cys residues. The 

motif is stabilized by the Zn coordination and a hydrophobic pocket formed inside the motif. 

Similar to the helix-turn-helix motif, the recognition of DNA occurs via insertion of an 

α−helix into the major groove of DNA. Usually, a zinc finger recognizes three base pairs 

where contacts with arginine and guanine residues seem to be essential (Pavletich & Pabo, 

1991). 

Monomeric leucine zipper (Fig.1.2, C) proteins comprise of two domains. One leucine rich α-

helical domain and another mainly containing basic amino acid residues responsible for DNA 

binding. The second domain forms an α-helix when bound to DNA (Weiss et al., 1990). A 

special feature of leucine zipper proteins is their ability to dimerize via the leucine-containing 

helices forming a coiled coil structure. The leucine residues of both helices interact with each 

other by hydrophobic interactions. The recognition of DNA occurs via the major groove. 
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Fig. 1.2: Examples for the three best characterized DNA binding motifs. 

A: Crystal structure of the 434-repressor in complex with DNA (Aggarwal et al., 1988). The Helix-Turn-Helix 

motif is presented in green. 

 B: Crystal structure of Zif268 in complex with DNA (Pavletich & Pabo, 1991). There are three zinc finger 

motifs of which the inner one is shown. The Zn ions are presented in green. 

C: Crystal structure of GCN4 leucine zipper (blue) in complex with DNA (Ellenberger et al., 1992). 

 

Beside these motifs, many other ways for protein-DNA interactions have been discovered and 

with each solved protein-DNA complex structure the discovery of novel interactions is highly 

likely. In summary, there is no easy way to predict DNA sequence recognition by amino acid 

sequence. 

 

1.2.1 DNA Methyltransferases 

In addition to the prevalent four bases within DNA, adenine, cytosine, guanine and thymine, 

one also finds N6-methyladenine, N4-methylcytosine and C5-methylcytosine (Fig. 1.2.1), 

which increase the information content of DNA. 
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Fig. 1.2.1: Methylated bases within DNA. 

 

These methylated bases arise from the action of another DNA binding protein, the DNA 

methyltransferases (MTases). DNA MTases catalyze the transfer of the activated methyl 

group of S-adenosyl-L-methionine (AdoMet) to either cytosine or adenine within non- or 

hemimethylated, double-stranded DNA. One distinguishes between denovo and maintainance 

methylation. The transfer of the methyl group to the nucleobase is performed in a sequence-

specific fashion. DNA MTases are catagorized into two classes according to the atom that is 

modified. The N-MTases catalyze the methylation of the exocyclic amino group of either 

adenine or cytosine and the C-MTases catalyze the methylation of the C5 position of cytosine. 

In eucaryotes, generally C5-methylated cytosines are found whereas in prokaryotes 

N6-methyladenine and N4-methylcytosine are found additionally. The biological role of these 

methylated bases inside DNA is under intensive investigation and the functions elucidated so 

far exemplify the importance of DNA methylation in regulatory processes. In prokaryotes 

DNA MTases are primarily part of restriction-modification systems, where they are capable 

of protecting the host genome against cleavage by the endogenous restriction endonucleases. 

Furthermore, they play a crucial role in repair of base mismatches after DNA replication. By 

distinguishing between methylated parental strand and newly synthesized daughter strand the 

organisms are capable of repairing the DNA in favor of the parental strand. In eucaryotes 

methylation of cytosines, particularly of so called CpG islands, has diverse functions and was 

found recently to play a pivotal role in different human genetic diseases. The best 

characterized diseases are ICF (immunodeficiency, centromeric instability and facial 

anomalies) syndrome, the Rett syndrome and the fragile X syndrome. It was shown that a 

mutation in the DNA MTase 3B (DNMT3B) gene is responsible for the ICF syndrome 

(Hansen et al., 1999; Okano et al., 1999; Xu et al., 1999). The Rett syndrome was shown to 

result from a mutation in the MECP2 gene, which encodes a protein that binds to methylated 

DNA (Amir et al., 1999; Wan et al., 1999). The fragile X syndrome, the most common form 
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of an inherited mental retardation, arises from silencing of the FMR1 gene which is due to an 

aberrant denovo methylation of an upstream CpG island (Kremer et al., 1991; Oberle et al., 

1991). In addition, there is evidence that DNA methylation has evolved as a genome defence 

mechanism. Apparently, methylation of transposons and retrovirus sequences within the 

mammalian genome effects their transcriptional silencing (Bestor & Tycko, 1996). Besides 

the recently gained knowledge about DNA methylation in diseases, DNA methylation was 

already associated with the phenomenon of genomic imprinting (Tycko, 1997). An immense 

amount of experimental results also suggests that methylation plays a major role in cell 

differentiation (Li et al., 1992). Furthermore, there is a controversial issue about the role of 

hyper- and hypo-methylation in carcinogenesis (Chen et al., 1998). 

C5-DNA MTases are a homologous class of enzymes in which 10 conserved motifs could be 

identified (Lauster et al., 1989; Posfai et al., 1989; Kumar et al., 1994). They are numbered 

from I to X utilizing the nomenclature of Posfai et al. (1989). Sequence comparison of N-

DNA MTases with the C-DNA MTases and first three dimensional structural information 

have shown that both classes are structurally similar and that nine motifs, corresponding to 

motifs I-VIII and X defined for C-DNA MTases, can be assigned to the N-DNA MTases 

(Malone et al., 1995). The motifs I, II, III and X are involved in cofactor binding and motifs 

IV-VIII have catalytic functions. Interestingly, the cofactor binding site is conserved among 

all DNA MTases and even other AdoMet-dependent MTases like RNA, protein or small 

molecule MTases (Schluckebier et al., 1995; Djordjevic & Stock, 1997; Gong et al., 1997). 

The N-DNA MTases are further classified in three groups based on the sequential order of the 

conserved motifs. An MTase belongs to the α-group when the order of the motifs corresponds 

to cofactor binding region, DNA recognition region and catalytic region. MTases of the 

β−group show the sequential order: catalytic region, DNA recognition region and cofactor 

binding region. The sequential order in the γ-group MTases is: the cofactor binding region, 

catalytic region and DNA recognition region. 

 

1.2.2 DNA MTase from Haemophilus haemolyticus (M·HhaI) 

The HhaI DNA MTase is part of the restriction-modification system of Haemophilus 

haemolyticus (Roberts et al., 1976). It recognizes the sequence 5’-GCGC-3’ and catalyzes the 

methylation of the 5-position of the second cytosine residue. The gene of the MTase was 

cloned, sequenced and overexpressed in E. coli (Caserta et al. 1987; Wu & Santi, 1988). The 

enzyme consists of 327 amino acids and has a molecular weight of 37 kD. 
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The reaction mechanism of C5-DNA MTases is well understood. Wu & Santi (1987) were the 

first to propose that the mechanism of C5-DNA MTases is similar to that of thymidylate 

synthase where an enzyme cysteine thiolate attaches covalently to the 6-position of uracil 

thereby pushing the electrons to the 5-position which then can attack the methylene group of 

the methylene-THF cofactor. Such a mechanism was modified for C5-DNA MTases by Chen 

et al. (1993) who suggested that an enamine intermediate is favoured (Fig. 1.2.2a) instead of 

an anion intermediate as in the thymidylate synthase case. 
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Fig. 1.2.2a: Mechanism of the C-DNA MTases catalyzed methylation reaction originally 

 proposed by Santi et al.(1987) and modified by Chen et al. (1993). 

 

By using 5-fluoro-2-deoxycytosine instead of the target cytosine Osterman et al. (1988) could 

trap the proposed covalent intermediate. The catalytic cysteine residue could be identified to 

be part of motif IV containing the invariant PC dipeptide. Additional evidence of the cysteine 

thiolate attack was provided with the solution of a co-crystal structure of M·HhaI with 

cognate DNA and cofactor (Klimasauskas et al., 1994). Another striking feature observed in 

the crystal structure of Klimasauskas et al. (1994) was a novel mode of DNA distortion. The 

cytosine normally positioned in the center of the DNA double helix is flipped out from the 

DNA by 180° and positioned in the catalytic site of the enzyme (Fig. 1.2.2b). The place of the 

cytosine is taken up by a protein loop thus stabilizing the B-form DNA. This phenomenal 

base flipping mechanism was observed for the first time and due to the conserved sequences 

among C-DNA MTases base flipping was proposed for this class of enzymes. The crystal 

structure of another C-DNA MTase M·HaeIII also shows a flipped out target base (Reinisch 

et al., 1995) which supports the previous assumption. Additionally, evidence for base flipping 

of DNA repair enzymes (Vassylyev et al., 1995) suggests that most DNA modifying enzymes 

acting on nucleobases flip out a base to gain access to their site of action. 
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A B 

Fig.1.2.2b: Crystal structure of M·HhaI in complex with cognate DNA and cofactor AdoHcy (A). The same 

crystal structure rotated by 90° (B). The protein is represented in blue, DNA backbone in red, nucleobases in 

light blue and extrahelical cytosine and AdoHcy in green. 
 

1.2.3 DNA MTase from Thermus aquaticus (M·TaqI) 

M·TaqI is part of the restriction-modification system of Thermus aquaticus. The enzyme is a 

N6-adenine DNA MTase catalyzing the methylation of adenine within the 5’-TCGA-3’ 

sequence of double-stranded DNA. The optimal temperature for maximal activity of M·TaqI 

is at 65  °C. Its gene was cloned, sequenced (Slatko et al., 1987; Barany et al., 1992) and 

overexpressed in E. coli (Labahn et al., 1994). M·TaqI contains 421 amino acids and has a 

molecular weight of 47 kD. According to the arrangement of the nine conserved motifs the 

enzyme belongs to the γ-class of N-MTases. 

The crystal structure of M·TaqI in complex with AdoMet (Labahn et al., 1994) illustrates that 

the MTase consists of two domains which are connected by a loop. The catalytic domain 

contains the cofactor binding site and all nine conserved motifs. The two domains span a 

groove which was proposed to be the DNA binding site based on its size and positive surface 

potential. A base flipping mechanism similar to that of M·HhaI was also proposed for 

M·TaqI. Evidence came from different biochemical investigations such as a 2-aminopurine 

base flipping assay, photochemical crosslink studies and a permanganate assay (Holz et al., 
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1998; Holz et al., 1999; Serva et al., 1998). This assumption was verified by a recent co-

crystal structure of M·TaqI in complex with a cofactor analogue and a 10-mer substrate DNA 

(Goedecke et al., 2001). The structure shows the flipped out target adenine and a new mode of 

protein-nucleic acid interaction (Fig. 1.2.3). Stabilization of the extrahelical adenine is 

obtained by partial occupation of the abandoned space by the orphaned thymine. The structure 

represents the first co-crystal structure of a N-DNA MTase with substrate DNA and gives the 

first insight into the mechanism of DNA N-methylation. In contrast to chemical methylation 

of adenine where the N1 position is methylated in the first place and the final product is 

generated after Dimroth rearrangement (Haines et al., 1964), the enzyme directly methylates 

the 6-amino group of adenine. As suggested earlier (Malone et al., 1995) the motif IV forms 

hydrogen bonds to the exocyclic amino group of adenine positioning it for an in-line attack on 

the methyl group of AdoMet. The structure answers some basic questions about the 

mechanism of DNA adenine N6-methylation whereas questions about the base flipping 

mechanism couldn’t be answered and more biochemical investigations have to be performed. 
 

A B 

 
 

Fig.1.2.3: Crystal structure of M·TaqI in complex with cognate DNA and a cofactor analogue AETA. (A) 

Representation of secondary structure elements (blue). Extrahelical adenine and cofactor analogue are 

represented in green. DNA backbone in red and other nucleobases in light blue. (B) Surface potential 

representation (red denotes negative electrostatic potential, blue positive electrostatic potential and white is 

neutral). DNA and cofactor are drawn in ball and stick representation. 
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1.2.4 DNA MTase from Bacillus centrosporus (M·BcnIB) 

The DNA MTase from Bacillus centrosporus M·BcnI was the first N4-methylcytosine DNA 

MTase to be discovered (Janulaitis et al., 1983). It is part of a restriction-modification system 

and recognizes the sequence 5’-CC(C/G)GG-3’ in which the second cytosine becomes 

methylated. The gene of M·BcnI was cloned, sequenced and overexpressed in E. coli 

(Janulaitis et al., 1982; Povilionis et al., 1988). Two co-existing MTases, M·BcnIA and 

M·BcnIB, were found in the restriction-modification system, where M·BcnIA catalyzes the 

methylation of both single- and double-stranded DNA whereas M·BcnIB only catalyzes the 

methylation of double-stranded DNA (Merkiene et al. 1998). M·BcnIB consists of 321 amino 

acids with a molecular weight of 37 kD. No three-dimensional structural information about 

the enzyme is available at the moment. 

 

1.3 A Novel cofactor for the DNA MTase M·TaqI 

As sequence-specific recognition is a very challenging task for chemists and the study of 

protein-DNA interactions does not disclose a general feature, one can think about utilizing the 

specificity of an enzyme to achieve the goal of sequence-specific DNA labeling. All DNA 

MTases utilize the common methyl group donor AdoMet as a cofactor for DNA methylation 

and achieve sequence-specific labeling with a single carbon unit. Obviously, the methyl group 

is not an attractive reporter group if one wants to avoid the application of radioactivity. Thus, 

new cofactors for DNA MTases which could transfer larger groups onto the DNA could be 

very interesting for labeling DNA sequence-specifically. Weinhold and coworkers introduced 

such a novel cofactor for the DNA MTase M·TaqI and showed for the first time that a DNA 

MTase is able to transfer more than just a single carbon unit (methyl group), namely the 

cofactor itself, onto DNA. The authors synthesized a cofactor analogue which carries instead 

of the methylsulfonium moiety in AdoMet an aziridine group. The new cofactor analogue 

N-adenosylaziridine (AZ, 1) could be coupled in a M·TaqI-catalyzed reaction to the exocylic 

amino group of adenine within the recognition sequence of a 14-base pair duplex 

oligonucleotide (Pignot et al., 1998, Scheme 1.3). 

 



Introduction 

 26

N

N

N

N

NH2

O

OO T C G 3'

N

N

N

N

NH2

TA G C 5'

O

OOT C G 3'

N

N

N

N

HN

TA G C 5'

H
N

O

HO OH

H
N

O

HO OH

N

N

N

N

M.TaqI, 15'
3'

5'
3'

NH2

 
 

Scheme 1.3: Sequence-specific M·TaqI-catalyzed coupling of the novel cofactor AZ with DNA. 

 

The authors suggest that the newly developed cofactor could potentially be used as a delivery 

system for different reporter molecules. For this purpose, they suggest an attachment of 

reporter groups to the 8-position of AZ (1). 

 

1.4 SMILing DNA 

The approach developed in the group of Weinhold was expanded during my diploma research 

project. The suggestions made in the publication about the new cofactor were investigated and 

a cofactor analogue which carries a fluorescent dye attached to the 8-position (Fig. 1.4) was 

synthesized. The dansylated cofactor analogue (2, DAZ) binds to M·TaqI (KD = 0.55 µM) 

even stronger than the natural cofactor AdoMet (KD = 2 µM) and is in analogy to the reaction 

presented by Pignot et al. (1998) coupled by M·TaqI to the target adenine within a 14-base 

pair duplex oligonucleotide (Pljevaljļiĺ, 1999). 
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Fig. 1.4: Dansylated cofactor analogue DAZ (2). 

 

Thus, a new method for sequence-specific labeling of DNA using M·TaqI as catalyst was 

developed. In addition, this method has the potential to be a new general tool for sequence-

specific DNA labeling. 
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2 Aims of the project 
The aim of this project is to establish the general applicability of Sequence-specific 

Methyltransferase-Induced Labeling (SMILing). The technique was already introduced during 

my diploma thesis where fluorescence labeling of DNA with the dansylated aziridine cofactor 

DAZ was achieved. First of all, the coupling of N-adenosylaziridine (AZ) with DNA using the 

N6-adenine DNA MTase M·TaqI as catalyst should be optimized with respect to the pH value 

of the reaction buffer. Furthermore, the effect of the strong nucleophile DTT in solution 

should be investigated. Since, SMILing DNA was only shown for short duplex 

deoxyoligonucleotides the technique should be used to label plasmid DNA with the 

dansylated cofactor analogue DAZ. 

Expanding this approach, short duplex deoxyoligonucleotides should be coupled with AZ 

using different DNA MTases. In order to show the general applicability of SMILing, 

representatives of the other two classes of DNA MTases should be used, namely, the 

C5-cytosine DNA MTase M·HhaI and the N4-cytosine DNA MTase M·BcnIB. Additionally, 

the fluorescent cofactor analogue DAZ should be used with M·HhaI for the labeling of 

plasmid DNA to prove that the modification at the 8-position of the DAZ cofactor does not 

hinder the usage of the novel cofactor with other DNA MTases. Since the labeling of DNA 

with C5-cytosine DNA MTases is of special medical interest, as C5-cytosine methylation 

plays a major role in mammalian organisms, the reaction of M·HhaI should be optimized 

further regarding the pH value. 

The development of a general synthetic route to 8-modified cofactor analogues for general 

usage in the SMILing technology should contribute to a quick extension of the possibilities 

using SMILing. Special focus should be directed to the synthesis of a biotinylated cofactor 

analogue (BAZ) which can be used for SMILing. Biotin plays such an important role because 

the very strong binding of streptavidin-conjugates to biotin allows the detection of labeled 

species in the picomolar range. First of all, a biotinylated cofactor analogue should be used for 

the M·TaqI-catalyzed labeling of a short duplex oligonucleotide as a prove of principle. A 

crystal structure of M·TaqI, DNA and BAZ should reveal the specific labeling of DNA. 

Further, the labeling of plasmid DNA should be achieved with this cofactor analogue. The 

specificity of the reaction and the amount of labeled DNA should be determined with the 

biotinylated cofactor analogue. 

Additionally, as an example SMILing DNA should be used for the selection of 

deoxyribozymes by internal functionalization. In collaboration with the group of Dr. Andres 
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Jäschke (FU Berlin, Germany), a pool of DNA sequences should be labeled with biotin. The 

labeled DNA sequences should be amplified by PCR. This would reveal that the PCR reaction 

can be applied on DNA modified by SMILing and at the same time would show that SMILing 

can be used for the internal functionalization of DNA. Such functionalized DNA would then 

be suitable for the selection of DNA catalyzed chemical reactions. 

Finally, crystallographic methods should be applied to determine a ternary complex of 

M·TaqI, DNA containing 2-aminopurine and a cofactor analogue. With this, first structural 

information would be obtained about a flipped out 2-aminopurine base, which provides an 

assay for base flipping enzymes. Thus, a statement about the quality of the base flipping 

assays using 2-aminopurine could be made. These base flipping assays could appear 

important in the search for new DNA MTases which again are essential for expanding 

SMILing DNA. 
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3 Results and Discussion 
 

3.1 Coupling of novel cofactors with DNA using different DNA 
methyltransferases 

A review of the development of the novel cofactors is essential for the understanding of the 

ideas behind the SMILing technique. The new cofactors are based on the natural cofactor S-

adenosyl-L-methionine (3, AdoMet). The cofactors were developed using the N6-adenine 

DNA MTase M·TaqI as a model system. Since the cofactor binding site of DNA MTases is 

conserved among DNA MTases (Schluckebier et al., 1995), for a general application it was 

necessary to maintain the important features of the cofactor. The adenosyl moiety, for 

example, was found to be fundamental for binding, since it acts as a molecular anchor for 

cofactor binding by DNA MTases (Pignot et al., 2000). The amino acid side chain can, 

however, be neglected for binding. The basic idea leading to the novel cofactors is illustrated 

in Fig. 3.1. The reaction mechanism of M·TaqI for the naturally occurring methyl group 

transfer involves a nucleophilic attack of the exocyclic amino group of the target adenine to 

the methyl group of 3. The amino group is represented in Fig. 3.1 only as a nucleophile (Nu). 

The activated methyl group of 3 is transferred to the amino group and the methylation 

reaction is completed by release of a proton from the methyl ammonium group. 
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Fig. 3.1: Idea towards the N-adenosylaziridine cofactor. 

