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Abstract

The thesis is about linear genetic programming (LGP), a machine learning approach that
evolves computer programs as sequences of imperative instructions. Two fundamental
differences to the more common tree-based variant (TGP) may be identified. These are
the graph-based functional structure of linear genetic programs, on the one hand, and the
existence of structurally noneffective code, on the other hand.
The two major objectives of this work comprise (1) the development of more advanced
methods and variation operators to produce better and more compact program solutions
and (2) the analysis of general EA/GP phenomena in linear GP, including intron code,
neutral variations, and code growth, among others.
First, we introduce efficient algorithms for extracting features of the imperative and func-
tional structure of linear genetic programs. In doing so, especially the detection and elim-
ination of noneffective code during runtime will turn out as a powerful tool to accelerate
the time-consuming step of fitness evaluation in GP.
Variation operators are discussed systematically for the linear program representation.
We will demonstrate that so called effective instruction mutations achieve the best per-
formance in terms of solution quality. These mutations operate only on the (structurally)
effective code and restrict the mutation step size to one instruction.
One possibility to further improve their performance is to explicitly increase the probability
of neutral variations. As a second, more time-efficient alternative we explicitly control the
mutation step size on the effective code (effective step size). Minimum steps do not allow
more than one effective instruction to change its effectiveness status. That is, only a
single node may be connected to or disconnected from the effective graph component. It
is an interesting phenomenon that, to some extent, the effective code becomes more robust
against destructions over the generations already implicitly.
A special concern of this thesis is to convince the reader that there are some serious
arguments for using a linear representation. In a crossover-based comparison LGP has
been found superior to TGP over a set of benchmark problems. Furthermore, linear
solutions turned out to be more compact than tree solutions due to (1) multiple usage of
subgraph results and (2) implicit parsimony pressure by structurally noneffective code.
The phenomenon of code growth is analyzed for different linear genetic operators. When
applying instruction mutations exclusively almost only neutral variations may be held
responsible for the emergence and propagation of intron code. It is noteworthy that
linear genetic programs may not grow if all neutral variation effects are rejected and if
the variation step size is minimum. For the same reasons effective instruction mutations
realize an implicit complexity control in linear GP which reduces a possible negative effect
of code growth to a minimum. Another noteworthy result in this context is that program
size is strongly increased by crossover while it is hardly influenced by mutation even if
step sizes are not explicitly restricted.



ii

Finally, we investigate program teams as one possibility to increase the dimension of
genetic programs. It will be demonstrated that much more powerful solutions may be
found by teams than by individuals. Moreover, the complexity of team solutions remains
surprisingly small compared to individual programs. Both is the result of specialization
and cooperation of team members.
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2 1 Introduction

1.1 Evolutionary Algorithms

Evolutionary algorithms (EA) mimic aspects of natural evolution to optimize a solution
towards a predefined goal. Following Darwin’s principle of natural selection, differential
fitness advantages are exploited in a population to lead to better solutions. Different
research subareas of evolutionary algorithms have emerged, such as genetic algorithms
(GA), evolution strategies (ES), and evolutionary programming (EP). A comparatively
young approach in this context is genetic programming (GP). Evolutionary algorithms
as a whole together with neural networks and fuzzy logic are considered as disciplines of
computational intelligence (CI) [92]. A general evolutionary algorithm may be summarized
as follows:

Algorithm 1.1 (general evolutionary algorithm)

1. Randomly initialize a population of individual solutions.

2. Randomly select individuals from the population that are fitter than others by using
a certain selection method. The fitness measure defines the problem the algorithm
is expected to solve.

3. Generate new variants by applying the following genetic operators for certain prob-
abilities:

¤ Reproduction: Copy an individual without change.

¤ Recombination: Exchange substructures between individuals.

¤ Mutation: Randomly replace a single atomic unit in an individual.

4. Calulate the fitness of new individuals.

5. If the termination criterion is not met, → 2.

6. Stop. The best individual represents the best solution found.

While in genetic algorithms [40, 32] the individuals are represented as fixed-length binary
strings, evolution strategies [75, 91] operate on real-valued vectors. Both techniques are ap-
plied primarily in parameter optimization. Compared to that genetic programming varies
individuals on a more symbolic level as computer programs. That is, the representation
is executable and usually of variable size and shape.
In a more general sense genetic programming may also be regarded as a method of machine
learning (ML) which studies computer algorithms that learn by experience [61]. Especially
some of the early machine learning approaches show clear resemblance to modern GP.
Friedberg [30, 31] attempted to solve simple problems by teaching a computer to write
computer programs. Due to his choice of search strategy, however, his results were limited.
Later evolutionary programming [29] was introduced as a method that uses finite state
automata as a representation of individuals. This innovative work could be argued to be
the first successful evolutionary algorithm for automatic program induction. It was then
Cramer [26] who first applied an EA to (more general) programs that were represented
as variable-length tree structures. But only the detailed work of Koza [50, 51] could
demonstrate the feasibility of this approach in well-known application areas. He also gave
the field its name “genetic programming”.
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1.2 Genetic Programming

Genetic programming (GP) may be defined generally as any direct evolution or breeding
of computer programs for the purpose of inductive learning. In particular, this definition
is supposed to be independent of a special type of program representation. In principle,
GP may solve the same range of problems as other machine learning techniques, like
neural networks. Most of todays real-world applications of GP demonstrate its abilities in
data mining, i.e., the discovery of regularities within large data domains. For supervised
learning tasks that means to create predictive models, i.e., classifiers or approximators,
that learn a set of known (labeled) data and generalize to a set of unknown (unlabeled)
data. Other application areas of GP may comprise, for instance, control problems, time
series prediction, signal processing and image processing.
Genetic programs may be regarded as prediction models that approximate an objective
function f : In → Om with In denotes the input data space of dimension n and Om is
the m-dimensional output data space. In most cases there is only m = 1 output. Genetic
programs may also complete missing (unknown) parts of an existing model. Other evo-
lutionary algorithms, like genetic algorithms or evolution strategies, minimize an existing
objective function (model) by searching for the optimum setting of its variables (model
parameters).
The objective function f itself represents the problem to be solved by GP. In practice this
function is usually unknown and defined only incompletely by a relatively small set of
input-output vectors T = {(~i, ~o) | ~i ∈ I ′ ⊆ In, ~o ∈ O′ ⊆ Om, f(~i) = ~o}. The evolutionary
process searches for a program that represents the best solution to a given problem, i.e.,
that maps the given training set T best. Training examples are also referred to as fitness
cases in GP. GP models are not only expected to predict the outputs of all training inputs
I ′ most precisely but also many inputs from In\I ′. That is, the genetic programs are
desired to generalize from the training data to unknown data. The generalization ability
is verified by means of input-output examples from the same data domain as (but different
from) the training examples.
The genotype space G in GP includes all programs of a certain representation (type) that
can be composed of elements from a programming language L. If we assume that programs
do not induce side-effects the phenotype space P denotes the set of all mathematical func-
tions fgp : In → Om with fgp ∈ P that can be expressed by programs gp ∈ G. The
used programming language L is defined by the user over the instruction set (or function
set) and the so called terminal set. The latter may comprise input values, constants, and
memory variables.
The fitness function F : P → V measures the prediction quality, i.e., fitness, of a phenotype
fgp ∈ P. For this thesis we assume the range of fitness values to be V = IR+

0 for continuous
problems and V = IN0 for discrete problems. Usually fitness is derived from a mapping
error between the predicted model fgp and the desired model f . Since, in general, fitness
cases represent a fraction of the problem data space only, fitness may reflect the phenotype
behaviour of a program only in part.
Fitness evaluation of individuals is by far the most time-critical step of a GP algorithm
since a genetic program has to be executed at least once for each fitness case in the fitness
function. Prior to that, the genotype representation gp has to be translated into the
phenotype function fgp. Such a genotype-phenotype mapping is usually deterministic and
produced by an interpreter fint : G → P with fint(gp) = fgp and F(gp) := F(fgp). Both
functions fint and F are not bijective. That means a phenotype may be represented by
more than one genotype and different phenotypes may have the same fitness.
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The composition of the instruction set and the terminal set determines the expressiveness
of the programming language L. On the one hand, this language must be mighty enough
to represent the optimum solution or at least a good suboptimum solutions. On the other
hand, solution finding becomes more difficult if the search space of programs G is increased
unnecessarily by too large sets of program components. If L is Turing-complete, every
computable function may be found, in principle, provided that the maximum program
size is sufficiently large to represent it. In practice it is recommended, however, to define
the language as small as necessary. Genetic programming requires a certain knowledge
here from the user about the problem domain to solve this trade-off situation. Another
problem is that we cannot know beforehand if a program will terminate or not if we choose
the representation such that the underlying language is Turing-complete. Since Turing-
completeness requires infinite loops, a maximum time bound is necessary to guarantee a
finite execution of program. One possibility is to restrict the maximum number of executed
instructions.
There are many ways to represent a certain function by a program. This is mostly due
to neutral code in genotypes that is not expressed in the phenotype. The complexity of
a genetic program is usually measured as the number of instructions it holds. A growing
variable-length representation is important in GP since, in general, the minimum represen-
tation size of the optimum solution is unknown. Following the principle of Occam’s Razor
among all solutions with equal fitness the shortest solution should be preferred. This
solution is supposed to achieve the best generalization performance. In GP it depends
on the expressiveness of the used programming language and on the variability of the
representation form how compact a program is possible for a certain objective function.
The maximum size of programs has to be restricted in general to prevent programs from
growing without bound and using up all system memory. If no maximum restriction is
imposed on the representation size not only the generalization ability of solutions may
be reduced, but also the efficiency of genetic operations. Additionally, the critical time
for the fitness evaluation of programs is increased. A too small maximum complexity
bound, on the other hand, may restrict a solution finding if it is not sufficient to represent
the optimum solution. The user is asked again to find a good trade-off here. Both the
success of the evolutionary search and the growth of programs depend not only on the
representation but on the variation operators, too.
Let P (t) ⊂ G denote the state of a population at time (generation) t. From a random
subpopulation P ′ ⊆ P (t) of n = |P ′| individuals a selection operator s : Gn × Pn → Gµ

selects µ < n individuals for variation that show a better fitness than others. For global
selection schemes P ′ = P (t) is true. The selection operator determines among already
visited search points (in genotype space and in phenotype space) from where the search
may be continued most promisingly. Depending on a reproduction rate prr the µ parents
are transfered over into population P (t + 1) of the next generation t + 1.
A genetic operator or variation operator v : Gµ → Gλ creates λ offsprings out of the µ
selected parents from population P (t). These λ new individuals become part of population
P (t+1), too. In other words, λ new search points are visited in the genotype search space.
If µ < λ a parent produces more than one offspring. Usually recombination in GP creates
two offsprings from two parents, i.e., µ = λ = 2, while for mutations µ = λ = 1 is used.
All genetic operators must guarantee, first, that no syntactically incorrect programs are
generated during evolution (syntactic closure). Second, the value and the type of each
instruction argument must be from defined ranges (semantic protection). The calculation
of a new search point is much less expensive than the fitness evaluation in GP and may
be neglected, at least if the application of a variation operator does not take more than
linear calculation time O(n) with program size n.



1.3 Linear Genetic Programming 5

1.3 Linear Genetic Programming

In recent years different variants of genetic programming have emerged all following the
basic idea of GP, i.e., the automatic evolution of computer programs. Three basic forms
of representation may be distinguished for genetic programs. Besides the traditional tree
representations these include linear and graph representations [11].
The tree programs used in Koza-style genetic programming correspond to expressions from
a functional programming language. This classic approach is also referred to as tree-based
genetic programming (TGP). Functions are located at inner nodes while the leafs hold
input values or constants. In contrast, linear genetic programming (LGP) denotes a GP
variant that evolves sequences of instructions from an imperative programming language
or machine language. For this thesis instructions are restricted to operations – including
conditional operations – that accept a minimum number of constants or memory variables,
called registers, and assign the result to a register again, e.g., r0 := r1 + 1.
Analogous to tree-based GP, the name “linear” refers to the structure of the (imperative)
program representation. It does not stand for functional genetic programs that are re-
stricted to a linear list of nodes only. Moreover, it does not mean that the method itself is
linear, i.e., may solve linearly separable problems only. On the contrary, genetic programs
normally represent highly non-linear solutions in this meaning.
The use of linear bit sequences in GP again goes back to Cramer and his JB language [26].
A more general linear approach was introduced by Banzhaf [9]. Nordin’s idea of subjecting
machine code to evolution was the first GP approach [64] that is directly operating with an
imperative representation. It was subsequently expanded and developed into the AIMGP
(Automatic Induction of Machine code by Genetic Programming) approach [68, 11]. In
AIMGP individuals are manipulated as binary machine code in memory and are executed
directly without passing an interpreter during the fitness calculation. This results in a
significant speedup compared to interpreting systems. Besides the invention of machine
code GP, Nordin’s thesis [68] focuses on aspects that are relevant to machine code GP and
on the application of this linear GP approach to different problem domains. Only some
work [65, 67] is dedicated to more general phenomena of linear GP.
This thesis concentrates on fundamental characteristics of the linear program representa-
tion and shows differences to the tree representation. Based on such features advanced
LGP techniques are developed. All analyses performed and methods presented are sup-
posed to be independent of a special type of imperative programming language or machine
language. Nonetheless, a transfer ability of results to machine code GP is preserved as
far as possible. Moreover, the methods presented here are not meant to be specific to
a certain application area, but may be applied to a wide range of problems, including
approximations and classifications in particular.
Basically, there are two major differences that distinguish a linear program from a tree
program:
(1) Linear genetic programs feature a graph-based data flow that results from a multiple
usage of register contents. That is, on the functional level the evolved imperative structure
represents special directed graphs. In traditional GP, instead, the data flow is determined
by the tree structure of programs.
The higher variability of program graphs allows the result of subprograms (subgraphs) to
be reused multiple times during calculations. On the one hand, this allows linear solutions
to be more compact in size than tree solutions and to express more complex calculations
with less instructions. On the other hand, the step size of variations may be under better
control in a program structure with higher degree of freedom than that of a tree. How
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much evolution may take advantage of these features strongly depends on the design of
appropriate variation operators.
(2) Special noneffective code coexists with effective code in linear genetic programs that
results from the imperative program structure – not from program execution – and can
be detected efficiently and completely. Such structurally noneffective code manipulate
registers not having an impact on the program output at the current position and is, thus,
not connected to the data flow generated by the effective code. In a tree program, by
definition, all program components are connected to the root. As a result, the existence
of noneffective code necessarily depends on program semantics.
Noneffective code in genetic programs is also referred to as introns. In general, it specifies
instructions without any influence on the program behavior. Noneffective code is argued to
be beneficial during evolution for two major reasons. First, it may act as a protection such
that it reduces the effect of variations on the effective code. In linear programs introns may
be created easily at each position with (almost) the same probability. Second, noneffective
code allows (more) variations to remain neutral in terms of a fitness change.
According to the above notions, we distinguish between an absolute program and an effec-
tive program in linear GP. While the first includes all instructions, the latter contains the
(structurally) effective instructions only. The (effective) length of a program is measured in
the number of (effective) instructions it holds. Each program position or line is supposed
to hold exactly one instruction. Even if the absolute length of a program has reached the
maximum complexity bound it can still vary in size of its effective code. The effective
length is especially important because it reflects the number of executed instructions in
our approach and, thus, the execution time.
A more detailed introduction to linear GP can be found in Chapter 2. For a detailed
description of tree-based GP we refer to Chapter 7 here.

1.4 Motivation and Overview

Up to now, the traditional tree representation of programs is still dominating research in
the area of GP, even if many different GP approaches and program representations have
appeared in the last years. A general motivation for investigating different representations
in evolutionary computation is that for each representation form, as well as for different
learning methods in general, certain problem domains may exist that are more successfully
solved than others. This holds true even if the No Free Lunch (NFL) theorem [100] states
that there is no search algorithm better, on average, than any other search algorithm over
the set F = {f : S → W} of all functions (problems) f for a finite search space S. In
particular, the NFL theorem includes evolutionary algorithms.
A special concern for this thesis is to convince the reader that there are some serious
advantages of a linear representation of programs compared to a tree representation. As
noted above, linear GP is not only the evolution of imperative programs, but may be
reduced to the evolution of special program graphs.
An observation that can be made is that linear GP is often used in applications or for
representation-independent GP techniques by researchers, but it is considered less if the
basic understanding of GP or the analysis of representation-specific aspects are concerned.
One goal of this thesis is to fill this gap at least partly. First, an exhaustive analysis of
the linear program representation is performed in terms of its imperative and functional
structure. The analysis of program structure at runtime serves as a tool for better under-
standing the functionality of linear GP. Second, general GP phenomena, such as intron
code, neutral variations, and code growth, are investigated for the linear variant.
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Another focal point is the enhancement of linear GP on the methodical level. In doing
so, the general objective targets are to produce more precise and more efficient prediction
models, as this is true for other machine learning approaches. In particular, information
about program structure is exploited for various techniques, including, e.g., the acceler-
ation of processing time and the design of efficient genetic operators. Minimization of
variation steps on the symbolic level will turn out to be one key criterion for obtaining
more successful solutions.

The thesis is organized in 10 chapters that are briefly summarized in the following para-
graphs. In the present Chapter 1 a general and more formal introduction to genetic pro-
gramming has been given, after a short review of the history of evolutionary algorithms.
Chapter 2 describes the linear GP approach in more detail. This includes general concepts
as well as the specific LGP variant used in this thesis.
In Chapter 3 efficient algorithms are presented for analysing linear genetic programs in
terms of their special properties. This comprises the identification of different types of
noneffective code as well as the extraction of information about the underlying functional
structure.
Chapter 4 compares the standard LGP approach with an efficient variant of neural net-
works based on several classification problems from medicine. Additionally, a significant
acceleration of processing time is documented for linear GP by eliminating noneffective
code from the genetic programs before the fitness evaluation.
The theoretical results of Chapter 3 have inspired the development of more efficient genetic
operators for the linear representation in Chapter 5. These lead to a better quality of
solutions, in the first place, and to a lower complexity, in the second place. Important
points of interest in this context are the variation step size, the amount of noneffective
code that emerges in programs, and the proportion of neutral variations.
Moreover, the influence of several variation parameters is analysed in Chapter 5. Chapter
6 reports on how more general control parameters influence the performance and the
complexity of solutions, including those in particular that are specifically related to the
linear representation, e.g., the number of registers.
In Chapter 7 different variants of linear GP are compared with tree-based GP on both
benchmark problems and real-world classification problems from bioinformatics. Linear
GP will turn out to be superior, especially when applying more sophisticated operators
from Chapter 5.
In Chapter 8 we define structural and semantic distance metrics for linear genetic programs
to explicitly control diversity and to reduce the variation step size more precisely on the
effective program code.
Chapter 9 deals with the phenomenon of code growth in genetic programming. Different
theories about code growth are verified for linear GP. Special importance is attached to
neutral variations that are identified as being a main cause of code growth as well as an
important motor of evolutionary progress.
One possibility to scale the complexity and the dimension of programs is to evolve multiple
independent program modules as one individual. Chapter 10 applies the evolution of such
program teams to prediction tasks and compares different methods for combining the
multiple team outputs.
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In this chapter the reader will be introduced to linear genetic programming (LGP) in
further detail. This is done on the basis of the specific linear GP variant that is investigated
in this thesis. In particular, the evolved programming language, the representation type,
and the specific evolutionary algorithm are defined, which form the kernel of the described
LGP system. In doing so, basic concepts of linear GP are discussed, including different
forms of program execution.
As already indicated in the introduction, linear GP operates with imperative programs.
This thesis focuses on the imperative representation in general. That is, all discussions
and experiments are conducted independently of a special type of programming language
or processor architecture. Even though genetic programs are interpreted and partly noted
in the high-level language C the applied programming concepts exist principally in or may
be translated into most modern imperative programming languages, including machine
languages.

2.1 Representation of Programs

The imperative programming concept, in contrast to the functional programming
paradigm, is closely related to the underlying machine language. All modern CPUs are
based, in principle, on the von Neumann architecture, where a computing machine is
composed of a set of registers and basic instructions that operate and manipulate their
contents. A program of such a register machine, accordingly, denotes a sequence of in-
structions whose order has to be respected during execution.

void gp(r)
double r[8];

{
...
r[0] = r[5] + 71;

// r[7] = r[0] - 59;
if (r[1] > 0)
if (r[5] > 2)
r[4] = r[2] * r[1];

// r[2] = r[5] + r[4];
r[6] = r[4] * 13;
r[1] = r[3] / 2;

// if (r[0] > r[1])
// r[3] = r[5] * r[5];

r[7] = r[6] - 2;
// r[5] = r[7] + 15;

if (r[1] <= r[6])
r[0] = sin(r[7]);

}

Example 2.1: LGP program in C notation. Commented instructions have no effect on
program output stored in register r[0] (see 3.2.1).

Basically, an imperative instruction includes an operation on operand (or source) registers
and an assignment of the result to a destination register. Instruction formats exist for zero1,
one, two or three registers. Most of modern machine languages are based on 2-register or
3-register instructions, however. 3-register instructions operate on two arbitrary registers

10-register instructions operate on a stack.
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(or constants) and assign the result to a third register, e.g., ri := rj + rk. In 2-register
instructions, instead, either the implemented operator requires only one operand, e.g.,
ri := sin(rj), or the destination register acts as a second operand, e.g., ri := ri + rj . Due
to a higher degree of freedom a program that contains 3-register instructions may be more
compact in size than a program that is built from 2-register instructions only. For that
reason and for a higher flexibility we will regard instructions with a free choice of operands
only.
In general, we allow at most one operation per instruction with a minimum number of
operand – usually one or two. Note that a higher number of operators or operands in in-
structions would not necessarily increase the expressiveness or the variability of programs.
Such instructions would assign the result of a more-or-less complex expression to a regis-
ter. Moreover, such a two-dimensional program structure would make genetic operations
definitely more complicated.
In our LGP system a genetic program is interpreted as a variable-length sequence of simple
C instructions. To apply program solutions directly in a problem domain (without using
a special interpreter) their internal representation is translated into C code. An excerpt
of a linear genetic program, as exported by the system, is given by Example 2.1. In the
following, the term “genetic program” always refers to the internal LGP representation
that we will discuss in more detail now.

2.1.1 Coding of Instructions

In our implementation all registers hold floating-point values. Internally, constants are
stored in registers that are write-protected, i.e., may not become destination registers.
As a consequence, the set of possible constants stays fixed. Constants are addressed by
indices in the internal program representation just like variable registers and operators
(see below). Constant registers are only initialized once at the beginning of a run with
values from a user-defined range. One advantage over encoding constants explicitly in
the program instructions is that memory space is saved, especially as far as real-valued or
larger integer constants are concerned. A continuous variability of constants by the genetic
operators is further not absolutely needed and should be sufficiently counterbalanced by
interpolation in the genetic programs. Furthermore, a free manipulation of real-valued
constants inside programs could result in program solutions that may be exported only
imprecisely. Note that floating-point values can only be printed to a certain accuracy. If
a program uses many constants, rounding errors may be reinforced during execution on
which the overall program behavior may depend.
Each of the maximum four instruction components, including one instruction identifier and
three register indices, may be encoded into one byte of memory only. Then the maximum
number of variable registers and constant registers is restricted to 256, which is, however,
absolutely sufficient for most problem definitions. For instance, instruction ri := rj + rk

reduces to a vector of indices < id(+), i, j, k >. Actually, an instruction is held in a single
32-bit integer value. Such a coding of instructions is similar to a representation as machine
code [64] but may be chosen independently of the type of processor in our interpreting
system. In particular, the described coding allows an instruction component to be accessed
efficiently by casting the integer value (instruction) previously into an array of 4 bytes. A
program is represented by an array of integers. This compact representation is not only
memory-efficient but allows an efficient manipulation of programs as well as an efficient
interpretation (see Section 2.2).
In the following we will refer to a register only as a variable register. A constant register
is identified with its constant value.
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In linear GP a user-defined number of variable registers, the register set, is provided to the
genetic programs. Besides a minimum required number of input registers which hold the
program inputs before execution, additional registers can be provided in order to facilitate
calculations. Normally these so called calculation registers are initialized with a constant
value (1 here) each time before a program is executed on the fitness cases. Only for special
problem applications, like time series predictions, where an order is defined on the fitness
cases it may be advantageous to give this up. If calculation registers are only initialized
once before the fitness evaluation they allow an exchange of information between successive
executions of the same program for different fitness cases.
A sufficient number of registers is important for the performance of linear GP, especially
if the input dimension and the number of input registers, respectively, are low. In gen-
eral, the number of registers determines the number of program paths (in the functional
representation) that can be calculated in parallel. If it is not sufficient there are too many
conflicts by overwriting of register information within a program. One or more input
registers or calculation registers may be defined as output registers. The standard output
register is (input) register r0. The imperative program structure also facilitates the use of
multiple program outputs. Instead, functional expressions like trees calculate one output
only, by definition (see also Section 7.1).

2.1.2 Instruction Set

The instruction set defines the particular programming language that is evolved. In our
LGP system this is based on two basic instruction types – including operations2 and
conditional branches. Table 2.1 lists the general notation of all instructions that have
been used in experiments of this thesis.

Instruction type General notation Input range
Arithmetic operations ri := rj + rk ri, rj , rk ∈ IR

ri := rj − rk

ri := rj × rk

ri := rj / rk

Exponential functions ri := rj
(rk) ri, rj , rk ∈ IR

ri := erj

ri := ln(rj)
ri := rj

2

ri := √
rj

Trigonomic functions ri := sin(rj) ri, rj , rk ∈ IR
ri := cos(rj)

Boolean operations ri := rj ∧ rk ri, rj , rk ∈ IB
ri := rj ∨ rk

ri := ¬ rj

Conditional branches if (rj > rk) rj , rk ∈ IR
if (rj ≤ rk)
if (rj) rj ∈ IB

Table 2.1: LGP instruction types.

2Functions will be identified with operators in the following.
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Two-operand instructions may either include two indexed variables (registers) ri as
operands or either one operand is a constant (but not both). One-operand instructions
only use register operands. In doing so, assignments of constant values, e.g., r0 := 1 + 2
or r0 := sin(1), are avoided explicitly (see also Section 6.3). That is, we allow not more
than one constant per instruction. Then the percentage of instructions holding a con-
stant equals the proportion of constants pconst in programs. This is also the probability
for which a constant operand is selected during both the initialization of programs and
mutations. The influence of this parameter will be analysed in Section 6.3. In most other
experiments documented in this thesis pconst = 0.5 is used.
In genetic programming it must be guaranteed that only valid programs are created. The
genetic operators – including recombination and mutation – have to maintain the syntac-
tical correctness of newly created programs. In linear GP, for instance, crossover points
may not be selected inside an instruction and mutations may not exchange an instruction
operator for a register. To assure semantic correctness partially defined operators and
functions may be protected by returning a high constant value for all undefined inputs,
e.g., cundef := 106. Table 2.2 summarizes all instructions from Table 2.1 that have to be
protected from certain input ranges and gives the respective definitions. High results of
operations act as a punishment for programs that use these otherwise undefined inputs.
If low constant values would be returned, i.e., cundef := 1, protected instructions may be
exploited more easily by evolution for the creation of semantic introns (see Section 3.2.2).
For instance, all instructions preceding effective instruction ri := rj/0 are semantic introns
which only influence the content of register rj .

Instruction Protected definition
ri := rj / rk if (rk 6= 0) ri := rj / rk else ri := rj + cundef

ri := rj
rk if (|rk| ≤ 10) ri := |rj |rk else ri := rj + rk + cundef

ri := erj if (|rj | ≤ 32) ri := erj else ri := rj + cundef

ri := ln(rj) if (rj 6= 0) ri := ln(|rj |) else ri := rj + cundef

ri := √
rj ri :=

√|rj |
Table 2.2: Definitions of protected instructions.

To minimize the input range that is assigned to a semantically rather senseless function
value, undefined negative inputs are mapped to defined absolute inputs in Table 2.2. This
may make it easier for evolution to integrate protected instructions into a robust program
semantics. It is also possible not to protect instructions at all but simply punish programs
(with the worst fitness) that calculate an infinite or non-numeric (NaN) output value for
a fitness case.
On the one hand, the ability of genetic programming to find a solution strongly depends
on the expressiveness of the instruction set. On the other hand, the dimension of the
search space, i.e., all possible programs that can be built from these instructions, increases
exponentially with the number of instructions and registers. A complete instruction set
contains all elements that are necessary to build the optimum solution at least in principle
– provided that the number of variables registers and the range of constants are sufficient.
If we take into account that the initial population usually represents a small fraction
of the complete search space only, the probability to find the optimum solution or a
good approximation decreases significantly with too many useless types of such basic
program elements. Finally, the probability for which a certain instruction is selected as
well as its frequency in the population influence solution finding. To control the selection
probabilities of instruction types more specifically, the instruction set may contain multiple
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instances of an instruction.
In this thesis we do not regard program functions that induce side-effects to the problem
environment, but return a single value only in a strict mathematical sense. Side-effects may
be used for solving control problems, for instance. A linear program may represent a list
of commands (plan) that directs a robot agent in an environment. The fitness information
is then derived from the agents interactions with its environment, i.e., by reinforcement
learning. In such a case, the genetic programs do not represent mathematical functions.

2.1.3 Branching Concepts

Conditional branches are an important and powerful concept in genetic programming. In
general, programming concepts like branches or loops allow the control flow to be altered,
that is given by the structure of the representation. The control flow in linear genetic
programs is linear while the data flow is organized as a directed graph (see Section 3.3).
When using conditional branches the control flow (and the data flow) may be different for
different input situations, i.e., may depend on program semantics.
Usually classification problems are solved more successfully or even exclusively if branches
are provided. Branches may increase the (effective) complexity of solutions by promoting
a specialization of solutions and by forming semantic introns (see Chapter 3). Both may
lead to less robust and less generalizing solutions.
If the condition of a branch instruction, as defined in Table 2.1, is false only one instruction
is skipped (see also discussion in Section 3.3.2). Sequences of branches are interpreted as
nested branches in our system (as in C). That is, the next non-branch instruction, i.e.,
operation, in the program is executed only if all conditions are true and is skipped other-
wise. In general, we refer to such a combination of conditional branch(es) and operation
as a conditional operation:

if (<cond1>)
if (<cond2>)
<oper>;

Nested branches allow more complex conditions to be evolved and are equivalent to con-
necting the single branch conditions by a logical AND. A disjunction (OR connection) of
branch conditions, instead, may be represented by a sequence of conditional instructions
whose operations are identical:

if (<cond1>)
<oper>;
if (<cond2>)
<oper>;

Alternatively, successive conditions may be interpreted as being connected either by AND
or by OR. This can be achieved in the following way: A Boolean operator (AND or
OR) is encoded into each branch identifier. This requires the information of a binary
flag only, which determines how the condition of a branch instruction is connected to a
potentially preceeding one in program. The status of these flags may be varied during
operator mutations. Only the transformation of the (internal) representation into a C
program becomes slightly more complicated because each sequence of branches has to be
substituted by a single branch with an equivalent condition of higher order.
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2.1.4 Advanced Branching Concepts

A more general branching concept is to allow conditional forward jumps over a variable
number of more than one instruction. The number of skipped instructions may either be
unlimited, i.e., limited by the length of program only, or may be selected randomly from
a certain range. In the latter case the actual length of a jump may be determined by a
parameter that is encoded in each branch instruction (using the identifier section or the
unused section of the destination register). It is also possible to do without this additional
overhead by using constant block sizes, instead. Because not all instructions of a skipped
code block are usually effective, evolution may control the semantic effect of a jump by
the number of noneffective instructions within a jump blocks.
A transformation of such branches from the internal program representation into working
C code requires constructions like

if (<cond>) goto <label X>;
<...>
<label X>;

where unique X labels have to be inserted at the end of each jump block.
One possibility to avoid branching into blocks of other branches allows jumps not to be
longer than the position of the next branch in program. In this way, the number of skipped
instructions does not have to be administrated within the branches and is limited more
implicitly. Translation into C is achieved then simply by setting {...} brackets around
the jump block.
Another interesting variant is to allow jumps to any succeeding branch instruction in
program only. This can be realized by using an additional pointer with each branch
instruction to an arbitrary successor branch (absolute jump). Relative jumps to the kth
next branch in program with 1 ≤ k ≤ kmax are also possible, even if such connections
are separated more easily if a new branch instruction is inserted or deleted. A pointer to
a branch that does not exist anymore may be automatically replaced by a valid pointer
after variation. The last branch in programs may always point to the end of program, by
default (k := 0). Hence, the control flow in a linear genetic program may be interpreted
as a directed acyclic branching graph (see Figure 2.1). The nodes of such a control flow
graph represent subsequences of (non-branch) instructions.
Kantschik and Banzhaf [45] propose a more general concept of a branching graph for the
imperative representation. Each node contains an instruction block that ends with a single
if-else-branch. These branches point to two alternative decision blocks which represent
two independent successor nodes. Thus, instructions may not only be skipped within an
otherwise linear control flow but real parallel subprograms may exist in programs. This
form of representation is called a linear graph since it defines a graph-based control flow
on linear genetic programs. Recall that the term linear genetic program derives from the
linear flow of control that is given by the linear arrangement of instructions. In Section
3.3 we will see that the data flow is graph-based already in simple linear genetic programs.
In general, a complex non-linear control flow requires either more sophisticated varia-
tion operators or repair mechanisms after variation. For the branching graphs a special
crossover operator may be constrained so that only complete nodes or subgraphs of nodes
are exchanged between programs with a certain probability. That is, crossover points fall
upon branch instructions only. Unrestricted linear crossover (see Section 2.3.4) may be
applied then between graph nodes (instruction blocks) only.
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Figure 2.1: Branching graph: Each branch instruction points to an arbitrary succeeding
branch.

The final branching concept whose capability is discussed here for linear GP uses an ad-
ditional endif instruction in the instruction set. Nested

if (<cond>)
<...>
endif

constructions are interpreted such that an endif belongs to an if counterpart if no branch
or only closed branching blocks lie in between. An instruction that cannot be assigned in
this way may either be deleted from the internal representation or contribute to the nonef-
fective code. One advantage of such a concept is that it allows an (almost) unconstrained
and complex nesting of branches while jumps into other branching blocks cannot occur.
A transformation into C code is achieved simply by setting {...} brackets around valid
branching blocks instead of endif and by not transforming invalid branch instructions.
In a similar way if-else-endif constructions may be realized, too.

2.1.5 Iteration Concepts

Iteration of code parts by loops rather plays a less important role in genetic programming.
Most GP applications that require loops deal with control problems where, in general,
the combination of primitive actions of an agent is an object of evolution. There is no
(relevant) flow of data in such programs necessary. Instead, each action performs side-
effects to a problem environment and fitness is derived from a reinforcement signal. For
the problem classes on which this work concentrates, classification and approximation of
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labeled data, iterations are of minor importance. Nevertheless, a reuse of code by iterations
may result in more compact program solutions.
In functional programming the concept of loops is unknown, in principle. The implicit
iteration concept in functional programs denotes recursions which are rather hard to con-
trol in (tree-based) genetic programming. Otherwise, simply iterated evaluations of a
subtree can have an effect only if functions produce side-effects. In linear GP assignments
represent an implicit side-effect on memory locations as part of the imperative represen-
tation. Nevertheless, the iteration of an instruction segment may only be effective if it
includes at least one effective instruction and if at least one register acts as both destina-
tion register and source register in the same or a combination of (effective) instructions,
e.g., r0 := r0 + 1.
In the following, possible iteration concepts for linear GP will be presented. In principle,
these comprise conditional loops and loops with a limited number of iterations.
One form of iteration in linear programs are conditional backward jumps which correspond
to a while loop in C. The problem with this concept is that it forms infinite loops easily by
conditions that are always fulfilled. In general, it is not possible to detect all infinite loops
in (genetic) programs. This is due to the theoretical halting problem that states we cannot
decide whether a program will stop or not [28]. One possible solution is to terminate a
genetic program after a maximum limit of executed instructions has been exceeded. But
then the result of the program depends on the execution time.
A more recommended loop concept limits the number of iterations specifically for each
loop. This requires an additional control flow parameter which may either be constant
or be varied within the loop instructions. Such a construction is usually expressed by a
for loop in C. Because only overlapping of loops, rather than nesting, has to be avoided
an appropriate choice to limit the size of loop blocks may be the coevolution of endfor
instructions in programs. Analogous to the interpretation of branches in Section 2.1.4, a
for and a succeeding endfor instruction define a loop block if no or only closed loops lie
in between. All other loop instructions are not interpreted.

2.1.6 Modularization Concepts

For certain problems modularization may be advantageous in GP. On the one hand, by
using subroutines repeatedly within programs, solutions may become smaller in size. That
is, the same maximum program space can be used more efficiently for more powerful
solutions. On the other hand, a problem may be decomposed into simpler subproblems
that may be solved more efficiently in local submodules. A combination of subsolutions
may result in a simpler and better overall solution then.
The most popular modularization concept in genetic programming are so called automat-
ically defined functions (ADFs) [52]. Basically, a genetic program is split up into a main
program and a certain number of subprograms (ADFs). The main program calculates
the program result by using the coevolved subprograms via function calls. Therefore, the
ADFs are treated as part of the main instruction set. Each module type may be composed
of different sets of program components. It is furthermore possible to define a usage graph
that defines which ADF type may call which other ADF type. Usually recursions are
avoided by not allowing cycles then. The crossover operator has to be constrained in such
a way that only modules of the same type are recombined between two individuals.
ADFs denote an explicit modularization concept since the submodules are encapsulated
from the main program and may only be used locally in the same individual. Each module
is represented by a separate tree expression [52] or a separate sequence of instructions [68].
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To assure encapsulation of modules in linear programs disjoint sets of registers have to be
used. Otherwise, unwanted state transitions between modules may occur.
ADFs denote subsolutions that are combined by being used in a main program. In this
thesis another explicit form of modularization, the evolution of program teams, is investi-
gated (see Chapter 10). A team comprises a fixed number of programs that are coevolved
as one GP individual. In principle, all member programs of a teams are supposed to solve
the same problem by receiving the same input data. These members act as modules of
an overall solution such that the member outputs are combined in a predefined way. A
better performance may result here from a collective making of decision and specialization
of more-or-less independent program modules.
A more implicit modularization concept that prepares code for reuse is an automated
module acquisition [5]. Here certain substructures of a program are identified as modules.
Such modules are chosen more-or-less randomly from better individuals by a compression
operator and are replaced by respective module calls. The new modules are outhoused
into a global library where they may be referenced by any individual of the population. In
functional representations a replacement of subexpressions (subtrees) is relatively simple.
In linear GP, instead, a subsequence of instructions is always bound to a certain register
usage within an imperative program context. If such a module is supposed to be extracted
it had to be replaced by a function call that manipulates the same global register set as
the respective main program.
Complex module dependences may hardly emerge during evolution if modularization is
not really needed for better problem solutions. In general, if a programming concept is
redundant, the resulting larger search space may influence solution finding rather nega-
tively. Moreover, the efficiency of a programming concept or a program representation
in GP always depends on the variation operators, too. Thus, even if the expressiveness
or flexibility of a programming concept is high in principle, it may be more difficult for
evolution to take advantage of it.

2.2 Execution of Programs

The higher the processing speed of a learning method is the more complex or time-
dependent applications may be handled. The most time-critical steps in evolutionary
algorithms are the fitness evaluation of individuals and/or the calculation of a new search
point (individual) by the variation operators. In genetic programming computation costs
are dominated by the fitness evaluation which requires multiple executions of a program,
at least one for each fitness case. Executing a genetic program means that the internal
program representation is interpreted in a definite way while following the semantics of
the programming language that is evolved.
For instance, interpretation in TGP systems works by traversing the tree structure of
programs in postorder or preorder. While doing so, operators are applied to operand
values that result recursively from executing all subtrees of the operator node first.
In a special variant of linear GP, called AIMGP (Automatic Induction of Machine code
by Genetic Programming) [64, 11], individuals are represented and manipulated as binary
machine code. Because programs can be executed directly without passing an interpreter,
machine code GP results in a significant speedup compared to interpreting GP systems.
Due to their dependence on specific processor architectures, however, machine systems are
restricted in portability. Moreover, machine code system may be restricted in functionality,
e.g., in the number of existing hardware registers.
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Figure 2.2: Different forms of program execution: (a) Interpretation of programs in GP.
(b) Elimination of noneffective code in LGP. (c) Direct execution of machine code in
AIMGP. (d) Combination of b) and c).

Another method to accelerate the execution (interpretation) of linear genetic programs
is applied in this thesis. The special type of noneffective code, that results from the
imperative program structure, may be detected efficiently in linear runtime (see algorithm
in Section 3.2.1). In our LGP system noneffective code is removed from a program before
its fitness is calculated, i.e., before the resulting effective program is executed over multiple
fitness cases. By doing so, the evaluation time of programs may be reduced significantly,
especially if a larger number of fitness cases is processed. In the example program from
Section 2.1 all commented instructions are noneffective if program outputs are stored in
register r[0].
Since AIMGP is a special variant of linear GP, both acceleration techniques may be com-
bined in such a way that a machine code representation is preprocessed by a routine
extracting the effective parts. This results in four different ways of processing in genetic
programming that are illustrated in Figure 2.2.
An elimination of introns can be relevant only, of course, if a significant amount of this
code is created by the variation operators. In particular, this is true for linear crossover
(see Section 2.3.4). An additional acceleration of runtime in linear GP results from the fact
that the fitness of an individual has to be recalculated only if the (structurally) effective
code has undergone change. Instead of the evaluation time, this method may reduce the
number of evaluations (and program executions) that are performed during a generation
(see Section 5.2).

