Darstellung und Immobilisierung von neuartigen Rutheniumcarbenkomplexen

Dissertation

zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)

dem Fachbereich Chemie der Universität Dortmund vorgelegt von

Stefan Prühs

aus Düsseldorf

2003

Die vorliegende Arbeit entstand auf Anregung und unter Anleitung von Prof. Dr. Alois Fürstner am Max-Planck-Institut für Kohlenforschung in Mülheim a. d. Ruhr in der Zeit von November 2000 bis November 2003. Mein herzlicher Dank gilt allen, die zum Gelingen dieser Arbeit beigetragen haben:

-meinem Doktorvater Prof. Dr. Alois Fürstner für stetige Kritik und Anregungen, sowie sein Interesse am Gelingen dieser Arbeit

-dem AK Fürstner für das angenehme Arbeitsklima

-der Kristallographieabteilung des Institutes für das Anfertigen zahlreicher Röntenstrukturanalysen

-Frau Dipl.Chem. Doris Kremzow, Herrn Dipl. Chem. Andreas Kiefer und Herrn Dipl. Chem. Gereon Altenhoff für das Korrekturlesen dieser Arbeit

-Juliana Ruiz-Caro, Ricardo Riveiros, Doris Kremzow und David El Tom ("Der El") für das angenehme Arbeitsklima in Box 5.

-Andrea Jantsch für eine lustige Zeit und die Vermittlung wertvoller Fremdsprachenkenntnisse

-Andreas Kiefer für eine schöne Studien- und Promotionszeit

-Doris Kremzow, ohne die es nur halb so lustig gewesen wäre

-der Leiterrunde der DPSG Stamm St. Bruno für eine wahnsinnig tolle Zeit, besonders Julia Lück und Stefan Seger

-nicht zuletzt noch meiner Familie für die Unterstützung in all den Jahren

Inhaltsverzeichnis

1. Einleitu	ing	Seite 5
2. Diskuss	sion der Ergebnisse	
2.1	Darstellung und Reaktion von	
	Pyridin-Ru-Carben-Komplexen	13
2.2	Wiederverwendbare	
	Metathese-Katalysatoren	17
2.3	Darstellung eines Imidazoliumsalzes	
	mit löslichkeitsvermittelnder Gruppe	22
2.4	Darstellung OH-funktionalisierter	
	Ru-NHC-Komplexe	23
2.5	Umlagerungen der OH-funktionalisierten	
	Ru-NHC-Komplexe	36
2.6	Darstellung von norbornylfunktionalisierten	
	Ru-NHC-Komplexen	47
2.7	Fixierung von Ru-NHC-Katalysatoren	
	auf Merrifield-Harzen	54
2.8	Kieselgel-fixierte Katalysatoren	60
2.9	Anwendung unsymmetrischer	
	Imidazoliumsalze in Pd-katalysierten Reaktioner	n 67
2.10	Ringöffnende Metathese	71
3. Zusami	menfassung	78
4. Experi	menteller Teil	84
5. Anhang	Z	134

1. Einleitung

Zu den bedeutendsten Metall-katalysierten Synthesemethoden in der organischen Chemie gehört neben den bekannten Pd-katalysierten C-C-Verknüpfungsreaktionen¹ auch die Olefinmetathese.² Unter Metathese versteht man eine Reaktion, in deren Verlauf Molekülfragmente zwischen den Substraten ausgetauscht werden (Schema 1.1). Im Fall der Olefinmetathese reagieren zwei Olefine unter gegenseitigem Austausch ihrer Alkylideneinheiten.

Schema 1.1: Das Prinzip der Olefinmetathese.

Schon lange wird die Olefinmetathese zur Polymerisation von gespannten Cycloalkenen auch in industriellen Verfahren³ angewendet, aber in der organischen Synthese fand sie erst vor relativ kurzer Zeit Beachtung. Dies lag daran, dass die bis 1990 bekannten Katalysatoren keine hinreichende Toleranz gegenüber polaren Gruppen aufweisen. Erst mit der Entwicklung der in Abbildung 1.1 aufgeführten Metall-Alkylidenverbindungen⁴ war man in der Lage, hohe katalytische Aktivität sowie Toleranz gegenüber polaren Gruppen miteinander zu vereinen. Die in Abbildung 1.1 vorgestellten Carben-Komplexe und ihre Derivate zählen heute zu den in der organischen Chemie am meisten verwendeten Katalysatoren.

Mit der Erkenntnis, dass Metall-Carben-Komplexe⁵ definierte Zwischenstufen in Olefinmetathesereaktionen darstellen, wurde auch der von *Chauvin* vorgeschlagene Mechanismus⁶ (Schema 1.2) allgemein akzeptiert.

Abbildung 1.1 Ausgewählte Metathese Katalysatoren.

Schema 1.2: Chauvin-Mechanismus.

Entsprechend diesem Mechanismus findet zunächst im Rahmen einer formalen [2+2]-Cycloaddition die Addition eines Olefins an die Metall-Alkyliden-Einheit des Katalysators unter

1. Einleitung

Bildung eines Metallacyclobutans statt. Daran schließt sich eine Cycloreversion unter Bildung eines neuen Alkens und einer neuen Metallalkyliden-Einheit an. In Schema 1.2 ist der Mechanismus einer Ringschluss-Metathese unter Freisetzung von Ethen dargestellt.

Es wird zwischen verschiedenen Varianten der Olefin-Metathese unterschieden (siehe Schema 1.3). In der Ringschlussmetathese (RCM) und der acyclischen Dien-Metathese (ADMET)⁷ bildet die Entropie die Haupttriebkraft der Reaktion, während die Ringöffnende Metathese (ROM) und die Ringöffnungsmetathese-Polymerisation (ROMP)³ enthalpiegetrieben sind. Schließlich existiert noch eine acyclische Variante der Olefinmetathese, die Kreuzmetathese (CM),⁸ bei der zwei endständige Olefine miteinander unter Freisetzung von Ethen reagieren.

Schema 1.3: Verschiedene Varianten der Olefinmetathese.

In der organischen Synthese ist die Olefinmetathese vor allem von Bedeutung wegen der Möglichkeit, zyklische Strukturen aufzubauen.^{2a,b,d,i} Dabei stellt die Steuerung des E/Z-Verhältnisses bei der Bildung mittlerer und großer Ringe ein bislang ungelöstes Problem dar.^{2a,i;9} Dieses scheint zu einem gewissen Grad von der Aktivität der Katalysatoren abhängig zu sein,¹⁰ ist aber im allgemeinen schwer vorhersehbar und kann von relativ weit entfernten funktionellen

1. Einleitung

Gruppen im Molekül stark beeinflusst werden.^{9a,b,c,e}

Bis vor wenigen Jahren waren die Verbindungen 1 und 2 die gängigsten Katalysatoren für die Olefinmetathese, wobei der von Schrock entwickelte Molybdänkomplex $1^{5c,f}$ wesentlich reaktiver ist und auch tetrasubstituierte Doppelbindungen bilden kann. Allerdings ist dieser Katalysator sehr luft- und feuchtigkeitsempfindlich und seine Toleranz gegenüber funktionellen Gruppen ist im Vergleich zum Grubbs Katalysator 2 eingeschränkt. Komplex 2 toleriert hingegen die meisten funktionellen Gruppen und ist einige Zeit an der Luft beständig. Ebenso ist die Verwendung von getrockneten und entgasten Lösungsmitteln nicht unbedingt erforderlich.

Vor einigen Jahren wurde dieser Katalysator 2 von *Nolan*, *Grubbs* und *Herrmann* modifiziert, indem eines bzw. beide Phosphane durch ein N-heterocyclisches Carben (NHC) ersetzt wurden (siehe Abbildung 1.1).¹¹ Diese Liganden sind wesentlich bessere σ -Donatoren als Phosphane und haben keine signifikanten π -Akzeptoreigenschaften.^{11d,12} Aus diesem Grund wurden sie als Liganden in metallkatalysierten Reaktionen anstelle von elektronenreichen Phosphanen¹³ eingesetzt.

Die Existenz solcher elektronenreichen Carbene wurde schon 1960 von Wanzlick postuliert,¹⁴ dem es gelang, diese in Form von Metallkomplexen zu isolieren.^{12e,15} Im Jahre 1991 konnte Arduengo das freie Carben **6** (Abb. 1.2) isolieren und seine Struktur kristallographisch bestimmen, was im Laufe der 90er Jahre auch für weitere Carbene gelang.¹⁶ Diese Verbindungen können z. B. durch Deprotonierung der entsprechenden Imidazolium-Salze dargestellt werden.

Es wird zwischen NHC's mit gesättigtem und ungesättigtem Rückgrat unterschieden, welche sich in ihrer Stabilität und Reaktivität unterscheiden. Die Carbene mit gesättigtem Rückgrat sind nukleophiler aber auch empfindlicher gegenüber Feuchtigkeit und Sauerstoff als die ungesättigten Analoga.^{16a,c}

Abbildung 1.3: NHC's mit gesättigtem und ungesättigtem Rückgrat.

Die durch Substitution eines Phosphans durch ein NHC erhaltenen Komplexe 3, 4 und 5 sowie ihre Derivate^{11b-1} sind wesentlich aktivere Metathesekatalysatoren als 2 und ihre Aktivität ist vergleichbar mit der des Schrock-Katalysators 1.¹⁷ So werden zum Beispiel auch tetrasubstituierte Doppelbindungen in guten Ausbeuten gebildet. Als Beispiel dient hier die Umsetzung des Substrates 7 zum Cycloalken $8^{11g,18}$ (Schema 1.4).

Schema 1.4: Bildung von tetra-substituierten Doppelbindungen.¹⁸

Die erhöhte Aktivität solcher Katalysatoren der "2. Generation" wird durch die verbesserten σ -Donor-Eigenschaften und mangelnde Fähigkeit zur π -Rückbindung^{12c,e} des NHC-Liganden erklärt. Da sie das Metallzentrum elektronenreicher machen, ist nach Abspaltung eines Phosphans die Anlagerung eines als π -Akzeptor wirkenden Alkens begünstigt. Bei Verwendung von Katalysatoren der 1. Generation konkurriert das Phosphan stärker mit dem Alken um die freigewordene Koordinationsstelle (Schema 1.5).¹⁹

Schema 1.5: Phosphan-Dissoziation als initiierender Schritt der Olefinmetathese.

Dabei ist es wichtig, dass nur eines der beiden Phosphane in **2** durch ein NHC ersetzt wird, da zuerst ein Neutralligand abgespalten werden muss, um die katalytisch aktive Spezies zu bilden,^{11d,f,g;18,19} die dann unter Koordination eines Alkens in den Katalysekreislauf eintreten kann (Schema 1.5). Wegen der starken Ru-NHC-Bindung sind NHC's als labiler Ligand nicht geeignet.

Es sind polymerfixierte Ru-Katalysatoren entwickelt worden, die meisten als Derivate des Grubbs-Katalysators 2,²⁰ wobei der Katalysator über einen labilen Liganden (Phosphan bzw. Benzyliden-Einheit) an das Polymer fixiert ist. Dieser wird während des Katalysezyklus abgespalten, so dass die eigentliche katalytisch aktive Spezies homogen in Lösung vorliegt und nach Beendigung der Reaktion wieder abgefangen wird ("Boomerang"-Katalysatoren). Da dieses Abfangen nicht quantitativ verläuft, kommt zu einem "Ausbluten" des Polymers und zu einem schnellen Verlust der katalytischen Aktivität. Aus diesem Grunde wurde vereinzelt über Methoden berichtet, die Ru-Komplexe über den NHC-Liganden an den Träger zu binden.²¹

Inzwischen ist es gelungen, funktionalisierte Carbene darzustellen.²² So ist es zum Beispiel möglich, am einen N-Atom eine sperrige Mesityl-Gruppe und am anderen N-Atom eine funktionalisierte Alkylkette einzuführen. Die Herstellung der entsprechenden Carbenvorläufer erfolgt durch Umsetzung eines Alkylhalogenids mit *N*-Mesitylimidazol **9** (Schema 1.6).²³

Schema 1.6: Unsymmetrische Imidazoliumsalze.

Entsprechende unsymmetrisch substituierte Ru-NHC-Komplexe sind dargestellt (Schema 1.7) und auf ihre katalytische Aktivität in der RCM²⁴ und ROMP²⁵ getestet worden. Die Synthese erfolgte über die *"in-situ-*Methode" durch Deprotonierung des Imidazoliumsalzes mit KO*t*Bu zum entsprechenden Carben in Gegenwart des Grubbs-Katalysators **2**. Die Aktivität war vergleichbar mit der anderer Ru-NHC-Katalysatoren. Die Seitenkette R kann hierbei unter anderem geschützte Alkoholfunktionalitäten, Alkeneinheiten oder Estergruppen beinhalten. Die Darstellung von Ru-NHC-Komplexen mit freier Alkoholfunktionalität war bis zum Beginn der vorliegenden Arbeit noch nicht gelungen.

Schema 1.7: Darstellung unsymmetrisch substituierter Ru-NHC-Komplexe.^{24a}

Das Ziel der vorliegenden Arbeit war es nun, die Chemie unsymmetrisch substituierter Ru-NHC-Komplexe und deren Anwendungsmöglichkeiten auf die Polymerfixierung von Metathesekatalysatoren zu untersuchen. Insbesondere sollten Ru-NHC-Komplexe mit OH-Funktionalität in der Seitenkette dargestellt werden, da diese gute Möglichkeiten zur Immobilisierung auf verschiedensten Trägermaterialien bieten. Zusätzlich war zu erwarten, dass durch die OH-Gruppe, die zu einer Wechselwirkung mit dem Metallzentrum fähig sein sollte, eventuell auch neuartige Katalysatorstrukturen zugänglich sein könnten.

2 Diskussion der Ergebnisse

2.1 Darstellung und Reaktion von Pyridin-Ru-Carben-Komplexen

Aus den Verbindungen 2 und 3, den Grubbs-Katalysatoren der 1. und 2. Generation, konnten durch Austausch eines Phosphan-Liganden gegen Pyridin die entsprechenden Pyridin-Addukte dargestellt werden.²⁶ Analog zu diesen Arbeiten von *Grubbs* wurde im Rahmen dieser Doktorarbeit ausgehend vom "Nolan-Katalysator" 5 das Pyridin-Addukt 17 dargestellt, welches seinerseits Vorläufer zur Darstellung weiterer Komplexe ist (Schema 2.1.1).

Schema 2.1.1: Darstellung des Pyridin-Addukts 17.

Dieses wurde durch Kristallstrukturanalyse identifiziert und weist eine oktaedrische Struktur auf. Die Bindungslängen und Bindungswinkel ähneln denen des Pyridin-Addukts von **3**.

Abbildung 2.1.1: Kristallstruktur von 17.

Analog zu **17** ließen sich auch von anderen ungesättigten NHC-Komplexen Pyridin-Addukte erhalten (Schema 2.1.2).

Schema 2.1.2: Darstellung der Pyridin-Addukte 19 und 21.

Zwar sind diese Komplexe katalytisch aktiv in der Olefinmetathese, doch zeigen sie sich den Komplexen 5, 18 und 20, von denen sie sich ableiten, unterlegen (Tabelle 2.1.1). So werden die Cycloalkene 22 und 23 zu Beispiel nicht quantitativ gebildet, wie dies mit den Katalysatoren 5, 18 und 20 der Fall ist.

Katalysator	Substrat	Produkt	Ausbeute (GC)
17	EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	75 %
19	EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	81 %
17	EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	26 %

Tabelle 2.1.1: Katalytische Aktivität der Pyridin-Addukte (CH₂Cl₂, 40 °C, 24 h, 5 mol % [Ru]).

Analog zu den Arbeiten von $Grubbs^{26}$ ließen sich auch bei den Komplexen **17** und **19** die Chloride leicht durch Iodid (Schema 2.1.3) oder auch *t*-Butoxid^{26a,27} substituieren (Schema 2.1.4), wobei in letzterem Fall im NMR-Versuch eine Phosphan-freie 14 Elektronen-Spezies entsteht, die durch Vergleich der NMR-Daten mit denen des *t*-Butoxid-Adduktes von **3** nachgewiesen wurde.^{26a}

Schema 2.1.3: Substitution der Chlorid-Liganden durch Iodid.

Schema 2.1.4: Bildung des t-Butoxid-Adduktes 28 im NMR-Versuch.

Ebenso lassen sich die Pyridine durch Phosphane substituieren.²⁶ Werden zum Beispiel 1.1 Äquivalente Triphenylphosphan zu einer Lösung des Komplexes **11** in CH_2Cl_2 gegeben, erhält man Komplex **29** in 41 % Ausbeute (Schema 2.1.5).

Schema 2.1.5: Austausch der Pyridin-Liganden gegen ein Phosphan.

2. Diskussion der Ergebnisse

2.2 Wiederverwendbare Metathese-Katalysatoren

Eine Anwendung funktionalisierter Carbene liegt in der Bildung von unsymmetrischen Ru-NHC-Komplexen, welche in der Seitenkette eine endständige Alkeneinheit tragen. Diese Komplexe können eine intramolekulare Metathesereaktion unter Bildung eines Ruthenazyklus eingehen,²⁴ was eine Wiedergewinnung der Katalysatoren nach vollständigem Umsatz des Substrats ermöglichen sollte (Schema 2.2.1). Ein ähnliches Prinzip liegt der Wiedergewinnung des Präkatalysators **4** und seiner Derivate zugrunde.^{11h,i}

Schema 2.2.1: Bildung des Ruthenazyklus.

Diese Komplexe wurden in der Arbeitsgruppe Fürstner entwickelt^{24a} und im Rahmen dieser Arbeit eingehender auf ihre katalytische Aktivität und Wiedergewinnbarkeit hin untersucht. Bisher war lediglich die Aktivität der nicht zyklisierten NHC-Komplexe **11**, **12** und **13** bekannt.^{24a} Sie sind weniger aktiv als andere unsymmetrische Ru-NHC-Komplexe, wobei die Aktivität mit abnehmender Kettenlänge geringer wird, was an der zunehmenden Neigung zur Selbstmetathese unter Bildung des Ruthenazyklus liegen dürfte.

Nun sollte untersucht werden, ob sich diese intramolekulare Ringschlussreaktion zur Wiedergewinnung der Präkatalysatoren ausnutzen lässt. Zu diesem Zweck wurden verschiedene Substrate mit den bereits zyklisierten Präkatalysatoren **30, 31** und **32** umgesetzt (Tabelle 2.2.1).

Präkatalysator	Substrat	Produkt	Umsatz in %
32	EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	<10 %
30	,	0	<10 %
20	"	"	<10 /0
31	EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	81 %
30	"	"	95 %

Tabelle 2.2.1: Vergleich der Präkatalysatoren **30**, **31** und **32** (5 mol % [Ru], CH₂Cl₂, 40 °C, 24 h).

Im Vergleich zu anderen Ru-NHC-Komplexen ist die katalytische Aktivität der metallazyklischen Komplexe allerdings stark reduziert. So werden tetrasubstituierte Olefine wie zum Beispiel **8** nur in geringen Ausbeuten gebildet (Tabelle 2.2.1). In diesem Fall konnte auch kein Präkatalysator wiedergewonnen werden, weil sein thermischer Zerfall zu schnell ist im Vergleich zur Metathesereaktion.

Präkatalysator	Zeit/h	Reisolierter Prä-	Umsatz
		katalysator	
32	16	20 %	90 %
31	16	27 %	81 %
30	16	45 %	95 %

Tabelle 2.2.2: Vergleich der Präkatalysatoren bezüglich Umsatz und Wiedergewinnbarkeit (10 mol % [Ru], CH₂Cl₂, 40 °C, Umsetzung von Bisallylmalonsäurediethylester **24**).

Zeit/h	Ausbeute von 22	Reisolierter	Zusatz an PCy ₃
	(isoliert)	Katalysator	in mol %
16	95 %	45 %	
8	58 %	52 %	
16	57 %	55 %	10
24	40 %	62 %	25

Tabelle 2.2.3: Ergebnisse der Bildung von 22 mit 30 (10 mol % [Ru], CH₂Cl₂, 40 °C).

Es stellte sich heraus, dass sich der Präkatalysator **30** am besten wiedergewinnen lässt (45 %, Tabelle 2.2.2) und sich durch Zusatz von PCy₃ diese Wiedergewinnbarkeit auf 62 % verbessern lässt, was allerdings die katalytische Aktivität stark reduziert (Tabelle 2.2.3).

Zusammenfassend lässt sich feststellen, dass die Bildung des Chelat-Komplexes gegenüber der Anlagerung eines Olefins stark begünstigt ist, was zu einer verminderten katalytischen Aktivität führt. Bei längeren Kettenlängen ist der Zerfall des Katalysators der limitierende Faktor.

Grubbs setzte Verbindung **32** zur Darstellung zyklischer Polymere durch ROMP von Cyloocten ein.²⁵ Hierbei bleibt während der gesamten Reaktion der Metallazyklus geschlossen unter ständiger Vergrößerung des Ringes, wofür die Ringspannung des Cyclooctens die Triebkraft liefert. Dadurch lässt sich in diesem Fall auch der Katalysator in 80 %-iger Ausbeute zurückgewinnen.^{25a}

Um den Einfluss der Struktur des Katalysators auf die Wiedergewinnbarkeit genauer zu untersuchen, wurde nach der bereits bekannten Methode^{24a} ein Komplex mit einer Benzylidengruppe in der Seitenkette hergestellt. Das entsprechende Imidazoliumsalz **33** konnte ausgehend von 5-Chlorvaleroylchlorid durch Friedel-Crafts-Acylierung, Wittig-Reaktion, Finkelstein-Reaktion und einer abschließenden *N*-Alkylierung des Mesitylimidazols **9** dargestellt werden (Schema 2.2.2).

Schema 2.2.2: Darstellung des Präkatalysators 36.

Der aus **33** und **2** dargestellte Komplex **36** konnte nicht, wie gehofft, zyklisiert werden. Auch die intermediäre Bildung des entsprechenden Methylen-Komplexes durch Reaktion mit Ethylen konnte NMR-spektroskopisch nicht beobachtet werden^{11j} und führte nicht zur Bildung eines Metallazyklus.

Der Komplex **36** zeigte die für Nolan-Typ-Katalysatoren bekannte Aktivität^{11d,f;18} (Tabelle 2.2.4), ohne die bei den Katalysatoren **11**, **12** und **13** beobachtete Deaktivierung. Aufgrund der Unfähigkeit, eine Metathesereaktion mit dem eigenen Liganden einzugehen und sich so zu stabilisieren, ließ sich dieser Katalysator auch nicht wiedergewinnen.

Substrat	Produkt	Zeit/h	Umsatz (GC)
EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	16	95 %
0 1 1 1 1 1 1 1 1 1 1 1 1 1	38	16	88 % (<i>E</i> /Z=3.5)
EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	24	89 %
Ts N 39	Ts N 40	16	78 %

Tabelle 2.2.4: Katalytische Aktivität des Präkatalysators 36 (5 Mol %[Ru], CH₂Cl₂, 40 °C).

2. Diskussion der Ergebnisse

2.3 Darstellung eines Imidazoliumsalzes mit löslichkeitsvermittelnder Gruppe

Um eine effiziente Ringschlussolefinmetathese in ionischen Flüssigkeiten²⁸ oder in protischen Lösungsmitteln^{20n,29} zu gewährleisten, ist es notwendig, dass der Katalysator in solchen Medien löslich ist. Wasserlösliche Derivate des Grubbs-Katalysators **2** sind schon seit einiger Zeit bekannt.²⁹ In diesen Fällen trägt der Phosphan-Ligand jeweils eine ionische^{29a-c} oder stark polare Funktionalität.^{29d} Da diese Liganden aber sehr aufwendig herzustellen sind, lag es nahe, NHC-Liganden mit löslichkeitsvermittelnden Gruppen zu synthetisieren. Entsprechend der in Schema 2.3.1 gezeigten Synthesesequenz konnte das Imidazoliumsalz **41** dargestellt werden.

Schema 2.3.1: Darstellung des Imidazoliumsalzes 41.

Allerdings war es nicht möglich, daraus das entsprechende Carben bzw. einen Ru-NHC-Komplex zu bilden.

2.4 Darstellung OH-funktionalisierter Ru-NHC-Komplexe

Ru-NHC-Komplexe, die am Liganden freie Hydroxylgruppen tragen, sind von großem Interesse, weil sie zum Beispiel viele Möglichkeiten zur Polymerfixierung bieten. Die Reaktivität und Struktur solcher Komplexe könnte außerdem zu einem tieferen Verständnis der Chemie dieser Verbindungsklasse führen.

Arbeiten zur Polymerfixierung von Pd-NHC-Komplexen mit Alkoholfunktionalität wurden veröffentlicht,³⁰ allerdings sind die dazu verwendeten symmetrischen alkyl-substituierten Carbene für die Darstellung von aktiven Ru-NHC-Komplexen nicht geeignet, da diese zur Bildung von weniger aktiven Biscarben-Verbindungen führen.^{11c,f;16a;18} Mindestens ein Aryl-Substituent am NHC-Liganden ist nötig, um einen hochaktiven Ru-NHC-Komplex zu generieren. Aus diesem Grunde wurde die Darstellung von unsymmetrischen Ru-NHC-Komplexen mit OH-funktionalisierten Seitenketten in Angriff genommen.

Ausgehend von Imidazoliumsalzen mit freien Alkoholfunktionalitäten ließen sich die entsprechenden Ru-NHC-Komplexe durch Reaktion mit dem Grubbs-Katalysator **2** in Gegenwart von KOtBu nicht darstellen (*in-situ*-Methode, siehe Einleitung).³¹ Um eine selektive Reaktion des gebildeten Carbens mit dem Grubbs Katalysator **2** zu ermöglichen, wurden verschiedene Methoden getestet, um die Alkoholfunktion zu schützen. Die benötigte Schutzgruppe sollte möglichst labil sein, um unter milden Bedingungen wieder abgespalten werden zu können. THP-Gruppen oder MOM-Gruppen, die diese Bedingung erfüllen, erwiesen sich allerdings als inkompatibel mit den drastischen Bedingungen der Bildung des Imidazoliumsalzes durch Alkylierung des *N*-Mesitylimidazols **9** (siehe Einleitung). Ein Komplex mit einer stabilen TBDMS-geschützten Alkoholgruppe ist zwar bereits dargestellt worden,^{24a} allerdings konnte daraus der entsprechende Komplex mit freier Alkoholfunktionalität nicht freigesetzt werden.³¹

Folglich wurde versucht, Carbenkomplexe mit anderen Alkohol-Schutzgruppen darzustellen (Schema 2.4.1). So konnten aus den Estern 44 und 45 durch Reaktion mit *N*-Mesitylimidazol 9 die Imidazoliumsalze 46 und 47 dargestellt werden. Deren Umsetzung zu den entsprechenden

 $Br \underbrace{44}{9}, Toluol, 110 °C, \underbrace{24 h, 60 \%}_{24 h, 60 \%} \underbrace{46}_{Br}$ $46 Br^{-}$ $47 Br^{-}$

Carbenen bzw. den Ru-NHC-Komplexen blieb erfolglos.

Schema 2.4.1: Darstellung von Carbenvorläufern 46 und 47 mit veresterten OH-Gruppen.

Über die gleiche Syntheseroute ließ sich der Komplex **48** darstellen, in welchem die Alkoholgruppe durch eine TBDPS-Gruppe geschützt ist (Schema 2.4.2). Die TBDPS-Schutzgruppe ist unter den drastischen Bedingungen der Alkylierung des *N*-Mesitylimidazols **9** und der Bildung des Carbens stabil. Der Komplex **48** zeigte die erwartete katalytische Aktivität in der RCM (Tabelle 2.4.1). Allerdings führte die versuchte Abspaltung der Schutzgruppe mit TBAF in THF lediglich zur Zersetzung dieser Verbindung.

Schema 2.4.2: Darstellung des Komplexes 48.

2. Diskussion der Ergebnisse

Substrat	Produkt	Zeit/h	Ausbeute (GC)
EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	24	91 %
0 ////////////////////////////////////	38	24	85 %
EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	24	75 % (isoliert)
Ts N 39	Ts N 40	24	50 %

Tabelle 2.4.1: Katalytische Aktivität des Präkatalysators 48 (5 mol % [Ru], CH₂Cl₂, 40 °C).

TMS-geschützte Bromalkohole ließen sich nicht mit *N*-Mesitylimidazol **9** thermisch umsetzen, ohne dass die Schutzgruppe abgespalten wurde. Die einzige Möglichkeit bestand also darin, diese Schutzgruppe auf der Stufe des Imidazoliumsalzes einzuführen. Als brauchbare Methode erwies sich die Reaktion eines OH-funktionalisierten Imidazoliumsalzes mit Hexamethyldisilazan unter Verwendung von katalytischen Mengen Chlortrimethylsilan. Durch Entfernen des überschüssigen Reagenzes im Vakuum konnte das Salz mit der geschützten Alkoholfunktion nahezu quantitativ erhalten werden (Schema 2.4.3), ohne dass eine aufwendige Reinigung notwendig ist.

Schema 2.4.3: Herstellung von Imidazoliumsalzen mit TMS-Schutzgruppen.

Aus den so erzeugten Imidazoliumsalzen **54** und **55** ließen sich durch Deprotonierung mit KO*t*Bu in Gegenwart von **2** die entsprechenden Ru-NHC-Komplexe **56** und **57** darstellen (Schema 2.4.4). Das entsprechende freie Carben konnte hingegen nicht isoliert werden.

Schema 2.4.4: Bildung der Komplexe 56 und 57 mit TMS-geschützten Alkoholfunktionalitäten.

Die Verbindungen **56** und **57** weisen die für solche Komplexe typische katalytische Aktivität^{24a} auf. Sie sind unter anderem in der Lage, unter den üblichen Bedingungen Produkte mit tetrasubstituierten Doppelbindungen zu bilden. Die E/Z-Selektivität bei der Umsetzung des Substrates **37**, die in guten Ausbeuten gelang (Schema 2.4.5), entspricht der anderer Ru-NHC-Katalysatoren (Tabelle 2.4.2).^{11,24a}

Schema 2.4.5: Bildung des Makrolaktons 38.

Drölzatalyaatar	Substrat	Dre dulat	Ausbeute
Prakalarysalor	Substrat	Produkt	(isoliert)
_	EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	
56			95 %
	24	22	
		0	
		O	88 %
56	₩ ₈ ℃ ₩ ₃ ₩		(<i>E</i> / <i>Z</i> = 3.4)
	57	38	
			.
57			81 %
51	"	"	(<i>E</i> / <i>Z</i> =3.5)
	EtO ₂ CO ₂ Et	EtO ₂ C CO ₂ Et	
56			89 %
	25	23	
	EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	
56			78 %
	7	8	
57	"	,,	69 %

Tabelle 2.4.2: Katalytische Aktivität der Präkatalysatoren **56** und **57** (5 mol % [Ru], CH₂Cl₂, 40 °C, 24 h).

Aus den Verbindungen **56** und **57** lassen sich unter sauer (HCl in Et₂O) katalysierter Spaltung der Silylgruppen die freien Alkohole **58** und **59** quantitativ erhalten (Schema 2.4.6).

Schema 2.4.6: Abspaltung der TMS-Gruppe unter Bildung der OH-funktionalisierten Komplexe 58 und 59.

Von den Verbindungen 58 und 59 konnte jeweils eine Kristallstrukturanalyse durchgeführt werden, welche keinerlei Wechselwirkung des alkoholischen Sauerstoffatoms mit dem Metallzentrum zeigt. Außerdem konnte keine intermolekulare Wechselwirkung der OH-Gruppe mit einem benachbarten [Ru]-Atom festgestellt werden. Die Komplexe haben eine angenäherte quadratisch-pyramidale Struktur, wobei die Benzyliden-Einheit die apicale Position einnimmt und die beiden Cl-Liganden sowie die Neutralliganden jeweils trans-ständig zueinander angeordnet sind. Der NHC-Ru-Phosphan-Winkel beträgt in beiden Fällen 162°. Die Bindungslängen und Bindungswinkel (siehe Anhang) entsprechen denen anderer unsymmetrischer Ru-NHC-Komplexe^{24a} (Abbildung 2.4.1 und Abbildung 2.4.2).

Abbildung 2.4.1: Kristallstruktur von 58.

Abbildung 2.4.2: Kristallstruktur von 59.

Wie in Tabelle 2.4.3 gezeigt, sind auch diese Komplexe in der Olefinmetathese katalytisch aktiv.

Katalysator	Substrat	Produkt	Ausbeute (GC)
58	EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	95 %
59	>>	,,	88 % (isoliert)
58	EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	88 %
58	0 1 1 1 1 1 1 1 1 1 1 1 1 1	38	89 %
59	"	"	89 %
58	EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	43 %
59	11	"	78 %

Tabelle 2.4.3: Katalytische Aktivität der Präkatalysatoren **58** und **59** (5 mol % [Ru], CH₂Cl₂, 40 °C, 24 h).

Von Komplex **58** ließ sich auch ein Pyridin-Addukt darstellen (Schema 2.4.7), dessen Geometrie mangels einer Kristallstruktur nicht eindeutig geklärt werden konnte. Die Bildung des Adduktes unter Abspaltung von PCy₃ ließ sich aber durch IR-Spektroskopie, ESI-MS und NMR-Spektroskopie zweifelsfrei belegen.

Schema 2.4.7: Bildung des Pyridin-Adduktes 60.

Im Gegensatz zu den Verbindungen **56** und **57** sind die Lösungen der Komplexe **58** und **59** bei Raumtemperatur nur begrenzt stabil. Es ist bekannt, dass die Chloride gegen sauerstoffhaltige Liganden ausgetauscht werden können.³² Im Falle von primären Alkoholen führt diese Substitution jedoch zur Zersetzung der Komplexe. Ein möglicher Mechanismus für diesen Prozess wurde von *Mol et al.* vorgeschlagen (Schema 2.4.8).^{32f}

Schema 2.4.8: Mechanismus der Zersetzung von 2 durch primäre Alkohole.^{32f}

Im Fall des Hydroxypropyl-substituierten Komplexes 58 ist eine leichte Verschiebung des Signals des Benzyliden-Protons auf 18.98 ppm zu beobachten. Alle anderen unsymmetrisch

substituierten Ru-NHC-Komplexe zeigen ein Signal bei 19.20 \pm 0.04 ppm. Die chemische Verschiebung des Signals im ³¹P-NMR-Spektrum von **58** auf ~36 ppm ist ebenso charakteristisch, während alle anderen Komplexe chemische Verschiebungen von ~34 ppm aufweisen. Dies ist vermutlich auf eine Wechselwirkung des Sauerstoffatoms mit dem Metallzentrum in Lösung zurückzuführen, obwohl eine solche im Kristall nicht nachgewiesen werden kann. Zur Untersuchung dieser Wechselwirkung wurde der Methoxy-substituierte Komplex **61** mittels der *in-situ*-Methode synthetisiert (Schema 2.4.9).

Schema 2.4.9: Darstellung des Ru-NHC-Komplexes 61 mit Etherfunktionalität.

Auch hier kann eine Tieffeldverschiebung des Phosphorsignals auf 35.7 ppm und eine leichte Hochfeldverschiebung des Benzyliden-Signals auf 19.09 ppm beobachtet werden. Die π - π -Wechselwirkung zwischen der Benzyliden-Einheit und der Mesitylgruppe bleibt erhalten, was sich im ¹H-NMR-Spektrum daran erkennen lässt, dass die aromatischen Mesityl-Protonen ein stark verbreitertes Signal bei 6.20 ppm ergeben. Dies ist auf ein π -stacking der aromatischen Ringsysteme zurückzuführen.^{24a}

Der Komplex **61** erwies sich als katalytisch aktiv und erlaubt auch die Bildung von Produkten mit tetra-substituierten Doppelbindungen. So gelingt unter anderem der Ringschluss des Substrates **7** in 55 %-iger Ausbeute (Tabelle 2.4.4).

Substrat	Produkt	Zeit/h	Umsatz (GC)
EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	16	97 %
EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	16	89 %
0 1 1 1 37	38	24	90 %
EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	16	55 %

Tabelle 2.4.4: Katalytische Aktivität des Präkatalysators 61 (5 mol % [Ru], CH₂Cl₂, 40 °C).

Die beobachtete Instabilität der Komplexe **58** und **59**, insbesondere in Gegenwart einer Base, lässt sich durch eine Substitution des Chlorids durch den Alkohol der Seitenkette erklären analog zu dem von *Mol et al.* postulierten Zerfallsmechanismus ^{32f} (Schema 2.4.8). Da hierbei die Protonen am OH-funktionalisierten C-Atom schrittweise auf die Benzyliden-Einheit übertragen werden, sollte ein Komplex dargestellt werden, der keine Protonen in α -Stellung zur OH-Gruppe enthält. Die Darstellung erfolgt auf dem bereits optimierten Syntheseweg über einen TMSgeschützten Alkohol (Schema 2.4.10).

Schema 2.4.10: Darstellung eines Carben-Vorläufers mit tertiärer OH-Gruppe.

Das Imidazoliumsalz **65** kann problemlos zum entsprechenden Komplex **66** umgesetzt werden, welcher sich mit HCl/MeOH zu **67** entschützen lässt (Schema 2.4.11).

Schema 2.4.11: Darstellung des Komplexes 67.

Der geschützte sowie der ungeschützte Komplex erweisen sich beide als katalytisch aktiv (Tabelle 2.4.5). Verbindung **67** ist in Lösung wesentlich stabiler als der primäre Alkohol **58**, was vermutlich auf die fehlenden α -Protonen zurückzuführen ist.^{32d}

Katalysator	Substrat	Produkt	Umsatz (GC)
66	EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	quantitativ
67	"	"	quantitativ
66	EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	48 %
67	>>	"	46 %
66	0 1 1 1 37	38	90 %
67	"	"	87 %

 $\textbf{Tabelle 2.4.5:} Metathesen mit den Katalysatoren \textbf{ 66} und \textbf{ 67} (5 mol \% [Ru], 40 \text{ }^\circ\text{C}, CH_2Cl_2, 24 \text{ h}).$

2.5 Umlagerungen der Ru-NHC-Komplexe mit Alkoholfunktionalität

Werden die Lösungen der Komplexe **58** und **67** (nicht jedoch **59**) mit freien Alkoholfunktionalitäten in der Seitenkette des NHC-Liganden mit Kieselgel gerührt, so wird eine auffällige Farbänderung der Komplexe von rot nach grün beobachtet. Die neugebildeten Verbindungen werden auf dem Träger niedergeschlagen, können jedoch mit MeOH eluiert und in reiner Form isoliert werden.

Das Signal des Benzyliden-Protons ist bei den so erhaltenen Verbindungen auf ca. 16-17 ppm verschoben und zu einem Dublett aufgespalten. Diese Kopplung mit dem Phosphoratom ist auf eine Veränderung des Diederwinkels (PRuCH) zurückzuführen.⁵ⁱ Ferner zeigen die beiden Mesitylprotonen getrennte Signale im ¹H-NMR-Spektrum. Eines der beiden Protonen fällt in den Anisotropiekegel des aromatischen Ringstroms der Benzylideneinheit und zeigt ein breites Signal bei ca. 6.2 ppm, das andere zeigt ein scharfes Singulett bei ca. 6.8 ppm, was auf das Fehlen eben jener Wechselwirkung hindeutet. Der gleiche Effekt führt dazu, dass für die zwei ortho-ständigen Methylgruppen der Mesityl-Einheit zwei Signale zu beobachten sind. Die Protonen der Seitenkette sind ebenfalls zu zwei Signal-Sätzen aufgespalten. Dies legt nahe, dass die Rotation des NHC-Liganden sowie die Rotation der Mesitylgruppe sehr stark eingeschränkt sind. Selbst bei 80 °C ist keine Koaleszenz der Signale zu beobachten.

Die offensichtlichste Veränderung ist jedoch die Farbe der Komplexe. Die grünen Komplexe **68** und **69** zeigen im UV-VIS-Bereich eine Absorbtionsbande bei 600 nm, während die roten Komplexe (**58**, **69** und **67**) ein Absorbtionsmaximum bei 505 nm aufweisen.