 

It might be expected that use of a cofactor analogue 4 with for example, an ethyl group at the 

sulfonium center would lead to ethyl group transfer to the nucleophile in a M·TaqI-catalyzed 
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reaction. However, S-adenosyl-L-ethionine is known to be an inhibitor of DNA MTases (Cox 

& Irving, 1977). This can be understood on the basis of inspection of the crystal structure of 

M·TaqI in complex with AdoMet. Around the methyl group of the cofactor, there is not 

enough space to accommodate additional atoms, which makes this approach to transferring 

more than a methyl group impossible. In order to circumvent spatial limitations, a connection 

from the methyl group to Cγ of the side chain would lead to the thiiranium compound 5. Such 

a cofactor for M·TaqI could be completely transferred via a ring opening reaction to the target 

nucleophile. However, thiiranium compounds are unstable in nucleophilic solvents (Smit et 

al., 1975). For this reason the more stable aziridine moiety as in 6 was chosen. This 

modification was also used with aziridino-glutamate to act as an alkylating agent in an 

enzyme-catalyzed reaction (Tanner & Miao, 1994). In order to simplify the synthesis, the 

amino acid side chain of AdoMet was not included and N-adenosylaziridine (AZ) 1 was 

chosen as the cofactor analogue. As previously mentioned, Pignot and co-workers showed 

that 1 acts as a cofactor for M·TaqI and that it could be specifically coupled in an enzyme-

catalyzed reaction to a short duplex oligonucleotide (Pignot et al., 1998). A fluorescent 

derivative carrying a tethered dansyl fluorophore at the 8-position of AZ was shown to couple 

to the same duplex oligonucleotide (Pljevaljļiĺ, 1999). This was the beginning of the 

Sequence-specific Methyltransferase-Induced Labeling technique refered to as SMILing 

DNA. Herein, the 8-position of the cofactor plays a major role in the design of these new 

cofactors. The crystal structure of M·TaqI in complex with AdoMet reveals that the 8-position 

points towards the solvent and interference of an attached fluorophore at this position with the 

protein is not very likely. Since SMILing should be generally applicable for most DNA 

MTases this prerequisite has to be fullfilled also for other enzymes. Actually, the known 

crystal structures of various DNA MTases in complex with their cofactors show that the 8-

position of the cofactor is accessible from the solvent (Table 3.1a). 
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Table 3.1a: Different types of DNA MTases. 

Name Substrate  Complex  
8-Position of the 

cofactor  
Reference 

M·TaqI N6-adenine AdoMet accessible  Labahn et al., 1994 

DpnM N6-adenine  AdoMet  accessible   Tran et al., 1998 

M·RsrI N6-adenine  MTAb accessible Scavetta et al., 2000 

M·HhaI C5-cytosine  AdoHcya 
and DNA  

accessible  Klimasauskas et al., 1994 

M·PvuII N4-cytosine  AdoMet  accessible  Gong et al., 1997 
a S-Adenosyl-L-homocysteine; b 5’-deoxy-5’-methylthioadenosine. 

 

As the cofactor binding pocket is conserved among DNA MTases (Schluckebier et al., 1995), 

it might be expected that most DNA MTases accept the novel cofactors. Interestingly, the 

cofactor binding site is even conserved among other AdoMet-dependent MTases. Therefore, 

the novel cofactors could also be suitable for labeling other substrates. A selection of different 

AdoMet-dependent MTases with known crystal structures is listed in Table 3.1b. 

 
Table. 3.1b: Different AdoMet dependent MTases 

Name Substrate  Complex 
Accesible position 

of the cofactor  
Reference  

RNA MTases    

VP39 2'-OH of m7GpppG/A AdoMet 8-position Hodel et al., 1996 

ErmC' N6-adenine in 23S 
rRNA 

AdoMet 7-position Bussiere et al., 1998

Protein MTases    

CheR glutamic acid AdoHcy 8-position Djordjevic & Stock, 
1997 

Small molecule MTases    

COMT catechol AdoMet None Vidgren et al., 1994 

 

Table 3.1b demonstrates that various AdoMet-dependent MTases for different substrates 

possess an accessible 8-position. In other cases, the 7-position seems to be more suitable. 

Therefore, the SMILing technique should not only be applicable to the N6-adenine DNA 

MTase M·TaqI but also to other DNA MTases, and even other classes of AdoMet-dependent 

MTases should accept the novel cofactors. This would imply a possible extension of SMILing 

DNA to SMILing of many other biomolecules, since AdoMet-dependent MTases exist for 
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different kinds of biomolecules ranging from small molecules to proteins, RNA and DNA. 

Here, the general applicability of the aziridine cofactors was investigated for SMILing DNA. 

For this purpose the C5-cytosine DNA MTase M·HhaI and the N4-cytosine DNA MTase 

M·BcnIB were used as representatives of the other two classes of DNA MTases. Since 

SMILing DNA was only demonstrated for short duplex oligonucleotides, the ability of 

M·TaqI to catalyze the labeling of large DNA fragments was investigated. Furthermore, the 

labeling reaction was optimized with respect to the reaction rate by investigating the pH 

dependence of the reaction. In addition, the influence of strong nucleophiles in the reaction 

buffer, such as DTT or β−mercaptoethanol, on the reaction was investigated. Special attention 

was given to the development of a biotinylated cofactor, since the biotin label is very 

attractive due to diverse and highly sensitive detection possibilities. 

 

3.1.1 Coupling of N-adenosylaziridine with DNA using M·TaqI 

The new cofactor analogue AZ (1) was shown to be sequence-specifically coupled to a short 

duplex oligonucleotide by M·TaqI (Scheme 3.1.1). The reaction was carried out at pH 6 

because only a protonated aziridine can act as an alkylating agent. The pKa value of the 

aziridine nitrogen of alkylated aziridines in aqueous solution is 8-9 (Buist & Lucas, 1957). 

Assuming that the pKa value is not changed within the protein environment, the aziridine 

nitrogen should be protonated at pH 6 and the aziridine ring activated for a nucleophilic 

attack. Furthermore, in the publication by Pignot et al. (1998), the reaction buffer did not 

contain any strong nucleophiles like DTT or β-mercaptoethanol in order to prevent an attack 

of these compounds on the cofactor, thus slowing down or even inhibit the coupling reaction. 
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Scheme 3.1.1: M·TaqI-catalyzed coupling of a 14mer duplex oligonucleotide with N-adenosylaziridine. 

 

Therefore, the influence of DTT as nucleophile in the reaction buffer and the pH value of the 

reaction buffer on the reaction rate were investigated. The 14mer duplex oligonucleotide 7·8 
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was modified in a M·TaqI-catalyzed coupling reaction with AZ (1) to give the modified 

duplex 7AZ·8. The reaction was carried out under single turnover conditions at 37 °C. This 

temperature does not correspond to the activity maximum of M·TaqI which is at 65 °C. 

However, since the melting point of the used short duplex oligonucleotide 7·8 should be 

below 65  °C, the reaction had to be carried out at a temperature at which the DNA exists in 

its double-stranded form and is not already melted. In the coupling reaction the product 7AZ·8 

is not directly released. As previously described for the M·TaqI-catalyzed coupling of 7·8 

with DAZ (see Pljevaljļiĺ, 1999), also in this case a complex of protein and modified DNA is 

primarily formed from which the DNA product can be released by degradation of the protein 

with proteinase K. Since aziridines are known to react readily with DNA (Tomasz, 1995), a 

control experiment without enzyme was carried out. In this control experiment no product 

formation was observed which indicates that the uncatalyzed reaction is slow compared to the 

M·TaqI-catalyzed reaction. Additionally, the reaction was carried out with and without DTT 

(1 mM) in the reaction buffer. Both reactions proceed equally well yielding product 7AZ·8. 

This indicates that 1 mM DTT does not influence the course of the reaction. 

Optimization of the reaction rate was carried out by performing reactions at different pH 

values. The reaction progress was analyzed by anion exchange chromatography and the 

amount of product DNA quantified by integration of the product peak. A plot of product DNA 

against time is shown in Fig. 3.1.1 on the left for the reaction at pH 6. The data points were 

fitted with the software GraFit using a single exponential function. The determined rate 

constants in dependence of the pH are shown in Fig. 3.1.1 on the right. It can be clearly seen 

that with increasing pH the reaction rate decreases. This supports the assumption that the 

reaction is faster at acidic pH due to an activation of the aziridine moiety by protonation of the 

ring nitrogen. It should be noted that further lowering the pH value leads to precipitation of 

M·TaqI. 
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Fig. 3.1.1: Plot of the amount of modified DNA against time at pH 6 (left). The data points were fitted using the 

software GraFit applying a single exponential function. Diagram of the pH dependence of the reaction rates for 

the M·TaqI-catalyzed coupling reaction (right). 

 

The actual value of the labeling reaction rate, 0.63 ± 0.09 h-1 at pH 6 is very slow compared to 

the natural methylation reaction rate. For the methylation reaction a turnover rate of 0.1 s-1 at 

37 °C was determined (Wölcke, 1998). Thus, the DNA MTase M·TaqI is a considerably slow 

enzyme compared to other enzymes which have turnover numbers in the range of 10-103 s-1 

(Fersht, 1999), and DNA labeling with M·TaqI is about 600 times slower than the reaction 

with the natural cofactor AdoMet. 

3.1.2 Labeling of plasmid DNA using M·TaqI 

The coupling reaction of AZ with short duplex oligonucleotides occurs with the highest 

reaction rate under slightly acidic conditions. Using these conditions the coupling reaction 

between the fluorescent cofactor 2 (DAZ) and plasmid DNA (pUC19) was investigated. The 

plasmid pUC19 is a circular DNA molecule with 2686 base pairs (bp). It contains four 

recognition sites for M·TaqI. A M·TaqI-catalyzed reaction as illustrated in Scheme 3.1.2 is 

expected to occur. 

 

pUC19
(2686 bp)

1. M. I,
    dansylated
    cofactor 
2. Proteinase K 

Taq

2

 
Scheme 3.1.2: Expected labeling reaction of plasmid pUC19. 

Red bars denote the recognition sequence of M·TaqI 5’-TCGA-3’. 
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The reaction of pUC19, M·TaqI and DAZ was carried out at 65 °C, the activity maximum of 

M·TaqI. The progress of the reaction was monitored by anion exchange chromatography in 

which the absorption of the plasmid at 260 nm and the fluorescence of the dansyl fluorophore 

(excitation at 330 nm; emission at 551 nm) were monitored. The anion exchange 

chromatograms in Fig. 3.1.2a. demonstrate that pUC19 elutes with a retention time of 

21.9 min and that the amount of plasmid remains constant during the time course.  
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Fig. 3.1.2a: M·TaqI-catalyzed SMILing reaction of pUC19 with DAZ. Anion exchange chromatograms after 

indicated reaction times with detection at 260 nm. 

 

Therefore, the reaction does not lead to degradation of DNA. Fig. 3.1.2b illustrates the 

corresponding chromatograms in which the fluorescence of the dansyl fluorophore is 

recorded. 
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Fig. 3.1.2b: M·TaqI-catalyzed SMILing reaction of pUC19 with DAZ. Anion exchange chromatograms after 

different incubation times with fluorescence detection (excitation at 330 nm; emission at 551 nm). The time axis 

is corrected for the delay time between the UV and fluorescence detector. 
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Obviously, the dansyl fluorescence can be measured at the same retention time as the DNA 

(compare with Fig. 3.1.2a). The amount of fluorescence increases with time while at time zero 

no fluorescence can be detected at the retention time of DNA. This demonstrates labeling of 

the pUC19 plasmid with the dansyl fluorophore. The reaction is completed after 4 h. The rate 

of the reaction based on fluorescence signal is 2.2 ± 0.2 h-1. This is about 3.5 times faster than 

the coupling reaction with the short duplex oligonucleotides and AZ. The simplest 

explanation for this increase in rate is that the reaction was carried out at the temperature 

optimum of M·TaqI (65 °C) whereas the reaction with the short duplex oligonucleotides was 

performed at 37 °C. This experiment demonstrates that even large DNA, namely pUC19, can 

be labeled using the DAZ cofactor. As a control, the reaction was carried out without M·TaqI 

in order to demonstrate that the observed reaction is enzyme-catalyzed. While the time trace 

of the anion exchange chromatograms for the UV-absorption at 260 nm equals the time trace 

of the reaction with enzyme, the time trace for the observed fluorescence shows no dansyl 

fluorescence at all (Fig. 3.1.2c). 
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Fig. 3.1.2c: Control experiment with pUC19 and DAZ in the absence of M·TaqI. Anion exchange 

chromatograms after different incubation times with fluorescence detection (excitation at 330 nm; emission at 

551 nm). The time axis is corrected for the delay time between the UV and fluorescence detector. 

 

This control experiment reveals that no background reaction of the cofactor with DNA can be 

detected. Therefore, labeling of the plasmid DNA is definitely enzyme-catalyzed. However, 

the experiment does not clarify whether the reaction occurs quantitatively and sequence-

specifically like the SMILing reaction of short duplex oligonucleotides does (Pljevaljļiĺ, 

1999). The question about quantity of the labeling reaction is quite difficult to answer with 

this type of experiment as there is no easy possibility to calibrate the observed fluorescence 

signal. Therefore, it is not possible to make a statement about the amount of fluorophore 

attached to the DNA. Other types of experiments have to be performed to answer this 
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question (see below). The question concerning the specificity of the enzyme-catalyzed 

reaction was addressed by performing two parallel reactions. The pUC19 plasmid was either 

treated with M·TaqI and the natural cofactor AdoMet or only with AdoMet. The plasmids 

were purified with the QiagenPCR purification Kit. One would expect in the first case that all 

M·TaqI recognition sites are methylated due to the natural methylation reaction and in the 

second case that no methylation took place. When the purified plasmids are now both treated 

in a second step with M·TaqI and the dansylated cofactor DAZ the first one should not be 

labeled as the M·TaqI recognition sites are protected by methyl groups whereas the second 

plasmid should be labeled as it was previously observed. In Fig. 3.1.2d the time traces of 

anion exchange chromatograms for the methylated plasmid are shown. Only the anion 

exchange chromatograms in which the fluorescence was recorded are presented as the 

chromatograms for the UV-absorption at 260 nm are identical to the previously shown ones. 
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Fig. 3.1.2d: Anion exchange chromatograms of previously methylated pUC19. The dansyl fluorescence 

(excitation at 330 nm; emission at 551 nm) is recorded. The time axis is corrected for the delay time between the 

UV and fluorescence detector. 

 

As expected no fluorescence signal can be detected because the labeling reaction is not 

expected to occur at methylated M·TaqI recognition sites. In contrast to this, the non-

methylated pUC19 becomes labeled with the dansyl fluorophore as described above. The time 

traces of the anion exchange chromatograms of the non-methylated pUC19 is shown in Fig. 

3.1.2e. The amount of observed fluorescence equals that previously observed. 
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Fig. 3.1.2e: Anion exchange chromatograms of labeling non-methylated pUC19. The dansyl fluorescence 

(excitation at 330 nm; emission at 551 nm) is recorded. The time axis is corrected for the delay time between the 

UV and fluorescence detector. 

 

This first control experiment demonstrates that methylated sites cannot be labeled with DAZ 

and that the sequence-specificity of M·TaqI is not altered with the unnatural cofactor DAZ. 

Supposing that M·TaqI performs the methylation reaction sequence-specifically the labeling 

reaction is also sequence-specific. The experiment does not give information about the 

sequence which becomes methylated and labeled, respectively. However, experiments from 

Friederich (2001) suggest that the sequence specificity of M·TaqI is comparable to that of 

restriction endonucleases. According to that M·TaqI methylates 5’-TCGA-3’ about 105 times 

better than the second best recognized site 5’-TCTA-3’. Therefore, it can be assumed that the 

labeling reaction is sequence-specific as well. To summarize this set of experiments, 

Sequence-specific Methyltransferase-Induced Labeling of DNA (SMILing DNA) is also 

applicable to plasmid DNA using M·TaqI as a model system. 

3.1.3 Coupling of N-adenosylaziridine with DNA using M·HhaI 

The AZ cofactor for SMILing DNA with M·TaqI was designed based on the structure of the 

natural cofactor and should also work with other DNA MTases. Therefore, the coupling 

reaction of AZ with a short duplex oligonucleotide was carried out using the C5-cytosine 

DNA MTase from Haemophilus haemolyticus (M·HhaI). Cofactor-free enzyme was kindly 

provided by the group of Dr. Saulius Klimasauskas, Vilnius (Lithuania). First of all, the 

affinity of AZ to M·HhaI was determined. For that purpose a binding assay was carried out 

described by Pignot (1999). M·HhaI contains a single tryptophan residue (W41) in the 
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cofactor binding site. Its fluorescence is strongly reduced upon cofactor binding. A titration of 

M·HhaI with AZ is shown in Fig. 3.1.3a. 
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Fig. 3.1.3a: Plot of the tryptophan fluorescence versus AZ concentration. The data points were fitted with the 

software GraFit applying the quadratic equation for one binding site. The concentration of M·HhaI was 1 µM. 

 

The data points were fitted to the quadratic equation for one binding site using the program 

GraFit and a binding constant of 53 ± 10 µM was obtained. In comparison to M·TaqI, AZ 

binds four times more strongly to M·HhaI. Compared to the natural cofactor AdoMet 

however, the AZ cofactor binds 50 times more weakly. As AZ binds to M·HhaI with an 

acceptable binding constant the reaction was carried out in analogy to the M·TaqI-catalyzed 

coupling reaction using a short duplex oligonucleotide (Scheme 3.1.3). 
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Scheme 3.1.3: M·HhaI-catalyzed reaction between the duplex 9·10 and AZ 1. 

 

In this case the 13mer duplex oligonucleotide 9·10 was chosen as substrate. The DNA 

contains the recognition sequence of M·HhaI, 5’-GCGC-3’, in which the second cytosine is 

the target base. In the lower strand 10 the target base is already methylated and thus not 

available for further modification. The reaction was carried out under single turnover 

conditions at 37 °C. This time the reaction was carried out at pH 7.4 as this proves to be the 

pH value at which the protein is most stable. Continuous aliquots were taken out from the 
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reaction solution at distinct time intervals and the aliquots were treated for 1 h with 

proteinase K at 37 °C. The solution was injected onto an anion exchange HPLC column and 

the UV absorption was recorded at 260 nm. The obtained anion exchange chromatograms 

after different incubation times are shown in Fig. 3.1.3b. 
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Fig. 3.1.3b: M·HhaI-catalyzed coupling reaction between 9·10 and AZ 1 at 37 °C. Anion exchange 

chromatograms with recorded UV absorption at 260 nm.  

 

The anion exchange chromatogram at the beginning of the reaction shows the double-stranded 

oligonucleotide 9·10 with a retention time of 22.4 min. As the reaction progresses the signal 

of 9·10 decays and a signal of the newly formed compound 9AZ·10 (Rt 21.4 min) increases. 

The retention time of 9AZ·10 is slightly smaller than that of the starting material. After 24 h 

9·10 is almost completely converted into 9AZ·10. In a control experiment without enzyme 9·10 

is not converted at all. This indicates that the reaction is enzyme-catalyzed. When the reaction 

solution is not treated with proteinase K, a complex of protein, DNA and cofactor is observed 

analogous to the M·TaqI-catalyzed reaction. Also the elution behavior of the reaction product 

on the anion exchange column resembles the behavior already observed in the M·TaqI-

catalyzed reaction of AZ with DNA. These are two hints which already suggest that a 

M·HhaI-catalyzed coupling reaction of DNA with AZ occurs. In this reaction, the enzyme 

needs 24 h to transform most of 9·10 into 9AZ·10 which is at least twice as long as M·TaqI 

needs for the reaction. However, a new preparation of M·HhaI which was kindly provided by 

Egle Merkiene (Klimasauskas Laboratory) almost completely converts the DNA into the 

product in only 30 min. The anion exchange chromatograms of the DNA before and after the 

reaction are shown in Fig. 3.1.3c. 
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Fig. 3.1.3c: Anion exchange chromatograms of DNA before and after the M·HhaI-catalyzed coupling reaction 

with AZ at 37 °C. 

  

The course of the reaction using this new enzyme preparation could not easily be monitored 

by HPLC analysis. The reaction however is much faster than the M·TaqI-catalyzed reaction. 

In order to analyze the reaction product with mass spectrometry, 9AZ·10 was isolated from the 

anion exchange column and desalted using the Seppack C18 columns from Waters. Prior to 

measurement by MALDI mass spectrometry the sample was further purified using the ZipTip 

C18 pipette tips. The observed spectrum is shown in Fig. 3.1.3d. The mass spectrum was 

calibrated using the single-stranded oligonucleotide 9. 
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Fig. 3.1.3d: MALDI mass spectrum of the modified duplex ologonucleotide 9AZ·10. 

 

The mass spectrum shows the signals for strand 10 and the modified strand 9AZ. The signal at 

1,973.68 corresponds to double negative 10 (calc. 1,971.68 [10-2H]2-) and the signal at 

2,131.91 corresponds to double negative 9AZ (calc. 2,129.91 [9AZ-2H]2-). A zoom into the 

spectrum at higher m/z values is shown in Fig. 3.1.3e. 



Results and Discussion 

 42

3600 3800 4000 4200 4400
0

10

20

30

40

50

60

3804.49

4309.56

4264.87
4122.94

3985.17

3947.25

R
el

. i
nt

en
si

ty
 (%

)

m/z  
Fig. 3.1.3e: Zoom into the full MALDI mass spectrum shown in Fig. 3.1.3d. 

 

The mass spectrum shows a signal at 3,947.25 which corresponds to strand 10 (calc. 3,945.71 

[10-H]-). The peak at 4,264.87 corresponds to strand 9 modified with AZ (calc. 4,262.82 [9Az-

H]-). Additionally, signals of potassium adducts of each oligonucleotide can be seen (signals 

at 3,985.17 and 4,309.56). The signals at 3,804.49 and 4,122.94 could not be assigned but 

arise probably from a degradation of the oligonucleotides. In summary, the mass spectrum 

reveals that the cofactor analogue AZ becomes coupled to strand 9. Unfortunately, the mass 

spectrum does not allow a statement about the base or even the sequence which was modified. 