2.2.1 Runtime Comparison

The following experiment gives an impression of the differences in processing speed that
may occur with the four ways of program execution in linear GP (see Figure 2.2). To
guarantee a fair comparison between machine code GP and interpreting GP, an interpret-
ing routine has been added to an AIMGP system. This routine interprets the machine
code programs in C so that they produce exactly the same results as without interpre-
tation. Both interpreting and non-interpreting runs of the system are accelerated by a
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Parameter Setting
Problem type polynomial regression
Number of fitness cases 200
Number of runs 10
Number of generations 200
Population size 1000
Maximum program length 256
Maximum initial length 25
Crossover probability 90%
Mutation probability 10%
Operator set {+,−,×}
Number of registers 6
Set of constants {0,..,99}

Table 2.3: Parameter settings

second routine that removes the noneffective code. In Table 2.3 general settings of system
parameters are given for a polynomial regression task.
Table 2.4 compares the average absolute runtime for the four different configurations with
respect to interpretation and intron elimination. If interpretation is not applied, programs
are executed directly as machine code. 10 runs have been performed for each configuration
while using the same set of 10 different random seeds. In doing so, the runs behave exactly
the same for all configurations apart from their processing speed. Note that the average
length of programs in the population exceeds 200 instructions in about generation 100.
The intron rate converges to about 80%, on average.

Runtime (sec.) No Interpretation (I0) Interpretation (I1)
No Intron Elimination (E0) 500 6250
Intron Elimination (E1) 250 1375

Table 2.4: Absolute runtime in seconds (rounded) averaged over 10 independent runs (on
a SPARC Station 10)

The resulting relative speed factors are listed in Table 2.5. In contrast to the absolute
runtime these values are independent of the number of processed fitness cases. If both the
direct execution of machine code and the elimination of noneffective code are applied in
combination runs become about 25 times faster for the considered problem and system
configuration. Note that the influence of intron elimination on the interpreting runs (factor
4.5) is more than two times bigger than on the non-interpreting runs (factor 2). This
reduces the advantage of machine code GP over interpreting GP from a factor of 12.5 to
a factor of 5.5. Standard machine code GP without intron elimination occurs to be less
than 3 times faster than linear GP including this extension.
Apparently, the performance gain by the intron elimination strongly depends on the pro-
portion of (structurally) noneffective instructions in programs. In contrast to the size
of effective code, this is less influenced by the problem definition than by the variation
operators and the system configuration (see Chapters 5 and 6).
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E0I0 : E0I1 1 : 12.5
E1I0 : E1I1 1 : 5.5
E0I0 : E1I0 1 : 2
E0I1 : E1I1 1 : 4.5
E0I0 : E1I1 1 : 2.75
E1I0 : E0I1 1 : 25

Table 2.5: Relative runtime for the four configurations of Table 2.4.

2.2.2 Translation

From an application point of view the best (generalizing) program solution denotes the
only relevant result of a GP run. Of course, the internal representation (coding) of this
program could be exported as it is. Then, however, an interpreter is required to guarantee
that the program will behave in the application environment as it did in the GP system.
To avoid this programs are exported as equivalent C functions in our LGP system (see
Example 2.1 and Figure 2.3). It has already been pointed out in Section 2.1.2 how single
programming concepts are transformed into C. In general, by translating internal programs
into an existing (imperative) programming language, solutions may be integrated directly
into an application context (software) without additional overhead.

a)

C Program

Translation

Effective Program

Internal Representation

Translation

Execution

b)

Machine Code 

Internal Representation

Effective Program

Figure 2.3: (a) Translation into C program. (b) Translation into machine code.

Another benefit of such a translation is that it allows less restrictions to be imposed on
the internal representation. Instead, the representation may be chosen (almost) freely,
e.g., in favor of a better evolvability and a better variability in GP. Since usually only
a few individuals are exported during a run even complex transformations may not be
time-critical.
The same advantage – higher flexibility – together with a higher processing speed may
motivate a translation from the evolved LGP language into a binary machine language
(compilation) only before the fitness of a program is evaluated (see Figure 2.3). Note
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that the direct manipulation of machine programs in AIMGP systems is less important
for runtime. Instead, the speed advantage mostly results from the direct execution of
machine code. At least code translations from an imperative language should be possible
efficiently, especially if the noneffective code is removed before.

2.3 Evolutionary Algorithm

Algorithm 2.1 describes the evolutionary algorithm that builds the kernel of our LGP
system. In a steady-state EA, like this, there are no fixed generations defined, in contrast
to a generational EA. For the latter variant, the current generation is identified with a
population of parent programs which offsprings migrate to a separate population pool.
After the offspring pool is fully populated it replaces the parent population and the next
generation begins. In the steady-state model there is no such centralized control of gen-
erations. Instead, offsprings replace existing individuals in the same population. It is a
common practice to define generations in steady-state EAs artificially as regular intervals
of fitness evaluations. Only newly created individuals have to be evaluated if the fitness is
saved with each individual in the population. Usually one generation is completed if the
number of new individuals equals the population size.

Algorithm 2.1 (LGP algorithm)

1. Initialize a population of random programs (see Section 2.3.1).

2. Randomly select 2× n individuals from the population without replacement.

3. Perform two fitness tournaments of size n (see Section 2.3.2).

4. Make temporary copies of the two tournament winners.

5. Modify the two winners by one or more variation operators for certain probabilities
(see Section 2.3.4).

6. Evaluate the fitness of the two offsprings.

7. If the currently best-fit individual is replaced by one of the offsprings validate the
new best program using unknown data.

8. Reproduce the two tournament winners within the population for a certain proba-
bility or under a certain condition by replacing the two tournament losers with the
temporary copies of the winners (see Section 2.3.3).

9. Repeat steps 2. to 8. until the maximum number of generations is reached.

10. Test the program with minimum validation error again.

11. Both the best program during training and the best program during validation define
the output of the algorithm.

The fitness of an individual program is computed by an error function on a set of input-
output examples (~ik, ok). These so called fitness cases define the problem that is desired
to be solved or to be approximated by the genetic programs. A popular error function for
approximation problems is the sum of squared errors (SSE), i.e., the squared difference
between the predicted output gp(~ik) and the desired output ok for all n training examples
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A squared error function punishes larger errors more than smaller errors. Equation 2.1
defines the mean squared error (MSE). For classification tasks the classification error
(CE) calculates the number of wrongly classified examples. Function class in Equation
2.2 hides the classification method that maps the continuous program outputs to discrete
class identifiers. While a better fitness means a smaller error the best fitness is 0.

MSE(gp) =
1
n

n∑

k=1

(gp(~ik)− ok)2 (2.1)

CE(gp) =
∑

class(gp( ~ik))6=ok
k=1,..,n

1 (2.2)

The generalization ability of individual solutions is checked during training by calculating
the validation error of the currently best-fit program with the same error function. This
unknown validation data set is sampled differently from the training data, but from the
same data space. Finally, among all the best individuals emerging over a run the one
with minimum validation error (point of best generalization) is tested on an unknown test
data set, again once after training is over. Note that a validation of the best solutions
follows a fitness gradient. Validating all individuals during a GP run is not reasonable,
since we are not interested in solutions that perform well on the validation data but have a
comparatively bad fitness. Moreover, this would produce higher computational costs that
cannot be neglected.
If an individual is selected for variation or if it is ruled out by others depends on relative
fitness comparisons during selection. In order not to loose information a copy of the
individual with minimum validation error has to be saved outside of the population. The
individual with minimum training error (best individual) cannot be overwritten as long
as the training data is fixed during evolution.
Training data may be resampled every mth generation or even each time before an indi-
vidual is evaluated. On the one hand, resampling introduces noise into the fitness function
(dynamic fitness). This is argued to improve the generalization performance compared to
keeping the training examples constant over a run because it reduces overtraining, i.e.,
an overspecialization of solutions to the training data. On the other hand, resampling
may be beneficial if the data base is large that constitutes the problem to be solved. A
relatively small subset size may be used for training while all data points will be exposed
to the genetic programs over time. As a result, not only the fitness evaluation of programs
is accelerated but the evolutionary process may converge faster, too. This technique is
called stochastic sampling [11].

2.3.1 Initialization

In normal case, the initial population of genetic programs is built up complete randomly.
In linear GP an upper bound for the initial program length has to be defined. The lower
bound may be identically equal to the absolute minimum length of a program which is one
instruction. When a program is created its length is chosen randomly from that predefined
range for a uniform probability.
On the one hand, it is not recommended to initialize programs too long, as will be demon-
strated in Section 6.6. This may reduce their variability significantly in the course of the
evolutionary process. Besides, the smaller the initial programs are, on average, the more
thorough the exploration of the search space may turn out at the beginning of a run.
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On the other hand, the average initial length of programs should not be too small, be-
cause a sufficient diversity of the initial genetic material is necessary, especially in smaller
populations or if crossover dominates variation.

2.3.2 Selection

Algorithm 2.1 applies tournament selection. With this selection method individuals are
selected randomly from the population to participate in a tournament where they compete
for the best fitness. Normally selection happens without replacement, i.e., all individuals
of a tournament must be different. The tournament size nts determines the selection
pressure that is imposed on the population individuals. If a tournament is held between
two individuals (and if there is only one tournament used for selecting the winner) this
corresponds to the minimum selection pressure. A lower pressure is possible with this
selection scheme only by performing m > 1 tournaments and choosing the worst among
m winners.
In the LGP algorithm always two tournaments happen in parallel to provide two parent
individuals for crossover. For comparison reason, this is practiced also if mutations are
applied exclusively (see Chapter 5). Before the tournament winners undergo variation,
a copy of each winner is taken that replaces the (worst) loser of a tournament. Such a
reproduction within the population constitutes a steady-state EA.
Tournament selection, together with a steady-state evolutionary algorithm, is well suited
for parallelization by using more-or-less isolated subpopulations of individuals, called
demes (see also Section 4.3.2). Tournaments may be performed independently of each
other and do not require global information about the population, like a global fitness
ranking (ranking selection) or the average fitness (fitness proportional selection) [17]. Lo-
cal selection schemes are argued to better preserve the diversity than global selection
schemes. Moreover, individuals may take part in a tournament several times or not at all
during one steady-state generation. This allows evolution to progress with different speeds
in different regions of the population.

2.3.3 Reproduction

A full reproduction of winners guarantees that better solutions always survive in a steady-
state population. However, during every replacement of individuals a certain amount
of genetic material gets lost. When using tournament selection this situation can be
influenced over the reproduction rate prr. By using prr < 1 the EA may forget better
solutions to a certain degree. Both reproduction rate and selection pressure (tournament
size) have a direct influence on the convergence speed of the evolutionary algorithm as
well as on the loss of (structural and semantic) diversity.
Another possible alternative to the standard reproduction rate (prr = 1) is to allow prr > 1.
That is, an individual will be reproduced more than once within the population, on average.
A sufficiently large tournament size is required here to provide enough worse individuals
(losers) which may be replaced by the multiple copies of the tournament winner, i.e.,
nts > dprre. As a result, both the convergence speed and the loss of diversity may
be accelerated accordingly. Obviously, too many replications of individuals lead to an
unwanted premature stagnation of the evolutionary process. Note that more reproductions
are performed than new individuals are created.
Instead of or in addition to an explicit reproduction probability, more implicit conditions
can be checked under which reproduction shall take place (see Section 9.5).
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2.3.4 Variation

Genetic operators change the contents and the size of genetic programs in the population.
Figure 2.4 illustrates the two-point linear crossover as it is used in linear GP for recom-
bining two genetic programs [11]. A segment of random position and arbitrary length is
selected in each of the two parents and exchanged. In our implementation (see also Section
5.7.1) crossover exchanges equally sized segments if one of the two children would exceed
the maximum length, otherwise.

Offspring 1

Offspring 2

Parent 1

Parent 2

Figure 2.4: Crossover in linear GP. Continuous sequences of instructions are selected and
exchanged between parents.

Crossover is the standard macro operation that is applied to vary (the length of) linear
genetic programs on the level of instructions, i.e., instructions are the smallest units to
be changed. Inside instructions micro mutations randomly replace either the instruction
identifier, a register or a constant (if existent) by equivalents from predefined sets or valid
ranges. In Chapter 5 we will introduce more advanced genetic operators for the linear
program representation.
It may be guaranteed for each variation that it modifies the program structure. Therefore,
identical exchanges of code have to be avoided explicitly. These are, however, not very
likely when using crossover, especially if the length of exchanged segment is unrestricted.
In general, there are three different ways in which variation operators may be selected and
applied to a certain individual program before its fitness is (re)calculated:

¤ Only one variation is performed per individual.

¤ One variation operator is applied several times.

¤ More than one variation operator is applied.

One advantage of using only one genetic operation per individual is a lower total variation
strength. This allows artificial evolution to progress more specifically and in smaller steps.
By applying several genetic operations concurrently, on the other hand, computation time
is saved such that less evaluations are necessary. For example, micro mutations are often
applied together with a macro operation.
Note that in all three cases, there is only one offspring created per parent individual, i.e.,
only one offspring gets into the population and is evaluated. Analogous to a multiple
reproduction of parents as discussed in Section 2.3.3, one may derive more than one
offspring from a parent, too. Both is, however, not practiced by Algorithm 2.1.
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Originally linear genetic programming has been introduced for the benefit that the genetic
programs can be executed (as binary machine code) without passing a time-consuming
interpretation step first (see Section 2.2). Apart from this speed advantage, we investigate
other, more general characteristics of the linear representation in this chapter. As already
mentioned in the introduction, one basic difference compared to a tree representation is
that unused code parts occur and remain within linear genetic programs that are inde-
pendent from program semantics. Another difference is the data flow in a linear genetic
program that describes a directed graph, i.e., is not restricted to a tree structure.

3.1 Effective Code and Noneffective Code

Introns in nature are subsequences of DNA strings holding information that is not ex-
pressed in the phenotype of an organism or, more precisely, that is not translated into
a protein sequence. The existence of introns in eucaryotic genomes may be explained in
different ways: (1) Since the information for one gene is often located on different exons,
i.e., gene parts that are expressed, introns may help to reduce the number of destruc-
tive recombinations between chromosomes by simply reducing the probability that the
recombination points will fall within an exon region [97]. In this way, complete protein
segments encoded by specific exons are more frequently mixed than interrupted during
evolution. (2) Perhaps even more important for understanding the evolution of higher
organisms is the realization that new code can be developed “silently” without exposing
each intermediate variation step to fitness selection.
In genetic programs there may be code parts that are either essential or redundant for
the program solution. Redundant code fragments are called introns 1 like its natural
counterpart. Actually, introns in GP may play a similar role as introns in nature. First,
introns reduce the destructive influence of variations on the effective part of programs.
In doing so, they may protect the information holding code from being separated and
destroyed. Second, the existence of noneffective code allows code variations to be neutral
in terms of a fitness change. This retains genetic manipulations from direct evolutionary
pressure. In linear GP we distinguish effective instructions from noneffective instructions.

Definition 3.1 (effective/noneffective instruction) An instruction of a linear genetic
program is effective at its position iff it influences the output(s) of the program for at
least one possible input situation. A noneffective or intron instruction, respectively, is
without any influence on the calculation of the output(s) for all possible inputs.

One noneffective instruction is regarded as the smallest unit. A noneffective instruction
may be removed from a program without affecting its semantics – either independently or
only in combination with other noneffective instructions. In analogy to biology an intron
in LGP may be defined as any instruction or combination of instructions where this is
possible. A second, weaker intron definition that is distinguished in this thesis postulates
the program behaviour to be unchanged only for the fitness cases [67].

Definition 3.2 (noneffective instruction) An instruction of a linear genetic program is
noneffective iff it does not influence the program output(s) for the fitness cases.

The condition in Definition 3.2 does not necessarily hold for unknown data inputs. If
the generalization performance of best individuals is checked during training and some of

1Even if intron code is redundant for a certain problem solution, this is not necessarily true for the
evolutionary process of solution finding.
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these introns would be removed before the validation error is calculated, the behavior of
the program may not be the same anymore.

Definition 3.3 (effective/noneffective register) A register is effective for a certain pro-
gram position iff its manipulation can effect the behavior, i.e., an output, of the program.
Otherwise, the register is noneffective at that position.

Effective instructions following Definition 3.1 necessarily manipulate effective registers (see
Definition 3.3). But an operation can still be noneffective even if its result is assigned to
an effective register.
In this thesis we favor single conditional instructions as introduced in Section 2.1.3. Then a
branch instruction is effective only if it directly precedes an effective instruction. Otherwise
it is noneffective. That is, a conditional instruction is effective as a whole if this is true
for its operation.

3.2 Structural Introns and Semantic Introns

The above considerations suggest an additional classification of introns in linear GP. This
is based on a special type of noneffective code that results from the imperative structure
of programs – not from program semantics. Hence, two types of noneffective instructions
may be discerned: structural introns and semantic introns.

Definition 3.4 (structural intron) Structural or data flow introns denote single noneffec-
tive instructions that emerge in a linear program from manipulating noneffective registers.

Actually, the term structural intron refers to the functional structure of linear genetic pro-
grams that constitutes a directed graph, as will be demonstrated in Section 3.3. Structural
introns belong to a part of the graph that is not connected to the (effective) root node
which calculates the program output. That is, these instructions do not contribute to the
effective data flow. Structural introns do not exist in tree-based GP, because in a tree
structure, by definition, all program components are connected to the root. Thus, introns
in tree programs result from the program semantics. In linear GP semantic introns may
be defined as follows:

Definition 3.5 (semantic intron) A semantic or operational intron is a noneffective in-
struction or a noneffective combination of instructions even though it manipulates effective
register(s).

That is, a semantic intron is necessarily (structurally) effective by this definition. Oth-
erwise it would be a structural intron. The state of effective registers manipulated by a
semantic intron is the same before and after the intron has been executed – if we assume
that operations do not induce side-effects. For instance, instruction r0 := r0 × 1 is a se-
mantic intron if register r0 is effective. While all structural introns are noneffective after
Definition 3.1 and Definition 3.2, semantic introns may be noneffective after Definition 3.2
only. But note that not all semantic introns depend necessarily on the fitness cases. More
examples of semantic introns will be given in Section 3.2.2.
According to Definitions 3.4 and 3.5 we distinguish structurally effective code from se-
mantically effective code. While the first type may still contain semantic introns the latter
code is supposed to be intron-free. However, even if all intron instructions can be removed
from a program, it has not necessarily a minimum size (see Section 3.2.4).
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Alternatively, when regarding only Definition 3.1 structural introns may also be designated
as neutral noneffective code and semantic introns as neutral effective code, respectively.
Such a naming conforms to the distinction of neutral noneffective variations and neutral
effective variations, as will be defined in Section 5.1.1. It has to be noted, however, that
neutral code does not only result from neutral variations (see Chapter 9) which produces
confusing names. The different intron definitions will become more clear in the following
sections.
Whether a branch is a structural intron or a semantic intron depends again on the status
of the operation that directly follows. Semantic introns include branch instructions, too,
whose condition is always true, at least for all fitness cases. In this case, all other branches
are skipped that follow directly in a sequence (nested branch, see Section 2.1.3). Such non-
executed instructions represent special semantic introns. An operation is not executed if
the condition of a directly preceding (nested) branch is always false.

3.2.1 Detecting and Removing Structural Introns

In biology introns are removed from the messenger-RNA, a copy of the DNA, that actually
participates in gene expression, i.e., protein biosynthesis [97]. A biological reason for
the removal of introns might be that genes are more efficiently translated during protein
biosynthesis in this way. Without being in conflict with ancient information held in introns,
this might have an advantage, presumably through decoupling of DNA size from direct
evolutionary pressure.

Population
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 Effective Program

Individual
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Figure 3.1: Intron elimination in LGP. Only effective code (black) is executed.

The imperative program structure in linear GP permits (structurally) noneffective instruc-
tions to be identified efficiently. This in turn allows the corresponding effective instructions
to be extracted from a program during runtime and to be copied to a temporary program
buffer once before the fitness of the program is calculated (see Figure 3.1). By only
executing this effective program when testing each fitness case, evaluation can be accel-
erated significantly. Thereby, the representation of individuals in the population remains
unchanged while the computation time for the noneffective code is saved. No potential
genetic material gets lost and the intron code may fulfill its functions during the evolu-
tionary process (see above). In analogy to the elimination of introns in nature, the linear
genetic code is interpreted more efficiently. Because of this analogy the term “intron”
might be more justified here than in tree-based GP where introns are necessarily semantic
and, thus, may be detected much harder (see below).
Algorithm 3.1 detects all structural introns in a linear genetic program that does not apply
loops (backward jumps) or jumps over more than one instruction (see Chapter 2.1). More
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generally, such an elimination of dead code represents a form of code optimization that is
applied, for instance, during compilation [1]. The algorithm includes a simple dependence
analysis that identifies all instructions on which the final program output depends directly
or indirectly. All effective, i.e., depending, instructions are marked in programs by using
one bit of the instruction coding (see Section 2.1.1) as an effectiveness flag. Copying all
marked instructions at the end forms the effective program. In the example program from
Section 2.1 all instructions marked with an // are structural introns provided that the
program output is stored in register r[0] at the end of execution.

Algorithm 3.1 (detection of structural introns)

1. Let set Reff always contain all registers that are effective at the current program
position. Reff := { r | r is output register }.
Start at the last program instruction and move backwards.

2. Mark the next preceding operation in program with destination register rdest ∈ Reff .
If such an instruction is not found then → 5.

3. If the operation directly follows a branch or a sequence of branches then mark these
instructions too. Otherwise remove rdest from Reff .

4. Insert each source (operand) register rop of newly marked instructions in Reff

if not already contained. → 2.

5. Stop. All unmarked instructions are introns.

The algorithm needs linear calculation time O(n) with n is the program length. Actually,
detecting and removing the noneffective code from a program only requires about the same
time as calculating one fitness case. The more fitness cases are processed by the resulting
effective program the more this computational overhead will pay off. A good estimate of
the overall acceleration in runtime is the factor

αacc =
1

1− pintron
(3.1)

with pintron the average percentage of intron code in a genetic program and 1−pintron the
respective percentage of effective code.
By omitting the execution of noneffective instructions during program interpretation a
large amount of computation time can be saved. A removal of structural introns may
be relevant only, of course, if a sufficient proportion of this noneffective code occurs with
the applied variation operators (see Chapter 5). System parameters like the maximum
program length influence this proportion because effective length may grow even after
absolute length has reached the maximum. Moreover, the creation of structural introns is
facilitated if a higher number of registers is provided. If only one register is available, this
type of code cannot occur at all. We will demonstrate in Section 6.1 that both too less or
too many registers may influence the prediction performance negatively. In general, the
intron rate depends less on the problem since (the size of) this code is not directly affected
by the fitness selection.

3.2.2 Avoiding Semantic Introns

As noted above, structural introns may be identified completely by Algorithm 3.1, but
the resulting effective code may still include semantic introns. In general, a detection of
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semantic introns is much more difficult and may only be incomplete (see Section 3.2.4). As
an inherent part of the program structure, the structurally noneffective code is not directly
depending on the applied set of instructions. Moreover, this type of noneffective code may
be implemented easily by linear genetic programming even in great quantities. Structural
introns take away a lot of pressure from the genetic programs to develop semantic introns
as a reduction of the variation step size on the (semantically) effective code (see Chapters
5.9.1 and 9). Moreover, since structural introns may be detected and removed efficiently
they allow (effective) solutions to be more compact in size and, thus, save computation
time.
The proportion of semantic introns may be further reduced by controlling the formation
of this code more explicitly. Even if these introns cannot be avoided completely in genetic
programming some rules can be observed that avoid at least simple possibilities to create
semantic introns without restricting the freedom of variation or the expressiveness of the
function set significantly. The harder it becomes for the system to develop noneffective
code that depends on program semantics, the more this code should be ruled out by
structural introns.
The potential of linear GP to develop semantic introns strongly depends on the provided
set of instruction operators and the set of constants. To restrict the rate of semantic
introns and, thus, to keep the (structurally) effective size of programs small, both sets
may be chosen with a minimum tendency for creating semantic introns. Below different
types of semantic introns are given by example, that are possible with instruction set
{+,−,×, /, xy, if >, if ≤} (see Table 2.1), together with some rules how each type may
be avoided at least partly. The intron classes are not meant to be necessarily disjoint. Some
examples may be borderline cases, i.e., fit in more than one class. All semantic introns
denote noneffective code for all possible input situations (following intron Definition 3.1).
We do not regard instructions as introns here that are noneffective for certain input ranges
or the fitness cases only (see Definition 3.2). In the following register r0 is supposed to be
effective (otherwise introns would be structural).

(1a) r0 := r0 + 0

(1b) r0 := r0 × 1

(1c) r0 := r0
1

(1d) r2 := r0 + r0

r1 := r2 − r0

r0 := r1 + 0

Semantic introns of type (1) become less likely if constants 0 and 1 are not explicitly
provided to act as neutral elements in operations. It is especially cheap and effective to
do without constant 0, since it is not really useful for calculation but has a high potential
for creating semantic introns:

(2a) r0 := ri × 0

(2b) r0 := ri
0

(2c) r1 := r0 − r0

r0 := ri × r1
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Not these example instructions, but at least one preceding instruction in program that
influences the content of no other effective register than ri is a semantic introns of type
(2). This intron type can include many noneffective instructions. Note that even if value
0 is excluded from the set of constants it may still be calculated and assigned to a variable
register, independent from the register contents (see context examples (1d) and (2c)).
However, the more complex such intron constructs become the more context-dependent
they are and the more likely they will be destroyed during variation.

(3a) r0 := ri − ri

(3b) r0 := ri / ri

(3c) r1 := ri + c
r0 := r1 − ri

Introns of type (3) result from registers like r0 whose contents becomes constant by calcu-
lation, i.e., does no longer dependent on other register variables. If r0 is the only effective
register at a program position, all preceding instructions will be introns. Otherwise, all
preceding instructions are introns that manipulate register ri exclusively. The reader may
recall that instructions with only constant operands are not possible (see Section 2.1.1).
One operand is always variable. To make the creation of type (3) introns more difficult
direct subtraction and division of identical registers might be forbidden explicitly.

(4) r1 := r0 + 1
r0 := r1 − 1

The above example represents an intron of type (4). It includes all combinations of instruc-
tions that may be symbolically simplified without requiring any (semantically equivalent)
replacement through other instructions (see Section 3.2.4). The same is true for type
(1) introns that comprise a single instruction only. Such introns are difficult to avoid
in general, especially if more larger redundant calculations are involved. It may be ques-
tioned, however, if complex context-dependent introns occur frequently and survive during
program evolution.
Register r1 has to be noneffective at the position of intron example (4) in a program.
Otherwise, these instructions might not be removed without changing the (effective) pro-
gram. In general, all registers that are manipulated in semantic introns must be either
(structurally) noneffective or their original contents before the intron is restored after the
last instruction of the intron has been executed.

(5a) r0 := ri / 0

(5b) r1 := r0 − r0

r0 := ri / r1

Typically, the undefined range of a protected operator is exploited for the induction of
type (5) introns. This variant can be avoided by punishment as described in Section 2.1.2.

(6a) if (ri > ri)
r0 := rj + c
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(6b) r2 := ri + ri

r1 := r2 − ri

if (r1 > ri)
r0 := rj + c

(6c) r0 := ri + 2
r1 := r0 − ri

if (r1 ≤ 1)
r0 := rj + rk

(6d) if (ri > 2)
if (ri ≤ 1)
r0 := rj + rk

Type (6) is a special case of semantic intron. The operation is not executed at all because
the branching condition cannot be met. As a result, all preceding instructions become non-
effective, too, whose effectiveness depends only on the skipped instruction. Example (6a)
cannot occur if equal registers are not allowed to be compared. More context-dependent
conditions (6b) are not affected by such a restriction, but are created less likely. Other
conditions (6c) that are unsatisfiable for all possible register values emerge from compar-
isons of constant values. Note again that direct comparisons of two constants are avoided
explicitly. A conjunction of contradicting conditions (6d) emerges less likely if only one
comparison is provided to the system. By doing so, the expressiveness of the program-
ming language is not restricted significantly. Alternatively, sequences of branches might
be explicitly forbidden.

(7a) if (ri ≤ ri)
r0 := rj + c

(7b) r1 := ri + 2
r0 := r1 − ri

if (r0 > 1)
r0 := rj + rk

Type (7) represents the opposite case to type (6). That is, a conditional operation is
always executed because the condition is always true. Here the branch instruction itself
is an intron as well as all preceding instructions that are effective only in the false case.

(8) if (r1 > 1)
if (r1 > 1)
r0 := rj + rk

Finally, redundant branch instructions that may occur in nested branches constitute in-
trons of type (8).

3.2.3 Detecting Semantic Introns

The specific measures proposed in the previous section reduce the probability that seman-
tically noneffective code occurs in linear genetic programs. It is generally not necessary
and not affordable to apply expensive algorithms that detect and remove semantic in-
trons explicitly during runtime. Usually the evolutionary process is already accelerated
significantly by eliminating the larger number of structural introns (see Algorithm 3.1).
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Nevertheless, a removal of semantic introns makes sense for a better understanding of a
certain program solution and to gain information about the application domain, in this
way. Another motivation to further reduce the (structurally) effective size after evolution
may be a higher efficiency in time-critical application domains.
Algorithms that detect certain types of (structural or semantic) noneffective code as spec-
ified by Definition 3.1 are better deterministic. Probabilistic algorithms that require the
execution of a program necessarily depend on a more-or-less representative set of input-
output examples. Such algorithms may identify instructions whose intron status depends
on certain input situations (see Definition 3.2). Since normally not all possible inputs
can be verified for a problem, such intron instructions may become effective when being
confronted with unknown data.
The following probabilistic algorithm (similar to the one documented in [11]) detects se-
mantic introns. All structural introns, instead, are detected as a side-effect even if much
more inefficiently than by Algorithm 3.1. Hence, computation time may be saved if the
program is already free from structural introns.

Algorithm 3.2 (elimination of semantic introns)

1. Calculate the fitness Fref of the program on a set of m data examples (fitness cases)
as a reference value.
Start at the first program instruction at position i := 1.

2. Delete the instruction at the current program position i.

3. Evaluate the program again.

4. If its fitness F = Fref then the deleted instruction is an intron.
Otherwise, reinsert the instruction at position i.

5. Move to the next instruction at position i := i + 1.

6. Stop, if the end of program has been reached. Otherwise → 2.

Algorithm 3.2 needs calculation time O(m ·n2) because of n fitness evaluations, m+1 pro-
gram executions per fitness evaluation, and n (effective) program instructions at maximum.
This is too inefficient for removing introns during runtime. The higher computational costs
would hardly be paid by the savings obtained during the fitness evaluation.
Unfortunately, Algorithm 3.2 will not recognize semantic introns that are more complex
than one instruction (see Section 3.2.2). One possibility to find all semantic introns in
a linear genetic program for a certain set of fitness cases (following Definition 3.2) is to
repeat the algorithm for all k-party combinations of arbitrary program instructions with
k = 1, 2, .., n.

3.2.4 Symbolic Simplification

Introns have been defined in Section 3.1 as single instructions or combinations of instruc-
tions that may be removed without replacement and without affecting program semantics.
But even if a linear genetic program is completely free from semantic and structural in-
trons, the size of the remaining (semantically) effective code is not necessarily minimum.
The following example (9) is not an intron, but may be referred to as a mathematically
equivalent extension. It represents all formulations of a subprogram that are more com-
plicated than necessary. Such combinations of instructions cannot be removed, but may
be replaced by less complex, semantically equivalent code.
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(9) r0 := r0 + 1
r0 := r0 + 1
⇔
r0 := r0 + 2

A (structurally effective) program can be transformed into a functional tree expression by
a successive replacement of variables (see Section 3.3.4) provided that program operators
do not induce side-effects. During such a transformation process the expression can be
simplified successively by applying rules of symbolic calculation. In doing so, semantic
intron instructions by Definition 3.1 are removed deterministically. The probabilistic Al-
gorithm 3.2, instead, removes noneffective code by Definition 3.2 only and does not resolve
mathematically equivalent extension.
In general, detecting absolutely all noneffective code and mathematically equivalent ex-
tensions is an insolvable problem. Reducing a program to an equivalent of minimum size
corresponds to the more general problem whether two programs are equivalent or not. This
program equivalence problem is in general undecidable because it may be reduced to the
undecidable halting problem [1, 28]. However, in GP we normally regard finite programs.
If no loops or only loops with a finite number of iterations are permitted (see Section
2.1.5), genetic programs will always terminate. Then we may assume that at least theo-
retically all (semantic) introns can be detected. Unfortunately, already the reduction of an
expression to an equivalent expression of minimum size (unique except for isomorphism)
is NP-complete [1]. This is true because the NP-complete satisfiability problem may be
reduced to this simplification problem. A general Boolean expression will be unsatisfiable
if and only if it simplifies to false.

In the following let the terms intron or noneffective instruction always denote a structural
intron unless stated otherwise. Accordingly, effective programs still include semantic in-
trons. As we will see below, the modification of an instruction may change the effectiveness
status of other preceding instructions in a linear program – comprising both deactivations
and reactivations. Therefore, the terms active and inactive code will be used as synonyms
for effective and noneffective code.

3.3 Graph Interpretation

The imperative representation of a linear program can be transformed into an equivalent
functional representation by means of Algorithm 3.3. The directed structure of the result-
ing graph better reflects functional dependences and data flow in linear genetic programs.
The graph is acyclic if loops do not occur in the imperative program. Special cases of
programming concepts like loops and branches shall be excluded from the following con-
siderations for simplicity. Instead, we concentrate on the transformation of linear genetic
programs as sequences of simple operations into directed acyclic graphs (DAGs). It has
to be assumed also that program operators/functions do not induce side-effects in the
problem environment. Otherwise, the (linear) execution order of instructions may be less
flexible than this is required here.

Algorithm 3.3 (transformation of a linear genetic program into a DAG)

1. Start with the last instruction in program at position i := n (n = program length).
Let set S := ∅ always contain all variable sinks of the intermediate graphs.
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2. If destination register rdest 6∈ S then create a new start node (a new contiguous
graph component) with label rdest and S := S ∪ {rdest}.

3. Go to the (variable) sink node in the graph with label rdest.

4. Assign the operator of instruction i to this node.

5. Repeat steps 6. to 8. for each operand register rop of instruction i:

6. If there is no (variable or constant) sink node with label rop then
create a new node with that label.

7. Connect nodes rdest and rop by a directed edge.
(rdest becomes inner node and rop becomes sink node.)

8. If not all operations are commutative then
label this edge with k if rop is the kth operand.

9. Replace rdest in S by all non-constant operand registers rop of instruction i
if not already contained.

10. If i > 0 then go to instruction i := i− 1 in program and → 2.

11. Stop. Delete all register labels from inner nodes.

The number of imperative instructions corresponds exactly to the number of inner nodes in
the program graph resulting from Algorithm 3.3. Each inner node represents an operator
and has as many outgoing edges as there are operands in the corresponding imperative
instruction, i.e., one or two here (see Section 2.1). Thus, each program instruction is
interpreted as a small subtree of depth one.
Sink nodes, i.e., nodes without any outgoing edges, are labeled with register identifiers or
constants. The number of these terminals is restricted by the total number of (different)
registers and constants in the terminal set. In a tree representation a terminal may occur
multiple times since each node is referenced only once, by definition.
Only sink nodes that represent a (variable) register are replaced regularly by operator
nodes in the course of the algorithm. These are the only points at which the graph
may grow. Since loops are not considered, the only successors of such sink nodes may
become other existing sink nodes or new nodes. At the end of the transformation process
these sinks represent the input variables of the program. Note that the data flow in such
functional programs runs in the opposite direction in which the edges point.
Sink nodes that represent a constant value are only created once during the transformation
process and may be pointed to from every program position. The same is true for constant
inputs. Those are held in write-protected registers that may not become destination
registers. In doing so, the input information cannot get lost during calculations in the
imperative program.
A DAG that results from applying Algorithm 3.3 may be composed of several contiguous
components. Each of such subgraphs has only one start node from where all its other nodes
are reached by at least one (directed) path. Start nodes have indegree 0. There may be
as many start nodes (contiguous components) in the DAG as there are instructions in the
imperative program. The last instruction in program that manipulates an output register
corresponds to a start node that initiates an effective component. If there is only one
output register defined, exactly one graph component is effective. The rest of the graph
is noneffective, i.e., corresponds to the noneffective instructions (structural introns).
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The different contiguous components of a DAG may either be disconnected or may overlap
in parts by forming a weakly contiguous component. We define that in the latter case all
operator nodes are connected (disregarding the direction of edges) but may not necessarily
be reached from the same start node (on a directed path). We also let a non-contiguous
DAG still be weakly contiguous.
Note that noneffective components are not necessarily disconnected from an effective com-
ponent. Graph edges may point from a noneffective (operator) node to an effective (opera-
tor) node, but not the other way around. Thus, noneffective components cannot influence
the program output, i.e., the data flow in the effective component which is directed from
the sinks to (effective) start node (effective data flow). Also note that all components
(including disconnected ones) still share the same set of sink nodes in this graph repre-
sentation.
In the following we assume that the linear program is fully effective in terms of Definition
3.4 and that only one output (register) is defined. Such a program is translated into a
DAG that is composed of only a single contiguous component whose start node may also
be denoted as the root of the DAG.
After each iteration of Algorithm 3.3 all non-constant sink nodes correspond exactly to the
effective registers at the current program position. In particular, set S is equal to set Reff

in Algorithm 3.1. Because the number of effective registers is limited by the total number of
registers, the number of variable sink nodes is limited as well. This number determines the
width of the program graph. Since it is usually recommended to use a moderate number
of registers, the program graph is supposed to grow in depth. The depth is restricted by
the length of the imperative program because each imperative instruction corresponds to
exactly one inner node in the graph. For that reasons the graph structure may be referred
to as “linear” like the imperative equivalent.
The actual width of a program graph indicates the number of parallel calculation paths in
a linear genetic program. It can be approximated by the maximum or the average number
of registers that are effective at a program position (see also Section 3.4). Recall that the
performance of linear GP strongly depends on a sufficient number of registers. The less
registers are available, the more conflicts may occur by overwriting of information during
calculations. The more registers are provided, instead, the more local sets of registers may
be used for calculating more independent program paths.
It follows from the above discussion that the runtime of Algorithm 3.3 is O(k ·n) with n is
the number of effective instructions and k is the number of registers. If the total number
of (input) registers is small, runtime is approximately linear in n.

b := c ∧ 1
c := ¬ a
a := c ∨ b
c := b ∧ b
b := c ∨ 1 (x)
a := a ∧ c (x)
c := a ∧ b
b := a ∨ c
a := b ∨ c
Example 3.1: Effective imperative program using Boolean operator set {∧,∨,¬}. Output
and (used) input registers of the program are bold printed.

The linear program in Example 3.1 corresponds exactly to the DAG in Figure 3.2 after
applying Algorithm 3.3. Both the imperative representation and the functional represen-
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Figure 3.2: Functional equivalent to the effective imperative program in Example 3.1.
Operator nodes are labeled with the destination registers of the corresponding instructions
(see Algorithm 3.3). Output register a marks the start node. (Outgoing edges are not
labeled because the order of operands is arbitrary here.)

tation consist of (structurally) effective code here that is free from unused instructions or
non-visited graph components, respectively. This is valid if we assume that the output of
the imperative program is stored in register a at the end of execution. In Example 3.1
only two of the three possible inputs are used. At the beginning of program execution
these inputs are held in registers a and c. Used program inputs designate all register
operands here that are directly read out before overwritten. In the corresponding graph
representation used inputs denote sink nodes (terminals).

3.3.1 Variation Effects

In linear GP already small mutations of the imperative representation, especially the
exchange of a register, may have an influence on the functional program structure and the
data flow, respectively. Even if the absolute program structure is altered only slightly, the
effective program may change drastically. Many instructions preceding the mutated one
may be deactivated or reactivated.
Other micro mutations that exchange an operator or a constant can only effect the se-
mantics of a linear program. This is true at least if all operators have the same number
of operands. A tree structure does not allow mutations that redirect single edges within
a program. At least, this is not possible without loosing the underlying subtree. In pro-
gram graphs as described above these minimum structural or data flow mutations are
possible due to both their weaker constraints and due to the existence of non-contiguous
components.
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Figure 3.3: Graph interpretation of example program 3.2. Graph is effective except for
the dotted component.

Example 3.2 demonstrates the effect of a register mutation on the program from Example
3.1. In particular, the first operand register a has been exchanged by register b in the
sixth instruction from the top. After that two former effective instructions (marked with
an (i)) are deactivated, i.e., are identified as (structural) introns now by Algorithm 3.1.
Applying Algorithm 3.3 to this program results in the modified graph that is shown in
Figure 3.3 and includes a noneffective (and weakly connected) component now. In general,
by changing an operand register on imperative program level a single edge is redirected in
the corresponding graph. The exchange of a destination register, on the other hand, may
comprise more redirections of edges, instead.

b := c ∧ 1
c := ¬ a (i)
a := c ∨ b (i)
c := b ∧ b
b := c ∨ 1
a := b∧ c
c := a ∧ b
b := a ∨ c
a := b ∨ c

Example 3.2: Linear program from Example 3.1 after register mutation. Operand register
a has been exchanged by register b in the 6th line. Instructions marked with an (i) are
structural introns.
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3.3.2 Interpretation of Branches

Throughout this thesis we restrict ourselves to the simple branching concept from Section
2.1.3 that considers single conditional operations only. These have a minimum effect on
the imperative control flow but may change the data flow in genetic programs significantly.
Conditional instructions have a high expressive power because leaving out or executing a
single instruction can deactivate much of the preceding effective code or reactivate pre-
ceding noneffective instructions, respectively. Actually, an operation that follows a branch
may depend on a sequence of preceding instructions that are more-or-less independent
from the rest of a program. On the functional level a subgraph is executed in the true
case that is (partly) different from the one in the false case. How large this difference may
be depends on the total number of registers. As indicated above, the more registers are
available the more likely instructions operate on different sets of registers, i.e., the less
likely the different data flows intersect.
A single branch instruction is interpreted as an if-else node in a functional representation
with a maximum four successor nodes: one or two successors for the condition plus one
successor each for its true or false outcome. In the true case the conditioned operation is
executed and overwrites a certain register contents. In the false case the previous contents
of this register remains the current one, i.e., the corresponding calculation is connected to
the following data flow.

a := c ∧ 1
b := c ∨ 0
if (b)
a := b ∨ c

Example 3.3: Conditional branch.