Da laut NMR-Spektrum keine Liganden abgespalten werden, müssen diese Effekte auf eine Strukturänderung zurückzuführen sein. Die bisher bekannten Ru-Carben-Komplexe werden in der Literatur meist als angenäherte trigonale Bipyramide dargestellt. Die verfügbaren Kristallstrukturdaten zeigen, dass es sich sich hierbei jedoch oft um Grenzfälle zwischen einer trigonal-bipyramidalen und einer quadratisch-pyramidalen Struktur handelt.^{24a} Die Benzyliden-Einheit und die Mesityl-Gruppe stehen in diesen Komplexen aufgrund einer π - π -Wechselwirkung
parallel zueinander. Wie in Schema 2.5.1 gezeigt, steht dann die Benzyliden-Einheit in der apicalen Position der Pyramide^{24a} und die Cl-Liganden sind in *trans*-Stellung zueinander angeordnet.

Wie die Kristallstruktur von **69** belegt, können die jetzt erhaltenen grünen Komplexe auch als quadratische Pyramide beschrieben werden. Allerdings zeigt sich, dass die Cl-Liganden sowie der Phosphan- und der NHC-Ligand jeweils *cis*-ständig zueinander angeordnet sind (Abbildung 2.5.1). Es lässt sich sehr gut erkennen, dass das π -stacking zwischen der Mesityl-Einheit und der Benzyliden-Einheit weitgehend aufgehoben ist. Im Falle der *cis*-Verbindung **69** ist die Ru-P-Bindung um 0.07 Å kürzer als in den *trans*-Verbindungen **58** und **59**. Dies deutet auf eine stärkere Bindung und damit auf einen schwächeren Liganden in *trans*-Stellung hin. Ebenso ist die Ru-Cl-Bindung um 0.04 Å länger, da mit den Neutralliganden jeweils ein stärkerer σ -Donor in *trans*-Position zum Chloridliganden vorliegt.

Schema 2.5.1: Umlagerung der Komplexe 58: R=H, 67: R=Me in die Isomere 68 und 69.

Abbildung 2.5.1: Kristallstruktur der Verbindung 69.

Eine *cis*-Anordnung der anionischen Liganden stellt in fünffach koordinierten Ru-Carben-Komplexen eine große Ausnahme dar und wurde bis zu diesem Zeitpunkt erst an einem von *Fogg et al.* synthetisierten Ru-NHC-Komplex **70** beobachtet ¹¹¹ sowie an einigen Derivaten des Grubbs Katalysators der ersten Generation **2**,^{4d,e,j,k,1} wobei die *cis*-Anordnung meistens durch einen bidentaten Phosphan-Liganden erzwungen wird (**71a,b** Abbildung 2.5.2). Solche Komplexe wurden von *Hofmann et al.* dargestellt und erfolgreich in der Olefinmetathese angewendet.^{4j,k,1}

Abbildung 2.5.2: Struktur der Komplexe 70 und 71a,b.

Zur genaueren Untersuchung dieser cis/trans-Isomerisierung sollte auch ein Komplex mit einer kürzeren OH-funktionalisierten Kettenlänge dargestellt werden (Schema 2.5.2).

Schema 2.5.2: Darstellung des Carbenvorläufers 73.

Die Bildung des Imidazoliumsalzes **72** mit freier OH-Gruppe war bereits von *Ackermann* beschrieben worden.³¹ Der entsprechende TMS-geschützte Komplex **74** ließ sich daraus nach der bereits optimierten Methode darstellen (Schema 2.5.3).

Schema 2.5.3: Darstellung des Präkatalysators 74.

Im Falle dieses Komplexes **74** lagert sich der bei der Entschützung mit HCl/MeOH vermutlich nur intermediär entstehende *trans*-Komplex spontan zur *cis*-Verbindung **75** um (Schema 2.5.4).

Schema 2.5.4: Spontane Bildung des Komplexes 75.

Der Mechanismus dieser Isomerisierung ist noch nicht vollständig geklärt. Naheliegend ist eine intermediäre Koordination der lateralen Hydroxy-Gruppe an das Ru-Zentrum. Ein Indiz für die vorübergehende Bildung eines solchen Chelat-Komplexes ist die Abhängigkeit der Isomerisierung von der Entfernung der OH-Gruppe zum Metallzentrum. Komplex **75** bildet sich spontan unter vorübergehender Bildung eines 6-Ring-Chelates. Im Gegensatz dazu lagert sich Verbindung **59** mit einer Hydroxyhexyl-Kette auch beim längeren Behandeln mit Kieselgel nicht um. Hier müsste sich intermediär ein 10-gliedriger Metallazyklus bilden. Ebenso gehen andere Ru-NHC-Komplexe ohne OH-Funktionalisierung diese Isomerisierungsreaktion auch bei Zugabe von Ethanol nicht ein. Ein möglicher Mechanismus beginnt mit der vorübergehenden durch die OH-Gruppe unterstützten Abstraktion eines Cl-Liganden gefolgt von einer erneuten Anlagerung des Chlorids in die *cis*-Position (Schema 2.5.3).

Schema 2.5.5: Ein möglicher Mechanismus der Isomerisierung.

Einen Hinweis auf diesen Mechanismus gibt die Bildung des Pyridin-Adduktes von Komplex **74** unter Abspaltung der TMS-Gruppe (Schema 2.5.6). Hierbei verdrängt die Alkoholfunktionalität einen Chloridliganden unter Bildung eines kationischen Komplexes mit einem Chlorid als Gegenion. Dies entspricht dem vermuteten Zwischenprodukt der *cis-trans*-Isomerisierung entsprechend dem oben beschriebenen Mechanismus (Schema 2.5.5). Da das Pyridin-Addukt 6-fach koordiniert ist, was einen erneuten Angriff des Chloridliganden erschwert, kann der kationische Komplex in diesem Fall isoliert werden.

Schema 2.5.6: Darstellung des OH-funktionalisierten Pyridin-Adduktes 76.

Interessant ist hierbei, dass in **76** ein koordinierter Alkohol vorliegt und es sich nicht um ein Ru-Alkoholat handelt. Dies wird am Ru-O-Bindungsabstand von 2.297 Å deutlich, was mit einer σ -Bindung nicht im Einklang steht, sondern eher durch eine Donor-Akzeptor-Wechselwirkung zwischen dem Sauerstoffatom und dem Metallzentrum zu erklären ist. Dies ergab ein Vergleich mit 188 Strukturen in der CSD (Cambridge Structure Database). Außerdem kann im IR-Spektrum eine OH-Schwingung bei 3432 cm⁻¹ nachgewiesen werden und das OH-Proton ist auch im ¹H-NMR-Spektrum deutlich durch ein Signal bei 9.23 ppm zu erkennen. Wie an der Kristallstruktur in Abbildung 2.5.2 zu sehen ist, besitzt der Komplex **76** eine oktaedrische Struktur wie auch das Pyridin-Addukt **17** des Nolan-Katalysators.

Abbildung 2.5.2: Kristallstruktur von 76.

Ab-initio-Rechnungen ergaben, dass die *trans*-Verbindung **58** um ca. 11 kcal/mol stabiler ist als die *cis*-Verbindung **68**. Dies bedeutet, dass thermodynamische Gründe keine Rolle spielen, sondern dass die Isomersierung kinetisch gesteuert ist. Eine Methodenbeschreibung der Rechnungen befindet sich im Experimentellen Teil.

In der Ringschlussmetathese zeigen die Verbindungen **68**, **69** und **75** eine vergleichbare Aktivität (Tabelle 2.5.1). In allen Fällen tritt eine lange Induktionsperiode von 1-2 h auf, in der kein Umsatz beobachtet wurde (CH₂Cl₂, 40 °C). Nach 24 h war der Umsatz von Bisallylmalonsäurediethylester **24** vollständig und auch Produkte mit tetra-substituierten Doppelbindungen konnten gebildet werden. Die E/Z-Selektivität bei der Umsetzung des Substrates **37** ist identisch mit der der *trans*-Komplexe. Interessanterweise ist die katalytische Aktivität der *cis*-Komplexe in der Ringschlussmetathese bei 80 °C in Toluol wesentlich höher und vergleichbar mit der der *trans*-Verbindungen.

Katalysator	Bedingung	Substrat	Produkt	Umsatz (<i>E</i> /Z- Verhältnis)
68	CH ₂ Cl ₂ (40 °C)	EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	91 % (isoliert)
68	Toluol (80 °C)	"	"	quantitativ
75	Toluol (80 °C)	"	"	"
68	Toluol (80 °C)	EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	87 % (isoliert)
68	CH ₂ Cl ₂ (40 °C)	EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	12 %
68	Toluol (80 °C)	"	"	56 % (isoliert)
69	Toluol (80 °C)	"	11	60 %
68	Toluol (80 °C)	0 1 1 1 1 1 37	38	quantitativ (3.5:1)
68	CH ₂ Cl ₂ (40 °C)	"		quantitativ (3.5:1)
69	Toluol (80 °C)	"		quantitativ (3.5:1)
75	Toluol (80 °C)	"	"	quantitativ (3.5:1)

 Tabelle 2.5.1: Katalytische Aktivität der cis-konfigurierten Ru-NHC-Komplexe.

Diese starke Abhängigkeit der katalytischen Aktivität von der Temperatur und die beobachtete Induktionsperiode beruhen vermutlich auf einer verlangsamten Dissoziation des Phosphans. Diese kann sehr gut durch die oben erwähnte Struktur des Komplexes erklärt werden. Hier fehlt ein elektronenreicher Substituent in *trans*-Stellung wie in allen anderen bekannten Komplexen, welcher die Dissoziation des Phosphans beschleunigt (*trans*-Effekt).

Zur näheren Untersuchung der verlangsamten Phosphan-Dissoziation wurde eine Probe des Komplexes **68** in d₅-Pyridin gelöst und der Umsatz zum entsprechenden Pyridin-Addukt **60** NMR-spektroskopisch verfolgt. Dieses entsteht als Gemisch verschiedener Spezies (erkennbar an mehreren Signalen für das Benzyliden-Proton im ¹H-NMR-Spektrum). Es zeigt sich, dass die Bildung von freiem Phosphan sehr langsam abläuft (ca. 50 % Umsatz nach 24 h). Somit erklärt sich zum einen die verringerte katalytische Aktivität bei niedrigen Temperaturen sowie zum anderen die erhöhte Stabilität der *cis*-Komplexe **68**, **69** und **75**, da auch die Zersetzung der Komplexe vermutlich eine Phosphan-Dissoziation vorraussetzt.

Schema 2.5.7: Reaktionen von 58, 60 und 68.

Das bei der Reaktion von **68** mit Pyridin erhaltene Produktgemisch **60** ist das gleiche, das aus **58** erhalten wird. Vermutlich verläuft daher die Substitution zuerst über eine Phosphan-Dissoziation unter Bildung der gleichen 14-Elektronen Spezies. Durch erneute Anlagerung eines Phosphans erhält man daraus ausschließlich die *trans*-konfiguriertenVerbindungen, weshalb sich **68** durch Erhitzen in Toluol bei 80 °C in **58** überführen lässt (Schema 2.5.7).

Bemerkenswert ist außerdem, dass mit dem Komplex **69** aufgrund der guten Löslichkeit in stark polaren Medien die Durchführung der Ringschlussmetathese in DMF oder Aceton möglich wird (Schema 2.5.8).

Schema 2.5.8: Umsetzung von Bisallylmalonsäurediethylester 24 in polaren LM.

2.6 Darstellung von norbornylfunktionalisierten Ru-NHC-Komplexen

Es besteht in der Synthese-Chemie ein dringendes Interesse an praktikablen Methoden, Katalysatoren aus dem Reaktionsprodukt zu entfernen. Im Fall des Rutheniums ist dies zum Beispiel wichtig, da Katalysatorrückstände eine Doppelbindungsisomerisierung im Produkt bewirken können³³ und weil das Endprodukt häufig aus gesetzlichen Gründen keine Schwermetalle enthalten darf.

Eine Möglichkeit, den Katalysator zu entfernen, ist die Abtrennung des freien Katalysators nach erfolgter Reaktion. Es existieren bereits Arbeiten zur Entfernung von [Ru]-Verunreinigungen aus dem Metatheseprodukt, allerdings ist hier entweder eine Behandlung des Reaktionsproduktes mit nötig³⁴ Bleisalzen oder 12-stündiges Rühren mit Aktivkohle gefolgt von Säulenchromatographie.³⁵ Ebenso wurden Methoden entwickelt, bei denen das Ruthenium mit einer wässrigen Lösung von Tris(hydroxymethyl)phosphan aus der organischen Phase extrahiert wurde.³³ Ferner ist es möglich, den Katalysator durch Behandlung des Rohproduktes mit DMSO oder Triphenylphoshanoxid zu entfernen.³⁶ Auch die Durchführung der Metathese in ionischen Flüssigkeiten²⁸ und anschließende Extraktion mit einem unpolaren Lösungsmittel stellt eine Möglichkeit dar, das Ruthenium zu entfernen. Dies sind jedoch aufwendige und in größerem Maßstab wenig praktikable Vorgehensweisen.

Die andere Möglichkeit besteht in der Fixierung des Katalysators auf einem Träger. Es sind bereits Ru-Präkatalysatoren auf Sol-Gelen,^{20g} mesoporen Materialien^{20i,1}, modifiziertem Kieselgel^{20p} und anderen Polymeren immobilisiert worden.^{20a-f,h,j,km-o,q} Bei vielen anderen bekannten Beispielen ist der Präkatalysator über einen reversibel gebundenen Liganden am Träger fixiert (Boomerang-Katalysatoren). In diesen Fällen liegt die eigentliche katalytisch aktive Spezies in Lösung und nicht an das Polymer gebunden vor (Schema 2.6.1).^{20a-i,k-o,q}

Schema 2.6.1: Phosphan-fixierte Katalysatoren.²⁰ⁱ

Als Folge kommt es teilweise zum "Ausbluten" des Katalysators, da die erneute Bindung des Katalysors an den Träger nicht quantitativ verläuft. Dies gilt sowohl für die Fälle, wo der Katalysator an ein unlösliches Netzwerk gebunden ist^{20a-c,e-m,o,p} sowie für jene, bei denen es sich um ein lösliches Polymer handelt.^{20d,n,q}

Im Rahmen dieser Arbeit wurden nun sowohl Methoden entwickelt, um Ru-NHC-Komplexe auf löslichen Polymeren, Polymernetzwerken und Kieselgel zu immobilisieren als auch zur nachträglichen Entfernung des Katalysators aus dem jeweiligen Reaktionsprodukt. Die Funktionalisierbarkeit der Ru-NHC-Komplexe sollte zur Polymerfixierung bzw. zur Entfernung des Katalysators ausgenutzt werden.

Die Anbindung an einen Träger sollte über die Seitenkette des NHC erfolgen, da dieses während der Metathese nicht abgespalten wird. Wenn der Katalysator an ein Netzwerk gebunden wird, ist die katalytische Aktivität stark reduziert, was daran liegt, dass nicht alle katalytisch aktiven Zentren gleich gut zugänglich sind.

Aus diesem Grund wurde zunächst ein polymerisierbarer Komplex zum Einbau in ein lösliches Polymer dargestellt (Schema 2.6.2), welcher eine Norbornengruppe in der Seitenkette trägt. Es wurde bewusst eine lange Alkylkette zwischen dem Ru-Zentrum und der funktionellen Gruppe gewählt, um Reaktionen oder unerwünschte Wechselwirkungen zu vermeiden (siehe Kapitel 2.5).

Der Norbornencarbonsäureester 77 lässt sich in guten Ausbeuten durch Veresterung von 6-

Bromhexanol **51** mit Norbornencarbonsäure in Gegenwart von DCC und DMAP darstellen. Anschließende Umsetzung mit *N*-Mesitylimidazol **9** liefert das gewünschte Imidazoliumsalz **78**. Das entsprechende Carben wird durch Deprotonierung mit KO*t*Bu dargestellt und reagiert dann mit dem Grubbs-Katalysator **2** zu dem gewünschten Komplex **79** in 33 % Ausbeute.

Schema 2.6.2: Darstellung des polymerisierbaren Präkatalysators 79.

Die katalytische Aktivität von **79** entspricht der anderer Ru-NHC-Komplexe. So können auch Produkte mit tetra-substituierten Doppelbindungen gebildet werden. (Tabelle 2.6.1).

Substrat	Produkt	Zeit/h	Ausbeute
Ts N 39	Ts N 40	24	72 % (GC)
EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	16	94 % (isoliert)

Tabelle 2.6.1: Katalytische Aktivität des Präkatalysators 79 (5 mol % [Ru], CH₂Cl₂, 40 °C).

Der Komplex **79** lässt sich durch ROMP mit Norbornen^{3,4e,f,20g,21c} copolymerisieren (Schema 2.6.3). Das Polymer wird nach der Darstellung in CH₂Cl₂ (5 mg Kat/1 g Monomer) durch Zugabe von Methanol als weicher gummiartiger Feststoff **80** ausgefällt und erweist sich als katalytisch aktiv. So gelang die Zyklisierung von Bisallylmalonsäurediethylester **24** quantitativ (5 mol % [Ru], CH₂Cl₂, 40 °C, 24 h). Allerdings ließ sich das Polymer **80** nach der Reaktion nur sehr schlecht mit MeOH wieder ausfällen, was die gewünschte Abtrennung des Katalysators erschwerte. Das Lösungsmittel musste im Vakuum entfernt werden und das Produkt wurde anschließend mit MeOH aus dem Polymer extrahiert. Für eine vollständige Abtrennung des Polymers vom Produkt war überdies eine kurze Filtration durch Kieselgel notwendig.

Schema 2.6.3: Immobilisierung des Katalysators 79.

Andere gespannte Cyloalkene wie Cycloocten^{3,9a} lassen sich ebenfalls als Monomer verwenden. Auch in diesem Fall lässt sich das Polymer **81** mit dem Katalysator nach dem Entfernen des Lösungsmittels und Waschen des Rückstandes mit Methanol wiedergewinnen. Allerdings wird auch hier ein Teil des Polymers gelöst. Aus diesem Grund ist ebenfalls eine kurze Filtration durch Kieselgel unumgänglich, um das Polymer vollständig vom Produkt abzutrennen.

Lauf	Zeit/h	Umsatz (NMR)
1	0.5	quantitativ
2	0.5	quantitaiv
3	0.5	quantitativ
4	1	quantitativ
5	1	quantitativ
6	1	75%
7	4	20%

Tabelle 2.6.2: Wiederholter Umsatz von Bisallylmalonsäurediethylester **24** mit **81** (5 mol % [Ru] bezogen auf **24**, CH₂Cl₂, 40 °C).

Nun wurde die Anwendbarkeit dieser Methode auf andere Substrate untersucht. So kann z.B. auch Allylmethallylmalonsäurediethylester **25** unter Rückgewinnung des Katalysators wiederholt

mit 81 quantitativ umgesetzt werden.

Versuch	Zeit/h	Umsatz (NMR)
1	0.5	quantitativ
2	0.5	"
3	0.5	,,
4	1	"
5	1	40 %
6	6	20 %

Tabelle 2.6.3: Wiederholter Umsatz von Allylmethallylmalonsäurediethylester 25 mit 81(5 mol % [Ru], CH2Cl2, 40 °C).

Anspruchsvolle Substrate wie **39** können ebenso durch den fixierten Katalysator umgesetzt werden (Schema 2.6.4), wobei dieser aber sehr stark an Aktivität verliert, was auf Zersetzung des Katalysators zurückzuführen sein dürfte.

Versuch	Zeit/h	Umsatz (NMR)
1	24	80 %
2	24	23 %

Schema 2.6.4: Umsetzung von Bismethallyltosylamid 39 mit 81 (5 mol % [Ru], CH₂Cl₂, 40 °C).

Ebenso können große Ringe durch Olefinmetathese dargestellt werden (Schema 2.6.5). Auch in diesem Fall ist keine Wiederverwendbarkeit gewährleistet.

Versuch	Zeit/h	Ausbeute
		(isoliert)
1	2	92 %
2	2	35 %
3	4	<10 %

Schema 2.6.5: Bildung des Makrolaktons 38.

2.7 Fixierung von Ru-NHC-Katalysatoren auf Merrifield-Harzen

Nun wurde untersucht, ob sich die Alkoholfunktionalität des Komplexes **59** zur Immobilisierung an einem unlöslichen Polymernetzwerk ausnutzen lässt. Wegen der Stabilität des Komplexes **59** wurde dieser für die Immobilisierung verwendet.

Es wurde versucht, diesen durch eine Williamson-Ether-Synthese mit einem Chlormethylfunktionalisierten Polystyrolharz **82** zu immobilisieren^{21a,30} (Schema 2.7.1). Wegen der stabilen Ru-NHC-Bindung sollte so ein Ausbluten des Katalysators verhindert werden.

Schema 2.7.1: Versuchte Immobilisierung des Katalysators 59 durch eine Benzyletherbindung.

Unter den basischen Reaktionsbedingungen einer Williamson-Ethersynthese kam es allerdings zur Zersetzung des Komplexes und das erhaltene Polymer war nicht katalytisch aktiv.

Daher wurde nach einem Polymer gesucht, welches eine funktionelle Gruppe trägt, die schnell und ohne weitere Reagenzien mit Alkoholen reagiert. Es bot sich hier PS-fixiertes Benzylisocyanat **83a** an, welches mit einem primären Alkohol zu einem Carbaminsäureester reagieren sollte. Ein solches Harz ist kommerziell bei Argotech® erhältlich.

Es stellte sich heraus, dass die Reaktion bei Raumtemperatur sehr langsam abläuft und der Zerfall des Komplexes **59** in Lösung mit der Carbamatbildung konkurrierte. Durch Verwendung von

HCl als Katalysator kann die Carbamatbildung beschleunigt werden. Das nach 6 h Reaktionszeit erhaltene Material **84a** ist rot gefärbt und hat einen [Ru]-Gehalt von 2.51 %. Das bedeutet, dass 39 % aller NCO-Gruppen mit einem Alkohol reagiert haben. Im IR-Spektrum ist deutlich die Carbonylschwingung eines Carbaminsäureesters anhand einer starken Bande bei 1690 cm⁻¹ zu erkennen. Durch längere Reaktionszeiten lässt sich die Beladung nicht weiter erhöhen, da es dann zum Zerfall des Katalysators **59** in Lösung kommt.

a: 1% vernetztes PS-Divinylbenzol-Copolymer b: makroporöses PS-Divinylbenzol-Copolymer

Schema 2.7.2: Immobilisierung des Katalysators 59 durch eine Carbamatbindung.

Das so erhaltene Polymer erwies sich in der Metathesereaktion als katalytisch aktiv, auch wenn die Reaktionszeiten deutlich länger waren als mit freiem **59** in Lösung. So werden für den Ringschluss von **24** 4 h im ersten Lauf und bis zu 24 h im 3. Lauf benötigt. Im 4. Versuch ist der Umsatz bereits nicht mehr vollständig. Der [Ru]-Gehalt des Endproduktes nach einfacher Filtration des Katalysators liegt bei 600 ppm (bestimmt durch Atomabsorbtionsspektroskopie), was einer 96 %-igen Entfernung des Katalysators entspricht.

Schema 2.7.3: Umsetzung von Bisallylmalonsäurediethylester 24 mit 84a.

Auch das Makrolakton **38** kann in 90 % Ausbeute mit der üblichen *E/Z*-Selektivität gebildet werden. Ebenso können Produkte mit tetra-substituierter Doppelbindung dargestellt werden (Tabelle 2.7.1).

Substrat	Duo dulat	Ausbeute	[Ru] im Produkt
Substrat	Produkt	(isoliert)	nach Filtration
EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	96 %	600 ppm
37	38	90 % (<i>E</i> /Z=3.5:1)	nicht bestimmt
EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	64 %	nicht bestimmt

Tabelle 2.7.1: Überblick über die katalytische Aktivität von 84a (CH₂Cl₂, 40 °C, 5 mol % [Ru]).

Nachdem im Rahmen dieser Arbeit gezeigt werden konnte, dass es möglich ist, den Komplex **59** über eine Carbamatbindung an ein Polymernetzwerk anzubinden, lag es nahe, diese Immobilisierung zu nutzen, um eine Ringschlussmetathese in Medien zu ermöglichen, die aufgrund der geringen Löslichkeit des Katalysators normalerweise nicht verwendet werden können. Das oben beschriebene Polystyrol/DVB-Copolymer **83a** hat allerdings den Nachteil, dass zum Quellen des Polymers ein Lösungsmittel wie CH₂Cl₂ oder Toluol verwendet werden muss, damit die reaktiven Zentren zugänglich werden. Dementsprechend ließ sich mit diesen Polymeren keine Ringschlussmetathese in Methanol oder Wasser durchführen.

Es sind jedoch funktionalisierte makroporöse PS-Harze kommerziell erhältlich, die in jedem beliebigen Medium, also auch Wasser oder Methanol, verwendet werden können, da hier kein Quellen des Polymers nötig ist. Analog der oben beschriebenen Vorgehensweise konnte an dieses makroporöse funktionalisierte Harz **83b** der Katalysator **59** unter Säurekatalyse gebunden werden (Schema 2.7.2). Der [Ru]-Gehalt des Polymers betrug 1.62 % (bestimmt durch Atomabsorbtionsspektroskopie), was einem 25 %-igen Umsatz bezüglich der NCO-Gruppen entspricht.

Mit diesem Katalysator **84b** kann das Standard-Substrat **24** in MeOH bzw. MeOH/Wasser-Gemischen umgesetzt werden (Schema 2.7.4).

Schema 2.7.4: Metathese in Methanol mit 84b.

Eine Übersicht der in MeOH und MeOH/Wasser-Gemischen durchgeführten Ringschlussmetathesen ist in Tabelle 2.7.2 aufgeführt. Die relativ niedrigen Umsätze sind zum einen sicherlich auf Diffusionseffekte zurückzuführen, zum anderen aber auch auf Lösungsmitteleffekte. So ist zum Beispiel die Reaktivität des fixierten Komplexes **85b** in CH_2Cl_2 deutlich besser als in MeOH.

Substrat	Produkt	LM	Mol % [Ru]	Ausbeute
EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	MeOH	5	79 %
>>	"	3:1 MeOH/ H ₂ O	5	51 %
,,	,,	CH ₂ Cl ₂	5	93 %

 Tabelle 2.7.2: Metathese in protischen Medien mit 85b (24 h, Rückfluss).

Das Konzept, Metathese in protischen Medien durch wasserkompatible Polymere zu ermöglichen, wurde bereits von *Blechert et al.* erfolgreich untersucht.²⁰ⁿ Hierbei wurden die Katalysatoren (Derivate von **4**) auf wasserlöslichem Polyethylenglykol geträgert.

Bereits 1996 wurden wasserlösliche RCM-Katalysatoren entwickelt,²⁹ welche allerdings Katalysatoren der 1. Generation sind und eine deutlich geringere Aktivität aufweisen als solche, bei denen ein Phosphan durch ein NHC ersetzt worden ist. Bei diesen Derivaten von **2** trägt der Phosphanligand eine ionische oder polare Gruppe (Schema 2.7.5). Diese Verbindungen können Standardsubstrate wie **24** z. B. in protischen Medien jedoch nicht umsetzen. Ein weiterer Nachteil dieser Komplexe ist die aufwändige Darstellung des Phosphanliganden.

Schema 2.7.5: Wasserlösliche Metathesekatalysatoren.

2.8 Kieselgel-fixierte Katalysatoren

Im Rahmen dieser Arbeit wurden auch Versuche unternommen, Ru-NHC-Komplexe mit freier Alkoholfunktionalität in der Seitenkette des Liganden auf Kieselgel zu immobilisieren. Der stark polare Komplex **59** z. B. kann durch Lösen in Methylenchlorid, Zugabe von Kieselgel und anschließendes Entfernen des Lösungsmittels physisorbiert werden. Werden damit Metathesen in Pentan durchgeführt, kann der Katalysator durch Filtration entfernt werden und man erhält das Reaktionsprodukt mit einem stark reduzierten [Ru]-Gehalt. Anschließend ist es möglich, denselben Katalysator bis zu viermal wiederzuverwenden oder konsekutiv zur Umsetzung von verschiedenen Substraten zu nutzen. Eine Übersicht über die durchgeführten Katalysen befindet sich in Tabelle 2.8.1.

Substrat	Produkt	Ausbeute (isoliert)	[Ru] im Produkt nach Filtration
EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	Quantitativ	1700 ppm
0 1 1 1 1 1 3 7	38	90 % (<i>E</i> /Z=3.5:1)	Nicht bestimmt
EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	62 %	Nicht bestimmt

Tabelle 2.8.1: Katalytische Aktivität des auf Kieselgeladsorbierten Katalysators **59** (CH₂Cl₂, 40 °C, 5 mol % [Ru], 24 h).

Bei der Verwendung von *n*-Pentan als Lösungsmittel enthält das Reaktionsprodukt nach Abfiltrieren noch 1700 ppm [Ru]. Das entspricht etwa einer 92 %-igen Entfernung des Katalysators. Allerdings müssen unpolare Substrate verwendet werden, die sich in Lösungsmitteln wie *n*-Pentan oder Toluol lösen. Mit einem stärker polaren Lösungsmittel wie CH₂Cl₂ wird der Katalysator wieder vom Träger eluiert.

Dieses Problem konnte gelöst werden, indem man das Kieselgel zunächst wie in Schema 2.8.1 beschrieben mit MeSiCl₃ funktionalisierte. Arbeiten in der Literatur hatten gezeigt, dass dabei in aller Regel lediglich zwei Hydroxygruppen der Kieselgeloberfläche mit je einem Molekül MeSiCl₃ reagieren,³⁸ so dass die verbleibende Si-Cl-Funktion mit der OH-Gruppe des Komplexes umgesetzt werden kann. In Abbildung 2.8.1 ist schematisch die Oberfläche des Kieselgels und ihre Funktionalisierung dargestellt.

Schema 2.8.1: Funktionalisierung des Kieselgels.

Durch Rühren mit dem so aktivierten Kieselgel **87a** kann man den Komplex **59** wie in Schema 2.8.2 dargestellt, immobilisieren.

Schema 2.8.2: Immobilisierung des Katalysators 59 auf Kieselgel.

Rührt man eine Lösung von 50 mg **59** in 30 ml CH_2Cl_2 mit 5 g des aktivierten Kieselgels **87a**, so färbt sich dieses rot während sich die CH_2Cl_2 -Phase vollständig entfärbt. Der so auf Kieselgel gebundene Katalysator **59** kann nicht mehr mit CH_2Cl_2 eluiert werden und ist unter anderem in der Lage, Produkte mit tetra-substituierten Doppelbindungen zu bilden (Tabelle 2.8.2). Auch Substrate wie **89** unter Bildung des achtgliedrigen Ringes **90** können mit zufriedenstellenden Ausbeuten umgesetzt werden (Schema 2.8.3). Der [Ru]-Gehalt im Metatheseprodukt kann durch Filtration auf 1200 ppm gesenkt werden, was einer 95 %-igen Entfernung des Rutheniums entspricht.

Schema 2.8.3: Bildung eines 8-Ring unter Verwendung von 88a.

Tabelle 2.8.2: Mit 88a durchgeführte Umsetzungen (CH₂Cl₂, 5 mol % [Ru], 40 °C, 24 h).

Als nächstes wurden Versuche unternommen, die verbleibenden Si-Cl-Gruppen am Kieselgel zu deaktivieren. Bei der Zugabe von Alkoholen (Ethanol, *iso*-Propanol) löst sich jedoch der Katalysator vom Kieselgel. Dies ist dadurch zu erklären, dass hierbei HCl frei wird und so die Silylether teilweise hydrolysiert werden.

Um die Stabilität des Silylethers zu erhöhen, bot sich die Funktionalisierung mit Phenyltrichlorsilan an (Schema 2.8.4), da Phenylsilylether stabiler sind als Methylsilylether. Die katalytische Aktivität (Tabelle 2.8.3) bleibt erhalten und der [Ru]-Gehalt im Reaktionsprodukt **22** kann auf 250 ppm gesenkt werden, was einer Entfernung von 99 % des eingesetzten Rutheniums entspricht.

Schema 2.8.4: Fixierung von 59 als Phenylsilylether unter Bildung von 88b.

Substrat	Produkt	Ausbeute (isoliert)	[Ru] im Produkt
EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	quantitativ	250 ppm
37	38	81 %	nicht bestimmt
EtO ₂ C CO ₂ Et	EtO ₂ C CO ₂ Et	64 %	nicht bestimmt

Tabelle 2.8.3: Katalytische Aktivität von **88b** (5 mol % [Ru] CH₂Cl₂, 40 °C, 24 h).

Mit der Fixierung auf Kieselgel wurde eine Methode gefunden, einen Ru-NHC-Katalysator zu immobilisieren und nach der Metathesereaktion zu 99 % zu entfernen. Diese Werte sind vergleichbar mit den in der Literatur veröffentlichten Ergebnissen, wo ebenfalls nur ca. 99 % des eingesetzten [Ru] entfernt werden, allerdings die Immobilisierung auf Polystyrol-Harzen erfolgt.^{20c,j,k} Kieselgel ist als Trägermaterial aus Kostengründen für eine industrielle Anwendung von weitaus größerem Interesse als die in vielen Fällen benutzten Merrifield-Harze. Lediglich in den Arbeiten von *Buchmeiser* können ca. 99.7 % des eingesetzten [Ru] entfernt werden. Allerdings ist die Funktionalisierung des hier verwendeten Kieselgel-Trägers wesentlich umständlicher.^{20p}

Die Immobilisierung funktionalisierter Ru-NHC-Komplexe konnte erfolgreich somit durchgeführt werden. Jetzt galt es die Funktionalisierung der Komplexe zur nachträglichen Entfernung des Katalysators aus dem Reaktionsproduktzu nutzen. Das funktionalisierte Kieselgel 87b bietet sich an, um den Ru-NHC-Komplex nach der Reaktion abzufangen. Damit wurde die Möglichkeit eröffnet, die Aktivität eines freien Katalysators in Lösung mit der leichten Abtrennbarkeit eines fixierten Katalysators zu vereinbaren. Die leichte Abspaltbarkeit der TMS-Gruppe erwies sich beim Abfangen des Katalysators nach Beendigung der Reaktion als vorteilhaft. So war es zum Beispiel möglich, Metathesen mit dem TMS-geschützten Katalysator 57 durchzuführen und dessen TMS-Gruppe nach Beendigung der Metathesereaktion durch Hydrolyse mit MeOH und Spuren von HCl abzuspalten (Kapitel 2.5). Das Lösungsmittel wurde quantitativ entfernt und nach Aufnahme des Rückstandes in einem wasserfreien nicht protischen Lösungsmittel und Zugabe des nach Schema 2.8.1 funktionalisierten Kieselgels der Katalysator gebunden. Das nach Filtration erhaltene Rohprodukt enthielt noch 3300 ppm [Ru]. Diese Methode wurde anhand des Standardsubstrates 24 (5 mol % [Ru], CH₂Cl₂, 40 °C, 24 h) überprüft (Schema 2.8.6).

Schema 2.8.6: Abfangen des Katalysators mit 87b.

Die Funktionalisierung des NHC-Liganden ermöglicht also sowohl die Fixierung der Komplexe auf verschiedenen Materialen und löslichen Polymeren als auch die Entfernung des freien Katalysators nach der Reaktion.

2.9 Anwendung unsymmetrischer Imidazoliumsalze in Pd-katalysierten Reaktionen

Neben Alkohol-funktionalisierten NHC-Komplexen (siehe oben) sind aus ähnlichen Gründen unsymmetrische NHC-Komplexe mit freien Carbonsäuregruppen interessant. Daher wurden TMS-Ester von Bromcarbonsäuren dargestellt, um die Säurefunktionalität für die Alkylierung des *N*-Mesitylimidazols **9** zu schützen, da es ansonsten zu einer Protonierung von **9** kommt.

Es ist möglich durch Umsetzung der TMS-Ester **91** bzw. **92** mit *N*-Mesitylimidazol **9** die Imidazoliumsalze **93** und **94** mit einer freien Säurefunktion darzustellen. Die TMS-Gruppe wird bei der wässrigen Aufarbeitung der Salze abgespalten (Schema 2.9.1).

Schema 2.9.1: Bildung der Carbenvorläufer 93 und 94 mit Säurefunktion.

Das so erhaltene Salz **93** kann durch doppelte Deprotonierung mit 2 Äquivalenten KO*t*Bu in das Carben überführt werden. Dieses kann *in situ* mit elementarem Schwefel in guten Ausbeuten in den entsprechenden Thioharnstoff **95** überführt werden, was als Nachweis für die Existenz des freien Carbens gelten kann.²²

Schema 2.9.2: Nachweis von Carbenen mit freier Carboxylatgruppe.

Ein entsprechender Ru-NHC-Komplex ließ sich allerdings nicht darstellen. Die Säuregruppe kann auf dieser Stufe zwar wieder mit HMDS in einen Silylester **96** überführt werden (Schema 2.9.3), aber es ließ sich auch aus **96** kein Ru-NHC-Komplex erhalten.

Schema 2.9.3: Bildung des TMS-Esters 96 auf der Stufe des Salzes.

Allerdings kann aus dem Salz **94** durch Reaktion mit Ag_2O^{39} der zweikerniger Silbercarbenkomplex **97** dargestellt werden (Schema 2.9.4).

Schema 2.9.4: Bildung des Ag-NHC-Komplexes 97 mit Carboxylatfunktion.

Die Einkristallstrukturanalyse zeigt, dass hier jedes Ag-Atom von je einem NHC-Ligand und einer Carboxylatgruppe koordiniert ist (Abbildung 2.9.1).

Abbildung 2.9.1: Kristallstruktur von 97.

Es ist bekannt, dass Imidazoliumsalze durch Deprotonierung mit einer starken Base *in-situ* Carbene bilden und somit als Zusätze in Pd-katalysierten Reaktionen eingesetzt werden können.⁴⁰ So können auch die Salze **93** und **94** zum Beispiel in einem *in-situ*-System, wie in Schema 2.9.5 gezeigt, einen Pd-NHC-Komplex bilden, welcher Heck-Reaktionen katalysiert.

Schema 2.9.5: Heck-Reaktion mit 93 und 94.

Ebenso lässt sich dieses in-situ-System in der Suzuki-Reaktion einsetzen (Schema 2.9.6).

Imidazoliumsalz	R	Ausbeute (isoliert)
93	4-COMe 100	78 %
94	4-COMe 100	74 %
93	2-CN 101	77 %
94	2-OMe 102	68 %

Schema 2.9.6: Suzuki-Kreuzkupplung mit dem in-situ System.

Außerdem wurde der Ag-NHC-Komplex **97** mit Pd(PhCN)₂Cl₂ zu dem entsprechenden Pd-NHC-Komplex umgesetzt. Diese Verwendung von Ag-NHC-Komplexen als Carben-Transfer-Reagenzien ist bekannt.³⁹ Die genauere Charakterisierung des Produktes war allerdings schwierig, da der gebildetete Pd-Komplex in allen Lösungsmitteln sehr schwer löslich ist, was auf eine dimere oder gar oligomere Struktur hindeutet. Die IR-spektroskopischen Daten mit Banden bei 1613 und 1377 cm⁻¹ deuten auf eine Koordination des Carboxylats an das Pd-Zentrum hin. Das EI-MS zeigt ein Signal, welches einer Verbindung des Typs Pd(NHC)₂ entspricht.

Mit den hier beschriebenen Systemen ist es möglich, C-Br-Bindungen zu aktivieren, jedoch keine C-Cl-Bindungen. Dies könnte auf die Bildung von Biscarben-Komplexen zurückzuführen sein. Die eigentliche katalytisch aktive Spezies ist jedoch wahrscheinlich eine Mono-Carben-Spezies.⁴¹ Die Bildung dieser Spezies könnte aufgrund der Chelatisierung weniger begünstigt sein, was die reduzierte katalytische Aktivität erklären würde.