However, since the reaction was carried out with the C5-cytosine DNA MTase M·HhaI it is 

most likely that the C5-position of the target cytosine was modified with AZ. This is also in 

agreement with the observation that no signal corresponding to the mass of a modified lower 

strand 10 (calc. 4,237.83 [10AZ-H]-) is present. A further experiment was performed which 

should allow a statement about the modified nucleobase and its position. The same coupling 

reaction as described for duplex oligonucleotide 9·10 was carried out with a duplex 

oligonucleotide which contains an A-T base pair instead of the C-G-base pair at target 

position. With this duplex oligonucleotide no coupling reaction occurs. Therefore, it is most 

likely that the target cytosine becomes modified in a M·HhaI-catalyzed coupling reaction and 

not another nucleobase. Thus, the sequence-specific labeling of DNA using a representative 

of the second class of DNA MTases, the C5-cytosine DNA MTase M·HhaI, could be 

demonstrated. The performed experiments however, cannot prove that the C5-position of 

cytosine was modified. Since M·HhaI is a C5-cytosine DNA MTase it is very unlikely that 

another position of the base becomes modified; especially because the reaction mechanism 

suggested by Santi et al. (1987) proceeds via an activated cytosine at the C5-position. 
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3.1.4 Single-turnover experiments at different pH-Values 

The M·TaqI-catalyzed coupling reaction is pH sensitive. Reactions with M·HhaI were carried 

out at different pH values in order to investigate if the reaction rate can be further increased. 

The pH dependency should be possible to monitor even with an enzyme preparation of low 

specific activity. The experiment was carried out with the enzyme preparation which took 

about 24 h for conversion because the reaction with the new enzyme preparation is too fast to 

follow with HPLC. The reaction was again monitored by anion exchange chromatography and 

the amount of product formed with time is shown for pH 7, as an example in Fig. 3.1.4 on the 

left. The dependence of the reaction rate on the pH is plotted in Fig. 3.1.4 on the right. 
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Fig. 3.1.4: Plot of the amount modified DNA formed with time at pH 7 (left). The data points were fitted with a 

single exponential function using the software GraFit. Diagram of the pH dependence of the reaction rate for the 

M·HhaI-catalyzed reaction (right). 

 

In contrast to the M·TaqI-catalyzed coupling reaction, the reaction with M·HhaI is 

independent of the pH value within the investigated pH interval. Therefore, an optimizatin of 

the reaction rate could not be achieved by simply increasing the pH value. 

3.1.5 Labeling of plasmid DNA using M·HhaI 

The important result that the coupling reaction of DNA with AZ is not limited to M·TaqI but 

also possible with M·HhaI encourages the investigation of SMILing of plasmid DNA with 

DAZ and other DNA MTases like M·HhaI. As substrate the already mentioned plasmid 

pUC19 was utilized which contains 17 recognition sites for M·HhaI. The reaction was carried 

out at 37 °C and monitored again by anion exchange chromatography. Fig. 3.1.5a shows two 

anion exchange chromatograms in which the absorption at 260 nm was recorded.  
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Fig. 3.1.5a: Anion exchange chromatograms of the experiments with pUC19 and DAZ at 37 °C. The upper trace 

shows the reaction with M·HhaI-catalysis and the lower without. In both cases the absorption at 260 nm was 

recorded. 

 

After 20 hours reaction time the same amount of pUC19 plasmid, eluting after 21.6 min, is 

present in the experiment either with or without enzyme. This illustrates that the DNA is not 

degraded during the reaction. By observing the dansyl fluorescence, one can see that the 

plasmid becomes labeled only in the case where enzyme is present (Fig. 3.1.5b). This 

demonstrates that the reaction is enzyme-catalyzed and that an uncatalyzed reaction does not 

occur. 
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Fig. 3.1.5b: Anion exchange chromatograms of the experiments with pUC19 and DAZ at 37 °C. The upper trace 

shows the reaction with M·HhaI-catalysis and the lower without. In both cases the dansyl fluorescence 

(excitation at 330 nm; emission at 551 nm) was recorded. The time axis is corrected for the delay time between 

the UV and fluorescence detector. 

 

Thus, the general applicability of the newly developed cofactor family for SMILing of small 

and large DNA fragments could be demonstrated. Owing to the conserved binding pocket of 

DNA MTases it is expected that the new cofactors can also be used in combination with other 

DNA MTases expanding the range of labeled sequences. 
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3.1.6 Coupling of N-adenosylaziridine with DNA using M·BcnIB 

For the sake of completeness a representative of the third type of DNA MTases which 

methylates the N4-position of cytosines, was tested in a coupling reaction of a short duplex 

oligonucleotide with AZ. The enzyme was obtained from the lab of Dr. Saulius Klimasauskas, 

Vilnius (Lithuania). It is a N4-cytosine DNA MTase from Bacillus centrosporus (M·BcnIB) 

which methylates double-stranded DNA only. The coupling reaction was performed using the 

duplex oligonucleotide 11·12. The enzyme recognizes the sequence 5’-CC(C/G)GG-3’ in 

which the second cytosine is methylated on its exocyclic amino group. With AZ it is expected 

that the coupling reaction occurs at the same position (Scheme 3.1.6). 
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Scheme 3.1.6: M·BcnIB-catalyzed coupling reaction between 11·12 and AZ 1. 

 

The reaction was carried out at 37 °C at pH 6.9. Aliquots were taken from the reaction 

mixture at distinct time intervals and treated with proteinase K at 37 °C for 1 h. The aliquots 

were analyzed by anion exchange chromatography. The observed anion exchange 

chromatograms are presented in Fig. 3.1.6a. 
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Fig. 3.1.6a: M·BcnIB-catalyzed coupling reaction between 11·12 and AZ 1 at 37 °C. The anion exchange 

chromatograms were recorded at 260 nm. 

 

At t = 0 the duplex oligonucleotide 11·12 elutes with a retention time of 30.2 min. With 

increasing reaction time a new compound 11AZ·12 is formed with a slightly smaller retention 
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time (29.3  min). After about 24 h almost all of the starting material becomes converted to the 

new compound. Fig. 3.1.6b shows the two anion exchange chromatograms before and after 

the coupling reaction. A control experiment in the absence of enzyme does not show any 

product formation. 
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Fig. 3.1.6b: Anion exchange chromatograms of DNA before and after the M·BcnIB-catalyzed coupling reaction 

with AZ at 37 °C. 

 

When the reaction solution is not treated with proteinase K prior to HPLC analysis a complex 

of protein, DNA and cofactor can be observed. This behavior parallels that already described 

with M·TaqI and M·HhaI. The major difference results from the larger size of the duplex 

oligonucleotide which leads to a larger retention time of 11·12 in comparison to the shorter 

oligonucleotides used with M·TaqI and M·HhaI. Furthermore, the difference in retention time 

of modified and unmodified duplex oligonucleotide is not as pronounced as in the former 

cases. However, the observations strongly suggest that an M·BcnIB-catalyzed coupling 

reaction of DNA and AZ does occur. Since M·BcnIB is a N4-cytosine DNA MTase it is most 

likely that the coupling reaction occurs at the exocyclic amino group of the second cytosine 

within the 5’-CCCGG-3’ DNA sequence. This is supported by two other experiments. A 

MALDI mass spectrum of the modified DNA shows the modified and non-modified strand. 

However, due to the length of the duplex oligonucleotide the intensity of the measured 

spectrum is much lower than for 14mer oligonucleotides and the signal for the non-modified 

strand appears slightly above the noise. Furthermore, the coupling reaction of AZ with a 

duplex oligonucleotide in which the target C-G base pair was exchanged by an A-T base pair 

does not occur. This suggests that the target cytosine becomes modified in a M·BcnIB-

catalyzed coupling reaction and not another nucleobase. 
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In summary, these experiments demonstrate that the newly developed cofactor AZ can be 

utilized with all three classes of DNA MTases for SMILing DNA. Regarding the fact that 

about 3000 procaryotic restriction endonucleases targeting about 250 different DNA 

sequences are known today (see: http://www.neb.com/rebase) and for each restriction 

endonuclease there exists a DNA MTase, SMILing DNA can be used to target a huge number 

of different sequences. To the best of my knowledge, this extremely challenging task cannot 

be achieved with any other method. 
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3.2 Synthesis of a cofactor analogue precursor 

3.2.1 Strategy for a general synthesis 

The synthesis of DAZ, an AZ derivative which is modified at the 8-position with a tethered 

dansyl fluorophore was already presented in my diploma thesis (Pljevaljļiĺ, 1999). However, 

the synthetic route by which the novel cofactor was obtained is not suitable for the synthesis 

of a whole series of cofactors with different reporter groups. Therefore, a general synthesis for 

AZ derivatives was worked out which allows the attachment of different reporter groups at 

the end of the synthesis. The synthesis presented in my diploma thesis was modified because 

the reporter group, the dansyl fluorophore, was introduced into the molecule in an early stage 

of the synthesis. In the general synthesis a protecting group is first introduced into the 

molecule. This leads to a cofactor analogue precursor which can be transformed after 

deprotection into the desired labeled AZ derivatives. The chosen new synthetic strategy for 

cofactor analogues is illustrated in Scheme 3.2.1a. 
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Scheme 3.2.1a: Strategy for the synthesis of cofactor analogue precursors. 
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The crucial considerations in this synthesis are the choice of the tether length at the 8-position 

and the choice of the protecting group. The linker length is essential for two reasons. Firstly, 

the linker has to be long enough so that the cofactor analogues can bind to the protein without 

interference of the reporter group with the protein. The DAZ cofactor contains a linker with 

four CH2-units which proved to be long enough to bind tightly to the protein and to allow 

SMILing DNA. Secondly, the length of the linker has to be suitable for indirect labeling 

systems. Indirect labeling systems are e.g. the biotin-streptavidin system. In this biotin is used 

as a modification group which would be attached to the linker. In a second step biotin is 

detected via a strong non covalent interaction with the protein streptavidin which itself is 

conjugated either with a fluorophore or another protein which is used for signal amplification. 

This means that biotin has to be far enough from its labeled species so that streptavidin can 

bind to biotin. Two images of the crystal structure of streptavidin in complex with biotin are 

shown (Fig. 3.2.1). The left image shows the binding pocket of biotin. In the right image the 

protein is rotated by 90°. 

 
Fig. 3.2.1: Surface potential representation of a streptavidin-biotin complex (red denotes negative electrostatic  

potential, blue denotes positive electrostatic potential and white is neutral). The binding of biotin (stick 

representation) is illustrated (left). The carboxylate end of the biotin molecule reaches the surface of the protein 

(right). 

 

In the image on the right, the carboxylate end of the biotin molecule is visible and reaches the 

surface of the protein (white arrow). Therefore, a linker with four CH2-units (length of 3.9 Å), 

as used for DAZ, attached to that carboxylate end should be sufficient to allow interaction 

between biotinylated DNA and streptavidin. For this reason, the linker length was chosen to 

remain the same as used in the case of DAZ. The choice of a suitable protecting group for this 



Results and Discussion 

 50

synthetic strategy is somewhat more a trial and error procedure. However, the protecting 

group has to fulfill several prerequisites. One essential step is the removal of the protecting 

group. As the protecting group has to stay in the molecule until the end of the synthesis, the 

deprotection strategy must not include deprotection under acidic conditions as the aziridine 

moiety would be destroyed. Further the protecting group should resist mild basic conditions 

as the activation of the 5’-hydroxyl group includes basic conditions. Interactions of the 

protecting group with formic acid or mesyl chloride must be excluded as well. For these 

reasons different protecting groups which can be deprotected under basic conditions were 

investigated. N-phthalimide, formamide, acetamide, chloroacetamide and 9-fluorenyl-

methoxycarbonyl (Fmoc) were tested for suitability. However, none of the chosen protecting 

groups performed satisfactorily. For this reason, a photolabile protecting group was chosen 

finally. This group can be removed by light treatment yielding the free amine 20. In a final 

step compound 20 can then be coupled with any amine reactive probe to give differently 

decorated cofactor analogues. Here, the reaction with an NHS-ester is shown as an example 

yielding the desired product 22 (Scheme 3.2.1b). 
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Scheme 3.2.1b: Deprotection of cofactor analogue precursor 19 and introduction of reporter groups to yield 

desired cofactor analogue 21. 

 

3.2.2 Synthesis of an adenosine derivative with an NVOC-protected 
aminolinker at the 8-position 

The synthesis starts from the commercially available 2’,3’-O-isopropylidene adenosine (13). 

As described elsewhere (Pljevaljļiĺ, 1999) the 8-position of 13 is brominated by adding 

bromine to a solution of 13 in potassium acetate buffer (pH 3.9). The resulting white solid, 

8-bromo-2’,3’-O-isopropylidene adenosine (14), is almost quantitatively converted in a 

nucleophilic substitution with 1,4-diaminobutane into the primary amine 15. The crude amine 

is used without further purification for the next step. The third and crucial step of the 
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synthesis is to introduce a protecting group for the primary amine of the linker. 

6-Nitroveratryl-chloroformate is added to the amine 15 in dry pyridine at room temperature. 

The resulting product is purified by silica column chromatography yielding the protected 

amine 22 (Scheme 3.2.2). 
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Scheme 3.2.2: Synthesis of the NVOC-protected amine 22. 

 

6-Nitroveratryloxycarbonyl (NVOC) was chosen as a protecting group for several reasons. 

NVOC is photolabile and can be removed at wavelengths above 320 nm. Thus, the 

nucleobase chromophore (λmax = 280 nm) does not get destroyed by the irradiation. Another 

advantage of this protecting group is that it doesn’t carry any functional groups which could 

react in the following synthetic steps. Therefore, compound 22 is suitable for usage in the 

following steps. 

 

3.2.3 Synthesis of a protected N-adenosylaziridine derivative 

The 5’-hydroxyl group of the NVOC-protected nucleoside 22 was activated using 

mesylchloride. The reaction was carried out in dichloromethane in the presence of 

4-dimethylaminopyridine (DMAP) and triethylamine. A problem in this reaction is the 

subsequently occurring intramolecular cyclisation of N3 with the activated 5’-position which 

yields an undesired cyclonucleoside (Townsend, 1988). However, cyclonucleoside formation 

can be minimized by using short reaction times. Mesylate 17 (R = NVOC) was purified by 

silica column chromatography at low temperature. The maximum yield of the mesylation is 

about 55 %. The purified mesylate 17 (R = NVOC) was deprotected almost quantitatively at 

the 2’,3’-hydroxyl groups with formic acid to yield 18 (R = NVOC). Here, the 

cyclonucleoside formation does not represent a problem as under acidic conditions the 

N1-position of adenine is protonated, thus reducing the nucleophilicity of N3. Without further 

purification 18 (R = NVOC) was converted to the protected AZ derivative 19 in an 

aziridine/base solution. Diisopropylethylamine was chosen as a non-nucleophilic base. The 
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ratio of aziridine to base was chosen to be 3:1 in order to avoid polymerization of aziridine. 

The cofactor analogue precursor 19 was purified by HPLC chromatography and obtained with 

a yield of 20 %. 

 

3.2.4 Deprotection of the photolabile NVOC-protecting group 

The cofactor analogue precursor 19 was deprotected to yield the free amine which can then be 

used for reactions with any amine reactive reporter group. The deprotection was carried out in 

triethanolamine buffer at pH 8 (small amounts of DMSO were used to dissolve 19 

completely). The buffer was chosen for various reasons. Triethanolamine has the advantage of 

being a non-nucleophilic buffer. The pH value was chosen to be slightly basic to avoid 

activation of the aziridine moiety by protonation and not too basic so as to minimize a side 

reaction of the liberated aldehyde 24 with the free amine. The proposed mechanism for the 

deprotection of the NVOC group is illustrated (Scheme 3.2.4). 
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Scheme 3.2.4: Proposed deprotection mechanism of NVOC-protected amines (Patschornik et al., 1970). 

 

The NVOC-protected amine 19 is proposed to form 23 in a light induced reaction. After 

liberation of CO2 the amine is released and benzaldehyde 24 is formed. A dimerization of 24 

is proposed to occur in the subsequent light induced reaction yielding the diazo-compound 25. 

The formation of the diazo product can be verified by UV-spectroscopy. 

In a test reaction, a solution of the precursor 19 was illuminated with laser light at 355 nm. 

The energy of the laser was chosen to be low (20-30 mJ). UV-spectra of the solution after 

different amounts of laser pulses are shown (Fig. 3.2.4). Enhancing the energy of the laser 

light does not lead to a faster deprotection reaction but to a photodestruction of 19. 
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Fig. 3.2.4: UV-spectra of the deprotection of the N-adenosylaziridine precursor 19 after different laser pulses. 

 

The curve in black illustrates the initial spectrum. At about 280 nm the absorption of the 

nucleobase is visible and at 340 nm the NVOC chromophore absorbes. After irradiation at 

355 nm the absorption at 340 nm decreases and the absorption at 400 nm increases which 

indicates deprotection and formation of compound 25. When the resulting compound is 

injected onto a reversed phase HPLC column the signal of the initial precursor (Rt = 48.9 min) 

totally disappears and a new signal with a retention time of 22 min arises. The novel 

compound was analyzed by mass spectrometry and shown to be the deprotected amine 20. 

Experiments on a larger scale were performed on solutions of 100-200 ml. The protected 

nucleoside 19 was dissolved in several µl DMSO and triethanolamine buffer was added to 

give a solution of OD340 nm = 1. The solution was irradiated with a mercury lamp until the 

starting material was converted completely into the free amine 20. 

 

3.2.5 Synthesis of the biotinylated cofactor analogue 

The solution of free amine 20 was treated with biotin-NHS ester to yield the biotinylated 

cofactor analogue BAZ 27. As the biotin-NHS ester is not light sensitive deprotection and 

coupling with biotin can be performed in a one pot reaction (Scheme 3.2.5). 
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Scheme 3.2.5: Synthesis of the biotinylated cofactor analogue BAZ (26). R represents the NVOC-protecting 

group. 

 

The BAZ cofactor analogue was purified by HPLC chromatography and was suitable for 

usage in biochemical assays. The yield of 26 with respect to 19 is 45 %. 

 

3.2.6 Synthesis of a fluorescent cofactor analogue 

A fluorescent cofactor analogue was synthesized after deprotection of the NVOC group. The 

Cy5 fluorophore was chosen because of its excellent optical characteristics. The solution of 

the free amine 20 was lyophilized to a volume of 1 ml and treated with Cy5-NHS ester 

yielding the Cy5AZ cofactor analogue 27 (Scheme 3.2.6). 
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Scheme 3.2.6: Synthesis of the fluorescent cofactor analogue Cy5AZ (27). R represents the NVOC-protecting 

group. 

 

The cofactor analogue 27 was purified by reversed phase HPLC and was suitable for 

biochemical assays. The identity of Cy5AZ was verified by ESI-MS as only small amounts of 

the cofactor analogue were synthesized due to the high costs of the fluorophore. 
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3.3 Binding of AZ cofactors to M·TaqI 

The binding of the two newly synthesized cofactors to M·TaqI was investigated using two 

different binding assays. The biotinylated cofactor analogue BAZ does not contain an intrinsic 

optical property which could be used in a binding assay. Therefore, the binding affinity of 

BAZ to M·TaqI was determined using a competitive assay (Pignot, 1999). M·TaqI was 

preincubated with a fluorescent cofactor analogue, MANT-AdoHcy. The binding constant of 

MANT-AdoHcy to M·TaqI is known. Addition of BAZ to this solution leads to a decrease of 

the MANT fluorescence as the MANT-AdoHcy is displaced from the binding pocket by BAZ. 

The fluorescence was measured in a fluorescence resonance energy transfer experiment 

(FRET) in which the tryptophan residues of the protein are excited and the energy is 

transferred to the MANT fluorophore whose fluorescence is detected subsequently. The 

decrease of the MANT fluorescence was observed while the concentration of BAZ was 

increased (Fig. 3.3a). 
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Fig. 3.3a: Competitive binding between BAZ and MANT-AdoHcy to M·TaqI. Emission spectra at the beginning 

(black) and the end (red) of the titration with BAZ (left). Plot of the measured fluorescence intensity versus the 

concentration of BAZ (right). 

 

The data points were fitted with the program Scientist and a KD value of BAZ and M·TaqI of 

8.2 µM was calculated. Therefore, the cofactor analogue binds tightly to M·TaqI. The binding 

constant is about 4 times higher than the binding of the natural cofactor AdoMet (2 µM) but at 

least one order of magnitude smaller than the binding of AZ (206 µM) to M·TaqI. 

The binding of the Cy5Az cofactor analogue was investigated making use of its intrinsic 

fluorescent properties. The change of the Cy5 fluorescence in dependence of added protein 

was monitored. The data with the fitted binding curve are shown in Fig. 3.3b. 
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Fig. 3.3b: Cofactor binding of Cy5Az to M·TaqI. Emission spectra at the beginning (black) and the end (red) of 

the titration (left). Plot of the measured fluorescence intensity versus the concentration of M·TaqI (right). The 

determined KD value is 3.4 ± 0.4 µM. 