All instructions in Example 3.3 constitute a branching node plus context that is printed in
Figure 3.4. We assume that register a and, thus, all instructions are effective. If condition
b = 0 is true in program line 3, the value of register a that is calculated in the 1st line
influences the following program code. Otherwise, this is the value of a in the last line.

a a

a

b

c

1 0

0 1

if

Figure 3.4: Functional equivalent to the conditional branch in Example 3.3. Edge followed
in true (false) case is labeled with 1 (0).

Conditional jumps over single instructions in linear GP are at least as powerful in terms of
the modification of data flow as branch nodes in tree-based GP. In both approaches only
one point in data flow is affected. A conditional jump over more than one instruction, by
comparison, would be interpreted as multiple branching nodes with identical conditions.
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Accordingly, several branching points (program paths) are affected simultaneously on the
functional level.
But even if such conditional segments are more powerful than conditional instructions, they
may suffer from some serious drawbacks in terms of genetic programming. First, changing
multiple branching nodes simultaneously may be more difficult to handle by evolution.
This is especially true if jumps over branches into other conditional segments are allowed
in the imperative programs. Then the control flow in linear programs becomes rather
chaotic. Second, larger jumps induce larger variation steps if the branching condition is
modified or if the branch instruction is removed. Whole branching blocks may suddenly
be executed or not executed for (almost) all possible inputs. This makes both a stepwise
improvement of solutions and a reduction of variation step size (as proposed in Chapter
5) more difficult. Third, conditional jumps over more than one instruction have a higher
potential for creating semantic introns and, thus, produce larger (structurally) effective
programs. As noted in Section 3.2.2 semantic introns may result from branching conditions
that cannot be fulfilled. Because of these arguments we may assume that the use of single
conditional instructions does not necessarily lead to more restrictive GP solutions than
larger conditional segments.

3.3.3 Evaluation Order

In general, calculation in imperative programs results from a sequence of transitions be-
tween different states of registers. In a pure functional program there are only values given,
but no assignments. Instead, assignments to temporary variables (a stack) are required
during the interpretation of programs. In imperative programming these assignments are
already included into the program representation.
If a functional genetic program is executed the evaluation order of nodes depends on the
way the graph is traversed. This way is not unique because the successor nodes of an
inner node may be visited in arbitrary order – if we exclude functions with side-effects
again. As in trees the evaluation of nodes in a (contiguous) DAG may be performed in
postfix order or prefix order. If the subgraphs of all outgoing edges have been processed,
i.e., if all operand values are calculated, the result of a node can be computed. Because
subprograms may be used more than once in a graph – in contrast to a tree – the result
of evaluation should be saved in each node in order not to evaluate subgraphs twice. The
final program result is stored at the root, the only node without incoming edges.
In an imperative genetic program the evaluation order is determined by the linear se-
quence of instructions. By using advanced programming concepts, like loops or condi-
tional branches, the execution order (control flow) of instructions may differ from the
linear structural order. The instruction order of a program may be varied in parts with-
out leading to a different program behavior. This is true for both effective and noneffective
instructions. For instance, the order of the two effective instructions marked with an (x)
may be inverted in Example 3.1, without altering the (effective) data flow or the output
of the program. In fact, a functional transformation of the program, if modified like this,
will result in exactly the same graph as shown in Figure 3.2. In general, any reordering
of instructions is valid here that preserves all dependences in a program, i.e., does not
change the execution order (relative position) of depending instructions.
While the imperative structure arranges all instructions in a certain order, such an order
is not defined in a functional representation what makes the latter more invariable. As
a result, only the transformation of a linear program into a graph is unique (except for
isomorphism), but not vice versa.
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Another reason why the imperative structure of programs is less unique lies in the fact
that internal register identifiers, that are used temporarily during calculations, may be
replaced by others without changing the program behavior. During graph interpretation
by Algorithm 3.3 those variables label the inner operator nodes only temporarily.
The structural order of operands as well as the number of operands have to be respected
in the imperative as well as in the functional representation, at least if instructions depend
on it.

3.3.4 Tree Interpretation

An effective linear program can be transformed into a functional expression by a suc-
cessive (and necessarily multiple) replacement of register variables starting with the last
effective instruction. The result of this instruction is necessarily assigned to an output
register. If there is more than one program output defined a tree expression is developed
correspondingly for each output register.
In order to transform the noneffective imperative code, too, the whole process has to be
restarted from the last non-processed instruction in program until all instructions have
been processed. Except for the respective last instruction, instructions may be processed
more than once. Because each component of the resulting functional program occurs as a
separate tree (expression) here, the whole linear genetic program is represented as a forest.
These tree programs normally contain many identical subtrees. The deeper a tree node
is located the more frequently its corresponding subtree occurs. The size of a tree grows
exponentially with the program length n: Let there be only 1 register and only operations
with 2 register operands in the imperative program. (Then all instructions are necessarily
effective.) The corresponding tree representation is perfectly balanced and contains 2n−1
operator nodes and 2n (identical) terminal nodes. The corresponding effective graph, by
comparison, has only as many nodes as there are effective instructions (n) plus 1 terminal
node.
On the one hand, this calculation example demonstrates the high expressive power of linear
genetic programs. On the other hand, graph solutions may be more compact in size than
tree solutions because subgraphs can be reused several times. The reuse of calculated
register contents may also be taken as an argument why ADFs may be less important
in linear GP than in tree-based GP [69]. The same may be true in part for the use of
iterations in linear GP (see Section 2.1.5).
Only because the constraints of a graph structure are weaker, we may not conclude auto-
matically that linear GP is more powerful than tree-based GP. In general, this does not
only depend on the potential variability or expressiveness of a representation but on the
design of appropriate genetic operators, too (see Chapter 5).

3.4 Analysis of Program Structure

In this section algorithms are described that extract information about the specific struc-
ture of a linear genetic program. All algorithms operate directly on the imperative repre-
sentation that is a representation for the special program graphs, as demonstrated in the
previous section. Three different characteristics are analysed that all refer to the effective
part of program.
First, there is the actual number of effective registers at an effective or absolute program
position. As already mentioned above this information is provided by means of Algorithm
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3.1. If set Reff (i) holds all registers that are effective at a position i then 1
n+1

n∑
i=0

Reff (i)

denotes the average number of effective registers in a program of n instructions (and n+1
intermediate positions). As noted in Section 3.3, this value corresponds approximately to
the average width of the (effective) graph equivalent.
In a tree program each node is reached via a unique path from the root, i.e., each node
has indegree 1 except for the root (indegree 0). In a graph-structured program, instead,
many program paths may lead to the same node, i.e., the indegree of a node is restricted
only by the total number of nodes n times the maximum outdegree m of a node. The
more narrow a graph develops the more program paths lead through an operator node.

b := c ∧ 1
c := ¬ a
a := c ∨ b
c := b∧ b
b := c ∨ 1
a := a ∧ c
c := a ∧ b
if (b)
b := a ∨ c
a := b∨ c

Example 3.4: Linear program from Example 3.1 with branch. All dependences of register
b are bold printed. The dependence degree is 3 for the 1st and the 5th instruction from
the top and 1 for the second last instruction.

Algorithm 3.4 calculates the degree of effectiveness in a (structurally) effective program
(see Definition 3.6). Each of the deff (i) operands guarantees that operation i is (struc-
turally) effective. In other words, an operand register guarantees the effectiveness of the
next preceding assignment to this register that is not conditional and of all conditional
assignments to this register that lie in between (see Example 3.4). On the functional level
the effectiveness degree corresponds to the number of edges that come into an instruction
node, i.e., the connection degree or, more precisely, the indegree of the node.

Definition 3.6 (degree of effectiveness/dependence) The degree of effectiveness or de-
pendence of an effective operation denotes the number of operand registers in (succeeding)
instructions that directly use its result. Let the dependence degree of a branch instruction
be identically equal to the dependence degree of its conditioned operation.

The runtime of Algorithm 3.4 is bounded by O(n2) with n being the effective program
length. In worst case no instruction depends on the other. On average, however, runtime
can be expected much shorter since usually a register will be used several times (tem-
porarily) as a destination register or operand register, especially if only a few registers
are available. In best case each instruction only depends on the instruction that directly
follows while computational costs are linear in n. This is true, for instance, if only one
program register is used. If Algorithm 3.4 is applied to determine the effectiveness degree
of a single instruction only it requires computation time O(n).

Algorithm 3.4 (degree of effectiveness/dependence)

1. Assume that all n instructions of a program are effective after Definition 3.4.
Start at the last instruction in program at position i := n and move backwards.
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Let deff (i) denote the effectiveness of an instruction position i.
deff (i) := 0 for i = 1, .., n.

2. If instruction i is a branch then deff (i) := deff (i + 1) and → 7.

3. j := i.

4. If j < n then go to instruction j := j + 1. Otherwise → 7.

5. If destination register rdest(i) of instruction i equals m operand registers rop(j) in
instruction j then deff (i) := deff (i) + m.

6. If neither instruction j nor j − 1 are branches and rdest(i) = rdest(j) then → 7.
Otherwise → 4.

7. If i > 0 then go to instruction i := i− 1 and → 2.

8. Stop. The average effectiveness degree of program instructions is defined as

Deff := 1
n

n∑
i=1

deff (i).

Finally, Algorithm 3.5 calculates the average effective dependence distance in a program
(see Definition 3.7). On the one hand, it gives information about the relative position of
depending instructions to each other within an effective imperative program. Since loops
are not regarded, an instruction necessarily follows the instructions in program whose
result it uses.

Definition 3.7 (effective dependence distance) The effective dependence distance de-
notes the relative distance (in effective instructions) of an effective instruction to the
first succeeding instruction that depends on it.

On the other hand, this parameter indicates how similar the position of an instruction in
an imperative program is to the position of its corresponding node in the functional graph.
Two depending instruction nodes are always directly connected in the functional graph.
The closer these instructions are in the imperative code, on average, the more similar are
the relative positions of instructions and nodes. It follows from Algorithm 3.3 that the last
instruction of an effective linear program forms the root of its equivalent directed graph.
Theoretically, however, single instructions may be located high up in the effective program
while their corresponding node is close to the graph root.

Algorithm 3.5 (effective dependence distance)

1. Assume that all n instructions of a program are effective after Definition 3.4.
Start at the first non-branch instruction at a position i.
Let δeff (i) denote the distance between instruction i and the next instructions de-
pending on it.
δeff (i) := 0 for i = 1, .., n.

2. j := i.

3. δeff (i) := δeff (i) + 1.

4. If j < n then go to instruction j := j + 1. Otherwise → 6.

5. If the destination register of instruction i equals an operand register in instruction
j then → 6. Otherwise → 3.
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6. Go to the next succeeding instruction i := i + k (k ≥ 1) that is not a branch.
If this does not exist then → 7. Otherwise → 2.

7. Stop. The average distance of two depending instructions is ∆eff := 1
n

n∑
i=1

δeff (i).

Algorithm 3.5 resembles Algorithm 3.4 by its basic structure and in runtime.
The effective dependence distance is not only influenced by the instruction order but
also by the number and the usage of registers. The minimum distance of two depending
instructions is one which is always true if only one register is used. In this case, the
functional graph equivalent is reduced to a linear list of operator nodes, each connected
by one or two edges. On the one hand, the more registers are provided the more registers
may be effective and the wider the functional graph may develop (see above). Both wider
graphs as well as longer graphs necessarily require a longer imperative representation. But
only for wider graphs the average dependence distance increases because it is less likely
that two depending instructions will occur one after another in the imperative program.
On the other hand, the more complex the register dependences are, i.e., the higher their
dependence degree is, the less variable the order of effective instruction becomes. This
may decrease the effective dependence distance. At least if the number of registers is
small, we may assume that the position of instructions in the imperative code corresponds
approximately to their position in the functional program.

3.5 Graph Evolution

Since the imperative representation may be interpreted as a special graph representation,
too, linear GP is reducible to the evolution of program graphs. A question that may arise
in this context is whether a direct evolution of a (less constrained) DAG representation
may be more advantageous. In the imperative representation the (register) dependence of
two instructions is influenced by both their position in the program and the dependences
of the instructions that lie in between.
We have seen above that the exchange of a single operand register may reactivate or
deactivate other preceding instructions. Former effective (active) instructions become
noneffective (inactive) since no other dependence to an effective instruction exists than
the one that has been canceled. All such deactivated instructions form a single contiguous
graph component of the DAG that is disconnected from the effective component because
the only existing connection has been removed.
If variations would happen directly on program graphs this offers a higher degree of freedom
in connecting nodes. If single edges may be redirected without restrictions on a functional
level, the corresponding changes on the imperative code level may comprise much more
complex transformations than exchanging a single register identifier only. This is not only
true if cycles are created.
As already noted, the imperative representation defines an (evaluation) order on the effec-
tive and the noneffective instructions. This order does not exist in the graph representation
where the evaluation order is less constrained and only determined by the connections of
nodes.
On the one hand, the imperative order determines and restricts the possible functional
connections. A connection to (the destination register of) a preceding instruction is not
possible, at least by exchanging just a single register operand. Because registers are used
multiple times temporarily in a program, only the next preceding assignment to a certain
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register may be used in this way. The more registers are provided, however, so much the
less this means a relevant restriction of variability. In principle, all transformations are
possible on the imperative representation, too, even if larger and more variation steps may
be required.
On the other hand, it has to be noted that a higher variability of the representation does
not automatically guarantee to find a better solution. Too many degrees of freedom may
become disadvantageous. By coevolving an order of instruction nodes in linear GP not
only the number of possible connections is restricted but promising connections may be
better preserved, too. At least, the probability is increased that functionally disconnected
nodes will be reconnected again in the evolutionary process. Also note that a limitation of
connections supports the emergence of (structurally) noneffective code, i.e., non-contiguous
components.
The most important property, however, is that a linear order of operations implicitly avoids
cycles of register dependences by allowing instructions to use only the result of previous
instructions in program.
If graph structures are evolved without avoiding the formation of cycles, they may not
terminate by themselves but execution has to be stopped after a maximum number of
visited nodes. During genetic variations it has to be paid attention that all operator nodes
receive the correct number of inputs. Depending on whether edges point in data flow
direction or usage direction, either the correct number of incoming or outgoing edges has
to be checked.
If this is not done and nodes are connected freely the evaluation order of nodes becomes
indefinite and a stack (or another state memory) is needed to determine both the exchange
of data (data flow) between nodes and the decision which path is visited next (control flow)
[96, 18]. That is, the evaluation order has to be explicitly coevolved with these graphs.
Side-effects to a state memory may also be used to guarantee that a node is visited only
a finite number of times in such control flow graphs.
If an evolved graph structure is supposed to be acyclic without further restricting the
freedom of node connections, this has to be verified explicitly after each variation. The
detection of all cycles in a graph is, however, computationally expensive. In contrast to
that such constraints do not have to be observed during variation in linear GP but result
implicitly from the linear sequence of instructions. For the same reason, recombination is
much less complicated between linear sequences of instructions than between graphs. It
is important to realize that the freedom of variation in DAG evolution is not much higher
than in linear GP if cycles are supposed to be avoided. Actually, the freedom of node
connections has to be restricted similarly by defining an order on the graph nodes if cycles
shall be avoided and, thus, an expensive cycle detection. For instance, Miller [60] evolves
acyclic graph programs whose nodes are arranged on a two-dimensional grid. A node in
column i is allowed to connect to a node of a larger column index i < j < n only that is
limited by a maximum distance n.
Finally, a direct evolution of DAGs allows a single contiguous component to be developed
exclusively. In Chapter 5 we will introduce variation operators that achieve this for the
imperative representation by adding or removing effective instructions only.

3.6 Conclusion

The properties of the special LGP representation as it is applied in this thesis may be
summarized as follows:
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¤ On the imperative level a linear genetic program represents a sequence of instructions
that comprise single operations or conditional operations with a minimum number
of operands. This implies that the control flow is always forward-directed.

¤ On the functional level a linear genetic program describes a directed acyclic graph
(DAG) with a minimum outdegree per operator node. The indegree of nodes is
unrestricted in principle. From this it follows that the data flow in linear genetic
programs is graph-based.

¤ Linear GP allows structural noneffective code to coexist in programs that results
from manipulating unused registers. In the corresponding graph structure this code
may be composed of several disconnected or only weakly connected subgraphs. The
effective code forms a connected graph component, instead, if the genetic programs
return one output only.

¤ All operators used in linear genetic programs are mathematical functions without
side-effects. That is, a genetic program itself always represents a function.

A linear program defined like this may still be transformed into a tree expresssion. Since
each tree is a special DAG, too, this is achieved by copying all subgraphs successively
whose start node has more than one incoming edge (starting with the root).
We showed different algorithms in this chapter that extract features from linear genetic
programs about their functional or imperative structure. This includes the detection of
structural introns which is possible in runtime O(n) with n is the number of instructions.
Moreover, an algorithm was presented that transforms a linear program into a DAG. Other
more specific features comprise the:

¤ Number of effective registers

¤ Degree of dependence (effectiveness)

¤ Effective dependence distance

The number of effective registers at a certain program position may serve as an approxi-
mation for the width of the effective graph component. The width of a graph component
is limited by the maximum number of available registers. The effectiveness degree of
an instruction corresponds to the indegree of an effective graph node. The distance of
an effective instruction to the first succeeding instruction (in the effective program) that
depends on it, instead, has no equivalent on the functional level.
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The ability of a learning model to generalize, i.e., to predict the outcome of unknown
input situations, is an important criterion when comparing the performance of different
machine learning methods. This is all the more true for real-world applications in data
mining. This Chapter compares the generalization performance of LGP on several medical
classification problems with results obtained by neural networks using RPROP learning.
Furthermore, two methods are applied for the acceleration of LGP: (1) The absolute
runtime is reduced by using Algorithm 3.1 for the elimination of noneffective code. (2)
The effective training time is reduced on a generational basis by means of a deme approach
and an elitist migration strategy. Both the time that is necessary for learning a prediction
model and the time for its execution become especially important when operating with
large datasets as they occur in medical applications.

4.1 Medical Data Mining

Genetic programming and artificial neural networks (NNs) can be seen as alternative
techniques for the same tasks, like, e.g., classification and approximation problems. In the
analysis of medical data neural networks have become an alternative to classical statistical
methods in recent years. Ripley and Ripley [77] have reviewed several NN techniques in
medicine including methods for diagnosis and prognosis tasks, especially survival analysis.
Most applications of NNs in medicine refer to classification tasks. A comprehensive list of
medical applications of neural networks can be found in [14].
In contrast to NNs, GP has not been used very extensively for medical applications to
date. Gray et al. [33] report from an early application of GP in cancer diagnosis where
the results had been found to be better than with a neural network. In [63] a grammar-
based GP variant is used for knowledge extraction from medical databases. Rules for the
diagnosis have been derived from the program tree that uncover relationships among data
attributes. The outcomes of different types of classifiers, including neural networks and
genetic programs, are combined in [83]. This strategy results in an improved prediction
of thyroid normal and thyroid carcinoma classes.
In this chapter genetic programming is applied to medical data widely tested in the ma-
chine learning community. More specifically, our linear variant of GP is tested on six
diagnosis problems that have been taken from the Proben1 benchmark set of real-world
problems [74]. The main objective here is to show that for these problems GP is able
to achieve classification rates and generalization performance quite similar to NNs. The
application further demonstrates the ability of genetic programming in data mining, where
general descriptions of information are to be found in large real-world databases.

4.2 Benchmark Datasets

Table 4.1 gives a brief description of six diagnosis problems and the diseases that are
to be predicted. For a more detailed description the reader may consult [74]. Medical
diagnosis mostly describes classification tasks which are much more frequent in medicine
than approximation problems.
The datasets have been taken unchanged from an existing collection of real-world bench-
mark problems, Proben1 [74], that has been established originally for neural networks.
The results obtained with one of the fastest learning algorithms for feed-forward neural
networks (RPROP) accompany the Proben1 benchmark set to serve as a direct compar-
ison with other methods. Comparability and reproducibility of the results are facilitated
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Problem Diagnosis
cancer benign or malignant breast tumor
diabetes diabetes positive or negative
gene intron-exon, exon-intron or no boundary in DNA sequence
heart diameter of a heart vessel is reduced by more than 50% or not
horse horse with a colic will die, survive or must be killed
thyroid thyroid hyperfunction, hypofunction or normal function

Table 4.1: Medical diagnosis tasks of Proben1 benchmark datasets.

by careful documentation of the experiments. Following the benchmarking idea the results
for neural networks have been adopted completely from [74]. But we verified Prechelt’s
results partly by own simulations. Our main objective was to realize a fair comparison
between GP and NNs in medical classification and diagnosis. We will show that for all
problems discussed the performance of GP in generalization comes very close to or is even
better than the results documented for NNs.
All Proben1 datasets originate from the UCI Machine Learning Repository [15]. They
are organized as a sequence of independent sample vectors divided into input and output
values. For a better processing by neural networks the representation of the original
(raw) datasets has been preprocessed in [74]. Values have been normalized, recoded, and
completed. All inputs are restricted to the continuous range [0,1] except for the gene
dataset which holds −1 or +1 only. For the outputs a binary 1-of-m encoding is used
where each bit represents one of the m possible output classes of the problem definition.
Only the correct output class carries a “1” while all others carry “0”. It is characteristic
for medical data that they suffer from unknown attributes. In Proben1 most of the UCI
datasets with missing inputs have been completed by 0 (30% in case of the horse dataset).
Table 4.2 gives an overview of the specific complexity of each problem expressed in the
number of attributes, divided into continuous and discrete inputs, plus output classes and
number of samples. Note that some attributes have been encoded into more than one
input value.

Problem #Attributes #Inputs #Classes #Samples
continuous discrete

cancer 9 9 0 2 699
diabetes 8 8 0 2 690
gene 60 0 120 3 3175
heart 13 6 29 2 303
horse 20 14 44 3 364
thyroid 21 6 15 3 7200

Table 4.2: Problem complexity of Proben1 medical datasets.

4.3 Experimental Setup

4.3.1 Genetic Programming

We employ the LGP approach that has been outlined in Chapter 2. For each dataset an
experiment with 30 runs has been performed with LGP. Runs differ only in their choice
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Parameter Setting
Population size 5000
Number of demes 10
Migration rate (of best) 5%
Classification error weight in fitness 1
Maximum number of generations 250
Maximum program length 256
Maximum initial length 25
Crossover probability 90%
Mutation probability 90%
Instruction set {+,−,×, /, sin, ex, if >, if ≤}
Register set {r0, .., rk−1} (k inputs)
Constant set {0, .., 255}

Table 4.3: Parameter settings for LGP.

of a random seed. Table 4.3 lists the parameter settings used for all problems here.
For benchmarking, the partitioning of the datasets has been adopted from Proben1. The
training set always includes the first 50% of all samples, the next 25% is defined as the
validation set and the last 25% of each dataset is the test set. In Proben1 three different
compositions of each dataset were prepared, each with a different order of samples. This
increases the confidence that results are independent of the particular distribution into
training, validation and test set.
The fitness of an individual program is always computed using the complete training set.
According to the LGP algorithm described in Section 2.3 generalization performance of
the best-so-far individual is checked during training by calculating its error using the
validation set. The test set is used only for the individual with minimum validation error
after training.
The applied fitness function F has two parts, a continuous component and a discrete
component (see Equation 4.1). The continuous mean square error (MSE) is calculated
by the average squared difference between the predicted output (vector) gp(~ik) of an
individual program gp and the desired output (vector) ~ok for all n input-output samples
(~ik, ~ok) and m = |~ok| outputs. The discrete mean classification error (MCE) is computed
as the average number of incorrectly classified examples.

F(gp) = MSE + w ·MCE

=
1

n ·m
n∑

k=1

(gp(~ik)− ~ok)2 +
w

n
· CE (4.1)

The MCE is weighted by a parameter w. In this way, the classification performance
of a program determines selection more directly while the MSE component still allows
continuous fitness improvements. For fair comparison, the winner-takes-all classification
method has been adopted from [74]. Each output class corresponds to exactly one program
output. The class with the highest output value designates the response according to the
1-of-m output representation introduced in Section 4.2.
The generation in which the individual with the minimum validation error appeared defines
the effective training time. The classification error of this individual on the test set
characterizes the generalization performance that is of main interest here.
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4.3.2 Population Structure

In evolutionary algorithms the population of individual solutions may be subdivided into
multiple subpopulations. Migration of individuals among the subpopulations causes evo-
lution to occur in the population as a whole. Wright first described this mechanism as
the island model in biology [101] and reasoned that in semi-isolated subpopulations, called
demes, evolution progresses faster than in a single population of equal size. This inherent
acceleration of evolution by demes could be confirmed for EAs [95] and for GP in particular
[94, 4]. One reason for this acceleration may be that genetic diversity is preserved better
in multiple demes with a restricted migration of individuals. Diversity in turn influences
the probability that the evolutionary search hits a local minimum. A local minimum in
one deme might be overcome by other demes with a better search direction. A nearly
linear acceleration can be achieved in evolutionary algorithms if demes are run in parallel
on multi-processor architectures [4].

Migration path

Deme

Figure 4.1: Stepping stone model of directed migration on a ring of demes.

A special form of the island model, the stepping stone model [47], assumes that migration of
individuals is only possible between certain adjacent demes which are organized as graphs
with fixed connecting links. Individuals can reach remote populations only after passing
through these neighbors. In this way, the possibility that there will be an exchange of
individuals between two demes depends on their distance in the graph topology. Common
topologies are ring or matrix structures.
In our experiments, the population is subdivided into 10 demes each holding 500 indi-
viduals. This partitioning has been found to be sufficient for investigating the effect of
multiple demes. The demes are connected by a directed ring of migration links by which
every deme has exactly one successor (see Figure 4.1). After each generation a certain
percentage of best individuals, which is determined by the migration rate, emigrates from
each deme into the successor deme thereby replacing the worst individuals. Primarily,
demes are used here to allow locally best solutions a higher reproduction by migration.
By copying the best solutions of a deme into several others learning may accelerate be-
cause these individuals might further develop simultaneously in different subpopulations.
In general, a more frequent reproduction of better individuals in the population increases
the probability that these solutions are selected and improved. However, it may cause a
premature loss of diversity, too. This negative influence is partly counteracted by the use
of demes. Additionally, the migration of best is not free between demes, but restricted
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to certain migration paths only that are organized as a directed ring. Together with a
modest migration rate this has been found to be a good compromise between faster fitness
progress and preservation of diversity.

4.3.3 Neural Networks

Experimental results in [74] have been achieved using standard multi-layer perceptrons
(MLPs) with fully connected layers. Different numbers of hidden units and hidden layers
(one or two) have been tried before arriving at the best network architecture for each
problem. The applied training method was RPROP [76], a fast and robust backpropaga-
tion variant. For further information on the RPROP parameter settings and the special
network architectures the reader may consult [74].
The generalization performance on the test set is computed for the state of the network
with minimum validation error. The effective training time of the neural network is mea-
sured in the number of epochs until this state is reached. One epoch is over if all training
samples have been presented to the network.

4.4 Results and Comparison

4.4.1 Generalization Performance

Table 4.4 shows the classification error rates obtained with genetic programming and
neural networks, respectively, for the medical datasets discussed in Section 4.2. Best
and average CE of all GP runs are documented on the validation set and test set for
each medical dataset, together with the standard deviation. A comparison with the test
classification error of neural networks (reprinted from [74]) is the most interesting here. For
that purpose the difference ∆ between the average test errors of NN and GP is printed
in percent of the largest value. A positive ∆ indicates improved GP results over NN.
A negative ∆ indicates better NN results, respectively. Unfortunately, the classification
results on the validation set and the results of best runs are not specified in [74] for NNs.
Our results demonstrate that LGP is able to reach a generalization performance similar to
multi-layer perceptrons using the RPROP learning rule. The rather small number of runs
performed for each dataset may, however, give an order of magnitude comparison only.
In addition, the results for GP are not expected to rank among the best, since parameter
settings have not been adjusted to each benchmark problem. This has deliberately not
been carried out in order to show that even a common choice of the GP parameters can
produce reasonable results. In contrast, at least the NN architecture has been adapted
specifically for each dataset in [74]. Finally, the Proben1 datasets are prepared for being
advantageous to NNs but not necessarily to GP. This is especially true for the coding
of input attributes and outputs whose dimensions are larger than in the original UCI
datasets (see Section 4.2). For instance, even if multiple program outputs required for a
winner-takes-all classification are easy to handle in linear GP by using multiple output
registers, they do not necessarily produce better results.
Notably, for the gene problem the test classification error (average and standard deviation)
has been found to be much better with GP. This is another indication that GP is able to
handle a very high number of inputs efficiently (see Table 4.2). On the other hand, cancer
turned out to be considerably more difficult for GP than for NN judged by the percentage
difference in average test error.
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GP NN
Problem Validation CE (%) Test CE (%) Test CE (%) ∆ (%)

best mean std.dev. best mean std.dev. mean std.dev.
cancer1 1.7 2.5 0.3 0.6 2.2 0.6 1.4 0.5 –36.7
cancer2 0.6 1.4 0.4 4.0 5.7 0.7 4.8 0.9 –16.6
cancer3 1.7 2.6 0.4 3.5 4.9 0.6 3.7 0.5 –24.9
diabetes1 20.3 22.2 1.1 21.4 24.0 1.4 24.1 1.9 +0.6
diabetes2 21.4 23.2 1.3 25.0 27.9 1.5 26.4 2.3 –5.1
diabetes3 25.5 26.7 0.7 19.3 23.1 1.3 22.6 2.2 –2.2
gene1 7.8 11.2 2.3 9.2 13.0 2.2 16.7 3.8 +22.2
gene2 9.1 12.9 2.3 8.5 12.0 2.2 18.4 6.9 +35.1
gene3 7.2 10.8 2.1 10.1 13.8 2.1 21.8 7.5 +36.6
heart1 7.9 10.5 2.4 18.7 21.1 2.0 20.8 1.5 –1.4
heart2 14.5 18.6 2.4 1.3 7.3 3.3 5.1 1.6 –29.8
heart3 15.8 18.8 1.5 10.7 14.0 2.0 15.4 3.2 +9.2
horse1 28.6 32.4 2.2 23.1 30.6 2.2 29.2 2.6 –4.5
horse2 29.7 34.3 2.7 31.9 36.1 2.0 35.9 2.5 –0.7
horse3 27.5 32.7 1.9 31.9 35.4 1.8 34.2 2.3 –3.6
thyroid1 0.8 1.3 0.3 1.3 1.9 0.4 2.4 0.4 +19.8
thyroid2 1.1 1.6 0.3 1.4 2.3 0.4 1.9 0.2 –17.3
thyroid3 0.9 1.5 0.2 0.9 1.9 0.4 2.3 0.3 +17.2

Table 4.4: Classification error rates of GP and NN for Proben1 medical datasets. NN
data taken from [74]. Difference ∆ in percent. Positive ∆s indicates improved GP results
over NN.

Looking closer, classification results for the three different datasets of each problem show
that the difficulty of a problem may change significantly with the distribution of data into
training, validation and test set. Especially the test error differs with the three different
distributions. For instance, the test error is much smaller for dataset heart2 than for
heart1. For some datasets the training, validation and test sets cover the problem data
space differently, i.e., are less strongly correlated. As a result a strong difference between
validation and test error might occur, as in case of cancer and heart.
Not for all problems, including diabetes, heart, and horse, the best classification results
have been produced with conditional branches. This might be due to the fact that if
branches are not necessary for a good solution they promote rather specialized solutions.
Another reason may be the rather poor correlation of training data and generalization
data here [74]. Other problems, especially gene, have worked better with branches. In
general, branches have been found to have a much smaller influence on the generalization
performance than on the training performance (not documented). How similar the gain
in performance is, strongly depends on the correlation of training data and generalization
data.

4.4.2 Effective Training Time

The effective training time specifies the number of effective generations or epochs, respec-
tively, until the minimum validation error occurred. We can deduce from Tables 4.2 and
4.5 that more complex problems cause more difficulty for GP and NN and, thus, a longer
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effective training time. A comparison between generations and epochs is, admittedly,
difficult, but it is interesting to observe that effective training time for GP shows lower
variation than for NN.

GP NN
Problem effective Generations effective Epochs

mean std.dev. mean std.dev.
cancer1 26 24 95 115
cancer2 26 25 44 28
cancer3 17 11 41 17
diabetes1 23 14 117 83
diabetes2 28 25 70 26
diabetes3 21 15 164 85
gene1 77 21 101 53
gene2 90 20 250 255
gene3 86 14 199 163
heart1 17 14 30 9
heart2 20 14 18 9
heart3 21 18 11 5
horse1 18 16 13 3
horse2 19 16 18 6
horse3 15 14 14 5
thyroid1 55 18 341 280
thyroid2 64 15 388 246
thyroid3 51 14 298 223

Table 4.5: Effective training time of GP and NN (rounded).

4.4.3 Acceleration of Absolute Processing Time

Table 4.6 shows the percentage of noneffective instructions (and effective instructions)
averaged over all programs of a run and over multiple runs (30 here) as identified by
Algorithm 3.1 for the medical problems under consideration. The potential acceleration
of runtime, that is obtained when removing these introns before each program is evaluated,
directly results from the intron rates (using Equation 3.1). In general, an intron rate of
80% has been observed which corresponds to an average decrease in runtime by the intron
elimination of about a factor 5. This speedup is of practical significance especially when
operating with large datasets as they occur in medicine. A further benefit of the reduced
execution time is that the effective linear genetic programs may operate more efficiently
in time-critical applications. The reader may recall that the elimination of introns cannot
have any influence on the fitness or classification performance (see Section 3.2.1).
From Table 4.6 it may also be concluded that the average percentages of effective program
size strongly vary with the problem. The standard deviation of program size has proven
to be amazingly small between single runs of the same problem, by comparison. The
differences between the three datasets tested for each problem are found even smaller and
are, therefore, not specified here.
Different instruction types may cause different computational costs, of course. Compared
to most operations, branch instructions are rather cheap in execution time, for instance.
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Problem Introns (%) Effective Code (%) Speedup
mean std.dev. mean std.dev.

cancer 65.5 2.8 34.6 2.8 2.9
diabetes 74.5 0.6 25.5 0.6 3.9
gene 90.5 1.1 9.5 1.1 10.5
heart 88.2 0.9 11.8 0.9 8.5
horse 90.8 0.4 9.2 0.4 10.9
thyroid 72.2 1.8 27.8 1.8 3.6

Table 4.6: Percentage of introns and effective code per run in percent of the absolute
program length. Factors show speedup if only the effective code is executed. Notable
differences exist between problems.

Additional computation is saved with branches because not all (conditional) operations of
a program are executed for each training sample. In general, the calculation of the relative
speedup factors relies on the assumption that the different components of the instruction
set are approximately uniformly distributed in the population – over the effective code as
well as over the noneffective code.

4.4.4 Acceleration of Effective Training Time

Another important result of our GP experiments is that effective training time can be
reduced considerably by using semi-isolated subpopulations together with an elitist mi-
gration strategy (as described in Section 4.3.2). Moreover, this is possible without leading
to a notable decrease in generalization performance. A comparable series of runs without
demes but with the same population size has been performed for the first dataset of each
problem. The average classification rates documented in Table 4.7 differ only slightly from
the results obtained with a demetic population (see Table 4.4).

GP without Demes
Problem Validation CE (%) Test CE (%)

best mean std.dev. best mean std.dev.
cancer1 1.1 2.1 0.5 1.2 2.9 1.2
diabetes1 19.3 21.4 0.7 20.3 24.4 1.7
gene1 7.7 11.0 3.0 9.0 12.6 3.1
heart1 7.9 11.0 3.0 18.7 22.3 2.9
horse1 26.4 32.4 1.9 22.0 30.7 3.5
thyroid1 0.7 1.3 0.4 1.2 2.0 0.5

Table 4.7: Classification error rates of GP without demes. Average results similar to
results with demes (see Table 4.4).

Table 4.8 compares the effective training time using a panmictic (non-demetic) population
with the respective results from Table 4.5 after the same maximum number of 250 gener-
ations. On average, the number of effective generations is reduced by a factor of about 3.
Thus, a significantly faster convergence of runs is achieved by using a demetic approach
that allows only better individuals to migrate.
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GP with Demes GP without Demes
Problem effective Generations effective Generations Speedup

mean std.dev. mean std.dev.
cancer1 26 24 62 67 2.4
diabetes1 23 14 62 53 2.7
gene1 77 21 207 42 2.7
heart1 17 14 68 75 4.0
horse1 18 16 59 63 3.3
thyroid1 55 18 200 36 3.6

Table 4.8: Effective training time of GP with and without demes. Significant acceleration
with demes and an elitist migration strategy.

4.4.5 Further Comparison

Note that reducing the (relative) training time on a generational basis affects the absolute
training time, too, because runs may be stopped earlier. Comparing the absolute runtime
of genetic programming and feed-forward neural networks, the fast NN learning algorithm
has been found to be superior. One should keep in mind, however, that large populations
have been used with the GP runs to guarantee a sufficient diversity and a sufficient number
of (not too small) subpopulations. Because we concentrate on a comparison in classification
performance the configuration of our LGP system has not been optimized for runtime.
Nevertheless, the proposed speedup techniques for (L)GP help to reduce the difference in
runtime to NN, especially if smaller populations of genetic programs are used.
In contrast to neural networks, GP is not only capable of predicting outcomes but may also
provide insight into and a better understanding of the medical diagnosis by an analysis of
the learned models (genetic programs) [63]. Knowledge extraction from genetic programs is
more feasible with programs that are compact in size and free from redundant information.
Thus, the elimination of noneffective code in our LGP system may serve another purpose
in generating more intelligible results than do NNs.

4.5 Discussion and Future Research

All tested datasets originate from a set of real-world benchmark problems established and
preprocessed especially for the benefit of neural networks. For genetic programming there
is still a lack of a standard set of benchmark problems. Such a set would give researchers
the opportunity for a better comparability of their published methods and results. An
appropriate benchmark set should be composed of real-world datasets taken from real
problem domains as well as artificial problems where the characteristics of the data are
exactly known.
But a set of benchmark problems is not enough to guarantee comparability and repro-
ducibility of results. A single parameter that is not published or an ambiguous description
can make an experiment unreproducible. In order to make a direct comparison of pub-
lished results easier a set of benchmarking conventions has to be defined, along with the
benchmark problems. These conventions should describe standard ways of setting up and
documenting an experiment, as well as measuring and documenting the results. A step in
this direction has been taken by Prechelt for neural networks [74].
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Besides, the best generalization on the validation set was reached long before the final
generation. Wasted training time can be saved if runs are stopped earlier. Appropriate
stopping rules that monitor the progress in real-world fitness and generalization over a
period of generations need to be defined.

4.6 Conclusion

We reported on LGP applied to a number of medical classification tasks. It was demon-
strated that, on average, genetic programming performs competitive to RPROP neural
networks with respect to the generalization performance.
The runtime performance of genetic programming becomes especially important for time-
critical applications or when operating with large datasets from real-world domains like
medicine. Two techniques were presented that reduced the computational costs signifi-
cantly.
First, the elimination of noneffective code from linear genetic programs resulted in an
average decrease in runtime of about factor 5 here. Second, the number of effective gener-
ations of the evolutionary algorithm was reduced without decreasing the performance by
means of a demetic population in combination with an elitist migration strategy. In doing
so, the number of effective generations became remarkably small.
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Traditionally, crossover is applied in genetic programming for varying the contents and
the size of programs. In this chapter we systematically introduce alternative variation
operators for the linear program representation – including variation schemes that work
exclusively with mutations – and compare their influence on primarily the prediction
performance and the complexity of solutions.
Besides the two basic variants, recombination-based LGP and mutation-based LGP, we
distinguish two different levels of variation. Macro variations operate on instruction level
(or macro level). That is, an instruction represents the smallest unit. Micro variations
happen on the level of instruction components (micro level) that are registers, operators,
and constants. Only macro variations influence program growth. All recombination and
mutation operators compared in this chapter are macro operators. Those are further
subdivided into segment variations and instruction variations depending on whether an
arbitrary sequence of instructions or only one instruction is allowed to be changed.
We will see that the performance of a variation operator strongly depends on its maximum
(and average) step size on the symbolic program structure, its influence on code growth,
and the proportions of effective variations and neutral variations. Among other things,
macro mutations with a minimum step size will turn out to be most efficient if these guar-
antee a change of the (structurally) effective code. We also investigate how linear genetic
programs may be manipulated more efficiently by respecting their functional structure.

5.1 Variation Effects

Basically, two different effects of a variation operator can be distinguished in evolutionary
computation. These are its effect on the genotype and its effect on the phenotype. In GP
the genotype is represented by the program structure while the phenotype is determined
by the semantics (execution) of a program.

5.1.1 Semantic Variation Effects

The phenotype quality is measured by a fitness function F : P → IR+
0 . Fitness distri-

butions have been proposed as a means for understanding (semantic) variation effects in
evolutionary computation. In [34] the fitness distribution (FD) of a variation operator v
is described as the probability distribution of the offspring fitness Fo depending on the
fitness of parent(s) F{p}:

FDv(F{p}) := Prob(Fo|F{p}). (5.1)

A fitness distribution is quite complex and, in general, rather difficult to compute. In
practice it is usually sufficient and even more interesting to focus on important character-
istic features of the fitness distribution only [65, 42] which serve as an approximation of
the actual distribution. If we assume that a better fitness always means a smaller fitness
value (error) F the following definitions are valid.