2.10 Ringöffnende Metathese

Die Olefinmetathese stellt ein Werkzeug zur Spaltung von C-C-Doppelbindungen unter Bildung von Alkenen dar. Im Vergleich zur Ringschlussalkenmetathese wurde die ringöffnende Alkenmetathese unter Verwendung von Ethylen als Reagenz nur selten angewendet und noch nicht systematisch untersucht.⁴² Naturstoffe, die häufig große oder mittlere Ringe als Strukturelement enthalten, können durch ringöffnende Olefinmetathese^{2c,42b,43} als Alternative zur Ozonolyse derivatisiert werden. Hierbei macht man sich die Reversibilität der Olefinmetathese^{2,42b,44} zu Nutzen, indem man die Cycloalkene mit einem leichten Überdruck von Ethen umsetzt. Höfle gelang es z. B., Epothilon C durch ringöffnende Metathese zu derivatisieren.^{42b}

Im Rahmen dieser Arbeit sollte Diallylether **103** als leicht handhabbare Ethenquelle verwendet werden, da es durch Ringschlussmetathese Ethen *in situ* liefert (Schema 2.10.1). So sollte die Verwendung von gasförmigem Ethen vermieden werden.

Schema 2.10.1: Ringöffnende Metathese mit Diallylether 103 als Ethenäquivalent.

Das Makrolakton 38 und der 8-Ring 90 wurden unter verschiedenen Bedingungen mit

Diallylether **103** als Ethenquelle umgesetzt. Es zeigte sich, dass hier der Grubbs-Katalysator **2** durchweg die besten Ergebnisse lieferte. Mit 5 Äquivalenten Diallylether **103** und 10 mol % des Katalysator **2** ließen sich so 77 % bzw. 91 % Umsatz bezüglich der Substrate **38** und **90** erzielen (Tabelle 2.10.1). Wegen der Reversibilität der Ringöffnung liefert diese bessere Ausbeuten, wenn man die Reaktion in einem geschlossenen Gefäß durchführt, weil sich während der Reaktion ein leichter Überdruck von Ethen aufbaut. Die Verwendung eines Autoklaven ist allerdings bei kleinen Ansätzen nicht erforderlich.
Substrat	Produkt	Äquivalente Diallylether	Bedingungen	Umsatz (NMR)
	0 1 1 1 37	2	2/5 mol % CH₂Cl₂/40 °C	51 %
,,	,,	2	2/5 mol % Toluol/80 °C	15 %
22	,,	5	2/10 mol % CH ₂ Cl ₂ /40 °C	77 % (isoliert)
22	,,	5 (über 6 h zugegeben)	2/10 mol % CH ₂ Cl ₂ /40 °C	54 %
>>	,,	5	5/10 mol % CH ₂ Cl ₂ /40 °C	18 %
Ts N 90	Ts N-()4 89	2	2 /5 mol % CH ₂ Cl ₂ /40 °C	70 %
22	>>	2	2/10 mol % CH ₂ Cl ₂ /40 °C	91 % (isoliert)
,,	,,	2	5 /10 mol % CH ₂ Cl ₂ /40 °C	38 %

Tabelle 2.10.1:	Ergebnise d	er ringöffnenden	Metathese	von n	nittleren	und	großen	Ringen	(24 h
Reaktionszeit).									

Die Ergebnisse deuten an, dass sich Ringe mittlerer Größe leichter öffnen⁴⁵ als große Ringe, in denen keine Ringspannung vorliegt. Außerdem ist ersichtlich, dass der Erfolg der Reaktion sehr

stark von den Bedingungen abhängt (Tabelle 2.10.1). Als günstig erwiesen sich eine niedrige Reaktionstemperatur sowie- im Gegensatz zu den Ergebnissen von Höfle,^{42b} der den stabileren Katalysator **3** verwendete- die Verwendung von **2** als Präkatalysator. Dies kann vielleicht teilweise dadurch erklärt werden, dass die Stabilität des Katalysators bei der Ringöffnung von Epothilon C die entscheidende Rolle spielt.

Unter den optimierten Bedingungen wurden schließlich Substrate verschiedener Ringgröße geöffnet (Tabelle 2.10.2).

Die Ringe mittlerer Größe lassen sich in hervorragenden Ausbeuten öffnen. Der Grund für die relativ hohen Ausbeuten im Vergleich zu Makrozyklen liegt in der Ringspannung solcher Verbindungen. Nicht gespannte 5-Ringe oder 7-Ringe lassen sich mit dieser Methode nicht oder nur in schlechten Ausbeuten umsetzen. Bei keinem der Beispiele wurde eine Dimerisierung oder gar Polymerisation beobachtet. Außerdem werden die gängigen funktionellen Gruppen toleriert, so dass eine praktische Anwendung in der Derivatisierung von Naturstoffen möglich erscheint.

2. Diskussion der Ergebnisse

Substrat	Produkt	Ausbeute (isoliert)
		80 %
104		
IS N	Ts N-(.)4	91 %
90	89	
38	0 1 1 1 37	77 %

106		
	$ \begin{array}{c} Ph \\ O_2 S \\ N - ()3 \\ ()3 \\ \end{array} $	92 %
	107	

2. Diskussion der Ergebnisse

Tabelle 2.10.2: Öffnung von Ringen verschiedener Größe mit optimierten Bedingungen.

Gespannte 5-Ringe konnten ohne Polymerisation in exzellenten Ausbeuten geöffnet werden,^{2a,b,f,46} da hier keine Rückreaktion möglich ist (Schema 2.10.2). Die Menge des Katalysators konnte in diesen Fällen ebenso reduziert werden wie die benötigte Menge an Diallylether **103**. Aus diesem Grund ist ein geschlossenes Reaktionsgefäß nicht notwendig.

Schema 2.10.2: Ringöffnung des Norbornenderivates 110.

Im folgenden wurde untersucht, ob diese Methode auch auf Naturstoffe wie Terpene angewendet werden kann. Zum Beispiel gelingt die Ringöffnung an einem Isomer des (+)-beta-Caryophyllens **112** (Schema 2.10.3) in exzellenter Ausbeute, da hier wie bei **111** die Rückreaktion nicht stattfinden kann. In diesem Fall ist dies nicht nur auf die Ringspannung des Substrates zurückzuführen, sondern auch auf das Fehlen einer funktionellen Gruppe, die durch Koordination an den Katalysator den Ringschluss erleichtert. Diese Reaktion lässt sich auch im größeren Maßstab in gleichbleibend guten Ausbeuten durchführen.

Schema 2.10.3: Ringöffnende Metathese an einem Caryophyllenisomer.

Bei der ROM dieser Substrate kann auch der Nolan-Katalysator **5** verwendet werden, der im Fall der Substrate, bei denen eine Rückreaktion möglich ist, nur schlechte Ausbeuten liefert.

Bei der Anwendung dieser Methode auf weitere Terpenderivate stellte sich heraus, dass nicht nur die Ringgröße maßgebend für den Erfolg der Reaktion ist, sondern offensichtlich auch die Lage der Doppelbindung im Substrat. So konnten zum Beispiel das (-)-Isocaryophyllen **114** und sein Doppelbindungsisomer **115** nicht umgesetzt werden (Schema 2.10.4). Auch die Variation des Katalysators und des Lösungsmittels bringt keine Verbesserung.

Schema 2.10.4: Einfluss der Lage der Doppelbindung auf den Erfolg der Ringöffnung.

3. Zusammenfassung

In der Olefinmetathese gehören Ru-Komplexe zu den am meisten verwendeten Katalysatoren. Durch die Einführung von nukleophilen heterozyklischen Carbenen (NHC) als Liganden lassen sich hohe Stabilität und Aktivität miteinander verbinden. Auch immobilisierte Metathesekatalysatoren sind bekannt, wobei hier als Trägermaterial in der Regel Polystyrol-Harze verwendet wurden.

Die Möglichkeit zur Funktionalisierung von NHC-Liganden sollte im Rahmen der vorliegenden Arbeit für eine effiziente Immobilisierung der Katalysatoren ausgenutzt werden. Komplexe mit Alkoholfunktionalität in der Seitenkette schienen dafür besonders geeignet. Es gelang, eine Reihe unsymmetrischer Ru-NHC-Komplexe mit einer TMS-geschützten Alkoholgruppe darzustellen. Durch Behandlung mit HCl/MeOH konnten daraus die entsprechenden Verbindungen mit freier Alkoholgruppe dargestellt werden (Schema 3.1). Diese weisen die für Ru-NHC-Komplexe typische katalytische Aktivität in der RCM auf.

Schema 3.1: Darstellung eines Ru-NHC-Komplex mit Alkoholfunktionalität am Beispiel von 59.

So konnten diese Katalysatoren durch Umsetzung mit einem Isocyanat-funktionalisierten Polystyrol-Harz **83a/b** immobilisiert werden. Nach erfolgter RCM gelang eine effiziente Abtrennung des Katalysators **84a** durch einfache Filtration (Schema 3.2). Wird zur Immobilisierung ein makroporöses PS-Netzwerk **84b** verwendet, kann eine Metathese auch in protischen Lösungsmitteln durchgeführt werden.

Schema 3.2: Fixierung des Katalysators 59 über eine Carbamatbindung.

Ebenso gelang es, den Katalysator **59** kovalent an Kieselgel zu binden, dessen Oberfläche zuvor mit Trichlorsilanen modifiziert worden ist (Schema 3.3). Die katalytische Aktivität des Katalysators bleibt dabei erhalten.

Schema 3.3: Bildung des geträgerten Katalysators 88a.

Nach Abfiltrieren des so geträgerten Katalysators erhält man ohne weitere Reinigung ein Ringschlussprodukt mit einem [Ru]-Gehalt von lediglich 250 ppm. Dies entspricht einer 99 %igen Entfernung des eingesetzten [Ru].

Als Trägermaterialen für Ru-Katalysatoren sind in der Literatur neben Polystyrol-Harzen auch Sol-Gele und monolithische Materialien bekannt, welche entweder teuer oder kompliziert herzustellen sind. Das hier beschriebene Verfahren zur Immobilisierung der Katalysatoren auf Kieselgel erscheint daher wegen des sehr preiswerten Trägermaterials und der einfachen Durchführung vorteilhaft.

Zusätzlich konnte bei den Katalysatoren **58** und **67** eine vorher noch unbekannte, durch Kieselgel katalysierte *trans-cis*-Isomerisierung (Schema 3.4) beobachtet werden. Die so erhaltenen strukturell neuartigen Komplexe konnten durch Röntgenstrukturanalyse charakterisiert werden. Sie sind bei höheren Temperaturen ebenfalls katalytisch aktiv, weisen aber eine verlangsamte Phosphandissoziation auf.

Schema 3.4: Umlagerung der Komplexe 58: R=H, 67: R=Me in die Isomere 68 und 69.

Im Falle des Komplexes **74** entstand der *cis*-konfigurierte Komplex **75** spontan nach der Entschützung, ohne dass sich die *trans*-konfigurierte Verbindung isolieren ließ (Schema 3.5). Eine *cis*-Anordnung der Liganden in fünffach koordiniert Ru-NHC-Komplexen stellt bislang eine absolute Ausnahme dar.

Schema 3.5: Spontane Bildung des Komplexes 75.

Wird der silylierte Komplex **74** mit Pyridin behandelt, so erhält man einen kationischen Ru-NHC-Komplex **76** mit koordinierender OH-Gruppe (Schema 3.6). Dies legt nahe, dass die Isomerisierung über eine Abspaltung eines Chlorids und dessen anschließende Anlagerung des Liganden in *cis*-Stellung verläuft (Schema 3.4). Dieser Prozess wird durch den Nachbargruppeneffekt der OH-Funktion ausgelöst.

Schema 3.6: Komplex 76 als Pyridin-Addukt des Zwischenproduktes der Isomerisierung.

Ferner konnte ein Ru-NHC-Komplex **79** mit polymerisierbarer Seitenkette dargestellt werden, die durch Copolymerisation mit Norbornen oder Cycloocten in ein Polymer eingebaut werden kann (Schema 3.7). So kann der Katalysator über den stabil gebundenen NHC-Liganden an ein lösliches Polymer gebunden werden. Da es sich um ein lösliches Polymer handelt, ist die Aktivität vergleichbar mit der eines freien Katalysators in Lösung.

Schema 3.7: Fixierung des Katalysators 79 durch ROMP.

Auf diese Weise konnte der Katalysator mehrfach bei komplettem Umsatz des Substrates

wiederverwendet werden, wobei die Katalyse in Lösung stattfindet, der Katalysator jedoch mit dem Polymer abgetrennt werden konnte.

Überdies wurde die bislang wenig beachtete ringöffnende Metathese mit Ethen als Reagenz als Methode zur Spaltung von C-C-Doppelbindungen untersucht, die eine effiziente Alternative zur Ozonolyse zur Öffnung von großen und mittleren Ringen darstellt. Es wurde eine optimierte Vorschrift entwickelt unter Verwendung von Diallylether **103** als Ethenquelle (Schema 3.8).

Schema 3.8: Ringöffnende Olefinmetathese mit Diallylether als Ethenquelle.

Mittlere und große Ringe sowie gespannte Systeme konnten auf diese Weise in guten Ausbeuten geöffnet werden (Schema 3.9).

Schema 3.9: Effiziente ringöffnende Olefinmetathese an ausgewählten Beispielen.

4 Experimenteller Teil

4.1 Allgemeine Hinweise

Oxidations- sowie feuchtigkeitsempfindliche Reaktionen wurden unter Argon-Atmosphäre durchgeführt. Die hierbei verwendeten Lösungsmittel wurden vor Gebrauch wie unten angegeben getrocknet, destilliert und unter Argon aufbewahrt: THF, Et₂O (Mg-Anthracen); MeOH (Mg); CH₂Cl₂ (P₄O₁₀); DMF (Desmodur®, Dibutylzinnlaurat); Pyridin, Triethylamin (KOH); Pentan; Hexan, Toluol (Na/K); DMSO, Aceton (CaH₂).

Die Reaktionskontrolle erfolgte mittels Dünnschichtchromatographie. Hierbei wurden Kieselgel-Fertigfolien (Polygram SIL G/UV der Firma Macherey-Nagel, Darmstadt) und als Laufmittel Gemische aus *n*-Hexan/Ethylacetat verwendet. Die Detektion der Substanzen erfolgte entweder mit UV-Licht der Wellenlänge 254 bzw. 366 nm oder durch Ansprühen mit Molybdatophosphorsäure-Cer(IV)sulfat.

Säulenchromatographische Reinigungen wurden bei leicht erhöhtem Druck (Flash-Chromatographie) mit Kieselgel (Merck, Typ 9385, 230-400 mesh, 60 Å Porendurchmesser) oder Aluminiumoxid (Macherey & Nagel, Al_2O_3 , 90, neutral, 70-250 mesh) als stationärer Phase durchgeführt. Als mobile Phase wurde eine Mischung von *n*-Hexan/Ethylacetat bzw. bei flüchtigeren Verbindungen ein Gemisch aus *n*-Pentan/MTBE verwendet.

4.2 Analytische Methoden

NMR-Spektroskopie

Für NMR-spektrokopische Untersuchungen standen folgende Bruker-Geräte mit den jeweiligen Messfrequenzen zur Verfügung: AC 200, AMX 300, DPX 300, AV 400, WH 400 und DMX 600. Die chemischen Verschiebungen (δ) wurden in ppm relativ zu Tetramethylsilan [¹H sowie ¹³C, (interner Standard), CFCl₃ und H₃PO₄ (¹⁹F respektive ³¹P, externer Standard)] und die Kopplungskonstanten (J) in Hertz angegeben. Die Spektren wurden nach den Regeln für Spektren "erster Ordnung" ausgewertet.

Infrarotspektroskopie

Für infrarotspektroskopische Untersuchungen wurde ein Nicolet FT-7199-Spektrometer verwendet. Charakteristische und besonders starke Absorptionsbanden wurden als Wellenzahl in cm⁻¹ angegeben.

Ultraviolettspektroskopie

Die UV-Spektren der Verbindungen wurden als ca. 10⁻³ molare Lösungen an einem CARY 2300 Spektrometer gemessen. Die Angabe der Wellenlänge erfolgt in nm.

Massenspektroskopie

Zur Aufnahme von Massenspektren wurden ein Finnigan MAT 8200 (EI, FD), ein Finnigan MAT 95 (ESI, HR-MS) sowie ein Hewlett Packard HP 5989 Spektrometer (HPLC/MS) verwendet.

Analytische Gaschromatographie

Zur quantitativen Analyse von Substanzen wurden die Geräte Siemens Sichromat 1 und Hewlett

Packard 5890 (Serie II) unter Verwendung einer "fused silica"-Säule mit Polysiloxanfüllung (l=15m, $\phi=0,25$ mm) verwendet. Der quantitativen Auswertung lag die Integration über die Substanzpeaks ohne Berücksichtigung von Responsefaktoren zugrunde.

Elementaranalysen

Die Elementaranalysen sowie die Bestimmung des [Ru]-Gehalts wurden bei Dornis & Kolbe; Mülheim an der Ruhr, in Auftrag gegeben.

Rechnungen

Die Rechnungen wurden durchgeführt von Dr. Vyboishchikov am MPI für Kohlenforschung in Mülheim an der Ruhr. Es wurde das BP86-Funktional, bestehend aus dem Becke-88-Austauschfunktional und dem Perdew-86-Korrelationsfunktional, benutzt. Als Basissätze wurden der Tripel-Zeta-Valenzbasissatz für Ruthenium mit dem Stuttgarter quasirelativistischen Pseudopotential, und 6-31G* für die anderen Atome, eingesetzt.

4.3 Darstellung der Ausgangsmaterialien

Institutsinterne Chemikalien:

Benzyliden-dichloro-3-(5-cyanopentyl)-1-(2,4,6-trimethyl-phenyl)-imidazolin-2-yliden-(tricyclohexylphosphan)-ruthenium **16**, Benzyliden-dichloro-3-(oct-7-enyl)-1-(2,4,6-trimethylphenyl)-imidazolin-2-yliden-(tricyclohexylphosphan)-ruthenium **13**, Benzyliden-dichloro-(3-(2*tert*-butyl-dimethyl-silanyloxy-ethyl)-1-(2,4,6-trimethylphenyl)-imidazolin-2-yliden)-(tricyclohexylphosphan)-ruthenium **15** (alle Lutz Ackermann).

Nach Literaturvorschrift hergestellte Chemikalien:

5.^{11a} Nolan-Katalysator Benzyliden-dichloro-(3-(pent-4-enyl)-1-(2,4,6-trimethyl-phenyl)imidazolin-2-yliden-(tricyclohexylphosphan)-ruthenium $11^{24a}_{,24a}$ 8,8-Dichloro-8-(tricyclohexylphosphan)-1-(2,4,6-trimethylphenyl)-4,5,6,8a-tetrahydro-1*H*-1,3a-diaza-8-ruthena-azulen **30**,^{24a} 9,9-Dichloro-9-(tricyclohexylphosphan)-1-(2,4,6-trimethylphenyl)-1,4,5,6,7,9a-hexahydro-1H-**31**,^{24a} 10,10-Dichloro-10-(tricyclohexyl-phosphan)-1-(2,4,6-1,3a-diaza-9-ruthenacyloocten **32**,^{24a} trimethylphenyl)-1,4,5,6,7,8,10a-tetrahydro-1*H*-1,3a-diaza-10-ruthenacyclodecen 2-Phenyl-6-iodhexen **35**,⁴⁷ 1-Iodbutyl-4-trimethylammoniumiodid **42**,⁴⁸ Brompropanolameisen-**46**,⁵⁰ O-Acetyl-3-brompropanol **63**,⁵¹ **44**.⁴⁹ 2-Methyl-4-brombutanol säureester 2-**89**.⁵² Norbornencarbonsäuremethylester **110**,⁵³ Brompropionsäuretrimethylsilylester 6-Bromhexanoldiphenvl-*t*-butylsilvlether **116.**⁵⁴ *N*-Allvltosvlamid **117**.⁵⁵

4.4 Darstellung der RCM-Substrate

Bis-(2-methyl-2-propenyl)-malonsäurediethylester 7

EtO₂C CO₂Et NaH (0.44 g, 18 mmol) wird in DMF (60 ml) suspendiert und bei 0 °C innerhalb von 15 min tropfenweise mit Malonsäurediethylester (1.00 g, 6.2 mmol) versetzt. Zu der auf Raumtemperatur erwärmten Suspension wird Methallylchlorid (1.61 g, 17.9 mmol) gegeben. Die Suspension wird 16 h bei Raumtemperatur gerührt und daraufhin mit H₂O (50 ml) versetzt. Die wässrige Phase wird mit MTBE (2x100 ml) extrahiert. Die vereinigten organischen Phasen werden mit H₂O (3x100 ml) gewaschen und über Na₂SO₄ getrocknet. Das Lösungsmittel wird im Vakuum entfernt und der Rückstand durch Säulenchromatographie gereinigt (*n*-Hexan/EE 30:1). Das Produkt **7** (885 mg, 53 %) wird als farblose Flüssigkeit erhalten.

¹H-NMR (CDCl₃, 300 MHz) δ 4.85 (s, 2H), 4.74 (s, 2H), 4.17 (q, 4H, *J*=7.1 Hz), 2.74 (s, 4H), 1.69 (s, 6H), 1.26 (t, 6H, *J*=7.1 Hz); ¹³C-NMR (CDCl₃, 75 MHz) δ 171.5, 141.1, 115.1, 61.2, 56.8, 40.7, 23.6, 14.0; IR (Film) 3078, 2982, 2937, 2874, 1733, 1645, 1447, 1376, 1205, 1181, 897 cm⁻¹; MS (EI) m/z (relative Intensität) 268 ([M⁺] 2), 222 (15), 194 (40), 176 (21), 167 (59), 149 (50), 121 (96), 108 (67), 93 (64), 79 (29), 67 (19), 55 (40), 41 (35), 29 (100).

Die analytischen Daten stimmen mit den publizierten Werten überein.³¹

2-Allyl-2-(2-methyl-2-propenyl)-malonsäurediethylester 25

EtO₂C_{CO2}Et NaH (0.44 g, 18.4 mmol) wird in DMF (60 ml) suspendiert und bei 0 °C innerhalb von 15 min tropfenweise mit **118** (1.34 g, 6.24 mmol) versetzt. Zu der auf Raumtemperatur erwärmten Suspension wird Allylbromid (1.08 g, 8.95 mmol) gegeben. Die Suspension wird 16 h gerührt und daraufhin mit H₂O (20 ml) versetzt. Die wässrige Phase wird mit MTBE (3x100 ml) extrahiert. Die vereinigten organischen Phasen werden mit H₂O (2x50 ml) gewaschen und über Na₂SO₄ getrocknet. Das Lösungsmittel wird im Vakuum entfernt und der Rückstand durch Säulenchromatographie gereinigt (*n*-Hexan/EE 30:1). Das Produkt **25** (808 mg, 51 %) wird als farbloses Öl erhalten.

¹H-NMR (CDCl₃, 300 MHz) δ 5.75-5.55 (m, 1H), 5.15-5.00 (m, 2H), 4.84 (m, 1H), 4.73 (m, 1H),

4.15 (q, 2H, J=7.1 Hz), 4.14 (q, 2H, J=7.1 Hz), 2.67 (m, 2H), 2.65 (t, 1H, J=1.1 Hz), 2.62 (t, 1H, J=1.2 Hz), 1.64 (s, 3H), 1.22 (t, 6H, J=7.1 Hz); ¹³C-NMR (CDCl₃, 75 MHz) δ 171.2, 140.6, 132.7, 118.9, 115.7, 61.2, 57.0, 40.1, 36.8, 23.2, 14.0; IR (Film) 3079, 2982, 2938, 1735, 1643, 1446, 1367, 1293, 1278, 1243, 1210, 1187, 1142, 1073, 920, 900 cm⁻¹; MS (EI) m/z (relative Intensität) 254 ([M⁺], 5), 208 (46), 181 (39), 180 (38), 167 (44), 153 (39), 135 (54), 125 (21), 107 (100), 93 (43), 88 (68), 79 (35), 67 (19), 55 (19), 41 (29).

Die analytischen Daten stimmen mit den publizierten überein.³¹

N,N-Bis-(2-methyl-2-propenyl)-toluol-4-sulfonamid 39

Ts KH (0.99 g, 25.0 mmol) wird in THF (75 ml) suspendiert und tropfenweise mit einer Lösung von Toluolsulfonamid (1.71 g, 10.0 mmol) in THF (50 ml) versetzt. Hieraufhin wird eine Spatelspitze Aliquat $336^{\text{(B)}}$ hinzugegeben und die Suspension 15 min bei Raumtemperatur gerührt. Methallylchlorid (2.41 g ml, 26.6 mmol) wird zugetropft und die Reaktionsmischung 16 h bei Raumtemperatur und 20 h bei 50 °C gerührt. Zu der abgekühlten Lösung wird ges. NH₄Cl-Lösung (25 ml) gegeben. Die wässrige Phase wird mit MTBE (3x50 ml) gewaschen und die vereinigten organischen Phasen werden über Na₂SO₄ getrocknet. Durch Entfernen des Lösungsmittels im Vakuum und säulenchromatographische Reinigung (*n*-Hexan/EE 10:1) wird **39** (132 mg, 37 %) als farbloses Öl erhalten.

¹H-NMR (CD₂Cl₂, 300 MHz) δ 7.69 (d, 2H, *J*=8.1 Hz), 7.31 (d, 2H, *J*=8.1 Hz), 4.86 (s, 2H), 4.78 (s, 2H), 3.69 (s, 4H), 2.42 (s, 3H), 1.60 (s, 6H); ¹³C-NMR (CD₂Cl₂, 75 MHz) δ 143.4, 140.4, 137.5, 129.6, 127.2, 114.2, 53.2, 23.4, 21.1; IR (Film) 3077, 2973, 2919, 2863, 1653, 1598, 1445, 1340, 1160, 1103, 1006, 913, 816, 655, 573 cm⁻¹; MS (EI) m/z (relative Intensität) 279 (45), 264 (10), 224 (26), 155 (88), 124 (44), 91 (100), 82 (68), 55 (55).

Die analytischen Daten stimmen mit den publizierten Werten überein.³¹

Undec-10-ensäure-hexen-5-enylester 37

Zu einer Lösung von Undec-10-enol (5.0 g, 50 mmol) und Triethylamin (5.5 g, 55 mmol) in CH_2Cl_2 (300 ml) wird Undecensäurechlorid (10.9 g, 50 mmol) bei 0 °C gegeben und die Lösung 8 h bei Raumtemperatur gerührt. Die Reaktionslösung wird mit 1N HCl (100 ml) hydrolysiert und mit 1N HCl (2x150 ml) sowie ges. NaHCO₃-Lsg. (150 ml) extrahiert. Die organische Phase wird über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Säulenchromatographie (*n*-Hexan/EE 50:1) liefert **37** (14.4 g, 86 %) als farbloses Öl. ¹H-NMR (CDCl₃, 300 MHz) δ 5.88-5.73 (m, 2H), 5.05-4.90 (m, 4H), 4.07 (t, 2H, *J*=6.6 Hz), 2.29 (t, 2H, *J*=7.5 Hz), 2.12-2.00 (m, 4H), 1.69-1.57(m, 4H), 1.50-1.23 (m, 12H); ¹³C-NMR (CDCl₃, 75 MHz) δ 174.0, 139.2, 138.3, 114.8, 114.1, 64.1, 34.4, 33.8, 33.3, 29.3, 29.2, 29.1, 29.0, 28.9, 28.1, 25.2, 25.0; IR (Film), 3077, 2927, 2855, 1738, 1641, 1240, 1173, 993, 910 cm⁻¹; MS (EI) m/z (relative Intensität) 266 ([M⁺], 1), 166 (7), 148 (12), 96 (11), 82 (100) Die analytischen Daten simmen mit den publizierten überein.⁵⁶

N-Allyl-N-5-hexenyltosylamid 89

Allyltosylamid **117** (2.11 g, 10.0 mmol) wird zu einer Suspension von KH (450 mg, 11.0 mmol) in THF (250 ml) gegeben. Eine Spatelspitze Aliquat 336 wird zugegeben und das Gemisch 15 min bei Raumtemperatur gerührt. Dann wird 1-Brom-5-hexen (1.63 g, 10.0 mmol) zugetropft und das Gemisch nach beendigter Zugabe 18 h bei 70 °C gerührt. Die Reaktionslösung wird mit ges. NH₄Cl-Lsg (50 ml) hydrolysiert und mit EtOAc (3x200 ml) extrahiert. Die vereinigten organischen Phasen werden über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Der Rückstand wird durch Säulenchromatographie (*n*-Hexan/EE 10:1) gereinigt. Man erhält **89** (1.26 g, 43 %) als gelbliches Öl.

¹H-NMR (CDCl₃, 400 MHz) δ 7.60 (d, 2H, *J*=8.4 Hz), 7.21 (d, 2H, *J*=8.4 Hz), 5.66 (ddt, 1H, *J*=16.8 Hz, *J*=10.4 Hz, *J*=6.4 Hz), 5.55 (ddt, 1H, *J*=17.6 Hz, *J*=10.8 Hz, *J*=6.4 Hz), 5.07 (m, 2H), 4.86 (m, 2H), 3.71 (d, 2H, *J*=6.4 Hz), 3.00 (t, 2H, *J*=8.0 Hz), 2.34 (s, 3H), 1.95 (m, 2H) 1.44 (m, 2H), 1.27 (m, 2H); ¹³C-NMR (CDCl₃, 100 MHz) δ 142.7, 138.0, 136.9, 133.0, 129.2, 126.8, 118.2, 114.3, 50.1, 46.8, 32.3, 27.1, 25.4, 21.1; IR (kap) 3077, 2928, 1641, 1598, 1494, 1343, 1160, 1092, 992, 913, 815, 662, 549 cm⁻¹; MS (EI) m/z (relative Intensität) 293 ([M⁺], 3), 278 (1), 264 (1), 237 (11), 224 (78), 184 (4), 155 (92), 138 (48), 124 (2), 110 (2), 96 (5), 91 (100), 81 (7), 68 (28), 55 (7), 41 (38).

Die analytischen Daten stimmen mit den publizierten überein.³¹

Undec-10-ensäure-undecen-10-enylester 106

Zu einer Lösung von Undec-10-enol (8.5 g, 50 mmol) und Triethylamin (5.5 g, 10^{+} , 55 mmol) in CH₂Cl₂ (300 ml) wird Undecensäurechlorid (10.9 g, 50.0 mmol) bei 0 °C gegeben und die Lösung 8 h bei Raumtemperatur gerührt. Die Reaktionslösung wird mit 1N HCl (100 ml) hydrolysiert und mit 1N HCl (2x150 ml) sowie ges. NaHCO₃-Lsg. (150 ml) extrahiert. Die organische Phase wird über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Säulenchromatographie *n*-Hexan/EE 50:1 liefert **106** (14.4 g, 86 %) als farbloses Öl. ¹H-NMR (CDCl₃, 300 MHz) δ 5.90-5.70 (m, 2H), 5.05-4.90 (m, 4H), 4.06 (t, 2H, *J*=6.7 Hz), 2.28, (t, 2H, *J*=7.6 Hz), 2.08-1.98 (m, 4H), 1.65-1.55 (m, 4H), 1.41-1.30 (m, 22H); ¹³C-NMR (CDCl₃, 75 MHz) δ 173.4, 138.6, 113.8, 113.7, 69.9, 34.0, 33.4, 29.1, 29.0, 28.9, 28.8, 28.7, 28.7, 28.7, 28.5, 28.5, 28.3, 25.5, 24.6; IR (Film) 3003, 2926, 2854, 1739, 1465, 1116, 722 cm⁻¹; MS

(EI) m/z (relative Intensität) 336 ([M⁺], 8), 185 (7), 167 (12), 152 (28), 124 (20), 110 (29), 96

Die analytischen Daten stimmen mit den publizierten überein.⁵⁷

N-Dipentenylbenzolsulfonamid 107

(51), 82 (67), 69 (65), 55 (100).

Ph O₂S N-()₃ Benzolsulfonamid (1.63 g, 10.0 mmol) wird bei 0 °C portionsweise zu einer Suspension von NaH (960 mg, 40 mmol) in DMF (50 ml) gegeben. Nach 30 min wird 5-Brompenten (2.98 g, 20.0 mmol) zugegeben und die Mischung 24 h bei 80 °C gerührt. Die Reaktionslösung wird mit ges. NH₄Cl-Lsg. (50 ml) hydrolysiert und mit EtOAc (3x100 ml) extrahiert. Die vereinigten organischen Phasen werden über Na₂SO₄ getrocknet, das Lösungsmittel entfernt und der Rückstand durch Säulenchromatographie gereinigt (*n*-Hexan/EE 10:1). Das Produkt **107** (1.65 g, 56 %) wird als farbloses Öl erhalten.

¹H-NMR (CDCl₃, 300 MHz) δ 7.78 (m, 2H), 7.50 (m, 3H), 5.75 (ddt, 2H, *J*=16.9 Hz, *J*=10.2 Hz, *J*=6.6 Hz), 5.02-4.95 (m, 4H), 3.10 (t, 4H, *J*=7.6 Hz), 2.03 (m, 4H), 1.61 (m, 4H); ¹³C-NMR (CDCl₃, 75 MHz) δ 140.4, 137.8, 132.7, 129.4, 127.4, 115.7, 48.3, 31.2, 28.3; IR (kap) 3075, 2977, 2935, 2868, 1641, 1479, 1462, 1446, 1342, 1157, 1091, 994, 914, 736, 691, 581, cm⁻¹; MS (EI) m/z (relative Intensität) 293 ([M⁺], 2), 240 (6), 239 (14), 238 (100), 225 (7), 223 (6), 186 (4), 185 (8), 184 (74), 174 (3), 170 (16), 152 (8), 143 (3), 142 (4), 141 (45), 138 (4), 125 (3), 98 (14),

97 (6), 96 (13), 78 (5), 77 (53), 69 (9), 68 (6), 67 (5), 55 (3), 51 (5), 43 (3), 42 (9), 41 (17), 39 (84), 29 (3); HR-MS *ber.* 293.1450; *gef.* 293.1451.

2-Allyl-2-(pent-4-enyl)-malonsäure-diethylester 109

EtO₂C CO₂Et NaH (0.30 g, 12.6 mmol) werden in DMF (50 ml) suspendiert und Allylmalonsäurediethylester (2.29 g, 11.4 mmol) bei 0 °C zugetropft. Nach 15 min wird 1-Brom-4-penten (1.94 g, 13.0 mmol) zugetropft und das Gemisch 24 h bei Raumtemperatur gerührt. Anschließend wird die Reaktionslösung mit ges. NH₄Cl-Lsg. (25 ml) hydrolysiert und mit MTBE (2x100 ml) extrahiert. Die vereinigten organischen Phasen werden mit H₂O (2x150 ml) extrahiert und über Na₂SO₄ getrocknet. Säulenchromatographie (*n*-Hexan/EE 20:1) liefert **109** (2.31 g, 74 %) als farbloses Öl.

¹H-NMR (CDCl₃, 300 MHz) δ 5.81-5.60 (m, 2H), 5.13-4.94 (m, 4H), 4.18 (q, 4H, *J*=7.1 Hz), 2.65 (d, 2H, *J*=7.4 Hz), 2.09-2.02 (m, 2H), 1.90-1.85 (m, 2H), 1.35-1.28 (m, 2H), 1.24 (t, 6H, *J*=7.1 Hz); ¹³C-NMR (CDCl₃, 75 MHz) δ 171.2, 138.1, 132.5, 118.8, 114.9, 61.1, 57.3, 36.8, 33.7, 31.6, 23.2, 14.1; IR (Film) 3079, 2981, 2938, 2871, 1731, 1641, 1298, 1273, 1232, 1204, 995, 917 cm⁻¹; MS (EI) m/z (relative Intensität) 268 (M⁺, 27), 240 (1), 223 (35), 213 (2), 200 (68), 195 (29), 181 (16), 153 (35), 121 (61), 108 (47), 93 (28), 79 (46), 67 (59), 55 (28), 41 (64), 29 (100).

Die analytischen Daten stimmen mit denen der Literatur überein.⁵⁶

2-(2-Methyl-2-propenyl)-propandisäurediethylester 118

EtO2CCO2EtNaH (150 mg, 6.24 mmol) wird in DMF (60 ml) suspendiert und bei 0 °Cinnerhalb von 15 min tropfenweise mit Malonsäurediethylester (1.00 g,
6.24 mmol) versetzt. Zu der auf Raumtemperatur erwärmten Suspension wirdMethallylchlorid (805 mg, 8.95 mmol) gegeben. Die Suspension wird 16 h bei Raumtemperatur
gerührt und daraufhin mit H2O (20 ml) versetzt. Die wässrige Phase wird mit MTBE (4x100 ml)extrahiert. Die vereinigten organischen Phasen werden mit H2O (2x50 ml) gewaschen und über
Na2SO4 getrocknet. Das Lösungsmittel wird im Vakuum entfernt, der Rückstand durch
Säulenchromatographie gereinigt (*n*-Hexan/EE 30:1), und **118** (628 mg, 42 %) als farbloses Öl

erhalten.

¹H-NMR (CD₂Cl₂, 300 MHz) δ 4.75 (s, 1H), 4.69 (s, 1H), 4.16 (q, 4H, *J*=7.1 Hz), 3.54 (t, 1H, *J*=7.9 Hz), 2.58 (d, 2H, *J*=7.9Hz), 1.71 (s, 3H), 1.23 (t, 6H, *J*=7.1 Hz); ¹³C-NMR (CD₂Cl₂, 75 MHz) δ 169.1, 141.1, 112.2, 61.3, 50.5, 36.4, 22.2, 14.0; IR (Film) 3080, 2983, 2939, 1735, 1652, 1447, 1369, 1287, 1226, 1152, 1049, 1030, 896, 860 cm⁻¹; MS (EI) m/z (relative Intensität) 214 (22), 169 (19), 168 (14), 141 (100), 123 (53), 122 (48), 113 (23), 112 (27), 95 (53), 94 (22), 67 (13), 55(8).

Die analytischen Daten stimmen mit den publizierten Werten überein.³¹

EtO₂C \

4.5 Durchführung der Ringschlussmetathese

3,4-Dimethyl-3-cyclopenten-1,1-dicarbonsäurediethylester 8

CO₂Et Bismethallymalonsäurediethylester 7 (31 mg, 0.12 mol) und der Katalysator
 (5 mol %) werden in CH₂Cl₂ (5 ml) gelöst und 24 h bei 40 °C gerührt. Nach Beendigung der Reaktion wird entweder das Lösungsmittel im Vakuum entfernt

und der Rückstand säulenchromatographisch gereinigt (*n*-Hexan/EE 50:1) oder die Reaktionslösung durch Kieselgel filtriert und dann mit GC/MS der Umsatz bestimmt.

¹H-NMR (CD₂Cl₂, 300 MHz) δ 4.15 (q, 4H, *J*=7.1 Hz), 2.89 (s, 4H), 1.59 (s, 6H), 1.22 (t, 6H, *J*=7.1 Hz); ¹³C-NMR (CD₂Cl₂, 75 MHz) δ 172.4, 128.1, 61.4, 57.1, 45.8, 13.9, 13.0; IR (Film) 2980, 2916, 1859, 1734, 1446, 1254, 1182, 1076, 1020, 861 cm⁻¹; MS (EI) m/z (relative Intensität) 240 ([M⁺] 18), 195 (9), 166 (100), 138 (12), 121 (20), 107 (14), 93 (50), 79 (24), 67 (5), 53 (5), 41 (7).

Die analytischen Daten stimmen mit den publizierten Werten überein.³¹

3-Cyclopenten-1,1-dicarbonsäurediethylester 22

EtO₂C CO₂Et Das Dien **24** (231 mg, 0.51 mmol) wird mit dem Katalysator (5 mol %) in CH₂Cl₂ (20 ml) gelöst und 24 h bei 40 °C gerührt. Nach Beendigung der Reaktion wird entweder das Lösungsmittel im Vakuum entfernt und der Rückstand säulenchromatographisch gereinigt (*n*-Hexan/EE 20:1) oder die Reaktionslösung durch Kieselgel filtriert und dann mit GC/MS der Umsatz bestimmt.