 

The fitted data result in a KD of 3.4 ± 0.4 µM. The determined KD value demonstrates that the 

binding of Cy5Az to M·TaqI is tight and that the large fluorophore does not negatively 

interfere with the protein. The dissociation constant is in the same range as the binding 

constant of the natural cofactor AdoMet. As SMILing DNA with a fluorescently labeled 

cofactor analogue was already performed during my diploma research work the focus was 

directed to the biotinylated cofactor analogue. SMILing with BAZ was investigated in order 

to prove that indirect labeling systems are suitable for this labeling technique. A list of the 

different AZ derivatives with the corresponding binding constants to M·TaqI are listed below 

(Table 3.3). 
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Table 3.3: Dissociation constants of the different cofactor analogues (the N-adenosylaziridinyl 
moiety is represented as R) 

Abbreviation  Side chain at the 8-position KD value / µM 

AZ R H 206.1a 

DAZ H
N N

H
R S

O

O
N

 
0.5 ± 0.13b 

BAZ 

H
N N

H

S

HN NH

O

O

R

 

8.2 

Cy5AZ 

H
N N

H

O

R
N

SO3

N

SO3 

3.4 ± 0.4 

aPignot, 1999. 
bPljevaljļiĺ, 1999. 

 

3.4 SMILing of different DNA substrates using BAZ and M·TaqI 

3.4.1 SMILing of short duplex oligonucleotides 

The first experiments to prove SMILing DNA using BAZ were carried out with the short 

duplex oligonucleotides already used for the prior experiments with M·TaqI. The SMILing 

reaction with the biotinylated cofactor should lead to a biotinylated DNA as illustrated below 

(Scheme 3.4.1). 
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Scheme 3.4.1: M·TaqI-catalyzed biotinylation of 7·8. 
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The coupling reaction was carried out at 37 °C at pH 6. Aliquots were taken from the reaction 

solution after different reaction times and injected onto an anion exchange column on a HPLC 

system. The anion exchange chromatograms obtained are shown in Fig. 3.4.1a. 
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Fig. 3.4.1a: M·TaqI-catalyzed coupling reaction between 7·8 and BAZ 26 at 37 °C. Anion exchange 

chromatograms with recorded absorption at 260 nm. 

 

The initial sample (t = 0) shows only duplex oligonucleotide 7·8 with a retention time of 25.6 

min. As the reaction proceeds a product with a retention time of 8.2 min is formed. After 8 h 

almost all of the DNA is converted into product. UV-spectra of the product suggest, as 

already observed in the SMILing reaction with DAZ, that the product consists of a complex of 

modified DNA and protein. In order to release the DNA from the DNA-protein complex, the 

complex was treated with proteinase K for 1 h at 37 °C. The released DNA 7BAZ·8 elutes with 

a smaller retention time than the unmodified DNA. The anion exchange chromatograms of the 

starting DNA and the product is shown in Fig. 3.4.1b. 
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Fig. 3.4.1b: Details of the anion exchange chromatograms of DNA before and after the M·TaqI-catalyzed 

coupling reaction with BAZ at 37 °C. 

 

The retention time of the biotinylated DNA (24.6 min) is smaller than that of the non-

modified DNA. This observation parallels the observation that the retention time of DNA is 

smaller after the coupling reaction with AZ. However, in the case of SMILing DNA with 

DAZ the retention time of the modified DNA increased relative to the non-modified DNA. 

This can be explained with the more hydrophobic character of the dansyl fluorophore after 

modification with DAZ in comparison to both modifications with AZ and BAZ. The dansyl 

group therefore interacts more tightly with the anion exchange material and elutes with a 

bigger retention time. All the observations strongly suggest that the DNA was biotinylated. 

Confirmation of this assumption should come from mass spectrometry and X-ray 

crystallography. 

The modified DNA 7BAZ·8 was isolated from the anion exchange column and desalted prior to 

preparation of a MALDI mass spectrum. The obtained spectrum is shown in Fig. 3.4.1c. The 

mass spectrum was calibrated using the single-stranded oligonucleotide 7. 
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Fig. 3.4.1c: MALDI mass spectrum of the modified duplex oligonucleotide 7BAZ·8. 

 

Four major signals appear in the mass spectrum. The signal at 4,302.0 corresponds to strand 8 

(calc. 4,300.8 [8-H]-). The double negatively charged strand 8 gives a signal at 2,150.9 (calc. 

2,149.9 [8-2H]2-). The modified strand 7BAZ gives a signal at 4,843.9 (calc. 4,841.0 

[7BAZ-H]-). The corresponding double negatively charged species gives a signal at 2,421.7 

(calc. 2,420.0 [7BAZ -2H]2-). The two signals at 4,141.3 and 4,692.5 correspond to depurinated 

DNA strands in which a guanine was released from the original strand. MALDI mass 

spectrometry clearly confirms that the duplex oligonucleotide 7·8 becomes biotinylated at 

strand 7 which contains the non-methylated recognition sequence of M·TaqI. In order to get 

information about the base which is modified X-ray crystallography is applied (see chapter 

3.5). 

3.4.2 Single-turnover experiments at different pH-Values 

The influence of the pH value on the reaction rate was investigated for SMILing with BAZ. 

The data should be consistent with that of the coupling reaction of AZ with DNA under 

M·TaqI-catalysis. The SMILing reaction with BAZ was carried out at different pH values and 

the reaction rate determined by analysis of the HPLC signals. Fig. 3.4.2 (left) shows a plot of 

the amount of modified DNA versus reaction time. The observed rate constants were plotted 

in Fig. 3.4.2 (right) versus the pH values.  
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Fig. 3.4.2: Plot of the amount modified DNA formed with time at pH 6.1 (left). The data points were fitted with a 

single exponential function using the software GraFit. Diagram of the pH-dependence of the reaction rates for 

the M·TaqI-catalyzed reaction of BAZ with the duplex oligonucleotide 7·8 (right). 

 

The plot illustrates that the reaction is pH dependent. The coupling reaction of AZ and BAZ 

both perform the reaction with approximately the same maximum rate constant which 

suggests that the modification on the 8-position of the cofactor does not have a significant 

influence on the maximum reaction velocity. Therefore, in the case of N8-modified cofactor 

analogues the raction rate can be increased with slightly acidic conditions. However, the 

binding of BAZ to the protein is about 25 fold tighter than that of AZ which shows an 

additional advantage of the N8-modified analogues. 

 

3.4.3 SMILing of a 47-mer duplex oligonucleotide 

In collaboration with the group of Dr. Andres Jäschke, FU Berlin (Germany), the SMILing 

technique has been used for the development of a selection system for the isolation of 

deoxyribozymes. In the group of Dr. Andres Jäschke it was previously shown that terminal 

functionalized RNA could be used to select ribozymes which catalyze the Diels-Alder 

reaction (Seelig & Jäschke, 1998). With SMILing DNA an internal functionalization of DNA 

should be achieved which would expand the diversity of the DNA library for selection 

experiments. This internally modified DNA should be investigated for the suitability to be 

amplified using PCR. Such an amplifiable system is a prerequisite for the selection of 

deoxyribozymes. 

Here the principal of such a selection system was investigated using BAZ for internal 

modification. A 47-mer duplex oligonucleotide (JSQ) with a single recognition site for 

M·TaqI was labeled with biotin using the reaction described in 3.4.1. In JSQ one adenine 

within the recognition site is methylated, thus allowing only the labeling of the non-
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methylated strand. The reaction was performed at 65 °C for 4 h. After that the solution was 

treated with proteinase K for 1 h at 37 °C. In a control experiment the same reaction was 

performed with a 47-mer oligonucleotide (JSN) without a M·TaqI recognition site. Denaturing 

acrylamide gel electrophoresis was used to analyze the reaction. A fluorescent streptavidin-

fluorescein conjugate was utilized to realize a shift of biotinylated oligonucleotide. The gel is 

shown below (Fig. 3.4.3). The staining of the bands was perfomed using SYBR-Gold. 

 
Fig. 3.4.3: Denaturing acrylamide gel illustrating the labeling of a 47-mer duplex oligonucleotide (JSQ) with 

biotin after treatment with proteinase K. (Lane 1: JSQ; Lane 2: JSQ plus streptavidin-fluorescein; Lane 3: JSN; 

Lane 4: JSN plus streptavidin-fluorescein; Lane 5: streptavidin-fluorescein). 

 

Principally, in a denaturing acrylamide gel containing urea double-stranded DNA becomes 

denatured. For biotinylated JSQ one can see that one strand is shifted when streptavidin-

fluorescein is added (Lane 2). This indicates that one strand of JSQ is biotinylated. 

Comparison of the intensities of the two bands allows the assumption that the biotinylation 

occurs almost quantitatively. In contrast, the DNA without M·TaqI site (JSN) is not shifted in 

the presence of streptavidin-fluorescein, which indicates that SMILing is indeed sequence-

specific. Thus, it can be concluded that SMILing of a 47mer duplex oligonucleotide with 

biotin using M·TaqI and BAZ works fine. Most interestingly a subsequent PCR reaction 

performed in the group of Dr. Jäschke leads to amplification of the biotinylated strand. This 

shows that biotinylated DNA obtained by SMILing DNA can be used as a template for DNA 

polymerases. Having performed this labeling successfully, the same reaction was performed 

with a pool of 47-mer DNA. The DNA containing the 5’-TCGA-3’ sequence (expected 10 %) 

should be labeled. Within the pool 5 % biotinylated DNA was found which demonstrates the 

labeling of the DNA containing 5’-TCGA-3’ sites. These experiments represent a proof of 
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principle for internal functionalization of DNA pools which can potentially be used to 

establish a selection system of deoxyribozymes. 

 

3.4.4 SMILing of plasmid DNA 

The SMILing reaction of large DNA with BAZ was investigated using the plasmid pUC19 

(Scheme 3.4.4). The plasmid contains four recognition sites for M·TaqI. After treatment of 

pUC19 with M·TaqI and BAZ, one would expect four biotin labels on the plasmid. Cutting 

the plasmid afterwards with the restriction endonuclease R·BsiEI which contains five 

restriction sites on pUC19, should lead to five DNA fragments of different size which either 

do contain the biotin label (fragments 424, 443 and 747 bp) or do not (fragments 149 and 

923 bp). After addition of streptavidin the biotinylated DNA fragments should give a gel shift 

in an agarose gel. 
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Scheme 3.4.4: M·TaqI-catalyzed labeling of pUC19. Red bars denote M·TaqI recognition sites and blue bars 

denote R·BsiEI restriction sites. 

 

The agarose gel for this experiment is shown below (Fig. 3.4.4). 

 
Fig. 3.4.4: Agarose gel of pUC19 restriction fragments after SMILing with BAZ and M·TaqI. 

 

Lane one shows the fragments after the reaction. Four fragments are visible. Two fragments 

(fragments with the length 443 and 424 bp) cannot be separated on the agarose gel. When 
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streptavidin-fluorescein is added to the reaction mixture the agarose gel shows a shift for the 

bands with a length of 443, 424 and 747 bp (lane 2). Almost all of those fragments are shifted 

upwards due to the higher molecular weight after streptavidin binding. The appropriate 

control experiment without M·TaqI in the reaction mixture is shown on the right half of the 

agarose gel (lane 3 and 4). The fragments in lane 3 behave as those in lane 1. However, only 

when streptavidin is added (lane 4) is no shift observed compared to lane 3. These results 

demonstrate that exactly the expected fragments are labeled with biotin and the appropriate 

control experiment reveals no labeling. This experiment also verifies the sequence-specificity 

of the SMILing DNA technique as only the fragments containing the M·TaqI recognition 

sequences are labeled and shifted. Furthermore, the experiment shows for the first time that 

the labeling reaction is almost quantitative with plasmid DNA. In summary, SMILing DNA is 

demonstrated for different DNA substrates, with different AZ cofactors and different DNA 

MTases. The reactions proceed slowly compared to the reactions with the natural cofactor but 

occur with the same specificity and quantity. 
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3.5 Crystal structure of the complex between M·TaqI and with BAZ 
biotinylated DNA 

A very useful technique to visualize structures at atomic resolution is X-ray crystallography. 

Therefore, this technique was used to directly prove SMILing DNA with BAZ. For this 

purpose M·TaqI with cognate DNA and BAZ was crystallized. The structure obtained should 

not only visualize the covalently attached cofactor to the DNA but also give further insights 

into the mechanism of the action of the MTase. 

3.5.1 Crystallisation conditions and data collection 

Crystallization setups were performed using the hanging drop method. Crystals of the 

complex between M·TaqI and with BAZ biotinylated DNA could be obtained as described in 

the experimental section (5.5.2). Crystals grew only after micro seeding with crystals of the 

ternary complex between M·TaqI, DNA and the non-reactive cofactor analogue AETA 

yielding thin needles (maximal size 30 x 30 x 100 µm3) and plates (maximal size of 

10 x 30 x 100 µm3) (Fig. 3.5.1a). 

 

  
Fig. 3.5.1a: Crystals of the complex between M·TaqI and with BAZ biotinylated DNA. Crystals within the seed 

line (left). Single crystals suitable for data collection (right). 

 

Crystals of the complex between M·TaqI and with BAZ biotinylated DNA, like in Fig. 3.5.1a 

(right), together with a cryoprotectant solution were frozen in liquid nitrogen. Data were 

collected at the European Synchrotron Radiation Facility (ESRF) in Grenoble (France), at the 

ID14 beamline for macromolecular crystallography. The measurement was performed at 

100 K using a MAR CCD detector. An example of a rotation diffraction image is shown in 

Fig. 3.5.1b. The ring at 3.6 Å possibly resulted from ordered components in the 

cryoprotectant. Diffraction signals are visible up to 1.9 Å. Processing of data was performed 
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using the programs XDS and XSCALE (Kabsch et al., 1993). The crystals of the complex 

crystallize in the space group P21. The data statistics are given in Table 3.5.2 (top). 

 
Fig. 3.5.1b: Rotation diffraction image of the co-crystals between M·TaqI and biotinylated DNA detected with a 

MAR CCD area detector (crystal to detector distance: 150 mm; Pixel size of 0.0793mm). Resolution circles are 

presented up to 1.9 Å. Intensities of reflexes up to 1.9 Å could be measured with the processing software. 

 

3.5.2 Phase determination and structure refinement 

The phases of the diffracted X-rays cannot be determined in the performed diffraction 

experiment. They were determined by molecular replacement using the ternary complex 

described by Goedecke and co-workers (2001) as starting model. Since the processing of data 

indicated that the obtained complex crystallizes in the same space group as the ternary 

complex between M·TaqI, DNA and AETA (Goedecke et al., 2001) and since the cell 
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parameters were similar it was not necessary to apply the translation and rotation search 

functions. The first electron density distribution was obtained by combination of the structure 

amplitudes from this experiment and the calculated phases from the structure of Goedecke et 

al. (2001). In order to avoid a bias by the structure of Goedecke et al. (2001) the flipped out 

adenine and the cofactor analogue were left out for the calculation. A first electron density 

map (2Fobs-Fcalc) immediately shows the missing structural information of the flipped out base 

and the cofactor. Alternate rounds of refinement using the program CNS and modelling of the 

amino acid residues using the program O (Jones et al., 1991) were performed until 

minimization of the residual factor (R-factor) between the calculated structure factor 

amplitudes (Fcalc) and the observed structure factor amplitudes (Fobs) converged. 

The final values for the crystallographic R-factor and the free R-factor are 0.2004 and 0.2359, 

respectively. For the calculation of the free R-factor 5 % of all reflexes were selected 

randomly (Brünger, 1992). A list of the refinement statistic is given in Table 3.5.2 (bottom). 
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Table 3.5.2: Crystallographic data and refinement results for the complex between M·TaqI and 
with BAZ biotinylated DNA.    

Data statistics  

Beamline ID14-1/ESRF 

Temperature 100 K 

Area detector MAR CCD 

Wavelength 0.934 Å 

Space group P21 

Cell dimensions a = 59.40 Å, b = 69.19 Å, c = 114.39 Å 

β = 92.16° 

Number of recorded reflections 272,799 

Average redundancy 4.1 

Rsym
a 7.0 % 

Intensities (I/σ)b 15.6 (5.5) 

Refinement statistics  

Resolution limit 1.9 Å  

Number of unique reflections 72,765 

Completeness of data (%)c 99.4 (92.1) 

Rcryst
d / Rfree

e
  0.2004 / 0.2359 

Rmsd bond lengths (Å) 0.005 

Rmsd bond angle (deg.) 1.56 

Mean/rms on B factors (Å2)  

Backbone 18.68 / 7.54 

Side chain 24.83 / 14.01 

Covalently bound cofactor 23.67 / 6.43 

DNA 17.07 / 6.83 

Solvent (687 water molecules) 29.44 / 9.83 
a Rsym = , I is the observed intensity and       is the average intensity calculated from 

multiple observations of symmetry related reflections. 
b The value in parentheses is calculated for the highest resolution shell collected (2.0-1.9 Å). 
c The value in parentheses is calculated for the highest resolution shell used in refinement (2.0-1.9 Å). 
d Rcryst =      ,where Fobs and Fcalc are, respectively, observed and calculated structure 

factor amplitudes. 
e Rfree is an Rcryst calculated using 5 % of the processed data (3639 reflections), chosen randomly, kept constant 

and omitted from all structure refinement steps. 

�� −× III /100 I

/obs calc obshkl
F F F−� �
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3.5.3 Three-dimensional structure of the complex between M·TaqI and with 
BAZ biotinylated DNA 

The structure of M·TaqI and biotinylated DNA crystallizes with two complexes in the 

asymmetric unit. However, the differences between the two complexes are negligible. For this 

reason only complex A will be further described due to its better defined electron density map 

and smaller B-factors. The overall structure of the obtained complex is identical with the 

structure of M·TaqI, DNA and AETA presented by Goedecke and co-workers (2001). The 

root mean square deviation of the Ca atoms (3.097 Å complex A, 0.199 Å complex B) 

between the two structures reveals that there is almost no change in the structure of the 

protein and also the shape of the DNA remains the same. The slightly higher root mean square 

deviation in complex A arises from a rotated loop which is probably due to crystal packing. A 

detailed description of the structure with all interactions between protein, DNA and cofactor 

analogue can be found in the thesis of Goedecke (Goedecke, 2000). Here, the attention is only 

given to the active site where the main differences are expected. The active site of the 

complex between M·TaqI, DNA and AETA is shown in Fig. 3.5.3a. 

 

 
Fig. 3.5.3a: Image of the crystal structure of the active site of M·TaqI (the cofactor analogue AETA is yellow, the 

NPPY motif and F196 cyan and the flipped out base is red); Goedecke et al., 2001. 

 

The amino acid residues from the so-called NPPY motif and F196 (cyan) stabilize the flipped 

out adenine (red) in its position. The cofactor analogue AETA is represented in yellow. 

The crystallization of M·TaqI, DNA and BAZ can potentially result in two different 

structures. The crystal structure will either reveal an intact cofactor and DNA or a product in 
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which the aziridine three-membered ring is opened by the N6 amino group of the flipped out 

adenine base. The first case would result in a structure of the active site similar to Fig. 3.5.3a. 

A model based on the structure M·TaqI, DNA and AETA containing the cofactor AZ instead 

of AETA was prepared. AZ was used instead of BAZ as the biotin moiety should not be 

important for the coupling reaction with the flipped out adenine. This modeled structure is 

shown in Fig. 3.5.3b. The adenosyl part of the AZ cofactor is expected to bind in the same 

way as observed for the cofactor analogue AETA. For the modeling of the aziridine ring one 

CH2-unit of the aziridine moiety was chosen to point towards the N6-position of the flipped 

out base. 

 

  
Fig. 3.5.3b: Model of M·TaqI in complex with DNA and N-adenosylaziridine. The protein is represented as an 

electrostatic surface potential (red = negative, blue = positive and white = neutral) and DNA and modeled AZ 

are shown as ball and stick representation (left). Active site of M·TaqI with AZ represented in cyan, the NPPY 

motif and F196 in yellow and the flipped out nucleotide in red (right). The model is based on the crystal 

structure by Goedecke et al., 2001. 

 

Such a structure would be expected if the coupling reaction does not take place during 

crystallization. However, the crystallization time and the buffer conditions should allow for a 

reaction between DNA and BAZ on the enzyme. This would lead to a covalent link between 

the exocyclic amino group of the flipped out base and the aziridine moiety. The electron 

density of the obtained complex shows that this is indeed the case. The active site of M·TaqI 

with the electron density map (2Fobs-Fcalc) for the flipped out nucleotide and the cofactor is 

shown in Fig. 3.5.3c (left). On the right side of Fig. 3.5.3c the previously shown modeled AZ 

and the extrahelical target nucleotide are modeled into the electron density map. 

 



Results and Discussion 

 71

  
Fig. 3.5.3c: Active site of M·TaqI superimposed with the electron density distribution (2Fobs-Fcalc) contoured at 

2.0 σ (left). For clarity reasons the electron density is only shown for the flipped out nucleotide and the cofactor. 