Definition 5.1 (constructive/destructive/neutral variation) A variation is defined as
constructive iff the difference between the fitness Fp of a parent individual and the fitness
Fo of its offspring is positive, i.e., Fp−Fo > 0. In case of a negative difference we refer to
a destructive variation, i.e., Fp − Fo < 0. Finally, a genetic operation is neutral if it does
not change the fitness, i.e., Fp = Fo.
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In the LGP algorithm from Section 2.3 always two offsprings are created from two parents
at each iteration for comparing reasons. Either recombination is applied once between both
parents and produces two offsprings or mutation is applied on each parent separately. In
both cases we compare the parent and the offspring with the same index, i.e., p1 with o1

and p2 with o2. That is, the state of an individual at a certain position in the population
is compared before and after it has been varied.
In the current study, we focus on the proportion of constructive, destructive, and neutral
operations per generation. Such measurements regard the direction of semantic variation
effects, but disregards other features of a fitness distribution, like the amount of a fitness
change (see Section 5.3 below).

5.1.2 Structural Variation Effects

On the program structure we measure the proportion of so called effective and noneffective
variations.

Definition 5.2 (effective/noneffective variation) A genetic operation applied to a linear
genetic program is called effective iff it affects the structural effective code after Definition
3.4. Otherwise, a variation is called noneffective.

Note that even if effective code is altered the program predictions for a considered set of
fitness cases might be the same. An effective variation is merely meant to bring about
a structural change of the effective program. There is no change of program semantics
(fitness) guaranteed which is mostly due to the existence of semantic introns. It follows
from the above definitions that all (structurally) noneffective variations are (semantically)
neutral but not the other way around.
Measuring the amount of structural change between parent and offspring requires the
definition of a structural distance metric between genetic programs and will be discussed
in Section 5.3.

5.2 Effective Evaluation

In principle, there are two different ways to identify effective variations. Either the effec-
tiveness is implicitly guaranteed by the genetic operator itself (see Section 5.10.4) or the
effective code of an individual is compared explicitly before and after the variation (see
Section 5.7.4). The latter becomes especially necessary with recombination.
By using Algorithm 3.1 the effective code of parent and offspring can be identified and
extracted in linear computation time O(n) with n denotes the maximum program length.
In doing so, the two effective programs may be compared simply by O(n) comparisons of
instructions which is reduced to integer comparisons in our implementation (see Section
2.1.1). A variation is identified as effective after the comparison failed for one instruction
position. Otherwise, it is noneffective by definition.
In order to avoid another application of Algorithm 3.1 to the same individual before the
fitness evaluation the effective code of each program may be saved separately. A less
memory-intensive alternative that is applied here marks the effective instructions within
the program representation (see Section 3.2.1). An update flag for each program decides
whether the effective code has already been calculated or not.
If a variation has been identified as noneffective the effective code is unchanged. In this
case, the fitness evaluation of the offspring can be skipped since its behavior cannot be
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different from the parent. This produces a difference between comparing variation opera-
tors on the basis of generations (number of varied individuals) or evaluations (number of
effective variations) since it is no longer guaranteed that each new (varied) individual will
be evaluated, too. Evaluating individuals after effective variations only will be referred to
as effective evaluation in the following.
Besides the removal of noneffective code before the fitness evaluation, as presented in
Section 3.2.1, this is another technique to accelerate runtime of linear GP. Depending on
the rate of noneffective operations that is induced by a variation operator a high amount
of fitness evaluations can be saved. The overall acceleration in runtime is expressed by
the factor

αacc =
nvar

neffvar
(5.2)

where n(eff)var is the number of (effective) variations.
In general, the fitness evaluation is by far the most time-consuming step in a GP algorithm.
Computational costs for variation may be neglected if the time for calculating a new search
point is linear in program size. Both techniques, the detection of effective variations as
well as the detection of effective code, do not produce more than linear variation costs
when using Algorithm 3.1.

5.3 Variation Step Size

The variation step size denotes the distance between a parent individual gpp and its
offspring gpo that results from the application of one or more variation operators. The
phenotype distance or semantic step size is calculated by a semantic distance metric dP :
P×P → IR+

0 . The absolute difference in fitness dP(gpp, gpo) := |F(gpp)−F(gpo)| identifies
a phenotype with its fitness value which is a simplification already because the fitness
function F is not bijective in general (see Section 1.2). However, usually much more
genetic operations are destructive than constructive in GP (see below) while negative
changes may become larger, on average, than positive changes. As a result, the average
fitness distance E(|Fp − Fo|) is dominated by large negative outliers depending on the
range of possible fitness values. To avoid this, positive and negative fitness changes may
be computed separately.
Computing the genotype distance or structural step size dG(gpp, gpo) requires an appro-
priate distance metric dG : G × G → IN+

0 to be defined on the program structure. In this
thesis we measure all structural step sizes absolutely in instructions, not relative to the
program length. Relative step sizes are more difficult to control and to minimize during
a whole run since programs grow. Moreover, the corresponding semantic step size is only
partly proportional to the length of a linear genetic program.
Definition 5.3 is more precise than simply calculating the distance in program length if
code is both inserted and deleted in one step, e.g., during crossover. It is also more precise
than using the (average) segment length only since an exchange of code may be more
destructive than a deletion or an insertion. This definition only disregards that the actual
step size may be smaller due to an exchange of similar code segments at similar positions.

Definition 5.3 (absolute structural step size) For macro operators in linear GP let the
absolute step size be defined as the number of instructions that are added to a linear
program plus the number of instructions that are removed during one variation step.
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Accordingly, the effective step size may be defined intuitively as the number of inserted
and/or deleted effective instructions. When using unrestricted segment variations the
effective step size may be sufficiently approximated in this way. However, such a definition
is imprecise since additional instructions may become effective or noneffective above the
variation point. Especially, if the absolute variation step size is minimum (instruction
variation) these side-effects within the linear program structure become more relevant. In
this case the following definition is more precise.

Definition 5.4 (effective structural step size) The effective step size counts instructions
that are added to or removed from the effective program and depending instructions that
change their effectiveness status only, i.e., that are deactivated or reactivated.

Micro mutations affect, by definition, a single instruction component only. That is, their
absolute step size is always constant and minimum. Nonetheless, their effective step size
may be much larger. This is the case, for instance, if an effective instruction register is
replaced on which the effectiveness of many other instructions depends.
So two different structural step sizes may be distinguished in linear GP. On the functional
level the absolute step size measures the total number of deleted or inserted graph nodes.
The effective step size, instead, counts all instruction nodes that are connected to or
disconnected from the effective graph (see Section 3.3). Thus, the effective step size
observes the functional structure of a linear program better. In general, the distance
between the effective code of parent and offspring is more precise because it is more
closely related to the fitness distance. A smaller effective step size may be assumed to
lead to a smaller change in fitness. In Chapter 8 we present distance metrics that calculate
the effective distance between linear genetic programs. This information is used to control
the variation step size more explicitly on the effective code. In this chapter the (absolute)
variation step size is controlled on the full program structure.
The proportion of noneffective code within a linear genetic program together with the ab-
solute program size influences the step size that is induced by segment variations, including
recombination and mutation, on the effective program. The higher the intron rate is the
less effective instructions are deleted and/or inserted, on average. Such an implicit control
mechanism of the effective step size assumes that effective and noneffective instructions
are approximately uniformly distributed in linear genetic programs.
Even if introns do not directly contribute to the fitness of a program, they increase the
average fitness and survivability of their offsprings in this way. That is, an explicit or
implicit reduction of effective step size increases the effective fitness [65] or the evolvability
[3] of the population programs. Actually, the notion of effective step size allows the evolv-
ability of linear genetic programs to be measured and controlled more explicitly. In doing
so, the effective step size considers not only structural aspects of a genetic program, like
the intron rate, but also the influence of (the absolute step size of) the variation operator.
We will demonstrate in this chapter (and in Chapter 8) that a minimization of (effective)
step sizes, i.e., a maximization of the effective fitness, yields the best performance.

5.4 Causality

Unless otherwise stated the term step size will refer to the absolute structural variation
distance in the following. In evolutionary computation this term originates from the idea
of a fitness landscape [59, 43] where all possible solutions of the (genotype) search space
are organized in a structural neighborhood – by using a structural distance metric – and
their fitness values constitute a more-or-less smooth surface. The application of a variation
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operator corresponds to performing one step on the fitness landscape. Both the roughness
of the surface and the step size of the variation operator determine the success of the
evolutionary search process.
On the one hand, the variation operator has to allow progress in steps that are small
enough, on average, to approach a global optimum solution or at least a good local opti-
mum adaptively. That means, in other words, to exploit the fitness information of adjacent
search points by a gradient descent. One strength of evolutionary algorithms is that this
gradient is not followed exactly, but rather by a gradient diffusion [75]. Due to the fact
that new search points are selected randomly without a certain direction, an evolution-
ary search will less likely get stuck in local minima (suboptima) of the fitness landscape.
Usually there is more than one global optimum (in the genotype space) since programs
with optimum fitness are not necessarily unique by structure. In GP this is already true
because of the redundant code in programs.
On the other hand, the average variation step size must not be too small. Otherwise
the global evolutionary progress may be too much restricted. Additionally, a sufficient
proportion of larger steps may be required to avoid that the evolutionary process gets
stuck early in a local suboptimum. That is, a sufficient exploration of the fitness landscape
has to be maintained. This may depend, however, on other factors like the population
size and the diversity of the population material, too. Moreover, exploration is depending
on a sufficient proportion of neutral variations, which allow neutral walks over the fitness
landscape.
This chapter will show that linear genetic programming profits strongly from a reduction of
variation step size. This might be interpreted in such a way that an exploration-exploitation
trade-off does not exist. Even minimum step sizes on the program structure seem to be
still large enough to escape from local minima.1 One reason is that the fitness landscape
is not perfectly smooth, especially when operating on a symbolic level (genetic programs).
Even smallest changes of the program structure may still result in large changes of program
semantics.
Strong causality requires a completely “smooth” fitness landscape [75]. Therefore, this
feature postulates Equation 5.3 to be valid for any three search points:

∀p1, p2, p3 ∈ G : dG(p1, p2) ≤ dG(p1, p3) ⇔ dP(p1, p2) ≤ dP(p1, p3) (5.3)

That is, small changes of position (individual) in the high-dimensional landscape always
imply small changes in height (fitness). Strong causality is, however, not a necessary
condition for the function of evolutionary algorithms in general. Actually, this condition is
not strictly fulfilled by most evolutionary algorithms. Already from observations in nature
we may not assume a strong causality between genotype and phenotype. In biological
evolution the DNA may be subject to strong modifications without affecting the organism
significantly. On the other hand, larger modifications of the phenotype may result from
only little genotype changes. Nevertheless, the vast majority of natural variations on
genotype level is rather small and is expressed (if ever) in small variations of the phenotype.
Among other things, this is due to the redundancy of the genetic code that comes from
intron segments by which many mutations stay neutral or nearly neutral.
Nevertheless, a fitness landscape must be smooth at least in local regions (locally strong
causality) [75, 81]. Otherwise, evolutionary search may not be more powerful than random
search. In an extremely rugged surface a search point (individual) contains only little or
no information about the expected fitness of its direct neighbors. Besides ruggedness of

1The fitness function always minimizes a prediction error in this thesis.
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the fitness landscape, flat regions, where neighboring points have the same fitness, make
a problem hard to be solved by an evolutionary algorithm. On such fitness plateaus no
gradient information is available. Contrary to this, hills and valleys in the fitness landscape
represent regions with a gradient information, i.e., local maxima and local minima.
In GP the surface of the fitness landscape depends not only on the problem but on the
system configuration, too, especially the provided program instructions. Neutral variations
are important if a problem constitutes wide fitness plateaus. These occur especially with
discrete fitness functions. The existence of intron code makes neural variations more
likely, too, especially if variation step sizes are small. In flat regions of the fitness landscape
neutral variations maintain evolutionary progress by a random exploration in the genotype
space. That is, the population spreads wider over a fitness plateau by a neutral drift which
increases the probability to find a better suboptimum. If a positive fitness gradient has
been found the population may concentrate on this local optimum again, i.e., individuals
that are more successful than others for that region will spread faster in the population.
Changing a small program component in genetic programming may lead to almost arbi-
trary changes in program behavior. On average, however, we may assume that the less
instructions are modified the smaller the fitness change will be. That is, with a high
probability smaller variations in genotype space, i.e., smaller variation step sizes, result
in smaller variations in phenotype space, i.e., smaller fitness distances. Such a stochastic
causality is a necessary precondition of a program representation and its genetic operators.
In Section 8.7.1 a positive correlation between structural and semantic step sizes will be
shown experimentally for different variation operators and problems.

5.5 Selection of Variation Points

Due to the hierarchy of nodes in tree programs a variation point (node) can be expected
to be more influential the closer it lies to the root. If nodes are selected independent from
their position deeper nodes are automatically chosen more frequently because most nodes
are closer to a leaf. In a completely balanced binary tree of n nodes exactly bn

2 c nodes are
inner nodes and dn

2 e nodes are leafs. Thus, half of the variation points would fall upon
constants or variables. This implicit bias of tree crossover results in a lower variation
probability and, thus, in a loss of diversity in tree regions closer to the root. In order
to compensate this tendency Koza [51] imposes an explicit counter bias on the crossover
operator by selecting inner (function) nodes with a high probability (90 percent). An
alternative is to select the depth first and then select a variation point among all nodes of
that depth with the same probability [37].
In a linear program the situation is different. One may assume that each program position
has a more similar influence on program semantics, at least if a rather moderate number of
registers is provided. Recall that the internal structure of an LGP program, as defined in
Chapter 3, represents a directed acyclic graph (DAG) that is restricted in width through
the number of provided registers (see Section 3.3). While in a tree each node is reached
via a unique path from the root, i.e., it is connected to only one incoming edge, in a DAG
more than one program path may lead to the same node, i.e., a node may be connected to
several incoming edges. Therefore, it may be justified to select each instruction (variation
point) with the same probability during variation.
However, even if the maximum width of the graph representation is restricted and the
number of incoming edges is free in principle, this does not provide enough information
about the specific functional structure of a certain linear program. The algorithms that
have been presented in Section 3.4 extract special features about the functional or imper-
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ative program structure. Among other things, this information may be used to bias the
choice of variation points more precisely.
In Section 5.11.6 mutation points will be selected for different probability distributions
depending on its effective position in the imperative representation. The relative position
of an effective instruction in the (effective) program is of minor importance as long as all
instructions are selected for the same probability. Only if the selection of variation points
is non-uniform, e.g., biased towards the end or the beginning of the imperative program, it
may become important that at least approximately the relative position of an instruction
is similar to the position of its corresponding node in the functional program. A small
average effective dependence distance, for instance, indicates that the order of instructions
is high, i.e., functionally dependant instructions lie close to each other in the imperative
code.
Furthermore, it may be promising to select an instruction position for mutation depending
on its degree of effectiveness or on the number of effective registers. The more effective
instructions depend on the mutated one the higher is the expected effective variation step
size, i.e., the more instructions may be deactivated. In Section 5.10.5 we will discuss
mutation operators that use these structural features to minimize the effective mutation
step size by selecting the mutation point accordingly.

5.6 Suggested Properties of Variation Operators

Together with the selection operator, the variation operators determine the efficiency of an
EA and its representation of individuals. Before we discuss and compare various genetic
operators for the linear program representation in particular, we summarize some general
properties of variation operators and program representation in this section that we believe
are especially important for genetic programming. The following general rules are meant
to be independent from a special type of program representation. Some design rules are
also valid for evolutionary algorithms in general (see, e.g., [98]).
(1) First of all, genetic programming is working with a variable length representation
that is supposed to grow during the course of a run. It is a common practice to start
the evolutionary process with relatively small initial programs. Usually fitter solutions
require a certain minimum complexity, i.e., are located in more complex regions of the
search space. The variation operator(s) must provide for a sufficient growth of programs
within an observed period of generations, together with the selection operator that favors
longer programs if they show a better performance.
(2) Another important property is local search. That means a variation operator (or a
combination of variation operators) should explore the region around the parent search
point(s) more intensively than more distant regions of the search space. This implies that
the structural similarity between parent and offspring should be higher, on average, than
between arbitrary individuals. If we assume a fitness landscape to be smooth at least in
local regions, good search points are at least partly surrounded by other good search points.
From these points small variation steps allow a more precise and continuous approximation
to better solutions.
(3) We recommend the use of minimum step sizes on the (symbolic) program structure.
The smallest GP operations that change program size, too, are the insertion or the deletion
of a single instruction node. Usually even smallest variations of a program structure induce
sufficiently large semantic steps, as discussed in Section 5.4.
(4) A specific design of efficient genetic operators in evolutionary computation strongly
depends on the representation of individuals. The phenotype function and, thus, the
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fitness, should be efficiently computable from the genotype representation (efficient in-
terpretation) to keep the time of fitness evaluation as short as possible. Moreover, the
genotype representation should allow efficient variations. In both cases, the computation
time should be linear in the program size.
(5) The program representation should offer a sufficient freedom of variation (high vari-
ability) to allow small structural variations at each program position and throughout the
whole run. Besides, it may be advantageous if noneffective code may emerge at each
position with about the same probability.
(6) In order to guarantee that all effects on a program are reversible each genetic operator
should be applied together with its inverse operator (reversibility). Additionally, it may be
postulated that two inverse genetic operations should happen with the same probability
(symmetry), i.e., without any bias towards a certain search direction. Then the search
direction is only determined by selection. This, however, may contradict a sufficient
program growth. Especially if the minimum step size rule is applied, an explicit grow bias
in the macro operator has been found advantageous (see below).
(7) If not stated otherwise, all variation operators in this thesis are bias-free, i.e., would
not let programs grow without fitness selection. That is, code growth does not occur just
by the influence of genetic operators. In Chapter 9 we will analyse implicit biases that
exist only in the presence of fitness information.
(8) Program solutions produced by a variation operator in GP must be valid in terms of
the underlying programming language, i.e., they must satisfy constraints of the program
structure. This property has been referred to by Koza as syntactic closure. The feasibility
of a program solution, in general, may either be guaranteed implicitly by the variation
operators or, if this is not possible, in a post-processing step by special repair mechanisms.
(9) In most program representations used in GP redundant code parts can be identified
that do not contribute to its phenotype function. In general, too large solutions are more
inflexible during the evolutionary process and may increase evaluation time. Unnecessary
program growth in genetic programming has become known as the bloat effect (see also
Chapter 9). In order to avoid these problems variation operators are required to keep
the rate of redundant code as small as possible (minimum code redundancy). Note that a
lower code redundancy reduces the genotype search space allowing the genotype-phenotype
mapping to become more injective.
(10) A high proportion of redundant code in programs reduces the effectiveness of genetic
operations. The more intron code has emerged the higher is the probability that later
variations will not change the effective code at all. The same is true for a small (maximum)
variation step size. As a result, evolution may progress slower within a certain number
of generations. Provided that redundant code elements may be detected efficiently for
a representation, variation may be concentrated on the remaining more effective code.
A high effectiveness of genetic operations may be supposed to reduce the proportion of
(useless) neutral variations. Note that neutral variations are important to a certain extent
only. Since neutral variations perform random walks on the fitness landscape, most steps
may be expected to be useless while only a small fraction may be progressive (on the code
level). We will see that this is especially true in LGP if many variations change or create
structural introns.
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5.7 Segment Variations

In this section we investigate segment variations, i.e., macro variations that delete and/or
insert instruction segments whose length is normally restricted only by the program length.
Different recombination and mutation operators are discussed for the linear program repre-
sentation. In particular, this includes the standard variant of linear genetic programming
which applies linear crossover.

5.7.1 Linear Crossover

As already described in Section 2.3.4, the standard linear crossover operator always pro-
duces two offsprings by exchanging two arbitrarily long, contiguous subsequences (seg-
ments) of instructions between two parent individuals. This principle has been illustrated
in Figure 2.4. By definition, linear crossover guarantees a minimum segment length of one
instruction (= minimum program length lmin). The implementation of linear crossover
as applied in this thesis is described by Algorithm 5.1. In the following we use identifier
cross to refer to this operator. The maximum length of segments slmax is unrestricted,
i.e., it equals the program length. That is, the whole program code may be replaced in
one genetic operation. Let the term crossover point always denote the first instruction
position of a segment. The end of a segment is uniquely identified by the segment length.
The position of the first instruction in program is always 0.

Algorithm 5.1 (linear crossover)
Parameters: two linear programs gp1 and gp2; minimum and maximum program length
lmin, lmax; maximum segment length slmax; maximum distance of crossover points dmax;
maximum difference in segment length sdmax.

1. Randomly select an instruction position ik (crossover point) in program gpk (k ∈
{1, 2}) with distance |i1 − i2| ≤ min(l(gp1)− 1, dmax) and length l(gp1) ≤ l(gp2).

2. Select an instruction segment sk starting at position ik with length 1 ≤ l(sk) ≤
min(l(gpk)− ik, slmax).

3. While difference in segment length |l(s1) − l(s2)| > sdmax reselect segment length
l(s2).

4. Assure l(s1) ≤ l(s2).

5. If l(gp2)− (l(s2)− l(s1)) < lmin or l(gp1) + (l(s2)− l(s1)) > lmax then

(a) Select l(s2) := l(s1) or l(s1) := l(s2) with equal probabilities.

(b) If i1 + l(s1) > l(gp1) then l(s1) := l(s2) := l(gp1)− i1.

6. Exchange segment s1 in program gp1 by s2 from program gp2 and vice versa.

If the crossover operation cannot be executed because one offspring would exceed the
maximum program length, equally long segments are exchanged. Algorithm 5.1 selects
randomly one of the two segment lengths in this case. Due to the fact that the crossover
points are selected before the segment lengths in Step 1, the algorithm is biased towards
selecting shorter segments more frequently. Instead, the selection of crossover points is
unbiased, i.e., their distribution is uniform. Experimental results will show below that
a restriction of the segment length is much less critical than restricting the free choice
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of crossover points. An alternative crossover implementation might select the segment
lengths first for the same probability as the variation points.
It is important to note that linear crossover, in general, is not explicitly biased towards
creating larger programs already on its own. Because it only moves code within the
population and because crossover points are selected randomly, the average program length
is not growing without fitness selection.

Crossover Point Segment Lengths

Distance of Crossover Points

0
Position

Difference in Segment Length

Parent 2

Parent 1

Figure 5.1: Basic parameters of linear crossover.

One way to reduce the structural step size of linear crossover more explicitly is by a
maximum limit on the segment length. A relative upper bound for the segment length
in percent of the current program length is not a feasible alternative. First, the segment
length would still depend on the absolute program length. Because programs grow during
a run such relative step sizes would increase, too. Second, in a linear genome the influence
of the segment length on program semantics is partly independent from the program
length. That is, the influence of a certain amount of varied code may be lower in a longer
program only to a certain extent (see Section 9.8.6).
Another crossover parameter besides the maximum segment length is the maximum dis-
tance of crossover points dmax (in instructions) between both parents. A restriction of
this distance reduces the probability that a piece of code may migrate to another program
position by variation which necessarily implies a restriction of variation freedom.
As a third parameter that influences the performance of crossover the maximum difference
in segment length sdmax between parents may be restricted. This difference controls the
average step size of linear crossover together with the absolute segment length. If sdmax :=
0 no program growth is possible. By setting sdmax to a moderate value a simple size fair
crossover is realized in linear GP. Such an operator is more complicated to realise with
subtree crossover [56].
In Figure 5.1 an illustration of these three control parameters is given for a better un-
derstanding. Besides, the performance of linear crossover might be influenced over the
probability distributions of crossover points, segment lengths, or length differences. For
instance, segment lengths may either be selected uniformly distributed over a maximum
range (standard case) or normally distributed such that smaller or larger segments are
exchanged more frequently.
Obviously, there is an analogy between crossover of DNA strings in nature and crossover
of instruction sequences in linear GP. In fact, this analogy to biological crossover was the
original inspiration for the use of crossover in evolutionary algorithms. On the other hand,
there are some basic differences, too. The vast majority of crossover operation in nature is
homologous. Biology causes homology through a strict base pairing of equally long DNA
sequences while similarity of structure is closely related to similarity of (gene) function.
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Nordin et al. [69] propose the use of homologous crossover in (linear) GP. The basic idea is
that more similar sequences of instructions are exchanged during the course of evolution
which may also be regarded as an indirect reduction of crossover step size. It has to be
noted, however, that homologous linear crossover implies a restriction of both the distance
of crossover points and the difference in segment length. We will demonstrate in Section
5.9.4 why a limitations of both parameters may not always be advantageous.
In nature base information of a DNA string – coding a certain type of protein – has to
be much more place bound than this is necessary for instructions of a genetic program.
Otherwise, a high survival rate of offsprings cannot be guaranteed. In GP there is no
equivalent criterion for viability. Even programs with a relatively poor fitness may still
pass on their information even if this happens with a lower probability. Usually the full
range of fitness values is regarded without any given minimum.

5.7.2 One-Point Crossover

Standard linear crossover may also be regarded as a two-point crossover because the end of
an exchanged instruction segment is variable, too. That is, it may be located in the midst
of a parent program. With a one-point crossover (abbr. onepoint) programs are crossed at
one point only. That is, the end of the crossed code segment is always identical to the end
of program (see Algorithm 5.2). If a new individual would exceed the maximum program
length the two crossover points are chosen at equal positions in both parents. Compared
to two-point crossover, one-point crossover necessarily leads to larger absolute step sizes
since larger segments of instructions are exchanged, on average. Additionally, the absolute
step size may not be restricted that easily by a control parameter as this is possible with
the standard operator.

Algorithm 5.2 (one-point crossover)
Parameters: two linear programs gp1 and gp2; minimum and maximum program length
lmin, lmax; maximum distance of crossover points dmax.

1. Randomly select an instruction position ik (crossover point) in program gpk (k ∈
{1, 2}) with distance |i1 − i2| ≤ min(l(gp1)− 1, dmax) and length l(gp1) ≤ l(gp2).

2. l(s1) := l(gp1)− i1,
l(s2) := l(gp2)− i2.

3. Assure l(s1) ≤ l(s2).

4. If l(gp2)− (l(s2)− l(s1)) < lmin or l(gp1) + (l(s2)− l(s1)) > lmax then

(a) If l(gp1) ≥ l(gp2) then i1 := i2 else i2 := i1.

(b) Go to → 2.

5. Exchange segment s1 in program gp1 by s2 from programs gp2 and vice versa.

5.7.3 One-Segment Recombination

Crossover requires, by definition, that information is exchanged between individual pro-
grams. However, an exchange always includes two operations on each parent individual
at the same time, a deletion and an insertion of a subprogram. The imperative program
representation allows instructions to be deleted without replacement since the instruction
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operands, e.g., register pointers, are always defined. Moreover, instructions may be in-
serted at any position without a preceding deletion, at least if the maximum program
length is not exceeded. Thus, if we want linear crossover to be less destructive it may be
recommended, first, to execute only one operation per parent.
These considerations motivate an one-way or one-segment recombination (abbr. oneseg)
of linear genetic programs as described by Algorithm 5.3. Accordingly, standard linear
crossover may also be referred to as two-segment recombination for a better distinction.
One-segment recombination may reduce the variation step size in terms of Definition 5.3.
It has to be noted, however, that the actual step size of two-segment recombination may
be reduced by an exchange of similar segments.

Algorithm 5.3 (one-segment recombination)
Parameters: two linear programs gp1 and gp2; insertion rate pins; deletion rate pdel; max-
imum program length lmax; minimum program length lmin; maximum segment length
slmax.

1. Randomly select recombination type insertion | deletion for probability pins | pdel

and pins + pdel = 1.

2. If l(gp1) < lmax and (insertion or l(gp1) = lmin):

(a) Randomly select an instruction position i in program gp1.

(b) Randomly select an instruction segment s from program gp2 with length 1 ≤
l(s) ≤ min(l(gp2), slmax).

(c) If l(gp1) + l(s) > lmax then reselect segment s with length l(s) := lmax− l(gp1)

(d) Insert a copy of segment s in program gp1 at position i.

3. If l(gp1) > lmin and (deletion or l(gp1) = lmax):

(a) Randomly select an instruction segment s from program gp1 with length 1 ≤
l(s) ≤ min(l(gp2), slmax).

(b) If l(gp1)− l(s) < lmin then reselect segment s with length l(s) := l(gp1)− lmin

(c) Delete segment s from program gp1.

4. Repeat steps 1. to 3. with exchanged program identifiers gp1 and gp2.

In traditional GP an exchange of subtrees during crossover is necessary because the con-
straints of the tree structure require removed code to be replaced. Nevertheless, pure
deletions or insertions of subtrees may be implemented in the following manner: A deleted
subtree is substituted by one of its subtrees. Likewise, a subtree is inserted at a random
position such that the deleted subtree becomes a leaf of the inserted one.
If a segment (subprogram) is deleted from a parent or if a segment is inserted from another
parent depends on the two probability parameters pdel and pins. These allow a grow bias
or a shrink bias to be adjusted for one-segment recombination depending on whether
pins > pdel or pins < pdel is true. Such an explicit bias allows programs to grow without
fitness information. Note that such an explicit bias may not be realized with crossover
because it does not alter the average program length in the population. Only two-segment
mutations (see next section) allow a more frequent exchange of smaller segment by larger
ones (or vice versa).
An explicit tendency for code growth from side of the genetic operator might not be
necessary if the maximum segment length is unrestricted. In this case programs may grow
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quickly in only a few generations. A shrinking tendency may have a positive influence on
the prediction quality mostly due to a reduction of code growth that indirectly reduces
the absolute step size. However, restricting program growth over the maximum segment
length allows a more precise control of recombination steps. In the standard configuration
one-segment recombination is applied without an explicit bias, i.e., pins = pdel.

5.7.4 Effective Recombination

In principle, there are two possibilities to increase the number of effective variations and,
thus, to reduce the probability that a variation stays neutral in terms of a fitness change.
Either the noneffective code is reduced actively or genetic operations concentrate on the
effective part more intensively.
To demonstrate that the noneffective code controls the influence of recombination on the
effective code, we may remove all noneffective instructions immediately after each variation
from the individuals in the population (using Algorithm 3.1). Then it has to be explic-
itly guaranteed that the absolute program length does not fall below the minimum (one
instruction). In contrast to removing the structural introns only before the fitness calcu-
lation, the population comprises only effective programs and each variation automatically
becomes effective. Due to the absence of noneffective instructions, variations are expected
to be more destructive on the effective code. We will see, however, in Section 5.7 that the
proportions of effective variations and destructive variations are not much affected when
using linear crossover because both are already quite high when the noneffective code is
included. But a higher amount of (structurally) effective code is modified, i.e., the average
effective step size is increased. We will refer to this approach as one variant of effective
recombination or effective crossover (abbr. effcross).
Some researchers [84] proposed to remove redundant code parts before tree crossover to
reduce code growth. Other researchers [16] reduce the rate of neutral crossover operations
by avoiding that a crossover point falls upon an intron subtree. However, it may be pointed
out again that intron detection in tree-based GP is limited. Since only semantic introns
exist a detection can only be accomplished incompletely and strongly depends on the
problem and the provided sets of functions and terminals. In [84] unfulfilled if-statements
are partly identified in tree programs and extracted.
An alternative variant of effective recombination can be realized by an explicit control of
effectiveness. That means a variation is repeated until the effective code has been altered.
The effective code of two programs can be compared efficiently. Prior to that Algorithm
3.1 has to be applied to calculate the effective code of the new programs. This approach
does not affect the effective variation step size but may only increase the rate of effective
variations.
The effectiveness of crossover operations may already be guaranteed, too, by selecting
segments (for deletion) that hold at least one effective instruction (effdel). This variant
does not avoid exchanges of segments that are effectively identical. Such identical ex-
changes become less likely, however, if the average segment length is large. It is usually
not required to check after segment deletions (by means of Algorithm 3.1) if the effective
code has been changed as this is necessary after segment insertions. Remember that the
effectiveness status – effective or noneffective – of each instruction is logged in programs.

5.7.5 Segment Mutations

Recombination always produces two offsprings with the implementations described above.
In order to guarantee that the rate of new individuals is the same for mutations always
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two parent individuals are selected in our LGP Algorithm 2.1.
One-segment recombination as described by Algorithm 5.3 may be modified to serve for
two variants of macro mutations. One-segment mutations may be realized by the insertion
of a randomly created subsequence s of l(s) instructions in Step 2.(d) of Algorithm 5.3.
In doing so, the maximum length of an inserted segment (as well as a deleted segment) is
restricted by the length of the other parent individual which guarantees that the mutation
operator is free from an explicitly length bias. That is, the average inflow of code into the
population is not larger than the outflow.
Effective segment mutations insert a fully effective segment, accordingly, which is achieved
by inserting l(s) effective instructions successively at a position i as will be described in
Section 5.10.4. On a functional level an effective segment does not necessarily form a
single contiguous component for itself even if all segment instructions are connected to the
effective graph component.
Deleted segments are not fully effective, but may still contain noneffective instructions.
As a result, the proportion of noneffective code is explicitly reduced. Additionally, it
may be guaranteed that deletions of segments are always effective, i.e., that the deleted
segment includes one effective instruction at least. This, however, has been found to make
a difference only if the maximum segment length is restricted to a few instructions (see
Section 5.10.4).
(Effective) segment mutation may also be realized by means of the real crossover operator
from Section 5.7.1. The only difference is that random segments replace existing segments
(of any size) here. In the following the four different variants of segment mutations will
be referred to as onesegmut, effonesegmut, segmut and effsegmut.

In general, it is guaranteed for each genetic operator that there is a structural variation of
the program code. Only an exchange of code may lead to identical parents and offsprings.
Insertion or deletion of instructions are always changing a program, instead. Only with
two-segment variations, not with one-segment variations an exchange of code is practiced.
Identical exchanges are much more likely with crossover than with two-segment mutation
because in the first case the possible genetic material is more restricted (to the population
contents). Avoiding identical exchanges does not necessarily require repeated applications
of a variation operator until the code has changed – including explicit comparisons of
the program structure. It is already sufficient to select the segment lengths differently
in both parents during a crossover operation. If crossover is applied with equally long
segments (after the maximum length has been exceeded) the crossover points may be set
at different positions, instead. However, avoiding or not avoiding identical replacements
during macro variations has not been found to produce significantly different results if the
segment length (and, thus, the variation step size) is large, on average.

5.7.6 Explicit Introns

As noted above, the ratio of noneffective instructions in programs controls the influence
of segment variations on the effective part of code. Also because of the maximum limita-
tion of program length this implicit control of effective step size may not prove sufficient.
One problem of the inactive instructions is that they are easily reactivated when trans-
ferred from one individual into another. The effectiveness of inserted instructions depends
strongly on the context in the new program and the position at which they are inserted.
Both may very likely be totally different from the original program. Thus, the protective
effect of the noneffective code is more a probabilistic one.
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One possibility to overcome this problem offer special program elements that already
represent intron code for themselves. Nordin et al. [67] introduced the idea of explicitly
defined introns (EDIs) into (linear) GP. This stand-alone intron code does not depend
on a special semantic or structural program context. Explicit introns are supposed to
suppress the emergence of implicit introns in the course of a run by replacing them. In
this way, they reduce the absolute program size which includes only the operational (non-
EDI) instructions. In the presence of explicit introns there is less need for inducing implicit
introns code. Explicit introns are not only easier to be implemented during evolution but
are less brittle during manipulation by the genetic operators, too.
The higher proportion of noneffective code that occurs especially with crossover, indirectly
increases the size of effective code, too. Obviously, the more code is inactive the higher
is the probability for reactivations during a genetic operation. Thus, the more programs
grow the more difficult it becomes to maintain a small effective code. If implicit introns
are sufficiently replaced by context-independent explicit introns, however, we may hope
that also a smaller (proportion of) effective code is possible.
In [67] explicitly defined introns have been implemented by a separator that is held between
all coding instructions in a linear program. The non-coding separators just include a
mutable integer value n which represents a “virtual” sequence of n wildcards or empty
instructions. During crossover the EDI value between two working instructions determines
the probability that the crossover point falls between them. Actually, crossover behaves
just as if EDIs were real empty instructions. After crossover has been performed the EDI
values at the crossover points are updated accordingly in the offspring programs.
A different realization of explicit introns is practiced in [82] for tree-based GP by including
a special EDI function into the function set. Such a function ignores all its arguments
except one which is returned unaltered. This is necessary since the tree program structure
requires that every operational node returns a value. All ignored subtrees become inactive
code, too, but may be reactivated after a crossover operation or if the EDI function is
replaced by an effective function. Such explicit introns act similar to branches that hold
a condition which is always wrong.
We investigate explicit introns here for linear GP in a simpler form as used in [67]. In our
approach an EDI comprises a single empty instruction only and is “physically” evolved
within the imperative programs. The empty instructions neither perform an operation
on the register set nor manipulate the contents of registers. By definition, an empty in-
struction is not allowed to be changed. Neither it can be reactivated nor can a working
instruction be transformed into an empty one. This requires a mutation operator that
is restricted to coding instructions only. During the initialization a certain percentage of
empty instructions is seeded into the population in addition to the coding instructions.
In this way, it is guaranteed that only crossover determines how the proportion of EDIs
develops in the population during a run. One may refer to this type of introns as imper-
ative EDIs since they are defined on imperative level only and have no equivalent on the
functional level.
Alternatively, functional EDIs might be implemented in linear GP as instructions holding
a non-operator that assigns the contents of one operand to the destination register and ig-
nores the other one (if existent). Functional EDIs deactivate instructions which depend on
an ignored register operand. Such introns may become active again if the non-operator is
exchanged by mutation or if the whole EDI instruction is removed by crossover. Therefore,
such explicit introns hardly provide a higher functionality than the (structural) introns
that occur already implicitly in linear genetic programs.



78 5 Design of Linear Genetic Operators

5.7.7 Building Block or Macro Mutation ?

In comparison with mutation the success of recombination, in general, depends more
strongly on the composition of the population. This is true because innovation through
recombination can only result from a rearrangement of the genetic material that is already
existing in the population. Innovation through mutation, instead, comes from seeding new
random information from outside of the population.
Originally, the crossover operator has been introduced and intensively applied in genetic
programming for the claim that recombination-based search is more successful and faster
than variation that is just based on random mutations. This requires that GP individuals
are composed of building blocks [51]. In principle, a building block may be any coherent
fraction of program code, i.e., an arbitrary subtree in tree-based GP or a subsequence of
instructions in linear GP. The building block hypothesis for general evolutionary algorithms
has been adopted from genetic algorithms [32, 40] and says that smaller substructures of
individuals with a high positive effect on fitness are (re)combined via crossover to produce
offsprings with a higher fitness potential. Thus, an individual with good building blocks
has not only a better fitness but may also produce better offsprings with a higher proba-
bility by passing on its good building blocks. Advantageous building blocks are believed
to spread within the population since the individuals containing them are more likely se-
lected for variation or reproduction. Also because of its vague formulation the hypothesis
may be criticized. One point of criticism is that the building block hypothesis assumes
that evolutionary algorithms decompose a problem automatically into subproblems and
develop global solutions by recomposing the subsolutions. But this requires the building
blocks (subprograms) to be relatively independent from each other and to have a more
independent (additive) influence on the fitness. That is, the fitness function has to be at
least partly separable. Especially in GP, however, this may hardly be assumed for each
combination of program representation, recombination operator, instruction set and fit-
ness function. Another point of criticism is that the building block hypothesis does not
explain the functionality and ability of (recombination-based) evolutionary algorithms to
solve problems with a highly unrelated fitness function, e.g., problem configurations where
most changes of the representation are neutral in terms of a fitness change.
In GP the fitness advantage or disadvantage of a certain subtree or subsequence of instruc-
tions strongly depends on its position within an individual. In addition to this, the usually
complex interaction of registers in linear GP reduces the possibility that a subprogram
may behave similar in another program context. Depending on the number of available
registers as well as the length of the subsequence this would require many nodes to be
reconnected appropriately in the functional graph equivalent. Actually, reactivations and
deactivations of instructions may easily destroy the functionality of building blocks.
If the building block hypothesis is not valid recombination acts as nothing else than a
macro mutation that is restricted to the genetic material in the population. However, even
if the building block hypothesis is true for a certain recombination-based GP approach, a
pure mutation-based approach may exist that performs better. Note that the question of
whether recombination or mutation is more powerful depends on criteria like the (average)
variation step size and the degree of innovation that are induced by a genetic operator.
Finally, its contribution to the growth of code is important, too.
In traditional genetic programming as initiated by Koza [51] crossover is applied for the
majority of variations. The role of mutations is considered of minor importance. Mutations
are used for a relatively low probability only to regularly introduce some new genetic
material into the population. Later, other researcher have demonstrated that mutation
operators may perform better or at least as powerful as tree crossover. Angeline [7]
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compares normal crossover with a “crossover” operator where one parent individual is
created randomly. These subtree mutations work mechanically similar to crossover what
allows a fair comparison. From the competitive performance of subtree mutations Angeline
concluded that subtree crossover is more accurately described as a macro mutation that
uses material from the population only, rather than following the principle of the building
block hypothesis. Other comparisons of subtree crossover and mutations in tree-based GP
[37, 58, 24] report on similar results.
In general, it may be concluded that mutation-based variation and crossover-based varia-
tion in tree-based GP either have been found competitive or one approach was only slightly
more successful. In principle, macro mutation operators are based on the replacement of
an existing subtree by a random one at a certain variation point that is the root node
of the subtree. By rearranging genetic material within the population only the crossover
operator (if bias-free) implicitly guarantees that the average program length stays un-
changed. When implementing subtree mutations this has to be guaranteed explicitly by
inserting subtrees that are, on average, of the same size as the deleted ones. In Section
5.9.2 we will compare recombination and segment mutations in linear GP.