¹H-NMR (CD₂Cl₂, 300 MHz) δ 5.60 (s, 2H), 4.16 (q, 4H, *J*=7.1 Hz), 2.98 (s, 4H), 1.23 (t, 6H, *J*=7.1 Hz); ¹³C-NMR (CD₂Cl₂, 75 MHz) δ 172.1, 127.8, 61.6, 58.8, 40.8, 13.9; IR (Film) 3063, 2983, 2938, 2908, 2872, 1733, 1624, 1446, 1297, 1255, 1182, 1072, 1017, 952, 862, 698 cm⁻¹; MS (EI) m/z (relative Intensität) 212 ([M⁺] 23), 166 (52), 138 (89), 111 (52), 93 (44), 79 (63), 66 (84), 55 (8), 39 (20).

Die analytischen Daten stimmen mit den publizierten Werten überein.⁵⁶

3-Methyl-cyclopent-3-en-1,1-dicarbonsäurediethylester 23

EtO₂C CO₂Et Das Dien **25** (103 mg, 0.41 mmol) wird mit dem Katalysator (5 mol %) in CH₂Cl₂ (20 ml) gelöst und 24 h bei 40 °C gerührt. Nach Beendigung der Reaktion wird entweder das Lösungsmittel im Vakuum entfernt und der Rückstand säulenchromatographisch gereinigt (*n*-Hexan/EE 20:1) oder die Reaktionslösung durch Kieselgel filtriert und dann mit GC/MS der Umsatz bestimmt.

¹H-NMR (CDCl₃, 300 MHz) δ 5.15 (s, 1H), 4.16 (q, 4H, *J*=7.1 Hz), 2.93 (m, 2H), 2.87 (m, 2H), 1.72-1.70 (m, 3H), 1.21 (t, 6H, *J*=7.1 Hz); ¹³C-NMR (CDCl₃, 75 MHz) δ 172.4, 137.4, 121.2, 61.4, 59.4, 44.5, 40.8, 16.0, 14.0; IR (Film) 3050, 2982, 2936, 1739, 1446, 1367, 1298, 1251, 1184, 1072, 1022, 861, 781 cm⁻¹; MS (EI) m/z (relative Intensität) 226 ([M⁺] 42), 181 (21), 151 (100), 124 (22), 107 (33), 93 (25), 79 (42), 67 (5), 53 (4).

Die analytischen Daten stimmen mit den publizierten Werten überein.³¹

Oxacyclohexadec-11-en-2-on 38

Ts

Das Dien **37** (244 mg, 0.92 mmol) wird in CH_2Cl_2 (20 ml) mit dem Katalysator (5 mol %) gelöst und 24 h bei 40 °C gerührt. Nach Beendigung der Reaktion wird entweder das Lösungsmittel im Vakuum entfernt und der Rückstand säulenchromatographisch gereinigt (*n*-Hexan/EE 200:1) oder die

Reaktionslösung durch Kieselgel filtriert und dann mit GC/MS der Umsatz bestimmt.

¹H-NMR (CD₂Cl₂, 300 MHz) δ 5.35-5.20 (m, 2H), 4.10-3.95 (m, 2H), 2.55-2.15 (m, 2H), 2.00-1.85 (m, 4H), 1.40-1.05 (m, 12H); ¹³C-NMR (CD₂Cl₂, 75 MHz) δ 173.6, 131.8, 130.5, 130.0, 129.7, 64.0, 63.8, 34.7, 33.8, 32.1, 29.2, 28.5, 28.4, 28.3, 28.1, 28.0. 27.3, 27.2, 26.6, 25.5, 25.3; IR (Film) 2928, 2856, 1736, 1461, 1441, 1346, 1252, 1234, 969, 719 cm⁻¹; MS (EI) m/z (relative Intensität) 238 ([M⁺] 20), 210 (18), 109 (17), 96 (49), 82 (100), 67 (64).

Die analytischen Daten stimmen mit den publizierten Werten überein.³¹

1-(Toluol-4-sulfonyl)-3,4-dimethyl-2,5-dihydro-1*H*-pyrol 40

Bismethallyltosylamid **39** (53 mg, 0.19 mmol) und der Katalysator (5 mol %) werden

in CH₂Cl₂ (5 ml) gelöst und bei 40 °C für 24 h gerührt. Das Lösungsmittel wird entweder im Vakuum entfernt und durch säulenchromatographische Reinigung (n-Hexan/EE 10:1) das Produkt als farbloser Feststoff isoliert oder durch Filtration durch Kieselgel Katalysatorrückstände entfernt mit GC/MS der Umsatz bestimmt.

¹H-NMR (CDCl₃ 300 MHz) δ 7.71 (d, 2H, J=8.1 Hz), 7.31 (d, 2H, J=8.1 Hz), 3.96 (s, 4H), 2.42 (s, 3H), 1.53 (s, 6H); ¹³C-NMR (CDCl₃, 75 MHz) δ 143.2, 134.3, 129.7, 127.5, 126.2, 58.8, 21.5, 11.1; IR (KBr) 3069, 2975, 2904, 2838, 1930, 1701, 1655, 1596, 1493, 1443, 1339, 1160, 1103, 1016, 844, 819, 725, 665, 585, 548 cm⁻¹; MS (EI) m/z (relative Intensität) 251 ([M+] 10), 236 (22), 155 (27), 96 (100), 91 (43).

Die analytischen Daten stimmen mit den publizierten Werten überein.³¹

N-Tosyl-azacyclooct-3-en 90

Das Dien 89 (29.4 mg, 0.10 mmol) wird in CH₂Cl₂ (15 ml) gelöst und mit dem Ts Katalysator (5 mol %) für 24 h bei 40 °C gerührt. Nach dem Entfernen des Lösungsmittels wird der Rückstand durch Säulenchromatographie gereinigt (n-Hexan/EE 10:1). Man erhält 90 als farblosen Feststoff.

¹H-NMR (CDCl₃, 300 MHz) δ 7.62 (d, 2H, J=8.1 Hz), 7.33 (d, 2H, J=8.1 Hz), 5.80 (m, 1H), 5.44-5.37 (dt, 1H, J=11.0 Hz, J=5.6 Hz), 3.81 (dd, 2H, J=5.6 Hz, J=1.1 Hz), 3.30-3.26 (m, 2H), 2.42 (s, 3H), 1.71-1.69 (m, 2H), 1.61-1.52 (m, 2H); ¹³C-NMR (CDCl₃, 75 MHz) δ 143.0, 135.9, 132.0, 129.6, 127.0, 124.8, 47.8, 45.8, 26.6, 25.4, 24.5, 21.4; IR (KBr) 3022, 2966, 2939, 2847, 1655, 1596, 1492, 1330, 1159, 1109, 1088, 816, 675, 549 cm⁻¹; MS (EI) m/z (relative Intensität) 265 ([M⁺] 11), 224 (2), 210 (2), 198 82), 184 (51), 155 (36), 133 (2), 110 (34), 91 (50), 79 (23), 65 (116), 55 (15), 41 (24), 30 (100).

Die analytischen Daten stimmen mit den publizierten Werten überein.³¹

Oxacycloeicos-11-en-2-on 104

Das Dien 105 (309 mg, 0.92 mmol) wird in CH₂Cl₂ (20 ml) mit dem Katalysator (5 mol %) gelöst und 24 h bei 40 °C gerührt. Nach Beendigung

4. Experimenteller Teil

der Reaktion wird entweder das Lösungsmittel im Vakuum entfernt und der Rückstand säulenchromatographisch gereinigt (*n*-Hexan/EE 200:1) oder die Reaktionslösung durch Kieselgel filtriert und dann mit GC/MS der Umsatz bestimmt.

¹H-NMR (CDCl₃, 300 MHz) δ 5.44-5.28 (m, 2H), 4.11 (td, 2H, *J*=5.6 Hz, *J*=1.7 Hz), 2.31 (t, 2H, *J*=6.4 Hz), 2.03-1.98 (m, 4H), 1.68-1.58 (m, 4H), 1.45-1.23 (m, 22H); ¹³C-NMR (CDCl₃, 75 MHz) δ 174.0, 173.9, 130.9, 130.6, 130.1, 130.0, 64.2, 64.0, 34.8, 34.5, 32.0, 31.7, 29.5, 29.4, 29.2, 29.1, 29.1, 29.0, 29.0, 28.8, 28.7, 28.7, 28.5, 28.4, 28.0, 27.7, 26.7, 26.6, 26.2, 25.9, 25.2; IR (Film) 3001, 2926, 2854, 1737, 1462, 1385, 1348, 1252, 1236, 1175, 1117, 1090, 1066, 1030, 969, 722 cm⁻¹; MS (EI) m/z (relative Intensität) 308 ([M⁺], 32), 290 (11), 124 (18), 110 (23), 96 (74), 82 (100).

Die analytischen Daten stimmen mit den publizierten Werten überein.⁵⁶

N-Phenylsulfonyl-azacyclonon-4-en 107

Das Dien **106** (293 mg, 1.00 mmol) wird in CH_2Cl_2 (150 ml) gelöst und mit 5 mol % **5** (41 mg, 0.05 mmol) versetzt. Die Lösung wird für 24 h bei 40 °C gerührt und das Lösungsmittel im Vakuum entfernt. Der Rückstand wird durch Säulenchromatographie gereinigt. (*n*-Hexan/EE 10:1). Das Produkt **107** (167 mg, 63 %) wird als weißer Feststoff erhalten.

¹H-NMR (CDCl₃, 300 MHz) δ 7.84 (m, 2H), 7.54 (m, 3H), 5.52 (m, 2H), 2.99 (t, 4H, *J*=6.3 Hz), 2.45 (m, 4H), 1.87 (m, 4H); ¹³C-NMR (CDCl₃, 75 MHz) δ 132.9, 130.5, 129.3, 128.0, 53.8, 31.3, 28.7, 22.6; IR (KBr) 3062, 3018, 2982, 2966, 2946, 2921, 2856, 1584, 1468, 1443, 1358, 1335, 1300, 1162, 1094, 973, 736, 719, 696, 668, 578 cm⁻¹; MS (EI) m/z (relative Intensität) 265 ([M⁺] 1), 201 (2), 141 (4), 124 (100), 123 (2), 122 (5), 97 (4), 96 (20), 95 (2), 94 (2), 84 (4), 83 (2), 82 (3), 81 (3), 78 (2), 77 (23), 70 (3), 69 (2), 68 (3), 67 (5), 56 (2), 55 (9), 54 (3), 51 (6), 44 (7), 42 (13), 41 (14), 39 (5), 29 (3); HR-MS (M⁺+H) *ber*. 266.1214; *gef*. 262.1212.

Cyclohept-3-en-1,1-dicarbonsäurediethylester 108

EtO₂C_CC₂Et Das Dien **109** (117 mg, 0.5 mmol) wird in CH₂Cl₂ (20 ml) mit dem Katalysator **2**

(20.5 mg, 0.025 mmol, 5 mol %) gelöst und für 24 h bei 40 °C gerührt. Das Lösungsmittel wird im Vakuum entfernt und der Rückstand durch Säulenchromatographie (*n*-Hexan/EE 20:1) gereinigt. Man erhält **108** (69 mg, 67 %) als farbloses Öl.

¹H-NMR (CDCl₃, 300 MHz) δ 5.85 (dt, 1H, *J*=10.6 Hz, *J*=6.1 Hz), 5.68 (dt, 1H, *J*=10.7 Hz, *J*=6.4 Hz), 4.17 (q, 4H, *J*=7.0 Hz), 2.67 (d, 2H, *J*=6.4 Hz), 2.26-2.22 (m, 2H), 2.19-2.13 (m, 2H), 1.68-1.61 (m, 2H), 1.24 (t, 6H, *J*=7.1 Hz); ¹³C-NMR (CDCl₃, 75 MHz) δ 171.7, 134.0, 127.1, 61.0, 56.1, 36.6, 32.3, 28.2, 22.7, 14.0; IR (Film) 3029, 2981, 2937, 1732, 1656, 1312, 1238, 1213, 1183, 853, 703 cm⁻¹; MS (EI) m/z (relative Intensität) 240 ([M⁺], 8), 195 (16), 173 (100), 166 (57), 138 (12), 127 (28), 121 (14), 99 (7), 93 (60), 79 (14), 67 (6), 55 (6), 41 (9), 29 (31).

Die analytischen Daten stimmen mit den publizierten Werten überein.⁵⁶

4.6 Synthese der unsymmetrisch substituierten Imidazoliumsalze

1-(5-Phenyl-5-hexenyl)-3-(2,4,6-trimethyl-phenyl)-imidazoliumiodid 33

N-Mesitylimidazol **9** (186 mg, 1.00 mmol) und 2-Phenyl-6iodhexen **35** (199 mg, 1.00 mmol) werden 24 h in Toluol unter Rückfluss erhitzt. Nach dem Abkühlen wird die Suspension mit MTBE (100 ml) verdünnt und mit H₂O (2x50 ml) extrahiert. Die

wässrige Phase wird mit MTBE (30 ml) gewaschen und das Wasser im Vakuum entfernt. Der Rückstand wird in CH₂Cl₂ (100 ml) aufgenommen, die Lösung über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Man erhält **36** (243 mg, 50 %) als weißen Feststoff.

¹H-NMR (CD₂Cl₂, 300 MHz) δ 10.25 (s, 1H), 8.09 (s, 1H), 7.28 (s, 1H), 7.05 (s, 1H), 5.32 (s, 1H), 5.05 (s, 1H), 4.73 (t, 2H, *J*=4.7 Hz), 2.55 (t, 2H, *J*=7.9 Hz), 2.33 (s, 3H), 2.06 (s, 3H); ¹³C-NMR (CD₂Cl₂), 75 MHz) δ 141.3, 137.6, 134.3, 130.5, 129.7, 125.3, 124.4, 124.1, 123.8, 122.8, 122.9, 120.1, 59.8, 22.1, 20.8, 19.1, 18.3, 17.4; IR (KBr) 3055, 3028, 2858, 2746, 1624, 1607, 1561, 1543, 1493, 1485, 1456, 1442, 1378, 1326, 1267, 1203, 1155, 1100, 1065, 1026, 968, 934, 888, 852, 818, 779, 761, 729, 706, 672, 635, 577, 553 cm⁻¹; MS (ESI) m/z 345.2 [M⁺-I]; C₂₇H₂₉N₂I (473.5 g/mol) *ber.* C, 68.43; H, 6.12; N, 5.91; *gef.* C, 68.78; H, 6.50; N, 6.02.

1-(4-Trimethylammoniumbutyl)-3-(2,4,6-trimethyl-phenyl)-imidazoliumdiiodid 41

Das Salz **43** (365 mg, 1.00 mmol) und **9** (205 mg, ⁺NMe₃ 1.10 mmol) werden 7 Tage in *n*-Propanol (5 ml) unter Rückfluss erhitzt. Das Lösungsmittel wird im Vakuum

entfernt und der Rückstand aus abs. Ethanol umkristallisiert. Man erhält **41** (240 mg, 40 %) als weißen Feststoff.

¹H-NMR (D₂O, 300 MHz) δ 9.06 (s, 1H), 7.83 (s, 1H), 7.63 (s, 1H), 7.19 (s, 2H), 4.46 (t, 2H, *J*=6.9 Hz), 3.45 (t, 3H, *J*=7.8 Hz), 3.16 (s, 9H), 2.38 (s, 3H), 2.07 (s, 6H), 2.12-2.01 (m, 2H), 1.92 (m, 2H); ¹³C-NMR (D₂O, 75 MHz) δ 142.0, 137.2, 135.1, 131.3, 129.7, 124.2, 123.5, 66.0, 53.4, 26.7, 20.6, 20.1, 17.4, 16.8; IR (KBr) 3110, 3071, 3040, 3001, 2965, 2945, 2919, 2860, 1735, 1606, 1565, 1548, 1478, 1450, 1422, 1383, 1365, 1329, 1298, 1261, 1207, 1161, 1106, 1069,

1042, 990, 968, 954, 913, 863, 830, 755, 661, 638, 581, 558, 515 cm⁻¹; MS (ESI) m/z 150.7 [M²⁺-2I]; HR-MS *ber.* 428.1562 (M- J); *gef.* 428.1563.

1-(3-Formoxypropyl)-3-(2,4,6-trimethylphenyl)-imidazoliumbromid 46

N-Mesitylimidazol 9 (186 mg, 1.00 mmol) und 44 (167 mg, 1.00 mmol) werden 24 h in Toluol (50 ml) unter Rückfluss erhitzt. Nach dem Abkühlen wird die Suspension mit MTBE (100 ml)

verdünnt und mit H₂O (2x30 ml) extrahiert. Die wässrige Phase wird mit MTBE (30 ml) gewaschen und das Wasser im Vakuum entfernt. Der Rückstand wird in CH_2Cl_2 (100 ml) aufgenommen und die Lösung über Na_2SO_4 getrocknet. Das Lösungsmittel wird entfernt und man erhält **46** (196 mg, 60 %) als weißen Feststoff.

¹H-NMR (CD₂Cl₂, 400 MHz) δ 10.37 (s, 1H), 8.21 (s, 1H), 8.00 (s,1H), 7.27 (s, 1H), 6.97 (s, 2H), 4.73 (t, 2H, *J*=6.8 Hz), 4.22 (t, 2H, *J*=5.6 Hz), 2.38 (m, 2H), 2.28 (s, 3H), 2.02 (s, 6H); ¹³C-NMR (CD₂Cl₂, 100 MHz) δ 161.7, 142.0, 138.9, 135.1, 131.6, 130.4, 124.5, 124.1, 61.1, 47.9, 30.3, 27.5, 21.6, 18.2; IR (kap) 2965, 1725, 1466, 1439, 1424, 1376, 1288, 1260, 1173, 990, 868, 570 cm⁻¹; MS (ESI) m/z 273 [M-Br]; C₁₆H₂₁N₂O₂Br (353 g/mol) *ber.* C, 54.39; H, 5.95; N, 7.80; *gef.* C, 54.28; H, 6.26; N, 7.78.

1-(3-Acetoxypropyl)-3-(2,4,6-trimethylphenyl)-imidazoliumbromid 47

N-Mesitylimidazol **9** (1.86 mg, 10.0 mmol) und **45** (1.81 g, 10.0 mmol) werden 24 h in Toluol (50 ml) unter Rückfluss erhitzt. Nach dem Abkühlen wird die Suspension mit MTBE (100 ml) verdünnt mit H₂O (2x150 ml) extrahiert. Die wässrige Phase wird

mit MTBE (300 ml) gewaschen und das Wasser im Vakuum entfernt. Der Rückstand wird in CH_2Cl_2 (200 ml) aufgenommen und die Lösung über Na_2SO_4 getrocknet. Nach dem Entfernen des Lösungsmittels erhält man **47** (1.57 g, 43 %) als farblosen Feststoff.

¹H-NMR (CD₂Cl₂, 300 MHz) δ 10.41 (s, 1H), 8.26 (s, 1H), 7.32 (s, 1H), 6.98 (s, 2H), 4.69 (t, 2H, *J*=7.0 Hz), 4.07 (t, 2H, *J*=7.0 Hz), 2.35 (m, 2H), 2.28 (s, 3H), 2.02 (s, 6H), 1.98 (s, 3H); ¹³C-

NMR (CD₂Cl₂, 75 MHz) δ 171.5, 141.9, 138.9, 135.4, 131.7, 130.4, 124.6, 124.1, 61.2, 47.8, 30.4, 27.5, 21.7, 18.2; IR (kap) 3037, 2962, 1735, 1608, 1565, 1548, 1486, 1458, 1384, 1368, 1238, 1208, 1163, 1068, 1047, 967, 857, 731 cm⁻¹; MS (ESI) 287 [M⁺-Br]; C₁₇H₂₃N₂O₂Br (366 g/mol) *ber*. C, 55.74; H, 6.28; N, 7.65; *gef.* C, 55.69; H, 6.42; N, 7.39.

1-(6-t-Butyldiphenylsilyloxyhexyl)-3-(2,4,6-trimethyl-phenyl)-imidazoliumbromid 49

N-Mesitylimidazol 9 (186 mg, 1.00 mmol) und 116 (419 mg, 1.00 mmol) werden 24 h in Toluol (15 ml) unter Rückfluss erhitzt.Nach dem Abkühlen wird die Suspension mit MTBE (100 ml)

verdünnt und mit H₂O (2x15 ml) extrahiert. Die wässrige Phase wird mit MTBE (30 ml) gewaschen und das Wasser im Vakuum entfernt. Der Rückstand wird in CH_2Cl_2 (100 ml) aufgenommen, die Lösung über Na_2SO_4 getrocknet und das Lösungsmittel entfernt. Man erhält **49** (303 mg, 50 %) als weißen Feststoff.

¹H-NMR (CD₂Cl₂, 300 MHz) δ 10.21 (s, 1H), 7.70-7.55 (m, 4H) 7.29 (m, 6H), 7.14 (s, 1H), 6.94 (s, 2H), 6.88 (s, 1H), 4.49 (t, 2 H, *J*=7.2 Hz), 3.58 (t, 2H, *J*= 6.3 Hz), 2.24 (m, 3H), 1.91 (s, 3H), 1.87-1.91 (m, 5H) 1.55-1.25 (m, 6H), 0.94 (s, 9H); ¹³C-NMR (CD₂Cl₂, 75 MHz) δ 140.5, 137.3, 134.7, 134.1, 133.6, 133.3, 129.0, 128.8, 128.4, 122.5, 121.9, 63.0, 49.5, 31.6, 25.9, 25.7, 25.2, 20.1, 18.3 16.7, 16.3; IR (KBr) 3071, 3049, 2932, 2857, 1608, 1564, 1428, 1111, 855 cm⁻¹; MS (ESI) m/z 525 [M⁺-Br].

3-(2-Hydroxy-propyl)-1-(2,4,6-trimethyl-phenyl)-imidazoliumbromid 52

N-Mesitylimidazol **9** (0.93 g, 5.0 mmol) und 3-Brompropanol **50** (0.63 g, 5.0 mmol) werden in THF (15 ml) für 18 h unter Rückfluss erhitzt. Nach dem Abkühlen wird die Suspension mit MTBE (50 ml)

verdünnt und mit H₂O (2x15 ml) extrahiert. Die wässrige Phase wird mit MTBE (2x15 ml) gewaschen, das Wasser wird am Rotationsverdampfer entfernt und der Rückstand mit CH₂Cl₂ (200 ml) extrahiert. Die Lösung wird über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Man erhält **52** (0.43 g, 28 %) als bräunlichen Feststoff.

¹H-NMR (CD₂Cl₂, 300 MHz) δ 10.15 (s, 1H), 7.98 (s, 1H), 7.25 (s,1H), 7.04 (s, 2H), 4.70 (t, 2H,

J=6.2 Hz), 4.80-4.30 (br, 1H), 3.58 (t, 2H, J=5.3 Hz), 2.35 (s, 3H), 2.20-2.00 (m, 2H), 2.08 (s, 6H); ¹³C-NMR (CD₂Cl₂, 75 MHz) δ 141.3, 138.1, 134.4, 130.8, 129.7, 123.4, 123.3, 56.9, 47.3, 33.0, 20.8, 17.4; IR (KBr) 3321, 3061, 3010, 2943, 2861, 1562, 1542, 1485, 1208, 1163, 1079, 1066, 1008, 952, 866, 760 cm⁻¹; MS (ESI) m/z 245 [M⁺-Br].

Die analytischen Daten stimmen mit denen der Literatur überein.³¹

3-(6-Hydroxy-hexyl)-1-(2,4,6-trimethyl-phenyl)-imidazoliumbromid 53

N-Mesitylimidazol 9 (0.93 g, 5.0 mmol) und 6-Bromhexanol 51 (0.91 g,
5.0 mmol) werden in THF (15 ml) für 18 h unter Rückfluss erhitzt.
Nach dem Abkühlen wird die Suspension mit MTBE (100 ml) verdünnt

und mit H₂O (2x15 ml) extrahiert. Die wässrige Phase wird mit MTBE (2x15 ml) gewaschen, das Wasser wird am Rotationsverdampfer entfernt und der Rückstand mit CH_2Cl_2 (150 ml) extrahiert. Die Lösung wird über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Man erhält **53** (624 mg, 34 %) als braunen Feststoff.

¹H-NMR (CD₂Cl₂, 300 MHz) δ 10.38 (s, 1H), 7.64 (s, 1H), 7.13 (s, 1H), 6.98 (s, 2H), 4.58 (t, 2H, *J*=6.8 Hz), 3.48 (t, 2H, *J*=5.6 Hz), 3.29 (br, 1H), 2.28 (s, 3H), 2.00 (m, 8H), 1.50-1,25 (m, 6H); ¹³C-NMR (CD₂Cl₂, 75 MHz) δ 142.1, 139.5, 135.1, 131.6, 130.6, 124.3, 123.6, 62.5, 50.9, 49.8, 32.9, 30.6, 27.5, 26.1, 25.3, 21.7, 18.4; IR (KBr) 3376, 3119, 3061, 2933, 2859, 2743, 1608, 1564, 1546, 1486, 1460, 1411, 1380, 1329, 1289, 1271, 1203, 1162, 1107, 1069, 1039, 968, 935, 856, 760, 731, 672, 639, 579 cm⁻¹; MS (ESI) m/z 273 [M⁺-Br]; C₁₈H₂₁N₂OBr (367 g/mol) *ber.* C, 58.85; H, 7.36; *gef.* C, 58.85; H, 7.33.

3-(3-Trimethylsilylhydroxy-propyl)-1-(2,4,6-trimethyl-phenyl)-imidazoliumbromid 54

Der Alkohol **52** (0.61 g, 2.0 mmol) wird in CH_2Cl_2 (5 ml) gelöst und HMDS (15 ml) zugegeben. Nach Zugabe von 2 Tropfen Chlortrimethylsilan wird für 24 h unter Rückfluss

erhitzt. Das Lösungsmittel wird entfernt und der Rückstand mit Et_2O (100 ml) gewaschen. Man erhält **54** (748 mg, quantitativ) als weißen Feststoff.

¹H-NMR (CD₂Cl₂, 400 MHz) δ 10.42 (s, 1H), 7.55 (s, 1H), 7.05 (s, 1H), 6.93 (s, 2H), 4.62 (t, 2H,

J=6.8 Hz), 3.57 (t, 2H, J=5.6 Hz), 2.23 (s, 3H), 2.13 (m, 2H), 1.98 (s, 6H), 0.07 (s, 9H); ¹³C-NMR (CD₂Cl₂, 100 MHz) δ 146.6, 142.3, 139.6, 135.3, 131.7 130.6, 124.2, 123.6, 59.5, 48.6, 34.7, 21.8, 18.4, 1.7; IR (kap) 3123, 3053, 2922, 2868, 2750, 1608, 1565, 1547, 1486, 1455, 1415, 1381, 1331, 1292, 1248, 1206, 1161, 1109, 1069, 969, 934, 898, 855, 841, 751, 671, 580 cm⁻¹; MS (ESI) m/z 227 [M⁺-Br]; C₁₈H₂₉N₂OSiBr (397 g/mol) *ber.* C, 54.41; H, 7.30; *gef.* C, 54.58; H, 7.37.

3-(6-Trimethylsilylhydroxy-hexyl)-1-(2,4,6-trimethyl-phenyl)-imidazoliumbromid 55

Der Alkohol **53** (0.73 g, 2.0 mmol) wird in CH_2Cl_2 (5 ml) gelöst und HMDS (15 ml) zugegeben. Nach Zugabe von 2 Tropfen Chlortrimethylsilan wird für 24 h unter Rückfluss erhitzt. Das

Lösungsmittel wird entfernt und der Rückstand mit Et_2O (150 ml) gewaschen. Der Rückstand wird im Vakuum getrocknet. Man erhält **55** (748 mg, quantitativ) als braunen Feststoff.

¹H-NMR (CD₂Cl₂, 300 MHz) δ 10.61 (s, 1H), 7.52 (s, 1H), 7.12 (s, 1H), 6.98 (s, 2H), 4.57 (t, 2H, J=7.2 Hz), 3.48 (t, 2H, J=6.2 Hz), 2.28 (s, 3H), 2.02 (s, 6H), 1.91 (m, 2H), 1.42 (m, 2H), 1.33 (m, 4H), 0.03 (s, 9H); ¹³C-NMR (CD₂Cl₂, 75 MHz) δ 142.2, 139.6, 135.2, 131.6, 130.6, 123.9, 123.1, 63.0, 51.1, 33.3, 31.2, 27.6, 26.1, 21.7, 18.3, 1.7; IR (kap) 3239, 3111, 3033, 2952, 2861, 2744, 1608, 1564, 1546, 1487, 1457, 1412, 1382, 1329, 1250, 1205, 1181, 1164, 1092, 1070, 1037, 935, 873, 841, 754, 733, 683, 672, 641, 618, 579, 555 cm⁻¹; MS (ESI) m/z 345 [M⁺-Br]; C₂₁H₃₅N₂OSiBr (439 g/mol) *ber.* C, 57.40; H, 7.97; *gef.* C, 57.24; H, 7.89.

3-(2-Methoxy-ethyl)-1-(2,4,6-trimethyl-phenyl)-imidazoliumbromid 62

N-Mesitylimidazol **9** (0.93 g, 5.0 mmol) und 2-Brommethoxyethan (0.69 g, 5.0 mmol) werden in THF (15 ml) für 24 h unter Rückfluss erhitzt. Nach dem Abkühlen wird die Suspension mit MTBE (100 ml)

verdünnt und mit H₂O (2x15 ml) extrahiert. Die wässrige Phase wird mit MTBE (2x15 ml) gewaschen. Das Wasser wird am Rotationsverdampfer entfernt und der Rückstand mit CH_2Cl_2 (200 ml) extrahiert. Die Lösung wird über Na_2SO_4 getrocknet und das Lösungsmittel entfernt. Man erhält **62** als weißen Feststoff (551 mg, 34 %).

¹H-NMR (CD₂Cl₂, 300 MHz) δ 10.21 (s, 1H), 7.89 (s, 1H), 7.17 (s, 1H), 7.07 (s, 2H), 4.91 (t, 2H, J=4.8 Hz), 3.87 (t, 2H, J=4.8 Hz), 3.41 (m, 3H), 2.36 (s, 3H), 2.10 (s, 6H); ¹³C-NMR (CD₂Cl₂), 75 MHz) δ 140.7, 137.5, 133.7, 129.0, 123.1, 121.8, 69.8, 58.1, 49.5, 20.1, 16.6; IR (KBr) 3116, 3080, 2974, 2890, 2868, 1777, 1631, 1609, 1565, 1488, 1439, 1384, 1359, 1293, 1256, 1221, 1205, 1187, 1169, 1123, 1084, 1067, 1033, 1014, 896, 880, 837, 774 cm⁻¹, MS (ESI) m/z 245 [M⁺-Br]; C₁₅H₂₁N₂OBr (325 g/mol) *ber*. C, 55.38; H, 6.46; *gef*. C, 55.35; H, 6.40.

3-(3-Hydroxy-3-methylbutyl)-1-(2,4,6-trimethyl-phenyl)-imidazoliumbromid 64

N-Mesitylimidazol **9** (0.93 g, 5.0 mmol) und 4-Brom-2-methyl-2butanol **63** (0.83 g, 5.0 mmol) werden in Toluol (15 ml) für 18 h unter Rückfluss erhitzt. Nach dem Abkühlen wird die Suspension mit

MTBE (100 ml) verdünnt und mit H₂O (2x15 ml) extrahiert. Die wässrige Phase wird mit MTBE (2x15 ml) gewaschen, das Wasser am Rotationsverdampfer entfernt und der Rückstand mit CH₂Cl₂ (200 ml) extrahiert. Die Lösung wird über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Man erhält **64** (1.15 g, 65 %) als weißen Feststoff.

¹H-NMR (DMSO-d₆, 400 MHz) δ 9.50 (s, 1H), 8.14 (s, 1H), 7.91 (s, 1H), 7.15 (s, 2H), 4.39 (t, 2H, *J*=4.7 Hz), 2.33 (s, 3H), 2.02 (m, 8H), 1.18 (s, 6H); ¹³C-NMR (DMSO-d₆, 100 MHz) δ 140.5, 137.7, 134.7, 131.6, 129.5, 124.0, 123.6, 68.5, 46.4, 42.4, 29.8, 20.9, 17.3; IR (kap) 3361, 3122, 3064, 2970, 2871, 1608, 1565, 1547, 1486, 1460, 1379, 1203, 1162, 1069, 938, 856, 731 cm⁻¹; MS (ESI) m/z 273 [M⁺-Br]; HR-MS *ber.* 273.1967; *gef.* 273.1965; $C_{17}H_{25}N_2OBr$ (353 g/mol) *ber.* C, 57.79; H, 7.08; *gef.* C, 57.59; H, 7.15.

3-(3-Trimethylsilylhydroxy-3-methylbutyl)-1-(2,4,6-trimethyl-phenyl)-imidazoliumbromid 65

Der Alkohol **64** (1.10 g, 3.1 mmol) wird in CH_2Cl_2 (5 ml) gelöst und HMDS (15 ml) zugegeben. Nach Zugabe von 2 Tropfen Chlortrimethylsilan wird für 24 h unter Rückfluss erhitzt. Das

Lösungsmittel wird entfernt und der Rückstand mit Et₂O (150 ml) gewaschen. Der Rückstand

wird im Vakuum getrocknet. Man erhält 65 (1.62 g, quantitativ) als weißen Feststoff.

¹H-NMR (DMSO-d₆, 300 MHz) δ 9.35 (s, 1H), 8.00 (s, 1H), 7.80 (s, 1H), 7.02 (s, 2H), 4.22 (t, 2H, *J*=7.83 Hz), 2.20 (s, 3H), 1.95 (t, 2H, *J*=7.83 Hz), 1.89 (s, 6H), 1.16 (s, 6H), 0.01 (s, 9H); ¹³C-NMR (DMSO-d₆, 75 MHz) δ 140.6, 137.6, 134.6, 131.6, 129.6, 124.1, 123.7, 72.9, 46.3, 43.7, 29.9, 20.9, 17.3, 2.9; IR (KBr) 3132, 3092, 3027, 2975, 1609, 1567, 1547, 1488, 1460, 1383, 1248, 1209, 1154, 1051, 1029, 1018, 874, 841, 760 cm⁻¹; MS (ESI) m/z 345 [M⁺-Br]; HR-MS *ber*. 345.2362; *gef*. 345.2362; C₂₀H₃₃N₂OSiBr (425 g/mol) *ber*. C, 56.47; H, 7.76; *gef*. C, 56.55; H, 7.71.

3-(2-Hydroxy-ethyl)-1-(2,4,6-trimethyl-phenyl)-imidazoliumbromid 72

N-Mesitylimidazol **9** (0.93 g, 5.0 mmol) und 2-Bromethanol (0.62 g, 5.0 mmol) werden in Toluol (15 ml) für 18 h unter Rückfluss erhitzt. Nach dem Abkühlen wird die Suspension mit MTBE (100 ml) verdünnt und mit H₂O (2x15 ml) extrahiert. Die wässrige Phase wird mit MTBE

(2x15 ml) gewaschen. Das Wasser wird am Rotationsverdampfer entfernt und der Rückstand mit CH₂Cl₂ (200 ml) extrahiert. Die Lösung wird über Na_2SO_4 getrocknet und das Lösungsmittel entfernt. Man erhält **72** (1.29 g, 83 %) als braunen Feststoff.

¹H-NMR (CD₂Cl₂, 300 MHz) δ 9.67 (s, 1H), 8.04 (s, 1H), 7.26 (s, 1H), 7.03 (s, 2H), 5.00-4.85 (br, 1H), 4.73 (t, 2H, *J*=4.7 Hz), 3.96 (t, 2H, *J*=4.7 Hz), 2.33 (s, 3H), 2.06 (s, 3H) ; ¹³C-NMR (CD₂Cl₂, 75 MHz) δ 141.2, 137.5, 134.4, 130.7, 129.6, 123.9, 122.9, 59.8, 52.1, 20.8, 17.4; IR (KBr) 3282, 3128, 3059, 2949, 2920, 2872, 1607, 1565, 1546, 1486, 1446, 1206, 1159, 1071, 856, 668 cm⁻¹; MS (ESI) m/z 231 [M⁺-Br].

Die analytischen Daten stimmen mit denen der Literatur überein.³¹

3-(2-Trimethylsilylhydroxy-ethyl)-1-(2,4,6-trimethyl-phenyl)-imidazoliumbromid 73

Der Alkohol **72** (0.60 g, 2.0 mmol) wird in CH_2Cl_2 (5 ml) gelöst und HMDS (15 ml) zugegeben. Nach Zugabe von 2 Tropfen Chlortrimethylsilan wird für 24 h unter Rückfluss erhitzt. Das

Lösungsmittel wird entfernt und der Rückstand mit Et₂O (150 ml) gewaschen. Der Rückstand

wird im Vakuum getrocknet. Man erhält 73 (748 mg, quantitativ) als weißen Feststoff.

¹H-NMR (CD₂Cl₂, 300 MHz) δ 10.15 (s, 1H), 7.74 (s, 1H), 7.04 (s, 1H), 6.96 (s, 2H), 4.73 (t, 2H, *J*=4.8 Hz), 3.94 (t, 2H, *J*=4.8 Hz), 2.25 (s, 3H), 1.98 (s, 6H), 0.04 (s, 9H); ¹³C-NMR (CD₂Cl₂, 75 MHz) δ 141.2, 137.5, 135.4, 130.8, 129.6, 124.9, 122.9, 62.5, 53.5, 21.9, 18.5, 0.3; IR (KBr) 3119, 3070, 2958, 1633, 1608, 1565, 1545, 1485, 1445, 1390, 1366, 1249, 1215, 1200, 1163, 1106, 1080, 1062, 941, 843, 760, 752, 669, 614, 576 cm⁻¹; MS (ESI) m/z 223 [M⁺-Br]; C₁₇H₂₇N₂OSiBr (383 g/mol) *ber*. C, 53.26; H, 7.04; N, 7.32; *gef*. C, 53.03; H, 6.77; N, 8.19.

1-(6-Norbornylcarboxyl-(2,4,6-trimethyl-phenyl)-imidazoliumbromid 78

Der Ester **77** (200 mg, 0.66 mmol) und *N*-Mesitylimidazol **9** (122 mg, 0.66 mmol) werden 24 h in Toluol (5 ml) unter Rückfluss erhitzt. Das Lösungsmittel wird entfernt und der Rückstand in H₂O (100 ml) gelöst. Die wässrige Phase

wird mit MTBE (2x50 ml) gewaschen und das Wasser entfernt. Der Rückstand wird in CH_2Cl_2 (200 ml) aufgenommen, die Lösung über Na_2SO_4 getrocknet und das Lösungsmittel entfernt. Man erhält **78** als weißen Feststoff (125 mg, 39 %).

¹H-NMR (CD₂Cl₂, 300 MHz) δ 10.46 (s, 1H), 7.66 (s, 1H), 7.18 (s, 1H), 6.97 (s, 1H), 6.08 (m, 1H), 5.81 (m, 1H), 4.56 (t, 2H, *J*=7.5 Hz), 3.90 (t, 2H, *J*=6.9 Hz), 3.09 (s, 1H), 2.85 (m, 1H), 2.76 (s, 1H), 2.28 (s, 3H), 2.01 (s, 6H), 1.93 (m, 4H), 1.80 (m, 1H), 1.53 (m, 2H), 1.35 (m, 6H), 1.19 (d, 1H, *J*=8.8 Hz); ¹³C-NMR (CD₂Cl₂, 75 MHz) δ 175.3, 142.1, 139.0, 138.4, 135.1, 133.1, 131.5, 130.5, 129.6, 124.1, 123.4, 64.5, 50.9, 50.3, 46.5, 44.0, 43.4, 31.1, 29.8, 29.2, 26.5, 26.1, 21.6, 18.2; IR (kap) 3056, 2943, 2863, 1726, 1609, 1565, 1546, 1460, 1336, 1202, 855, 711 cm⁻¹; MS (ESI) m/z 407 [M⁺-Br], 893 [2M⁺-Br]; HR-MS *ber.* 407.2699; *gef.* 407.2700; C₂₆H₃₆N₂ (487 g/mol) *ber.* C, 64.07; H, 7.19; N, 5.75; *gef.* C, 65.58; H, 7.46; N, 6.04.