Active site of M·TaqI superimposed with the electron density distribution (2Fobs-Fcalc) contoured at 2.0 σ with the 

modeled AZ, the extrahelical target nucleotide, a potassium ion and water (right). 

 

It can be clearly seen that AZ does not describe properly the determined electron density map. 

The adenosyl moiety is slightly out of the map and a continuous electron density map between 

the flipped out base and the cofactor analogue is visible. This clearly argues for a covalent 

bond between the cofactor and DNA. In Fig. 3.5.3d the structure of BAZ with an opened 

aziridine ring is fitted into the observed electron density. 

 

 
Fig. 3.5.3d: Active site of M·TaqI superimposed with the electron density distribution (2Fobs-Fcalc) contoured at 

2.0 σ . Only the density for the cofactor and the flipped out base is shown. The cofactor BAZ with an opened 

aziridine ring, the extrahelical target nucleotide, a potassium ion and a water molecule are modeled into the 

electron density map. Only those parts of BAZ are modeled for which electron density is observed. R represents 

the non-modeled part of BAZ. 

R
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Here the adenosyl moiety of BAZ fits nicely into the observed electron density map. 

Furthermore, the aziridine ring is undoubtedly opened forming a covalent bond with the 

exocyclic amino group of the flipped out adenine. This suggests that product formation took 

place in the crystals or a product complex was crystallized showing the already labeled DNA. 

For the tethered biotin no well defined electron density could be observed. The electron 

density describes the molecule nicely until the first linker nitrogen. This can be explained by a 

high flexibility of the linked biotin moiety. An additional feature visible in the co-crystal 

structure are two strong peaks of electron density which were assigned to potassium ions. One 

is located in the active site as illustrated in Fig. 3.5.3d and the other is found in the minor 

groove of the DNA. The potassium ion in the active site is coordinated by five atoms as 

shown in Table 3.5.3a. It is not clear if the potassium ion is involved in the reaction 

mechanism or just present due to the new coordination environment created by the N8-

nitrogen of the 1,4-diaminobutane linker. These two potassium ions were not present in the 

structure of M·TaqI, DNA and AETA. 

 
Table 3.5.3a: Coordination of the potassium ion in the active site. 

Potassium coordinating atom d / Å 

Extrahelical adenine-N6 3.31 

Extrahelical adenine-N7 3.86 

Water molecule-O 3.44 

BAZ-N8 3.78 

BAZ-N10 (aziridine nitrogen) 3.07 

 

Since the experiment resulted the product structure one can speculate about the motion of the 

substrates within the active site during the reaction by comparison of the model with AZ and 

the actual structure with the opened BAZ (Fig. 3.5.3e). The structures are superimposed based 

on the NPPY motif. One can imagine that the reaction occurs by the movement of the cofactor 

BAZ and the flipped out base towards each other. The flipped out adenine moves towards the 

cofactor and vice versa. F196 follows the flipped out nucleotide. 
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Fig. 3.5.3e: Superposition of the co-crystal structure formed with M·TaqI, DNA and BAZ (NPPY motif and F196 

are represented in green) and the model of the M·TaqI•DNA•AZ ternary complex (NPPY motif and F196 are 

represented in yellow) within the active site of M·TaqI. The opened BAZ cofactor and the flipped out nucleotide 

are cyan, the AZ model and the corresponding nucleotide are magenta. A potassium ion is represented with a 

grey sphere. R represents the non-modeled part of BAZ. 

 

This movement can also be followed by the comparison of the hydrogen bonding distances in 

the obtained structure and the structure of M·TaqI, DNA and AETA. The important distances 

between the exocyclic amino group of the flipped out base and its N1 position and the protein 

are illustrated with dotted lines in Fig. 3.5.3f. 

 
Fig. 3.5.3f: Structure of the obtained complex within the active site of M·TaqI (compare Fig. 3.5.3d) showing the 

discussed hydrogen bonds as dotted lines. R represents the non-modeled part of BAZ. 

 

R 

R 
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The illustrated hydrogen bonds are also listed in Table 3.5.3b, and compared with the 

corresponding hydrogen bonds in the ternary M·TaqI•DNA•AETA complex. 

 
Table 3.5.3b: Hydrogen bond distances. 

 d(structure M·TaqI•DNA•BAZ) / Å d(Goedecke et al., 2000) / Å 

Water-O..N1 3.0 - 

Y108-N..N7 3.3 3.1 

N105-ND2..N1 3.5 3.0 

N105-OD1..N6 3.9 3.2 

P106-O..N6 3.6 2.9 

 

It is striking that in the co-crystal structure formed from M·TaqI, DNA and BAZ the hydrogen 

bond distances between N1 and N6 of the flipped out adenine and the protein are longer than 

in the structure of M·TaqI, DNA and AETA by Goedecke and co-workers (2001). This 

illustrates that the flipped out adenine moves upwards (compare Fig. 3.5.3e) and towards the 

cofactor in the product complex. Another feature which is not present in the structure between 

M·TaqI, DNA and AETA is the water molecule in the active site which forms a hydrogen 

bond to N1 of the flipped out base. 

The determined crystal structure of the complex formed from M·TaqI, DNA and BAZ reveals 

the existence of a covalent bond between the exocyclic amino group of the flipped out 

adenine and the opened aziridine moiety. The structure reveals that SMILing DNA occurs at 

the proposed position in DNA, thus demonstrating again the sequence-specificity. Further, the 

structure suggests that the enzyme-catalyzed labeling of DNA proceeds in analogy to the 

natural methylation reaction. It nicely demonstrates that the aziridine moiety of BAZ can 

replace the methyl sulfonium group of AdoMet as activated group in a MTase-catalyzed 

reaction. 
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3.6 Crystal structure of the ternary complex of M·TaqI, DNA 
containing 2-aminopurine (2AP) at the target position and 5’-
[2-(amino)ethylthio]-5’-deoxy adenosine (AETA) 

The development of different aziridine-based cofactors is essential for the extension of the 

SMILing technique. Attention in the development of new cofactor analogues should be given 

to cofactors which allow a faster labeling of DNA. In order to achieve this goal it would be 

helpful to obtain a better insight into the flexibility of the active site of M·TaqI. For this 

purpose structures with different cofactors and different target bases have to be determined to 

see the structural changes in the active site. Therefore, another very interesting crystal 

structure would be a ternary complex between M·TaqI, a cofactor analogue and a DNA in 

which the target adenine is replaced by the unnatural base 2-aminopurine (2AP; Fig. 3.6 left). 

This base analogue could even allow the crystallization of a ternary complex with the natural 

cofactor AdoMet because it does not contain a nucleophile at the 6-position. A second reason 

why 2AP is interesting is because it is a very popular probe for investigations of DNA base 

flipping enzymes. 2AP is fluorescent in solution. When incorporated into DNA it loses its 

fluorescence properties due to quenching by base stacking. When the base stacking interaction 

in DNA is broken by e.g. proteins the fluorescence increases again. Using this property of 

2AP a base flipping mechanism was proposed for M·TaqI (Holz et al., 1998). The ternary 

crystal structure of M·TaqI, DNA and AETA (Goedecke et al., 2001) proved this proposal. 

However, at this time, there is no crystal structure known containing a flipped out 2AP which 

would prove that its increased fluorescence intensity indeed originates from an extrahelical 

position. Therefore, there is no direct evidence that 2AP behaves similar to the target adenine 

when bound to M·TaqI. Especially, regarding the structure of M·TaqI, DNA and AETA, a 

2AP base cannot be placed the same way in the active site pocket as a target adenine. The 

amino group in the 2-position of 2AP would sterically overlap with the phenyl ring of F196 of 

the enzyme. Only a structure with a flipped out 2AP would remove these last uncertainties. 

Therefore, a complex between M·TaqI, DNA containing 2AP (2AP-DNA) and AdoMet was 

crystallized. The crystals diffracted well (up to 2 Å) but the electron density observed for 

AdoMet was not complete. The electron density suggested that the cofactor AdoMet has 

decayed to 5’-methylthio-5’-deoxyadenosine (MTA). This could be explained either by the 

intrinsic instability of AdoMet during crystallization or by radiation induced transformation. 

A second set of crystallization setups was performed with the complex between M·TaqI, DNA 
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containing 2AP and the cofactor analogue AETA (Fig. 3.6 right). This allows a direct 

comparison with the reported structure of M·TaqI, DNA and AETA (Goedecke et al., 2001). 
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Fig. 3.6: Structures of 2-aminopurine (left) and AETA (right). 

 

3.6.1 Crystallisation conditions and data collection 

Crystallization setups were performed using the hanging drop method. Crystals of the ternary 

complex of M·TaqI, DNA containing 2AP and AETA could be obtained using the conditions 

described in 5.5.2. Crystals grew only after micro seeding with a ternary complex of M·TaqI, 

natural DNA and AETA. Thin needles (maximal size 30 x 30 x 100 µm3) and plates (maximal 

size 10 x 30 x 100 µm3) were obtained (Fig. 3.6.1a). 

  
Fig. 3.6.1a: Co-crystals of the M·TaqI, AETA and DNA containing 2-aminopurine (left). Focus on a single 

crystal suitable for data collection (right). 

 

Crystals of the ternary complex of M·TaqI, 2AP-DNA and AETA, like in Fig. 3.6.1a (right), 

together with a cryoprotectant solution were frozen in liquid nitrogen. As in the case of the 

crystals produced with M·TaqI, DNA and BAZ the data were collected at the European 

Synchrotron Radiation Facility (ESRF) in Grenoble (France), at the ID14 beamline for 

macromolecular crystallography. The measurment was also performed at 100 K using a MAR 

CCD detector. An example of a rotation diffraction image is shown in Fig. 3.6.1b. Diffraction 

signals are visible up to 2.4 Å. Processing of data was performed using the programs XDS 
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and XSCALE (Kabsch et al., 1993). The crystals of the ternary complex of M·TaqI, 2AP-

DNA and AETA crystallize in the space group P21. The data statistics are given in Table 

3.6.2 (top). 

 
Fig. 3.6.1b: Rotation diffraction image of a M·TaqI, 2AP-DNA and AETA co-crystal recorded with a MAR CCD 

area detector. Resolution circles are presented up to 2.0 Å. Intensities of reflexes up to 2.4 Å could be measured 

with the data reduction software. 

 

3.6.2 Phase determination and structure refinement 

The phases were determined by molecular replacement using the ternary complex described 

by Goedecke and co-workers (2001) as starting model. In order to avoid a bias from the 

structure of M·TaqI, natural DNA and AETA the information about the cofactor and the 

flipped out base were ignored in the replacement. The missing structural information of the 

flipped out base and the cofactor was already visible in a first electron density map. 
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Subsequent refinement steps lead to a well interpretable electron density map. The final 

values for the crystallographic R-factor and the free R-factor are 0.2107 and 0.2596, 

respectively. A summary with the refinement statistic is given in Table 3.6.2 (bottom). 
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Table 3.6.2: Crystallographic data and refinement results for the complex between M·TaqI, 2AP-
DNA and AETA.    

Data statistics  

Beamline ID14-1/ESRF 

Temperature 100 K 

Area detector MAR CCD 

Wavelength 0.934 Å 

Space group P21 

Cell dimensions a = 59.53 Å, b = 69.16 Å, c = 114.64 Å 
β = 92.19° 

Asymetric unit 2 molecules 

Number of recorded reflections 133,781 

Average redundancy 3.7 

Rsym
a 11.5 % 

Intensities (I/σ)b 9.3 (4.6) 

Refinement statistics  
Resolution limit 2.4 Å  

Number of unique reflections 36,299 

Completeness of data (%)c 99.0 (97.5) 

Rcryst
d / Rfree

e
  0.2107 / 0.2596 

Rmsd bond lengths (Å) 0.006 

Rmsd bond angle (deg.) 1.33 

Mean/rms on B factors (Å2)  

Backbone 18.16 / 8.56 

Side chain 21.46 / 13.93 

AETA 15.91 / 2.62 

2AP-DNA 15.55 / 7.96 

Solvent (229 water molecules) 25.28 / 7.21 
a Rsym = , I is the observed intensity and       is the average intensity calculated from 

multiple observations of symmetry related reflections. 
b The value in parentheses is calculated for the highest resolution shell collected (2.5-2.4 Å). 
c The value in parentheses is calculated for the highest resolution shell used in refinement (2.5-2.4 Å). 
d Rcryst =      , where Fobs and Fcalc are, respectively, observed and calculated 

structure factor amplitudes. 
e Rfree is an Rcryst calculated using 5 % of the processed data (1815 reflections), chosen randomly, kept constant 

and omitted from all structure refinement steps. 

�� −× III /100 I

/obs calc obshkl
F F F−� �
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3.6.3 Three-dimensional structure of the ternary complex of M·TaqI, 2AP-DNA 
and AETA 

The ternary structure of M·TaqI, DNA containing 2AP at the target position and AETA 

crystallizes with two complexes in the asymmetric unit. Since the differences between the two 

complexes are negligible only complex A will be described due to its better defined electron 

density map and smaller B-factors. The overall crystal structure of M·TaqI, 2AP-DNA and 

AETA is identical with the structure of M·TaqI, natural DNA and AETA. A superposition of 

the two proteins from the ternary complex is shown in Fig. 3.6.3a. 

 

 
Fig. 3.6.3a: Superposition of the two proteins from the complex crystal structures between M·TaqI, DNA and 

AETA (blue) and M·TaqI, 2AP-DNA and AETA (gold). 

 

The image reveals that no difference can be seen on the first sight. This is manifested in the 

root mean square deviation of (0.158 Å complex A, 0.186 Å complex B) of the Cα atoms of 

the amino acids. However, as already expected the structure differs slightly in the active site 

area. A superposition within the active site of the complex crystal structures between M·TaqI, 
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DNA and AETA (all in blue) and M·TaqI (green), 2AP-DNA (red) and AETA (yellow) is 

shown in Fig. 3.6.3b. 

 
Fig. 3.6.3b: Superposition within the active site of the complex crystal structures between M·TaqI, DNA and 

AETA (all in blue; Goedecke et al. 2001) and M·TaqI (green), 2AP-DNA (red) and AETA (yellow).  

 

It is illustrated that only the target base 2AP and the amino acid F196 possess a slightly 

different position in the structure of M·TaqI, 2AP-DNA and AETA compared to the target 

base and F196 in the structure of M·TaqI, DNA and AETA. The phenyl ring of F196 is tilted 

slightly away from the flipped out 2AP base and 2AP is moved towards the proline residue of 

the NPPY motif. This difference can be explained by the 2-amino group of 2AP. The 2-amino 

group of 2AP placed in the same position as the adenine in the structure of Goedecke and co-

workers (2001) would lead to a steric clash with F196. This problem is overcome in the 

M·TaqI•2AP-DNA•AETA complex by tilting F196 and a slightly shifting 2AP. Nevertheless, 

the overall structures show a striking similarity. The target base 2AP is extrahelical and 

occupies a similar position as the target base of a natural substrate of M·TaqI. It could be 

shown for the first time that the target base of a ternary complex between a base flipping 

enzyme (M·TaqI), DNA containing 2AP and a cofactor analogue (AETA) almost perfectly 

mimics the natural situation. Thus, the biochemical assay using 2AP as fluorescent probe is, at 

least for M·TaqI, reliable to detect and monitor DNA base flipping. 
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4 Summary, Conclusions and Outlook 
Sequence-specific labeling of DNA is essential for a number of analytical and functional 

investigations of DNA. It represents a challenging task because defined DNA sequences have 

to be recognized and covalently modified. Different approaches such as triple helix formation 

with oligonucleotides or PNA, recognition of the minor groove with polyamides and targeting 

DNA with designed zinc finger proteins are reaching a state where a given sequence can be 

recognized. However, only in exceptional cases these systems were used for sequence-

specific labeling of DNA. It was already demonstrated that the N6-adenine DNA MTase 

M·TaqI catalyzes sequence-specifically the labeling of DNA by the use of a novel aziridine 

cofactor. In this research project, Sequence-specific Methyltransferase-Induced Labeling of 

DNA (SMILing DNA) was demonstrated using all three classes of DNA MTases. In addition 

to M·TaqI also the C5-cytosine DNA MTase M·HhaI and the N4-cytosine DNA MTase 

M·BcnIB were both able to catalyze the coupling of N-adenosylaziridine (AZ) to DNA. All 

these reactions occur sequence-specifically and reveal the general applicability of the 

SMILing technique (Scheme 4.1). 
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Scheme 4.1: General application of N-adenosylaziridine (AZ) as new cofactor for all three classes of DNA 

MTases using short duplex oligonucleotides. 
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By varying the pH value of the buffer solution, the M·TaqI-catalyzed coupling reaction of 

DNA with AZ was optimized with respect to the reaction rate. It was shown that the reaction 

rate increases with increasing acidity of the reaction solution. This can be explained by an 

activation of the aziridine moiety due to protonation. The modification of the cofactor at the 

8-position appears not to influence the maximum velocity of the reaction. Furthermore, good 

nucleophiles, like DTT, were shown to have no significant influence on the reaction. 

Additionally, labeling of plasmid DNA with the dansyl fluorophore could be demonstrated 

using the dansylated aziridine cofactor DAZ (Scheme 4.2, A). The reaction occurs in a 

sequence-specific manner. Furthermore, M·HhaI catalyzes the labeling of plasmid DNA with 

the dansylated cofactor DAZ (Scheme 4.2, B). This illustrates that the series of aziridine-

based cofactors which are modified at the 8-position can also be used with the cytosine-

specific DNA MTase M·HhaI for labeling of DNA. 
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Scheme 4.2: Sequence-specific fluorescence labeling of plasmid DNA with dansylated AZ cofactor DAZ. 

Labeling of plasmid using M·TaqI and M·HhaI. The M·TaqI-catalyzed coupling of DAZ with short duplex 

oligonucleotides was already analyzed in detail (Pljevaljļiĺ, 1999). 

 

All these experiments encouraged the development of a general synthesis for the novel 

cofactor family using a photolabile protection group. This general synthesis allows the 

attachment of different reporter groups at the end of the synthesis. Therefore, an easy route to 

a whole range of differently decorated cofactors paves the ground for SMILing of DNA with 

different reporter groups. The general route was used to synthesize two new cofactors, the 
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biotinylated aziridine cofactor BAZ and the fluorescent cofactor Cy5AZ. Both were shown to 

bind strongly to M·TaqI. Using the BAZ cofactor it was demonstrated that short duplex DNA 

as well as plasmid DNA can be sequence-specifically labeled via M·TaqI-catalysis 

(Scheme 4.3). 
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Scheme 4.3: Sequence-specific biotinylation of plasmid DNA with the biotinylated AZ cofactor BAZ. 

Biotinylation was also achieved with short duplex oligonucleotides. 

 

The reaction is almost quantitative. This cofactor analogue can further be used for indirect 

labeling using the biotin-streptavidin system in combination with the SMILing technique. A 

crystal structure of a complex formed from M·TaqI, DNA and BAZ proved that the DNA is 

labeled with biotin at the expected position, thus, revealing the sequence-specificity. In 

addition, a new application for the SMILing DNA technique was demonstrated. A new system 

for the selection of deoxyribozymes by internal functionalization could be obtained. In 

collaboration with the group of Dr. Andres Jäschke (FU Berlin, Germany) it was shown that a 

pool of DNA could be labeled with biotin. The biotinylated DNA is suitable as a template for 

PCR. The sequence of the biotinylated DNA can be amplified indicating no adverse effects of 

the biotin moiety on polymerase activity. To the best of my knowledge, this powerful internal 

functionalization of DNA is the easiest way to introduce specifically different groups into 

DNA. 

Regarding the amount of known DNA MTases, SMILing DNA represents a very powerful 

technique to label a vast amount of different DNA sequences. Owing to the general design of 

the novel cofactor family and the conserved binding region of MTases in general it is 

conceivable that SMILing is applicable to most MTases, including the MTases for different 

substrates like RNA and proteins. However, the technique is not yet optimized to fulfill these 

requirements completely. The modification of the aziridine cofactor at the 8-position was 

originally designed for M·TaqI. Even if modification at this position turns out to be suitable 
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for a lot of other MTases (e.g. M·HhaI), some other MTases might prefer a modification at 

another e.g. the 7-position (see table 3.1b). In this case, another synthetic route to 7-modified 

aziridine cofactors has to be developed. Further, the rate of SMILing DNA is still slow. As 

shown in the M·TaqI-catalyzed coupling reaction of DNA with AZ the highest reaction rate 

constant obtained was only 0.6 h-1. This rate constant is about 2 orders of magnitute smaller 

than the rate constant of M·TaqI with the natural cofactor AdoMet. Therefore, further work 

has to be done to increase the reaction rate. A starting point could be the modification of the 

aziridine moiety. In the novel aziridine cofactors the methionine side chain of AdoMet was 

neglected because of synthetic ease. However, the methionine side chain is very important for 

the function of AdoMet which is revealed by the fact that 5’-deoxy-5’-dimethylthio adenosine 

is a very poor cofactor. The methionine side chain seems to fulfill the task of directing the 

methyl group in the direction of the flipped out base. The aziridine cofactors do not contain a 

side chain on the aziridine moiety which could direct the aziridine ring in the right orientation 

for the reaction. Regarding the determined crystal structure of M·TaqI in complex with 

biotinylated DNA, a new cofactor containing a hydroxymethyl group on the aziridine can be 

suggested to fulfill this task. The hydroxyl group would then be positioned to form a 

hydrogen bond with the protein and hence this side chain would fix the three-membered 

aziridine ring in a favourable position for the reaction. Furthermore, the electrophilicity of the 

aziridine ring could be increased by attachment of electron withdrawing groups to the ring. 