5.8 Experimental Setup

5.8.1 Benchmark Problems

The different variation operators and experiments discussed in this chapter are compared
by using some or all of the following benchmark problems. Basically, we concentrate on
(symbolic) regression and classification tasks here. Most real-world applications may be
supposed to belong to one of these problem classes.
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The first problem task requires a surface reconstruction from a set of data points. The
surface is given by the two-dimensional mexican hat function here (see Equation 5.4).
Figure 5.2 shows a three-dimensional plot of the function visualizing the surface that has
to be approximated.

fdistance(x1, y1, .., yn, yn) =
√

(x1 − y1)2 + .. + (xn − yn)2 (5.5)

The second regression problem, called distance, requires the Euclidean distance between
two points (vectors) ~x and ~y in n-dimensional space to be computed by the genetic pro-
grams (see Equation 5.5). The higher the dimension is chosen (n = 3 here) the more
difficult the problem becomes.
The third problem is the well-known spiral classification [51] where two interlaced spirals
have to be distinguished in two-dimensional data space. All data points of a spiral belong
to the same class as visualized in Figure 5.3.
Finally, the three chains problem concatenates three rings of points that each represent a
different data class (see Figure 5.4). Actually, one “ring” denotes a circle of 100 points
in three-dimensional space whose positions are slightly noisy. The rings approach each
other at five regions without leading to intersection. These regions determine the problem
difficulty that may easily be scaled up or down depending on both the angle of the rings
to one another and on the number of rings.
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Figure 5.2: mexican hat problem.
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Figure 5.3: spiral problem.

5.8.2 Parameter Settings

Tables 5.1 and 5.2 summarize attributes of the data set that have been created for each
problem. These include the input dimension, the output dimension, the ranges of input
and output values as well as the number of training examples (fitness cases). Furthermore,
problem-specific configurations of the LGP system are given that comprise the fitness
function, the compositions of the function set, and the numbers of registers and constants.
It is important for the performance of linear GP to provide enough registers for calculation,
especially if the input dimension is low. Therefore, the number of (calculation) registers –
additional to the minimum number of registers that is required for the input data – is an
important parameter (see also Section 6.1). In general, the number of registers determines
the number of program paths that can be calculated in parallel. If it is not sufficient there
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Figure 5.4: three chains problem.

may be too many conflicts by overwriting register contents within programs.
For the classifications tasks specified in Table 5.2 the fitness function is discrete. Fitness
equals the classification error (CE) here, i.e., the number of wrongly classified inputs. For
the approximation problems (see Table 5.1) the fitness is the continuous sum of square
output errors (SSE).
The spiral problem applies an interval classification method, i.e., if the output is smaller
than 0.5 it is interpreted as class 0, otherwise it is class 1. For the three chains problem
we use an error classification method, instead. That is, the distance between the problem
output and one of the given identifiers for the output classes (0, 1, or 2) must be smaller
than 0.5 to be accepted as correct.
The instruction set used here for the mexican hat problem is incomplete, i.e., not suffi-
ciently powerful to build the optimum solution. In particular, the exponential function
ex was not explicitly included. Since the basis constant e is an irrational number it may
only be approximated by a finite number of program instruction. Multiple instances of an
instruction in the instruction set, as used for the distance problem, increases its probability
to be selected during initialization and mutation. In this way, the distribution of operator
symbols within the population may be manipulated explicitly and is not only determined
by the fitness selection. Only the instruction sets used for the classification problems
include branches. Without branches these two problems cannot be solved completely.
General configurations of our linear GP system are given in Table 5.3. If not differently
specified these configurations are used in all experiments. As already mentioned, always
two tournament winners are either recombined or both of the two parents undergo mu-
tation in the applied evolutionary Algoritm 2.1. Tournament selection is applied with a
minimum of two participants per tournament. The tournament winners (parents) replace
tournament losers for a (reproduction) probability of 100 percent.
In most experiments of this chapter macro operators are applied for a probability of 75
percent. On the one hand, this guarantees that the compared operators dominate the
variation process. On the other hand, variation inside instructions is not reduced to zero
but is still maintained by 25 percent micro mutations.
For all four test problems a maximum number of 200 instructions has proven to be suffi-
ciently large to represent the optimum solution provided that the function set is complete,
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Problem mexican hat distance
Problem type Regression Regression
Number of inputs 2 6
Number of outputs 1 1
Input range [−4.0, 4.0] [0, 1]
Output range [−1, 1] [0, 1]
Number of registers 2 + 4 6 + 6
Number of fitness cases 400 300
Fitness function SSE SSE
Instruction set {+,−,×, /, xy} {+,+,−,−,×,×, /,

√
x, x2}

Set of constants {1, .., 9} {1, .., 9}

Table 5.1: Problem-specific parameter settings (regression problems).

Problem spiral three chains
Problem type Classification Classification
Number of inputs 2 3
Number of outputs 1 1
Number of output classes 2 3
Input range [−2π, 2π] [0, 5]
Output range {0, 1} {0, 1, 2}
Number of registers 2 + 4 3 + 3
Number of fitness cases 194 300
Fitness function CE CE
Instruction set {+,−,×, /, sin, cos, if >} {+,−,×, /, xy, if >}
Set of constants {1, .., 9} {1, .., 9}

Table 5.2: Problem-specific parameter settings (classification problems).

Parameter Setting
Number of runs 100
Number of generations 1000
Population size 1000
Tournament size 2
Maximum program length 200
Initial program length 5–15
Macro variations 75%
Micro mutations 25%
Reproduction 100%

Table 5.3: General parameter settings.

i.e., powerful enough. Actually, this maximum complexity bound allows similar (effective)
program sizes to develop with most macro operators during 1000 generations – includ-
ing segment variations and instruction variations. This in turn makes a comparison of
prediction performance more fair in terms of the solution size.
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If more insertions than deletions of code happen on average this tendency is referred to
as an explicit grow bias of the variation operator. Table 5.4 gives an overview over the
different configurations of insertion rates that are applied in the following experiments.

Bias Config. B–1 B0 B1 Bmax

Insertions (%) 33 50 67 100
Deletions (%) 67 50 33 0
Ratio 1:2 1:1 2:1 1:0

Table 5.4: Different probabilities for insertions and deletions (macro operators). Con-
figuration B1 induces an explicit grow bias by allowing two times more insertions than
deletions. B–1 denotes a shrink bias, accordingly. Maximum growth tendency with Bmax.
Configuration B0 is bias-free.

5.9 Experiments I: Segment Variations

All variation schemes that have been discussed above for the linear program representation
involve single contiguous instruction segments. This section documents all experiments
that have been conducted with these segment operators, which include recombination and
segment mutation.

5.9.1 Comparison of Recombination Operators

In Tables 5.5 and 5.6 the different approaches to recombination operators are compared in
terms of their influence on the prediction performance, code growth and the probability
distribution of variation effects. The mean prediction error is calculated over 100 indepen-
dent runs together with the statistical standard error (std.). The number of hits, i.e., the
number of successful runs, is not given here because the optimum has almost never been
found by any crossover operator during a period of 1000 generations. This is true for both
benchmark problems applied here, spiral and mexican hat. As described in Section 5.8.1
the two problems are structured quite differently and belong to different problem classes,
i.e., classification and approximation. To reduce noise through unequal initial populations,
each test series is performed with the same set of 100 random seeds.
The program length is averaged over all programs that are created during a run and over
the 100 trails. Thus, the average effective program length gives more precise information
about the average calculation time that is necessary for executing a program during a run.
Recall that the effective length corresponds to the number of executed instructions in our
system (see Chapter 3.2.1). The proportion of effective code peff is given in percent with
pnoneff = 100− peff calculates the rate of (structural) introns.
The absolute length labs includes all instructions while the effective length leff counts
instructions that are effective. As indicated in Section 5.7 the ratio of effective length and
absolute length leff

labs
is an important parameter when using linear crossover. It determines

the average number of effective instructions that may be deleted or selected from a parent
program. This, in turn, influences the average effective step size as defined in Section 5.3.
Additionally, Tables 5.5 and 5.6 show the average proportion of constructive, neutral and
noneffective variation effects among all variations during a run. The rates of destructive
and effective variations are obvious then.
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Operator Config. SSE Length Variations (%)
mean std. abs. eff. % constr. neutral noneff.

cross 15.4 1.5 180 67 37 4.9 26 22
effinit 13.3 1.4 178 65 37 5.0 26 22
effdel 14.3 1.4 171 68 34 5.9 22 18

onepoint 21.9 1.3 188 66 35 2.8 78 69
oneseg 12.1 1.3 158 57 36 4.5 27 24
effcross 26.9 2.5 51 51 100 6.6 32 9

effinit 6.1 0.8 111 111 100 9.4 12 1.8

Table 5.5: mexican hat: Comparison of different recombination operators and configura-
tions. Average results over 100 runs after 1000 generations.

Operator Config. CE Length Variations (%)
mean std. abs. eff. % constr. neutral noneff.

cross 26.1 0.7 185 102 55 3.6 23 14
effinit 24.3 0.7 183 104 57 3.5 24 14
effdel 25.2 0.7 184 95 51 4.5 20 12

onepoint 32.0 0.9 190 89 47 0.9 81 32
oneseg 24.0 0.8 164 85 52 2.5 26 18
effcross 26.0 0.7 162 162 100 4.0 22 2.4

effinit 18.8 0.7 164 164 100 3.9 20 0.6

Table 5.6: spiral: Comparison of different recombination operators and configurations.
Average results over 100 runs after 1000 generations.

Two-point crossover (cross) performs better than one-point crossover (onepoint). Inter-
estingly, even if the average (absolute) step size is larger with only one crossover point
per individual, a much higher proportion of operations is neutral. In case of the mexican
hat problem most of these variations are noneffective, too, i.e., do not alter the effective
solution. Since the endpoints of segments are always the same an exchange of (effectively)
identical segments becomes much more likely.
Only slightly better results are obtained with one-segment recombination (oneseg) com-
pared to standard crossover. We argued in Section 5.7.3 that those may reduce the vari-
ation step size. However, since the program size grows similarly large on average and
because segment length is unrestricted with both variants this effect may be hardly rele-
vant here.
The effective crossover variant effcross is implemented in such a way that the (structural)
noneffective code is removed completely after each variation (see Section 5.7.1). In do-
ing so, the deletion of instruction segments as well as all micro mutations automatically
becomes effective. Even if this is not necessarily valid for a segment insertion, too, the
whole exchange of code is mostly effective here. The main reason why the prediction
performance may become worse is a higher effective crossover step size due to the lack of
noneffective instructions. This makes a stepwise improvement of solutions more difficult
since the average amount of change may be expected significantly higher for the effective
code (see also Section 5.7.4). Another reason might result from the fact that longer and
more specific solutions (effective code) are more brittle during variation.
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Figure 5.5: mexican hat: Development of absolute program length (left) and effective
program length (right) for different crossover operators. Code growth significantly reduced
by removing the noneffective code. Average figures over 100 runs.
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Figure 5.6: spiral: Development of absolute program length (left) and effective program
length (right) for different crossover operators. Removal of structural introns compensated
by more semantic introns. Note that absolute length and effective length are the same
with effcross. Average figures over 100 runs.

The continuous loss of (structurally) noneffective code is compensated by a larger effective
code only if the problem definition allows a sufficient amount of semantic introns (as
part of the effective code, see Section 3.2). Recall that the ability to create semantic
introns depends on the configuration of the instruction set. On the other hand, a sufficient
replacement depends on the question how far the solution finding for a problem profits
from a growth of effective code. In contrast to the mexican hat problem, the discrete spiral
problem allows good solutions to incorporate a relatively large amount of effective code.
This is facilitated by using branching instructions that offer an additional potential for
creating semantic intron code.
Figures 5.5 and 5.6 compare the development of average lengths and average effective
lengths in the population for both test problems. We just note here that the length of best
solutions develops almost identically to the average length if averaged over multiple runs.
The standard deviation of effective lengths in the population is smaller than 10 instructions
on average (not specified in Tables 5.5 and 5.6). One reason for the small standard
deviation is the early restriction of (absolute) code growth for this genetic operator by
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the maximum size limit. The standard deviation of absolute lengths is even smaller and
converges to 0 if the average length converges to the maximum length. As one can see
program growth is significantly reduced for mexican hat in effcross runs. Actually, absolute
programs do not even become as long here as the effective code in cross runs. For the spiral
classification, instead, the permanent loss of noneffective code is much better compensated
by semantic intron code. The average program size nearly reaches the maximum length
just like in runs with normal crossover.
The mexican hat results demonstrate here that the existence of structurally noneffective
code in linear GP offers an advantage over semantic introns because the former may be
created more easily by evolution and independently from the function set. In other words,
the emergence of semantic intron code is more suppressed in the presence of a structural
introns. By doing so, the (structurally) noneffective code reduces the size of effective
programs (implicit parsimony pressure, see also Section 7.4.1).
Furthermore, Figure 5.5 reveals that the removal of noneffective code is especially destruc-
tive at the beginning of an effcross run where effective solutions are most brittle since they
have not developed a sufficient (effective) size for compensation yet. Programs become so
small after the first generation that many are structurally identical – and even more are
semantically identical. That is, the initial loss of code is accompanied by a high loss of
diversity in the population. Hence, it is not surprising that the effective crossover variant
profits much more from an effective initialization (effinit, see also Section 6.6) in terms
of the prediction quality than this is found with normal crossover. Effective initializa-
tion means that the initial programs are created completely effectively while the absolute
amount of genetic material stays the same. Due to this special form of initialization the
program size doubles in Figure 5.5 probably because semantic introns may be created
sufficiently then. With the spiral problem, by comparison, the initial phase of code loss
occurs to be much shorter (see Figure 5.5).
There is still a small proportion of noneffective operations that occurs with the effcross
variant in Tables 5.5 and 5.6. This may result from the exchange of segments which
are (effectively) identical. Such a situation becomes particularly likely if programs and
segments, accordingly, only comprise a few (effective) instructions or if many programs
are identical at the beginning of a run.
Only slightly better results have been found compared to the standard approach if it is only
cared for that crossover operations are effective, i.e., delete at least one effective instruction
(effdel). Because the rate of noneffective variations is not reduced significantly and because
of the large absolute step size of crossover, we may assume that most variations are already
effective when using standard crossover.
In general, the different crossover operators and configurations performed more similar
than what might have been expected. One reason is the maximum segment length (and
thus the maximum step size) that is restricted by the program size only. Programs,
however, grow similarly large with almost all recombination operators what is only partly
a result of the complexity bound (see Chapter 9).

5.9.2 Comparison with Segment Mutations

Tables 5.7 and 5.8 list the results that have been obtained with segment mutations. Re-
call that variant segmut replaces an instruction segment by a random segment of arbitrary
length while the onesegmut variant deletes segments and inserts random ones in separate
genetic operations. From a technical point of view, the first variant operates similar to
standard crossover (cross) while the latter variant corresponds to one-segment recombina-
tion (oneseg).
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All compared segment operators are unbiased in terms of the program length, i.e., do not
promote code growth explicitly. Without fitness pressure (flat fitness landscape) there
would be no relevant increase of program length. Therefore and for the purpose of a fair
comparison with recombination, segment mutations have been implemented in Section
5.7.5 such that the maximum segment length of both insertions and deletions depends on
the length of programs in the population. This may, however, guarantee similar segment
lengths and step sizes as recombination only if programs grow similarly large.

Operator SSE Length Variations (%)
mean std. abs. eff. % constr. neutral noneff.

segmut 12.6 1.3 72 28 39 5.1 26 18
effsegmut 4.1 0.3 31 23 76 7.6 19 6
onesegmut 4.2 0.5 92 38 42 4.6 26 21
effonesegmut 2.0 0.1 43 32 74 7.3 19 8

Table 5.7: mexican hat: Comparison of different segment mutation operators. Average
results over 100 runs after 1000 generations.

Operator CE Length Variations (%)
mean std. abs. eff. % constr. neutral noneff.

segmut 27.3 0.7 121 61 50 3.3 25 15
effsegmut 28.1 0.7 35 29 82 5.3 18 4
onesegmut 21.2 0.6 126 65 51 2.4 27 19
effonesegmut 19.1 0.5 67 54 81 4.1 18 4

Table 5.8: spiral: Comparison of different segment mutation operators. Average results
over 100 runs after 1000 generations.

It is an important result that recombination does not perform better than segment mu-
tations here. Recall from the discussion in Section 5.7.7 that this may be taken as an ar-
gument against the building block hypothesis. Interestingly, with two-segment mutations
(segmut) the prediction performance is hardly different from crossover. Only one-segment
mutations (onesegmut) show more significant improvements compared to one-segment re-
combination, especially for the mexican hat problem. As noted above, mexican hat is
better solved with a more reduced growth of programs, in contrast to the spiral problem.
A better performance of one-segment mutations (compared to two-segment mutations)
may not only result from (a reduction of the absolute step size by) a smaller program
size which is almost equally reduced for both types of segment mutations here. Instead,
the twice as large absolute step size of two-segment variations (according to Definition
5.3) must be responsible for this. Beyond a certain average step size results may be only
slightly different. We will demonstrate in Section 9.8.6 that larger segments are correlated
to larger fitness changes only until a certain segment length. This is argued to be a result
of the imperative program structure and its more-or-less linear data flow (see Section 3.3).
Besides, one-segment and two-segment mutations differ more strongly in the prediction
error than the two corresponding recombination operators in Section 5.9.1. Note that the
average step size of mutations is smaller already because of a smaller size of solutions.
It is an interesting question why smaller (effective) programs occur with segment mutations
than with recombination although in both cases the segment size is limited by the program
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size only. Possible reasons for this will be discussed in Section 9.9.1. We only note here
that the difference in program size increases with a larger maximum program length (200
instructions here) since recombination is much more influenced by this.
A slightly better performance but definitely smaller solutions are obtained if it is explicitly
guaranteed that each instruction of an inserted segment is created effectively (effoneseg-
mut). On the one hand, this reduces the rate of noneffective (neutral) variations. Nonef-
fective variations still occur here for a small probability mostly because of the 25 percent
free micro mutations that are applied together with each macro operator. Only some non-
effective operations may result from segment deletions, too. Note that it is not explicitly
guaranteed here that a deletion is effective.
On the other hand, the proportion of (structurally) noneffective instructions is significantly
smaller compared to using free segment mutations. First, such noneffective instructions
are not directly created, but may occur only indirectly by deactivations of depending
instructions. Second, deleted segments may still contain noneffective instructions while
inserted segments are fully effective (see next section). This corresponds to an explicit
shrink bias in terms of the noneffective code. Hence, the effective step size may hardly be
reduced by a higher rate of structural introns in programs.
Exchanging fully effective segments does not seem to have a negative influence on the pre-
diction performance here in terms of a higher effective step size. This may be compensated
at least partly by smaller absolute step sizes that result from the smaller programs.
When using effective two-segment mutations (effsegmut) code growth is even more reduced
than this occurs with effective one-segment mutations. First, this operator allows non-
effective code to be replaced by effective code but not vice versa. Second, the standard
deviation of segment lengths over a run is smaller than this occurs with the more proba-
bilistic one-segment mutations (effonesegmut). Both factors have a negative influence on
code growth and may become relevant here since most positive influences are excluded as
far as possible. As for the spiral problem, code growth may be too much restricted to let
more efficient solutions emerge. Instead, the performance is improved significantly with
the mexican hat problem.
But why is the program length not increased by semantic introns here as this has been ob-
served with effective crossover (effcross) above ? Apparently, the creation of both semantic
and structural introns is much more limited when using (effective) segment mutations (see
Section 9.9.1).

5.9.3 Crossover Rate

In Section 5.8 we have used a configuration of variation rates that assigns 75 percent to
macro variations and 25 percent to micro mutations. In this way, it is guaranteed that
the macro operator dominates variation while still enough modifications happen inside
instructions (by micro mutations).
Tables 5.9 and 5.10 compare results for different crossover rates pcross in percent while the
probability for micro mutations is pmicromut = 100−pcross, accordingly. Only one variation
is applied at a time, i.e., between two fitness evaluations. The more micro mutations
are applied, the smaller the average step size becomes, but the more variations become
noneffective and neutral, too. The advantage of smaller step sizes seems to outweigh the
disadvantage of less effective variations here. In both problem cases, the best performance
has been achieved with the smallest crossover rates (10 percent here). Although only a few
macro variations are responsible for code growth then, programs still grow almost equally
large which is a result of the unrestricted step size of crossover.
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Crossover (%) SSE Length Variations (%)
mean std. abs. eff. % constr. neutral noneff.

10 9.0 1.2 121 54 45 1.5 46 44
25 12.7 1.5 150 64 43 1.8 42 40
50 13.8 1.4 170 64 38 2.7 36 33
75 15.4 1.5 180 67 37 4.9 26 22
100 23.5 1.4 182 48 26 6.1 27 22

Table 5.9: mexican hat: Comparison of different crossover rates (in percent). Average
results over 100 runs after 1000 generations.

Crossover (%) CE Length Variations (%)
mean std. abs. eff. % constr. neutral noneff.

10 14.9 0.7 142 88 62 0.6 42 30
25 17.6 0.7 164 99 60 0.9 39 27
50 23.0 0.7 178 99 56 1.9 31 22
75 26.1 0.7 185 102 55 3.6 23 14
100 34.5 0.6 187 98 53 5.8 17 8

Table 5.10: spiral: Comparison of different crossover rates (in percent). Average results
over 100 runs after 1000 generations.

There is an especially large decrease in performance if crossover is applied exclusively com-
pared to using micro mutations for 25 percent. Crossover may only recombine program
components (instructions) that already exist in the previous generation but does not intro-
duce new instructions. By the influence of selection and reproduction the concentration of
certain instructions may be reduced significantly. This is avoided by applying mutations
at least for a small percentage.

5.9.4 Analysis of Crossover Parameters

Linear crossover has been defined as the mutual exchange of a contiguous sequence of in-
structions between two individual programs in Section 5.7.1. In the following the influence
of the three crossover parameters

¤ Maximum length of segment

¤ Maximum difference in segment length

¤ Maximum distance of crossover points

on prediction performance, program growth and, variation effects is analysed. Note that
the term crossover point refers to the first absolute position of a segment. All lengths
and distances are measured in instructions and are selected uniformly distributed from
the predefined maximum ranges.
Tables 5.11 and 5.12 show the results of different maximum thresholds for the segment
length, ranging from two2 instructions only to all instructions of a program which does

2Code growth would not be possible with maximum segment length 1 since crossover exchanges, by
definition, at least one instruction.
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not impose any restrictions. Segment lengths are selected uniformly distributed from the
maximum range. For both problems, mexican hat and spiral, the best fitness has been
found if at most 5 instructions are allowed to be exchanged. Especially in case of the
spiral problem the growth of programs seems to be too restricted with segment length 2
to develop competitive solutions.

Maximum SSE Length Variations (%)
Segment Length mean std. abs. eff. % constr. neutral noneff.

2 4.3 0.6 50 31 63 3.8 29 26
5 3.5 0.5 107 50 47 3.5 31 28
10 8.5 1.2 146 58 40 3.6 31 28
20 10.9 1.3 169 65 38 3.9 30 26
50 13.3 1.3 177 65 37 4.5 27 24
– 15.4 1.5 180 67 37 4.9 26 22

Table 5.11: mexican hat: Effect of maximum segment length using crossover (cross). Av-
erage results over 100 runs after 1000 generations.

Maximum CE Length Variations (%)
Segment Length mean std. abs. eff. % constr. neutral noneff.

2 17.4 0.6 54 38 70 1.6 29 21
5 12.8 0.6 125 77 61 1.7 33 20
10 18.8 0.6 166 99 60 2.0 29 18
20 22.0 0.7 180 102 56 2.7 26 17
50 24.8 0.7 185 103 56 3.2 24 15
— 26.1 0.7 185 102 55 3.6 23 14

Table 5.12: spiral: Effect of maximum segment length using crossover (cross). Average
results over 100 runs after 1000 generations.

Basically, the relative influence on the average fitness decreases with larger maximum seg-
ment lengths here because of the following reasons. First, the average segment length
is relatively small even for unrestricted two-point crossover (less than 25 percent of the
program length on average). Second, because of a more-or-less linear data flow the influ-
ence of the segment length may be proportional to the program length only to a certain
degree (see also Section 9.8.6). Finally, code growth is reduced significantly only when
using relatively small upper bounds for the segment length. Due to restrictions by the
maximum program length (200 instructions here) there is no significant difference in the
average program length beyond a certain maximum segment length anymore. A reduction
of program lengths indirectly influences the average segment length again since a segment
may not be larger than the program from which it originates.
The rate of effective code decreases with the maximum segment length, i.e., the rate of
noneffective code increases. Since smaller segments mean smaller (absolute) step sizes
there is less need to reduce the effective step size of crossover by developing more intron
code (see also Chapter 9). It is interesting to note that the rates of noneffective and neutral
variations are less affected in Tables 5.11 and 5.12 by a restriction of the segment length.
The higher probability of smaller replacements to be noneffective or effectively identical
is mostly compensated here by a higher proportion of effective code.
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These results imply that the average variation step size of (unrestricted) standard crossover
is too large. A strong restriction of the segment length, however, may not be regarded
as real crossover anymore. At least, the idea of combining advantageous building blocks
from different programs may be questioned if the building blocks only comprise a few
(effective) instructions. This might be used as another argument against the building
block hypothesis (see Section 5.7.7).

Max. Segment SSE Length Variations (%)
Length Difference mean std. abs. eff. % constr. neutral noneff.

1 3.6 0.5 48 29 60 5.4 24 21
2 4.4 0.7 77 41 54 5.2 25 22
5 7.7 1.1 124 56 45 5.2 24 21
10 10.1 1.2 159 61 39 5.0 25 22
20 13.7 1.4 175 65 37 4.9 25 22
50 15.4 1.4 183 66 36 4.9 26 23
– 15.4 1.5 180 67 37 4.9 26 22

Table 5.13: mexican hat: Effect of maximum difference in segment length using crossover
(cross). Average results over 100 runs after 1000 generations.

Max. Segment CE Length Variations (%)
Length Difference mean std. abs. eff. % constr. neutral noneff.

1 20.8 0.6 56 41 73 3.6 22 14
2 18.5 0.7 91 63 69 3.6 23 13
5 20.6 0.7 151 91 60 3.4 25 15
10 23.3 0.7 173 97 56 3.6 24 15
20 24.6 0.6 182 100 55 3.5 24 15
50 25.5 0.6 186 101 55 3.6 23 15
— 26.1 0.7 185 102 55 3.6 23 14

Table 5.14: spiral: Effect of maximum difference in segment length using crossover (cross).
Average results over 100 runs after 1000 generations.

For the following considerations we assume that the segment length is unrestricted again.
Instead, we limit the maximum difference in length between the two exchanged crossover
segments. For this purpose, we select one segment freely in one of the parents. The position
of the second segment is selected without restrictions from the other parent. Only for the
length of this segment it is guaranteed that a maximum distance from the length of the
first segment is not exceeded. In this way, a form of size fair crossover is implemented in
linear GP (see also Section 5.7.1). Langdon found that size fair crossover reduces bloat in
(tree-based) genetic programming [56].
In general, Tables 5.13 and 5.14 document similar results as found with a restriction
of the segment length above. This may be interpreted in such a way that a smaller
maximum difference in segment length reduces the crossover step size in a similar way as
this results from using a smaller maximum segment length. The more similar the lengths
of the exchanged segments are the less programs can increase in length during a crossover
operation.
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Conclusively, the potential speed of code growth depends on both the size and the differ-
ence in size of the exchanged code fragments. However, while an exchange of very small
segments may hardly be regarded as crossover, this is not the case for the size fair imple-
mentation. On the contrary, size fair crossover is even more closely related to crossover
in nature. Crossed DNS strings are not only of a similar length but happen at similar
positions (crossover points), too. The distance of crossover points is investigated in the
next experiment.

Maximum SSE Length Variations (%)
Point Distance mean std. abs. eff. % constr. neutral noneff.

0 25.1 1.3 184 60 33 1.5 82 75
2 21.3 1.4 182 79 43 3.3 50 45
5 20.2 1.4 181 77 43 3.8 41 37
10 19.4 1.5 181 80 44 4.5 33 30
20 18.5 1.5 180 75 42 4.4 31 29
50 17.1 1.4 180 71 40 4.4 29 27
– 15.4 1.5 180 67 37 4.9 26 22

Table 5.15: mexican hat: Effect of maximum distance of crossover points (cross). Average
results over 100 runs after 1000 generations.

Maximum CE Length Variations (%)
Point Distance mean std. abs. eff. % constr. neutral noneff.

0 26.7 0.7 186 90 49 0.5 82 47
2 22.6 0.8 183 87 47 1.6 52 30
5 21.5 0.6 182 98 54 2.0 41 24
10 20.3 0.6 182 98 54 2.2 36 22
20 22.5 0.7 181 100 55 2.6 32 20
50 25.7 0.6 185 103 55 2.9 28 18
— 26.1 0.7 185 102 55 3.6 23 14

Table 5.16: spiral: Effect of maximum distance of crossover points (cross). Average results
over 100 runs after 1000 generations.

Different maximum distances of crossover points in the two parent individuals are tested
in Tables 5.15 and 5.16. In contrast to the results that have been found with the other
crossover parameters, the results are more different here for both test problems. While
mexican hat is clearly better solved without such a restriction of variation freedom, the
spiral problem seems to profit slightly from more similar positions of crossover points. If
the crossover points are selected below a certain optimum distance, however, the prediction
error increases again. This is especially true for minimum distance 0. Apparently, if only
equal crossover points are allowed evolution is restricted significantly in its ability to
move code fragments from one program region to another. This may lead to a loss of
code diversity among the population individuals. We may conclude that a free choice of
crossover points in both parents is important, at least to a certain extent.
In comparison with the two other parameters the maximum distance of crossover points
has a lower impact on the (effective) program size. Instead, the rate of noneffective (and
thus neutral) variations increases significantly if the crossover points are chosen more
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similarly, especially with distance 0. This is a direct hint that the diversity of effective
code is negatively affected here because (effectively) identical segments are exchanged for
a higher probability. Similar observations have been made with one-point crossover in
Section 5.9.1 where the endpoints of segments – instead of the starting points here – are
always identical.
Consequently, only if both smaller differences in segment lengths and smaller distances
of crossover points have a positive influence on the performance, homologous crossover –
combining both attributes – may be beneficial (see Section 5.7.1). Otherwise, these two
criteria may work against each other.

5.9.5 Explicit Introns

Many implicit introns in linear genetic programs reduce the number of effective instructions
that may be exchanged by crossover. However, this positive influence on the effective
crossover step size is limited by reactivations of intron instructions. The higher the intron
rate is the more of such side-effects may occur, on average. We test whether explicitly
defined introns (EDIs, see Section 5.7.6) may provide a more reliable reduction of effective
step sizes.
On the other hand, explicit introns constitute a method for controlling the number of
coding (non-EDI) instructions, i.e, the actual program complexity. Since both implicit
(structural) introns and explicit introns can be removed efficiently before the fitness cal-
culation in linear GP (see Section 3.2.1) an acceleration of runtime may only result from
a smaller effective size.
We have seen above that the growth of effective code is accelerated significantly with
crossover if all noneffective instructions are removed directly after each operation. From
this we followed that without structural introns there is more need for expanding the
effective code by semantic introns. While such effective variations necessarily increase the
effective step size explicit introns have been introduced for exactly the opposite reason.
We may assume that the creation of semantic introns is more suppressed in the presence
of explicit introns than this is already true in the presence of structural introns.
In both Tables 5.17 and 5.18 a maximum initialization with explicit introns reduces the
average size of effective code almost by half and produces the best prediction results. Im-
plicit introns emerge less, depending on the amount of empty instructions that is provided
in the initial population. Note that in all configurations the same amount of non-empty
initial instructions is used (10 instructions on average). It may be noted also that explicit
introns are not allowed to follow directly after a branch instruction in programs. This
has been found to reduce the probability significantly that a branch is followed by an
(effective) operation and, therefore, produces worse results.
Even though the rate of effective instructions decreases almost by half if the initial popu-
lation is filled up with explicit introns, intron segments are not exchanged more frequently.
This is why the rate of noneffective and neutral operations stays more-or-less the same in
Tables 5.17 and 5.18. In the first place, this is a result of the large unrestricted step size
of crossover.
In general, the larger the initial programs are the more quickly the average program size
grows up to the maximum (see Figure 5.7). This is simply due to the absolute step size
of unrestricted crossover that increases proportionally with the absolute program size. As
long as programs grow, the step size grows, too. Only after code growth has been stopped
by the maximum length bound or if the size of initial programs is already maximum, the
average absolute step size is constant.
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Initial EDIs SSE Length EDIs Variations (%)
n× mean std. abs. eff. % # % constr. neutral noneff.
0× 15.4 1.4 180 67 37 — — 4.9 26 22
1× 11.4 1.3 186 50 27 73 39 4.9 26 22
2× 8.5 1.1 190 42 22 102 54 4.8 26 23
4× 7.5 1.1 194 37 19 123 63 4.8 26 23

max 5.6 0.7 200 30 15 147 74 4.5 28 25

Table 5.17: mexican hat: Effect of empty instructions (EDIs) on crossover (cross). Number
of empty instructions in an initial program equals n times the number of non-empty
instructions (10 on average). Average results over 100 runs after 1000 generations.

Initial EDIs CE Length EDIs Variations (%)
n× mean std. abs. eff. % # % constr. neutral noneff.
0× 26.1 0.7 185 102 55 — — 3.6 23 14
1× 25.4 0.7 190 75 40 57 30 3.4 23 16
2× 24.2 0.7 193 67 35 84 44 3.3 23 15
4× 22.2 0.7 195 59 30 100 51 3.3 24 18

max 18.1 0.6 200 54 27 121 61 2.7 24 16

Table 5.18: spiral: Effect of empty instructions (EDIs) on crossover (cross). Number
of empty instructions in an initial program equals n times the number of non-empty
instructions (10 on average). Average results over 100 runs after 1000 generations.

If empty instructions are seeded additionally into the initial population the effective step
size decreases for two reasons. First, the more explicit introns are provided initially the
less implicit (structural) introns are found and the smaller is the proportion of effective
code (due to less semantic introns). Because explicit introns are independent from the
structural and semantic program context they allow the size of effective code to be more
independent from the absolute program size. Second, the effective step size may not be
increased indirectly by reactivations of introns, if these comprise empty instructions.
Figure 5.7 illustrates the development of average program lengths and average intron
rates in the population for different initial amounts of explicit introns. Without using
explicit introns the implicit (structural) introns grow quickly at the beginning of a run
until the program length is almost maximum. After that point in about generation 200
the noneffective code decreases slowly towards the end of a run due to a still growing
effective code, which replaces noneffective instructions more and more by effective ones.
If explicit introns are provided the proportion of implicit introns develops smaller. If the
initial programs are completely filled up with explicit introns, the implicit intron rate
reaches only about 10 percent of the maximum length at the end of runs with both test
problems.
Besides, the more explicit introns are provided in initial programs the smaller the effective
code develops. On the one hand, like structural introns such introns take away pressure
from the effective code to grow and to develop semantic introns (see Section 5.9.1). Re-
call that semantic introns are usually more difficult to create, depending on the problem
configuration. On the other hand, this may not be achieved just by using longer initial
programs. Because of context dependencies longer programs do not only imply a higher
amount of implicitly noneffective code but usually more effective code, too.
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Figure 5.7: mexican hat (left), spiral (right): Development of program lengths and intron
rates over the generations and for different initial amounts of explicit introns.



96 5 Design of Linear Genetic Operators

The explicit introns hardly affect the final effective program size at the end of run. Note
that the effective size is more strongly determined by a programs’ ability to solve a certain
problem task, i.e., by its fitness. Nevertheless, the effective code grows more slowly (linear)
over the generations.
At the beginning explicit introns spread fast within the population. This depends strongly
on the amount of such empty instructions in the initial population. However, the implicit
(structural) introns grow about as fast as the explicit ones if their initial numbers are the
same (see Figure 5.7). Then both types coexist for certain quantities during the whole
run. Recall that already structural introns emerge easily in linear GP. Hence, explicit
introns do not displace implicit (structural) introns in the course of a run. It is important
to provide a high amount of explicit introns right from the start.
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5.10 Instruction Mutations

The experimental results from Section 5.9 have confirmed two important presumptions. On
the one hand, when using recombination best results were obtained with a relatively small
segment length. On the other hand, segment recombination has not been found to be more
powerful than segment mutation. Both aspects motivate the use of macro mutations that
insert or delete a single (full) instruction (instruction mutations) only. Different mutation
operators and variation techniques of that kind will be described in this section. First, the
following considerations will point out why especially linear programs are probably better
developed by using minimum mutations exclusively.

5.10.1 Minimum Mutation Step Size

Why small variation steps may promise better results in genetic programming ? As noted
above, small variation steps allow a more precise approximation in general. This is due
to the fact that small structural step sizes imply small semantic step sizes for a higher
probability. Nevertheless, changing even smallest symbols in a genetic program may still
induce relatively large semantic changes, on average (see Chapter 8). Therefore, a too
strong deceleration of the global search progress by too small step sizes may be rather
unlikely. This is in contrast to other evolutionary algorithms, like evolution strategies,
that operate on a numerical representation in a more continuous search space. Also note
that, theoretically, step sizes on real-valued parameter values may be arbitrarily small.
Using small variation steps in GP better corresponds to the biological pattern, too. Most
mutations in nature affect only small parts of the genotype. This is also true for changes
caused by crossover of DNA strands due to its perfect alignment (homologous crossover)
and many identical genes. Otherwise, a high rate of viable offsprings would not be possible.
In nature genotype variations are expressed in relatively small changes of the phenotype
only. As noted in the last section, crossover in GP works quite differently. Most crossover
operations have a high destructive influence on both the genotype representations and
their phenotypes, i.e., the program behavior. One reason is that the selection of crossover
points in both parents as well as the size and structure of the two exchanged subprograms
are much less constrained. Another reason may be that the functionality of building blocks
in programs (instructions) is less place bound than the builing blocks of DNA (genes).

The following arguments suggest a higher potential of mutations in linear GP than this
is possible in tree-based GP. In particular, there are some basic reasons that let us favor
minimum mutations step sizes on the (absolute) linear program structure. That means
only one instruction may either be inserted or deleted on the macro level. On the level of
micro code, i.e, inside instructions, minimum components of instructions are exchanged
as usual.
First, already single micro mutations that exchange a register index in an instruction may
change the data flow within a linear program heavily (see Section 3.3). Several instructions
that precede the mutated instruction may become effective or noneffective respectively.
Thus, the effective step size of instruction mutations (see Definition 5.4) may involve many
instructions even if the absolute step size is minimum.
Second, the linear program representation can be manipulated with a high degree of free-
dom. Already by definition, its graph-structured data flow allows a higher variability than
a tree due to multiple connections of nodes. This makes a constant realization of minimum
macro variations possible at each position of the program. In a tree it is rather difficult to
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delete or insert a small group of nodes at an arbitrary position. Complete subtrees might
be removed during such operations to satisfy the higher constraints of the tree structure.
In linear GP the depending substructures do not get lost when deleting or inserting an
instruction but remain within the imperative representation as inactive code or as non-
visited components of the data flow graph, respectively (see Section 3.3). The existence of
structural noneffective code in linear genetic programs prevents a loss of genetic material.
Code that has been deactivated in a program may already become active again after the
next variation.
A tree structure is less suitable to be varied by small macro (subtree) mutations exclusively,
since modification of upper program parts usually involve bigger parts of code. Smaller
structural changes are only possible in trees if smaller subtrees are replaced that are located
close to the leafs.

In contrast to that recombination may be criticized to be less suited for linear GP for the
following reasons. In tree programs crossover and mutation points can be expected to have
a stronger influence on program semantics the closer they are to the root (see Section 5.5).
In a linear program each position of an instruction may have a more similar influence on
program semantics. Recall that the underlying graph representation is restricted in width
through the provided number of registers (see Section 3.3).
Another reason against using linear recombination is that usually the contents of many
effective registers are changed simultaneously. The reason lies again in the rather narrow
data flow graph of linear genetic programs. Such a graph is disrupted easily when applying
crossover to the imperative program structure by what several program paths may be
redirected simultaneously. As a result, crossover step sizes may become quite large, on
average. In tree-based GP, by comparison, crossover only affects a single point in data
flow that is the root of the exchanged subtree.
However, it has to be noted that to a certain degree the effective step size of linear crossover
is decreased implicitly by increasing the proportion of structural introns (see Chapter 9).
Inactive instructions may emerge at each position in a linear program for (almost) the
same probability. In tree programs the creation of (necessarily semantic) introns is more
limited, especially at higher node levels. Additionally, the effect of linear crossover may be
reduced more directly than tree crossover by using a maximum size limit for the exchanged
instruction segments.
As discussed in Section 5.7.7, various researchers investigated mutation operators for tree-
based GP. O’Reilly and Oppacher [70] minimze the average amount of structural change
as far as possible. Nonetheless, this may only be a compromise between a restriction
of the variation freedom, on the one hand, and larger step sizes by loss of code, on the
other hand (see also discussion in Section 7.5). Chellapilla [24] defines different types of
mutation operators for tree programs ranging from the exchange of single nodes of the
same arity (micro mutation) to the exchange of complete subtrees (macro mutation). His
main interest, however, is not in a reduction of variation step sizes. Instead, he allows
several operators to be applied successively to the same individual.

5.10.2 Macro Mutations

As noted above, we only regard instruction mutations in this section. Such macro mu-
tations vary program length with a minimum effect on the program structure here by
inserting and deleting a single instruction only. In other words, they induce a minimum
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step size on the instruction level. On the functional level a single instruction node is
inserted in or deleted from the program graph, together with all its connecting edges.
We do not regard macro mutations that exchange an instruction or change the position
of an existing program instruction only. Both variations are more destructive, i.e., imply
a larger variation step size, since they include a deletion and an insertion at the same
time. This is true even if, in the first case, deletion and insertion happen at the same
program position and, in the second case, the inserted instruction originates from the same
individual. Another important argument against substitutions of single instructions is that
these do not vary the program length. If only single instructions would be exchanged there
is no code growth possible at all. In general, substitutions may be explicitly length-biased
only by applying larger absolute step sizes for either deletion or insertion.
Algorithm 5.4 has a similar structure as Algorithm 5.3. We will see below that an explicit
grow bias (pins > pdel) may have a positive influence on the performance especially if only
single effective instructions are added or removed.