1-(1-Hydroxycarbonyl-ethyl)-3-(2,4,6-trimethyl-phenyl)-imidazoliumchlorid 93

N-Mesitylimidazol **9** (0.93 g, 5.0 mmol) und 1-Bromethansäuretrimethylsilylester **89** (965 mg, 5.0 mmol) werden in Toluol (15 ml) für 18 h unter Rückfluss erhitzt. Nach dem Abkühlen wird die Suspension mit MTBE (150 ml) verdünnt und mit ges. Natriumcarbonatlösung (2x15 ml) extrahiert. Die wässrige Phase wird mit MTBE (2x50 ml) gewaschen und mit 1M HCl (30 ml) angesäuert. Das Wasser wird abdestilliert und der Rückstand mit CH_2Cl_2 (200 ml) extrahiert. Die Lösung wird über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Man erhält **93** (879 mg, 47 %) als weißen Feststoff.

¹H-NMR (D₂O, 300 MHz) δ 9.15 (s, 1H), 7.86 (s, 1H), 7.62 (s, 1H), 7.19 (s, 1H), 5.40 (q, 1H, *J*=7.5 Hz), 2.37 (s, 3H), 2.07 (s, 6H), 1.94 (d, 3H, *J*=7.5 Hz); ¹³C-NMR (D₂O, 75 MHz) δ 173.6, 141.9, 137.2, 135.1, 131.3, 129.7, 124.2, 123.1, 59.3, 20.6, 17.4, 16.7; IR (Film) 2974, 2925, 2863, 2738, 1741, 1621, 1611, 1547, 1486, 1460, 1384, 1334, 1295, 1205, 1164, 1110, 1064, 1036, 967, 935, 855, 750, 731, 670, 625, 578 cm⁻¹; MS (ESI) m/z 259.2 [M⁺-Cl]; C₁₅H₁₉N₂O₂Cl (294.5 g/mol) *ber*. C, 61.12; H, 6.45; N, 9.51; *gef*. C, 61.18; H, 6.41; N, 9.45.

3-(6-Hydroxycarbonylpentyl)-1-(2,4,6-trimethylphenyl)-imidazoliumbromid 94

N-Mesitylimidazol **9** (1,86 g, 10.0 mmol) und **92** (2.67 g, 10.0 mmol) werden 24 h in Toluol (15 ml) unter Rückfluss erhitzt und die Lösung mit MTBE (100 ml) verdünnt. Nach dem Abkühlen wird mit ges.

Na₂CO₃-Lsg. (50 ml) extrahiert, die wässrige Phase mit konz. HBr angesäuert, und das Wasser abdestilliert. Der Rückstand wird mit CH₂Cl₂ (200 ml) extrahiert. Die Lösung wird über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Man erhält **94** (2.11 g, 57 %) als weißen Feststoff. ¹H-NMR (CD₂Cl₂, 300 MHz) δ 10.07 (s, 1H), 7.54, (s, 1H), 7.13 (s, 1H), 6.99 (s, 2H), 4.48 (br, 2H), 2.40 (br, 2H), 2.29 (s, 3H), 2.02 (s, 6H), 1.80 (m, 2H), 1.56 (m, 2H), 1.42 (m, 2H); ¹³C-NMR (CD₂Cl₂, 100 MHz) δ 171.1, 150.6, 138.5, 135.1, 134.3, 128.3, 122.0, 119.8, 53.0, 48.7, 35.1, 30.3, 25.0, 20.1, 16.5; IR (KBr) 3425, 2956, 2925, 2856, 1743, 1654, 1631, 1545, 1509, 1487, 1458, 1384, 1342, 1259, 1204, 1158, 1095, 1037, 854, 746, 668 cm⁻¹; MS (ESI) m/z 301 [M⁺-Br]; C₁₈H₂₅N₂O₂Br (381 g/mol) *ber*. C, 56.33; H, 6.56; *gef.* C, 55.94; H, 6.64.

1-(1-Trimethylsilyloxycarbonyl-ethyl)-3-(2,4,6-trimethyl-phenyl)-imidazoliumchlorid 96

Die Säure **93** (800 mg, 2.70 mmol) wird in CH_2Cl_2 (5 ml) gelöst und für 2 h mit HMDS (10 ml) bei 60 °C gerührt. Die flüchtigen Bestandteile werden im Vakuum entfernt und der Rückstand mit

n-Pentan (20 ml) extrahiert. Man erhält **96** (988 mg, quantitativ) als braunes Öl.

¹H-NMR (CD₂Cl₂, 300 MHz) δ 10.52 (s, 1H), 7.77 (s, 1H), 7.20 (s, 2H), 6.98 (s, 2H), 6.21 (br, 1H), 2.29 (s, 3H), 2.04 (s, 3H), 2.01 (s, 3H), 1.87 (br, 3H), 0.03 (s, 9H); ¹³C-NMR (CD₂Cl₂, 75 MHz) δ 169.4, 141.9, 139.5, 135.1, 131.4, 130.4, 130.3, 123.4, 122.8, 59.3, 21.5, 19.4, 18.1, 2.1; IR (KBr) 3142, 3039, 2958, 2924, 1733, 1548, 1206, 851 cm⁻¹; MS (ESI) m/z 331 [M⁺-Cl].
4.7 Nachweis eines Carbens als Thioharnstoff

1-(1-Hydroxycarbonyl-ethyl)-3-(2,4,6-trimethyl-phenyl)-imidazol-2-thion 95

Das Imidazoliumsalz **93** (336 mg, 1.00 mmol) wird in THF (5 ml) suspendiert und KOtBu (232 mg, 2.00 mmol) hinzugegeben. Die gelbe Lösung wird 30 min bei Raumtemperatur gerührt. Daraufhin

wird Schwefel (10 mg, 0.32 mmol) zugegeben. Das Lösungsmittel wird entfernt und der Rückstand mit CH_2Cl_2 (30 ml) aufgenommen. Die organische Phase wird mit H_2O (5 ml) gewaschen und über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Anschließend wird der Rückstand säulenchromatographisch gereinigt (CH₂Cl₂/MeOH 4:1). Man erhält **95** (130 mg, 45 %) als gelblichen Feststoff.

¹H-NMR (CDCl₃, 400 MHz) δ 7.05 (s, 1H), 6.96 (s, 2H), 6.68 (s, 1H), 5.73 (br, 1 H), 2.32 (s, 3H), 2.02 (m, 6H), 1.73 (m, 3H); ¹³C-NMR (CDCl₃ 75 MHz) δ 166.3, 139.4, 135.6, 133.4, 129.3, 118.0, 115.7, 77.2, 41.4, 22.6, 20.4, 14.3; IR (KBr) 3416, 3133, 2918, 1740, 1609, 1489, 1418, 1390, 1338, 1299, 1258, 1226, 1135, 1084, 1032, 961, 931, 852, 727, 683, 668, 595, 529 cm⁻¹; MS (EI) m/z (relative Intensität) 290 ([M⁺] 73), 275 (100), 245 (13), 185 (10), 121 (11), 119 (12); HR-MS *ber*. 290.1089 M+H, *gef*. 290.1088.

4.8 Darstellung der Präkatalysatoren

Benzyliden-dichloro-(3-(2-phenylhexenyl)-1-(2,4,6-trimethyl-phenyl)-imidazolin-2-yliden)-(tricyclohexylphosphan)-ruthenium 36

 $\begin{array}{c} \begin{array}{c} & PCy_3 \\ CI_{N_1, P} \\ Ph \end{array} \begin{array}{c} Pcy_3 \\ N \\ \end{array} \begin{array}{c} N \\ N \end{array} \begin{array}{c} N \\ \end{array} \begin{array}{c} Ph \end{array} \begin{array}{c} Das Salz \ 32 \ (424 \ mg, \ 1.0 \ mmol) \ wird \ in \ Toluol \ (30 \ ml) \ suspendiert \ und \ KOtBu \ (116 \ mg, \ 1.0 \ mmol) \ hinzugegeben. \ Dann \ wird \ eine \ Lösung \ von \ 2 \ (823 \ mg, \ 1.00 \ mmol) \ in \ Toluol \ (5 \ ml) \ zugegeben. \ Die \ Reaktionsmischung \ wird \ 1 \ h \ bei \ Raumtemperatur \ gerührt \ und \ das \ Lösungsmittel \ im \ Vakuum \ entfernt. \ Der \ Rückstand \ wird \ durch \ Säulenchromatographie \ (n-Pentan/Et_2O \ 4:1) \ gereinigt \ wodurch \ man \ 36 \ (355 \ mg, \ 41 \ \%) \ als \ roten \ Feststoff \ erhält. \end{array}$

¹H-NMR (CD₂Cl₂, 200 MHz) δ 19.20 (s, 1H), 7.87 (br, 2H), 7.50-7.35 (m, 6H), 7.18 (s, 1H), 7.13 (m, 2H), 6.97 (s, 1H), 6.08 (m, 2H), 5.32 (s, 1H) 5.05 (s, 1H), 4.73 (t, 2H, *J*=4.7 Hz), 2.55 (t, 2H, *J*=7.9 Hz), 2.64-2.42 (m, 3H), 2.03 (s, 6H), 1.71 (s, 3H), 1.98-0.90 (m, 46 H); ³¹P-NMR (CD₂Cl₂, 81 MHz) δ 34.2; IR (KBr) 3165, 3124, 3051, 2924, 2848, 1628, 1571, 1493, 1444, 1408, 1384, 1351, 1326, 1288, 1174, 1154, 897, 847, 731, 695, 686, 585 cm⁻¹; MS (ESI) m/z 853 [M⁺-Cl]; $C_{49}H_{67}N_2RuPCl_2$ (850 g/mol) *ber.* C, 66.44; H, 7.57; *gef.* C, 66.08; H, 7.48.

Benzyliden-dichloro-(3-(1-*t*-butyldiphenylylsilyloxyhexyl)-1-(2,4,6-trimethyl-phenyl)imidazolin-2-yliden)-(tricyclohexylphosphan)-ruthenium 48

anschließend auf eine Kieselgelsäule gegeben (*n*-Pentan/Et₂O 4:1). Man erhält **48** (41 mg, 38 %) als roten Feststoff.

¹H-NMR (C₆D₆, 400 MHz,) δ 19.73 (s, 1H), 7.98 (m, 2H), 7.15 (m, 2H), 7.09 (m, 1H), 7.04 (m, 3H), 6.85 (m, 1H), 6.41 (s, 1H), 6.17 (m, 2H), 6.07 (m, 5H), 5.98 (m, 2H), 4.54 (m, 2H), 3.58 (t, 2H, J=6.5 Hz), 2.50 (m, 3H), 2.06 (s, 6H), 1.71 (s, 3H), 1.07 (s, 9H), 2.16-0.73 (m, 34H), ³¹P-NMR (C₆D₆, 160 MHz) δ 34.3; IR (KBr) 3167, 3130, 3068, 3050, 2927, 2852, 1608, 1589, 1567,

1538, 1488, 1472, 1427, 1407, 1385, 1360, 1327, 1299, 1262, 1237, 1173, 1110, 1029, 1006, 936, 894, 847, 821, 738, 702, 605, 505 cm⁻¹; MS (ESI) m/z 1023 [M⁺-Cl]; C₅₉H₇₉N₂ORuPCl₂Si (1066 g/mol) *ber.* C, 66.42; H, 7.41; *gef.* C, 66.57; H, 7.70.

Benzyliden-dichloro-(3-(3-trimethylsilyloxypropyl)-1-(2,4,6-trimethyl-phenyl)-imidazolin-2yliden)-(tricyclohexylphosphan)-ruthenium 56

eine Kieselgelsäule gegeben (*n*-Pentan/Et₂O 4:1). Man erhält **56** (45 mg, 26 %) als roten Feststoff.

¹H-NMR (C₆D₆, 400 MHz) δ 19.64 (s, 1H), 8.12 (m, 2H), 7.02 (m, 3H), 6.85 (t, 1H, *J*=8.0 Hz), 6.68 (s, 1H), 6.07 (m, 2H), 4.80 (t, 2H, *J*=7.2 Hz), 3.58 (t, 2H, *J*=6.4 Hz), 2.56-2.34 (m, 5H), 2.01 (s, 6H), 1.71 (s, 3H), 1.81-1.00 (m, 30H), -0.01 (s, 9H); ³¹P-NMR (C₆D₆, 160 MHz) δ 35.2; IR (KBr) 3153, 3114, 3063, 3015, 2922, 2848, 1609, 1591, 1490, 1445, 1411, 1386, 1355, 1325, 1291, 1260, 1249, 1234, 1192, 1172, 1098, 1029, 1004, 966, 929, 914, 896, 875, 840, 738, 698, 683, 524 cm⁻¹; MS (ESI) m/z 823 [M⁺-Cl]; C₄₃H₆₇N₂ORuPSiCl₂ (859 g/mol) *ber.* C, 60.07; H, 7.80; *gef.* C, 60.14; H, 7.62.

Benzyliden-dichloro-(3-(1-trimethylsilyloxyhexyl)-1-(2,4,6-trimethyl-phenyl)-imidazolin-2yliden)-(tricyclohexylphosphan)-ruthenium 57

 $\begin{array}{c} \begin{array}{c} & & PCy_3 \\ & & Cl_{M_1} & Ph \\ & & Cl_{M_2} & Ph \\ & & Cl_{M_2} & Ph \\ & & & Cl_{M_2} & Ph \\ & & & & \\ \end{array} \end{array} \\ \begin{array}{c} & Das Salz \, \mathbf{55} \, (439 \text{ mg}, 1.00 \text{ mmol}) \text{ wird mit KO}t\text{Bu} \, (112 \text{ mg}, 1.00 \text{ mmol}) \\ & & und \, \mathbf{2} \, (823 \text{ mg}, 1.00 \text{ mmol}) \text{ in Toluol} \, (50 \text{ ml}) \text{ suspendiert. Die} \\ & & & \\ \end{array} \\ \begin{array}{c} & & & \\ & &$

¹H-NMR (C₆D₆, 400 MHz) δ 19.68 (s, 1H), 8.30-8.10 (br, 2H), 7.05 (m, 2H), 6.86 (t, 2H, *J*=8.0 Hz), 6.41 m, 1H), 6.06 (br, 2H), 4.56 (t, 2H, *J*=6.8 Hz), 3.42 (t, 2H, *J*=6.8 Hz), 2.64-2.42 (m,

3H), 2.03 (s, 6H), 1.71 (s, 3H), 1.98-0.90 (m, 38 H), 0.09 (s, 9H); ³¹P-NMR (160 MHz, C₆D₆) δ 34.9; IR (KBr) 3166, 3128, 3098, 3055, 3015, 2926, 2850, 1610, 1588, 1568, 1533, 1490, 1445, 1409, 1383, 1327, 1298, 1248, 1173, 1092, 1028, 1005, 935, 894, 871, 845, 741, 730, 693, 686, 584 cm⁻¹; MS (ESI) m/z 851 [M⁺-Cl]; C₄₆H₇₃N₂ORuPSiCl₂ (901 g/mol) *ber.* C, 61.27; H, 8.10; *gef.* C, 61.16; H, 8.11.

Benzyliden-dichloro-(3-(3-hydroxypropyl)-1-(2,4,6-trimethyl-phenyl)-imidazolin-2-yliden)-(tricyclohexylphosphan)-ruthenium 58

(195 mg, quantitativ) als roten Feststoff erhält.

Einkristalle werden durch vorsichtiges Überschichten einer Lösung der Verbindung in CH₂Cl₂ mit *n*-Pentan erhalten.

¹H-NMR (400 MHz, CD₂Cl₂) δ 18.98 (s, 1H), 7.90-7.60 (br, 2H), 7.35 (t, 1H, *J*=8.0 Hz), 7.21 (s, 1H), 7.05 (t, 2H, *J*=8.0 Hz), 6.82 (d, 1H, *J*=2.4 Hz), 6.30-6.10 (br, 2H), 5.22 (br, 1H), 4.68 (br, 2H), 3.58 (m, 2H), 2.30-2.20 (m, 8H), 1.86 (s, 6H), 1.85-1.00 (m, 30H); ³¹P-NMR (160 MHz, CD₂Cl₂) δ 36.0; IR (KBr) 3396, 3164, 3125, 3098, 3059, 3022, 2925, 2849, 1708, 1608, 1589, 1568, 1547, 1489, 1446, 1409, 1383, 1350, 1334, 1299, 1231, 1200, 1173, 1072, 968, 950, 934, 897, 847, 739, 696, 686, 585; MS (ESI) m/z 753 [M⁺-Cl]; UV-VIS (CH₂Cl₂, 5 mmol/l) 505 nm; C₄₀H₅₇N₂ORuPCl₂ (787 g/mol) *ber*. C, 60.99; H, 7.24; *gef.* C, 61.08; H, 7.34.

Benzyliden-dichloro-(3-(6-hydroxyhexyl)-1-(2,4,6-trimethyl-phenyl)-imidazolin-2-yliden)-(tricyclohexylphosphan)-ruthenium 59

Der Komplex **57** (225 mg, 0.025 mmol) wird in CH_2Cl_2 (10 ml) und MeOH (10 ml) gelöst und mit 3 Tropfen HCl in Et_2O versetzt. Die flüchtigen Bestandteile werden im Vakuum entfernt, wodurch man **59** (207 mg, quantitativ) als roten Feststoff erhält. Einkristalle können durch Überschichten einer Lösung des Komplexes in CH₂Cl₂ mit *n*-Pentan erhalten werden.

¹H-NMR (400 MHz, CD₂Cl₂) δ 19.22 (s, 1H), 8.10-7.70 (br, 2H), 7.39 (t, 1H, *J*=7.2 Hz), 7.25 (s, 1H), 7.10 (t, 2H, *J*=8.0 Hz), 6.82 (m, 1H), 6.28 (br, 2H), 4.68 (t, 2H, *J*=8.0 Hz), 3.69 (t, 2H, *J*=6.8 Hz), 3.39 (s, 1H), 2.45-2.00 (m, 7H), 2.31 (s, 3H), 1.91 (s, 6H), 1.90-1.86 (m, 3H), 1.68-1.54 (m, 25H), 1.38-1.00 (m, 18H); ³¹P-NMR (160 MHz, CD₂Cl₂) δ 34.4; IR (KBr) 3461, 3163, 3127, 3100, 3059, 2925, 2851, 1610, 1569, 1490, 1445, 1408, 1355, 1325, 1289, 1263, 1238, 1174, 1129, 1072, 1034, 935, 915, 895, 848, 815, 736, 696, 686, 643, 582, 512 cm⁻¹; MS (ESI) m/z 795 [M⁺-Cl]; UV-VIS (CH₂Cl₂, 5 mmol/l) 505 nm; C₄₃H₆₅N₂ORuPCl₂ (829g/mol) ber. C, 62.24; H, 7.84; gef. C, 62.25; H, 7.78.

Benzyliden-dichloro-(3-(2-methoxyethyl)-1-(2,4,6-trimethyl-phenyl)-imidazolin-2-yliden)-(tricyclohexylphosphan)-ruthenium 61

 $\begin{array}{c} \begin{array}{c} & \text{Cl}_{i,i_{i},j_{i}} \ \text{PC}y_{3} \ \text{Ph} \\ & \text{Cl} & \text{Ru} \end{array} \\ \begin{array}{c} \text{MeO} & \text{N} \\ & \text{N} \end{array} \\ \begin{array}{c} \text{MeO} & \text{N} \\ & \text{N} \end{array} \\ \end{array} \\ \begin{array}{c} \text{MeO} & \text{N} \\ & \text{N} \end{array} \\ \begin{array}{c} \text{MeO} & \text{N} \\ & \text{N} \end{array} \\ \begin{array}{c} \text{MeO} & \text{N} \\ & \text{N} \end{array} \\ \begin{array}{c} \text{MeO} & \text{N} \\ & \text{N} \end{array} \\ \begin{array}{c} \text{MeO} & \text{N} \\ & \text{N} \end{array} \\ \begin{array}{c} \text{MeO} & \text{N} \\ & \text{N} \end{array} \\ \begin{array}{c} \text{MeO} & \text{N} \\ & \text{N} \end{array} \\ \begin{array}{c} \text{MeO} & \text{Ru} \\ & \text{N} \end{array} \\ \begin{array}{c} \text{MeO} & \text{Ru} \\ & \text{N} \end{array} \\ \begin{array}{c} \text{MeO} & \text{N} \\ & \text{N} \end{array} \\ \begin{array}{c} \text{MeO} & \text{N} \\ & \text{N} \end{array} \\ \begin{array}{c} \text{MeO} & \text{Ru} \\ & \text{N} \end{array} \\ \begin{array}{c} \text{MeO} & \text{Ru} \\ & \text{Reaktionsmischung wird 1 h bei Raumtemperatur gerührt und direkt auf \\ \end{array} \\ \begin{array}{c} \text{Reaktionsmischung wird 1 h bei Raumtemperatur gerührt und direkt auf \\ \end{array} \\ \begin{array}{c} \text{Feststoff.} \end{array} \\ \begin{array}{c} \text{Feststoff.} \end{array} \\ \end{array}$

¹H-NMR (CD₂Cl₂, 400 MHz) δ 19.09 (s, 1H), 8.02-7.71 (br, 2H), 7.58-7.45 (m, 1H), 7.36-7.31 (m, 2H), 7.04 (t, 1H, *J*=8.0 Hz), 6.73 (d, 1H, *J*=2.0 Hz), 6.22 (br, 2H), 4.78 (t, 2H, *J*=6.0 Hz), 4.00 (t, 2H, *J*=4.8 Hz), 3.37 (s, 3H), 2.45-2.05 (m, 3H), 2.34 (s, 3H), 1.92 (s, 6H), 1.90-1.50 (m, 15H), 1.45-1.05 (m, 15H); ³¹P-NMR (CD₂Cl₂, 122 MHz) δ 35.7; IR (KBr) 3164, 3127, 3098, 3052, 2923, 2849, 1609, 1487, 1445, 1411, 1233, 1173, 1125, 895, 848, 743, 729, 695, 685 cm⁻¹; MS (ESI) m/z 752 [M⁺-Cl]; C₄₀H₅₇N₂ORuPCl₂ (787 g/mol) *ber.* C, 60.99; H, 7.24; *gef.* C, 61.09; H, 7.52.

Benzyliden-dichloro-(3-(3-trimethylsilyloxy-3-methylbutyl)-1-(2,4,6-trimethyl-phenyl)imidazolin-2-yliden)-(tricyclohexylphosphan)-ruthenium 66

Das Salz 65 (850 mg, 2.0 mmol) wird mit KOtBu (220 mg, 2.0 mmol)

113

und **2** (1.65 g, 2.0 mmol) in Toluol (30 ml) suspendiert. Die Reaktionsmischung wird 1 h bei Raumtemperatur gerührt, direkt auf eine Kieselgelsäule gegeben und das Produkt durch Säulenchromatographie isoliert (*n*-Pentan/Et₂O 4:1). Man erhält **66** (674 mg, 38 %) als roten Feststoff.

¹H-NMR (CD₂Cl₂, 400 MHz) δ 19.18 (s, 1H), 7.99 (br, 2H), 7.33 (m, 2H), 7.02 (t, 2H, *J*=7.2 Hz), 6.92 (m, 1H), 6.24 (br, 2H), 4.77 (t, 2H, *J*=6.8 Hz), 3.14 (br, 1H), 2.28-2.15 (m, 3H), 2.26 (s, 3H), 1.86 (s, 6H), 1.65-1.50 (m, 15H), 1.33 (s, 6H), 1.30-1.00 (m, 15 H), 0.14 (s, 9H); ³¹P-NMR (CD₂Cl₂, 122 MHz) δ 32.0; IR (KBr) 3171, 3135, 3106, 3059, 2925, 2850, 1488, 1446, 1248, 1173, 1157, 1032, 840, 737, 687 cm⁻¹; MS (ESI) m/z 852 [M⁺-Cl]; C₄₅H₇₁N₂ORuPSiCl₂ (887 g/mol) *ber.* C, 60.88 H, 8.00; *gef.* C, 60.81; H, 8.11.

Benzyliden-trans-dichloro-(3-(3-hydroxy-3-methylbutyl)-1-(2,4,6-trimethyl-phenyl)imidazolin-2-yliden)-(tricyclohexylphosphan)-ruthenium 67

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ &$

1H), 6.07 (m, 2H), 4.74 (m, 2H), 2.60-1.00 (m, 51H); ¹⁴P-NMR (162 MHz) 8 34.7; IR (KBr) 3171, 3135, 3106, 3059, 2925, 2854, 1485, 1447, 1404, 1375, 1229, 1174, 1129, 930, 850, 736, 726 cm⁻¹; MS (ESI) m/z 779 [M⁺-Cl], 743 [779-HCl]; UV-VIS (CH₂Cl₂, 5 mmol/l) 505 nm; $C_{42}H_{63}N_2ORuPCl_2$ (815 g/mol) *ber*. C, 61.84; H, 7.73; *gef.* C, 61.88; H, 7.62.

Benzyliden-*cis*-dichloro-(3-(3-hydroxypropyl)-1-(2,4,6-trimethyl-phenyl)-imidazolin-2yliden)-(tricyclohexylphosphan)-ruthenium 68

Der Komplex **58** (394 mg. 0.50 mmol) wird in CH_2Cl_2 (25 ml) gelöst und mit Kieselgel (5 g) gerührt, bis das Kieselgel tief grün gefärbt und die Lösung fast farblos ist (ca. 10 Minuten). Mittels einer Fritte wird das

Kieselgel abflitriert und zunächst mit CH_2Cl_2 (15 ml) gewaschen, bis das Filtrat farblos ist. Dann wird das Produkt mit MeOH (25 ml) eluiert. Das Lösungsmittel wird im Vakuum entfernt und der Rückstand aus CH_2Cl_2/n -Pentan (8:1) umkristallisiert. Man erhält **68** (334 mg, 85 %) als grünen Feststoff.

1H-NMR (CD₂Cl₂, 400 MHz) δ 16.31 (d, 1H, *J*=18.8 Hz), 7.73 (br, 2H), 7.48 (t, 1H, *J*=7.2 Hz), 7.20 (m, 3H), 6.88 (s, 1H), 6.68 (d, 1H, *J*=2.4 Hz), 6.07 (s, 1H), 5.17 (dt, 1H, *J*=13.6 Hz, *J*=8.0 Hz), 4.39 (m, 1H), 3.63 (m, 2H), 2.65 (br, 1H), 2.35 (s, 3H), 2.15 (m, 2H), 2.08 (s, 3H), 1.90-0.80 (m, 36H); ³¹P-NMR (CD₂Cl₂, 122 MHz) δ 44.6; IR (KBr) 3436, 3178, 3107, 3055, 3016, 2928, 2851, 1484, 1447, 1402, 1376, 1234, 1173, 1071, 1006, 849, 739, 686 cm⁻¹; MS (ESI) m/z 751 [M⁺-Cl]; UV-VIS (CH₂Cl₂, 5 mmol/l) 600 nm; C₄₀H₅₇N₂ORuPCl₂ (787 g/mol) *ber*. C, 60.99; H, 7.24; *gef.* C, 61.15; H, 7.42.

Benzyliden-*cis*-dichloro-(3-(3-hydroxy-3-methylbutyl)-1-(2,4,6-trimethyl-phenyl)imidazolin-2-yliden)-(tricyclohexylphosphan)-ruthenium 69

Der Komplex 67 (408 mg, 0.50 mmol) wird in CH_2Cl_2 (25 ml) gelöst und mit Kieselgel (5 g) für 1 Minute gerührt. Mittels einer Fritte wird das tief grün gefärbte Kieselgel von der nur noch leicht rötlichen Lösung abfiltriert und zunächst mit CH_2Cl_2 (15 ml) gewaschen, bis das Filtrat farblos ist. Dann wird das Produkt mit MeOH (25 ml) eluiert. Das Lösungsmittel wird

im Vakuum entfernt und der Rückstand aus CH_2Cl_2/n -Pentan (8:1) umkristallisiert. Man erhält **69** (359 mg, 88 %) als einen grünen kristallinen Feststoff. Einkristalle konnten durch Überschichten einer Lösung des Komplexes in Aceton mit *n*-Pentan erhalten werden.

¹H-NMR (CD₂Cl₂, 600 MHz) δ 16.43 (d, 1H, *J*=18.7 Hz), 7.83 (br, 2H), 7.57 (t, 1H, *J*=7.6 Hz), 7.28 (m, 2H), 7.20 (d, 1H, *J*=2.0 Hz), 6.98 (s, 1H), 6.73 (d, 1H, *J*=2 Hz), 6.17 (s, 1H), 5.25-5.36 (m, 1H), 4.37 (m, 1H), 2.44 (m, 1H), 2.42 (s, 3H), 2.21 (m, 3H), 2.19 (s, 3H), 2.02 (m, 1H); 1.96 (br, 3H), 1.85 (br, 3H), 1.75 (br, 3H), 1.69 (br, 3H), 1.63 (br, 3H) 1.42 (br, 3H), 1.37 (s, 3H), 1.32 (s, 3H), 1.31 (s, 3H), 1.30 (s, 3H), 1.17-1.08 (m, 9H); ³¹P-NMR (CD₂Cl₂, 122 MHz) δ 43.2; ¹³C-NMR (CD₂Cl₂, 151 MHz) δ 305.0 (d, *J*_{*PC*}=16 Hz), 181.0 (d, *J*_{*PC*}=11 Hz), 149.1 (d, *J*_{*PC*}=2 Hz), 139.3, 139.0, 136.3, 134.4, 130.9, 130.4, 129.0, 127.8, 125.8, 120.9, 69.7, 49.1, 43.1, 31.2, 30.5, 29.6, 28.9, 28.2 (t, J_{PC} =10 Hz), 27.8 (t, J_{PC} =10 Hz), 26.8, 20.9, 20.1, 19.0 ; IR (Nujol) 3435, 3182, 3151, 1609, 1579, 1567, 1261, 1226, 1171, 1073, 1005, 892, 848, 685 cm⁻¹; MS (ESI) m/z 744 [M⁺-2Cl]; UV-VIS (CH₂Cl₂, 5 mmol/l) 600 nm; C₄₂H₆₃N₂ORuPCl₂ (815 g/mol) *ber.* C, 61.84; H, 7.73; Cl, 8.71; *gef.* C, 61.98; H, 7.65; Cl, 8.81.

Benzyliden-dichloro-(3-(2-trimethylsilyloxyethyl)-1-(2,4,6-trimethyl-phenyl)-imidazolin-2yliden)-(tricyclohexylphosphan)-ruthenium 74

PCy3
Cl/un, HuDas Salz 73 (766 mg, 2.0 mmol) wird mit KOtBu (220 mg, 2.0 mmol)TMSONNNNNReaktionsmischung wird 1 h bei Raumtemperatur gerührt und direkt auf

eine Kieselgelsäule gegeben (*n*-Pentan/Et₂O 4:1). Man erhält nach Entfernen des Lösungsmittels **74** (420 mg, 25 %) als roten Feststoff.

¹H-NMR (CD₂Cl₂, 400 MHz) δ 19.20 (s, 1H), 7.86 (br, 2H), 7.5-7.25 (m, 1H), 7.41 (t, 1H, *J*=8.0 Hz), 7.12 (t, 2H, *J*=7.8 Hz), 6.80 (m, 1H), 6.30 (m, 2H), 4.83 (t, 2H, *J*=4.7 Hz), 4.35 (t, 2H, *J*=4.7 Hz), 2.45-2.05 (m, 3H), 2.34 (s, 3H), 1.92 (s, 6H), 1.90-1.50 (m, 15H), 1.45-1.05 (m, 15H), 0.09 (s, 9H); ³¹P-NMR (CD₂Cl₂, 122 MHz) 35.6; IR (KBr) 3167, 3130, 3098, 3056, 2925, 2850, 1609, 1569, 1489, 1445, 1409, 1382, 1299, 1261, 1250, 1232, 1200, 1174, 928, 881, 846, 738, 730, 694, 685, 582 cm⁻¹; MS (ESI) m/z 809 [M⁺-Cl]; C₄₂H₆₅N₂ORuPSiCl₂ (845 g/mol) *ber*. C, 59.64; H, 7.69; *gef.* C, 59.88; H, 7.74.

Benzyliden-*cis*-dichloro-(3-(2-hydroxyethyl)-1-(2,4,6-trimethyl-phenyl)-imidazolin-2-yliden)-(tricyclohexylphosphan)-ruthenium 75

Der Komplex **74** (85 mg, 0.11 mmol) wird in $CH_2Cl_2/MeOH$ 1:1 (5 ml) gelöst und mit 1 Tropfen HCl in Et_2O versetzt. Die flüchtigen Bestandteile werden im Vakuum entfernt, wodurch man **75** (77 mg, quantitativ) als grünen Feststoff erhält.

¹H-NMR (CD₂Cl₂, 400 MHz) δ 17.05 (d, 1H, *J*=17.6 Hz), 7.95 (d, 2H, *J*=7.2 Hz), 7.56 (t, 1H, *J*=8.0 Hz), 7.27 (m, 3H), 6.96 (s, 1H), 6.73 (s, 1H), 6.20 (br, 1H), 4.30 (m, 4H), 3.76 (m, 1H), 2.42 (s, 3H), 2.39-2.19 (m, 3H), 2.17 (s, 6H), 2.05-1.04 (m, 30H); ³¹P-NMR

(CD₂Cl₂, 162 MHz) δ 39.9; IR (KBr) 3178, 3059, 2928, 2849, 1607, 1575, 1484, 1446, 1375, 1328, 1244, 1235, 876, 849, 739, 683 cm⁻¹; MS (ESI) m/z 704 [M⁺-2Cl]; UV-VIS (CH₂Cl₂, 5 mmol/l) 600 nm; C₃₉H₅₇N₂ORuPCl₂ (773 g/mol) *ber.* C, 60.54; H, 7.37; *gef.* C, 60.28; H, 7.18.

Benzyliden-dichloro-(3-(6-norbornencarboxylhexyl)-1-(2,4,6-trimethyl-phenyl)-imidazolin-2-yliden)-(tricyclohexylphosphan)-ruthenium 79

Das Salz **78** (240 mg, 0.50 mmol) wird mit KOtBu (58 mg, 0.50 mmol) V_{15} N-Mes Das Salz **78** (240 mg, 0.50 mmol) wird mit KOtBu (58 mg, 0.50 mmol) in THF (5 ml) suspendiert und die Suspension zu **2** (411 mg, 0.50 mmol) in Toluol (15 ml) gegeben. Die

Reaktionsmischung wird 1 h bei Raumtemperatur gerührt und das Lösungsmittel im Vakuum entfernt. Der Rückstand wird durch Säulenchromatographie gereinigt (*n*-Pentan/Et₂O 4:1). Man erhält **79** (140 mg, 33 %) als roten Feststoff.

¹H-NMR (CD₂Cl₂, 400 MHz) δ 19.20 (s, 1H), 7.87 (br, 2H), 7.50-7.35 (m, 1H), 7.18 (s, 1H), 7.13 (m, 2H), 6.97 (s, 1H), 6.15 (m, 2H), 6.08 (m, 1H), 5.81 (m, 1H), 4.56 (t, 2H, *J*=7.5 Hz), 3.90 (t, 2H, *J*=6.9 Hz), 3.09 (s, 1H), 2.85 (m, 1H), 2.76 (s, 1H), 2.45-1.00 (m, 56H); ³¹P-NMR (CD₂Cl₂, 162 MHz) δ 34.4; IR (KBr) 3168, 3131, 3101, 3057, 2926, 2850, 1729, 1628, 1609, 1490, 1446, 1408, 1383, 1334, 1267, 1239, 1173, 1109, 1073, 1028, 1006, 895, 848, 740, 693 cm⁻¹; MS (ESI) m/z 913 [M⁺-Cl]; C₅₁H₇₄N₂O₂RuPCl₂ (950 g/mol) *ber*. C, 64.42; H, 7.90; *gef*. C, 64.28; H, 7.61.

4.9 Darstellung und Reaktion der Pyridin-Komplexe

Benzyliden-dichloro-(1,3-bis-(2,4,6-trimethyl-phenyl)-imidazolin-2-yliden)-bispyridin-

ruthenium 17

Py
NPi
NZu einer Lösung des Nolan-Katalysators 5 (85 mg, 0.10 mmol) in CH2Cl2
(10 ml) wird Pyridin (1 ml) gegeben. Die Lösung wird bei Raumtemperatur
für 1 h gerührt, im Vakuum auf 2 ml eingeengt und bei -78 °C in *n*-Pentan
(10 ml) gegeben. Der erhaltene grüne Festsoff wird abfiltriert und mit kaltem *n*-Pentan
gewaschen. Nach Trocknen im Vakuum erhält man **17** (54 mg, 74 %) als grünen Feststoff.Einkristalle werden durch Diffusion von *n*-Pentan in eine Lösung des Komplexes in Toluol
erhalten.

¹H-NMR (CD₂Cl₂, 400 MHz) δ 19.27 (s, 1H), 8.52 (br, 2H), 7.85 (br, 2H), 7.56 (br, 2H), 7.45-7.38 (m, 2H), 7.05-6.98 (m, 4H), 6.93-6.82 (m, 4H), 2.29 (br, 3H), 2.13 (br, 6H); IR (KBr) 3170, 3129, 3052, 3029, 2949, 2914, 2855, 2799, 2737, 1651, 1600, 1555, 1536, 1483, 1446, 1389, 1334, 1298, 1257, 1249, 1219, 1201, 1166, 1148, 1100, 1070, 1036, 1000, 971, 936, 921, 874, 847, 812, 757, 748, 731, 707, 693, 617, 591, 572, 476 cm⁻¹; MS (ESI) m/z 531.2 [M⁺-Cl-2py]; C₃₃H₃₅N₃RuCl₂ (647 g/mol) *ber.* C, 61.21; H, 5.41; *gef.* C, 60.94; H, 5.33. Die Daten der Elementaranalyse entsprechen dem Mono-Pyridin-Komplex, der durch Trocknen im Vakuum erhalten wird (Verlust eines Pyridin-Liganden im Vakuum).

Benzyliden-dichloro-(1,3-bis-(2,6-diisopropyl-phenyl)-imidazolin-2-yliden)-bispyridin-

ruthenium 19

Der Komplex **18** (65 mg, 0.70 mmol) wird in CH_2Cl_2 (5 ml) gelöst und mit Pyridin (1 ml) versetzt. Die Lösung wird für 1 h bei Raumtemperatur gerührt. Das Lösungsmittel wird im Vakuum auf 1 ml eingeengt und die Lösung in *n*-Pentan (10 ml) gegeben. Der

Niederschlag wird durch Waschen mit *n*-Pentan (5 ml) gereinigt. Man erhält **19** (36 mg, 65 %) als grünen Feststoff.

¹H-NMR (400 MHz, CD₂Cl₂) δ 19.21 (s, 1H), 8.51 (br, 2H), 7.94 (br, 2H), 7.56 (br, 1H),

7.43-7.28 (m, 6H), 7.24-7.05 (m, 8H), 6.93-6.81 (m, 4H), 3.11 (br, 4H), 1.09 (br, 12H), 1.00 (d, 12H, J=6.8 Hz); ¹³C-NMR (100 MHz, CD₂Cl₂) δ 187.0, 154.4, 153.0, 151.4, 149.1, 148.7, 137.7, 137.1, 131.6, 131.0, 130.8, 129.4, 127.3, 125.4, 124.9, 29.9, 26.8, 23.8; IR (KBr) 3180, 3140, 3056, 3014, 2966, 2929, 2866, 1653, 1604, 1593, 1570, 1484, 1465, 1448, 1441, 1387, 1363, 1330, 1313, 1294, 1252, 1222, 1180, 1146, 1120, 1071, 1061, 999, 960, 933, 875, 801, 752, 734, 700, 687, 631, 615, 569, 553, 479 cm⁻¹; MS (ESI) m/z 661.2 [M⁺-2Cl], 615.2 [M⁺-Cl-2py]; C₃₉H₄₈N₃RuCl₂ (729 g/mol) ber. C, 64.20; H, 6.58; gef. C, 64.20; H, 6.40. Die Daten der Elementaranalyse entsprechen dem Mono-Pyridin-Komplex, der durch Trocknen im Vakuum erhalten wird.

Benzyliden-dichloro-(1,3-bis-(2,4,6-trimethyl-phenyl)-4,5-dichloro-imidazolin-2-yliden)bispyridin-ruthenium 21

Py
RuDer Komplex 20 (91 mg, 0.10 mmol) wird in CH_2Cl_2 (5 ml) gelöst und mit
Pyridin (1 ml) versetzt. Die Lösung wird für 1 h bei Raumtemperatur gerührt.Mes
NNNMes
ClNNMes
ClNNMes
ClNNMes
ClNNMes
ClNNMes
ClNMes
ClNMes
ClNMes
ClNNMes
RuMes
ClNNNMes
RuNNNMes
RuNMes
RuNNNMes
RuNMes
RuNMes
RuNMes
RuNMes
RuNMes
RuNMes
RuNMes
RuNMes
RuNMes
RuNMes
RuNMes
RuNMes
RuNMes
RuNMes
RuNMes
RuNMes
RuNMes
RuNMes
RuNMes
RuNMes
RuNMes
RuNMes
RuNMes
RuNMes
RuNMes
RuNMes
RuNMes
R

¹H-NMR (CD₂Cl₂, 400 MHz) δ 19.09 (s, 1H), 8.53 (m, 2H), 7.81 (m, 2H), 7.55 (m, 3H), 7.44 (m, 2H), 7.17 (m, 2H), 7.01 (m, 4H), 6.89 (m, 4H), 2.40-2.08 (m, 18H); IR (KBr) 3057, 3015, 2915, 2853, 2738, 1702, 1619, 1597, 1483, 1444, 1381, 1343, 1300, 1273, 1243, 1218, 1174, 1148, 1070, 1035, 1001, 873, 848, 752, 697, 633 cm⁻¹; MS (ESI) m/z 601 [M⁺-Cl-2py]; $C_{38}H_{38}N_4RuCl_4$ (793 g/mol) *ber.* C, 57.30; H, 4.79; *gef.* C, 56.78; H, 5.00.

Benzyliden-diiodo-(1,3-bis-(2,4,6-trimethyl-phenyl)-imidazolin-2-yliden)-pyridin-ruthenium 26

Der Komplex **17** (65 mg, 0.089 mmol) wird in CH_2Cl_2 (5 ml) gelöst und mit NaI (150 mg, 1.00 mmol) für 2 h bei Raumtemperatur gerührt. Das Lösungsmittel wird entfernt und der Rückstand in Toluol (10 ml) suspendiert. Der Feststoff wird abfiltriert und das Lösungsmittel im Vakuum entfernt. Umkristallisation aus CH_2Cl_2/n -Pentan lieferte **26** (48 mg, 66 %) als schwarzen Feststoff.

¹H-NMR (CD₂Cl₂, 400 MHz) δ 18.96 (s, 1H), 8.02 (m, 2H), 7.63-7.42 (m, 4H), 7.19-6.81 (m, 10H), 2.42 (s, 3H), 2.33 (s, 6H), 2.25 (s, 3H), 2.12 (s, 6H); IR (KBr) 3159, 3119, 3092, 3020, 2961, 2918, 2851, 1599, 1565, 1534, 1432, 1444, 1396, 1375, 1312, 1238, 1215, 1174, 1101, 1080, 1028, 923, 885, 850, 838, 757, 746, 733, 690, 580 cm⁻¹; MS (ESI) m/z 623.0 [M⁺-I-py]; $C_{33}H_{35}N_3RuI_2$ (830 g/mol) *ber*. C, 47.59; H, 4.25; *gef.* C, 47.86; H, 4.31.

Benzyliden-diiodo-(1,3-bis-(2,6-diisopropyl-phenyl)-imidazolin-2-yliden)-pyridin-ruthenium 27

Der Komplex **19** (73 mg, 0.10 mmol) wird in CH_2Cl_2 (5 ml) gelöst und mit NaI (150 mg, 1.0 mmol) versetzt. Die Lösung wird für 2 h bei Raumtemperatur gerührt. Das Lösungsmittel wird im Vakuum entfernt und der Rückstand in Toluol (5 ml) aufgenommen. Die Lösung wird

filtriert und das Lösungsmittel erneut entfernt. Der Rückstand wird mit *n*-Pentan (20 ml) gewaschen, wodurch man **27** (57 mg, 69 %) als schwarzen Feststoff erhält.

¹H-NMR (400 MHz, CD₂Cl₂) δ 19.17 (s), 19.09 (s, zusammen 1H), 8.01 (d, 1H, *J*=6.0 Hz), 7.94 (d, 1H, *J*=6.0 Hz), 7.45-7.81 (m, 4H), 7.22 (m, 3H), 7.09 (s, 1H), 6.95-6.87 (m, 5H), 3.50 (br), 3.10 (br, zusammen 4H), 1.37-1.08 (m, 18H), 1.01 (d, 6H, *J*=7.2 Hz); ¹³C-NMR (100 MHz, CD₂Cl₂) δ 184.9, 153.1, 152.2, 150.7, 147.0, 135.7, 135.6, 129.4, 129.3, 128.9, 128.8, 128.4, 127.2, 127.1, 125.0, 123.2, 122.7, 122.8, 27.8, 25.4, 21.7; IR (KBr) 3172, 3136, 3065, 3016, 2965, 2927, 2866, 1601, 1589, 1567, 1483, 1464, 1393, 1384, 1361, 1328, 1304, 1241, 1171, 1118, 1101, 1071, 1043, 961, 935, 881, 848, 832, 802, 759, 729, 692, 636, 556 cm⁻¹; MS (ESI) m/z 707 [M⁺-I-2py]; C₃₉H₄₈N₃RuI₂ (914 g/mol) *ber.* C, 51.20; H, 5.25; *gef.* C, 51.18; H, 5.05.

Benzyliden-di-t-butoxy-(1,3-bis-(2,4,6-trimethyl-phenyl)-imidazolin-2-yliden)-ruthenium 28

 $tBuO_{N}$ $tBuO_{Ru}$ Mes_{N} N-Mes 120 Der Komplex **17** (6.5 mg, 0.007 mmol) wird in C_6D_6 (0.7 ml) in einem NMR-Röhrchen gelöst und mit KOtBu (7 mg, 0.07 mmol) versetzt. Die

Lösung verfärbt sich nach wenigen Minuten rot.

¹H-NMR (400 MHz, C₆D₆) δ 16.38 (s, 1H, charakteristisch für 14–Elektronen-Spezies^{26a,27}), 7.60-6.70 (mehrere Signale, keine Integration möglich, da überlagert von Pyridin-Signalen), 2.57 (s, 12 H), 2.30 (s, 6H), 1.20 (s, 18 H).

Benzyliden-dichloro-(1,3-bis-(2,4,6-trimethyl-phenyl)-imidazolin-2-yliden)-(triphenyl-phosphan)-ruthenium 29

 $\begin{array}{c|c|c|} & \label{eq:classical} PPh_3 & Ph \\ Classical Ru = & Ph_3 & Ph \\ R$

¹H-NMR (400 MHz, C₆D₆) δ 19.40 (s, 1H), 7.80 (d, 2H, J=8.0 Hz), 7.20-6.70 (mehrere Signale, 20 H), 6.22 (s, 2H), 6.18 (s, 1H), 6.16 (s, 1H) 2.72 (s, 6H), 2.34 (br, 9H), 2.04 (s, 3H); ³¹P-NMR (130 MHz, C₆D₆) δ 39.8; IR (KBr) 3161, 3128, 3053, 3014, 2916, 2855, 1607, 1585, 1481, 1433, 850, 742, 693 cm⁻¹, MS (ESI) m/z 793.2 [M⁺-Cl], 531.1 [M⁺-Cl-TPP].

Benzyliden-dichloro-(3-3-hydroxypropyl)-(1-(2,4,6-trimethyl-phenyl)-imidazolin-2-yliden)bispyridin-ruthenium 60

Der Komplex **58** (76 mg, 0.10 mmol) wird in CH_2Cl_2 (5 ml) gelöst und mit Pyridin (1 ml) versetzt. Die Lösung wird für 1 h bei Raumtemperatur gerührt. Anschließend wird das Lösungsmittel im Vakuum auf 1 ml eingeengt und der Rückstand in *n*-Pentan (10 ml) gegeben. Der Niederschlag wird durch Waschen mit *n*-Pentan (5 ml) gereinigt. Man erhält **58** (39 mg, 59 %) als grünen Feststoff.

¹H-NMR (CD₂Cl₂, 400 MHz) δ 19.45-19.13 (mehrere Signale, 1H), 8.56 (s, 2H), 8.31 (d, 2H, *J*=6.8 Hz), 7.90-6.95 (m, 13H), 6.78 (s, 2H), 5.02 (br, 2H), 4.31 (br, 2H), 2.42 (s, 1H), 2.32-2.23 (m, 2H), 2.28 (s, 3H), 2.04 (s, 3H), 1.83 (s, 3H); IR (KBr) 3374, 3160, 3056, 2955, 2921, 2851, 1601, 1580, 1483, 1444, 1403, 1374, 1344, 1280, 1259, 1230, 1174, 1153, 1103, 1065, 1044,

1030, 999, 947, 928, 850, 795, 760, 696 cm⁻¹; MS (ESI) m/z 629 [M⁺-Cl], 550.2 [M⁺-Cl-py], 471 [M⁺-Cl-2py]; 435 [M⁺-2Cl-2py].

Benzyliden-dichloro-(η²-κ(O,C)-3-3-hydroxyethyl)-(1-(2,4,6-trimethyl-phenyl)-imidazolin-2-yliden)-bispyridin-rutheniumchlorid 76

⊕ Der Komplex 74 (167 mg, 0.20 mmol) wird in CH₂Cl₂ (5 ml) gelöst und mit Pyridin (1 ml) versetzt. Anschließend wird die Lösung für 1 h bei Raumtemperatur gerührt. Die Lösung wird auf 2 ml eingeengt, mit *n*-Pentan (10 ml) überschichtet und 2 Tage bei Raumtemperatur stehen gelassen. Man erhält 76 (106 mg, 82 %) als grüne kristalline Verbindung.

Einkristalle werden durch Überschichten einer Lösung von **76** in Ethanol mit MTBE erhalten. ¹H-NMR (400 MHz, CD₂Cl₂) δ 18.64 (s, 1H), 9.23 (br, 1H, OH), 8.23 (d, 4H, *J*=5.6 Hz), 7.63– 7.49 (m, 5H), 7.23 (d, 1H, *J*=2.0 Hz), 7.10 (t, 2H, *J*=7.6 Hz), 7.05 (t, 4H, *J*=7.6 Hz), 6.92 (s, 2H), 6.79 (s, 1H), 4.62 (t, 2H, *J*=4.8 Hz), 3.25 (t, 2H, *J*=4.8 Hz), 2.39 (s, 3H), 1.34 (s, 6H); ¹³C-NMR (100 MHz, CD₂Cl₂) δ 179.4, 155.6, 151.8, 149.0, 139.3, 136.0, 135.2, 135.1, 130.7, 129.8, 128.7, 127.9, 124.2, 124.2, 123.8, 122.9, 60.1, 51.1, 20.2, 16.5; IR (KBr) 3432, 2962, 2925, 2869, 1603, 1586, 1483, 1446, 1404, 1337, 1259, 1098, 1067, 863, 804, 763, 697 cm⁻¹; MS (ESI) m/z 615 [M⁺-Cl], 536 [M⁺-Cl-py], 500 [M⁺-2Cl-py]; 421 [M⁺-2Cl-2py]; C₃₁H₃₄N₄ORuCl₂ (650 g/mol) *ber*. C, 57.06; H, 5.21; *gef.* C, 56.89; H, 5.18.

4.10 Darstellung eines Ag-Carben-Komplexes

 $Bis(\eta^2 - \kappa^1(O,O') - \kappa^2(C2) - 1$ -Mesityl-3-(6-carboxylatohexyl)imidazol-2-yliden)disilber 97

Das Salz **94** (380 mg, 1.00 mmol) wird mit Ag₂O (121 mg, 0.55 mmol) in CH₂Cl₂ (2 ml) für 6 h bei Raumtemperatur gerührt. Die Lösung wird filtriert und das Lösungsmittel im Vakuum entfernt. Der Rückstand wird mit wenig *n*-Pentan gewaschen und Komplex **97** (573 mg, 81 %) wird als weißer

Feststoff erhalten. Einkristalle können durch Überschichten einer Lösung des Komplexes in CH₂Cl₂ mit *n*-Pentan erhalten werden.

¹H-NMR (CD₂Cl₂, 400 MHz) δ 7.18 (d, 2H, *J*=1.2 Hz), 6.91 (s, 4H), 6.87 (d, 2H, *J*=1.2 Hz), 4.16 (t, 4H, *J*=5.4 Hz), 2.26 (s, 6H), 2.09 (t, 4H, *J*=5.1 Hz), 1.90 (s, 12H), 1.80 (m, 4H), 1.56 (m, 4H), 1.27 (m, 4H); ¹³C-NMR (CD₂Cl₂, 100 MHz) δ 178.2, 138.5, 135.1, 134.3, 128.3, 122.0, 119.8, 53.3, 50.7, 35.1, 30.3, 25.0, 20.1, 16.5; IR (KBr) 3080, 2943, 2858, 2735, 2295, 2188, 1724, 1581, 1490, 1455, 1414, 1385, 1300, 1260, 1240, 1223, 1168, 1148, 1090, 1033, 956, 935, 911, 854, 799, 739, 707, 682, 644, 584 cm⁻¹; MS (ESI) m/z 707 [M⁺].

4.11 Durchführung der Metathese mit polymerfixierten Katalysatoren

Fixierung des Katalysators durch ROMP

Der Präkatalysator **79** (4.6 mg, 0.005 mmol) wird in CH_2Cl_2 (3 ml) gelöst und das Monomer (1 ml) zugegeben. Die Lösung wird für 2 h gerührt und das Lösungsmittel im Vakuum entfernt. Anschließend wird das Polymer mit MeOH (20 ml) gewaschen und im Vakuum getrocknet. Man erhält **80** (753 mg) bzw. **81** (720 mg) als gummiartigen Feststoff.

Durchführung der Metathese mit polymerfixierten Katalysatoren:

Für die Umsetzungen der Substrate wird das Polymer **80** oder **81** in CH_2Cl_2 (10 ml) gelöst und das Substrat (0.1 mmol) zugegeben. Bei 40 °C wird die Lösung gerührt und nach Beendigung der Reaktion das Lösungsmittel im Vakuum entfernt. Der Rückstand wird mit MeOH (2x15 ml) extrahiert, die Lösung durch Kieselgel filtriert und das Lösungsmittel entfernt.

4.12 Metathese mit Kieselgel-fixierten Katalysatoren

Adsorption des Katalysators

Zur Adsorption des Katalysators wird der Komplex **59** (5 mg, 0.005 mmol) in CH_2Cl_2 (10 ml) gelöst und mit Kieselgel (500 mg) 10 min gerührt. Das Lösungsmittel wird entfernt und der adsorbierte Katalysator mit *n*-Pentan (2x20 ml) gewaschen und im Vakuum getrocknet.

Durchführung der Metathese

Der auf Kieselgel adsorbierte Katalysator (500 mg, 1 %-ig nach Gewicht, 0.005 mmol) wird in *n*-Pentan (15 ml) suspendiert und mit dem Substrat (0.1 mmol) unter Rückfluss erhitzt. Der Katalysator wird abfiltriert und mit *n*-Pentan (10 ml) gewaschen. Das Lösungsmittel wird entfernt und man erhält die Reaktionsprodukte als farblose Öle.

Bildung der geträgerten Katalysatoren 88a/b

Kieselgel (5 g) wird in CH_2Cl_2 (30 ml) suspendiert und mit MeSiCl₃ oder PhSiCl₃ (2 ml) versetzt. Die Suspension wird 30 Minuten bei Raumtemperatur gerührt und die flüchtigen Bestandteile im Vakuum entfernt. Danach wird das so erhaltene aktivierte Kieselgel **87a/b** in CH_2Cl_2 (30 ml) suspendiert, der Katalysator **59** (45 mg, 0.05 mmol) zugegeben und 5 min bei Raumtemperatur gerührt. Das Kieselgel wird abfiltriert und mit CH_2Cl_2 (2x30 ml) gewaschen, bis die Waschflüssigkeit farblos bleibt. Der Katalysator wird im Vakuum getrocknet. Die Metathesen werden wie für den adsorbierten Katalysator beschrieben durchgeführt, allerdings können auch CH_2Cl_2 oder Toluol als Lösungsmittel verwendet werden.

Abfangen des freien Katalysators nach der Reaktion

Der Katalysator **57** (45 mg, 0.05 mmol) wird mit Bisallylmalonsäurediethylester **24** (240 mg, 1.00 mmol) für 24 h in CH₂Cl₂ (100 ml) bei 40 °C gerührt. Danach werden MeOH (20 ml) und 1N HCl in Et₂O (0.1 ml) zugegeben. Die Reaktionslösung wird 10 Minuten bei Raumtemperatur

gerührt und danach das Lösungsmittel im Vakuum entfernt. Danach wird der Rückstand in CH₂Cl₂ (50 ml) aufgenommen und das mit Phenyltrichlorsilan behandelte Kieselgel (5 g) zugegeben. Für 5 Minuten wird bei Raumtemperatur gerührt und der nun an das Kieselgel gebundene Katalysator abfiltriert. Das Lösungsmittel wird im Vakuum entfernt und das Metatheseprodukt **22** (204 mg, 96 %) fällt als leicht bräunliche Flüssigkeit an (3300 ppm Ru im Endprodukt).

4.13 Isocyanatgebundene Katalysatoren

Darstellung des Isocyanat-funktionalisierten ArgoPore-Polymers 83b:

Käuflich erhältliches aminobenzylfunktionalisiertes Merrifield Harz (Argo-Pore-NH₂, 1.0 g, 1.0 mmol/1 g Harz) wird mit 20 %iger COCl₂-Lösung in Toluol (10 ml) versetzt und für 12 h bei 80 °C gerührt. Das Harz wird abfiltriert und im Vakuum getrocknet. Das IR zeigt bei 2264 cm⁻¹ ein intensives Signal (NCO-Bande).

Fixierung des Katalysators

Der Katalysator **59** (160 mg, 0.192 mmol) wird in CH_2Cl_2 (15 ml) gelöst, mit dem isocyanatfunktionalisierten Harz **83a/b** versetzt (192 mg, 1.0 Äquiv., 1 mmol/g) und 1N HCl (0.1 ml) in Et_2O zugegeben. Die Suspension wird 6 h bei Raumtemperatur gerührt, wobei die Farbe der Lösung langsam blasser wird. Das Polymer wird abfiltriert und mit CH_2Cl_2 (30 ml) sowie MeOH (10 ml) gewaschen. Das bräunliche Polymer **84a/b** wird im Vakuum getrocknet.

Am Ende der Reaktion wiegt das Polymer **84a** 258 mg und nach Einengen des Filtrates konnte der Katalysator **59** (101 mg) reisoliert werden. Die Ru-Spurenanalyse ergab einen [Ru]-Gehalt von 2.51 % [Ru] im Polymer. Das entspricht einer Beladung von 0.249 mmol Katalysator pro 1g Polymer. Das heißt, dass 39 % aller reaktiven NCO-Zentren mit einer Alkoholfunktion reagiert haben. Die gravimetrische Bestimmung sowie die Bestimmung des [Ru]-Gehalts per AAS stimmen überein.

Für das makroporöse Harz 84 b wird ein [Ru]-Gehalt von 1.62 % erhalten.

Durchführung der Metathese

Das so erhaltene Polymer **84a** (80 mg, 0.02 mmol, 5 mol %) wird in CH_2Cl_2 (10 ml) suspendiert und mit dem Substrat (0.04 mmol) versetzt. Die Lösung wird unter Rückfluss erhitzt. Nach Beendigung der Reaktion wird das Polymer abfiltriert und mit CH_2Cl_2 (50 ml) gewaschen. Der Umsatz wird NMR-spektroskopisch bestimmt. Das entstandene Reaktionsprodukt enthält im

4. Experimenteller Teil

Falle der Umsetzung von Bisallylmalonsäurediethylester noch 600 ppm Ru.

Die Durchführung der Metathese mit 84b (120 mg, 0.02 mmol, 5 mol % [Ru]) ist identisch.

4.15 Durchführung der Pd-katalysierten Reaktionen

Allgemeine Arbeitsvorschrift für die Heck-Reaktion

 $Pd_2(dba)_3$ (4.5 mg, 0.005 mmol) wird mit Cs_2CO_3 (772 mg, 2.00 mmol) und dem Imidazoliumsalz **93** oder **94** (0.02 mmol) in DMF (2 ml) für 20 min gerührt. Dabei färbt sich die Lösung allmählich gelb. Dann werden *p*-Brombenzoesäuremethylester (215 mg, 1.0 mmol) und *n*-Butylacrylat (128 mg) zugegeben. Die Lösung wird 6 h bei 120 °C gerührt. Danach wird H₂O (2 ml) zugegeben und mit MTBE (2x10 ml) extrahiert. Die organische Phase wird über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Der Rückstand wird per GC/MS auf Umsatz untersucht oder **99** durch Säulenchromatographie (*n*-Hexan/EE 20:1) isoliert.

4-Methoxycarbonylzimtsäurebutylester 99

CO₂ⁿBu ¹H-NMR (CDCl₃, 300 MHz) δ 8.05 (dd, 2H, J=1.6 Hz, J=7.2 Hz), 7.68 (d, 1H, J=16.0 Hz), 7.58, (d, 2H, J=8.3 Hz), 6.53 (d, 1H, J=15.9 Hz), 4.22 (t, 2H, J=6.6 Hz), 3.93 (s, 3H), 1.72-1.41 (m, 4H), 0.97 (t, 3H, J=7.35 Hz), ¹³C-NMR (CDCl₃, 75 MHz) δ 166.5, 166.3, 143.0, 138.7, 131.3, 130.0, 127.8, 120.6, 64.5, 52.1, 30.7, 19.1, 13.6.

Die analytischen Daten stimmen mit denen in der Literatur überein.⁵⁷

Allgemeine Arbeitsvorschrift für die Suzuki-Kopplung:

In THF (25 ml) werden $Pd_2(dba)_3$ (4.5 mg, 0.005 mmol) und das Imidazoliumsalz **93** oder **94** (0.02 mmol) mit Phenylboronsäure (138 mg 1.00 mmol) und dem entsprechenden Bromaromaten (1.00 mmol) mit K₂CO₃ (500 mg) für 24 h auf 70 °C erhitzt. Danach wird H₂O (50 ml) zugegeben und mit EtOAc (3x30 ml) extrahiert. Die Lösung wird über Na₂SO₄ getrocknet, das Lösungsmittel im Vakuum entfernt und der Rückstand durch Säulenchromatographie gereinigt. Die analytischen Daten stimmen mit den veröffentlichten Werten überein.⁵⁸⁻⁶⁰

4-Acetylbiphenyl 100⁵⁸

¹H-NMR (CDCl₃, 300 MHz) δ 8.03 (d, 2H, J=8.5 Hz), 7.69 (d, 2H, J=8.3 Hz), 7.61 (d, 2H, J=7.2 Hz), 7.46 (t, 2H, J=7.4 Hz), 7.38 (t, 1H, J=7.3 Hz), 2.63 (s, 3H); ¹³C-NMR (CDCl₃, 75 MHz) δ 197.5, 145.7, 139.8, 135.9, 128.9, 128.8, 128.2, 127.2, 127.1, 26.5.

2-Cyanobiphenyl 101⁵⁹

¹H-NMR (CDCl₃, 300 MHz) δ 7.78-7.45 (m, 10 H); ¹³C-NMR (CDCl₃, 75 MHz) δ 145.4, 138.1, 133.7, 132.8, 128.6, 128.6, 128.6, 128.6, 128.6, 127.5, 118.7, 112.2.

2-Methoxybiphenyl 102⁶⁰

¹H-NMR (CDCl₃, 300 MHz) δ 7.59 (d, 2H, *J*=8.0 Hz), 7.46 (t, 2H, *J*=8.0 Hz), 7.40-7.35 (m, 3H), 7.08 (t, 1H, *J*=7.4 Hz), 7.03 (d, 1H, *J*=8.6 Hz), 3.85 (s, 3H); ¹³C-NMR (CDCl₃, 75 MHz) δ 156.4, 138.5, 130.8, 130.7, 129.5, 128.6, 127.9, 1.2, 55.5.

126.9, 120.8, 111.2, 55.5.

4.16 Ringöffnende Metathese

Allgemeine Arbeitsvorschrift für die ringöffnende Metathese:

Mit Substraten, bei denen eine Rückreaktion möglich ist:

In einem 25 ml-Kolben wird **2** (21 mg, 0.025 mmol, 10 mol %) und das Substrat (0.025 mmol) in CH_2Cl_2 (15 ml) gelöst und Diallylether **103** (116 mg, 0.125 mmol, 5 Äquiv.) zugegeben. Das Gefäß wird mit einem Septum verschlossen und 24 h bei 38-40 °C gerührt. Ethylvinylether (1 ml) wird zugegeben, das Lösungsmittel im Vakuum entfernt und der Rückstand durch Säulenchromatographie gereinigt.

2,4-Divinylcyclopentansäuremethylester 111

In einem 25 ml Glaskolben wird 2 (103 mg, 0.125 mmol, 5 mol %) und das Substrat 110 (450 mg, 2.50 mmol) in CH₂Cl₂ (15 ml) gelöst und Diallylether 103 (116 mg, 5.0 mmol, 2 Äquiv.) zugegeben. Die Lösung wird für 24 h bei 38-40 °C gerührt. Das Lösungsmittel wird im Vakuum entfernt und der Rückstand durch Säulenchromatographie (*n*-Hexan/EE 10:1) gereinigt. Man erhält 111 (363 mg, 93 %) als farbloses Öl (analytische Daten für Hauptdiastereomer).

¹H-NMR (CDCl₃, 300 MHz) δ 5.60-5.90 (m, 2H), 4.85-5.05 (m, 4H), 3.56 (s, 3H), 2.75-3.00 (m, 2H), 2.50 (m, 1H), 1.15-2.05 (m, 4H); ¹³C-NMR (CDCl₃, 75 MHz) δ 175.3, 142.1, 138.9, 115.7, 113.8, 51.6, 48.5, 47.1, 44.1, 38.9, 35.5; IR (Film) 3078, 2929, 2852, 1735, 1641, 1447, 1197, 1171, 1157, 998, 913 cm⁻¹; MS (EI) m/z (relative Intensität) 180 ([M+] 1), 151 (30), 121 (100), 120 (72), 105 (35), 93 (33), 79 (37), 67 (26), 55 (17), 41 (23); HR-MS *ber.* 180.1150; *gef.* 180.1152.

1-(R)-2-(S)-2-Allyl-3-dimethyl-(1,5-dimethylen-hexyl)-cyclobutan 113

H

In einem 250 ml Glaskolben wird 2 (411 mg, 0.50 mmol, 5 mol %) und das Substrat 112 (2.60 g, 10.0 mmol) in CH_2Cl_2 (150 ml) gelöst und Diallylether 103 (1.96 g, 20.0 mmol, 2 Äquiv.) zugegeben. Die Lösung wird für 24 h bei 38-40 °C gerührt. Das Lösungsmittel wird im Vakuum entfernt und der

Rückstand durch Säulenchromatographie (*n*-Pentan) gereinigt. Man erhält **113** (2.20 g, 95 %) als farbloses Öl.

¹H-NMR (CDCl₃, 300 MHz) δ 5.77 (ddt, 1H, *J*=18.8 Hz, *J*=10.2 Hz, *J*=6.6 Hz), 5.02 (d, 1H, *J*=18.8 Hz), 4.94 (d, 1H, *J*=10.2 Hz), 4.71 (d, 1H, *J*=1.1 Hz), 4.57 (d, 1H, *J*=1.1 Hz), 2.18 (m, 3H), 1.85-2.05 (m, 4H), 1.15-1.50 (m, 7H), 0.97 (s, 3H), 0.93 (s, 3H), 0.71 (s, 3H); ¹³C-NMR (CDCl₃, 75 MHz) δ 147.3, 137.7, 114.2, 108.3, 45.1, 44.7, 44.0, 36.4, 35.7, 34.7, 34.6, 33.3, 32.8, 30.7, 22.6, 22.4, 21.0; IR (Film) 3072, 2950, 2928, 2866, 1650, 1640, 1460, 1380, 992, 909, 890, 880 913 cm⁻¹; MS (EI) m/z (relative Intensität) 232 ([M⁺] 11), 189 (14), 176 (29), 161 (22), 148 (12), 147 (16), 136 (13), 135 (66), 134 (18), 133 (30), 122 (13), 121 (45), 120 (24), 119 (12), 109 (36), 108 (37), 107 (44), 106 (14), 105 820), 96 (12), 95 (28), 94 (24), 93 (100), 91 (26), 81 (59),80 (15), 79 (55), 77 (19), 69 (18), 67 (35), 55 (37), 53 (17), 43 (14), 41 (47);); HR-MS *ber*. 232.2191; *gef.* 232.2193.

4.17 Synthese sonstiger Verbindungen

Norbornencarbonsäure-6-bromhexylester 77

Br Us O2C

6-Bromhexanol **51** (1.81 g, 10.0 mmol) wird in CH_2Cl_2 (25 ml) gelöst und DMAP (0.12 g, 1.0 mmol, 10 mol %) sowie DCC (2.06 g, 10.0 mmol) zugegeben. Mit einer Spritze wird Norbornencarbonsäure (1.04 g,

10.0 mmol) über 5 min zugetropft. Die Lösung wird 18 h bei Raumtemperatur gerührt. Der ausgefallene Feststoff wird abfiltriert, das Lösungsmittel entfernt und der Rückstand durch Säulenchromatographie (*n*-Hexan/EE 20:1) gereinigt. Man erhält **77** (2.56 g, 85 %, beide Diastereomere) als farbloses Öl. Die Analytik bezieht sich auf das endo-Diastereomer.

¹H-NMR (CD₂Cl₂, 400 MHz) δ 6.04 (m, 2H), 3.97 (t, 2H, *J*=6.9 Hz), 3.34 (t, 2H, *J*=5.1 Hz), 2.93 (s, 1H), 2.82 (s, 1H), 2.14 (m, 1H), 1.79 (m, 3H), 1.56 (m, 2H), 1.45-1.23 (m, 7H); ¹³C-NMR (CD₂Cl₂, 100 MHz) δ 175.3, 137.2, 135.0, 63.5, 45.9, 45.6, 42.5, 41.0, 33.2, 32.0, 29.6, 27.8, 27.1, 24.5; IR (Film) 3061, 2940, 2864, 1733, 1462, 1336, 1271, 1187, 1110, 1067, 838, 711 cm⁻¹; MS (EI) m/z (relative Intensität) 302 [M⁺(2)], 300 [M⁺(2)], 237 (7), 235 (7), 165 (5), 163 (5), 138 (3), 121 (6), 93 (5), 92 (3), 91 (5), 83 (9), 77 (3), 73 (7), 66 (100), 65 (39), 55 (22), 43 (2), 39 (3); HR-MS *ber*. 301.0803 M+H, *gef*. 301.0802;; C₁₄H₂₁O₂Br (301 g/mol) *ber*. C, 56.03; H, 7.09; *gef*. C, 55.81; H, 6.98.

6-Bromhexansäuretrimethylsilylester 92

Br 6-Bromhexansäure (1.95 g, 10.0 mmol) wird mit HMDS (25 ml) und 2 Tropfen TMSCl 24 h unter Rückfluss erhitzt. Die flüchtigen Bestandteile werden im Vakuum entfernt, wodurch man **92** (2.53 g, 95 %) als farbloses Öl erhält. ¹H-NMR (C₆D₆, 300 MHz) δ 2.62 (t, 2H, *J*=7.2 Hz), 1.77 (t, 2H, *J*=7.3 Hz), 1.20-1.00 (m, 4H), 0.83 (m, 2H), 0.07 (s, 9H); ¹³C-NMR (C₆D₆, 75 MHz) δ 173.6, 35.8, 33.5, 32.8, 27.9, 24.5, 0.1; IR (kap) 2959, 2865, 1717, 1458, 1417, 1370, 1254, 1198, 1125, 1053, 934, 852, 763, 730, 644, 562 cm⁻¹; MS (EI) m/z (relative Intensität) 266 ([M⁺], 2), 251 (33), 209 (3), 187 (22), 171 (9), 137 (38), 132 (57), 129 (12), 117 (50), 99 (14), 97 (73), 73 (96), 69 (100), 55 (30), 47 (10), 45

(24), 41 (30); HR-MS ber. 266.0338 (M+H), gef. 266.0339 (M+H).

5. 1 Literaturverzeichnis

[1] a) R. F. Heck, Palladium Reagents in Organic Synthesis, Academic Press, London, 1985;

b) J. Tsuji, *Palladium Reagents and Catalysts, Innovations in Organic Synthsis*, Wiley VCH, Weinheim, **1997**.

[2] a) M. Schuster, S. Blechert, Angew. Chem. 1997, 109, 2124-2144; b) M. Randal, M. L. Snapper, J. Mol. Cat. 1998, 133, 29-40; c) S. K. Armstrong, J. Chem. Soc. Perkin Trans. 1 1998, 371-388; d) A. Fürstner (Hrsg.), Alkene Metathesis in Organic Syntheses, Springer, Berlin, 1998; e) R. H. Grubbs, S. Chang, Tetrahedron 1998, 54, 4413-4450; f) A. F. Noels, A. Demonceau, J. Phys. Org. Chem. 1998, 11, 602-609; g) D.L. Wright, Curr. Org. Chem. 1999, 3, 211-240; h) U. K. Bandit, H.S. Overkleeft, B.C. Borer, H. Bieräugel, Eur. J. Org. Chem. 1999, 959-968; i) A. Fürstner, Angew. Chem. 2000, 112, 3140-3172; j) T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 134, 18-29; k) L. Jafarpour, S. P. Nolan, J. Organomet. Chem. 2001, 617-618, 17-27; l) R. R. Schrock, A. H. Hoveyda, Angew. Chem. 2003, 115, 4740-4782.

[3] a) K. J. Ivin, J. C. Mol in *Olefin Metathesis and Metathesis Polymerization*, Academic Press, New York, **1997**, 397-401; b) R. H. Grubbs, W. Tumas, *Science* **1989**, *243*, 907; c) R. R. Schrock in *Ring Opening Polymerization*, Brunelle (Hrsg.), Hanser, München, **1993**, 129-156.

[4] a) K. C. Wallace, A. H. Liu, J. C. Dewan, R. R. Schrock, J. Am. Chem. Soc. 1988, 110, 4964-4977; b) J. Feldman, J. S. Murdzek, W. M. Davis, R. R. Schrock, Organomatallics 1989, 8, 2260-2265; c) R. R. Schrock, J. S. Murdzek, G. C. Bazan, J. Robbins, M. DiMare, A. O'Regan, J. Am. Chem. Soc. 1990, 112, 3875-3886; d) S. T. Nguyen, L. K. Johnson, R. H. Grubbs, J. Am. Chem. Soc. 1992, 114, 3974-3975; e) S. T. Nguyen, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1993, 115, 9858-9859; f) J. H. Oskam, H. H. Fox, K. B. Yap, D. H. McConville, R. O'Dell, B. J. Lichtenstein, R. R. Schrock, J. Organomet. Chem. 1993, 459, 185-198; g) S. T. Nguyen, J. W. Ziller, J. Am. Chem. Soc. 1996, 118, 100-110; i) E. L. Dias, S. T. Nguyen, Grubbs R. H. J. Am. Chem. 1997, 119, 3887-3897; j) S. M. Hansen, F. Rominger, M. Metz, P. Hoffmann, Chem. Eur. J. 1999, 5, 557-566; k) S. M. Hansen, M. A. O. Volland, F. Rominger, F. Eisenträger, P. Hofmann, Angew. Chem. 1999, 111, 1360-1363; l) M. A. O. Volland, B. F. Straub, I. Gruber, F. Rominger, P. Hofmann, J. Organomet. Chem. 2001, 617-618, 288-291.

[5] a) R. R. Schrock, Acc. Chem. Res. 1979, 12, 98-104; b) J. P. Collman, L. S. Hegedus, J. R.

Norton, R. G. Finke, *Principles and Application Organotransition Metal Chemistry*, University Science Books, Mill Varley, **1987**.

[6] J.-L. Hérrison, Y. Chauvin, Makromol. Chem. 1970, 141, 161-176.

[7] D. Tindall, J. H. Parlow, K. B. Wagener, Top. Organomet. Chem. 1998, 1, 183-198.

[8] S. E. Gibson, S. P. Keen, Top. Organomet. Chem. 1998, 1, 155-182.

[9] a) A. Fürstner, K. Langemann, J. Org. Chem. 1996, 61, 3942-3943; b) D. Meng, D. Su, A. Balog, P. Bertinato, E. J. Sorensen, S. J. Danishefsky, Y. Zheng, T. Chou, L. He, S. B. Horwitz, J. Am. Chem. Soc. 1997, 119, 2733-2734; c) A. Fürstner, K. Langemann, Synthesis 1997, 792-803; d) C. W. Lee, R. H. Grubbs, Org. Lett. 2000, 2, 2145-2147; e) A. Fürstner, T. Dierkes, O. R. Thiel, G. Blanda, Chem.–Eur. J. 2001, 7, 5286-5298.

[10] C. W. Lee, R. H. Grubbs Org. Lett. 2000, 2, 2145-2147.

[11] a) T. Weskamp, W. C. Schattenmann, M. Spiegler, W. A. Herrmann, Angew. Chem. 1998, 110, 2631-2633; b) J. Huang, E. D. Stevens, S. P. Nolan, J. L. Petersen, J. Am. Chem. Soc. 1999, 121, 2674-2678; c) L. Jafarpour, H.-J. Schanz, E. D. Stevens, S. P. Nolan, Organometallics 1999, 18, 5416-5419; d) T. Weskamp, F. J. Kohl, W. Hieringer, D. Gleich, W. A. Herrmann, Angew. Chem. 1999, 111, 2573-2576; e) M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs Org. Lett. 1999, 1, 953-956; f) L. Ackermann, A. Fürstner, T. Weskamp, F. J. Kohl, W. A. Herrmann, Tetrahedron Lett. 1999, 40, 4787-4790; g) A. K. Chatterjee, J. P. Morgan, M. Scholl, R. H. Grubbs, J. Am. Chem. Soc. 2000, 122, 3783-3784; h) S. B. Garber, J. S. Kingsbury, B. L. Gray, A. H. Hoveyda J. Am. Chem. Soc. 2000, 122, 8168-8179; i) H. Wakamatsu, S. Blechert, Angew. Chem. 2002, 114, 2509-2511; j) T. M. Trnka, J. P. Morgan, M. S. Sanford, T. E. Wilhelm, M. Scholl, T.-L. Choi, S. Ding, M. W. Day, R. H. Grubbs, J. Am. Chem. Soc. 2003, 125, 2546-2558; k) J. A. Love, M. S. Sanford, M. W. Day, R. H. Grubbs, J. Am. Chem. Soc. 2003, in Druck; 1) J. C. Conrad, D. Amoroso, P. Czechura, G. P. A. Yap, D. E. Fogg, Organometallics, 2003, in Druck; m) A. C. Hillier, W. J. Sommer, B. S. Young, J. L. Petersen, L. Cavallo, S. P. Nolan, Organometallics, 2003, in Druck.

[12] a) M. F. Lappert, J. Organomet. Chem. 1988, 358, 185-204; b) W. A. Herrmann, K. Öfele, M. Elison, F. E. Kühn, P. W. Roesky, J. Organomet. Chem. 1994, 480, C7; c) J. C. Green, R. G. Scurr, P. L. Arnold, F. G. N. Cloke, Chem. Comm. 1997, 1963; d) I. Huang, H.-J. Schanz, E. D. Stevens, S. P. Nolan, Organometallics 1999, 18, 2370-2375; e) D. Bourissou, O. Guerret, F. Gabbai, G. Bertrand, Chem. Rev. 2000, 100, 39-91; f) M. Tafipolsky, W. Scherer, K. Öfele, G. Artus, B. Pedersen, W. A. Herrmann, G. S. McGrady, J. Am. Chem. Soc. 2002, 124, 5865-5880.