Therefore, a cyano group on the aziridine ring could lead to an increased reactivity of the 

cofactor. This modification however, could also lead to a possible uncatalyzed background 

reaction with DNA which was not observed with the aziridine cofactors used so far. 

Another very important point is the investigation of the suitability of aziridine cofactors with 

other MTases. Not only different DNA MTases should be tested for labeling of DNA but 

other MTases like protein or RNA MTases could be used for the labeling of a variety of 

biopolymers. Thus, the SMILing technique could be extended to a general labeling technique 

of different biopolymers. This would open even broader application possibilities of the 

method. 

Another question which was solved in this thesis, was about the applicability of the 

nucleobase analogue 2-aminopurine in base flipping assays. Till now, it remained unanswered 

whether the large fluorescence change observed upon binding to different DNA MTases 

really results from base flipping as observed in crystal structures with natural DNA. In the 

case of M·TaqI, a crystal structure of a complex between M·TaqI, DNA and an cofactor 

analogue suggested that a 2-aminopurine base would lead to steric interference with an amino 
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acid side chain of M·TaqI. For this reason, a crystal structure of the complex between M·TaqI, 

DNA containing 2-aminopurine and the cofactor analogue AETA was determined. With the 

structure in hand it could be demonstrated that the nucleobase analogue 2-aminopurine is 

indeed in an extrahelical position but slightly shifted in the active site relative to the position 

of the natural adenine. Thus, the results could show for the first time that DNA with 

2-aminopurine at the target position is a good probe for the detection and monitoring of base 

flipping by DNA modifying enzymes. 

In summary, the developed SMILing DNA technique holds a great potential for applications 

in biotechnology, medical diagnosis (mutation detection) and nano biotechnology. Further 

experiments have to show whether the SMILing technique can also be expanded to the 

SMILing of other biopolymers. 
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5 Materials and Methods 

5.1 Materials 

5.1.1 Chemicals and Proteins 

Chemicals and proteins were purchased from the following companies with the highest purity 

available. 

 
Table 5.1.1: Chemicals and Proteins. 

Company Product 
AppliChem (Darmstadt, Germany) Methanol. 
Bayer AG (Leverkusen, Germany) Baysilone paste (medium viscous) 
Biorad (Munich, Germany) Protein molecular weight standard, agarose.  
Fluka (Neu-Ulm, Germany) 6-nitroveratryl chloroformate, Biotin succinimidylester, 

collidine, DMAP, DMF, DMSO, EDTA, formamide 
(99.5 %) glycerol, mesyl chloride, N-ethyldiisopropyl-
amine, ninhydrin, PEG6000, pyridine, sodium 
cacodylate, THAP, triethanolamine, triethylamine. 

Gerbu (Gaiberg, Germany) Boric acid, DTT, HEPES, SDS, TEMED. 
J.T. Baker (Deventer, Netherlands) Acetic acid, acetone, acetonitrile, APS, calcium 

chloride, formic acid, chloroform, citric acid, 
dichloromethane, dipotassium hydrogenphosphate, 
hydrochloric acid, IPA, magnesium acetate, 
magnesium chloride, potassium acetate, potassium 
dihydrogen phosphate, potassium hydroxide, sodium 
azide, sulfuric acid. 

Merck (Darmstadt, Germany) Proteinase K. 
Molecular Probes (Eugene, OR, USA) Cy5-succinimidylate, streptavidin-fluorescein. 
NEB (Frankfurt a.M., Germany) R·TaqI, R·BsiEI. 
Pierce (Rockford, IL, USA) BSA, Bradford reagent. 
Riedel de Häen (Seelze, Germany) Ethanol. 
Roche Biochemicals (Mannheim, Germany) Alkaline Phosphatase 
Roth (Karlsruhe, Germany) Acrylamide/Bis-acrylamide (29:1, 40 %), Tris, urea. 
Serva (Heidelberg, Germany) Acryl amide, bromphenol blue, ethidium bromide, 

Coomassie Brilliant Blue G250, Triton X-100. 
Sigma Aldrich (Taufkirchen, Germany) 1,4-diaminobutane, 2-bromoethylamine hydrobromide, 

2’,3’-O-isopropylideneadenosine, bromine, sodium 
bisulfite, tricine. 
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5.1.2 General Instrumentation 

Deionisation of water was performed with a deionisation system from Millipore (Eschborn, 

Germany). For the degasing of HPLC-buffers a ultrasonic bath Sonorex Super RK 103 from 

H. Bandelin (Berlin, Germany) was used. 

Measurments of pH were performed using a pH-meter 761 from Calimatic Knick (Berlin, 

Germany). 

Synthesized compounds were dried using the freeze dryer Alpha I-5 from Christ (Osterode, 

Germany). 

For the hybridisation of DNA a heat block Dri-Block DB2A from Techne (Cambridge, UK) 

was used. 

Centrifugation was carried out using a table centrifuge Centrifuge 5415 C from Eppendorf 

(Cologne, Germany). 

SDS gel electrophoresis was performed with the Mini-Protean II system from Biorad 

(Munich, Germany). 

For agarose gel electrophoresis an agarose mini gel system from MWG Biotech (Ebersberg, 

Germany) was used. 

For polyacrylamide-urea gel electrophoresis a gel chamber from BioRad (Munich, Germany) 

was used. 

Protein dialysis and concentration for crystallographic purposes was performed with a 

vacuum dialysis apparatus from Schleicher & Schuell (Dassel, Germany) using ultra thimbles 

(10 kD cutoff). For concentration the ILMVAC membrane pump (Ilmenau, Germany) was 

used. 

Crystals were set up in Linbro cell culture plates from ICN (Meckenheim, Germany). 

Data processing, refinement and model building were done using a graphics Workstation 

Silicon by Graphics (Mountain View, CA, USA). 

5.1.3 Computer programs and packages 

For three dimensional representations of crystal structures the programs MOLSCRIPT 

(Kraulis, 1991), GRASP (Nicholls et al., 1991) and ADOBE PHOTOSHOP (Adobe Systems 

Inc., San Jose, CA, USA) were used. 

Data fitting for the determination of binding constants was performed using GraFit 3.0 

(Erithacus Software Ltd., Horley, UK) or Scientist 2.01 (MicroMath Inc., Salt Lake City, UT, 

USA). 
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5.1.4 Chromatography 

For TLC silica gel 60 F254 (d = 0.25 mm) on glas plates from Merck (Darmstadt, Germany) 

and silica gel 60 F254 (d = 0.2 mm) on aluminium foil from Fluka (Neu-Ulm, Germany) were 

used. For TLC’s of reactions with non-volatile solvents the samples were applied onto the 

silica gel and dried in vacuo (25 °C, 0.1 mbar) for 30 min before placing them into an elution 

chamber. Compounds were either detected by irradiation with UV light (254 nm and 366 nm) 

or by moisturizing with one of the following solutions and heating with a heat gun. 

Solution for the detection of sugar derivatives: Ammoniummolybdate tetrahydrate 

[(NH4)6Mo7O24·4H2O] (15 g), cer(IV) sulfate tetrahydrate (400 mg), concentrated sulfuric 

acid (30 ml) diluted with water (1:10). 

Solution for the detection of primary amines (ninhydrin solution): Ninhydrin (0.3 g), 

2-propanol (95 ml), collidin (5 ml) and 5 ml acetic acid (96 %). 

Column chromatographic separation of compounds was achieved by using 50-100 times the 

sample amount of silica gel 60 (230-400 mesh, particle size 0.040-0.063 mm) from Merck 

(Darmstadt, Germany). 

High performance liquid chromatography (HPLC) was carried out with an apparatus from 

Beckman (System Gold). The spectrofluorometric detector RF-551 from Shimadzu (Kyoto, 

Japan) was connected to the HPLC system. The reversed phase C-18 PRONTOSIL AQ 

column (5 µm, 120 Å, 250 x 4.6 mm, flowrate 1 ml/min) was from Bischoff (Leonberg, 

Germany). The anion exchange column for plasmid analysis (Nucleogen 4000-7 DEAE, flow 

rate 1.5 ml/min) was from Macherey-Nagel (Düren, Germany) and the anion exchange 

column for the analysis of short oligonucleotides (Poros 10 HQ, flow rate 4 ml/min) was from 

Perseptive Biosystems (Weiterstadt, Germany). 

Protein purification was carried out with a High-Load-System LKB GP-10 equipped with a 

P-50 pump, a LKB-UV-MII-detector, a conductivity monitor, a LKB-REC 102 writer and a 

fractions collector LKB-SuperFrac from Amersham-Pharmacia (Freiburg, Germany). 
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5.1.5 HPLC Buffers 

The following buffer systems were used for the HPLC. In general, the pH values of solutions 

are adjusted at room temperature and given after all components which were present during 

pH adjustment. If further components follow, the pH value was not adjusted again. 

 
Table 5.1.5: HPLC buffer systems. 

 Buffer A Buffer B 

System 1 100 mM TEAAc, pH 7.0 
100 mM TEAAc, (pH 7.0), 

70 % CH3CN 

System 2 100 mM TEAHCO3, pH 7.0 
100 mM TEAHCO3, (pH 7.0), 

70 % CH3CN 

System 3 10 mM Tris/HCl, pH 7.0 1 M KCl + buffer A 

System 4 30 mM KH2PO4, (pH 6.5) + 20 % CH3CN 1.5 M KCl + buffer A 

 

5.1.6 HPLC gradients 

The gradients used for the HPLC are listed below. 

 
Table 5.1.6: HPLC gradients. 

Gradient 1 
20 % buffer B (0-5 min), 20-50 % buffer B (5-10 min), 50-100 % buffer B 

(10-40 min), 100 % buffer B (40-45 min). 

Gradient 2 
20 % buffer B (0-5 min), 20-100 % buffer B (5-35 min), 100 % buffer B 

(35-40 min). 

Gradient 3 
7 % buffer B (0-10 min), 7-40 % buffer B (10-40 min), 40-100 % buffer B 

(40-50 min), 100 % buffer B (50-55 min). 

Gradient 4 
20 % buffer B (0-10 min), 20-60 % buffer B (10-50 min), 60-100 % 

buffer B (50-60 min). 

 

5.1.7 Spectroscopy and spectrometry 

All NMR spectra were recorded on a ADVANCE DRX500-spectrometer from Bruker 

(Karlsruhe, Germany). The chemical shifts δH (1H) and δC (13C) are quoted in ppm and are 

referenced to TMS (δ = 0). The signal of the used solvent was used for calibration (Hesse et 

al., 1991). The following abbreviations were used for the signal multiplicities: s (singlet), 
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d (doublet), dd (doublet of doublets), t (triplet), q (quartet), m (multiplet), br. (boad); the 

coupling constants J are given in Hertz (Hz). The coupling protons are given in subscript. 

Mass spectra were recorded with a LCQ mass spectrometer Finnigan MAT (San Jose, CA, 

USA) and a Voyager-DE Pro, BioSpectrometry Workstation from Perseptive Biosystems 

(Weiterstadt, Germany), respectively. 

Fluorescence measurements in solution were performed using the Aminco-Bowman Series 2 

luminescence spectrometer by SLM-AMINCO (Rochester, NY, USA). 

UV-VIS spectra measurements were carried out using a Cary 3E spectrophotometer by Varian 

(Darmstadt, Germany). 

5.1.8 Oligonucleotides 

Unmodified oligonucleotides were purchased from MWG Biotech (Germany). The modified 

oligonucleotides were purchased from IBA-NAPS (Germany). The sequences of the 

oligonucleotides are listed from 5’ to 3’. The extinction coefficients were calculated using the 

method by Cantor et al. (1970). The recognition sequences of the DNA MTases are 

highlighted with bold letters. 

 
Table 5.1.8: Oligonucleotides. 

Name Sequence 
Extinction coefficient/ 

(103·L·mol-1·cm-1) 

7 (KAz) GCCGCTCGATGCCG 122.7 

8 (KAzMe) CGGCATCGA6MeGCGGC 129.7 

9 (UC) TGTCAGCGCATGA 126.4 

10 (YM) TCATGC5MeGCTGACA 120.2 

UCSPEC TGTCAGAGCATGA 133.0 

YMSPEC TCATGCTCTGACA 120.5 

11 (B1) TACGAAACGACCCGGCGCGTAATG 234.8 

12 (B2m) GCATTACGCGCC4MeGGGTCGTTTCGT 216.7 

B1SPEC TACGAAACGACACGGCGCGTAATG 240.0 

B2SPEC GCATTACGCGCCGTGTCGTTTCGT 215.3 

O10 GTTCGATGTC 93.6 

O10Ap GTTCG2ApTGTC 82.0 

U10 GACATCGA6MeAC 101.8 
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5.2 Chemical methods 

5.2.1 Deprotection of photolabile protecting group 

The photolabile protective group NVOC was deprotected using two different exposure 

instruments. For analytical scale setups a cuvette was exposed to filtered light (λ = 300-

370 nm) of a mercury lamp. For large scale setups a glass apparatus (max. 1 L) was 

illuminated with a mercury lamp. 

5.2.2 Syntheses 

All reactions were performed under argon atmosphere if not stated differently. Solvents were 

dried using standard drying techniques (Perrin & Armarego, 1988). 

 

8-Bromo-2‘,3‘-O-isopropylidene adenosine (14) 

 

N

N N

N

NH2

O

OO

HO

N

N N

N

NH2

O

OO

HO

Br

Br2, KOAc (pH 3.9)

C13H16BrN5O4
Mol. Wt.: 386,20

C13H17N5O4
Mol. Wt.: 307,31  

 13 14 

 

To a solution of 2‘,3‘-O-isopropylidene adenosine (13) (2.3 g, 7.53 mmol) in KOAc buffer 

(300 ml, 1 M, pH 3.9) a bromine solution (0.62 ml, 12.1 mmol) in KOAc buffer (20 ml, 1 M, 

pH 3.9) was added within 15 min at 0 °C. Subsequently, the orange colored solution was 

stirred at room temperature for 15 h until no starting material could be detected by TLC. 

Excess of bromine was reduced using a saturated NaHSO3 solution which lead to a white 

precipitate. The pH of the suspension was adjusted to 7 using NaOH solution (220 ml, 10 M). 

The white precipitate was collected by filtration, washed with water (350 ml) and freeze 

dried. Nucleoside 14 was obtained as a colourless solid (2.40 g, 83 %). 

Rf = 0.72 (silica gel on aluminium foil, n-butanol/HOAc/H2O 3:0.75:1.25). 
1H-NMR (500 MHz, DMSO-d6): δ = 1.32 (s, 3H, acetonide-CH3), 1.54 (s, 3H, acetonide-

CH3), 3.40 - 3.52 (m, 2H, 5‘-H), 4.14 - 4.17 (m, 1H, 4‘-H), 5.02 (dd, J3‘-H,4‘-H = 2.8 Hz, J3‘-

H,2‘-H = 6.0 Hz, 1H, 3‘-H), 5.10 (t, J5‘-OH,5‘-H = 5.8 Hz, 1H, 5‘-OH), 5.65 (dd, J2‘-H,1‘-H = 2.8 
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Hz, J2‘-H,3‘-H = 6.0 Hz, 1H, 2‘-H), 6.01 (d, J1‘-H,2‘-H = 2.8 Hz, 1H, 1‘-H), 7.53 (s, br., 2H, 6-

NH2), 8.14 (s, 1H, 2-H). 
13C-NMR (125.7 MHz, DMSO-d6): δ = 25.45 (q, acetonide-CH3), 27.34 (q, acetonide-CH3), 

61.71 (t, C-5‘), 81.82 (d, C-3‘), 82.14 (d, C-2‘), 87.34 (d, C-4‘), 91.22 (d, C-1‘), 113.48 (s, 

acetonide-C(CH3)2), 119.54 (s, C-5), 126.42 (s, C-8), 149.99 (s, C-4), 153.03 (d, C-2), 155.35 

(s, C-6). 

MS (ESI) m/z (%): 387.9 (100) [M+H]+, 216.3 (75) [8-bromoadenine+H]+. 

 

8-Amino[1‘‘-(4‘‘-aminobutyl)]-2‘,3‘-O-isopropylidene adenosine (15) 

 

N

N N

N

NH2

O

OO

HO

N

N N

N

NH2

O

OO

HO

H
NBr

NH2

1,4-Diaminobutane, TEA

C17H27N7O4
Mol. Wt.: 393,44

C13H16BrN5O4
Mol. Wt.: 386,20  

 14 15 

 

To a solution of 14 (628 mg, 1.6 mmol) in dry DMSO (10 ml), dry TEA (2.26 ml, 16.3 mmol) 

and 1,4-diaminobutane (0.82 ml, 8.1 mmol) were added. The solution was stirred at 110 °C 

and the reaction progress monitored by TLC. After 4 h the solvent was removed under 

reduced pressure. The residue was dissolved in water (50 ml) and the pH was adjusted to 5.3 

with HOAc (0.1 M). The crude product was purified by cation exchange chromatography 

(Dowex 50 x 4 in H+-form, 100 g, elution with 600 ml water and subsequently with 1000 ml 

1 M KOH). Fractions containing the product were collected, combined and extracted with 

chloroform. The organic layers were combined and the solvent was removed under reduced 

pressure. Yield: 639 mg (100 %). 

Rf = 0.44 (silica gel on glass plate, n-butanol/HOAc/H2O 3:0.75:1.25). 

1H NMR (500 MHz, CDCl3): δ = 1.33 (s, 3H; acetonide-H), 1.48-1.55 (m, 2H; linker-H), 

1.61 (s, 3H; acetonide-H), 1.64-1.70 (m, 2H; linker-H), 2.66-2.73 (m, 2H; linker-H), 3.33-

3.42 (m, 2H; linker-H), 3.77-3.91 (m, 2H; 5‘-H), 4.28-4.30 (m, 1H; 4‘-H), 4.99 

(dd, J3’-H, 4’-H = 2.7, J3’-H, 2’-H = 6.3 Hz, 1H; 3‘-H), 5.08 (dd, J2’-H, 1’-H = 4.8, J2’-H, 3’-H = 6.3 Hz, 
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1H; 2‘-H), 5.39 (s, br., 2H; 6-NH2), 6.15 (d, J1’-H, 2’-H = 4.5 Hz, 1H; 1‘-H), 6.55-6.60 (m, 1H; 

8-NH), 8.10 (s, 1H; 2-H). 
13C-NMR (125.7 MHz, CDCl3): δ = 25.30 (q; acetonide-CH3), 25.73 (t; linker-C), 27.42 (q; 

acetonide-CH3), 29.60 (t; linker-C), 40.46 (t; linker-C), 42.69 (t; linker-C), 61.17 (t; 5'-C), 

80.59 (d; 3'-C), 82.19 (d; 2'-C), 84.48 (d; 4'-C), 89.21 (d; 1'-C), 114.50 (s; acetonide-

C(CH3)2), 117.68 (s; 5-C), 149.49 (d; 2-C), 149.95 (s; 8-C), 151.68 (s; 4-C), 151.72 (s; 6-C); 

ESI-MS: m/z (%): 394.3 (25) [M + H]+, 222.3 (100) [8-Amino[1’’-(4’’-aminobutyl)]-adenine 

+ H]+. 

 

8-Amino[1‘‘-(N‘‘-6-nitroveratryl-oxocarbonyl)-4‘‘-aminobutyl]-2‘,3‘-O-isopropylidene 

adenosine (22) 
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OCH3O2N

C27H36N8O10
Mol. Wt.: 632,62

C17H27N7O4
Mol. Wt.: 393,44

NVOC-Cl

 
 

 15 22 

 

To a solution of nucleoside 15 (224.7 mg, 0.571 mmol) in dry pyridine (10.0 ml), 

6-nitroveratrylchloroformate (173.6 mg, 0.631 mmol) was added slowly, and the resulting 

solution was stirred at room temperature for 3 h. The progress of the reaction was monitored 

by TLC and ninhydrin test. After complete conversion the solution was treated with water 

(8 ml) at 0 °C. The solvent was removed under reduced pressure, and the crude product was 

purified by column chromatography (silica gel, 25 g, elution with CH2Cl2/CH3OH 19:1). 

Yield: 168 mg (46 %). 