Algorithm 5.4 ((effective) instruction mutation)
Parameters: insertion rate pins; deletion rate pdel; maximum program length lmax; mini-
mum program length lmin.

1. Randomly select macro mutation type insertion | deletion for probability pins | pdel

and pins + pdel = 1.

2. Randomly select an instruction at a program position i (mutation point).

3. If l(gp) < lmax and (insertion or l(gp) = lmin) then

(a) Insert a random instruction at position i.

(b) If effective mutation then

i. If instruction i is a branch go to the next non-branch instruction at a
position i := i + k (k > 0).

ii. Run Algorithm 3.1 until program position i.
iii. Randomly select an effective destination register rdest(i) ∈ Reff .

4. If l(gp) > lmin and (deletion or l(gp) = lmax) then

(a) If effective mutation then select an effective instruction i if existent.

(b) Delete instruction i.

5.10.3 Micro Mutations

Macro variations control program growth by operating on instruction level. While macro
variation points only occur between instructions micro mutation points fall on a single in-
struction component, i.e., micro mutations operate inside instructions or on sub-instruction
level. In all recombination-based and mutation-based LGP approaches of this chapter mi-
cro mutations are applied to replace single elements of instructions.
In Algorithm 5.5 three basic types of micro variations are distinguished – including oper-
ator mutations, register mutations or mutation of constants. Unless otherwise stated we
mutate (exchange) each instruction component for about the same probability. In partic-
ular, this is true for destination registers and operand registers. The modification of either
register position may affect the effective status of preceding instructions. As mentioned
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above register mutations correspond to redirections of edges in the functional representa-
tion of a linear program. That is, they manipulate the data flow in linear programs.
Constants may be replaced either by a register or by another constant depending on the
proportion of instructions pconst that hold a constant value. Throughout this thesis we
allow a constant to be set only if there is another register operand used by the same
instruction (see also Section 6.3). This is an instruction may not hold more than one
constant. Alternatively, separate constant mutations may be applied if pconstmut > 0
is true. Then a constant is selected explicitly from an instruction before it is modified
through a standard deviation (step size) dconst from the current value.

Algorithm 5.5 ((effective) micro mutation)
Parameters: mutation rates for registers pregmut, operators popermut, and constants
pconstmut; rate of instructions with constant pconst; mutation step size for constants dconst.

1. Randomly select an [effective] instruction.

2. Randomly select mutation type register | operator | constant for probability pregmut

| popermut | pconstmut and pregmut + popermut + pconstmut = 1.

3. If register mutation then

(a) Randomly select a register position destination | operand.
(b) If destination register then select a different [effective] destination register [using

Algorithm 3.1].
(c) If operand register then select a different constant | register for probability pconst

| 1− pconst.

4. If operator mutation then select a different instruction operator randomly.

5. If constant mutation then

(a) Randomly select an [effective] instruction with a constant c.
(b) Change constant c through a standard deviation dconst from the current value:

c := c +N (0, dconst).

Since we guarantee for each genetic operator that there is a structural variation of the
program code at all, identical replacements of code elements are avoided explicitly during
micro mutations by Algorithm 5.5. As noted above, there is no exchange of instructions
practiced with macro mutations.

5.10.4 Effective Instruction Mutations

When using macro mutations that change a single instruction only, more variations will
become fitness-neutral, on average. Because mutation step sizes are small, many mutations
stay noneffective, i.e., do not alter the structural effective code. To compensate this
we introduce effective instruction mutations that avoid noneffective variations explicitly
by concentrating mutations on the effective parts of a linear genetic program. This is
motivated by the assumption that mutations of effective instructions may be less likely
invariant (neutral) in term of a fitness change.
Effective mutations respect the functional structure of a linear genetic program (see Sec-
tion 3.3) such that only the effective graph component is developed. In doing so, infor-
mation about the functional program structure is introduced into the genetic operator.
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The amount of noneffective code may be affected indirectly only through deactivations of
depending instructions, i.e., disconnection of effective subgraphs.
We consider different approaches to effective mutation operators. The three approaches
discussed mostly differ in terms of the way effective macro mutations are realized. Effective
micro mutations simply select an effective instruction in Algorithm 5.5. If this does not
exist, the destination register of a random instruction may be set effective.
One variant (effmut2) guarantees that both inserted and deleted instructions always alter
the effective code. This includes that noneffective instructions are not selected explicitly for
variation. The standard variant of effective mutations (effmut) allows (single) noneffective
instructions to be deleted. In order to guarantee that the effective code is altered an
effective (micro) mutation may directly follow such intron deletions. However, this may
result in further deactivations of depending instructions and, thus, in more noneffective
code. By allowing pure intron deletions, instead, the noneffective code is definitely reduced
in the course of the evolutionary process compared to variant effmut2 (see below).
The explicit deletion of an effective or noneffective instruction is not complicated. Since
the information about the effectiveness or non-effectiveness of an instruction is saved and
updated in the linear program representation each time before the fitness calculation,
no additional application of Algorithm 3.1 is necessary for effective micro mutations or
effective deletions. After intron deletions the effective status does not have to be recalcu-
lated. Only after an effective variations the effectiveness of program instructions has to
be verified.
If an instruction is inserted that is supposed to be effective afterwards, on the other hand,
this has to be assured explicitly (see Algorithm 5.4). In particular, its destination register
is chosen such that the instruction becomes effective at its position in the program. The
choice of the operand registers is free. Recall from Definition 3.3 that a register is effective
at a certain program position if its manipulation can effect the output of a program.
Like the detection of effective code, effective registers can be identified efficiently in linear
runtime O(n). This is done by stopping Algorithm 3.3 at a certain program position
i. Then set Reff holds all registers that are effective at that position. An insertion of
a branch instruction automatically becomes effective if the next non-branch instruction
is effective. Otherwise, the destination register of this assignment is exchanged by an
effective one.
If the program length is minimum only an insertion is possible. Accordingly, if the program
length is maximum a deletion is applied next in Algorithm 5.4. Alternatively, an insertion
might be allowed to replace another (effective) instruction in the latter case. But then
the absolute step size is increased. It is not a feasible alternative to replace always a
noneffective instruction by an effective one. This would definitely restrict the free choice
of the mutation point because the rate of noneffective code may be quite small when using
effective mutations. It must be noted, however, that this situation hardly occurs (see
Section 5.11). Since programs grow relatively slowly by effective mutations the maximum
program length may easily be chosen sufficiently large such that it is not reached within
the observed number of generation.
There is only one situation where an effective deletion or insertion is not changing the
effective code. This is the case if an instruction that is identical to the deleted/inserted
one becomes effective/noneffective at the same position in the effective program. However,
since this situations occurs only very rarely, it may be neglected.
In a third approach (effmut3) all emerging noneffective instructions are deleted directly
after applying mutations of variant effmut2. If this would be done after free mutations, it is
only guaranteed that deletions and micro mutations are effective. However, if instructions
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are not inserted effectively code growth might be too much restricted by a substantial loss
of genetic material. By removing the structurally noneffective code completely linear GP
becomes more similar to tree-based GP where such (disconnected) code does not exist
because each node must be connected.

5.10.5 Minimum Effective Mutations

We implemented mutations on macro level and on micro level that induce a minimum
change of the linear program structure. That is, the absolute mutation step size is mini-
mum, i.e., comprises one instruction for macro mutations and one instruction component,
i.e., one register, constant or operator, for micro mutations. Effective mutations assure
that the (structurally) effective code is changed. However, it is not possible to predict for
an (effective) mutation how many depending effective instructions will be deactivated or
how many noneffective instructions will be reactivated afterwards. That is, these genetic
operators do not explicitly guarantee that a certain effective variation step size (Definition
5.4) is met.
Minimum effective mutations reduce the effective variation distance between parent and
offspring implicitly to the minimum. For micro mutations this means step size 0, i.e,
no program instruction (above the mutated one3) is allowed to change its effectiveness
degree. For macro mutations this is postulated for all instructions except for the inserted
or deleted one, i.e. the minimum step size is 1. Variation operators have to select both
the (effective) mutation point and the mutated code in such a way that no preceding
program instruction is deactivated or reactivated. To achieve this information about the
functional/data dependences within a linear genetic program may be used. We have
demonstrated in Section 3.3 that linear genetic programs may be described by a directed
acyclic graph (DAG). Minimum effective mutations only change one contiguous component
of the graph, namely the effective one, while not allowing code to become non-contiguous.
Even if the choice of mutation point is free it would be unnecessarily complicated and
computationally expensive to calculate a minimum effective mutation deterministically.
Especially, full instruction mutations would require many register dependencies to be
observed simultaneously and the effects of many potential mutations to be checked in
advance. Instead, a minimization of effective step sizes may be better achieved by a
probabilistic trial-and-error approach. This differs from an algorithmic calculation such
that the effective mutation step size is meassured explicitly after a random mutation by
means of a structural distance metric. A mutation is simply repeated then until a desired
maximum distance is met.
It is important to note that the probabilistic induction does not increase the number of fit-
ness evaluations. Only the structural step size has to be recalculated during each iteration
which, however, does not require more than linear costs. The whole probabilistic induc-
tion of minimum step sizes will turn out to be runtime-efficient, because the probability
decreases over a run that more than one trail is needed (see Chapter 8).
Actually, the effective code is able to protect itself by a increasing robustness against larger
deactivations of effective code. We will see in Section 8.7.2 that this is mostly due to the
number of usage connections between instruction registers that increase over a run. As a
result, effective step sizes are already quite small, on average, when using normal effective
mutations (implicit reduction of effective step sizes).

3Instructions below the mutation point cannot be affected.
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5.10.6 Free Mutations

If we allow both noneffective and effective mutations to occur without imposing any kind
of restriction this will be referred to as free mutations or random mutations (abbr. mut).
In the last sections we have discussed operators that guarantee a modification of the
effective code. Such code-effective mutations reduce the number of neutral variation effects
significantly compared to random mutations. That is, more variations become constructive
or destructive on fitness level accordingly. In general, the vast majority of non-neutral
fitness changes is destructive (see Section 5.11.1).
When comparing effective and free mutations on the basis of generations, the effective
variant is usually superior because evolution may progress faster within the same period
of time. This is true because with the free variant the resulting number of effective oper-
ations is significantly lower and depends strongly on the ratio of effective and noneffective
instructions in programs.
As mentioned in Section 5.2 the fitness does not have to be recalculated after noneffec-
tive variations since those are definitely neutral in terms of a fitness change. In other
words, only effective variations cause (relevant) computational costs. Thus, if we compare
both mutation variants after the same number of evaluations, but evaluate offsprings from
effective variations only, the comparison becomes fair in terms of the computational over-
head. Note that detecting the effectiveness or non-effectiveness of a variation after it has
been executed requires the application of Algorithm 3.1 just as it is necessary for inducing
effective mutations directly through the mutation operator. In this way, both mutation
variants fall back on the information of where the effective code is located. It has to be
considered, however, that the absolute (not the effective) variation step size is larger with
the free variant, on average, because several (noneffective) mutations may happen between
two fitness evaluations.

5.10.7 Explicit Induction of Neutral Mutations

The effective mutation approach has been introduced in Section 5.10.4 to increase the rate
of non-neutral variations implicitly. Another interesting approach, that can give insight
into the meaning of neutral variations in linear GP, may do exactly the opposite. The
neutrmut operator transforms (most) destructive mutations into neutral or constructive
ones. Therefore, it controls the direction explicitly in which the fitness of an individual
is changing after a variation. The probabilistic control mechanism simply repeats an
instruction mutation (mut) as long as it is destructive. Only after a maximum number of
nmaxiter > 1 trails (iterations) a destructive variation is tolerated. Before each iteration the
original state of the parent individual is restored. Offsprings from non-accepted variations
are not exposed to evolution, of course. Each iteration produces extra computational costs
in form of an additional fitness calculation. Only if the final variation is noneffective an
evaluation is redundant and may be saved. The case nmaxiter = 1 corresponds to applying
standard mutations.
Creating a high proportion of offsprings that result from a neutral variation may be ex-
pensive in terms of the number of evaluations. Usually more than one fitness calculation is
necessary, on average, until an offspring is accepted to become part of the population. On
the other hand, most neutral variations do not alter the effective code, i.e., are noneffective
(see Section 5.11.1). This arises the question why not increasing the rate of noneffective
(neutral) variations (abbr. noneffmut) directly. A probabilistic control may execute the
mutation first and verify its effectiveness status afterwards. This is repeated until either a
mutation is noneffective or a maximum number of iterations has been exceeded. Whether
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a variation is effective or noneffective can be verified efficiently since it requires a structural
program analyses by Algorithm 3.1 only. This reduces the control of a semantic variation
effect (neutrality) to the control of a structural variation effect.
A deterministic calculation of noneffective mutations, as applied for effective mutations in
Section 5.10.4, is not practiced here. One reason is that, in general, non-effectiveness of
variations is more complicated to guarantee than effectiveness, especially if the variation
point is fixed beforehand. While in the latter case, only a single effective instruction has
to be changed, in the former case, the effectiveness status of all instructions may not be
changed.
Another reason originates from the fact that 100 percent noneffective variations do not
make sense in any way, since the effective code as well as the fitness would never change.
Instead, we are interested in an adjustable bias towards more noneffective variations. The
maximum number of iterations nmaxiter represents such a parameter.
Since the vast majority of neutral variations is noneffective, almost only the noneffective
code is modified. To induce more neutral variations on the effective code (effective neutral
variations) those must be controlled explicitly (abbr. neutreffmut). One way to achieve
this is to apply the described probabilistic approach together with a certain percentage of
effective mutations (effmut2 here). Recall that effective mutations are calculated determin-
istically (see Section 5.10.4). Increasing the probability of (effective) neutral mutations,
instead, requires a trial-and-error method since it involves program semantics.
Not allowing mutations to become destructive may be regarded as an (1+1)EA selection
[91] between parent and offspring. In an (1+1)EA the offspring only replaces the parent if
its fitness is the same or better. This is different from a brood selection [94] where several
offsprings of the same parent compete in a (tournament) selection process and only the
winner gets into the population.
The reader may note that avoiding both destructive and neutral mutations in the same
way, may not be a feasible alternative. Too many iterations and, thus, additional fitness
evaluations would be necessary until an offspring is accepted and to increase the number
of constructive variations significantly. Then a smaller maximum number of iterations
would be almost always exceeded and a significant amount of variations would be still
destructive. Moreover, the variation freedom may be too much restricted without neutral
variations such that many intermediate variation steps are not possible only because they
are not directly advantageous.
For a more general discussion about neutral variations we refer to Section 9.4 here.

5.11 Experiments II: Instruction Mutations

The different types of instruction mutations, which have been introduced in Section 5.10
above, are now compared with regards to the prediction performance and the (effective)
size of solutions. Besides, the influence of certain control parameters on both criteria are
in the center of interest. In particular, this includes the number and the distribution of
mutation points as well as the use of an explicit grow bias.

5.11.1 Comparison of Instruction Mutations

The following eight Tables 5.19 to 5.26 compare the different approaches to mutation
operators for all test problems from Section 5.8.1. The compared features comprise the
mean best prediction error over 100 runs together with the statistical standard error (std.).
Additionally, the number of hits is given, i.e., the number of times (from 100) how often
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Operator Config. SSE #Hits Length Variations (%)
mean std. abs. eff. % constr. neutral noneff.

mut 6.5 0.3 0 78 32 41 0.5 63 62
noneffmut maxiter 2 12.0 0.5 0 53 15 29 0.03 84 84

maxiter 3 16.7 0.4 0 33 6 20 0.005 90 90
neutrmut maxiter 2 5.4 0.3 1 84 38 45 0.3 81.5 80.9

maxiter 3 6.0 0.3 0 87 42 48 0.2 89.4 88.6
neutreffmut effmut 25% 3.7 0.2 0 98 52 53 0.8 70 68

effmut 100% 1.4 0.2 14 60 37 62 13.1 15 0
effmut 2.2 0.2 16 29 24 80 8.2 9.4 4.9
effmut2 2.6 0.3 6 65 36 56 9.6 5.9 0
effmut3 1.9 0.2 15 23 23 100 9.3 6.4 0

Table 5.19: distance: Comparison of different (macro) mutation operators using bias
configuration B1 for effective mutations and B0 otherwise. Average results over 100 runs
after 1000 generations.

Operator Config. SSE #Hits
mean std.

mut 5.0 0.3 0
noneffmut maxiter 2 6.3 0.3 0

maxiter 3 6.2 0.3 1
neutrmut maxiter 2 4.4 0.3 1

maxiter 3 5.5 0.3 0
neutreffmut effmut 25% 4.0 0.3 0

effmut 100% 2.7 0.3 14

Table 5.20: distance: Comparison of different (macro) mutation operators using bias
configuration B0. Average results over 100 runs after 1000000 (effective) evaluations.

the optimum has been found.
Absolute and effective program size are averaged over all individuals that occur during
a run. Note that the size of best solutions remains almost identical to the average size
of solutions. The reason is in the small standard deviation of (effective) lengths in the
population that is smaller than 5 instruction. Both is a direct consequence from using
minimum step sizes on the instruction level here.
Finally, we compare the distribution of variation effects, including constructive, neutral,
and noneffective variations.
The results of the same runs are compared on the basis of two different measurements,
generations and effective evaluations. In the first case, the number of new individuals in
the population, i.e., all accepted variations, are regarded. In the second case, these are the
effective variations only, but including the genetic operations that are not accepted during a
neutrality control. The reader may recall from Section 5.2 that fitness is recalculated only
if the effective code has been changed. Thus, a performance comparison on the level of
effective evaluations better considers the computational costs. Nonetheless, comparisons
on the level of generations are indispensable for experimental analyses concerning, e.g.,
program growth or variation effects. By abstracting from the computational costs of a
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Operator Config. SSE Length Variations (%)
mean std. abs. eff. % constr. neutral noneff.

mut 3.5 0.5 140 60 43 0.8 54 52
noneffmut maxiter 2 8.6 1.0 146 59 40 0.2 80 79

maxiter 3 17.6 1.4 131 39 30 0.02 86 86
neutrmut maxiter 2 1.4 0.2 154 76 49 0.6 72 70

maxiter 3 1.5 0.2 158 83 53 0.6 82 80
neutreffmut effmut 25% 0.9 0.11 154 82 53 1.0 66 63

effmut 100% 0.3 0.03 82 58 71 9.8 22 0
effmut 0.9 0.06 39 33 85 6.9 14 3.6
effmut2 1.0 0.06 57 39 69 7.6 12 0
effmut3 1.1 0.07 27 27 100 7.8 11 0.1

Table 5.21: mexican hat: Comparison of different (macro) mutation operators using bias
configuration B1. Average results over 100 runs after 1000 generations.

Operator Config. SSE
mean std.

mut 2.3 0.4
noneffmut maxiter 2 3.9 0.5

maxiter 3 4.5 0.5
neutrmut maxiter 2 1.2 0.4

maxiter 3 1.4 0.2
neutreffmut effmut 25% 1.1 0.13

effmut 100% 0.6 0.06

Table 5.22: mexican hat: Comparison of different (macro) mutation operators using bias
configuration B1. Average results over 100 runs after 1000000 (effective) evaluations.

variation and by comparing evolutionary progress after the same number of newly created
solutions in the population, we may obtain fundamental knowledge that not only gives
us a better understanding of GP but can be valuable for designing more efficient genetic
operators.
The results obtained with effective mutations (effmutX) are given only for one unit of
time measurement. Depending on the implementation the rate of noneffective variations
is very small or zero with this operator. Thus, results after 1000 generations or 1000000
effective evaluations (with population size 1000) differ only very slightly or not at all. In
general, the performance of a genetic operator is the more similar with both measurements
the less noneffective variations it produces and the less variations are rejected during a
neutrality control (if used). The effective mutation operator implicitly increases the rate
of non-neutral variations including a higher rate of both destructions and constructions
while destructions are by far the most dominating variation effect. About 85 percent of all
variations are destructive with the tested approximation problems and about 65 percent
with the classification problems.
All three different variants of effective mutation operators (see Section 5.10.4) work almost
equally well here. Little differences may result either from a slower growth of (effective)
code due to a radical removal of all noneffective instructions (effmut3) or from a faster
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Operator Config. CE #Hits Length Variations (%)
mean std. abs. eff. % constr. neutral noneff.

mut 15.5 0.6 1 132 57 43 0.2 62 49
noneffmut maxiter 2 37.6 2.3 0 134 39 29 0.03 87 83

maxiter 3 68.4 3.1 1 124 24 19 0.007 96 95
neutrmut maxiter 2 13.4 0.7 2 142 65 46 0.1 82 64

maxiter 3 10.5 0.6 2 143 70 49 0.1 90 68
neutreffmut effmut 25% 8.4 0.5 3 143 92 64 0.1 84 41

effmut 100% 5.9 0.4 10 126 110 87 0.4 72 0
effmut 13.9 0.7 2 77 71 92 1.1 38 1.9
effmut2 12.1 0.7 5 96 84 87 1.0 39 0
effmut3 14.0 0.7 1 63 63 100 1.4 34 0

Table 5.23: three chains: Comparison of different (macro) mutation operators using bias
configuration B1. Average results over 100 runs after 1000 generations.

Operator Config. CE #Hits
mean std.

mut 11.8 0.6 1
noneffmut maxiter 2 13.3 0.6 1

maxiter 3 12.3 0.7 4
neutrmut maxiter 2 11.8 0.6 2

maxiter 3 9.9 0.6 3
neutreffmut effmut 25% 9.3 0.6 1

effmut 100% 10.5 0.6 2

Table 5.24: three chains: Comparison of different (macro) mutation operators using bias
configuration B1. Average results over 100 runs after 1000000 (effective) evaluations.

growth due to a higher proportion of such instructions (effmut2). The effmut2 variant
demonstrates that the noneffective code remains small even if deletions of noneffective
instructions are not allowed explicitly (as with effmut). Note that the rate of nonef-
fective variations equals the rate of such intron deletions since all other variations are
effective. Depending on the correlation between problem fitness and program length dif-
ferent variants may be superior. For instance, variant effmut2 works better here with the
classification problems, three chains and spiral.
The effmut3 results show that the existence of structural introns in linear genetic programs
is less important, at least for the performance of effective mutations. The multiple register
usage, i.e., the graph-based data flow, in linear programs allows the effective code to protect
itself sufficiently against larger deactivations and, thus, against the loss of code (see also
Chapter 8). However, the use of an explicit grow bias (B1 here) becomes more important
with this variant of effective mutations (see also Sections 5.11.3). This compensates partly
the loss of genetic material by a faster code growth.
Effective mutations perform better than free mutations (mut) if the same number of varia-
tions (generations) is regarded. On the level of effective variations (evaluations), however,
random mutations may perform equally well or even better than mutations that vary the
effective code exclusively. This situation occurs here with the two classification problems
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Operator Config. CE #Hits Length Variations (%)
mean std. abs. eff. % constr. neutral noneff.

mut 13.6 0.6 0 128 64 50 0.3 50 42
noneffmut maxiter 2 18.0 0.6 0 139 60 43 0.03 75 72

maxiter 3 25.5 0.8 0 135 50 37 0.005 89 87
neutrmut maxiter 2 8.7 0.4 0 143 79 56 0.1 70 57

maxiter 3 6.0 0.3 1 148 83 56 0.1 83 67
neutreffmut effmut 25% 2.9 0.2 13 148 101 68 0.2 70 41

effmut 100% 2.3 0.2 20 120 109 91 0.8 55 0
effmut 8.8 0.4 2 74 69 93 1.7 24 2
effmut2 7.2 0.5 1 86 77 90 1.4 25 0
effmut3 9.0 0.4 0 56 56 100 1.9 22 0

Table 5.25: spiral: Comparison of different (macro) mutation operators using bias config-
uration B1. Average results over 100 runs after 1000 generations.

Operator Config. CE #Hits
mean std.

mut 9.0 0.4 0
noneffmut maxiter 2 9.0 0.4 0

maxiter 3 10.5 0.4 0
neutrmut maxiter 2 8.4 0.4 0

maxiter 3 6.7 0.3 1
neutreffmut effmut 25% 5.7 0.3 2

effmut 100% 7.1 0.4 5

Table 5.26: spiral: Comparison of different (macro) mutation operators using bias config-
uration B1. Average results over 100 runs after 1000000 (effective) evaluations.

and may result directly from a higher rate of noneffective neutral variations or indirectly
from a larger size of solutions. A faster code growth has turned out to be more important
for the discrete test problems than this has been found with the continuous ones, distance
and mexican hat.
The neutrmut approach applies an explicit control of neutral variations as introduced
in Section 5.10.7. After a variation is accepted or a maximum number of iterations (2
or 3 here) has been exceeded the offspring is copied into the population. Otherwise,
the operation is repeated. Thus, one variation step may require more than one fitness
evaluation, on average. This makes a comparison on the basis of evaluations necessary.
The neutrality control increases the rate of neutral variations up to about 90 percent
here. If we compare the rate of noneffective variations we can see that almost all neutral
variations are noneffective, too, as far as the approximation problems are concerned. By
comparison, for the classification problems the proportion of noneffective variations is
definitely smaller. On the one hand, neutral variations that alter the (structurally) effective
code (see Section 5.10.7) are induced more easily here because discrete fitness functions
facilitate the propagation of semantic introns. On the other hand, effective programs grow
by branches because these allow larger semantic introns and a higher specialization to the
training data.



5.11 Experiments II: Instruction Mutations 109

Since about half of the variations turns out to be noneffective (and thus neutral) already
with the standard approach (mut), the neutrality control may affect at most 50 percent of
variations only that would be destructive, otherwise. Recall that noneffective variations
do not produce computational costs in terms of fitness evaluations. Besides, we found
that already about 2 trials are sufficient, on average, to achieve that almost all mutations
become neutral. Hence, the number of necessary fitness evaluations is only doubled com-
pared to the standard approach. In other words, only about the same total number of
fitness evaluations is required for promoting neutrality of variations as this is necessary
for avoiding neutrality (effmut).
Concerning the prediction quality Tables 5.19 to 5.26 document that most test problems
profit from an explicit induction of more neutral mutations (neutrmut). One important
argument for this is the higher survival probability of individuals resulting from a neutral
variation (see Chapter 11). In general, improvements in prediction error (compared to
standard mutations) are more significant on a generation basis than on an evaluation
basis here.
One question was whether similar improvements may already be obtained by simply in-
creasing the rate of noneffective variations. Recall that a verification of non-effectiveness
does not require additional fitness calculations. Unfortunately, the noneffmut series demon-
strates that, by only increasing the rate of noneffective neutral variations, the prediction
error is decreased drastically on a generational basis. A too low rate of effective variations
leads to a too low rate of constructive operations and, in some cases, to a smaller effec-
tive size of programs, too. When comparing results after the same number of effective
evaluations, this disadvantage is partly compensated. But the performance is still worse
than it is achieved with standard mutations. Note that the total variation step size in-
creases significantly here because of the high number of noneffective mutations (only one
effective) that may happen between two fitness evaluations. Consequently, if a higher rate
of noneffective variations does not improve solution finding, the (slightly) larger differ-
ence between the proportions of neutral and noneffective variations that occurs with the
neutrmut operator seems to be essential.
In order to increase the rate of such effective neutral variations more explicitly the neutreff-
mut approach applies a neutrality control together with (a certain percentage of) effective
mutations. Interestingly, this combination improves performance compared to applying
both approaches separately, especially on the basis of generations. On the basis of effective
evaluations, however, results may be similar to the results obtained already when using
the effective mutation operator alone (compare effmut2 here). With the continuous test
problems the rate of noneffective variations and the rate of neutral variations decrease at
almost the same amount. The rate of constructive variations is similar as (or even higher
than) with normal effective mutations.
With the two discrete problems, instead, less neutral variations are noneffective, too. Inter-
estingly, even if effective mutations are applied for 100 percent (neutreffmut) the resulting
rate of neutral variations decreases only slightly. But already 25% explicitly induced ef-
fective mutations let effective neutral variations occur significantly more frequently here
Obviously, the maximum number of 3 iterations is not exceeded very often. We will argue
in Chapter 9 that the induction of effective neutral variations is strongly correlated with
the ability of a problem configurations to create semantic introns (see Definition 3.2).
Moreover, these variation effects seem to be highly advantageous during evolution.
On a generational basis the neutreffmut operator achieves a much higher gain in perfor-
mance than the neutrmut operator. An explicit control of effective neutral variations is,
however, more expensive in terms of the number of necessary fitness evaluations. Hence,
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on the basis of evaluations the difference in average prediction error shrinks between neu-
treffmut and neutrmut. Nevertheless, except for the distance problem the performance is
still better than this has been found by using effective mutations (effmutX) only.
In general, we may conclude that increasing the proportion of both neutral and effec-
tive mutations actively results in the highest gain in performance for all test problems.
Smaller absolute and effective solutions, however, are achieved by using standard effective
mutations only which are mostly destructive. Chapter 9 will demonstrate that a small
noneffective code is a direct result from the low rate of noneffective (neutral) variations.
Correspondingly, the effective code grows larger with effective neutral variations than with
destructive variations.

5.11.2 Comparison with Segment Variations

A comparison between free instruction mutations here and segment mutations (onesegmut
in Section 5.9.2 reveals a significantly better performance in favor of the first approach (for
mexican hat and spiral). This results mostly from the minimum step size of instruction
mutations rather than from a smaller size of (effective) solutions which differs only slightly
here. Recall that segment mutations have been configured with a maximum (unlimited)
step size.
Figure 5.8 shows the fitness progress of the currently best individual over the generations
for different macro operators. A lot of information is gained at the beginning of a GP
run. During this period (best) fitness improves most significantly. Towards the end of a
run the (absolute) fitness improvements become smaller. In other words, the convergence
speed of the fitness decreases over a run.
First, one can see that (effective) instruction mutations perform better than crossover
already from the beginning of a run. The larger absolute step sizes of crossover do not
seem to be more successful in early generations. Second, the differences in fitness values
do not change much here between the operators in the last 500 generations.
In particular, the difference between effective and free instruction mutations does not
necessarily decrease towards the end of a run. The effectiveness of random mutations –
including insertions and deletions – depends on the ratio of effective code and noneffective
code in programs. This ratio stays more-or-less constant during a run as long as the size
of programs has not reached the maximum limit (not shown). In this case, the effective
code may still grow even if this happens more slowly (as shown in Figure 5.9).

5.11.3 Explicit Grow Bias

By using macro mutations with a minimum step sizes of one instruction the (maximum)
speed of code growth is restricted most. Therefore, we will test the influence of different
grow biases (see Section 5.8) on the performance of (effective) instruction mutations. De-
pending on the proportion of insertions and deletions of instructions, the speed of code
growth may either be affected positively (grow bias) or negatively (shrink bias). If in-
sertions and deletions are applied for the same probability there is no such bias of the
mutation operator defined explicitly. Basically, the speed with which programs may grow
during a certain number of generations depends on both the problem and the macro
variation operator. While the problem definition determines the correlation between the
(effective) solution size and the fitness, an explicit bias of the variation operator is se-
mantically independent. In contrast to an implicit bias it will influence code growth even
without fitness information (see also Chapter 9).
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Figure 5.8: Development of best fitness for different (macro) variation operators with
mexican hat (left) and spiral (right). Average figures over 100 runs.

In Tables 5.27 and 5.28 the influence of different bias configurations on the best prediction
performance and the average program length is compared. First of all, for the same bias
configuration the absolute program lengths are usually smaller with effective mutations
(effmutX) than with standard mutations (mut). The main reason is a much lower rate
of noneffective code that emerges if (almost) only effective code is changed or is created
newly during variation. The relative difference in program length becomes smaller with
stronger grow biases due to the maximum length bound (200 instructions here).

Operator Config. SSE Length Variations (%)
mean std. abs. eff. % constr. neutral noneff.

mut B–1 1.7 0.2 37 25 68 1.9 37 35
B0 2.4 0.3 72 41 58 1.3 45 43
B1 3.5 0.5 140 60 43 0.8 54 52
Bmax 6.9 0.9 179 75 42 0.8 55 53

effmut B0 1.3 0.09 26 23 88 7.0 13 4.2
B1 0.9 0.06 39 33 85 6.9 14 3.6
Bmax 0.9 0.06 101 72 71 7.3 14 0.6

effmut3 B1 1.1 0.07 27 27 100 7.8 11 0
Bmax 0.6 0.05 54 54 100 7.3 12 0

Table 5.27: mexican hat: Comparison of free mutations and effective mutations with
different bias configurations. Average results over 100 runs after 1000 generations.

For the same bias configuration the average program size remains similar for the different
test problems when we apply standard instruction mutations. Interestingly, this is true
for the effective size as well. Effective mutations, instead, allow solution sizes to differ
more strongly between problems since less noneffective code occurs with these variations.
Then the program length is more subject to the fitness selection.
The proportion of noneffective code may increase slightly together with the insertion rate
(bias). This may be interpreted as a protection reaction of the system to the higher
rate of instruction insertions and the resulting higher growth of (effective) code. For
larger biases this effect is weakened by the influence of the maximum program length
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(see below). Another reason is the reduced ability of some problems and function sets to
develop semantic introns (see Table 5.27).
The average prediction error in Table 5.27 documents a clear negative influence of a
positively biased program growth when using free mutations. Instead, the mexican hat
problem is solved best with a shrink bias. The tested shrink bias B–1 reduces absolute
and effective code growth almost by half compared to the bias-free configuration B0.

Operator Config. CE #Hits Length Variations (%)
mean std. abs. eff. % constr. neutral noneff.

mut B0 15.0 0.5 0 75 44 60 0.5 42 36
B1 13.6 0.6 0 128 64 50 0.3 50 42
Bmax 13.4 0.6 0 176 88 50 0.2 52 42

effmut2 B0 11.6 0.4 1 55 50 91 2.1 21 0
B1 7.2 0.4 1 86 77 90 1.4 25 0
Bmax 6.4 0.3 3 155 136 88 1.1 30 0

effmut3 B1 9.0 0.4 0 56 56 100 1.9 22 0
Bmax 5.3 0.3 1 122 122 100 1.7 23 0

Table 5.28: spiral: Comparison of free mutations and effective mutations with different
bias configurations. Average results over 100 runs after 1000 generations.

In contrast to free mutations, grow bias B1 has always been found to improve the perfor-
mance of the effective mutation operator. The maximum grow bias Bmax, however, has
not turned out to be much more successful than bias level B1, but produces significantly
larger solutions only. Only the effmut3 variant is still improved clearly if insertions of
instructions are applied exclusively. Actually, the effmut3 operator performs best then.
Recall that programs grow more slowly here due to a radical deletion of introns (see Section
5.10.4).
Figures 5.9 and 5.10 illustrate exemplarily the development of absolute and effective length
over the generations for free and effective mutations. Note that the influence of an explicit
bias on code growth is relaxed as soon as a genetic program has reached its maximum
size. In this case, only instruction deletions are possible (see Algorithm 5.4). Thus, if
only insertions are applied otherwise (Bmax) the rate of insertions and deletions is almost
balanced for such programs. This corresponds to applying no bias at all and affects
both the absolute program length and the effective length. Also note that the growth of
effective code is decelerated in Figures 5.9 as soon as the average absolute size approaches
the maximum.
We conclude with some more general considerations about applying an explicit grow bias
in genetic programming. To keep structural mutation steps permanently small between
the fitness evaluations it is required that these are possible at almost all positions of the
representation. In other words, the variability of the representation must be sufficiently
high. This is mostly true for the linear representations and its graph-structured data flow
(see Section 5.10.1). Otherwise, a grow bias may be implemented only such that smaller
subprograms are replaced by larger ones for a higher probability. This, however, implies
larger structural changes, too. In the following section we will demonstrate that a grow
bias – in combination with a minimum mutation step size – may not be outperformed by
using larger step sizes in form of multiple mutations.
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Figure 5.9: mexican hat: Development of absolute program length (left) and effective
program length (right). Influence of different grow biases on free mutations (mut). Average
figures over 100 runs.
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Figure 5.10: mexican hat: Development of absolute program length (left) and effective
program length (right). Influence of different grow biases on effective mutations (effmut).
Average figures over 100 runs.

5.11.4 Number of Mutation Points

In the experiments documented above we have introduced a bias into the mutation op-
erator to control the growth of programs more explicitly. In doing so, the evolutionary
process may be guided faster to regions of the search space where the complexity of solu-
tions is suitable for finding the optimum or a good suboptimum solution. We have seen in
the previous section that, depending on the problem as well as on the considered number
of generations, this may require code growth to be accelerated or decelerated.
Provided that a problem fitness profits from a faster growth of programs, it might be
argued that a biased operator is not really necessary. Instead, program growth might be
accelerated by allowing larger absolute step sizes. We will demonstrate in the following
that this is not absolutely true and that a minimum mutation step size yields the best
performance.
The absolute mutation step size is controlled by the maximum number of mutations that
may be applied to an individual simultaneously, i.e., without exposing the intermediate
results to fitness selection. This number is selected uniformly distributed from a certain
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Maximum SSE Length Variations (%)
#Mutations mean std. abs. eff. % constr. neutral noneff.

1 1.3 0.1 39 27 70 8.1 10 0
2 1.7 0.1 38 24 63 8.8 11 0
5 2.6 0.2 53 28 53 9.2 14 0
10 3.5 0.2 76 35 46 9.2 15 0
20 7.8 0.4 102 44 43 8.6 16 0

Table 5.29: mexican hat: Multiple effective mutations (effmut2, B0). Average results over
100 runs after 1000 generations.

Maximum SSE Length Variations (%)
#Mutations mean std. abs. eff. % constr. neutral noneff.

1 1.6 0.2 72 41 58 1.3 45 43
2 1.2 0.1 69 37 53 2.1 37 34
5 1.7 0.2 68 31 46 3.9 26 23
10 2.1 0.2 64 24 37 5.3 23 17
20 4.0 0.4 73 23 32 6.2 22 12

Table 5.30: mexican hat: Multiple mutations (mut, B0). Average results over 100 runs
after 1000 generations.

maximum range here and is valid for both micro mutations and macro mutations. Note
that the mutation type is selected only once before mutations of that type are applied
as often as specified. Both deletions and insertions of instructions may happen in one
variation step, instead.
Alternatively, structural mutation steps might be controlled over a maximum segment
length. One basic difference to the approach applied here is that mutation points may
be chosen less freely on the imperative level since all inserted or deleted instructions
are necessarily arranged in a sequence. Then a segment of effective instructions more
likely represents a single contiguous component in the functional representation. Another
difference is that the insertion of a segment may affect less variation points of the program
graph than the insertion of multiple effective instructions (at multiple positions).
Multiple effective mutations would actually require that the effective code (and the nonef-
fective code) is redetermined after each partial mutation. However, it has not been found
to make any difference in terms of prediction quality and code growth whether this is prac-
ticed or not. Nevertheless, it is applied here since the detection of effective instruction
(see Section 3.2.1) is not computationally expensive for a moderate number of mutation
points.
The optimum configuration comprises a single effective instruction only that is mutated,
deleted, or inserted (effmut). The experiments documented in Tables 5.29 and 5.31 demon-
strate this for both test problems, mexican hat and spiral. By using free mutations (mut),
instead, the optimum number of mutation points may be larger, mostly because the whole
variation becomes effective for a higher probability in this way. Nevertheless, only two
instructions turned out to be optimum in Tables 5.30 and Table 5.32.
In general, effective mutations perform better than free mutations if the mutation rate
(on the program representation) is smallest, because too many free mutations stay nonef-
fective then. If many free mutations happen simultaneously, instead, the probability for a
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Maximum CE #Hits Length Variations (%)
#Mutations mean std. abs. eff. % constr. neutral noneff.

1 7.6 0.4 2 86 78 91 1.7 25 0
2 10.4 0.5 0 81 71 87 2.6 19 0
5 16.4 0.5 0 79 63 80 4.8 14 0
10 21.8 0.6 0 80 59 73 6.0 15 0
20 28.5 0.6 0 88 58 66 6.3 20 0

Table 5.31: spiral: Multiple effective mutations (effmut2, B1). Average results over 100
runs after 1000 generations.

Maximum CE #Hits Length Variations (%)
#Mutations mean std. abs. eff. % constr. neutral noneff.

1 15.0 0.4 0 75 44 60 0.5 42 36
2 13.9 0.5 0 76 44 58 1.0 34 27
5 16.7 0.6 0 76 39 51 2.3 24 13
10 22.0 0.6 1 66 31 46 4.0 18 12
20 25.6 0.7 0 58 23 40 5.3 18 8

Table 5.32: spiral: Multiple mutations (mut, B0). Average results over 100 runs after 1000
generations.

noneffective variation is lower as well as the difference in error.
Interestingly, the average effective length decreases if more free mutations are applied
simultaneously while the absolute length stays constant or decreases less (see Tables 5.30
and 5.32). The shrinking proportion of effective code may be interpreted as a protection
reaction of the system to reduce the average effective step size (see Section 5.3). By means
of a higher proportion of noneffective instructions single mutations are noneffective for
a higher probability. Apparently, this is true for deletions of instructions. But also the
effectiveness of random insertions depends at least in part on this proportion. A similar
protection mechanism has been observed with crossover in Section 5.9.4. If numerous
mutations happen simultaneously, non-effectiveness becomes more unlikely for the whole
variation step. Hence, the proportion of noneffective variations decreases. Additionally,
the effective code may be larger for smaller mutation steps because those allow a more
precise approximation to better solutions.
If we induce effective mutations only (effmut2) the proportion of noneffective variations is
zero. In Table 5.29 and Table 5.31 we can observe a reduction of the effective code rate,
too, even if the amount of effective code grows with higher mutation rates in case of the
mexican hat problem.
It is important to note in this context that an explicit grow bias (which has been used
only for the experiment documented in Table 5.31 here) is not reinforced by using multiple
mutations. These may not affect the ratio of inserted and deleted instructions. The reader
may recall that the absolute variation step size does not influence code growth directly. By
definition, it just determines the possible distance in length between parent and offspring
during one variation step.
First, we may conclude that a larger than minimum mutation rate on the program repre-
sentation works worse, at least, when using effective mutations. In other words, a fitness
evaluation after each instruction mutation is essential and may not be saved. This shows
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that a minimum structural step size still induces semantic step sizes that are large enough,
on average, to escape from local minima of the fitness landscape. Second, a higher muta-
tion step size may not be regarded as an alternative to an explicit grow bias. Neither the
prediction error improves by using several effective mutation points nor does the length
of programs grow necessarily.

