Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorStadtmüller, Benjamin-
dc.contributor.authorEmmerich, Sebastian-
dc.contributor.authorJungkenn, Dominik-
dc.contributor.authorHaag, Norman-
dc.contributor.authorRollinger, Markus-
dc.contributor.authorEich, Steffen-
dc.contributor.authorManira, Mahalingam-
dc.contributor.authorAeschlimann, Martin-
dc.contributor.authorCinchetti, Mirko-
dc.contributor.authorMathias, Stefan-
dc.date.accessioned2020-09-07T14:21:55Z-
dc.date.available2020-09-07T14:21:55Z-
dc.date.issued2019-04-01-
dc.identifier.urihttp://hdl.handle.net/2003/39270-
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-21171-
dc.description.abstractOrganic photovoltaic devices operate by absorbing light and generating current. These two processes are governed by the optical and transport properties of the organic semiconductor. Despite their common microscopic origin—the electronic structure—disclosing their dynamical interplay is far from trivial. Here we address this issue by time-resolved photoemission to directly investigate the correlation between the optical and transport response in organic materials. We reveal that optical generation of non-interacting excitons in a fullerene film results in a substantial redistribution of all transport levels (within 0.4eV) of the non-excited molecules. As all observed dynamics evolve on identical timescales, we conclude that optical and transport properties are completely interlinked. This finding paves the way for developing novel concepts for transport level engineering on ultrafast time scales that could lead to novel functional optoelectronic devices.en
dc.language.isoende
dc.relation.ispartofseriesNature communications;Vol. 10. 2019, Article number 1470, pp 1-9-
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectCarbon nanotubes and fullerenesen
dc.subjectSurfaces, interfaces and thin filmsen
dc.subject.ddc530-
dc.titleStrong modification of the transport level alignment in organic materials after optical excitationen
dc.typeTextde
dc.type.publicationtypearticlede
dcterms.accessRightsopen access-
eldorado.openaire.projectidentifierinfo:eu-repo/grantAgreement/EC/H2020/725767/EU/Coherent optical control of multi-functional nano-scale hybrid units/hyControlde
eldorado.secondarypublicationtruede
eldorado.secondarypublication.primaryidentifierhttps://www.nature.com/articles/s41467-019-09136-7.pdfde
eldorado.secondarypublication.primarycitationNature communications. Vol. 10. 2019, Article number 1470en
Enthalten in den Sammlungen:AG Kröninger

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s41467-019-09136-7.pdf1.24 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource ist urheberrechtlich geschützt.



Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons