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Christian Röver1, Frank Klefenz2, and Claus Weihs1

1 University of Dortmund⋆

Department of Statistics
44221 Dortmund, Germany
roever@statistik.uni-dortmund.de

2 Fraunhofer-Institut für Digitale Medientechnologie
Langewiesener Straße 22
98693 Ilmenau, Germany

Abstract. In order to distinguish between the sounds of different musical instru-
ments, certain instrument-specific sound features have to be extracted from the
time series representing a given recorded sound.
The Hough Transform is a pattern recognition procedure that is usually applied
to detect specific curves or shapes in digital pictures (Shapiro, 1978). Due to some
similarity between pattern recognition and statistical curve fitting problems, it may
as well be applied to sound data (as a special case of time series data).
The transformation is parameterized to detect sinusoidal curve sections in a digi-
tized sound, the motivation being that certain sounds might be identified by cer-
tain oscillation patterns. The returned (transformed) data is the timepoints and
amplitudes of detected sinusoids, so the result of the transformation is another
‘condensed ’ time series.
This specific Hough Transform is then applied to sounds played by different musical
instruments. The generated data is investigated for features that are specific for the
musical instrument that played the sound. Several classification methods are tried
out to distinguish between the instruments and it turns out that RDA (a hybrid
method combining LDA and QDA) (Friedman, 1989) performs best. The resulting
error rate is better than those achieved by humans (Bruderer, 2003).

1 The Hough-transform

The Hough-transform was originally developed to detect straight lines in
(noisy) digital images, and was then later generalized to arbitrary lines or
shapes. The procedure has similarities to regression methods, the common
problem being to derive line parameters from points lying on that line. The
Hough-transform is very robust to outliers, points that are not on the line
have little influence on the estimation. It is even possible to fit several different
lines independently at the same time (Shapiro (1978)).
Here the Hough-transform is applied to digitized sounds — as a special case
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of time series data — the question being, whether this yields a useful sound
characterization. We will check this by trying to identify musical instruments
by the sounds they play.
The motivation to apply the Hough-transform to sounds is that recently a
computer chip has been developed that is able to perform the numerically
expensive algorithm in real-time.

2 Application to sound data

2.1 Digital sounds

A sound is a periodic oscillation over time, as shown in Fig. 1. In this case
the sound frequency (pitch) is 440 Hz, so the oscillation period is 1

440
=

0.0023 seconds, as indicated by the bar in the upper left. A digital sound
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Fig. 1. Periodic oscillation of a sound.

recording is a discrete approximation of the original sound. The recording
quality is determined by the resolution of this approximation: CD-tracks are
recorded with a sampling rate of 44.1 kHz and a resolution of 16 bit, so the
approximating step function has 44100 steps per second and each step height
may take one out of 216 ≈ 65000 values between 1 and −1.
So, statistically spoken, a digital sound is an equidistant time series.

2.2 Motivation: signal edges

The motivation to apply the Hough-transform is that a sound might have a
specific oscillation pattern by which it can be identified. In order to catch
the pattern features, we concentrate on the so-called signal edges, that is,
the ascending oscillation sections rising from the time axis as indicated in
Fig. 2. We will try to detect these signal edges by fitting appropriate curves
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Fig. 2. Signal edges of a sound.

to the sound samples, and then see whether a sound can be classified by the
generated sequence of signal edges.

2.3 Parametrization

The Hough-transform was then set to detect sinusoidal signal edges, that is,
curves of the form

f(t) = A · sin(2πc · t − φ) (φ ≤ t ≤ φ + 1
4c

)

are fit to the sound samples. Variable parameters are amplitude A (≥ 1)
and phase difference φ (≥ 0); the center frequency c is fixed. The function is
sketched in Fig. 3: A stretches the signal edge in the direction of the y-axis
and so controls amplitude and slope, while φ places the edge along the time
axis. Due to the transform procedure, both parameters take only discrete val-
ues: amplitudes are divided into 32 bins, and the phase difference resolution
is defined by the sound sampling rate (44.1 kHz).
The transformation was then applied to the first 0.7 seconds of each sound,
so for longer sound samples not the complete sound is captured in the trans-
formed data.

2.4 Resulting data format

The result of transforming a digitized sound is another time series of am-
plitudes (A) and phase differences (φ); an example is given in Tab. 1: phase
differences may be expressed in seconds or sample-indices, and the amplitude
can be given in absolute values or bin-numbers. Note that low bin-numbers
refer to high amplitudes (steep signal edges) and vice versa.
Fig. 4 shows the transformed data (amplitudes vs. time) for 4 different sounds,
the left two played by a piano, and the right ones played on a trumpet. You
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Fig. 3. The fitted signal edge.

Table 1. Data format after transformation.

phase difference φ amplitude A

Nr. sample seconds class-nr. value

...
...

...
...

...

104 16731 0.3793881 28 1.163636

105 16838 0.3818141 31 1.049180

106 16894 0.3830841 22 1.488372

107 19896 0.3831291 25 1.306122

108 17004 0.3855781 30 1.084746

109 17065 0.3869611 27 1.207547

110 17173 0.3894101 31 1.049180
..
.

..

.
..
.

..

.
..
.

can clearly see similarities within the same instrument and differences across
different instruments.
The next problem is now to derive characteristics from these time series that
allow for classification of sounds.

3 Classification

3.1 Approaches

In general, two approaches were tried out to summarize the transformed data.
The first question was whether the (overall) frequencies of amplitudes may
yield a sufficient ‘spectrum-like’ sound characterization. The second approach
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Fig. 4. Different instruments playing at same pitches; left: piano, right: trumpet.

was to derive other characteristics from the transformed time series (not only
from amplitudes, but also from frequencies fi := 1

φi−φi−1
).

The first approach uses 33 variables for classification (32 amplitude bins plus
pitch), for the second approach 62 potential discriminators were derived from
the transformed sound (for examples see results in section 3.5).

3.2 Data set

The investigated data set consisted of 1987 sounds played by different instru-
ments and with pitches of each sound given. There were 62 sound sequences at
subsequent pitches; different instruments covered different frequency bands,
overall these spanned a range from A0 to C8 (27.5 to 4186 Hz). Sequences
played by the same or very similar instruments were grouped together, like
piano at different volumes or bassoon and contrabassoon. Finally, the set
consisted of 25 instrument classes (Opolko and Wapnick (1987)).

3.3 Methods

The classification methods applied were:

• LDA: Linear Discriminant Analysis
• QDA: Quadratic Discriminant Analysis
• naive Bayes
• RDA: Regularized Discriminant Analysis
• Support Vector Machine
• Classification Tree



6 Röver, Klefenz and Weihs

• k-NN: k-Nearest-Neighbour

Most methods should be well known except for RDA, which may require
some explanation (for Classification Trees see Venables and Ripley (2002),
for other methods see Hastie et al. (2001)).

Regularized Discriminant Analysis (RDA) is a hybrid method including
LDA and QDA and was proposed by Friedman (1989). Assumptions and
procedure are as in QDA, that is, group distributions are conditionally normal
and the groups differ by their means and (co-)variances. But instead of using
the usual groupwise covariance estimates, the covariance is manipulated using
two parameters (λ and γ); first a convex combination is computed:

Σ̂RDA
k = λΣ̂LDA + (1 − λ)Σ̂QDA

k (0 ≤ λ ≤ 1)

So the covariance estimate is a combination of the pooled (Σ̂LDA) and the

individual group covariances (Σ̂QDA
k ); for λ = 1 it is equal to LDA, and for

λ = 0 it equals QDA. The second parameter γ then allows to shift the esti-
mate towards an identity matrix, but this turned out not to improve error
rates, so we restricted ourselves to using λ only and set γ to zero. Thus the
covariance estimate simplifies to the above formula.

3.4 Variable selection

Variable selection is necessary for the second approach (characterizing vari-
ables), but not appropriate for the first (amplitude frequencies only). Also,
classification trees select variables themselves.
For all other methods, variables were then selected applying the same prin-
ciple (analogous to stepwise regression): Variables were selected step-by-step
starting with pitch only and then in each step including the variable that
improves the error rate (estimated by cross-validation) most.

3.5 Results

The best classification was achieved using 11 characterizing variables and
applying RDA, which resulted in a misclassification rate of 26.1%. Using just
the amplitude frequencies, the best error rate was only 66%, using k-Nearest-
Neighbour.
The 11 discriminating features leading to the final error rate (26.1%) were:

• pitch
• waiting time for first edge and sound duration
• signal edge rate (per second)
• mean, variance and shape of amplitude distribution
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• trend of amplitudes

• mean and variance of frequency distribution

• correlation of amplitude and frequency

The error rates are shown in detail in the confusion matrix (Table 2): each

Table 2. Confusion matrix for RDA using 11 variables (percentages).

% ba be ce cl cr eb eg ed ef fl fr gk ma ob pi sx sy tb tp tp tu vb vp vi xy Σ

bassoon 78 0 2 1 0 1 0 0 0 0 0 0 0 1 0 0 2 9 0 0 6 0 0 0 0 22
bells 0 95 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 5
cello 6 0 72 3 0 0 4 3 0 0 0 0 0 1 0 4 0 0 2 0 5 0 0 0 0 28

clarinet 2 0 3 52 0 0 0 8 0 2 1 0 0 7 0 10 0 3 7 0 1 1 0 3 0 48
crotales 0 0 0 0 97 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3
elecbass 0 0 0 0 0 80 7 0 4 0 0 0 2 0 4 0 0 0 0 0 2 1 0 0 0 20

elecguitar 1 6 8 1 0 12 53 1 2 0 1 0 0 0 4 1 0 1 0 0 1 6 0 1 1 47
elecguitar-distd. 0 0 0 1 0 3 0 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

elecguitar-fh. 0 0 0 0 0 12 3 0 73 0 0 0 0 0 3 0 0 0 0 0 0 1 8 0 0 27
flute 1 0 1 1 0 0 0 0 0 69 0 0 0 3 0 2 0 3 3 0 8 2 0 6 0 31

french horn 0 0 0 2 0 0 0 0 0 0 90 0 0 4 0 2 0 0 2 0 0 0 0 0 0 10
glockenspiel 0 0 0 0 11 0 0 0 0 0 0 83 0 0 1 0 0 0 2 0 0 0 0 0 2 17

marimba 0 0 0 0 0 8 0 0 0 0 0 0 61 0 1 0 0 0 0 0 0 0 3 0 26 39
oboe/enghorn 0 0 0 9 0 0 0 0 0 5 2 0 0 70 0 2 0 2 7 1 0 0 0 2 0 30

piano 6 1 1 0 0 7 3 0 1 0 0 2 10 0 55 0 0 0 0 0 0 4 2 0 8 45
saxophone 8 0 10 11 0 0 0 0 0 0 7 0 0 6 0 46 0 3 6 0 0 2 0 0 0 54
synthbass 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 98 0 0 0 0 0 0 0 0 2
trombone 4 0 0 7 0 0 0 1 0 3 0 0 0 3 0 0 0 73 7 0 0 0 0 1 0 27
trumpet 0 0 1 2 0 0 0 0 0 4 5 0 0 8 0 2 0 7 68 0 0 3 0 0 0 32

trumpet-csto 0 0 0 3 0 0 0 3 0 0 0 0 0 3 0 0 0 0 0 90 0 0 0 0 0 10
tuba 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 95 0 0 0 0 5

vibraphone 0 2 1 1 0 5 8 0 2 9 1 0 3 0 0 0 0 0 1 1 7 57 0 0 1 43
violin-pizzicato 0 0 0 0 0 2 0 0 5 0 0 1 6 0 2 0 0 0 0 0 0 0 84 0 0 16

violin/viola 2 0 2 6 0 0 0 0 2 7 1 0 3 16 0 1 0 7 1 2 1 0 1 48 1 52
xylophone 0 0 0 0 0 0 0 0 1 0 0 5 23 0 2 0 0 0 0 0 0 2 0 0 66 34

total misclassification rate: 26.1%

line corresponds to one instrument and shows how it was classified (in per-
centages); the main diagonal shows correct classifications, the off-diagonal el-
ements show false classifications. The last column gives the total (instrument-
wise) error rate.
For example, you can see that xylophone and marimba get confused with
each other, and that there are certain instruments that are classified well
(bells), while others are not clearly identified (saxophone).
Closer examination of the transformed data suggested that tuning of Hough-
transformation settings might lead to further improvement of classification
results. For further details see Röver (2003).

3.6 Comparing the results

The misclassification rate achieved by pure guessing would be 24
25

= 96%.
Error rates achieved by humans or other automatic classification approaches
have previously been investigated in other experiments; in roughly compa-
rable problem settings (with regards to number of instruments) rates for
humans are quoted at 44%, and for automatic classification these range from
19–7.2% (Bruderer (2003)).
Note that in this study only the first 0.7 seconds of a sound were used,
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whereas usually complete sounds are evaluated for recognition. Other ap-
proaches often use features like envelope characteristics or fourier frequencies
for classification.

4 Conclusions

Application of the Hough-transform to digitized sounds yields a useful sound
characterization; the generated data allows to distinguish between sounds
played by different instruments. Classification of 25 instruments leads to an
error rate of 26.1%.
The misclassification rate so far is better than those achieved by humans, but
still worse than for other automatic approaches. Further tuning of transform
settings and application to complete sounds (longer than 0.7 seconds) might
still improve the procedure.
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