[13] W. A. Herrmann, Angew. Chem. 2002, 114, 1342-1369

[14] a) H. W. Wanzlick, E. Schikora, *Angew. Chem.* **1960**, *72*, 494; b) H. W. Wanzlick, H.-J. Kleiner, *Angew. Chem.* **1963**, *75*, 1204.

[15] a) H. W. Wanzlick, H. J. Schönherr, Angew. Chem. **1968**, 80, 154; b) K. Öfele, J. Organomet. Chem. **1968**, 12, P42.

[16] a) A. J. Arduengo, III, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361-363; b) D.
A. Dixon, A. J. Arduengo, III, J. Phys. Chem. 1991, 95, 4180-4182; c) A. J. Arduengo, III, R.
Krafczyk, R. Schmutzler, H. A. Craig, J. R. Goerlich, W. J. Marshall, M. Unverzagt, Tetrahedron 1999, 55, 14523-14534.

[17] L. Ackermann, D. El Tom, A. Fürstner, *Tetrahedron* 2000, 56, 2195-2202.

[18] A. Fürstner, O. R. Thiel, L. Ackermann, H.-J. Schanz, S. P. Nolan, J. Org. Chem. 2000, 65, 2204-2207.

[19] a) A. S. Sanford, J. A. Love, R. H. Grubbs, J. Am. Chem. Soc. 2001, 123, 6543-6554; b) L.
Cavallo, J. Am. Chem. Soc. 2002, 124, 8965-8973.

[20] a) S. T. Nguyen, R. H. Grubbs, J. Organomet. Chem. 1995, 497, 195-200; b) A. G. Barrett, S. M. Cramp, S. M. Roberts, Org. Lett. 1999, 1, 1083-1086; c) M. Ahmed, A. G. M. Barrett, D. C. Braddock, S. M. Cramp, P. A. Procopiou, Tetrahedron Lett. 1999, 40, 8657-8662; d) Q. Yao, Angew. Chem. 2000, 112, 4060-4062; e) M. Ahmed, A. G. M. Barrett, D. C. Braddock, P. A. Procopiou, Synlett, 2000, 1007-1009; f) S. P. Nolan, L. Jafarpour, Org. Lett. 2000, 2, 4075-4078; g) J. S. Kingsbury, S. B. Garber, J. M. Giftos, B. L. Gray, M. M. Okamoto, R. A. Farrer, J. T. Fourkas, A. H. Hoveyda, Angew. Chem. 2001, 113, 4381-4386; h) N. Buschmann, S. J. Connon, S. Blechert, Synlett 2001, 10, 1547-1550; i) K. Melis, D. De Vos, P. Jacobs, F. Verpoort J. Mol. Cat. A: Chem. 2001, 169, 47-56; j) P. Nieczypor, W. Buchowicz, W. J. N. Meester, F. P. J. T. Rutjes, J. C. Mol Tetrahedron Lett. 2001, 42, 7103-7105; k) L. Jafarpour, M.-P. Heck, C. Baylon, H. M. Lee, C. Mioskowski, S. P. Nolan, Organometallics 2002, 21, 671-679; 1) B. De Clerg, F. Lefebvre, F. Verpoort, New J. Chem. 2002, 26, 1201-1208; m) R. Akiyama, S. Kobayashi, Angew. Chem. 2002, 114, 2714-2716; n) S. J. Connon, S. Blechert, Bioorg. & Med. Chem. Lett. 2002, 12, 1873-1876; o) K. Grela, M. Trzynowski, M. Bieniek, Tetrahedron Lett. 2002, 43, 9055-9059; p) J. O. Krause, S. Lubbad, O. Nuyken, M. R. Buchmeiser, Adv. Synth. Catal. 2003, 345, 996-1004; q) S. Varray, R. Lazaro, J. Martinez, F. Lamaty, Organometallics 2003, 22, 2426-2435.

[21] a) S. C. Schürer, S. Gessler, N. Buschmann, S. Blechert, Angew. Chem. 2000, 112, 4062-

4065; b) S. B. Garber, J. S. Kingsbury, B. L. Gray, A. H. Hoveyda, J. Am. Chem. Soc. 2000, 122, 8168-8179; c) M. Mayr, B. Mayr, M. R. Buchmeiser, Angew. Chem. 2001, 113, 3957-3960; d)

M. R. Buchmeiser, Bioorg. & Med. Chem. Lett. 2002, 12, 1837-1840.

[22] W. A. Herrmann, C. Köcher, L. J. Gooßen, G. R. J. Artus, Chem. Eur. J. 1996, 2, 1627-1636.

[23] M. G. Gardiner, W. A. Herrmann, C.-P. Reisinger, J. Schwarz, M. Spiegler, J. Organomet. Chem. 1999, 572, 239-247.

[24] a) A. Fürstner, L. Ackermann, B. Gabor, R. Goddard, C. W. Lehmann, R. Mynott, F. Stelzer,
O. R. Thiel, *Chem. Eur. J.* 2001, *7*, 3236-3253; b) A. Fürstner, H. Krause, L. Ackermann, C. W.
Lehmann, *Chem. Commun.* (Cambridge) 2001, 2240-2241;

[25] a) C. Bielawski, D. Benitez, R. H. Grubbs, *Science* 2002, 297, 2041-2044; b) C. Bielawski,
D. Benitez, R. H. Grubbs, *J. Am. Chem. Soc.* 2003, 125, 8424-8425.

[26] a) M. S. Sanford, J. A. Love, R. H. Grubbs, *Organometallics* 2001, 20, 5314-5318; b) J. A.
Love, J. P. Morgan, T. M. Trnka, R. H. Grubbs, *Angew. Chem.* 2002, *114*, 4207-4209.

[27] M. S. Sanford, L. M. Henling, M. W. Day, R. H. Grubbs, Angew. Chem. 2000, 112, 3593-3595.

[28] a) R. C. Buijsma, E. van Huuren, J. G. Sterrenburg, *Org. Lett.* 2001, *3*, 3785-3787; b) D.
Semeril, H. Olivier Bourgbiou, C. Bruneau, P. H. Dixneuf, *Chem. Com.* 2002, 146-147: c) Q.
Yao, Y. Zhang, *Angew. Chem.* 2003, *115*, 3517-3520; d) N. Audic, H. Clavier, M. Mauduit, J. C.
Guillemin, *J. Am. Chem. Soc.* 2003, *125*, 9248-9249.

[29] a) B. Mohr, D. M. Lynn, R. H. Grubbs, *Organometallics* 1996, *15*, 4317-4325; b) T. A. Kirkland, D. M. Lynn, R. H. Grubbs *J. Org. Chem.* 1998, *63*, 9904-9909; c) D. M. Lynn, B. Mohr, R. H. Grubbs, L. M. Henling, M. W. Day *J. Am. Chem. Soc.* 2000, *122*, 6601-6609; d) T. Rölle, R. H. Grubbs, *Chem. Comm.* 2002, 1070-1071.

[30] J. Schwarz, V. P. W. Böhm, M. G. Gardiner, M. Grosche, W. A. Herrmann, W. Hieringer, G. Raudaschl-Sieber, *Chem. Eur. J.* 2000, *6*, 1773-1780.

[31] L. Ackermann, Dissertation 2001, Universität Dortmund.

[32] a) Z. Wu, S. T. Nguyen, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1995, 117, 5503-5511; b) W. Buchowicz, J. C. Mol, M. Lutz, A. L. Spek, J. Organomet. Chem. 1999, 588, 205-210; c) J. N. Coalter, J. C. Bollinger, O. Eisenstein, K. G. Caulton, New J. Chem. 2000, 24, 925-927; d) J. N. Coalter, J. C. Huffman, K. G. Caulton, Chem. Comm. 2001, 1158-1159; e) W. Buchowicz, F. Ingold, J. C. Mol, M. Lutz, A. Spek, Chem. Eur. J. 2001, 7, 2842-2847; f) M. B.

506, 343-355.

Dinger, J. C. Mol, *Organometallics* **2003**, *22*, 1089-1095; g) M. B. Dinger, J. C. Mol, *Organometallics* **2003**, *22*, 2827-2833; h) H. Werner, C. Grünwald, W. Stüer, J. Wolf, *Organometallics* **2003**, *22*, 1558-1560.

[33] H. D. Maynard, R. H. Grubbs, Tetrahedron Lett. 1999, 40, 4137-4140.

[34] L. A. Paquette, J. D. Schloss, I. Efremov, F. Fabris, F. Gallou, J. Méndez-Andino, J. Yang, *Org. Lett.* **2000**, *2*, 1259-1261.

[35] J. H. Cho, B. M. Kim, Org. Lett. 2003, 5, 531-533.

[36] Y. M. Ahn, K. Yang, G. I. Georg, Org. Lett. 2001, 3, 1411-1433.

[37] S. J. Connon, M. Rivard, M. Zaja, S. Blechert, Adv. Synth. Catal. 2003, 345, 572-575.

[38] a) F. Schüth, K. S. W. Sing, J. Weiskamp; *Handbook of Porous Solids*, Volume 3; Wiley-VCH, **2002**, 1490; b) B. Pfleiderer, K. Albert, E. Bayer, *Journal of Chromatography A*, **1990**,

[39] H. M. J. Wang, I. J. B. Lin, *Organometallics* **1998**, *17*, 972-975; b) A. M. Magill, D. S. McGuiness, K. J. Cavell, G. J. P Britovsek, V. C. Gibson, A. J. White, D. J. Williams, A. M.

White, B. W. Skelton, J. Organomet. Chem. 2001, 617-618, 546-560.

[40] a) J. Huang, G. Grasa, S. P. Nolan, Org. Lett. 1999, 1, 1307-1309; b) S. R. Stauffer, S. Lee, J. P. Stambuli, S. I. Hauck, J. F. Hartwig, Org. Lett. 2000, 2, 1423-1426; c) H. M. Lee, S. P. Nolan, Org. Lett. 2000, 2, 2053-2055; d) G. A. Grasa, S. P. Nolan, Org. Lett. 2000, 3, 119-122; e) C. Yang, S. Lee, S. P. Nolan, Org. Lett. 2001, 3, 1511-1514; f) J. Cheng, M. L. Trudell, Org. Lett. 2001, 3, 1371-1374. g) A. Fürstner, A. Leitner, Synlett 2001, 2, 290; h) S. Lee, J. F. Hartwig, J. Org. Chem. 2001, 66, 3402-3415; i) G. A. Grasa, M. S. Viciu, J. Huang, C. Zhang, M. L. Trudell, S. P. Nolan, Organometallics 2002, 21, 2866-2873.

[41] a) A. F. Littke, C. Dai, G. C. Fu, J. Am. Chem. Soc. 2000, 122, 4020-4028; b) J. P. Stambuli,
R. Kuwano, J. F. Hartwig, Angew. Chem. 2002, 114, 4940-4942.

[42] a) A. Ratnayake, T. Hemscheidt, Org. Lett. 2002, 4, 4667-4669; b) U. Karama, G. Höfle, Eur. J. Org. Chem, 2003, 1042-1049.

[43] a) S. Randl, S. J. Connon, S. Blechert, *Chem. Comm.* 2001, 1796-1797; b) A. Fürstner, L.
Ackermann, K. Beck, H. Hori, D. Koch, K. Langemann, M. Liebl, C. Six, W. Leitner, *J. Am. Chem. Soc.* 2001, *123*, 9000-9006.

[44] a) A. Fürstner, O. R. Thiel, L. Ackermann, Org. Lett. 2001, 3, 449-451; b) A. B. Smith III,
C. M. Adams, S. A. Kozmin, J. Am. Chem. Soc. 2001, 123, 990-991; c) K. Yamamoto, K.
Biswas, C. Gaul, S. J. Danishefsky, Tetrahedron Lett. 2003, 44, 3297-3299.

[45] a) J. P. A. Harrity, M. S. Visser, J. D. Gleason, A. H. Hoveyda, J. Am. Chem. Soc. 1997, 119, 1488-1489; b) J. P. A. Harrity, D. S. La, D. L. Cefalo, M. S. Visser, A. H. Hoveyda, J. Am. Chem. Soc. 1998, 120, 2343-2351.

- [46] a) A. F. Houri, Z. Xu, D. Cogan, A. H. Hoveyda, J. Am. Chem. Soc. 1995, 117, 2943-2944;
- b) W. J. Zuercher, M. Hashimoto, R. H. Grubbs, J. Am. Chem. Soc. 1996, 118, 6634-6640; c) R.

Stragies, S. Blechert, *Synlett* **1998**, 169-170; d) O. Arjona, A. G. Csaky, M. C. Murcia, J. Plumet, *J. Org. Chem*, **1999**, *64*, 9739-9741.

- [47] G. A. Molander, J. A. Mc Knie, J. Org. Chem. 1995, 59, 3186-3192.
- [48] F. M. Menger, U. V. Venkatura, J. Am. Chem. Soc. 1986, 108, 2980-2984.
- [49] Easson, Steadman, Proc. R. Soc. London 1937, 121, 142-150.
- [50] Oae, J. Am. Chem. Soc. 1956, 78, 4030.
- [51] Y. Fall, C. Vitale, A. Nouria, *Tetrahedron Lett.* 2000, 41, 7337-7340.
- [52] S. Katsumura, A. Kimura, S. Isoe, *Tetrahedron* 1989, 45, 1337-1346.
- [53] A. P. Krapcha, A. E. Dundulis J. Org. Chem. 1980, 45, 3236-3245.
- [54] S. Ley, G. Melk, J. Chem. Soc. Chem. Comm. 1995, 17, 1751-1752.
- [55] O. Miyota, Y. Ozawa, I. Ninomiya, T. Naita, *Tetrahedron* 2000, 56, 6199-6208.
- [56] M. Liebl, *Dissertation* 2000, Universität Dortmund.
- [57] K. H. Shaughnessy, P. Kim, J. F. Hartwig, J. Am. Chem. Soc. 1999, 121, 2123-2132.
- [58] M. E. Mowery, P. DeShong, J. Org. Chem. 1999, 64, 1684-1688.
- [59] J. Hassan, C. Hathroubi, C. Gozzi, M. Lemaire Tetrahedron, 2001, 57, 7845-7855.

[60] J. P. Wolfe, R. A. Singer, B. H. Yang, S. L. Buchwald, J. Am. Chem. Soc., **1999**, 121, 9550-9561

5.2 Abkürzungsverzeichnis

AAV	allgemeine Arbeitsvorschrift	Lsg.	Lösung
Äquiv.	Äquivalent	m	Multiplett
ber.	berechnet	М	Molarität
Bu	Butyl	Ν	Normalität
CI	Chemische Ionisation	$[M^+]$	Molekülpeak
Су	Cyclohexyl	Me	Methyl
d	Dublett	MeOH	Methanol
δ	chemische Verschiebung	Mes	2,4,6-Trimethylphenyl
DC	Dünnschicht-	min	Minute
	Chromatographie	MOM	Methoxymethyl
DCC	1,3-Dicyclohexyl-carbodiimid	MS	Massenspektrometer
DMAP	Dimethylaminopyridin	MTBE	Methyl-tert-butyl-ether
DMF	N,N-Dimethylformamid	m/z	Masse / Ladung
EI	Elektronenstoß-Ionisation	NHC	N-heterocyclisches Carben
Et	Ethyl	NMR	Magnetische Kernresonanz
eV	Elektronenvolt	Ph	Phenyl
Fa.	Firma	ppm	parts per million
GC	Gaschromatographie	PS	Polystyrol
gef.	gefunden	Pr	Propyl
ges.	gesättigt	Ру	Pyridin
h	Stunde	q	Quartett
HMDS	Hexamethyldisilazan ROMP	RT	Raumtemperatur
HR-MS	hochauflösende	S	Singulett
	Massenspektroskopie	t	Triplett
IMes	1,3-Bis-(2,4,6-trimethyl-phenyl)	TBAF	Tetrabutylammoniumfluorid
	-imidazolin-2-yliden	TBDPS	tert-Butyldiphenylsilyl
IR	Infrarotspektroskopie	Tert	tertiär
i. Vak.	im Vakuum	THF	Tetrahydrofuran
J	Kopplungskonstante	THP	2,3-Tetrahydropyran
		TMS	Trimethylsilyl

Ts p-Toluolsulfonyl

UV-VIS Ultraviolett-sichtbar

5. Anhang

5.3 Kristallographische Daten

Kristallographische Daten der Verbindung 17

Formel	$C_{38}H_{40}Cl_2N_4Ru$		
Farbe	grün		
Molmasse	724.71 $g \cdot mol^{-1}$		
Temperatur	100 K		
Wellenlänge	0.71073 Å		
Kristallsystem	Triklin		
Raumgruppe	P ⁻ 1 , (no. 2)		
Gitterkonstanten	a = 11.3002(2) Å	$\alpha = 92.5750(10)^{\circ}.$	
	b = 11.3893(2) Å	$\beta = 102.2710(10)^{\circ}$.	
	c = 14.9677(3) Å	$\gamma = 111.9720(10)^{\circ}.$	
Volumen	1729.09(6) Å ³		
Z	2		
Dichte (berechnet)	$1.392 \text{ Mg} \cdot \text{m}^{-3}$		
bsorptionskoeffizient	0.640 mm ⁻¹		
F(000)	748 e		
Kristallgröße	$0.10 \ge 0.07 \ge 0.02 \text{ mm}^3$		
Gemessener -Bereich	4.19 to 31.53°.		
Indexbereich	$-16 \le h \le 13, -16 \le k \le 16$	$1, -21 \le 1 \le 20$	
Gemessene Reflexe	19546		
Unabhängige Reflexe	11358 [$R_{int} = 0.0461$]		
Reflexe mit $I > 2\sigma(I)$	7031		
Vollständigkeit für $\theta = 27.50^{\circ}$	98.8 %		
bsorptionskorrektur	Gaussian		
Max und min. Transmission	0.9873 and 0.9387		
Verfeinerung	Full-matrix least-squares	von F ²	
Daten / Restraints / Parameters	11358 / 0 / 411		
Goodness-of-fit von F^2	1.022		
Finale R Werte $[I > 2\sigma(I)]$	$R_1 = 0.0711$	$wR^2 = 0.1476$	
R-Werte (alle Daten)	$R_1 = 0.1306$	$wR^2 = 0.1733$	
Größte Differenz. Peak und Loch	2.099 and -1.222 $e \cdot Å^{2}$	-3	

5. Anhang

Ru(1)-C(4)	1.909(5)	Ru(1)-C(1)	2.060(4)
Ru(1)-N(3)	2.182(3)	Ru(1)- $Cl(2)$	2.3827(12)
Ru(1)-N(4)	2.404(5)	Ru(1)- $Cl(1)$	2.4289(13)
C(1)-N(2)	1.374(5)	C(1)-N(1)	1.380(5)
N(1)-C(2)	1.381(5)	N(1)-C(11)	1.442(5)
N(2)-C(3)	1.389(5)	N(2)-C(21)	1.444(5)
C(2)-C(3)	1.337(5)	C(2)-H(2)	0.9500
N(3)-C(31)	1.337(6)	N(3)-C(35)	1.345(5)
C(3)-H(3)	0.9500	C(4)-C(5)	1.296(8)
C(4)-H(4)	0.9500	N(4)-C(45)	1.301(7)
N(4)-C(41)	1.388(7)	C(5)-C(6)	1.374(8)
C(5)-C(10)	1.553(9)	C(6)-C(7)	1.384(8)
C(6)-H(6)	0.9500	C(7)-C(8A)	1.135(16)
C(7)-C(8B)	1.520(16)	C(7)-H(7)	0.9500
C(8A)-C(9)	1.654(17)	C(8A)-H(8A)	0.9500
C(8B)-C(9)	1.068(15)	C(8B)-H(8B)	0.9500
C(9)-C(10)	1.326(9)	C(9)-H(9)	0.9500
C(10)-H(10)	0.9500	C(11)-C(16)	1.397(5)
C(11)-C(12)	1.399(5)	C(12)-C(13)	1.394(5)
C(12)-C(17)	1.497(6)	C(13)-C(14)	1.383(6)
C(13)-H(13)	0.9500	C(14)-C(15)	1.376(6)
C(14)-C(18)	1.511(6)	C(15)-C(16)	1.390(5)
C(15)-H(15)	0.9500	C(16)-C(19)	1.510(6)
C(17)-H(17A)	0.9800	C(17)-H(17B)	0.9800
C(17)-H(17C)	0.9800	C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800	C(18)-H(18C)	0.9800
C(19)-H(19A)	0.9800	C(19)-H(19B)	0.9800
C(19)-H(19C)	0.9800	C(21)-C(22)	1.385(6)
C(21)-C(26)	1.396(6)	C(22)-C(23)	1.388(5)
C(22)-C(28)	1.513(6)	C(23)-C(24)	1.396(6)
C(23)-H(23)	0.9500	C(24)-C(25)	1.370(6)
C(24)-C(29)	1.510(6)	C(25)-C(26)	1.389(5)
C(25)-H(25)	0.9500	C(26)-C(27)	1.512(6)
C(27)-H(27A)	0.9800	C(27)-H(27B)	0.9800

Bindungslängen [Å] und -winkel [°].

5. Anhang

C(27)-H(27C)	0.9800	C(28)-H(28A)	0.9800
C(28)-H(28B)	0.9800	C(28)-H(28C)	0.9800
C(29)-H(29A)	0.9800	C(29)-H(29B)	0.9800
C(29)-H(29C)	0.9800	C(31)-C(32)	1.381(6)
C(31)-H(31)	0.9500	C(32)-C(33)	1.375(7)
C(32)-H(32)	0.9500	C(33)-C(34)	1.374(7)
C(33)-H(33)	0.9500	C(34)-C(35)	1.388(6)
C(34)-H(34)	0.9500	C(35)-H(35)	0.9500
C(41)-C(42)	1.377(7)	C(41)-H(41)	0.9500
C(42)-C(43)	1.500(9)	C(42)-H(42)	0.9500
C(43)-C(44)	1.359(7)	C(43)-H(43)	0.9500
C(44)-C(45)	1.337(7)	C(44)-H(44)	0.9500
C(45)-H(45)	0.9500		
C(4)-Ru(1)-C(1)	93.72(19)	C(4)-Ru(1)-N(3)	86.23(18)
C(1)-Ru(1)-N(3)	178.66(15)	C(4)- $Ru(1)$ - $Cl(2)$	100.41(19)
C(1)-Ru(1)-Cl(2)	91.33(11)	N(3)-Ru(1)-Cl(2)	89.99(10)
C(4)-Ru(1)-N(4)	160.22(17)	C(1)-Ru(1)-N(4)	103.07(14)
N(3)-Ru(1)-N(4)	76.75(13)	Cl(2)-Ru(1)-N(4)	89.71(11)
C(4)-Ru(1)-Cl(1)	82.65(19)	C(1)- $Ru(1)$ - $Cl(1)$	87.56(11)
N(3)-Ru(1)-Cl(1)	91.10(10)	Cl(2)-Ru(1)-Cl(1)	176.81(4)
N(4)-Ru(1)-Cl(1)	87.63(10)	N(2)-C(1)-N(1)	102.2(3)
N(2)-C(1)-Ru(1)	128.5(3)	N(1)-C(1)-Ru(1)	129.3(3)
C(1)-N(1)-C(2)	112.1(3)	C(1)-N(1)-C(11)	128.9(3)
C(2)-N(1)-C(11)	119.0(3)	C(1)-N(2)-C(3)	111.8(3)
C(1)-N(2)-C(21)	128.9(3)	C(3)-N(2)-C(21)	118.7(3)
C(3)-C(2)-N(1)	106.8(3)	C(3)-C(2)-H(2)	126.6
N(1)-C(2)-H(2)	126.6	C(31)-N(3)-C(35)	117.1(4)
C(31)-N(3)-Ru(1)	120.6(3)	C(35)-N(3)-Ru(1)	122.3(3)
C(2)-C(3)-N(2)	107.0(3)	C(2)-C(3)-H(3)	126.5
N(2)-C(3)-H(3)	126.5	C(5)-C(4)-Ru(1)	134.8(5)
C(5)-C(4)-H(4)	112.6	Ru(1)-C(4)-H(4)	112.6
C(45)-N(4)-C(41)	119.0(5)	C(45)-N(4)-Ru(1)	121.9(4)
C(41)-N(4)-Ru(1)	117.0(3)	C(4)-C(5)-C(6)	126.9(6)
C(4)-C(5)-C(10)	118.8(6)	C(6)-C(5)-C(10)	114.3(5)
C(5)-C(6)-C(7)	120.4(7)	C(5)-C(6)-H(6)	119.8
C(7)-C(6)-H(6)	119.8	C(8A)-C(7)-C(6)	137.0(12)
---------------------	-----------	---------------------	-----------
C(8A)-C(7)-C(8B)	23.6(10)	C(6)-C(7)-C(8B)	117.8(10)
C(8A)-C(7)-H(7)	111.5	C(6)-C(7)-H(7)	111.5
C(8B)-C(7)-H(7)	127.9	C(7)-C(8A)-C(9)	105.1(13)
C(7)-C(8A)-H(8A)	127.4	C(9)-C(8A)-H(8A)	127.5
C(9)-C(8B)-C(7)	118.5(13)	C(9)-C(8B)-H(8B)	120.8
C(7)-C(8B)-H(8B)	120.7	C(8B)-C(9)-C(10)	132.6(11)
C(8B)-C(9)-C(8A)	13.2(10)	C(10)-C(9)-C(8A)	124.8(8)
C(8B)-C(9)-H(9)	108.6	C(10)-C(9)-H(9)	117.6
C(8A)-C(9)-H(9)	117.6	C(9)-C(10)-C(5)	115.8(7)
C(9)-C(10)-H(10)	122.1	C(5)-C(10)-H(10)	122.1
C(16)-C(11)-C(12)	122.0(3)	C(16)-C(11)-N(1)	119.2(3)
C(12)-C(11)-N(1)	118.6(3)	C(13)-C(12)-C(11)	116.9(4)
C(13)-C(12)-C(17)	121.6(4)	C(11)-C(12)-C(17)	121.5(4)
C(14)-C(13)-C(12)	122.5(4)	C(14)-C(13)-H(13)	118.7
C(12)-C(13)-H(13)	118.7	C(15)-C(14)-C(13)	118.5(4)
C(15)-C(14)-C(18)	120.5(4)	C(13)-C(14)-C(18)	121.0(4)
C(14)-C(15)-C(16)	121.9(4)	C(14)-C(15)-H(15)	119.0
C(16)-C(15)-H(15)	119.0	C(15)-C(16)-C(11)	117.9(4)
C(15)-C(16)-C(19)	121.2(4)	C(11)-C(16)-C(19)	120.9(4)
C(12)-C(17)-H(17A)	109.5	C(12)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5	C(12)-C(17)-H(17C)	109.5
H(17A)-C(17)-H(17C)	109.5	H(17B)-C(17)-H(17C)	109.5
C(14)-C(18)-H(18A)	109.5	C(14)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5	C(14)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5	H(18B)-C(18)-H(18C)	109.5
C(16)-C(19)-H(19A)	109.5	C(16)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5	C(16)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5	H(19B)-C(19)-H(19C)	109.5
C(22)-C(21)-C(26)	122.2(4)	C(22)-C(21)-N(2)	119.7(4)
C(26)-C(21)-N(2)	117.7(3)	C(21)-C(22)-C(23)	117.7(4)
C(21)-C(22)-C(28)	121.9(4)	C(23)-C(22)-C(28)	120.5(4)
C(22)-C(23)-C(24)	121.7(4)	C(22)-C(23)-H(23)	119.1
C(24)-C(23)-H(23)	119.1	C(25)-C(24)-C(23)	118.6(4)
C(25)-C(24)-C(29)	120.8(4)	C(23)-C(24)-C(29)	120.7(4)
C(24)-C(25)-C(26)	122.0(4)	C(24)-C(25)-H(25)	119.0

C(26)-C(25)-H(25)	119.0	C(25)-C(26)-C(21)	117.7(4)
C(25)-C(26)-C(27)	120.6(4)	C(21)-C(26)-C(27)	121.6(4)
C(26)-C(27)-H(27A)	109.5	C(26)-C(27)-H(27B)	109.5
H(27A)-C(27)-H(27B)	109.5	C(26)-C(27)-H(27C)	109.5
H(27A)-C(27)-H(27C)	109.5	H(27B)-C(27)-H(27C)	109.5
C(22)-C(28)-H(28A)	109.5	C(22)-C(28)-H(28B)	109.5
H(28A)-C(28)-H(28B)	109.5	C(22)-C(28)-H(28C)	109.5
H(28A)-C(28)-H(28C)	109.5	H(28B)-C(28)-H(28C)	109.5
C(24)-C(29)-H(29A)	109.5	C(24)-C(29)-H(29B)	109.5
H(29A)-C(29)-H(29B)	109.5	C(24)-C(29)-H(29C)	109.5
H(29A)-C(29)-H(29C)	109.5	H(29B)-C(29)-H(29C)	109.5
N(3)-C(31)-C(32)	123.2(5)	N(3)-C(31)-H(31)	118.4
C(32)-C(31)-H(31)	118.4	C(33)-C(32)-C(31)	119.6(5)
C(33)-C(32)-H(32)	120.2	C(31)-C(32)-H(32)	120.2
C(32)-C(33)-C(34)	117.8(4)	C(32)-C(33)-H(33)	121.1
C(34)-C(33)-H(33)	121.1	C(33)-C(34)-C(35)	119.9(4)
C(33)-C(34)-H(34)	120.0	C(35)-C(34)-H(34)	120.0
N(3)-C(35)-C(34)	122.3(4)	N(3)-C(35)-H(35)	118.8
C(34)-C(35)-H(35)	118.8	C(42)-C(41)-N(4)	123.2(6)
C(42)-C(41)-H(41)	118.4	N(4)-C(41)-H(41)	118.4
C(41)-C(42)-C(43)	117.0(6)	C(41)-C(42)-H(42)	121.5
C(43)-C(42)-H(42)	121.5	C(44)-C(43)-C(42)	112.8(5)
C(44)-C(43)-H(43)	123.6	C(42)-C(43)-H(43)	123.6
C(45)-C(44)-C(43)	127.6(6)	C(45)-C(44)-H(44)	116.2
C(43)-C(44)-H(44)	116.2	N(4)-C(45)-C(44)	120.3(6)
N(4)-C(45)-H(45)	119.8	C(44)-C(45)-H(45)	119.9

Summenformel	$C_{41.50}H_{62}Cl_5N_2OPRu$	
Farbe	rot	
Molmasse	914.22 g \cdot mol ⁻¹	
Temperatur	100 K	
Wellenlänge	0.71073 Å	
Kristallsystem	Monoklin	
Raum Gruppe	P2 ₁ / n , (no. 14)	
Gitterkonstanten	a = 17.3808(9) Å	$\alpha = 90^{\circ}$.
	b = 12.0539(7) Å	$\beta = 106.951(2)^{\circ}$.
	c = 22.7446(12) Å	$\gamma = 90^{\circ}$.
Volumen	4558.1(4) Å ³	
Z	4	
Dichte (berechnet)	$1.332 \text{ Mg} \cdot \text{m}^{-3}$	
bsorptionskoeffizient	0.704 mm ⁻¹	
F(000)	1908 e	
Kristallgröße	$0.22 \text{ x } 0.19 \text{ x } 0.12 \text{ mm}^3$	
Gemessener -Bereich	1.74 to 23.27°.	
Indexbereich	$-19 \le h \le 19, -13 \le k \le 6,$	$-23 \le l \le 25$
Gemessene Reflexe	30188	
Unabhängige Reflexe	6527 [$R_{int} = 0.1047$]	
Reflexe mit $I > 2\sigma(I)$	4498	
Vollständigkeit für $\theta = 23.27^{\circ}$	99.5 %	
bsorptionskorrektur	Gaussian	
Max und min. Transmission	0.9202 and 0.8604	
Verfeinerungsmethode	Full-matrix least-squares	von F ²
Daten / Restraints / Parameter	6527 / 0 / 482	
Goodness-of-fit von F^2	1.056	
Finale R-Werte $[I > 2\sigma(I)]$	$R_1 = 0.0508$	$wR^2 = 0.1252$
R-Werte (sämtliche Daten)	$R_1 = 0.0890$	$wR^2 = 0.1413$
Größte Differenz Peak und Loch	1.229 and -0.708 e \cdot Å	<u>A</u> -3

Ru(1)-C(20)	1.825(6)	Ru(1)-C(1)	2.052(6)
Ru(1)-Cl(1)	2.4134(15)	Ru(1)-P(1)	2.4142(16)
Ru(1)-Cl(2)	2.4273(14)	P(1)-C(41)	1.851(6)
P(1)-C(31)	1.857(6)	P(1)-C(51)	1.860(6)
O(1)-C(6)	1.428(7)	N(1)-C(1)	1.362(8)
N(1)-C(2)	1.384(8)	N(1)-C(4)	1.465(7)
C(1)-N(2)	1.369(7)	N(2)-C(3)	1.380(8)
N(2)-C(11)	1.451(7)	C(2)-C(3)	1.345(8)
C(4)-C(5)	1.502(9)	C(5)-C(6)	1.515(8)
C(11)-C(12)	1.385(8)	C(11)-C(16)	1.389(9)
C(12)-C(13)	1.390(8)	C(12)-C(17)	1.501(9)
C(13)-C(14)	1.388(9)	C(14)-C(15)	1.374(9)
C(14)-C(18)	1.503(9)	C(15)-C(16)	1.388(9)
C(16)-C(19)	1.500(9)	C(20)-C(21)	1.472(8)
C(21)-C(22)	1.382(9)	C(21)-C(26)	1.408(9)
C(22)-C(23)	1.382(9)	C(23)-C(24)	1.394(10)
C(24)-C(25)	1.375(10)	C(25)-C(26)	1.380(9)
C(31)-C(36)	1.522(9)	C(31)-C(32)	1.527(8)
C(32)-C(33)	1.518(9)	C(33)-C(34)	1.530(10)
C(34)-C(35)	1.513(9)	C(35)-C(36)	1.516(9)
C(41)-C(46)	1.524(8)	C(41)-C(42)	1.540(9)
C(42)-C(43)	1.522(9)	C(43)-C(44)	1.525(10)
C(44)-C(45)	1.517(10)	C(45)-C(46)	1.540(8)
C(51)-C(56)	1.531(8)	C(51)-C(52)	1.533(8)
C(52)-C(53)	1.540(8)	C(53)-C(54)	1.520(9)
C(54)-C(55)	1.523(9)	C(55)-C(56)	1.537(8)
Cl(60)-C(60)	1.743(8)	C(60)-Cl(61)	1.761(8)
Cl(70)-C(70)	1.635(16)	C(70)-Cl(71)	1.623(18)
C(20)-Ru(1)-C(1)	99.2(2)	C(20)-Ru(1)-Cl(1)	105.5(2)
C(1)-Ru(1)-Cl(1)	86.39(16)	C(20)- $Ru(1)$ - $P(1)$	98.52(18)
C(1)-Ru(1)-P(1)	162.18(17)	Cl(1)-Ru(1)-P(1)	90.29(5)
C(20)-Ru(1)-Cl(2)	88.2(2)	C(1)-Ru(1)-Cl(2)	88.90(16)

Bindungslängen [Å] und -winkel [°].