Rf = 0.44 (silica gel on aluminium foil, CH2Cl2/CH3OH 9:1). 
1H-NMR (500MHz, DMSO-d6): δ = 1.29 (s, 3H, isopropylidene-H); 1.47 - 1.49 (m, 2H, 

linker-H); 1.53 (s, 3H, isopropylidene-H); 1.58 - 1.61 (m, 2H, linker-H); 3.03 - 3.07 (m, 2H, 

linker-H); 3.29 - 3.30 (m, 2H, linker-H); 3.54 - 3.57 (m, 2H, 5‘-H); 3.85 (s, 3H, methoxy-H); 

3.87 (s, 3H, methoxy-H); 4.14 - 4.15 (m, 1H, 4‘-H); 4.95 (dd, 1H, J3‘-H, 4‘-H = 2.9 Hz, 

J3‘-H, 2‘-H = 6.1 Hz, 3‘-H); 5.31 (s, 2H, NVOC-CH2); 5.35 (dd, 1H, J2‘-H, 1‘-H = 3.7 Hz, 
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J2‘-H, 3‘-H = 6.5 Hz, 2‘-H); 5.47 (t, 1H, 5‘-OH); 6.03 (d, 1H, J1‘-H, 2‘-H = 3.7 Hz, 1‘-H); 6.51 (s, 

2H, 6-NH2); 6.93 (t, 1H, Linker-NH); 7.16 (s, 1H, NVOC-arom. H); 7.46 (t, 1H, Linker-NH); 

7.68 (s, 1H, NVOC-arom. H); 7.90 (s, 1H, 2-H). 
13C-NMR (125.7 MHz, DMSO-d6): δ = 27.15 (isopropylidene-C); 28.02 (linker-C); 29.07 

(isopropylidene-C); 41.90 (linker-C); 43.92 (linker-C); 58.02 (methoxy-C); 58.10 

(methoxy-C); 63.18 (5‘-C); 64.15 (NVOC-CH2); 82.90 (3‘-C); 83.26 (2‘-C); 87.04 (4‘-C); 

89.64 (1‘-C); 110.04 (NVOC-arom. C); 112.55 (2 -C); 115.15; 119.02; 129.83; 141.26; 

149.63; 150.68 (NVOC-arom. C); 151.07; 153.01; 154.35; 155.32; 157.61. 

MS (ESI) m/z (%): 633.2 (100) [M+H]+. 

 

8-Amino[1‘‘-(N‘‘-6-nitroveratryl-oxocarbonyl)-4‘‘-aminobutyl]-2‘,3‘-O-isopropylidene-

5‘-O-mesyl adenosine (17) 

 

Mesylchloride, TEA, DMAP
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OCH3O2N

C28H38N8O12S
Mol. Wt.: 710,71  

 22 17 (R = NVOC) 

 

To a solution of 22 (202.5 mg, 0.320 mmol) and DMAP (39.6 mg, 0.324 mmol) in dry 

CH2Cl2 (15 ml), dry TEA (1.12 ml, 8.04 mmol) was added and the resulting solution was 

cooled to 0 °C. Mesyl chloride (200 µl, 2.6 mmol) was added and the solution was stirred for 

90 min. The reaction was quenched with a cold, saturated NaHCO3 solution (3 ml). The 

solution was extracted three times with cold CHCl3 (5 ml). The organic phases were 

combined and the solvent removed under reduced pressure. The crude product was purified 

by column chromatography (silica gel, 11 g, elution with CH2Cl2/CH3OH 97:3). Yield: 

126 mg (55 %). 

Rf = 0.45 (silica gel on aluminium foil, CH2Cl2/CH3OH 9:1). 

MS (ESI) m/z (%): 711.3 (71) [M+H]+, 615.5 (100) [cyclonucleoside]+. 
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8-Amino[1‘‘-(N‘‘-6-nitroveratryl-oxocarbonyl)-4‘‘-aminobutyl]-5‘-O-mesyl adenosine 

(18) 

 

49 % HCOOH
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OCH3O2N

C25H34N8O12S
Mol. Wt.: 670,65

C28H38N8O12S
Mol. Wt.: 710,71

 

 17 (R = NVOC) 18 (R = NVOC) 

 

Nucleoside 17 (143.6 mg, 202 µmol) was dissolved in aqueous formic acid (49 %, 20 ml), and 

the resulting solution was stirred at room temperature for 5 d. After complete conversion the 

solvent was removed under reduced pressure and remaining solvent was co-evaporated three 

times with a mixture of water and methanol (1:1, 5 ml). The crude product was purified by 

column chromatography (silica gel, 15 g, elution with CH2Cl2/CH3OH 9:1). After removing 

the solvent under reduced pressure a yellowish product was obtained (132.2 mg, 98 %). 

Rf = 0.23 (silica gel on aluminium foil, CH2Cl2/CH3OH 9:1). 

MS (ESI) m/z (%): 671.2 (45) [M+H]+, 575.2 (100) [cyclonucleoside]+. 

 

Aziridine (29) 

 

KOH (aq)NH2Br

H
NHBr.

C2H7Br2N
Mol. Wt.: 204,89

C2H5N
Mol. Wt.: 43,07 

 28 29 

 

The synthesis was performed based on Gabriel (1888). KOH (13.3 g, 237 mmol) was 

dissolved in water (25.0 ml) at 0 °C. 2-Bromoethylamin hydrobromide (12.0 g, 58.6 mmol) 

was added at 10 °C to the KOH solution and stirred for 1 h before the solution was distilled 

on KOH plates. A second distillation was performed prior to use. Aziridine (1.3 ml, 43 %) 

was obtained as a colorless liquid (head temperature 55 °C). 
1H-NMR (500MHz, CDCl3): δ = 1.24 (s, 4H). 
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8-Amino[1‘‘-(N‘‘-6-nitroveratryl-oxocarbonyl)-4‘‘-aminobutyl]-5‘-(1-aziridinyl)-5‘-

deoxy adenosine (19) 
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C33H42N8O10
Mol. Wt.: 710,73

C26H35N9O9
Mol. Wt.: 617,61

 

 18 (R = NVOC) 19 

 

Nucleoside 18 (44.8 mg, 66.8 µmol) was dissolved in dry aziridine (1.1 ml, 21.2 mmol) and 

N-ethyldiisopropylamine (0.40 ml, 2.34 mmol) and stirred at room temperature for 3 d. The 

reaction was monitored by analytical reversed phase HPLC. The solvent was removed under 

reduced pressure after completeness of the reaction. The crude yellow product was purified by 

column chromatography (silica gel, 2.8 g, elution with CH2Cl2/CH3OH 9:1). Yield: 8 mg 

(20 %). 

Rf = 0.23 (silica gel on aluminium foil, dichloromethane/methanol 9:1). 

Rt = 48.9 min (C-18 reversed phase column, system 1, gradient 4). 
1H-NMR (500MHz, DMSO-d6): δ = 1.25 - 1.27 (m, 2H, linker-H); 1.37 - 1.39 (m, 2H, 

linker-H); 1.43 - 1.45 (m, 2H, aziridine-H); 1.46 - 1.50 (m, 2H, aziridine-H); 1.67 - 1.69 (m, 

2H, linker-H); 1.98 (dd, 1H, J5‘-Ha, 5‘-Hb= 13.0 Hz, J5‘-Ha, 4‘-H= 3.1 Hz, 5‘-Ha); 2.97 (dd, 1H, J5‘-

Hb, 5‘-Ha= 13.0 Hz, J5‘-Hb, 4‘-H= 3.4 Hz, 5‘-Hb); 3.00 - 3.04 (m, 2H, linker-H); 3.85 

(s, 3H, methoxy-H); 3.86 (s, 3H, methoxy-H); 3.97 (m, 1H, 4‘-H); 4.23 (m, 1H, 3‘-H); 4.71 

(m, 1H, 2‘-H); 5.18 - 5.19 (m, 1H, OH), 5.31 (s, 2H, NVOC-CH2); 5.92 (d, 1H, J = 7.2 Hz, 

1‘-H); 6.41 (s, 2H, 6-NH2); 7.16 (s, 1H, arom. H); 7.49 (t, 1H, J = 5.7 Hz, linker-NH); 7.61 (t, 

1H, J = 5.7 Hz, linker-NH); 7.68 (s, 1H, arom. H); 7.88 (s, 1H, 2-H). 
13C-NMR (125.7 MHz, DMSO-d6): δ = 25.63 (linker-C); 26.28 (aziridine-C); 26.39 (linker-

C); 26.87 (aziridine-C); 28.56 (linker-C); 41.94 (linker-C); 56.21 (methoxy-C); 59.69 

(methoxy-C); 61.71 (5‘-C); 62.19 (NVOC-CH2); 69.95 (2‘-C); 70.95 (3‘-C); 83.92 (4‘-C); 

86.01 (1‘-C); 108.19 (NVOC-arom. C); 110.73 (2-C); 116.96; 127.82; 139.39; 148.51 

(NVOC-arom. C); 150.16; 151.29; 152.09; 153 28; 155.67; 161.14. 

MS (ESI) m/z (%): 618.3 (100) [M+H]+. 
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8-Amino(4’’aminobutyl)-5’-aziridinyl-5’-deoxy adenosine (20) 

 

 h ν

N

N N

N

NH2

O

OHHO

N

H
N

N
H

O

O
OCH3

OCH3O2N

N

N N

N

NH2

O

OHHO

N

H
N

NH2

C26H35N9O9
Mol. Wt.: 617,61

C16H26N8O3
Mol. Wt.: 378,43  

 19 20 

 

A yellowish solution of nucleoside 19 (0.38 mg, 615 nmol) in DMSO (200 µl) was added to 

triethanolamine buffer (750 µl, 100 mM, pH 8.0 adjusted with 1 M HCl) and illuminated for 

40 min at room temperature using a mercury lamp. 

Product formation was analyzed by HPLC. Since complete turnover occurred, the solution 

was utilized directly in the next step. 

Rt = 22 min (C-18 reversed phase column, system 1, gradient 3). 

MS (ESI) m/z (%): 379.3 (100) [M+H]+. 

 

8-Amino[1‘‘-(N‘‘-biotinyl)-4‘‘aminobutyl]-5‘-aziridinyl-5’-deoxy adenosine (26) 
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 20 26 

 

A solution of biotinsuccinimidyl ester (0.66 mg, 1.93 µmol) in DMSO (500 µl) was added to 

the yellow solution of 20 in DMSO (250 µl) and triethanolamine buffer (750 µl, 100 mM, pH 

8.0) and stirred for 40 min at room temperature. The crude product was purified using HPLC 

chromatography. The amount of product was determined using UV spectroscopy (0.17 mg, 

45 %). After freeze drying 26 was obtained as a white solid. 

Rt = 32.5 min (C18 reversed phase column, system 2, gradient 3). 
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1H-NMR (500MHz, DMSO-d6): δ = 1.28 - 1.30 (m, 2H, aliphat. H); 1.31 - 1.32 (m, 2H, 

aliphat. H); 1.36 - 1.48 (m, 8H, 4x aliphat. H, 2x aziridine-H); 1.55 - 1.59 (m, 2H, aliphat. H); 

1.69 - 1.71 (m, 2H, aliphat. H); 1.98 (dd, 1H, J5‘-Hb, 4‘-H = 3.0 Hz, J5‘-Hb, 5‘-Ha = 13.7 Hz, 5‘-Hb); 

2.02 (t, 2H, aliphat. H); 2.56 (d, 1H, J = 12.8 Hz, S-CH2, Ha); 2.80 (dd, 1H J = 4.9 Hz,  J = 

12.8 Hz, S-CH2, Hb); 2.98 (dd, 1H, J5‘-Ha, 4‘-H = 3.1 Hz, J5‘-Ha, 5‘-Hb = 13.1 Hz, 5‘-Ha); 3.01 - 

3.03 (m, 1H, Biotin S-CH); 3.15 - 3.26 (m, 2H, aliphat. H); 3.97 (dt, 1H, J4‘-H, 3‘-H = 2.1 Hz, 

J4‘-H, 5‘-H = 3.7 Hz, 4‘-H); 4.10 (dd, 1H, J = 4.5 Hz, J = 7.9 Hz, biotin-bridgehead S-CHRCH); 

4.23 (dd, 1H, J3‘-H, 4‘-H= 2.1 Hz, J3‘-H, 2‘-H= 5.3 Hz, 3‘-H); 4.28 (dd, 1H J = 4.7 Hz, J = 7.7 Hz, 

biotin-bridgehead S-CH2-CH); 4.69 (dd, 1H, J2‘-H, 3‘-H= 5.1 Hz, J2‘-H, 1‘-H= 7.3 Hz, 2‘-H); 5.92 - 

5.93 (d, 1H, J1‘-H, 2‘-H = 7.3 Hz, 1‘H); 6.34 (s, br, 1H, biotin-NH); 6.39 (s, 2H, 6-NH2); 6.40 (s, 

1H, biotin-NH) 7.57 (t, 1H, linker-NH); 7.78 (t, 1H, linker-NH); 7.88 (s, 1H, 2-H). 
13C-NMR (125.7 MHz, DMSO-d6): δ = 25.31, 25.65, 26.83, 27.02 (2x linker-C, 

2x aziridine-C); 28.35 (linker-C); 28.55 (linker-C); 28.97 (linker-C); 35.55 (linker-C); 38.53 

(biotin S-CH-R); 42.32 (linker-C); 55.73; 59.51 (biotin-bridgehead S-CH2-CH); 61.36 

(biotin-bridgehead S-CHR-CH); 62.06 (5‘-C); 70.28 (2‘-C); 71.30 (3‘-C); 74.83 (4‘-C); 84.30 

(1‘-C); 86.30; 117.27; 148.83 (2-C); 150.49; 151.59; 152.41; 163.02; 172.23. 

MS (ESI) m/z (%): 605.3 (100) [M+H]+. 

 

8-Amino[1’’-(N’’-Cy5)-4’’-aminobutyl]-5’-aziridinyl-5’-deoxy adenosine (27) 
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 20 27 

 

A yellowish solution of nucleoside 20 (6 mg, 9.7 µmol) in triethanolamine buffer (1 ml, 100 

mM, pH 8.0) was treated with Cy5-NHS ester (6 mg, 7.8 µmol) in triethanolamine buffer 

(1 ml, 100 mM, pH 8.0). The solution was incubated for 30 min at room temperature. The 

crude product was purified by reversed phase HPLC yielding 27. The amount of product was 

determined by UV-spectroscopy (1.7 mg, 17 %) and the solution freeze dried. 

Rt = 42 min (C-18 reversed phase column, system 2, gradient 3). 
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MS (ESI) m/z (%): 1017.4 (100) [M+H]+. 

 

5.3 Protein synthesis and protein analytical methods 

5.3.1 Protein expression and purification 

5.3.1.1 M·TaqI expression and purification 

The expression and purification of M·TaqI was carried out as described in Holz et al. (1998). 

The protein had to be free of the natural cofactor in order to measure cofactor analogue 

binding correctly. The natural cofactor AdoMet was removed as described in (Goedecke 

et al., 2001). M·TaqI was stored in TrisOAc (20 mM), KCl (300 mM), KOAc (50 mM), 

Mg(OAc)2 (10 mM), pH 7.9, DTT (1 mM) and glycerol (55 %) at -20 °C. 

5.3.1.2 M·HhaI and M·BcnIB expression and purification 

The C5-cytosine DNA MTase M·HhaI and the N4-cytosine DNA MTase M·BcnIB were 

kindly provided by Saulius Klimasauskas (Vilnius, Lithuania). 

M·HhaI was stored KH2PO4 (10 mM), EDTA (5 mM), NaCl (100 mM), pH 7.4, 

2-mercaptoethanol (10 mM) and glycerol (50 %) at -20 °C. 

M·BcnIB was stored in KH2PO4 (10 mM), EDTA (0.1 mM), KCl (100 mM), pH 7.5, 

2-mercaptoethanol (7 mM) and  glycerol (50 %) at -20 °C. 

5.3.2 Determination of protein concentration 

The protein concentration was determined using the method described by Bradford (1976). 

The method is based on the emission maximum shift from 465 nm to 595 nm of Coomassie 

Blue G-250 after binding to proteins. Protein solutions were diluted with water (up to 100 µl) 

and Bradford reagent was added to give a final volume of 1000 µl. After 10 min the 

absorption of the solution at 595 nm was measured and the protein concentration calculated 

using a bovine serum albumin standard. 

5.3.3 Sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

The SDS-PAGE gel electrophoresis was carried out using the buffer system described by 

Schägger and von Jagow (1987). Proteins were taken up in probe buffer (2 % SDS, 10 % 

glycerol, 62 mM Tris/HCl, 5 % 2-mercapto ethanol, 0.001 % bromphenol blue, pH 6.8) and 

denatured for 5 min at 95 °C. As a molecular weight standard for proteins a mixture of 

phosphorylase β (94 kD), bovine serum albumine (67 kD), ovalbumine (43 kD), 

carbonicanhydrase (30 kD), trypsin inhibitor (20,1 kD) und lysozyme (14,4 kD) was used. 
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After gel electrophoretic separation of the proteins at 40 mA per gel, the gels were stained 

with Coomassie Brilliant Blue G250. 

 

For the gel preparation the following solutions were used: 

 
Tab. 5.3.3: Gel composition. 

 Stacking gel solution 

for 10 gels, 4 % acryl amide 

Resolving gel solution for 

10 gels, 12 % acrylamide 

Acryl amide (49.5 %)/ 
N,N’-bisacrylamide (3 %) 

1.8 ml 9 ml 

Gel buffer 6 ml 12.5 ml 

H2O 14.5 ml 16 ml 

APS (10 %) 125 µl 190 µl 

TEMED 20 µl 20 µl 

 

Gel buffer: 363.5 g Tris, 3 g SDS, 0.1 g sodium azide, pH 8.45 (per liter). 

Anode buffer: 241.5 g Tris/HCl, pH 8.9 (per liter). 

Cathode buffer: 121.2 g Tris, 180 g tricine, 10 g SDS, 0.1 g sodium azide, pH 8.25 

 (per liter). 

Staining solution:  15 % Coomassie Blue in destaining solution I. 

Destaining solution I: 2 L H2O, 2 L ethanol and 1 L acetic acid. 

Destaining solution II: 10 % acetic acid in water. 

 

5.3.4 Activity assay for M·TaqI 

For the determination of the activity of M·TaqI a protection activity assay was carried out. 

Solutions (20 µl) of λ-DNA (50 ng/ml, 2.1 nM, 254 nM M·TaqI recognition sequences), 

AdoMet (80 µM), BSA (0.1 mg/ml) and 1.0, 2.0, 3.9, 7.8, 15.6, 31.3, 62.5, 125, 250 or 

500 ng/ml M·TaqI in TrisOAc (20 mM, pH 7.9), Mg(OAc)2 (10 mM), KOAc (50 mM), DTT 

(1 mM) and Triton X-100 (0.01 %) were incubated for 60 min at 65 °C. 

Subsequently, a solution (30 µl) of R·TaqI (40 U) in Tris/HCl (10 mM, pH 8.4), NaCl (100 

mM), MgCl2 (10 mM) and BSA (0.1 mg/ml) was added to each of the solutions and the 

resulting solutions were incubated for 15 min at 65 °C. The solutions were treated with the 

probe buffer (10 µl: 0.25 % bromphenol blue and 30 % glycerol) before aliquots (12 µl) of the 
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solutions were loaded onto an agarose gel (1 %). The DNA was completely protected against 

restriction at a concentration of 7.8 ng/ml M·TaqI. 

 

5.4 Methods related to DNA 

5.4.1 Hybridisation of Oligodeoxynucleotides 

Equimolar amounts of complementary oligonucleotides in appropriate buffer were treated 

2 min at 95 °C in a heat block. The hybridization of DNA occurred during the cooling period 

(2-3 h) in the heat block. 

5.4.2 Agarose gel electrophoresis 

Large DNA fragments were analyzed using horizontal agarose gel electrophoresis. Gels of 

0.7-1 % agarose in 1 x TBE-Buffer (pH 8.9, composition see 5.4.3) containing ethidium 

bromide (10 µg/ml) were used. Stained DNA bands were visualized using UV light at 302 nm 

and documented using a Polaroid camera. 

5.4.3 Analytical polyacrylamide-urea gel electrophoresis 

Analytical polyacrylamide-urea gel electrophoresis is used for the high resolution separation 

of DNA and RNA fragments, respectively. A 0.4 mm thick gel of 40 cm height was prepared 

in a gel chamber from BioRad (Munich, Germany). Depending on the length of the nucleic 

acid fragments which had to be separated either 10 % or 20 % acrylamide solution with urea 

(7 M) in 1 x TBE buffer were prepared. In a pre-run the gels were heated to 56 °C before the 

samples were loaded. The samples were mixed with formamide buffer and denatured for 3 

min at 95 °C. The gel electrophoresis was carried out at 2000-2500V in order to keep the gel 

temperature at 50-56 °C. The running buffer was 1 x TBE buffer. After electrophoresis the 

gels were fixed in acetic acid (10 %) for 5 min and dried in a gel drier on Whatman GB 002 

blotting paper for 2 h at 80 °C. The analysis of the gels was performed with a Fuji gel 

scanner. 
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Tab. 5.4.3: Gel composition. 

 10 % gel 20 % gel 

Acrylamide solution (40 %) 25 ml 50 ml 

10 x TBE buffer 10 ml 10 ml 

Urea 42 g 42 g 

H2O 65 ml 40 ml 

APS (10 %) 250 µl 250 µl 

TEMED 100 µl 100 µl 

 

TBE buffer (10 x): 108 g Tris, 55 g boric acid, 3.35 g EDTA (per liter, pH not adjusted). 