5.11.5 Self-Adaptation

Self-adaptation of variation parameters has been applied successfully in different disciplines
of evolutionary algorithms [8]. In evolution strategies (ES) [91, 75] standard deviations of
mutation step sizes are treated as part of the individual representation, i.e., a real-valued
vector of objective values. In the most simple case there is only one mutation parameter
(standard deviation) used for all objective variables. Rather than using a deterministic
control rule for the adaptation of such parameters, the parameters themselves are subject
to evolution. Self-adaptation differs from a global adaptive control of parameters in such a
way that the parameters are adapted locally. The modification of the parameters is under
the control of the user only by means of a fixed mutation step size (learning rate).
Selection is performed on the basis of the individual fitness only. The propagation or
extinction of variation parameters in the population is coupled with the fitness of their
carrier individuals. Consequently, the success of a certain parameter configuration is
directly depending on how the variation operator performs on an individual when using
these settings. It is generally recommended to mutate the variation parameters of an
individual first before the new settings are applied for the variation of the individual. The
reversed mechanism might suffer from a propagation of (good) individuals with rather bad
parameter settings because those have not been used for finding the current position of
the individual on the fitness landscape.
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Figure 5.11: Development of the maximum number of mutation points with self-adaptation
for different parameter mutation rates using mexican hat (left) and spiral (right). Numbers
averaged over all parameter values in the population. Average figures over 100 runs.

Moreover, better results may be obtained when using a lower mutation rate (and a lower
reproduction rate) for parameters than for individuals. Otherwise, good individuals with
bad parameter settings might spread too quickly in the population at the beginning of a
run. This again may lead to an earlier loss of diversity while the search process gets caught
more easily in a local minima, at least in terms of the parameter space. Note that the
fitness of an individual does not depend directly on the quality of its variation parameters.
But the parameters influence the expected average fitness of its offsprings.
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The motivation for a self-adaptation is twofold. On the one hand, it may outperform an
optimum global setting that stays constant during a run because a variable (dynamic)
setting of a mutation step size turns out to be more advantageous. On the other hand,
even if this is not true self-adaptation may be applied for finding an optimum (or a nearly
optimum) configuration. Especially if the dimension of the parameter vector is high,
an optimum configuration may not be detected efficiently in general by trying constant
settings.
The principle of self-adaptation is applied here for the coevolution of structural muta-
tion steps in linear GP. This may either be the number of mutation points (instruction
mutations) or the segment length (segment mutations). Here the number of effective in-
struction mutations is self-adapted. To achieve this, only one parameter has to be encoded
into each program individual which is the maximum mutation step size n. The actual step
sizes may be selected then either uniformly distributed or normally distributed over the
maximum range by using an expectation value of 0 and a positive standard deviation of
p×n (0 < p ≤ 1). We choose a uniform distribution here. Note that only non-zero positive
integer values are defined as step sizes on the symbolic representation. Individual param-
eter values may become 0 but are mapped to 1 if applied as a step size. The variation
of the individual parameter values is controlled by a mutation probability and a constant
mutation step size of ±1.
The results of the last section have shown clearly that the optimum performance is ob-
tained with the minimum number of effective mutation points (one). Even if a varying
number of effective mutation points during runtime may still turn out to be more success-
ful, such a result allows only a small range of improvements. Nevertheless, self-adaptation
may provide information about how precisely and how fast a (constant) optimum is ap-
proximated.
Besides, such experiments may provide information about whether a higher mutation step
size may have a positive influence at the beginning of a run. In general, this is motivated
by a higher diversity in the initial generations which makes the evolutionary algorithm
less depending on the composition of the genetic material in the initial population.
Figure 5.11 shows how the mutation step size develops over the generations when using
self-adaptation. As one can see the average individual step size in the population converges
to the minimum step size 1 for both problems, mexican hat and spiral. The higher the
mutation probability is set for the step size parameter the more quickly the minimum is
reached. We have checked that no convergence occurs without fitness. In this case, the
average mutation step size during a run oscillates around the value that has been provided
initially.
The prediction performance (not shown here) comes very close to the performance that
is obtained with constant step size 1 in Tables 5.29 and 5.31. That is, a varying (max-
imum) step size on the symbolic structure of individuals during runtime has not been
found significantly better than using minimum step size 1 continuously. It appears that
larger structural steps may not be more successful locally since they reduce the survival
probability and the potential fitness of offsprings.
At least for the applied mutation-based configuration a higher mutation rate at the be-
ginning of a run does not seem to be beneficial. It remains an open question, however,
whether this is different in significantly smaller populations. Nevertheless, it is interesting
to note that using a larger mutation step size at the beginning of a run has a less negative
influence on the prediction performance than using a constant setting of 2 mutation points
(maximum) over the whole run.
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Figure 5.12: Development of the number of effective registers, the degree of effectiveness,
and the effective dependence distance over effective program positions using effective mu-
tations (effmut). Position 0 holds the first instruction of a program. Average figures over
all programs of the final (1000th) generation and over 100 runs. Results for mexican hat
(left) and spiral (right).
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Figure 5.13: Development of the average number of effective registers, the average degree
of effectiveness, and the average effective dependence distance over the generations using
effective mutations (effmut). Average figures over 100 runs. Results for mexican hat (left)
and spiral (right).

5.11.6 Distribution of Mutation Points

In the next series of experiments we investigate the choice of the mutation point. In the
standard case each instruction is chosen for the same probability. But is such a uniform
distribution of mutation points really close to the optimum ? At first sight, this might be
true for an imperative representation that is composed of a linear sequence of instructions.
We learn from Figure 5.12 how the functional structure of a linear program is built by
applying the three algorithms from Section 3.4. For each program position the structural
information are averaged over all effective programs of the final generation that hold an
instruction at that position. The average effective length is about 55 instructions for
mexican hat and 110 instructions for spiral. The standard deviation of effective lengths in
the final population is below 5 instructions.
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Most important here is the information how the average number of effective registers
and the average effectiveness degree develop over the effective instruction positions in
Figure 5.12. Over the first half of the program length (from the beginning) the number
of effective registers is more-or-less constant here. Only over the last half, it decreases
until it becomes 1 at the last effective instruction in a program. (The average value is
larger here due to variable program lengths.) Since both the effectiveness and the effective
dependence distance are 0 at the last effective instruction, the average may become smaller
than 1. The effectiveness degree of instructions as defined in Section 5.5 corresponds to
the connection degree of nodes in the (effective) functional representation. We can see in
Figure 5.12 that the effectiveness of instructions decreases more regularly towards the end
of a linear program.
The reason for these observations becomes clear if we recall from Chapter 3.3 that the
last effective instruction of a linear program corresponds to the root of the underlying
(effective) graph component. The number of effective registers at a certain instruction
position denotes an approximation of the graph width at the corresponding instruction
node. It appears that this width grows quickly until a certain maximum (starting form
the graph root) and stays rather constant then because it is restricted by the total number
of available registers. We will demonstrate in Section 6.1 that the use of too many reg-
isters in linear genetic programs is not recommended in general. Among other things, a
restriction is necessary in order not to increase the search space of programs unnecessarily.
A wider graph requires a longer imperative representation. Correspondingly, the distance
of depending (effective) instructions increases in Figure 5.12 together with the number of
effective registers.

Mutation SSE #Hits Length Variations (%)
Distribution mean std. abs. eff. % constr. neutral noneff.
U(n) 2.3 0.2 16 29 24 80 8.2 9 4.9
|N (0, 0.33n)| 2.3 0.2 3 39 30 78 7.6 11 5.1
n− 1− |N (0, 0.33n)| 7.0 0.2 0 39 26 67 8.3 12 6.3

Table 5.33: distance: Comparison of different frequency distributions of effective mutation
points.

Mutation SSE Length Variations (%)
Distribution mean std. abs. eff. % constr. neutral noneff.
U(n) 0.9 0.06 39 33 85 6.9 14 3.6
|N (0, 0.33n)| 0.8 0.07 44 37 84 5.6 18 3.5
n− 1− |N (0, 0.33n)| 12.8 1.5 39 31 79 8.3 12 4.5

Table 5.34: mexican hat: Comparison of different frequency distributions of mutation
points over the effective program length n (effmut). N (0, 0.33n) calculates a normally
distributed random number from range (−n, n) with expectation 0 and standard deviation
0.33 × n. U(n) calculates a uniformly distributed integer number within range [0, n).
Average results over 100 runs after 1000 generations.

We test the effective mutation operator with two alternative distributions of mutation
points over the effective program length. Basically, the selection frequency is either in-
creased towards the beginning of a program (graph sinks) or towards the end of a program
(graph root). In doing so, we use a normal distribution N (0, 0.33 × n) with expectation
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0 and standard deviation 0.33 × n. The maximum mutation point n equals the effective
program length.
Tables 5.33 to 5.36 compare the performance of the three different distributions, including
the uniform distribution U(n). With all four benchmark problems the performance de-
creases if the mutation probability is higher at the end of a linear program, and, is almost
not affected or even better if this is true at the beginning. These effects directly follow
from the functional structure of the genetic programs.
An instruction close to the program end is most likely located high up in the graph
structure where the graph width (number of effective registers) is rather small. Mutations
are more destructive in this region since more program paths lead through the instruction
nodes. Accordingly, mutation effects are more similar in central and lower graph regions
where the graph width is constantly wide.
For that reason a higher mutation frequency at the beginning of a linear program may
have a more positive influence on the evolutionary search if a larger number of registers
is used. Then the functional program structure becomes more tree-like, as we will see in
Section 6.1.

Mutation CE #Hits Length Variations (%)
Distribution mean std. abs. eff. % constr. neutral noneff.
U(n) 13.9 0.7 2 77 71 92 1.1 38 1.9
|N (0, 0.33n)| 13.8 0.9 1 90 81 90 0.9 44 1.7
n− 1− |N (0, 0.33n)| 23.9 1.4 0 91 80 88 1.2 43 2.4

Table 5.35: three chains: Comparison of different frequency distributions of effective mu-
tation points.

Mutation CE #Hits Length Variations (%)
Distribution mean std. abs. eff. % constr. neutral noneff.
U(n) 8.8 0.4 2 74 69 93 1.7 24 1.7
|N (0, 0.33n)| 4.5 0.3 10 86 79 91 1.3 33 1.7
n− 1− |N (0, 0.33n)| 14.8 0.8 0 79 72 91 1.8 27 1.6

Table 5.36: spiral: Comparison of different frequency distributions of mutation points over
the effective program length n (effmut). N (0, 0.33n) calculates a normally distributed
random number from range (−n, n) with expectation 0 and standard deviation 0.33× n.
U(n) calculates a uniformly distributed integer number within range [0, n). Average results
over 100 runs after 1000 generations.

A second explanation for the above results may be found in the effectiveness degree that
decreases approximately linear over the program length in Figure 5.12. A high connectivity
of graph nodes reduces the probability that effective subgraphs are disconnected. This
influences the effective step size which has been defined for the imperative program code as
the number of (preceding) instructions in a program that become effective or noneffective
after an instruction mutation (see Section 5.3). One may assume now that the effective
step size increases continuously the more the mutation point is located toward the program
end, i.e., the graph root. This it true to a certain extent at least, as will be demonstrated
in Section 8.7.2.
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In Figure 5.13 the effectiveness degree of instructions increases continuously over a run,
too. Mostly due to the use of branches the average effectiveness is significantly higher
with the spiral classification. Note that in Algorithm 3.4 branch instructions inherit the
effectiveness of their corresponding conditional operation.

5.12 Summary and Conclusion

In the beginning of this chapter we defined different (structural and semantic) variation
effects and step sizes for the linear program representation. Furthermore, properties of
variation operators were formulated that we believe are especially desirable for linear GP. A
systematic analysis of possible genetic operators was made that is based on these concepts
and properties in part. In doing so, different operators were introduced and compared
with respect to performance and complexity of the resulting prediction models. Besides,
variation-specific parameters were analysed in this chapter. The most important results
may be summarized as follows:
(1) Three basic parameters of linear crossover were identified and analysed. Either a
restriction of the segment length or the difference in length between the inserted and the
deleted segment (size fair crossover) led to a better performance. Interestingly, in both
cases the strongest restrictions produced the best results. Instead, it proved to be more
deleterious to limit the distance of crossover points.
(2) Unrestricted segment mutations turned out to be at least as powerful as unrestricted
recombination and produced less complex solutions. The difference in performance was
smaller for two-segment operators than for one-segment operators here. Segment muta-
tions operate even more successfully if the segments are created fully effectively. This
results from a further reduction of both noneffective variations and program size. The
larger effective step size is partly relaxed here by the smaller program size which indi-
rectly reduces the absolute step size.
(3) In general, best fitness values were obtained by using relatively small variation step
sizes on the level of instructions. In particular, a minimization of the absolute mutation
step size (to one instruction) in combination with a guaranteed effectiveness of mutations
– concerning a change of the structurally effective code – produced the best performance
and the smallest solutions. It appears that even minimum changes of program structure
and program size (induce semantic step sizes that) are large enough, on average, to escape
from local minima (see also Chapter 8).
The performance of these effective instruction mutations gained from an acceleration of
code growth by an explicit grow bias. This was not necessarily true for a larger muta-
tion step size. Actually, the effective program length may even shrink by using multiple
instruction mutations.
(4) An additional gain in performance (but larger solutions) was only possible by increas-
ing the proportion of neutral instruction mutations on the effective code. This particularly
emphasizes the meaning of neutral variations for the evolutionary progress. Without neu-
tral variations the average survival probability of offsprings seems to be too much reduced
here to guarantee a continuous improvement and a growth of code (see also Chapter 9).
In general, the induction of neutral variations requires information about program seman-
tics by means of multiple fitness evaluations. These extra computational costs cannot
be neglected even if the fitness has to be recalculated only after the (structurally) effec-
tive code has been altered. Nonetheless, an explicit control of neutrality has been found
computationally affordable on the basis of (effective) evaluations.
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(5) If only single effective instructions are varied, the existence of structurally noneffec-
tive code in programs has not been found absolutely essential for producing high quality
solutions in linear GP. The same is true for noneffective variations. That does not mean,
however, that structural introns may not contribute to the evolutionary progress (see Sec-
tion 9.8.5). Moreover, this is definitely not true for all intron code in programs. Since
neutral effective variations were highly profitable this must be valid for semantic introns,
too, which result at least partly from these variations.
(6) As far as segment variations, like crossover, are concerned the presence of structural
introns reduces the effective step size and takes away pressure from the remaining code to
grow and to develop semantic introns, which are usually much harder to detect. Without
such an implicit parsimony effect the (effective) solution size grows much larger than
necessary. To validate this, we removed all structural introns from population individuals
after crossover.
(7) Explicit introns provided a more reliable reduction of effective crossover step size
than implicit introns because they may not be reactivated. Both a better fitness and a
smaller effective size of solutions were achieved depending on the amount of such empty
instructions that is seeded into the initial population. Furthermore, implicit introns –
including both structural and semantic ones – occured much less in the presence of explicit
introns.
For a summary of results concerning the influence of the different genetic operators on
the solution size the reader is directed to Section 9.9.1. Moreover, Chapter 9 will discuss
several causes for code growth in linear GP. Again neutral variations will play an important
role.
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In the previous chapter parameters have been analysed that are closely related to a vari-
ation operator. In this chapter we analyse influences of more general system parameters
that are especially relevant to linear genetic programming. In particular, the number of
registers, the number of constants, the population size, and the maximum program length
are regarded. Additionally, we compare different initialization techniques for linear genetic
programs. Test problems are a classification and a regression, spiral and mexican hat, that
have both been introduced already in Section 5.8.1.1

6.1 Number of Registers

In linear genetic programming saving local information in registers is an implicit part
of the imperative representation. Each operation on registers or constants is combined
with an assignment of the result to a register that may again serve as an operand in
succeeding instructions. We distinguish additional calculation registers from the required
minimum number of registers that hold the relevant input information (input registers).
Both problem definitions expect 2 inputs. For the following considerations we assume that
all register are variable.
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Figure 6.1: spiral: Distribution of the effective register number (left) and the effective
dependence distance (right) over the (effective) program positions using effective mutations
(effmut) with different numbers of calculation registers. Average figures over all programs
of the final (1000th) generation and over 100 runs. The standard deviation of program
lengths ranges between 5 instructions (0 calculation registers) and 10 instructions (128
calculation registers).

The number of registers is a crucial point for the performance of linear GP. If the number
of inputs is low and only a few registers are provided additionally the register contents will
be overwritten more often. This makes complex calculations and, thus, the emergence of
complex problem solutions more difficult. If too many registers are provided, on the other
hand, the search space of possible solutions is unnecessarily blown up. Besides, a lot of
programs may be semantically identical in the initial population since the probability is
low that instructions manipulate effective registers (see also Section 2.3.1). Hence, there
is an optimum number of registers for each problem that represents the best trade-off.

1The only difference to the configuration in Section 5.8 is that mexican hat is treated with a complete
function set {+,−,×, /, x2, ex} that allows the optimum solution to be found. However, this happens too
rarely to be mentioned here.
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#Calculation CE #Hits Length Variations (%)
Registers mean std. abs. eff. % constr. neutral noneff.

0 24.7 0.5 0 77 73 96 1.8 30 0
2 10.8 0.6 0 82 76 92 1.9 26 0
4 7.6 0.4 2 86 78 91 1.7 25 0
8 6.8 0.3 3 97 86 89 1.4 26 0
16 6.1 0.3 3 111 96 86 1.0 30 0
32 8.8 0.4 0 132 110 83 0.6 35 0
64 11.9 0.5 0 144 113 78 0.4 41 0
128 17.2 0.6 0 153 108 70 0.3 49 0

#Calculation #Effective Effectiveness Dependence
Registers Registers Degree Distance

0 1.9 5.5 1.4
2 3.4 4.0 2.3
4 4.7 3.3 3.1
8 7.1 2.6 4.5
16 10.8 2.1 6.6
32 15.7 1.7 9.0
64 20.9 1.4 11.2
128 25.1 1.2 12.5

Table 6.1: spiral: Effects of different register numbers using effective mutations (effmut2,
B1). Number of input registers is 2. Calculation registers are initialized with constant 1.
Average results over 100 runs after 1000 generations.

It has to be noted that additional registers may not be beneficial at all for problems that
feature a high number of inputs already by definition. Since not all inputs may be relevant
for a solution, calculations may not require additional registers for a better performance.
In such a case the larger search space would outweigh the advantages.
In this section we investigate how the number of (calculation) registers affects the system
behavior. Besides prediction quality, program length and variation effects, the functional
structure of effective linear programs is analysed, including the number of effective regis-
ters, the effectiveness of instructions, and the distance of depending effective instructions
(see Section 3.4).
When generating mutations effectively (effmut) good solutions may still be found even with
the highest number of registers (see Table 6.1). This is in contrast to free mutation where
the prediction error increases significantly beyond a certain register number (in Tables 6.2
and 6.3). Since the effective mutation operator selects the destination register of newly
inserted instructions effectively (see Section 5.10.4) the evolutionary process becomes more
independent from the total number of registers. That is, the drawback of a larger search
space is better counterbalanced.
One can see that for effective mutations the number of effective registers grows with the
total number of registers even if the proportion of effective registers decreases. If mutations
are generated freely (mut) the probability for selecting an effective register and, thus, the
performance decreases directly with the total number of registers. The resulting higher
rate of noneffective variations promotes the emergence of more noneffective instructions.
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#Calculation CE Length Variations (%)
Registers mean std. abs. eff. % constr. neutral noneff.

0 26.9 0.5 105 59 56 0.6 47 33
2 14.8 0.5 120 63 52 0.4 48 38
4 12.5 0.4 128 66 52 0.3 49 41
8 10.5 0.4 136 67 49 0.2 53 45
16 11.8 0.4 145 68 47 0.1 58 50
32 17.2 0.6 148 59 40 0.1 68 61
64 40.4 1.2 142 26 18 0.0 86 82
128 66.5 1.2 135 8 6 0.0 94 93

#Calculation #Effective Effectiveness Dependence
Registers Registers Degree Distance

0 1.8 3.5 1.2
2 3.1 2.9 2.1
4 4.4 2.7 2.8
8 6.5 2.3 4.1
16 9.7 1.9 6.0
32 12.7 1.5 7.2
64 9.3 1.0 4.5
128 4.7 0.6 1.7

Table 6.2: spiral: Effects of different register numbers using free mutations (mut, B1).
Number of input registers is 2. Calculation registers are initialized with constant 1. Av-
erage results over 100 runs after 1000 generations.

In general, it may be assumed that the optimum number of provided registers depends
on the problem structure as this is true for a sufficient maximum program length. Recall
that these parameters determine the size and the shape of the program graph. For both
problems tested here the optimum number of calculation registers lies around 8. However,
this may be different at least for problem definitions with a higher number of inputs.
Beyond a certain number of input registers additional registers may not have a positive
influence anymore, but only increase the search space of solutions.
As we know from Chapter 3.3 the number of effective registers corresponds to the width
of the (effective) program graph. The more registers are available the wider these graphs
may become. Concurrently, the connection degree of graph nodes, or, more precisely, the
number of incoming edges per node (indegree) decreases with higher register numbers.
A constant indegree of 1 means that the graph represents a tree program. Recall that
the connectivity of nodes corresponds to the effectiveness degree of instructions in the
imperative representation. The effectiveness degree provides information about how often
the result of an effective instruction is used by other program instructions. Figure 6.1 shows
the average distribution of the number of effective registers over the effective program
positions. Obviously, the functional structure becomes more and more tree-shaped with
a higher number of registers if we take into consideration that the average effectiveness
degree over all program instructions in Table 6.1 converges to 1. When using free mutations
with many registers this value may even be smaller than 1 (see Tables 6.2 and 6.3). In
this case, the rate of effective instructions is so low, on average, that many programs do
not even hold a single effective instruction, i.e., have effective length 0. At least, for a
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#Calculation SSE Length Variations (%)
Registers mean std. abs. eff. % constr. neutral noneff.

0 7.6 0.9 52 37 71 3.2 29 26
2 6.0 0.9 66 39 59 1.7 41 39
4 3.0 0.5 73 39 53 1.1 49 47
8 1.3 0.2 80 35 44 0.6 59 58
16 3.6 0.5 78 25 32 0.2 73 72
32 21.1 1.0 68 12 18 0.0 86 85
64 42.1 1.2 61 5 8 0.0 92 91

#Calculation #Effective Effectiveness Dependence
Registers Registers Degree Distance

0 1.7 1.4 1.1
2 2.7 1.3 1.6
4 3.3 1.3 2.0
8 4.3 1.2 2.5
16 4.4 1.1 2.3
32 3.4 0.9 1.6
64 2.5 0.7 1.0

Table 6.3: mexican hat: Effects of different register numbers using effective mutations
(mut, B0). Number of input registers is 2. Calculation registers are initialized with
constant 1. Average results over 100 runs after 1000 generations.

mutation-based program induction we may conclude that a tree structure does not always
represent the optimum functional shape for a genetic program.
The number of registers may also influence the length of programs in linear GP. When
using effective mutations the effective size grows continuously with the register number
(see Tables 6.1). Larger program graphs are required to represent the same solution if
subgraphs are hardly connected (used) more than once. As a result, the functional repre-
sentations grow in width and more (effective) instructions are needed for the imperative
representation. This, in turn, increases the average distance between two depending in-
structions in the effective program (see Figure 6.1). Recall that two depending instructions
correspond to two directly connected instruction nodes in the graph representation.
It has to be mentioned here, however, that the program length is not always affected by
the register number when using explicitly effective mutations (effmut). For the mexican
hat problem we found no significant change in the amounts of effective and noneffective
code, not even with very many registers (not shown). Nevertheless, the same principle
developments may be observed in terms of the structural program analysis.
Similar developments may be observed with free mutations only until a certain maximum
number of registers. Beyond that point the complexity of solutions – including the size
and proportion of effective code, the average number of effective registers, and the average
effective dependence distance – decrease again (see Tables 6.2 and 6.3).

6.1.1 Initialization of Registers

The results in Table 6.1 are obtained by using only as many input registers as there are
input values. The remaining registers are initialized with a constant (1 here). We have
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seen that above a certain register number the performance decreases again. At this point,
the probability for selecting an input register becomes too low. This problem can be
overcome by initializing more registers with input values. As a side-effect, input values
get lost less likely through overwriting in a calculation.
In the following experiments, we assign an input value to each register such that for each
input about the same number of registers is used. As one can see in Table 6.4, the average
prediction error stays more-or-less the same even if the optimum number of registers is
exceeded. Apparently, the larger search space by more registers is better counterbalanced
here than with the constant initialization in Table 6.1. Moreover, the prediction error has
been found twice as small while the hit rate is significantly higher.

#Calculation CE #Hits Length Variations (%)
Registers mean std. abs. eff. % constr. neutral noneff.

0 24.7 0.5 0 77 73 96 1.8 30 0
2 9.5 0.4 1 82 76 92 1.9 25 0
4 5.5 0.3 3 84 76 91 1.8 24 0
8 3.4 0.3 16 91 80 88 1.6 25 0
16 3.0 0.2 9 103 89 86 1.3 26 0
32 3.4 0.3 15 113 95 84 1.0 29 0
64 3.6 0.3 11 126 102 81 0.9 32 0
128 3.9 0.3 7 133 103 77 0.7 34 0

Table 6.4: spiral: Effects of different register numbers using effective mutations (effmut2,
B1). Number of input registers is 2. Calculation registers are initialized with input values.
Average results over 100 runs after 1000 generations.

The average number of effective registers has been found quite similar as for the standard
initialization (undocumented). That means calculations do not involve a larger number
of effective registers only because all registers are initialized with input data. This is also
reflected by similar (effective) solution sizes.
Nevertheless, input values may be used more frequently in a genetic program if held in
more than one register. Otherwise, each input value may be read out (used as an operand)
only until its register is overwritten for the first time. As indicated in Section 3.3, such
operand registers label variable sink nodes (terminals) in the functional representation.
More input registers mean more variable terminals.
The above behavior has only been observed with the spiral classification when using effec-
tive instruction mutations. With the mexican hat approximation the performance improves
only slightly and gets worse again for higher register numbers just as if calculation registers
were initialized constantly.
Tables 6.5 and 6.6 show how crossover results are influenced by the number of registers if
each register holds an input value. First, in both test cases the average prediction error
improves to a certain extent by using more calculation registers. Second, especially the
mexican hat task is much better solved with crossover if all registers are initialized with
inputs, compared to a constant initialization of 4 calculation registers (see, e.g., baseline
results with maximum length 200 in Tables 6.14 and 6.13).
A lower proportion of effective code, i.e., a higher ratio of noneffective code (structural
introns), may be maintained by more registers. This results mostly from the fact that a
smaller proportion of registers is effective, on average, and is illustrated in Figure 6.2 for
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#Calculation SSE Length Variations (%)
Registers mean std. abs. eff. % constr. neutral noneff.

0 11.4 0.9 144 71 49 6.4 21 14
2 5.9 0.8 167 65 39 5.3 24 19
4 2.8 0.5 177 59 33 4.6 27 23
8 1.7 0.2 184 52 28 3.8 30 26
16 1.7 0.2 187 43 23 3.1 34 31
32 4.5 0.4 186 34 18 2.6 45 41
64 10.2 1.3 187 25 13 1.8 51 49

Table 6.5: mexican hat: Effects of different register numbers using crossover (cross). Num-
ber of input registers is 2. Calculation registers are initialized with input values. Average
results over 100 runs after 1000 generations.

linear crossover. If only few or no additional registers are provided the effective length
depends more strongly on the absolute length. It is interesting to note that in this case
the absolute length grows smaller while the effective length grows larger. In Table 6.6,
instead, almost only the effective code is altered while the absolute length is more-or-less
the same for all register configurations due to both a faster code growth and the maximum
length bound.

#Calculation CE Length Variations (%)
Registers mean std. abs. eff. % constr. neutral noneff.

2 23.8 0.7 186 109 58 3.5 24 13
4 19.0 0.6 187 102 55 3.2 24 15
8 15.3 0.5 187 101 54 2.8 23 15
16 13.0 0.4 190 98 52 2.2 23 15
32 15.1 0.5 192 87 45 1.8 25 17
64 18.2 0.5 192 77 40 1.5 30 20
128 22.7 0.5 192 67 35 1.2 35 24

Table 6.6: spiral: Effects of different register numbers using crossover (cross). Number of
input registers is 2. Calculation registers are initialized with input values. Average results
over 100 runs after 1000 generations.

The smaller ratio of effective code is correlated with a higher number of noneffective
variations. Due to a large absolute step size the rate of noneffective operations is increased
less with the number of registers than this has been found for (free) instruction mutations
in the last section. Nevertheless, this rate still increases almost by 35 percent for mexican
hat. As noted before, a smaller proportion of effective code reduces the effective step size
of segment variations like crossover. In doing so, performance may be improved until the
point where the rate of effective operations or the effective code is reduced too much to
produce good solutions.
We will demonstrate in Section 8.7.2 that the register number has a negative influence
on the effective step size, too, that is independent from the applied variation operator.
A decreasing effectiveness degree of instructions makes larger deactivations of code more
likely. Therefore, the effective code becomes more brittle if more registers are available.
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Figure 6.2: mexican hat: Development of absolute program length (left) and effective
program length (right) for different numbers of calculation registers using crossover (cross).
Absolute length grows faster with more registers while effective length grows more slowly.
That is more intron code occurs with more registers. Average figures over 100 runs.

6.1.2 Constant Registers

Another probability to protect the input information – besides using multiple input reg-
isters – is not to use input registers as a destination register in instructions. Constant
(input) registers are different from registers being initialized with a constant such that
their initial contents (input data) may change with each fitness case but may not be over-
written during program execution. As a consequence, program output(s) have to be stored
in registers that are different from such input registers. In the graph interpretation of lin-
ear programs constant input registers denote constant sinks that may become successor
of any node.
This technique has not been found to produce better results than those are obtained
with the standard configuration, at least for the two problems under investigation. Note
that in contrast to the approach from Section 6.1.1 the probability for selecting an input
register decreases here with the total number of registers. Moreover, if all input registers
are constant, a higher number of variable registers has to be provided additionally. This
increases the search space of programs.

6.2 Number of Output Registers

Usually one register is explicitly designated in linear GP for holding the final output of
a program after execution. This may be any writable register, including input registers
(see Section 2.1.1). Let us assume for the following considerations that there is only one
output defined for a problem. In the normal case, the output register is static, i.e., all
programs save their result in the same register. Alternatively, we propose here to change
the output register of programs dynamically during a run.
If the fitness of an individual program is calculated it is executed once for each fitness case.
After each program execution the contents of all registers may be saved. Then the program
fitness can be calculated efficiently multiple times without further executions while each
time the contents of another register (from a predefined subset) may be used as the program
output. The output register which a program performs best with during training is saved
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and may not be changed anymore when the program is applied to unknown data, e.g.,
when its generalization performance is tested.
In doing so, it is important that the output register is fixed for all fitness cases. At least, it
is not feasible to change this register in a non-deterministic way. For instance, we may not
simply select the output register whose value is closest to the desired output of a fitness
case. This would make a “prediction” possible only if the correct output is already known
in advance. The resulting GP models would be incapable to decide on unknown data in a
deterministic way.
Each (output) register or, more precisely, the last instruction in a program that manipu-
lates it, labels the root of one contiguous component in the functional interpretation (see
Section 3.3). If the output register is static only one contiguous component of a program
graph is effective and tested. If the output register is dynamic a more-or-less different
component becomes effective for each designated output register.
On the imperative level the distinction between effective and noneffective instructions in a
linear program depends on the definition of the output register. But even if each register
may hold the output there may be still many instructions left that are noneffective for all
output registers.
We only note here that results were disappointing. For both test problems, mexican hat
and spiral, the performance has not been found better with a dynamic output register
than with a static output register. While crossover (cross) results were approximately
identical in both cases, solution finding with instruction mutations (mut) was much more
limited when using the final contents of all 6 registers (see Section 5.8). In general, the
best output register (saved with the best individual) has been found to change mostly at
the beginning of a run. After a while one output register (graph component) is winning
out dominating. This does not only show that the output register is better fixed, but
encourages the exclusive development of a single graph component, too, as done by the
effective mutation operator.

6.3 Rate of Constants

Besides instruction operators and registers, constants represent the third basic component
of a linear genetic program. The reader may recall from Section 2.1.2 that we allow only
one of two operands of an instruction to hold a constant. First, assignments of constant
values are avoided explicitly, in this way, e.g., r0 := 1 + 2 or r0 := sin(1). Second, there
is at least one register for each program position whose manipulation may influence the
effective code. Otherwise, the number of effective registers may become zero and effective
variations would not be possible at each program position. As a result, the potential for
creating structural noneffective code (see Section 3.2) is increased even if this does not
mean that the rate of noneffective code really becomes larger.
The same arguments hold for constant register operands, too, that have been discussed in
Section 6.1.2.2 While the number and the range of constants ({0, .., 9} here) in the terminal
set are rather problem-dependent parameters we investigate the number of operands in
linear genetic programs that represent a constant value. This is the number of instructions
that hold a constant at all and depends on the probability for which constants are created
during mutation or during the initialization of programs. As a standard configuration a

2In our implementation constant values are saved in registers (see Section 2.1.1). Instead of holding
constants directly in instructions they are addressed over register indices. These “registers” differ from
what is referred to as a constant (input) register here such that their value may not change between
different executions of a program.
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Constants (%) SSE Length #Eff. Eff. Depend.
mean std. abs. eff. % Registers Degree Distance

0 1.2 0.2 41 36 88 3.7 1.5 2.0
50 0.6 0.06 33 28 85 2.8 1.2 1.6
100 33.8 0.01 18 11 60 1.0 0.9 0.9

Table 6.7: mexican hat: Effects of different rates of instructions holding a constant (effmut,
B1). Average results over 100 runs after 1000 generations.

Constants (%) CE Length #Eff. Eff. Depend.
mean std. abs. eff. % Registers Degree Distance

0 10.1 0.5 62 59 96 5.0 3.7 2.7
50 8.4 0.4 66 62 95 4.6 3.3 3.1
100 12.8 0.5 69 63 91 4.1 2.5 3.9

Table 6.8: spiral: Effects of different rates of instructions holding a constant (effmut, B1).
Average results over 100 runs after 1000 generations.

probability of 50 percent has been used in most experiments. In general, this has been
found to be a good choice. Note that the composition of programs, i.e., the proportion of
a program element, in the population is strongly influenced by selection, too.
Tables 6.7 and 6.8 compare prediction performance, program size and (functional) program
characteristics for different rates of constants. Interestingly, the prediction error increases
less if constants are not used at all rather than if almost each instruction holds a constant.
Especially for the mexican hat problem the performance drops drastically in the latter
case. Moreover, the (effective) program size becomes smaller the more instructions hold
a single register operand only. Both may be explained if we have a look at the functional
structure of such programs. If all instructions use the result of only one other instruction
the graph is reduced to a linear list of operator nodes. Such a restriction makes the
emergence of successful complex solutions impossible. As a result, the average number of
effective registers, the average degree of effectiveness and the average effective dependence
distance are constantly 1 for all (effective) programs. In Table 6.7 the last two parameters
are slightly smaller due to programs with effective length 0. The first parameter calculates
1 for these programs because at least the output register stays effective.
The results in Table 6.8 show, by contrast, that the spiral classification is much less
influenced by the rate of constants in linear programs. This is true for almost all observed
features. The reason is that branches are used with this problem. Then the data flow is
not restricted to a linear list of nodes even if all instructions operate on a single register.

6.4 Population Size

The evolutionary algorithm that is used throughout this thesis (see Section 2.3.2) operates
with a steady-state population and tournament selection. The population size is an im-
portant parameter when comparing mutation-based with recombination-based variation.
We apply either instruction mutations or linear crossover for macro variations.
The performance of recombination, by definition, depends more strongly on the composi-
tion of the genetic material in the population. Even if the building block hypothesis is not



6.4 Population Size 133

valid (see discussion in Section 5.7.7), the genotype diversity of a population influences
the innovation positively that may be introduced by the recombination operator. Larger
populations allow a higher diversity than smaller ones.
Instead, the population size may be supposed to have a lower influence on the performance
of mutations which introduce new genetic material regularly into the population. It has
to be noted, however, that diversity is not the only system attribute that is influenced
by the population size. Even a pure mutation-based approach may profit from the higher
parallelism of search points in larger populations. Moreover, the population size influences
the complexity of solutions (see below).

Population Generations CE Length Variations (%)
Size # mean std. abs. eff. % constr. neutral noneff.
10 100000 45.3 3.6 109 83 76 2.9 41 31
100 10000 23.5 0.7 196 125 64 3.8 18 11
1000 1000 26.1 0.7 185 102 55 3.6 23 14
10000 100 24.7 0.4 125 53 42 3.0 38 23

Table 6.9: spiral: Effects of population size on crossover (cross). Average results over 100
runs after 1000000 evaluations.

Population Generations SSE Length Variations (%)
Size # mean std. abs. eff. % constr. neutral noneff.
10 100000 23.2 2.4 143 74 52 4.5 39 24
100 10000 12.4 1.4 196 91 46 5.6 24 18
1000 1000 16.1 1.5 180 60 33 4.5 28 25
10000 100 11.9 1.3 97 21 22 4.4 36 33

Table 6.10: mexican hat: Effects of population size on crossover (cross). Average results
over 100 runs after 1000000 evaluations.

If the solution quality is compared for different population sizes on the basis of generations,
bigger populations always produced better results (not shown). This is true because more
evaluations are performed per generation while the average number of evaluations (and
variations) per individual (position in the population) remains constant. The number of
evaluations equals the number of variations if only newly created individuals are evaluated.
Only measuring runtime on the basis of fitness evaluations guarantees a fair comparison.
Comparing evaluations after effective variations (effective evaluations, see Section 5.2) is
not necessary since the proportion of effective variations is not influenced significantly by
the population size.
The smaller the population size is set the more often an individual (position) is selected for
variation and the more generations happen within a certain period of evaluations. Code
diversity may be lower not only because of less individuals but because the same individual
index is reproduced more frequently (by overwriting worse individuals in the steady-state
population).
The larger a population is, on the other hand, the more solutions may be developed
in parallel. If a population contains too many individuals in relation to the observed
number of evaluations the number of variations per individual will not be sufficient to
develop successful solutions. Success depends too much on random events then instead of
evolutionary progress.
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Population Generations CE Length Variations (%)
Size # mean std. abs. eff. % constr. neutral noneff.
10 100000 5.7 0.3 122 105 86 1.5 16 0
100 10000 7.5 0.4 96 88 92 1.4 29 0
1000 1000 11.6 0.4 51 47 92 2.2 20 0
10000 100 25.5 0.5 24 18 76 3.4 31 0

Table 6.11: spiral: Effects of population size on effective mutations (effmut2, B0). Average
results over 100 runs after 1000000 evaluations.

Population Generations SSE Length Variations (%)
Size # mean std. abs. eff. % constr. neutral noneff.
10 100000 1.8 0.3 119 66 56 8.2 5.2 0
100 10000 1.1 0.1 70 43 62 9.0 6.3 0
1000 1000 0.7 0.05 39 25 64 8.4 9.9 0
10000 100 2.8 0.2 21 12 55 9.0 16.6 0

Table 6.12: mexican hat: Effects of population size on effective mutations (effmut2, B0).
Average results over 100 runs after 10000000 evaluations.

Tables 6.9 to 6.10 show for both test problems that crossover performs worst in the small-
est population (10 individuals here). It is interesting to see that the relative differences in
performance are rather low with larger population sizes after the same number of evalu-
ations. When using effective mutations the situation is less clear. For the spiral problem
best solutions are obtained with the smallest population size (see Table 6.11). The mexican
hat problem, instead, is solved most successfully with a medium population size (see Table
6.12). Only if the number of generations falls below a certain minimum, the performance
decreases again. This example shows that a pure mutation-based approach does not auto-
matically perform better with a smaller population size. In general, crossover performance
seems to depend less on the relation of population size and generation number than the
performance of instruction mutations.
The different optimum population sizes found for the two test problems may result from
a different correlation between solution quality and solution size, too. The population
size clearly influences code growth, especially when using effective mutations. But why do
programs become larger in smaller population ? On the one hand, an individual may grow
larger in a smaller population because it is selected and varied more frequently. This is
true as long as larger solutions show a better fitness. Likewise, other causes of code growth
than fitness may be reinforced. In particular, more neutral variations per individual may
create more neutral code (see Chapter 9). This is true even if Tables 6.11 and 6.12 show
that the proportion of neutral variations per generation is smaller in smaller populations.
Note that effective mutations are configured without an explicit grow bias here that would
be reinforced otherwise.
On the other hand, especially the small absolute step size of instruction mutations lets
programs grow only insufficiently in larger populations since not enough variations and
evaluations happen per individual. Large absolute step sizes, instead, such as those are in-
duced by the use of crossover, allow effective programs to be developed more independently
from the average effective length in the previous generation (see also Section 6.6).
In most experiments of Chapters 5 and 6 we decided for population size 1000 (and 1000
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generations) because this has been found to be a good trade-off between a sufficient training
time and a low influence on program growth, especially for instruction mutations.

6.5 Maximum Program Length

The simplest form of growth control in genetic programming is to keep the maximum size
limit of programs as small as necessary for representing successful solutions. In linear
GP this is the maximum number of program instructions. In the following the influence
of the maximum program length is analysed for unlimited linear crossover. In contrast
to crossover, effective mutations control the complexity of programs already implicitly.
In this case, the upper bound may be just chosen sufficiently large such that it is never
reached within the observed period of generations.