Cl(1)-Ru(1)-Cl(2)	166.07(5)	P(1)-Ru(1)-Cl(2)	90.20(5)
C(41)-P(1)-C(31)	102.2(3)	C(41)-P(1)-C(51)	103.0(3)
C(31)-P(1)-C(51)	110.2(3)	C(41)-P(1)-Ru(1)	109.5(2)
C(31)-P(1)-Ru(1)	114.7(2)	C(51)-P(1)-Ru(1)	115.8(2)
C(1)-N(1)-C(2)	112.3(5)	C(1)-N(1)-C(4)	122.8(5)
C(2)-N(1)-C(4)	124.8(5)	N(1)-C(1)-N(2)	103.3(5)
N(1)-C(1)-Ru(1)	122.8(4)	N(2)-C(1)-Ru(1)	133.9(4)
C(1)-N(2)-C(3)	110.9(5)	C(1)-N(2)-C(11)	124.9(5)
C(3)-N(2)-C(11)	124.2(5)	C(3)-C(2)-N(1)	105.7(5)
C(2)-C(3)-N(2)	107.8(5)	N(1)-C(4)-C(5)	113.0(5)
C(4)-C(5)-C(6)	113.4(5)	O(1)-C(6)-C(5)	110.9(5)
C(12)-C(11)-C(16)	123.7(6)	C(12)-C(11)-N(2)	118.3(5)
C(16)-C(11)-N(2)	118.0(5)	C(11)-C(12)-C(13)	116.8(6)
C(11)-C(12)-C(17)	121.9(6)	C(13)-C(12)-C(17)	121.2(6)
C(14)-C(13)-C(12)	121.6(6)	C(15)-C(14)-C(13)	118.9(6)
C(15)-C(14)-C(18)	120.7(6)	C(13)-C(14)-C(18)	120.3(6)
C(14)-C(15)-C(16)	122.1(6)	C(15)-C(16)-C(11)	116.7(6)
C(15)-C(16)-C(19)	122.0(6)	C(11)-C(16)-C(19)	121.3(6)
C(21)-C(20)-Ru(1)	136.3(5)	C(22)-C(21)-C(26)	117.9(6)
C(22)-C(21)-C(20)	125.6(6)	C(26)-C(21)-C(20)	116.5(6)
C(23)-C(22)-C(21)	120.7(6)	C(22)-C(23)-C(24)	120.5(7)
C(25)-C(24)-C(23)	119.8(7)	C(24)-C(25)-C(26)	119.4(6)
C(25)-C(26)-C(21)	121.7(7)	C(36)-C(31)-C(32)	108.5(5)
C(36)-C(31)-P(1)	118.8(4)	C(32)-C(31)-P(1)	113.9(4)
C(33)-C(32)-C(31)	110.9(5)	C(32)-C(33)-C(34)	111.4(5)
C(35)-C(34)-C(33)	111.2(6)	C(34)-C(35)-C(36)	112.5(6)
C(35)-C(36)-C(31)	110.3(5)	C(46)-C(41)-C(42)	110.4(5)
C(46)-C(41)-P(1)	112.3(4)	C(42)-C(41)-P(1)	113.6(4)
C(43)-C(42)-C(41)	110.1(6)	C(42)-C(43)-C(44)	112.0(6)
C(45)-C(44)-C(43)	110.8(6)	C(44)-C(45)-C(46)	111.0(6)
C(41)-C(46)-C(45)	110.8(5)	C(56)-C(51)-C(52)	111.7(5)
C(56)-C(51)-P(1)	114.0(4)	C(52)-C(51)-P(1)	114.2(4)
C(51)-C(52)-C(53)	111.0(5)	C(54)-C(53)-C(52)	111.1(5)
C(53)-C(54)-C(55)	111.1(5)	C(54)-C(55)-C(56)	111.7(5)
C(51)-C(56)-C(55)	110.9(5)	Cl(60)-C(60)-Cl(61)	111.7(4)
Cl(71)-C(70)-Cl(70)	124.1(10)		

Summenformel	$C_{44}H_{67}Br_{0.50}Cl_{3.50}N_2OPI_{10}$	Ru
Farbe	rot	
Molmasse	936.07 g · mol ⁻¹	
Temperatur	100 K	
Wellenlänge	0.71073 Å	
Kristallsystem	Triklin	
Raum Gruppe	P ⁻ 1 , (no. 2)	
Gitterkonstanten	a = 9.69720(10) Å	$\alpha = 80.4820(10)^{\circ}.$
	b = 12.5345(2) Å	$\beta = 85.4340(10)^{\circ}$.
	c = 18.5673(3) Å	$\gamma = 81.6710(10)^{\circ}.$
Volume	2198.72(5) Å ³	
Z	2	
Dichte (berechnet)	1.414 Mg \cdot m ⁻³	
bsorptionskoeffizient	1.095 mm ⁻¹	
F(000)	978 e	
Kristallgröße	$0.13 \ge 0.09 \ge 0.03 \text{ mm}^3$	
Gemessener -Bereich	3.49 to 31.17°.	
Indexbereich	$-14 \le h \le 13, -17 \le k \le 18$	$3, -27 \le l \le 26$
Gemessene Reflexe	43301	
Unabhängige Reflexe	13744 [$R_{int} = 0.0751$]	
Reflexe mit $I > 2\sigma(I)$	9880	
Vollständigkeit für $\theta = 27.50^{\circ}$	98.2 %	
bsorptionskorrektur	Psi-scan	
Verfeinerungsmethode	Full-matrix least-squares	von F ²
Daten / Restraints / Parameter	13744 / 16 / 502	
Goodness-of-fit von F ²	1.075	
Finale R-Werte $[I > 2\sigma(I)]$	$R_1 = 0.0668$	$wR^2 = 0.1432$
R-Werte (sämtliche Daten)	$R_1 = 0.1057$	$wR^2 = 0.1588$
Größte Differenz Peak und Loch	1.638 and -1.747 e · Å	<u>-</u> -3

Bindungslängen [Å] und -winkel [°].				
Ru(1)-C(20)	1.834(4)	Ru(1)-C(1)	2.074(4)	
Ru(1)-Cl(2)	2.4033(15)	Ru(1)-Cl(1)	2.4230(18)	
Ru(1)-P(1)	2.4289(11)	Ru(1)-Br(2)	2.5121(19)	
Ru(1)-Br(1)	2.5294(17)	Cl(3)-C(99)	1.761(7)	
Cl(4)-C(99)	1.743(8)	P(1)-C(31)	1.853(4)	
P(1)-C(41)	1.861(4)	P(1)-C(51)	1.868(4)	
N(1)-C(1)	1.359(5)	N(1)-C(2)	1.388(5)	
N(1)-C(4)	1.472(5)	N(2)-C(1)	1.366(5)	
N(2)-C(3)	1.385(5)	N(2)-C(11)	1.434(5)	
O(1)-C(9)	1.413(6)	C(2)-C(3)	1.335(6)	
C(4)-C(5)	1.526(6)	C(5)-C(6)	1.526(6)	
C(6)-C(7)	1.528(6)	C(7)-C(8)	1.508(6)	
C(8)-C(9)	1.519(6)	C(11)-C(16)	1.390(6)	
C(11)-C(12)	1.392(6)	C(12)-C(13)	1.399(6)	
C(12)-C(17)	1.499(6)	C(13)-C(14)	1.388(7)	
C(14)-C(15)	1.399(7)	C(14)-C(18)	1.503(7)	
C(15)-C(16)	1.392(6)	C(16)-C(19)	1.508(6)	
C(20)-C(21)	1.469(6)	C(21)-C(26)	1.405(6)	
C(21)-C(22)	1.412(6)	C(22)-C(23)	1.386(6)	
C(23)-C(24)	1.391(7)	C(24)-C(25)	1.375(7)	
C(25)-C(26)	1.393(6)	C(31)-C(36)	1.534(6)	
C(31)-C(32)	1.541(6)	C(32)-C(33)	1.536(6)	
C(33)-C(34)	1.520(7)	C(34)-C(35)	1.514(7)	
C(35)-C(36)	1.526(6)	C(41)-C(46)	1.532(5)	
C(41)-C(42)	1.538(6)	C(42)-C(43)	1.533(6)	
C(43)-C(44)	1.538(6)	C(44)-C(45)	1.510(7)	
C(45)-C(46)	1.526(5)	C(51)-C(56)	1.536(5)	
C(51)-C(52)	1.537(5)	C(52)-C(53)	1.530(6)	
C(53)-C(54)	1.519(6)	C(54)-C(55)	1.529(6)	
C(55)-C(56)	1.521(6)			
C(20)-Ru(1)-C(1)	99.21(17)	C(20)-Ru(1)-Cl(2)	102.65(17)	
C(1)-Ru(1)-Cl(2)	85.79(16)	C(20)-Ru(1)-Cl(1)	89.1(3)	

C(1)-Ru(1)-Cl(1)	88.4(3)	Cl(2)-Ru(1)-Cl(1)	167.6(3)
C(20)-Ru(1)-P(1)	99.12(13)	C(1)- $Ru(1)$ - $P(1)$	161.66(11)
Cl(2)-Ru(1)-P(1)	90.80(12)	Cl(1)-Ru(1)-P(1)	91.3(3)
C(20)-Ru(1)-Br(2)	100.7(3)	C(1)- $Ru(1)$ - $Br(2)$	84.9(3)
Cl(1)-Ru(1)-Br(2)	168.9(4)	P(1)- $Ru(1)$ - $Br(2)$	92.3(2)
C(20)-Ru(1)-Br(1)	89.2(3)	C(1)- $Ru(1)$ - $Br(1)$	88.2(3)
Cl(2)-Ru(1)-Br(1)	167.4(3)	P(1)- $Ru(1)$ - $Br(1)$	91.5(2)
Br(2)-Ru(1)-Br(1)	168.7(3)	C(31)-P(1)-C(41)	109.87(18)
C(31)-P(1)-C(51)	103.24(18)	C(41)-P(1)-C(51)	102.86(18)
C(31)-P(1)-Ru(1)	115.42(14)	C(41)-P(1)-Ru(1)	114.56(14)
C(51)-P(1)-Ru(1)	109.52(13)	C(1)-N(1)-C(2)	111.5(3)
C(1)-N(1)-C(4)	125.1(4)	C(2)-N(1)-C(4)	123.4(3)
C(1)-N(2)-C(3)	110.9(3)	C(1)-N(2)-C(11)	126.7(3)
C(3)-N(2)-C(11)	122.2(3)	N(1)-C(1)-N(2)	103.7(3)
N(1)-C(1)-Ru(1)	124.4(3)	N(2)-C(1)-Ru(1)	131.9(3)
C(3)-C(2)-N(1)	106.6(4)	C(2)-C(3)-N(2)	107.3(4)
N(1)-C(4)-C(5)	114.6(3)	C(6)-C(5)-C(4)	114.6(4)
C(5)-C(6)-C(7)	112.4(4)	C(8)-C(7)-C(6)	112.6(4)
C(7)-C(8)-C(9)	115.5(4)	O(1)-C(9)-C(8)	109.7(4)
C(16)-C(11)-C(12)	122.3(4)	C(16)-C(11)-N(2)	119.6(4)
C(12)-C(11)-N(2)	118.0(4)	C(11)-C(12)-C(13)	117.7(4)
C(11)-C(12)-C(17)	121.1(4)	C(13)-C(12)-C(17)	121.2(4)
C(14)-C(13)-C(12)	121.7(4)	C(13)-C(14)-C(15)	118.5(4)
C(13)-C(14)-C(18)	121.1(5)	C(15)-C(14)-C(18)	120.5(5)
C(16)-C(15)-C(14)	121.5(4)	C(11)-C(16)-C(15)	118.1(4)
C(11)-C(16)-C(19)	121.4(4)	C(15)-C(16)-C(19)	120.5(4)
C(21)-C(20)-Ru(1)	137.8(3)	C(26)-C(21)-C(22)	117.8(4)
C(26)-C(21)-C(20)	116.5(4)	C(22)-C(21)-C(20)	125.7(4)
C(23)-C(22)-C(21)	120.5(5)	C(22)-C(23)-C(24)	120.6(5)
C(25)-C(24)-C(23)	119.7(4)	C(24)-C(25)-C(26)	120.5(5)
C(25)-C(26)-C(21)	120.9(5)	C(36)-C(31)-C(32)	110.5(3)
C(36)-C(31)-P(1)	114.5(3)	C(32)-C(31)-P(1)	115.3(3)
C(33)-C(32)-C(31)	110.8(4)	C(34)-C(33)-C(32)	112.1(4)
C(35)-C(34)-C(33)	111.2(4)	C(34)-C(35)-C(36)	112.8(4)
C(35)-C(36)-C(31)	110.4(4)	C(46)-C(41)-C(42)	109.0(3)
C(46)-C(41)-P(1)	112.5(3)	C(42)-C(41)-P(1)	119.7(3)

C(43)-C(42)-C(41)	109.2(3)	C(42)-C(43)-C(44)	112.5(4)
C(45)-C(44)-C(43)	111.6(4)	C(44)-C(45)-C(46)	111.0(4)
C(45)-C(46)-C(41)	109.7(3)	C(56)-C(51)-C(52)	110.1(3)
C(56)-C(51)-P(1)	112.2(3)	C(52)-C(51)-P(1)	112.6(3)
C(53)-C(52)-C(51)	110.9(3)	C(54)-C(53)-C(52)	112.8(4)
C(53)-C(54)-C(55)	110.3(4)	C(56)-C(55)-C(54)	110.9(4)
C(55)-C(56)-C(51)	111.4(3)	Cl(4)-C(99)-Cl(3)	111.1(4)

Summenformel	$C_{41.25} H_{62.50} Cl_2 N_2 O_{0.75}$	$\mathbf{P}\mathbf{R}\mathbf{u}\cdot0.5\mathbf{C}_{3}\mathbf{H}_{8}\mathbf{O}$
Farbe	pale green	
Molmasse	830.41 g \cdot mol ⁻¹	
Temperatur	100 K	
Wellenlänge	0.71073 Å	
Kristallsystem	Monoklin	
Raumgruppe	$P2_1/c$, (no. 14)	
Gitterkonstanten	a = 9.58710(10) Å	$\alpha = 90^{\circ}$.
	b = 23.6782(2) Å	$\beta = 92.23^{\circ}$.
	c = 37.7484(4) Å	$\gamma = 90^{\circ}$.
Volumen	8562.60(15) Å ³	
Z	8	
Dichte (berechnet)	1.288 Mg \cdot m ⁻³	
bsorptionskoeffizient	0.562 mm ⁻¹	
F(000)	3512 e	
Kristallgröße	0.14 x 0.12 x 0.04 mn	n ³
Gemessener -Bereich	3.74 to 26.79°.	
Indexbereich	$-10 \le h \le 12, -29 \le k \le$	$29, -47 \le l \le 44$
Gemessene Reflexe	36272	
Independent reflections	14072 [$R_{int} = 0.0569$]]
Reflexe mit $I > 2\sigma(I)$	9594	
Vollständigkeit für $\theta = 26.79^{\circ}$	76.9 %	
bsorptionskorrektur	Psi-scan	
Verfeinerungsmethode	Full-matrix least-squar	res von F ²
Daten / Restraints / Parameter	14072 / 0 / 889	
Goodness-of-fit von F ²	1.026	
Finale R-Werte $[I > 2\sigma(I)]$	$R_1 = 0.0771$	$wR^2 = 0.1910$
R-Werte (sämtliche Daten)	$R_1 = 0.1213$	$wR^2 = 0.2167$
Größte Differenz Peak und Loch	1.687 and -1.107 e	· Å-3

Bindungslängen [Å] und -winkel [°].			
Ru(1)-C(20)	1.845(7)	Ru(1)-C(1)	2.056(8)
Ru(1)-P(1)	2.3521(18)	Ru(1)-Cl(1)	2.4446(16)
Ru(1)-Cl(2)	2.4504(16)	P(1)-C(51)	1.857(7)
P(1)-C(41)	1.864(7)	P(1)-C(31)	1.872(7)
C(1)-N(1)	1.367(10)	C(1)-N(2)	1.390(10)
N(1)-C(2)	1.389(10)	N(1)-C(4)	1.462(10)
C(2)-C(3)	1.328(12)	N(2)-C(3)	1.390(10)
N(2)-C(11)	1.446(10)	C(4)-C(5)	1.531(12)
C(5)-C(6)	1.564(16)	C(6)-O(9)	1.467(16)
C(6)-O(8)	1.479(19)	C(6)-O(7)	1.531(19)
C(11)-C(16)	1.392(12)	C(11)-C(12)	1.407(10)
C(12)-C(13)	1.377(11)	C(12)-C(17)	1.500(12)
C(13)-C(14)	1.360(12)	C(14)-C(15)	1.403(11)
C(14)-C(18)	1.538(12)	C(15)-C(16)	1.373(11)
C(16)-C(19)	1.508(10)	C(20)-C(21)	1.457(10)
C(21)-C(26)	1.397(12)	C(21)-C(22)	1.405(12)
C(22)-C(23)	1.388(11)	C(23)-C(24)	1.403(14)
C(24)-C(25)	1.369(14)	C(25)-C(26)	1.367(11)
C(31)-C(32)	1.523(10)	C(31)-C(36)	1.546(9)
C(32)-C(33)	1.514(10)	C(33)-C(34)	1.528(10)
C(34)-C(35)	1.505(11)	C(35)-C(36)	1.527(10)
C(41)-C(46)	1.552(10)	C(41)-C(42)	1.553(10)
C(42)-C(43)	1.532(11)	C(43)-C(44)	1.523(11)
C(44)-C(45)	1.518(11)	C(45)-C(46)	1.532(10)
C(51)-C(56)	1.531(10)	C(51)-C(52)	1.538(10)
C(52)-C(53)	1.517(11)	C(53)-C(54)	1.533(12)
C(54)-C(55)	1.508(12)	C(55)-C(56)	1.508(11)
Ru(1A)-C(20A)	1.860(8)	Ru(1A)-C(1A)	2.053(9)
Ru(1A)-P(1A)	2.348(2)	Ru(1A)- $Cl(1A)$	2.4536(18)
Ru(1A)-Cl(2A)	2.455(2)	P(1A)-C(41A)	1.858(9)
P(1A)-C(51A)	1.856(8)	P(1A)-C(31A)	1.869(8)
C(1A)-N(1A)	1.371(11)	C(1A)-N(2A)	1.394(10)
N(1A)-C(2A)	1.357(12)	N(1A)-C(4A)	1.464(10)
C(2A)-C(3A)	1.342(13)	N(2A)-C(3A)	1.373(13)
N(2A)-C(11A)	1.451(11)	C(4A)-C(5A)	1.522(11)

C(5A)-C(6A)	1.568(16)	C(6A)-O(7A)	1.533(17)
C(6A)-O(9A)	1.511(19)	C(6A)-O(8A)	1.530(19)
C(11A)-C(16A)	1.385(14)	C(11A)-C(12A)	1.392(12)
C(12A)-C(13A)	1.399(14)	C(12A)-C(17A)	1.540(15)
C(13A)-C(14A)	1.388(14)	C(14A)-C(15A)	1.364(12)
C(14A)-C(18A)	1.502(13)	C(15A)-C(16A)	1.384(12)
C(16A)-C(19A)	1.508(12)	C(20A)-C(21A)	1.431(13)
C(21A)-C(22A)	1.405(12)	C(21A)-C(26A)	1.405(13)
C(22A)-C(23A)	1.349(14)	C(23A)-C(24A)	1.391(16)
C(24A)-C(25A)	1.398(15)	C(25A)-C(26A)	1.381(14)
C(31A)-C(32A)	1.532(13)	C(31A)-C(36A)	1.549(11)
C(32A)-C(33A)	1.541(11)	C(33A)-C(34A)	1.522(13)
C(34A)-C(35A)	1.516(14)	C(35A)-C(36A)	1.531(11)
C(41A)-C(46A)	1.542(11)	C(41A)-C(42A)	1.550(11)
C(42A)-C(43A)	1.516(12)	C(43A)-C(44A)	1.518(13)
C(44A)-C(45A)	1.501(13)	C(45A)-C(46A)	1.537(12)
C(51A)-C(52A)	1.520(11)	C(51A)-C(56A)	1.547(10)
C(52A)-C(53A)	1.541(12)	C(53A)-C(54A)	1.523(12)
C(54A)-C(55A)	1.527(13)	C(55A)-C(56A)	1.550(12)
C(100)-C(101)	1.44(3)	O(100)-C(101)	1.22(3)
C(101)-C(102)	1.53(3)		
C(20)-Ru(1)-C(1)	91.8(3)	C(20)-Ru(1)-P(1)	90.4(2)
C(1)-Ru(1)-P(1)	96.24(19)	C(20)- $Ru(1)$ - $Cl(1)$	102.7(2)
C(1)-Ru(1)-Cl(1)	165.0(2)	P(1)- $Ru(1)$ - $Cl(1)$	87.63(6)
C(20)-Ru(1)-Cl(2)	107.6(2)	C(1)- $Ru(1)$ - $Cl(2)$	87.2(2)
P(1)-Ru(1)-Cl(2)	161.59(7)	Cl(1)-Ru(1)-Cl(2)	84.73(6)
C(51)-P(1)-C(41)	102.7(3)	C(51)-P(1)-C(31)	101.8(3)
C(41)-P(1)-C(31)	108.1(3)	C(51)-P(1)-Ru(1)	117.8(2)
C(41)-P(1)-Ru(1)	117.4(2)	C(31)-P(1)-Ru(1)	107.7(2)
N(1)-C(1)-N(2)	102.6(6)	N(1)-C(1)-Ru(1)	122.5(6)
N(2)-C(1)-Ru(1)	134.9(6)	C(1)-N(1)-C(2)	112.3(7)
C(1)-N(1)-C(4)	127.0(7)	C(2)-N(1)-C(4)	120.6(7)
C(3)-C(2)-N(1)	106.6(7)	C(1)-N(2)-C(3)	110.6(6)
C(1)-N(2)-C(11)	129.5(6)	C(3)-N(2)-C(11)	119.0(6)

C(2)-C(3)-N(2)	107.9(8)	N(1)-C(4)-C(5)	112.8(7)
C(4)-C(5)-C(6)	111.7(9)	O(9)-C(6)-O(7)	109.9(10)
O(8)-C(6)-O(7)	112.6(12)	O(9)-C(6)-C(5)	108.5(10)
O(8)-C(6)-C(5)	112.8(10)	O(7)-C(6)-C(5)	106.5(11)
C(16)-C(11)-C(12)	121.8(7)	C(16)-C(11)-N(2)	120.2(6)
C(12)-C(11)-N(2)	117.5(8)	C(13)-C(12)-C(11)	117.3(8)
C(13)-C(12)-C(17)	121.1(7)	C(11)-C(12)-C(17)	121.6(7)
C(14)-C(13)-C(12)	122.9(7)	C(13)-C(14)-C(15)	118.1(8)
C(13)-C(14)-C(18)	122.2(8)	C(15)-C(14)-C(18)	119.7(9)
C(16)-C(15)-C(14)	122.1(9)	C(15)-C(16)-C(11)	117.6(7)
C(15)-C(16)-C(19)	118.8(9)	C(11)-C(16)-C(19)	123.5(7)
C(21)-C(20)-Ru(1)	127.7(6)	C(26)-C(21)-C(22)	117.2(7)
C(26)-C(21)-C(20)	118.2(8)	C(22)-C(21)-C(20)	124.5(7)
C(23)-C(22)-C(21)	120.6(8)	C(22)-C(23)-C(24)	119.6(9)
C(25)-C(24)-C(23)	120.3(8)	C(26)-C(25)-C(24)	119.6(9)
C(25)-C(26)-C(21)	122.6(9)	C(32)-C(31)-C(36)	109.7(6)
C(32)-C(31)-P(1)	114.5(5)	C(36)-C(31)-P(1)	116.9(6)
C(31)-C(32)-C(33)	111.2(6)	C(32)-C(33)-C(34)	112.0(7)
C(35)-C(34)-C(33)	111.8(6)	C(34)-C(35)-C(36)	111.7(6)
C(35)-C(36)-C(31)	110.2(7)	C(46)-C(41)-C(42)	107.9(6)
C(46)-C(41)-P(1)	112.5(5)	C(42)-C(41)-P(1)	118.6(5)
C(43)-C(42)-C(41)	109.9(6)	C(44)-C(43)-C(42)	112.1(7)
C(45)-C(44)-C(43)	111.4(6)	C(44)-C(45)-C(46)	111.3(6)
C(45)-C(46)-C(41)	110.8(7)	C(56)-C(51)-C(52)	107.7(6)
C(56)-C(51)-P(1)	115.6(5)	C(52)-C(51)-P(1)	114.8(5)
C(53)-C(52)-C(51)	110.1(6)	C(52)-C(53)-C(54)	111.1(8)
C(55)-C(54)-C(53)	110.0(7)	C(56)-C(55)-C(54)	111.8(7)
C(55)-C(56)-C(51)	112.8(7)	C(20A)-Ru(1A)-C(1A)	91.9(4)
C(20A)-Ru(1A)-P(1A)	89.9(3)	C(1A)-Ru(1A)-P(1A)	98.2(2)
C(20A)-Ru(1A)-Cl(1A)	108.6(3)	C(1A)-Ru(1A)-Cl(1A)	85.3(2)
P(1A)-Ru(1A)-Cl(1A)	161.03(8)	C(20A)-Ru(1A)-Cl(2A)	101.5(3)
C(1A)-Ru(1A)-Cl(2A)	165.0(2)	P(1A)-Ru(1A)-Cl(2A)	88.46(7)
Cl(1A)-Ru(1A)-Cl(2A)	84.19(7)	C(41A)-P(1A)-C(51A)	107.7(4)
C(41A)-P(1A)-C(31A)	101.4(4)	C(51A)-P(1A)-C(31A)	101.3(4)
C(41A)-P(1A)-Ru(1A)	118.4(3)	C(51A)-P(1A)-Ru(1A)	107.8(3)
C(31A)-P(1A)-Ru(1A)	118.6(3)	N(1A)-C(1A)-N(2A)	101.5(7)

N(1A)-C(1A)-Ru(1A)	123.3(6)	N(2A)-C(1A)-Ru(1A)	135.0(7)
C(2A)-N(1A)-C(1A)	113.0(7)	C(2A)-N(1A)-C(4A)	120.5(8)
C(1A)-N(1A)-C(4A)	126.5(7)	N(1A)-C(2A)-C(3A)	107.1(9)
C(3A)-N(2A)-C(1A)	111.5(8)	C(3A)-N(2A)-C(11A)	121.1(8)
C(1A)-N(2A)-C(11A)	126.5(8)	C(2A)-C(3A)-N(2A)	106.9(9)
N(1A)-C(4A)-C(5A)	112.7(7)	C(4A)-C(5A)-C(6A)	114.0(9)
O(7A)-C(6A)-O(9A)	108.0(11)	O(7A)-C(6A)-C(5A)	107.6(12)
O(9A)-C(6A)-C(5A)	102.9(10)	O(7A)-C(6A)-O(8A)	113.0(11)
O(9A)-C(6A)-O(8A)	114.9(14)	C(5A)-C(6A)-O(8A)	109.7(10)
C(16A)-C(11A)-C(12A)	121.3(8)	C(16A)-C(11A)-N(2A)	118.3(8)
C(12A)-C(11A)-N(2A)	119.9(9)	C(13A)-C(12A)-C(11A)	117.4(10)
C(13A)-C(12A)-C(17A)	120.2(9)	C(11A)-C(12A)-C(17A)	122.4(9)
C(14A)-C(13A)-C(12A)	122.1(9)	C(15A)-C(14A)-C(13A)	117.8(8)
C(15A)-C(14A)-C(18A)	123.0(10)	C(13A)-C(14A)-C(18A)	119.2(9)
C(14A)-C(15A)-C(16A)	122.6(9)	C(11A)-C(16A)-C(15A)	118.3(8)
C(11A)-C(16A)-C(19A)	122.0(8)	C(15A)-C(16A)-C(19A)	119.7(9)
C(21A)-C(20A)-Ru(1A)	128.9(7)	C(22A)-C(21A)-C(26A)	117.2(10)
C(22A)-C(21A)-C(20A)	118.2(9)	C(26A)-C(21A)-C(20A)	124.6(8)
C(23A)-C(22A)-C(21A)	122.7(10)	C(22A)-C(23A)-C(24A)	120.3(10)
C(23A)-C(24A)-C(25A)	118.3(11)	C(26A)-C(25A)-C(24A)	121.4(11)
C(25A)-C(26A)-C(21A)	119.9(9)	C(32A)-C(31A)-C(36A)	108.2(7)
C(32A)-C(31A)-P(1A)	114.8(5)	C(36A)-C(31A)-P(1A)	114.8(6)
C(31A)-C(32A)-C(33A)	110.6(7)	C(34A)-C(33A)-C(32A)	113.1(7)
C(33A)-C(34A)-C(35A)	110.5(8)	C(36A)-C(35A)-C(34A)	110.5(8)
C(35A)-C(36A)-C(31A)	109.0(7)	C(46A)-C(41A)-C(42A)	107.4(7)
C(46A)-C(41A)-P(1A)	112.7(5)	C(42A)-C(41A)-P(1A)	119.1(6)
C(43A)-C(42A)-C(41A)	111.5(7)	C(42A)-C(43A)-C(44A)	111.8(7)
C(45A)-C(44A)-C(43A)	111.9(9)	C(44A)-C(45A)-C(46A)	111.3(8)
C(41A)-C(46A)-C(45A)	111.7(7)	C(52A)-C(51A)-C(56A)	109.0(7)
C(52A)-C(51A)-P(1A)	118.1(6)	C(56A)-C(51A)-P(1A)	114.3(5)
C(51A)-C(52A)-C(53A)	110.9(7)	C(54A)-C(53A)-C(52A)	110.4(7)
C(53A)-C(54A)-C(55A)	110.8(8)	C(54A)-C(55A)-C(56A)	110.7(8)
C(51A)-C(56A)-C(55A)	109.9(7)	C(100)-C(101)-C(102)	120.8(18)

C36 H37 Cl2 N4 O3.50 Ru		
blau-violett		
753.67 g · mol ⁻¹		
100 K		
0.71073 Å		
Orthorhombisch		
Pbca, (no. 61)		
a = 16.1863(3) Å	$\alpha = 90^{\circ}$.	
b = 14.7148(2) Å	$\beta = 90^{\circ}$.	
c = 31.8092(5) Å	$\gamma = 90^{\circ}$.	
7576.3(2) Å ³		
8		
1.321 Mg \cdot m ⁻³		
0.594 mm ⁻¹		
3096 e		
0.17 x 0.15 x 0.07 mm ³		
4.21 to 23.26°.		
$-17 \le h \le 17, -16 \le k \le 16, -34 \le l \le 35$		
16723		
5210 [$R_{int} = 0.0708$]		
3750		
95.8 %		
Psi-scan		
Vollmatrix least-squares von F ²		
5210 / 0 / 436		
1.071		
$R_1 = 0.0871$	$wR^2 = 0.2223$	
$R_1 = 0.1217$	$wR^2 = 0.2447$	
1.665 and -1.013 e \cdot Å ⁻³		
	C ₃₆ H ₃₇ Cl ₂ N ₄ O _{3.50} Ru blau-violett 753.67 g · mol ⁻¹ 100 K 0.71073 Å Orthorhombisch Pbca, (no. 61) a = 16.1863(3) Å b = 14.7148(2) Å c = 31.8092(5) Å 7576.3(2) Å ³ 8 1.321 Mg · m ⁻³ 0.594 mm ⁻¹ 3096 e 0.17 x 0.15 x 0.07 mm ³ 4.21 to 23.26°. -17 ≤ h ≤ 17, -16≤ k ≤ 1 16723 5210 [R _{int} = 0.0708] 3750 95.8 % Psi-scan Vollmatrix least-squares 5210 / 0 / 436 1.071 R ₁ = 0.0871 R ₁ = 0.1217 1.665 and -1.013 e ·	

$\frac{1}{2} C(20)$	1.966(10)	$\mathbf{D}_{\mathbf{W}}(1) \mathbf{C}(1)$	2.067(10)
Ru(1)-C(20) Pu(1) N(21)	1.800(10)	Ru(1)-C(1)	2.007(10)
Ru(1)-IN(31) Pu(1) O(1)	2.090(9)	Ru(1)-IN(41)	2.121(0)
Ru(1)-O(1)	2.297(7)	$\mathbf{KU}(1) - \mathbf{CI}(1)$	2.477(2)
C(1)-N(2)	1.348(13)	C(1)-N(1)	1.365(13)
N(2)-C(3)	1.433(14)	N(2)-C(11)	1.446(15)
C(3)-C(2)	1.337(16)	C(2)-N(1)	1.401(13)
N(1)-C(4)	1.455(14)	C(4)-C(5)	1.497(17)
C(5)-O(1)	1.424(13)	C(11)-C(16)	1.381(19)
C(11)-C(12)	1.418(18)	C(12)-C(13)	1.39(2)
C(12)-C(17)	1.55(2)	C(13)-C(14)	1.37(3)
C(14)-C(15)	1.37(3)	C(14)-C(18)	1.55(2)
C(15)-C(16)	1.40(2)	C(16)-C(19)	1.52(2)
C(20)-C(21)	1.465(14)	C(21)-C(26)	1.384(15)
C(21)-C(22)	1.401(15)	C(22)-C(23)	1.383(15)
C(23)-C(24)	1.376(17)	C(24)-C(25)	1.386(18)
C(25)-C(26)	1.390(17)	N(31)-C(36)	1.326(14)
N(31)-C(32)	1.373(13)	C(32)-C(33)	1.353(15)
C(33)-C(34)	1.386(16)	C(34)-C(35)	1.387(17)
C(35)-C(36)	1.357(16)	N(41)-C(42)	1.336(13)
N(41)-C(46)	1.354(14)	C(42)-C(43)	1.365(15)
C(43)-C(44)	1.398(17)	C(44)-C(45)	1.377(18)
C(45)-C(46)	1.397(16)	O(91)-C(92)	1.54(4)
C(92)-C(93)	1.52(4)	O(94)-C(95)	1.427(16)
C(95)-C(96)	1.520(19)	O(97)-C(98)	1.095(18)
OC(98)-C(99)	1.34(3)		
C(20)-Ru(1)-C(1)	94.3(4)	C(20)-Ru(1)-N(31)	95.6(4)
C(1)-Ru(1)-N(31)	90 0(4)	C(20)-Ru(1)-N(41)	89 5(4)
C(1)-Ru(1)-N(41)	93 7(4)	N(31)- $Ru(1)$ - $N(41)$	173 4(3)
C(20)-Ru(1)-O(1)	176 7(4)	C(1)-Ru(1)-O(1)	85 9(4)
N(31)-Ru(1)-O(1)	87 6(3)	$N(41)_{R_{11}} = O(1)$	87 2(3)
C(20)-Ru(1)-Cl(1)	94 7(3)	C(1)-Ru(1)-Cl(1)	170 9(3)
N(31)-Rn(1)-Cl(1)	90 2(2)	N(41)-Ru(1)-Cl(1)	85 3(2)

Bindungslängen [Å] und -winkel [°].

O(1)-Ru(1)-Cl(1)	85.02(18)	N(2)-C(1)-N(1)	105.1(9)
N(2)-C(1)-Ru(1)	132.9(8)	N(1)-C(1)-Ru(1)	122.0(7)
C(1)-N(2)-C(3)	110.4(9)	C(1)-N(2)-C(11)	131.2(9)
C(3)-N(2)-C(11)	118.4(9)	C(2)-C(3)-N(2)	106.4(10)
C(3)-C(2)-N(1)	107.1(10)	C(1)-N(1)-C(2)	111.0(9)
C(1)-N(1)-C(4)	126.6(9)	C(2)-N(1)-C(4)	122.3(9)
N(1)-C(4)-C(5)	112.8(10)	C(5)-O(1)-Ru(1)	124.2(7)
C(16)-C(11)-C(12)	123.3(13)	C(16)-C(11)-N(2)	118.1(12)
C(12)-C(11)-N(2)	118.4(12)	C(13)-C(12)-C(11)	115.2(16)
C(13)-C(12)-C(17)	121.5(16)	C(11)-C(12)-C(17)	123.3(12)
C(14)-C(13)-C(12)	124.3(19)	C(15)-C(14)-C(13)	117.2(17)
C(15)-C(14)-C(18)	119(3)	C(13)-C(14)-C(18)	123(3)
C(14)-C(15)-C(16)	123.7(18)	C(11)-C(16)-C(15)	116.3(17)
C(11)-C(16)-C(19)	122.0(13)	C(15)-C(16)-C(19)	121.7(15)
C(21)-C(20)-Ru(1)	133.9(8)	C(26)-C(21)-C(22)	118.4(10)
C(26)-C(21)-C(20)	117.4(10)	C(22)-C(21)-C(20)	124.2(10)
C(23)-C(22)-C(21)	121.2(11)	C(24)-C(23)-C(22)	119.6(12)
C(23)-C(24)-C(25)	120.1(12)	C(24)-C(25)-C(26)	120.3(12)
C(21)-C(26)-C(25)	120.4(12)	C(36)-N(31)-C(32)	115.5(10)
C(36)-N(31)-Ru(1)	124.3(7)	C(32)-N(31)-Ru(1)	120.1(7)
C(33)-C(32)-N(31)	123.1(11)	C(32)-C(33)-C(34)	119.9(11)
C(33)-C(34)-C(35)	117.4(11)	C(36)-C(35)-C(34)	119.0(11)
N(31)-C(36)-C(35)	125.1(11)	C(42)-N(41)-C(46)	118.1(9)
C(42)-N(41)-Ru(1)	122.3(7)	C(46)-N(41)-Ru(1)	119.3(8)
N(41)-C(42)-C(43)	123.1(11)	C(42)-C(43)-C(44)	119.1(12)
C(45)-C(44)-C(43)	118.8(12)	C(44)-C(45)-C(46)	118.6(12)
N(41)-C(46)-C(45)	122.2(11)	C(93)-C(92)-O(91)	111(2)
O(94)-C(95)-C(96)	106.6(11)	O(97)-C(98)-C(99)	146(3)

Summenformel	$C_{36}H_{48}$ $g_2 N_4 O_4 \cdot CH_{48}$	$C_{36} H_{48} g_2 N_4 O_4 \cdot CH_2 Cl_2$		
Farbe	Farblos			
Molmasse	899.43 g·mol ⁻¹			
Temperatur	100 K			
Wellenlänge	0.71073 Å			
Kristallsystem	Monoklin			
Raumgruppe	$P2_1/c$, (no. 14)			
Gitterkonstanten	a = 13.7480(7) Å	$\alpha = 90^{\circ}$.		
	b = 9.4238(5) Å	$\beta = 95.969(4)^{\circ}$		
	c = 15.1401(8) Å	$\gamma = 90^{\circ}$.		
Volumen	1950.89(18) Å ³			
Z	2			
Dichte (berechnet)	$1.531 \text{ Mg} \cdot \text{m}^{-3}$			
bsorptionskoeffizient	1.183 mm ⁻¹			
F(000)	916 e			
Kristallgröße	0.17 x 0.14 x 0.03 mi	m ³		
Gemessener -Bereich	3.68 to 26.72°.			
Indexbereich	$-16 \le h \le 17, -10 \le k \le 17$	$\leq 11, -18 \leq l \leq 19$		
Gemessene Reflexe	11965			
Unabhängige Reflexe	4089 [$R_{int} = 0.0543$]			
Reflexe mit $I > 2\sigma(I)$	3064			
Vollständigkeit für $\theta = 26.72^{\circ}$	98.9 %			
bsorptionskorrektur	Gaussian			
Max und min. Transmission	0.96 and 0.78			
Verfeinerungsmethode	Vollmatrix least-squar	tes von F^2		
Daten / Restraints / Parameter	4089 / 2 / 225			
Goodness-of-fit von F ²	1.048			
Finale R-Werte $[I > 2\sigma(I)]$	$R_1 = 0.0612$	$wR^2 = 0.1362$		
R-Werte (sämtliche Daten)	$R_1 = 0.0894$	$wR^2 = 0.1509$		
Größte Differenz Peak und Loch	1.636 and -1.236 e	· Å-3		

C(1)-N(2)	1.354(8)	C(1)-N(1)	1.368(8)
C(1)-Ag(1)	2.050(6)	C(2)-C(3)	1.333(9)
C(2)-N(2)	1.389(8)	C(3)-N(1)	1.389(8)
C(4)-C(9)	1.399(9)	C(4)-C(5)	1.400(8)
C(4)-N(1)	1.441(8)	C(5)-C(6)	1.381(9)
C(5)-C(10)	1.507(9)	C(6)-C(7)	1.395(10)
C(7)-C(8)	1.385(10)	C(7)-C(11)	1.514(9)
C(8)-C(9)	1.377(9)	C(9)-C(12)	1.512(9)
C(13)-N(2)	1.455(8)	C(13)-C(14)	1.517(9)
C(14)-C(15)	1.531(9)	C(15)-C(16)	1.526(9)
C(16)-C(17)	1.512(9)	C(17)-C(18)	1.528(8)
C(18)-O(2)	1.233(7)	C(18)-O(1)	1.277(8)
O(1)-Ag(1)*	2.123(4)	Ag(1)-O(1)*	2.123(4)
C(99)-C(99)**	1.37(3)	C(99)-Cl(1B)**	1.456(14)
C(99)-Cl(1A)	1.519(15)	C(99)-Cl(1B)	1.765(12)
C(99)-Cl(1A)**	1.840(14)	Cl(1A)-Cl(1B)	0.764(7)
Cl(1A)-C(99)**	1.840(14)	Cl(1B)-C(99)**	1.456(14)
N(2)-C(1)-N(1)	103.6(5)	N(2)-C(1)-Ag(1)	129.0(4)
N(1)-C(1)-Ag(1)	127.4(4)	C(3)-C(2)-N(2)	107.3(5)
C(2)-C(3)-N(1)	106.5(5)	C(9)-C(4)-C(5)	121.9(6)
C(9)-C(4)-N(1)	119.4(5)	C(5)-C(4)-N(1)	118.7(5)
C(6)-C(5)-C(4)	117.7(6)	C(6)-C(5)-C(10)	120.9(6)
C(4)-C(5)-C(10)	121.4(6)	C(5)-C(6)-C(7)	121.9(6)
C(8)-C(7)-C(6)	118.4(6)	C(8)-C(7)-C(11)	120.1(6)
C(6)-C(7)-C(11)	121.5(6)	C(9)-C(8)-C(7)	122.0(6)
C(8)-C(9)-C(4)	118.0(6)	C(8)-C(9)-C(12)	121.0(6)
C(4)-C(9)-C(12)	120.9(6)	N(2)-C(13)-C(14)	113.6(5)
C(13)-C(14)-C(15)	114.8(5)	C(16)-C(15)-C(14)	112.4(5)
C(17)-C(16)-C(15)	113.5(6)	C(16)-C(17)-C(18)	112.5(5)
O(2)-C(18)-O(1)	124.3(6)	O(2)-C(18)-C(17)	118.3(6)
O(1)-C(18)-C(17)	117.4(5)	C(1)-N(1)-C(3)	111.4(5)
C(1)-N(1)-C(4)	123.0(5)	C(3)-N(1)-C(4)	125.6(5)
C(1)-N(2)-C(2)	111.3(5)	C(1)-N(2)-C(13)	124.7(5)

Bindungslängen [Å] und -winkel [°].

C(2)-N(2)-C(13)	124.0(5)	C(18)-O(1)-Ag(1)*	106.8(4)
C(1)-Ag(1)-O(1)*	174.2(2)	C(99)**-C(99)-Cl(1B)**	77.2(12)
C(99)**-C(99)-Cl(1A)	78.9(10)	Cl(1B)**-C(99)-Cl(1A)	155.9(10)
C(99)**-C(99)-Cl(1B)	53.6(8)	Cl(1B)**-C(99)-Cl(1B)	130.8(9)
Cl(1A)-C(99)-Cl(1B)	25.5(3)	C(99)**-C(99)-Cl(1A)**	54.1(10)
Cl(1B)**-C(99)-Cl(1A)**	23.3(3)	Cl(1A)-C(99)-Cl(1A)**	133.1(8)
Cl(1B)-C(99)-Cl(1A)**	107.6(7)	Cl(1B)-Cl(1A)-C(99)	95.5(9)
Cl(1B)-Cl(1A)-C(99)**	48.9(7)	C(99)-Cl(1A)-C(99)**	46.9(8)
Cl(1A)-Cl(1B)-C(99)**	107.8(8)	Cl(1A)-Cl(1B)-C(99)	59.0(8)
C(99)**-Cl(1B)-C(99)	49.2(9)		