Formamide buffer: 80 % Formamide, 1 x TBE. 

 

5.4.4 Restriction of DNA 

Analytical amounts of plasmid DNA (200 ng - 1 µg) were treated with 10 U per µg plasmid 

of the appropriate restriction enzyme for 1 h at the designated temperatures using the 

recommended buffers supplied by the manufacturers. 

 

5.5 X-Ray crystallography 

5.5.1 Setups for crystallization 

M·TaqI was concentrated and transferred into the crystallization buffer using vacuum dialysis. 

The protein solution (400 µl) was mixed with 400 µl crystallization buffer (10 mM Tris/HCl, 

300 mM NaCl, pH 7.3) and dialyzed overnight at 4 °C against the crystallization buffer using 

ultra thimbles (10 kD cutoff). Subsequently, the protein solution was concentrated (approx. 

1 h) until the desired concentration was obtained. A solution (30 µl) of the concentrated 

protein and cofactor analogue in Tris/HCl (10 mM) and NaCl (300 mM) was mixed with a 

solution (30 µl) of previously hybridized DNA (100 µM) in Tris/HCl (10 mM) and NaCl 

(300 mM). The resulting mixture was centrifuged for 10 min prior to use for crystallization 

setups. 
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5.5.2 Crystallization and mounting crystals 

Crystallization setups were performed in Linbro cell culture plates using the hanging drop 

method. The edges of the 24 wells were first greased using Baysilone paste, medium viscous 

(Bayer AG, Germany). Previously prepared reservoir solutions (1 ml) were added to the 

appropriate wells. The reservoir solution (3 µl) and the protein solution (1 µl) were mixed on 

siliconized glass cover slides to form a drop. The obtained solution was micro seeded using 

crystal solutions described by (Goedecke et al., 2001). The cover slides were turned upside 

down and attached carefully to the wells. Crystal growth was achieved at 20 °C. 

Crystallization conditions were chosen by varying the conditions described by Goedecke et al. 

(2001), explicitly by varying the concentration of the precipitant. Crystals of all three 

complexes grew after 2-3 days. Optimal crystallization conditions for each complex are listed 

below. 

 
Tab. 5.5.2: Crystallization conditions. 

 Ternary complex 

formed from 

M·TaqI, DNA, BAZ 

Ternary complex 

M·TaqI, DNA (2AP), 

AETA 

Ternary complex 

M·TaqI, DNA (2AP), 

AdoMet 

Protein 

Solution 

M·TaqI (95 µM) 

O10/U10 (100 µM) 

NaCl (300 mM) 

Tris/HCl 

(10 mM, pH 7.3) 

BAZ (250 µM) 

M·TaqI (95 µM) 

O10Ap/U10 (100 µM) 

NaCl (300 mM) 

Tris/HCl 

(10 mM, pH 7.3) 

AETA (1 mM) 

M·TaqI (95 µM) 

O10Ap/U10 (100 µM) 

NaCl (300 mM) 

Tris/HCl 

(10 mM, pH 7.3) 

AdoMet (1 mM) 

Reservoir KCl (100 mM) 

MgCl2 (25 mM) 

IPA (21 %) 

Sodium cacodylate 

(50 mM, pH 6) 

KCl (100 mM) 

MgCl2 (25 mM) 

IPA (6 %) 

Sodium cacodylate 

(50 mM, pH 6) 

KCl (100 mM) 

MgCl2 (25 mM) 

IPA (6 %) 

Sodium cacodylate 

(50 mM, pH 6) 

 

The obtained crystals were measured under cryo conditions. Therefore, crystals with a 

dimension from 10 x 10 x 100 µm3 to 10 x 30 x 100 µm3 were harvested with a nylon fibre 

loop out of the drop, transferred quickly from the mother liquor into the cryo protectant (12 % 

PEG6000, 200 mM NaCl, 100 mM Tris/HCl, pH 7.3, 17.1 % glycerol) and frozen with liquid 
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nitrogen. The loop containing the crystal was placed onto a goniometer head and measured 

under a nitrogen stream at 100 K. 

5.5.3 Data collection and structure determination 

Due to the small size of crystals, X-ray diffraction data were collected with a synchrotron 

beam source. The measurements were performed in Grenoble at the ESRF beamline ID14 by 

Dr. Axel Scheidig, Max-Planck Institut Dortmund, Germany. Data statistics are given in the 

result section. 

Processing of the measured reflexes was performed using the programs XDS/XSCALE 

(Kabsch, 1993). Phase determination of the structure amplitudes was achieved using 

molecular replacement. As a model the ternary structure from Goedecke et al. (2001) was 

used omitting the cofactor, the extrahelical base and water molecules in order to avoid model 

bias. Refinement was performed using the program CNS. The interpretation of the electron 

density was carried out using the program O. The computational calculations were carried out 

by Dr. Axel Scheidig, Max-Planck Institut Dortmund, Germany. 

 

5.6 Coupling of aziridine cofactors to different DNA substrates 

5.6.1 Coupling of AZ with 7·8 using M·TaqI 

A solution of double-stranded oligonucleotide 7·8 (10 µM), M·TaqI (10 µM) and the aziridine 

cofactor AZ (1 mM) in TrisOAc (20 mM), Triton X-100 (0.01 %), Mg(OAc)2 (10 mM) and 

KOAc (50 mM) at different pH values (5.5-7.9) was incubated for 24 h at 37 °C. The reaction 

was analyzed using an anion exchange column (Poros 10 HQ, system 3, gradient 1). The 

following retention times were observed: Complex of DNA/protein/cofactor 8.8 min, 

modified DNA 7AZ·8 22.8 min and double-stranded DNA 7·8 24.1 min. 

5.6.2 Coupling of AZ with 9·10 using M·HhaI 

A solution of double-stranded oligonucleotide 9·10 (10 µM), M·HhaI (10 µM) and aziridine 

cofactor AZ (1 mM) in Tris/HCl (10 mM), EDTA (0.5 mM) and NaOAc (50 mM) at different 

pH values (5.8-7.4) was incubated for 24 h at 37 °C. The reaction was analyzed using an 

anion exchange column (Poros 10 HQ; system 3, gradient 1). The following retention times 

were observed: Complex of DNA/protein/cofactor 11.2 min, modified DNA 9AZ·10 21.4 min 

and double-stranded DNA 9·10 22.4 min. 
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5.6.3 Coupling of AZ with 11·12 using M·BcnIB 

A solution of double-stranded oligonucleotide 11·12 (10 µM), M·BcnIB (10 µM) and 

aziridine cofactor AZ (1 mM) in TrisOAc (20 mM), Mg(OAc)2 (10 mM) and KOAc (50 mM), 

pH 6.9, was incubated for 24 h at 37 °C. The reaction was analyzed using an anion exchange 

column (Poros 10 HQ; system 3, gradient 1). The following retention times were observed: 

modified DNA 11AZ·12 29.3 min, double-stranded DNA 11·12 30.2 min. 

5.6.4 Labeling of pUC19 with DAZ using M·TaqI 

Labeling of pUC19 (4 recognition sites for M·TaqI) with the dansyl fluorophore was achieved 

using M·TaqI and the dansylated aziridine cofactor DAZ. A solution of pUC19 (38.9 nM), 

M·TaqI (186.7 nM) and DAZ (20 µM) in TrisOAc (20 mM), Triton X-100 (0.01 %), 

Mg(OAc)2 (10 mM) and KOAc (50 mM), pH 6, was incubated for 8 h at 65 °C. The reaction 

was analyzed by anion exchange chromatography (Nucleogen 4000-7 DEAE; system 4, 

gradient 2). The plasmid elutes with a retention time of 21.6-21.9 min. 

5.6.5 Labeling of pUC19 with DAZ using M·HhaI 

Labeling of pUC19 (13 recognition sites for M·HhaI) with the dansylated fluorophore was 

achieved using M·HhaI and the dansylated aziridine cofactor DAZ. A solution of pUC19 

(38.9 nM), M·HhaI (730 nM) and DAZ (20 µM) in Tris/HCl (10 mM), EDTA (0.5 mM) and 

NaOAc (50 mM), pH 6.85, was incubated for 20 h at 37 °C. The reaction was analyzed by 

anion exchange chromatography (Nucleogen 4000-7 DEAE; system 4, gradient 2). The 

plasmid elutes with a retention time of 21.6-21.9 min. 

5.6.6 Labeling of 7·8 with biotin using M·TaqI 

Labeling of 7·8 with biotin was achieved using M·TaqI and the biotinylated aziridine cofactor 

BAZ. A solution of double-stranded oligonucleotide 7·8 (10 µM), M·TaqI (10 µM) and BAZ 

(80 µM) in TrisOAc (20 mM), Triton X-100 (0.01 %), Mg(OAc)2 (10 mM) and KOAc (50 

mM) at different pH values (5.6-7.9) was incubated for 24 h at 37 °C. The reaction was 

analyzed by anion exchange chromatography (Poros 10 HQ; system 3, gradient 1). The 

following retention times were observed: Complex of DNA/protein/cofactor 8.2 min, 

modified DNA 7BAZ·8 24.6 min and double-stranded DNA 7·8 25.6 min. 

5.6.7 Labeling of pUC19 with biotin using M·TaqI 

Labeling of pUC19 (4 recognition sites for M·TaqI) with biotin was achieved using M·TaqI 

and the biotinylated aziridine cofactor BAZ. A solution (100 µl) of pUC19 (27.8 nM, 5 µg), 
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M·TaqI (133.3 nM) and BAZ (80 µM) in TrisOAc (20 mM), Triton X-100 (0.01 %), 

Mg(OAc)2 (10 mM) and KOAc (50 mM), pH 6, was incubated for 4 h at 65 °C. The product 

was treated with proteinase K (see 5.6.8) and purified with the QiagenPCR purification Kit 

according to the instructions given by the manufacturers. The purified plasmid (3 µg, 60 % 

yield) was treated with the restriction enzyme R·BsiEI (30 U) in Tris/HCl (10 mM), MgCl2 

(10 mM), NaCl (50 mM), pH 7.9, and DTT (1 mM) for 1 h at 60 °C. The resulting DNA 

fragments were analyzed by agarose gel electrophoresis. To an aliquot of the solution (2 µl 

containing 200 ng DNA) streptavidin-fluorescein (1 µg) was added and the solution was 

incubated 15 min at room temperature. The solutions with and without streptavidin-

fluorescein were loaded onto an agarose gel (0.7 %) and biotinylated DNA bands were visible 

by a gel mobility shift. 

5.6.8 Release of modified DNA from MTase-DNA complexes by Proteinase K 

The labeling solutions described above were all treated with proteinase K in order to release 

the modified DNA from tightly bound MTase. The pH of the solutions was adjusted to 8 and 

proteinase K (4 mg/ml) was added (10 µg per µg DNA). Further the DNA was purified using 

the Qiagen PCR purification Kit. 

5.6.9 Mass spectra of duplex deoxyoligonucleotides 

The MALDI mass spectra of duplex oligonucleotides were obtained using a Voyager system. 

The desalted sample of the DNA was pipetted (0.5 µl) together with the matrix (0.5 µl; 10 

mg/ml THAP, 50 mg/ml citric acid and 50 % acetonitrile) onto a MALDI plate. The drop was 

air dried before citric acid was used to remove remaining salt. The drop was air dried again 

before loading the plate into the mass spectrometer. The measurements were performed using 

the instrument settings listed in Table 5.6.9. 
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Table 5.6.9: Instrument settings for MALDI mass spectrometry. 

Mode of operation Reflector and linear 

Extraction mode Delayed 

Polarity Negative 

Acquisition control Manual 

Accelerating voltage 20000 V 

Grid voltage 76 % 

Mirror voltage ratio 1.12 

Guide wire 0 0.03 % 

Extraction delay time 450 nsec 

Laser intensity 2969 

Laser Repetition Rate 2.8 Hz 

Timed ion selector Off 

 

 

5.7 Biophysical methods 

5.7.1 Fluorescence spectroscopy for the determination of KD-values: Binding 
to M·TaqI 

Fluorescence spectroscopy was applied to determine the affinity of the synthesized cofactor 

analogues to M·TaqI. All measurements were performed in TrisOAc (20 mM), Triton X-100 

(0.01 %), Mg(OAc)2 (10 mM) and KOAc (50 mM) at pH 7.9 and 25 °C. In the case of an 

attached fluorophore to the cofactor a direct titration and in the case of a biotinylated cofactor 

a competitive titration was carried out using MANT-AdoHcy as competitor. 

Direct titration 

To a solution (300 µl) of cofactor analogue (1 µM) a solution (400 µl) of M·TaqI (75 µM) and 

cofactor analogue (1 µM) was stepwise added until no fluorescence change could be 

observed. The fluorescence was measured after every single addition of protein. The resulting 

data were fitted using the solution of the quadratic binding equation which describes the 

complex concentration in a bimolecular equilibrium of 1:1 stochiometry. The quadratic 

equation is derived from the reaction equation of a reversible equilibrium of enzyme (E) and 

ligand (L) as described below. 
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The equilibrium dissociation constant is derived from the mass action law (1). 

 

 eq eq
D

eq

E L
K

EL

� � � �� � � �=
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 (1) 

 

The equilibrium concentrations [Eeq],[Leq] and [ELeq] are related to starting concentration [E0] 

and [L0] using mass conservation law (2). 

 

 [ ]0eq eqE E EL� � � �= −� � � �  and [ ]0eq eqL L EL� � � �= −� � � �  (2) 

 

By inserting equation (2) in (1) and reorganizing the quadratic binding equation results. 
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Its reasonable solution is 
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The partial increase in fluorescence emission (F-Fmin) of the fluorophore per titration step 

equals the binding rate ([ELeq]/[L0]) times maximal fluorescence (Fmax-Fmin). The total 

fluorescence (F) equals the sum of the starting fluorescence (Fmin) and the partial fluorescence 

increase of a titration step: 

 ( ) [ ]min max min
0

eqEL
F F F F

L
� �� �= + − ⋅  (5) 

 

Inserting equation (4) into (5) leads to 
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The measured titration curves represent F as a function of [E0]. Fitting of the data using 

equation (6) gives the KD value of the investigated equilibrium. 

 

Competitive titration 

The determination of KD values of cofactor analogues without an intrinsic fluorescent 

property to M·TaqI was carried out by competitive titration using MANT-AdoHcy as 

fluorescent competitor. The prerequisite for such a competitive titration is that the competitor 

and the cofactor analogue bind at the same location of the enzyme and that the KD value of 

the competitor is known. 

To a solution (250 µl) of MANT-AdoHcy (1 µM) and M·TaqI (2 µM) a solution (400 µl) of 

BAZ (200 µM), MANT-AdoHcy (1 µM) and M·TaqI (2 µM) was added stepwise leading to a 

fluorescence decrease due to the replacement of MANT-AdoHcy. 

As the dissociation constant of MANT-AdoHcy and M·TaqI was already determined in a 

direct titration (Pignot, 1999) the program Scientist could be used to determine iteratively the 

KD value of the cofactor analogue BAZ. The following model was used for the iterative 

description of the measured data (Table 5.7.1a). 
 

Table 5.7.1a: Model for the competitive titration with slope. 

// Comp. Titration Definitions 

IndVars: C A: [MANT-AdoHcy] 

DepVars: A, B, AB, BC, Cf, F B: [M·TaqI] 

Params: K1, K2, ATOT, BTOT, Ya, Yab, Ysl C: [cofactor analogue BAZ]0 

AB=A*B/K1 Cf: [cofactor analogue BAZ] 

BC=B*Cf/K2 F: fluorescence 

ATOT=A+AB ATOT: [MANT-AdoHcy]0 

BTOT=B+AB+BC BTOT: [M·TaqI]0 

C=Cf+BC Ya: F of free A 

0<A<ATOT Yab: F of AB 

0<B<BTOT Ysl: F due to inner filter effect 

0<Cf<C K1: KD of complex AB 

F=A*Ya+AB*Yab-Ysl*Cf K2: KD of complex BC 
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For the calculation of K2, Ya and Yab the independently determined values of K1 (14.9 µM) 

and Ysl (9.1 µM-1) were hold constant. 

Table 5.6.1b shows the instrument settings and the type of titration for each cofactor. 

 
Table 5.7.1b: Instrument settings and titration type. 

Cofactor Titration method λEx / nm (slit width) λEm / nm (slit width) 

BAZ Competitive 295 (1) 430 (16) 

Cy5AZ Direct 649 (1) 665 (16) 

 

 

5.7.2 Concentration determination of cofactor analogues 

The concentration of the cofactor analogues was determined by UV-spectroscopy. The 

extinction coefficients for the determination were either of adenosine or the fluorescent group 

attached. For the N8-modified adenosine analogues with no fluorescent group (BAZ) the 

extinction coefficient ε278 = 20450 L cm-1 mol-1of 8-Amino[1’’-(6’’-aminohexyl)]-adenosine-

5’-phosphate (Barker et al., 1974) was used. 
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Appendix A 
 

 

 

DNA Methyltransferase from Thermus aquaticus (M·TaqI) 
 

 

Type N6-adenine 

Recognition sequence 5’-TCGA-3’ 

Length 421 amino acids 

Molecular weight 47,848 Da 

Theoretical pI 8.98 

 

 

 

Sequence 
1 11 21 31 41 
MGLPPLLSLP SNSAPRSLGR VETPPEVVDF MVSLAEAPRG GRVLEPACAH 
51 61 71 81 91 
GPFLRAFREA HGTGYRFVGV EIDPKALDLP PWAEGILADF LLWEPGEAFD 
101 111 121 131 141 
LILGNPPYGI VGEASKYPIH VFKAVKDLYK KAFSTWKGKY NLYGAFLEKA 
151 161 171 181 191 
VRLLKPGGVL VFVVPATWLV LEDFALLREF LAREGKTSVY YLGEVFPQKK 
201 211 221 231 241 
VSAVVIRFQK SGKGLSLWDT QESESGFTPI LWAEYPHWEG EIIRFETEET 
251 261 271 281 291 
RKLEISGMPL GDLFHIRFAA RSPEFKKHPA VRKEPGPGLV PVLTGRNLKP 
301 311 321 331 341 
GWVDYEKNHS GLWMPKERAK ELRDFYATPH LVVAHTKGTR VVAAWDERAY
351 361 371 381 391 
PWREEFHLLP KEGVRLDPSS LVQWLNSEAM QKHVRTLYRD FVPHLTLRML 
401 411 421   
ERLPVRREYG FHTSPESARN F   
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Appendix B 
 

 

 

DNA Methyltransferase from Haemophilus haemolyticus (M·HhaI) 
 

 

Type C5-cytosine 

Recognition sequence 5’-GCGC-3’ 

Length 327 amino acids 

Molecular weight 36,996 Da 

Theoretical pI 7.58 

 

 

 

Sequence 
1 11 21 31 41 
MIEIKDKQLT GLRFIDLFAG LGGFRLALES CGAECVYSNE WDKYAQEVYE
51 61 71 81 91 
MNFGEKPEGD ITQVNEKTIP DHDILCAGFP CQAFSISGKQ KGFEDSRGTL 
101 111 121 131 141 
FFDIARIVRE KKPKVVFMEN VKNFASHDNG NTLEVVKNTM NELDYSFHAK 
151 161 171 181 191 
VLNALDYGIP QKRERIYMIC FRNDLNIQNF QFPKPFELNT FVKDLLLPDS 
201 211 221 231 241 
EVEHLVIDRK DLVMTNQEIE QTTPKTVRLG IVGKGGQGER IYSTRGIAIT 
251 261 271 281 291 
LSAYGGGIFA KTGGYLVNGK TRKLHPRECA RVMGYPDSYK VHPSTSQAYK 
301 311 321   
QFGNSVVINV LQYIAYNIGS SLNFKPY   
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Appendix C 
 

 

 

DNA Methyltransferase from Bacillus centrosporus (M·BcnIB) 
 

 

Type N4-cytosine 

Recognition sequence 5’-CC(C/G)GG-3’ 

Length 321 amino acids 

Molecular weight 37,222 Da 

Theoretical pI 7.8 

 

 

 

Sequence 
1 11 21 31 41 
MINLNKQLEQ VIQQDIVENT DCREILRKIP KESIDLLVTS PPYWAKRVYN
51 61 71 81 91 
EDEEGELGSE PTPEEFVKVL ADYFDIFRPY IKKEGNLFVN IGDTFFGSGA 
101 111 121 131 141 
GAWNKYLDEE GNTTSFQKER KEKYFTLKPL QPKLKQDGKL YQNKQLLLIP 
151 161 171 181 191 
SRFAIEMQSR GWILRDDIIW RKPNRIPASV KDRFNNTYEH VFHFVQAKKY 
201 211 221 231 241 
YFDLDSVKIM GANGKLKNPG DVWDINTQPL RGSHTATFPE ALVDICIKCG 
251 261 271 281 291 
SPKNGLVFDP FMGTGTSWIV ARRLNRRFIG SEINPEFYQF SIKRFLESLS 
301 311 321   
ERNKEHGETI PSNTQTHLDP G   
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