Maximum CE Length Variations (%)
Length mean std. abs. eff. % constr. neutral noneff.

20 37.7 0.7 20 16 78 4.5 19 13
50 30.2 0.8 49 34 69 3.9 20 14
100 27.9 0.7 96 59 61 3.8 22 15
200 26.1 0.7 185 102 55 3.6 23 14
500 23.3 0.7 446 216 48 3.5 26 16
1000 21.7 0.6 858 392 46 3.3 27 16

Table 6.13: spiral: Effects of maximum program length on crossover (cross). Average
results over 100 runs after 1000 generations.

Maximum SSE Length Variations (%)
Length mean std. abs. eff. % constr. neutral noneff.

25 10.3 1.2 25 15 62 5.6 24 22
50 4.8 0.8 48 26 54 5.3 24 22
100 8.4 1.2 94 40 43 5.0 26 23
200 16.1 1.5 180 60 33 4.5 28 25
500 20.4 1.5 410 97 24 4.1 32 28
1000 21.0 1.5 751 145 19 3.9 35 31

Table 6.14: mexican hat: Effects of maximum program length on crossover (cross). Average
results over 100 runs after 1000 generations.

Tables 6.13 and 6.14 show exactly the opposite effect on the performance for the two
test problems. While mexican hat profits from a smaller maximum size of solutions,
spiral does not. Most successful solutions for the regression problem may be assumed in
lower dimensional regions of the search space, while for the classification task even very
large (effective) solutions still perform better since these allow a higher specialization by
intergrating more branches. In other words, fitness is positively correlated to program size
for the latter problem. For the former problem this is so until a sufficient maximum size
only. Beyond that correlation becomes rather negative.
One important general conclusion from the fact that even very long linear programs still
improve results, is that their functional representation is not restricted in scalability. This
is true for the depth of the directed graph as well as for the graph width. As argued
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in Section 6.1 the imperative programs may even represent large trees if the number of
registers is sufficiently high.
In both test cases, the average absolute length and the average effective length per run
increase with the maximum bound. Concurrently, the proportion of effective code de-
creases. The average length in the population (see Figure 6.3) converges quickly to the
maximum during a run depending on how large the maximum is configured. This devel-
opement is characterized by an explosive increase of program lengths in early generations.
One reason for this is the unlimited exchange of instruction segments during crossover.
Another reason is the noneffective code that may grow almost without restrictions since
the program fitness is not directly influenced by it. The proportion of structural introns
is lower in Table 6.13 than in Table 6.14 due to the higher tendency for larger effective
solutions.
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Figure 6.3: spiral: Development of absolute program length (left) and relative effective
length (right) for different maximum bounds using crossover (cross). The less code growth
is restricted by the maximum complexity bound the less the proportion of effective code
increases over a run. Average figures over 100 runs.

Figure 6.3 shows exemplarily the development of both the absolute program length and
the proportion of effective code (relative effective length) over a run for different maximum
lengths. In general, the larger programs may grow the later the maximum is reached
during a run. Interestingly, the proportion of effective code remains mostly constant over
a run here for the highest maximum bound. Otherwise, the rate of effective code increases
because this type of code may still grow even if the absolute length of a program is already
maximum. In doing so, noneffective code is replaced by effective code during a run.
In general, a higher proportion of noneffective instructions in programs reduces the average
effective step size of crossover. That means, by Definition 5.4, that the average amount of
effective instructions decreases that is exchanged during a crossover operation. However,
this is valid only for the same program length, not if the the maximum complexity bound
is extended. First, the effective code increases indirectly together with the absolute length.
In general, it is more difficult to maintain a small amount (not proportion) of effective code
in a large program context. A larger amount of noneffective code implies a larger amount of
effective code, especially if only a few registers are used (see above). Second, the absolute
step size of unrestricted crossover, i.e., the total amount of exchanged instructions, grows
proportionally to the program size. For both reasons, the effective crossover step size
increases here. Nonetheless, it may be argued that the increasing intron rate in Tables
6.13 and 6.14 results at least partly from a higher need for protection against increasing
absolute step sizes (see also Chapter 11).
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For the same reasons the proportion of noneffective variations increases only slightly com-
pared to the proportion of noneffective code. We only note here that this is different with
free instruction mutations whose minimum step size lets the effectiveness of operations
more directly depend on the proportion of effective instructions.
The reader may note also that code growth is influenced by a larger maximum size bound
only to a certain extent when using segment mutations even if the segment length is not
explicitly restricted (see Section 9.9.2).
Finally, the influence of the (maximum) program length on the number of effective registers
(graph width) and the degree of effectiveness (connectivity of nodes) has been found quite
low (undocumented).

6.6 Initialization of Linear Programs

The initialization of individuals denotes the first step of an evolutionary algorithm. In
genetic programming it determines the size, shape and diversity of programs in the initial
population. Depending on the type of program representation different strategies may be
developed. Popular method for initializing tree populations will be introduced in Section
7.1.2. In this section we define and compare different initialization method for the linear
representation. Basically, the following forms are discerned:

¤ During free initialization programs are filled with instruction that are created ran-
domly.

¤ A (fully) effective initialization builds programs completely from effective code start-
ing with the last instruction (see Section 5.10.4).

¤ Maximum initialization: The absolute length of all initial programs equals the max-
imum program length.

¤ Constant-length initialization: All programs have the same initial length.

¤ Variable-length initialization: Initial program lengths are selected uniformly dis-
tributed from a predefined range.

All strategies, except for the effective initialization, apply to the absolute length of pro-
grams. The initial effective length may vary freely and increases automatically with the
initial absolute length. In contrast to a free initialization with longer absolute programs, a
fully effective initialization allows a higher (effective) diversity of initial programs without
increasing the total amount of genetic material.
If programs are initialized too long, on average, they may be more inflexible during evolu-
tionary manipulations. This is especially true if the average step size of macro variations
is rather small. The minimum step size of instruction mutations lets the best prediction
quality be achieved with rather small initial lengths (see Tables 6.15 and 6.17). More-
over, both the absolute size and the effective size of solutions increase clearly by effective
mutations if a longer initial size is chosen. In general, it seems to be more difficult for
the evolutionary algorithm to follow a search path from a complex region of the search
space to another complex region (with better programs) than to start with low-complex
programs.
Figure 6.5 shows, exemplarily for the mexican hat problem, how the program length de-
velops by applying effective mutations without an explicit grow bias. Different (effective)
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Figure 6.4: mexican hat: Development of absolute program length (left) and effective
program length (right) for different inital lengths using free initialization and crossover
(cross). Average figures over 100 runs.
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Figure 6.5: mexican hat: Development of absolute program length (left) and effective
program length (right) for different initial lengths using free initialization and effective
mutations (effmut2, B0). Average figures over 100 runs.
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Figure 6.6: mexican hat: Development of absolute program length (left) and effective
program length (right) for different initial lengths using fully effective initialization and
effective mutations (effmut2, B0). Average figures over 100 runs. (Similar figures found
for the spiral problem.)
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Initial SSE Length Variations (%)
Length mean std. abs. eff. % constr. neutral noneff.

5 0.6 0.06 39 26 67 8.3 10 0
10 0.7 0.1 39 26 65 8.5 10 0
50 0.9 0.1 70 38 54 8.7 9 0
100 1.2 0.1 115 54 47 8.6 9 0
200 3.5 0.4 196 79 40 8.6 11 0

1–200 1.7 0.1 130 58 45 8.5 10.5 0.0

Table 6.15: mexican hat: Effects of initial program length on effective mutations (effmut2,
B0) using free initialization. Maximum program length is 200. Average results over 100
runs after 1000 generations.

Initial SSE Length Variations (%)
Length mean std. abs. eff. % constr. neutral noneff.

5 0.6 0.06 36 25 69 8.5 10 0
10 0.4 0.05 40 28 69 8.6 9 0
50 1.0 0.1 72 48 67 8.6 9 0
100 2.5 0.2 120 77 64 8.4 11 0
200 6.0 0.5 196 118 60 7.7 16 0

1–200 1.5 0.2 119 59 50 8.2 11 0

Table 6.16: mexican hat: Effects of initial program length on effective mutations (effmut2,
B0) using effective initialization. Maximum program length is 200. Average results over
100 runs after 1000 generations.

initial lengths are continuously increased during a run for almost the same amount. Thus,
it strongly depends on the initialization here how large programs may become during a
certain period of generations. Apparently, maximum mutation steps of one instruction are
too small to break up larger initial structures sufficiently.
In Figure 6.4 we can see, by comparison, that the more (effective) code exists initially the
less the (effective) length grows in the course of the evolutionary algorithm when using
(unrestricted) crossover. Interestingly, the effective size converges to almost the same
value in the final generation, no matter how large the initial programs are constituted.
Similar results have been observed with (unrestricted) segment mutations. Apparently,
larger step sizes allow (effective) programs to grow almost independently from their initial
(effective) size.
Neither with crossover nor with effective mutations the average effective length falls below
its initial level after a free initialization. Instead, a more-or-less rapid drop of effective
length occurs at the beginning of runs if longer individuals are initialized fully effectively
(see Figure 6.6). This has been found with both benchmark problems here. The decrease
in average effective length results from early deactivations. Nevertheless, the absence of
inactive code in the initial population reduces the emergence of this code during a run.
As a replacement, the effective code develops larger than with the standard initialization.
This is also the reason why an effective initialization results in a worse performance for
larger initial programs (compare Table 6.15 with Table 6.16 and Table 6.17 with Table
6.18). A slightly better performance is obtained, however, with smaller initial lengths
probably due to a higher diversity of the initial effective solutions.
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Initial CE Length Variations (%)
Length mean std. abs. eff. % constr. neutral noneff.

5 10.1 0.5 50 46 92 2.1 20 0
10 11.3 0.5 55 50 91 2.1 20 0
50 14.2 0.6 82 69 85 1.9 21 0
100 16.8 0.6 128 100 78 1.7 24 0
200 22.3 0.6 197 136 69 2.0 23 0

1–200 16.1 0.5 113 90 79 1.8 23 0

Table 6.17: spiral: Effects of initial program length on effective mutations (effmut2, B0)
using free initialization. Maximum program length is 200. Average results over 100 runs
after 1000 generations.

Initial CE Length Variations (%)
Length mean std. abs. eff. % constr. neutral noneff.

5 10.0 0.5 50 46 92 2.2 20 0
10 8.6 0.5 53 48 91 2.1 21 0
50 16.4 0.6 83 74 89 2.2 21 0
100 22.7 0.6 132 116 87 2.2 22 0
200 31.0 0.5 198 175 88 3.4 19 0

1–200 16.0 0.7 88 79 89 2.2 21 0

Table 6.18: spiral: Effects of initial program length on effective mutations (effmut2, B0)
using effective initialization. Maximum program length is 200. Average results over 100
runs after 1000 generations.

If the initial lengths are too small, many programs may be identical in both (effective)
structure and semantics. In particular, many initial programs may have effective length
zero. Initialization influences diversity in such a way that both more or longer programs
allow a higher diversity. If variation is dominated by recombination the composition of the
initial population has a stronger influence on the success of solutions (see also Section 6.4).
This is another reason, besides its larger absolute step sizes, why crossover may perform
better with a higher amount of initial genetic material. At least the mexican hat problem
is better treated with longer initial programs in Table 6.19. If variation is based primarily
on mutations, instead, the initial diversity is less important since new material is seeded
regularly into the population anyway.
We have seen in Section 5.9.5 that smaller effective lengths may be maintained in lin-
ear programs by building the initial programs partly from empty instructions (explicit
introns). Additionally, the proportion of implicit introns is significantly reduced in this
way wherefore reactivations are much less likely. For both reasons, crossover steps become
smaller in terms of the effective code. This may not be achieved already by increasing the
initial program length as demonstrated in Figure 6.4. In generation 0 the proportion of
effective code is more-or-less the same for different absolute lengths. If the program size is
doubled the effective size doubles, too. Consequently, both the absolute step size and the
effective step size of unrestricted linear crossover increase with the initial program length.
Because the rate of noneffective code is more-or-less unchanged the same is true for the
probability of a crossover operation to become noneffective (see Tables 6.19 and 6.20). In
general, the probabilities for neutral variations and constructive variations are not affected
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Initial SSE Length Variations (%)
Length mean std. abs. eff. % constr. neutral noneff.

5 15.0 1.5 179 60 33 4.7 29 25
10 15.5 1.4 180 58 32 4.4 29 25
50 7.4 1.0 180 61 34 4.8 26 23
100 5.4 0.6 184 63 34 5.1 25 21
200 6.9 0.6 200 73 37 5.3 25 19

Table 6.19: mexican hat: Effects of initial program length on crossover (cross) using free
initialization. Maximum program length is 200. Average results over 100 runs after 1000
generations.

Initial CE Length Variations (%)
Length mean std. abs. eff. % constr. neutral noneff.

5 28.1 0.6 187 113 61 4.1 22 12
10 25.7 0.6 186 101 54 3.6 24 15
50 26.0 0.7 187 97 52 3.3 24 16
100 30.1 0.7 188 94 50 3.4 24 16
200 36.1 0.7 200 103 52 4.1 24 14

Table 6.20: spiral: Effects of initial program length on crossover (cross) using free ini-
tialization. Maximum program length is 200. Average results over 100 runs after 1000
generations.

by the initial program length.
When using effective mutations the noneffective code is not directly varied (effmut2) but
may increase the effective step size indirectly by reactivations. This may be another reason
why effective mutations perform worse here when applied to longer initial programs. The
number of deactivations, instead, depends much less on the number of effective instruc-
tions. We will demonstrate in Section 8.7.2 that the effective step size increases less with
the size of effective code than it is possible with the size of noneffective code. This effect
becomes negative here such that smaller effective step sizes also reduce the variability of
larger effective code.
In the experiments described above all initial programs share the same absolute length.
One remaining question is whether variable-length programs in the initial population may
produce significantly different results than constant-length programs. To answer that
question, initial lengths are selected uniformly distributed from a range of 1 to 200 instruc-
tions in Tables 6.15 and 6.17. Thus, the average program length in the initial population,
i.e., the total amount of genetic material, is about the same as in runs with (constant)
initial length 100. In general, results show that a variable-length initialization changes
the prediction error and the average complexity of programs only slightly compared to a
constant-length initialization. This is mostly due to the fact that programs may still differ
in their effective length even if their absolute length is constant. Only if the initialization
is completely effective, variable (effective) lengths become more important and their effect
on the performance is more significant (see Tables 6.16 and 6.18). Note, however, that
there is hardly a relevant difference in performance here if the initial lengths are small.
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6.7 Constant Program Length

In genetic programming usually programs of a variable-length representation are evolved.
Typically, the population is initialized with smaller programs that grow in the course
of the evolutionary algorithm. The traditional tree representation requires that programs
change size and shape for creating successful solutions. Otherwise, if valid programs would
be restricted to a constant number of nodes or a certain shape of a tree, variability and
solution finding would be quite limited in general.

Constant SSE Length Variations (%)
Length mean std. abs. eff. % constr. neutral noneff.

50 2.5 0.4 50 27 54 5.7 22 19
100 3.6 0.4 100 45 45 5.6 23 19
200 6.9 0.6 200 73 37 5.3 25 19

Table 6.21: mexican hat: Evolution of fixed-length programs using crossover (cross). Av-
erage results over 100 runs after 1000 generations.

Constant CE Length Variations (%)
Length mean std. abs. eff. % constr. neutral noneff.

50 28.8 0.7 50 33 66 3.7 21 14
100 30.5 0.8 100 57 57 3.6 22 14
200 36.1 0.7 200 103 52 4.1 24 14

Table 6.22: spiral: Evolution of fixed-length programs using crossover (cross). Average
results over 100 runs after 1000 generations.

The imperative representation used in linear GP contains inactive code that emerges
almost independently from the composition of the provided sets of basic program elements
(see Section 3.2). The only precondition for this special type of intron code is that the
number of variable registers is larger than one. The existence of inactive code together
with the fact that data flow between registers is organized as a graph allows an evolution
of linear genetic programs without changing their absolute size. That is, programs may
be initialized with a certain absolute length which stays constant during the whole run
while only the effective length may change.
The evolution of fixed-length programs requires that the (absolute) program length is
configured by the user instead of being subject to the evolutionary algorithm. This is a
drawback because, first, the absolute length may have a significant influence on the pre-
diction performance. Second, programs have a maximum size already from the beginning
of a run. Thus, using a constant absolute program size is a combination of a maximum
initialization and a restriction of program length. Both techniques have been investigated
separately in the two previous sections. In this section we will verify for different variation
operators whether a constant program length may be a feasible alternative to a growing
program length.
First, let us compare Tables 6.21 and 6.22 with Tables 6.13 and 6.14 from Section 6.5,
on the one hand, and Tables 6.19 and 6.20 from Section 6.6, on the other hand. Because
the mexican hat problem profits from both a complexity control through a smaller maxi-
mum program size and a higher diversity by longer initial code, a better performance is
obtained here when using a smaller constant length than it has been found in both partial
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experiments. This is in contrast to the spiral problem, which is better solved with larger
program bounds and with less initial material (smaller initial step sizes) when using unre-
stricted linear crossover. As with mexican hat, a better fitness occurs here with constant
program size 50 than with 200.

Constant SSE Length Variations (%)
Length mean std. abs. eff. % constr. neutral noneff.

50 1.3 0.1 49 25 51 9.2 8 0
100 1.0 0.1 98 44 45 8.9 9 0
200 3.5 0.4 196 79 40 8.6 11 0

Table 6.23: mexican hat: Evolution of fixed-length programs using effective mutations
(effmut2, B0). Small variations in average program length because single instructions are
inserted or deleted (not exchanged). Average results over 100 runs after 1000 generations.

Constant CE Length Variations (%)
Length mean std. abs. eff. % constr. neutral noneff.

50 19.9 0.7 48 40 83 3.0 15 0
100 20.1 0.6 98 75 76 2.3 19 0
200 22.3 0.6 197 136 69 2.0 23 0

Table 6.24: spiral: Evolution of fixed-length programs using effective mutations (effmut2,
B0). Small variations in average program length because single instructions are inserted
or deleted (not exchanged). Average results over 100 runs after 1000 generations.

We have seen in Section 6.6 that the absolute and the effective program lengths strongly
depend on the initial amount of genetic material when using effective mutations. The
performance has been affected in such a way that rather small initial programs produce
the best results. This has been accredited to the small step sizes of instruction mutations.
Not surprisingly, evolving fixed-length programs by instruction mutations performs not
better in general than using initial programs of the same length only (compare Tables
6.23 and 6.24 with Tables 6.15 and 6.17 above). The spiral problem is handled even worse
with the additional parsimony effect. Slight improvements (if ever) have been found here
only with some configurations of program length for the mexican hat problem.
In general, the smaller the step size is adjusted for a variation operator the more precise
the approximation to a (sub)optimum may be (exploitation). The drawback is, however,
that the escape from such suboptima (exploration) may be more difficult, especially if the
solution size has already become relatively large. The lower variability of longer initial pro-
grams or fixed-length programs might require another exploitation-exploration trade-off
in terms of the mutation step size. Hence, a larger absolute step size than one instruction
may be supposed to better balance approximation, on the one hand, and variability, on
the other hand. However, effective segment mutations (effonesegmut, see Chapter 5.7.5)
have not produced relevant improvements here for different maximum segment lengths
of 2–10 instructions (not documented). Already in Section 5.11.4 multiple (effective) in-
struction mutations have not proven to be more successful (with a standard initialization).
Conclusively, also for maximum initialized programs an absolute mutation step size of one
instruction might be close to the optimum.
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6.8 Summary and Conclusion

Different control parameters were analysed in this chapter for their influence on linear GP.
Some important results are summarized in the following.
(1) The performance of linear GP strongly depends on the number of calculation registers.
Smaller register numbers may restrict the expressiveness of programs while larger numbers
may increase the search space of programs unnecessarily. The more registers are provided
the more registers may be effective and the lower is the effectiveness degree of instructions.
For the functional structure this means wider graphs with less connections per node. A
medium register number produced the best prediction results. More tree-like structures –
resulting from higher register numbers – were usually not optimum.
(2) An initialization of all registers with input values achieved better results in general
than setting the additional (calculation) registers to constant initial values.
(3) The question whether a smaller or a larger population size leads to more successful
solutions could not be answered clearly (if the same number of evaluations is observed).
Instruction mutations showed a significantly better performance in small populations for
certain problems. Basically, this depends on the size of the optimum solution. In a smaller
population programs grew larger, especially if the variation step size was small.
(4) Moreover, the relation of program size and fitness determines how much a problem
solution profits from a higher complexity bound. When using (unrestricted) recombination
linear programs grow noteably fast until the maximum length is reached. This was true
for both the noneffective code and the effective code in programs, even if a larger upper
bound led to a smaller proportion of effective code. We demonstrated by example that
even large settings of the maximum program length may still produce better results.
(5) Finally, we compared possible initialization methods for linear genetic programs, in-
cluding maximum and fully effective. In general, effective instruction mutations performed
worse with a larger initial size of programs. Apparently, small absolute step sizes are less
suitable to transform larger random structures. This was different for unrestricted segment
variations which may perform better with more initial code.
(6) Linear GP allows the evolution of fixed-length programs, too, since programs may still
vary in both their functional structure and their effective complexity. This may not be
recommended in general, however, because it requires fixing the absolute solution size in
advance and starting with initial programs of maximum length.
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A comparison between the linear representation and the traditional tree representation of
genetic programs is performed in terms of both prediction performance and model size.
The comparison is based on two collections of benchmark problems that have been com-
posed of artificial test problems and real-world applications from bioinformatics, respec-
tively. Both linear GP and tree-based GP use crossover for macro variations. Additionally,
we apply the linear GP variant from Section 5.10.4 that works exclusively with (effective)
instruction mutations. First of all, we will introduce tree-based GP into further detail.

7.1 Tree-Based Genetic Programming

The earliest and most commonly used approach to genetic programming is the evolution of
tree structures represented by variable length expressions from a functional programming
language, like S-expressions in LISP [51] This classic approach is referred to as tree-based
genetic programming (TGP) for a better distinction from later approaches. The inner
nodes of such program trees hold functions (instructions). The leafs are called terminals
that mean input variables or constants.
In comparison with the imperative representation used in linear GP, pure functional pro-
grams, by definition, do not include assignments to memory variables. These have to be
incorporated explicitly by means of special functions which realize read and write access
to an external memory [51, 93]. Such “imperative” extensions are, however, not very
commonly used because they do not always promise a higher functionality in a functional
program. Nevertheless, assignments may be used if a tree program is supposed to return
more than one output. Alternatively, multiple program outputs may be implemented in
functional programs by using individuals that include multiple expressions (trees) which
calculate one output each.
In any case, memory (a stack) is needed during the interpretation of program trees to
save the intermediate results of each evaluated subtree (see also Section 3.3.3). While
a program tree is evaluated the nodes are traversed in a predefined order (preorder or
postorder). The value of a node is calculated by applying its function to all subtree results
that have to be evaluated first. Then the value is returned to its father node. At the end
of execution the tree root provides the final program output.

7.1.1 Genetic Tree Operators

Crossover is a genetic operator for recombining old solutions into new and potentially
better solutions. Figure 7.1 illustrates representation and crossover in tree-based GP. In
each parent individual the crossover operator selects a node (crossover point) randomly
and swaps the two corresponding subtrees to create two offspring individuals. In general,
the crossover points might be directed to function nodes for a higher probability than to
terminal nodes. Koza proposes a 90 percent selection of inner nodes here.
The mutation operator exchanges single terminals or function identifiers. Usually each tree
node is selected as a mutation point for the same probability. A node mutation replaces
a random function by a legal alternative from the function set that requires the same
number of parameters. In doing so, loss or creation of complete subtrees are avoided.
This includes that functions may not be replaced by terminals (zero parameters) and vise
versa. A certain amount of constants is maintained in tree programs by setting constant
terminals for a user-defined proportion.
Alternatively, during subtree mutation a complete subtree is replaced by a random one. For
the creation of the new subtree the same method may be applied as for the initialization
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Figure 7.1: Crossover in tree-based GP. Subtrees in parents are selected and exchanged.

of programs (see next section). In contrast to crossover it has to be explicitly guaranteed
that subtree mutations are bias-free. This is true if inserted subtrees are of the same size
as deleted subtrees, on average.
In the standard TGP approach crossover is aborted, i.e., the effects of this genetic operator
are reversed, if one of the offsprings violates a maximum complexity bound. Since the
parent individuals are not modified in this case, they neither have to be reproduced nor
their fitness has to be re-evaluated. The maximum depth of a tree denotes the maximum
length of a path from the root to a leaf. If only the depth is limited as practiced by Koza
[51] (who proposes a maximum depth of 17) programs may still become extremely large in
their number of nodes, especially if a larger number of generations is observed. Moreover,
the number of program nodes depends strongly on the average number of arguments that
are required by the program functions. To better avoid a wasting of evaluation time and
memory space a maximum limit may be placed on both the number of nodes and the
depth of tree programs. For a fair comparison with linear GP it is necessary that the
same maximum number of operations is observed in programs.
When using a smaller maximum number of nodes, individuals reach their maximum com-
plexity more quickly. To assure that crossover remains executable, only equally large
subtrees might be exchanged after (unrestricted) tree crossover has failed. This, however,
would restrict the selection of variation points drastically. A better alternative might se-
lect a random successor node of the crossover point repeatedly (as new crossover point)
until the corresponding subtree fits into the other parent. In order not to exchange smaller
subtrees more frequently the unique path of predecessor nodes might be pursued from the
crossover point for the same probability. That is, either the larger subtree is pruned or the
smaller subtree is enlarged. This method leads to an exchange of equally large subtrees
only if both parent individuals have maximum size.
We decided for a variant here that restricts the freedom of variation least by executing
the crossover operation in any case. If an offspring tree becomes too large in terms of
the number of nodes, the node at the crossover point is replaced by one of its direct
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successors (after crossover). The old node and all its other subtrees are deleted. This
step is repeated recursively until the total tree size falls below the maximum bound. In
contrast to selecting valid subtrees already in the parent individuals (before crossover) the
positions of crossover points are freely selected here..
Recall from Section 5.7.1 that crossover in linear GP is always possible by exchanging
equally-long instruction segments if otherwise the maximum program length would be
exceeded. This is mostly due to a higher variability (weaker constraints) of the imperative
representation which allows the existence of code that is not connected to the program
output on the functional level (see Chapter 3).
In general, using genetic programming without any complexity bound is rather uncommon
since unnecessarily large solutions are not desirable. First, those are less flexible during
genetic manipulations. Within a certain number of generations reasonable progress may
only be made up to a certain complexity of solutions. Otherwise too complex variations
would be necessary to find successful solutions. Second, larger programs increase the
processing time of GP and when being used in an application area. Third, interpretation
of larger solutions is potentially more difficult. Finally, the principle of Occam’s Razor says
that shorter (equally fit) solutions are more general than longer ones. For these reasons
low complexity is an important quality of genetic programs, besides a high prediction
performance.

7.1.2 Initialization of Tree Programs

Genetic programs are created randomly from elements of the function set and the terminal
set. However, even though these selections are random some methods are distinguished for
tree-based GP that control the composition of genetic material in the initial population.
The full method generates only full trees, i.e., trees which have all terminal nodes on the
same level. Another way to say this is that the tree path length from any terminal node
to the root of the tree is the same.
The grow method chooses any node (function or terminal) for the root, then recursively
calls itself to generate child trees for any nodes which need them. If the tree reaches the
maximum depth, all further nodes are restricted to be terminals, so growth will cease. The
shape and size of trees strongly depends on the probabilities for which a terminal node or
a function node is selected. Usually these probabilities are supposed to be equal.
The half-and-half method merely chooses the full method 50 percent of the time and the
grow method the other 50 percent. All of the generation methods can be specified with
a ”ramp” of initial depth values instead of using the same depth. For instance, if the
ramp is 2–5, then 25 percent of the trees will be generated with depth 2, 25 percent will
be generated with depth 3, and so on. Note that the latter two methods, when called to
generate a tree of depth n, can produce a tree with actual depth less than n. Ramped
half-and-half is typically the method of choice for initialization since it produces a wide
variety of tree shapes and sizes.

7.2 Benchmark Problems

Basically, the benchmark problems that have been composed here for the comparison with
tree-based GP comprises three problem classes. These are classification, regression, and
Boolean functions.
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In general, a GP benchmark may be regarded as a combination of problem (data set) and
instruction set. The difficulty of a problem strongly depends on the composition of the
function set in GP since this set may, in principle, hold any function – including the opti-
mum solution of a problem if this is known (trivial case). At least for artificial benchmark
problems where the optimum solution is already known in advance the absolutely best
configuration is not always desired. Instead, the problem difficulty is scaled over the pro-
vided set of elementary functions. An optimization of the function set may be interesting
only in terms of real applications or if we want to compare the performance of GP with
other methods.

7.2.1 GP Benchmarks (GPProben)

The first composition of problems tested here is referred to as GPProben. Some problems
became popular benchmarks in the GP community or in the machine learning community.
Others have already been used in experiments of this document, but not necessarily with
the same configuration. Table 7.1 summarizes all relevant problem characteristics and
problem-specific configurations. These comprise the dimensions of the data sets, on the
one hand, and the fitness function and the function set, on the other hand.

Problem #Inputs Input Output #Fitness Fitness Function Set
Range Range Cases Function

11multiplexer 11 {0, 1} {0, 1} 2048 SE {∧,∨,¬, if}
even5parity 5 {0, 1} {0, 1} 32 SE {∧,∨,¬}
even8parity 8 {0, 1} {0, 1} 256 SE {∧,∨,¬, if}
two chains 3 [−2, 2] {0, 1} 500 CE {+,−,×, /, sin, cos, if >}
spiral 2 [−2π, 2π] {0, 1} 194 CE {+,−,×, /, sin, cos, if >}
double sine 1 [0, 2π] [−1, 1] 100 SSE {+,−,×, /}
distance 6 [0, 1] [0, 1] 300 SSE {+,−,×, /,

√
x, x2}

mexican hat 2 [−4, 4] [−1, 1] 256 SSE {+,−,×, /, ex, x2}
Table 7.1: Complexity and configuration of GPProben problems. Maximum input and
output ranges are rounded. The set of constants is {0, 1} for Boolean problems and {1, .., 9}
otherwise.

Among the Boolean functions, the 11multiplexer function calculates 1 of 8 input bits as
output value that is singled out by 3 address bits [51]. The evenNparity functions (N = 5
and N = 8 here) compute 1 if the number of set input bits is even, otherwise the output
is 0. Note that the lower-dimensional parity problem is treated without Boolean branches
here. The fitness function for Boolean problems is the sum of output errors (SE).
The two classification problems spiral and two chains are described in Section 5.8.1 and
Section 10.4.1, respectively. For all classification problems in this chapter the classification
error (CE) defines the program fitness. The classification method is always interval classi-
fication: A program output gp(~ik) is considered as correct for an input vector ~ik if the dis-
tance to a defined class identifier ok ∈ {0, .., m} is smaller than 0.5, i.e., |gp(~ik)−ok| < 0.5.
The one-dimensional regression problem double sine requires the sine function to be approx-
imated by arithmetic functions only over an input range of two periods. For a description
of the two-dimensional regression mexican hat and the six-dimensional distance problem
see Section 5.8.1 again.
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7.2.2 Bioinformatics Problems (BioProben)

The second benchmark set BioProben that is tested here contains real-world classification
problems which mostly originate from the UCI Repository of Machine Learning Databases
[15]. All problems have a biological background in common. Typically the problem data
features a high input dimension. The original data sets have only been edited slightly.
Splice junctions are points on a DNA sequence at which “superfluous” DNA is removed
during the process of protein creation in higher organisms. The splice junction data set
is composed of sequences of 60 nucleotide positions extracted from primates DNA. The
problem represented by this data set is to recognize the boundaries between exons (the
parts of the DNA sequence retained after splicing) and introns (the parts of the DNA
sequence that are spliced out). Actually, the problem consists of two subtasks: recognizing
exon/intron boundaries (referred to as EI sites), and recognizing intron/exon boundaries
(IE sites). In the biological community, IE borders are referred to as acceptors while
EI borders are referred to as donors. About 50 percent of the data comprise non-splice
examples that have been taken from sequences known not to include a splicing site at
all. The nominal attribute values A, G, T, and C – representing the four nucleotide bases
from which the DNA code is built – have been replaced by numeric values here (see Table
7.2). The very few unknown or uncertain characters are represented by 0. The problem
comes with three data sets, one for each class. The first 50 percent of each set is used for
training, the following 25 percent for validation, and the last 25 percent for testing (see
below). A second data set splice junction 2 is derived by excluding all non-splice examples.
This results in the simpler task to distinguish IE sites from EI sites only.

Problem #Inputs #Classes Input Output #Fitness
Range Range Cases

splice junction 60 3 {1, .., 4} {0, 1, 2} 1594
splice junction 2 60 2 {0, .., 3} {0, 1} 768
promoters 57 2 {0, .., 3} {0, 1} 106
ecoli 7 8 [0, 1] {0, .., 7} 336
helicases 25 2 [0, 1] {0, 1} 78
soybean 35 19 {0, .., 6} {1, .., 19} 307
wine 13 3 continuous {1, .., 3} 178
dermatology 34 6 {0, .., 3} {1, .., 6} 366

Table 7.2: Complexity of BioProben data sets. For all these classifications problems a
common fitness function (CE) and function set {+,−,×, /, xy, if >, if ≤} are used.

Another problem that deals with the classification of DNA sequences is promoters. A
promoter initiates the process of gene expression, i.e., the biosynthesis of a protein. The
task is to predict whether subsequences of E. Coli DNA belong to a region with biological
promoter activity or not. Each subsequence holds 57 nucleotides.
The task defined by the data set, which is referred to as ecoli in the UCI repository, requires
the cellular localization sites of proteins in E. Coli bacteria to be predicted from several
measured values. In doing so, eight classes (localization sites) have to be discriminated.
Helicases is a problem of electron microscopy image classification concerning the classifi-
cation of two different structures of hexametric helicases of DNA strangs [23].
A diagnosis of 19 different soybean diseases has to be learned from the soybean data. 13
percent of the data samples suffer from missing input values which all have been completed
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here by constant 7. The task described by the wine problem is to differentiate between
three sorts of wine by their constituents resulting from chemical analysis.
The last problem tested here comes from a medical domain. The differential diagnosis of
erythemato-squamous diseases is a real problem in dermatology. The dermatology data set
constructed for this problem domain requires the distinction of six diseases that all share
most clinical and histopathological features of erythema with only very little differences.
Table 7.2 summarizes all features of the BioProben data sets, including the input di-
mension, the number of output classes, and the number of (training) samples. Most input
ranges are discrete and comprise possible states of attributes.

7.2.3 Generalization Data

The most important capability of a prediction model is the generalization from a given
set of input-output examples to unknown (unlabeled) data inputs. The generalization
ability strongly depends on the correlation of training data and generalization data, too.
Especially, in complex or higher dimensional data spaces there is a higher probability that
the correlation between two randomly selected sets of data points is poor. Moreover, the
generalization performance is influenced by the size of the training set and how regularly
the training data is distributed over the problem data space.
This is especially true when dealing with data that is derived from a real application do-
main. The use of artificial test problems may give a better understanding for what types
of problems a method is suitable and for what types it is not. Because the problem struc-
ture is usually known in advance, artifical benchmarks give a better idea of the problem
difficulty, too. that may even be scalable. In general, a problem description defines the
domain of the input data and the output data, including dimension and attribute ranges.
Generalization data originates from the same data domain as the training data. The larger
the data domain is, however, or the less it may be restricted by the user’s knowledge, the
more likely the data in both sets may cover different subspaces.
The identification of generalization data is obvious for the tested regression problems.
With such continuous problems generalization means interpolation. For the mexican hat
problem random points are selected that lie between the regular grid of training data
points (see Figure 5.2). For the distance problem generalization data is created like the
training set by calculating the Euklidean distance for random pairs of 3-dimensional points
from defined input ranges.
Since we do not want to separate two clouds of fixed data points only in case of the two
chains problem (see Section 10.4), the data space is supposed to include all points that lie
within a certain distance from two virtual circles in three-dimensional space.
Concerning real-world problems the data domain often comprises much more examples
than these may be represented sufficiently by the available data. Moreover, the available
amount of data is very often limited. But even if this is not true, data samples may
hardly be selected uniformly distributed because the structure of the data space is usually
unknown. As a result, correlation of training data and generalization data may be low.
In some data sets of the BioProben collection, e.g., ecoli, the distribution of data exam-
ples over the classes is quite non-uniform such that some classes are represented by only a
few examples. With other data sets the number of examples is relatively small compared
to the number of inputs, e.g., promoters. In both cases it is rather difficult to split a data
set for training, validation and testing. Results may strongly depend on random rather
than being general. One possibility to get more reliable generalization results is to apply
n-fold cross validation in such cases, a method that divides the data into n disjoint subsets
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and repeats a learning process n times while each time another subset is excluded from
training and used for validation. This has not been practiced here, however. Instead, we
restrict ourselves to the splice junction problem.
According to the evolutionary algorithm in Section 2.3 the generalization ability of the
best-so-far individual is checked during training by calculating its error on a validation
set. At the end of a run the individual with minimum validation error is applied again on
a test set. Except for the spice junction problem, both the validation set and the test set
contain about as many examples each as the training set (see Table 7.1).

7.3 Experimental Setup

A comparison between completely different methods, as performed for neural networks
and genetic programming in Chapter 4, may be based on the prediction performance only.
In this case, simply the best or nearly the best configuration may be selected for each
approach. If the tested approaches are more related, however, similar parameters should
be configured similarly to guarantee a fair comparison. This is the more important the less
two approaches differ. Otherwise, the different feature(s) may hardly be made responsible
for a potential difference in performance. For the same reason comparing results from
literature may be crucial. Comparability of results may be guaranteed best within the
same system environment.

7.3.1 A Multi-Representation System

Most experiments in this chapter have been performed with a multi-representation GP
system [18] that comprises different representation forms for genetic programs, including
trees and linear structures in particular. Such a platform allows the user to test dif-
ferent representation types with only a minimum implementation overhead, i.e., without
changing the adaptation of the system to a certain problem. A most fair comparison of
GP representations is achieved by using the same system environment as far as possible.
Among other things, that includes a common evolutionary algorithm, a common selection
method, and a general definition of instruction set and terminal set. In this way, the proba-
bility is reduced that slightly differing implementation details or parameter configurations
may influence the results.

7.3.2 Complexity of Programs

The following comparison between the tree representation and the linear representation
of genetic programs has been tried to be as fair as possible. First of all, the comparison
is fair in terms of the maximum complexity of programs. If we assume that all program
parts are executed this is true for the evaluation time as well. In particular, the same
maximum number of instructions (200 here) is allowed in both kinds of programs. For
program trees this is the number of inner (non-terminal) nodes while in a linear program
the number of lines is counted. The lower bound of absolute program size corresponds to
one instruction (node).
Alternatively, it may be taken into account that not all instructions of the linear represen-
tation – in contrast to a tree representation – are structurally effective (after Definition
3.4). Remember that such noneffective instructions may always be removed completely
from a linear program before it is executed and, therefore, do not cause computation costs
(see Section 3.2.1). Thus, the actual solution is represented by the effective program only.
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From that point of view, it may be a legal alternative to restrict the effective length of
a linear program instead of its absolute length. This may be realized, for instance, by
repeating a crossover operation until a maximum number of effective instructions is met.
In so doing, a maximum of n inner tree nodes is regarded as being equivalent to n effective
instructions. Such a comparison would still be fair in terms of the same maximum number
of executed operators. Only the total number of operators, i.e., the absolute complexity,
may be larger for linear programs than for tree programs.
The maximum (absolute) length may not be left completely unrestricted, however. First,
a higher amount of noneffective code usually implies a larger effective code, too. Second,
the absolute (and the effective) crossover step size are increased because longer segments
are exchanged. Finally, it has to be noted, that longer (effective) programs do not always
provide better solutions for a problem (see Section 6.5). Not only for these negative effects
the absolute program length is better limited sufficiently in linear GP.
The reader may remember from Section 5.9.1 that there is another argument for restricting
the absolute program length and leaving the effective length to be influenced only indirectly
by this. The structurally noneffective code takes away a lot of pressure from the effective
code to grow and to develop semantic introns as a protection against larger crossover steps.
In other words, the presence of noneffective code puts an implicit parsimony pressure1

on the effective code size which does not have to become much larger in this way than
necessary for a solution’s fitness. Therefore, the structural noneffective code, that may be
detected and removed completely, is another reason why effective LGP solutions may be
more compact in size than TGP solutions.
Furthermore, linear genetic programs may manage-with a smaller number of operations
because their functional structure is a directed acyclic graph (DAG), i.e., is not restricted
to a tree structure. Among other things, the higher freedom of connections between the
program functions allows the result of subsolutions (subgraphs) to be reused multiple
times. We may not automatically conclude, however, that the expressiveness of a DAG
program is higher than the expressiveness of a tree program. First, the same functionality
(instruction set) is provided for both types of representation. Second, a DAG can be
transformed into a tree and each tree is a special DAG. Nevertheless, if the same maximum
number of instructions is allowed imperative programs may express more complex solutions
than tree programs.
If a comparison of program complexity would be based on all nodes – including terminals
– instead of counting the (effective) function nodes only, the differences in size between
tree programs and DAG programs would be even more significant.
A binary tree structure with n inner nodes may have n + 1 additional terminal nodes
at maximum. In the imperative representation terminals may be defined as all constant
operands and all read-outs of registers before their original content is overwritten for the
first time in a program. The number of constant terminals is bounded by the number
of instructions (n). Recall that we allow at most one constant operand per instruction.
The number of variable terminals in an (effective) linear program is usually significantly
smaller. Especially if the register set is rather small overwriting of information happens
easily in programs. In the DAG representation of a linear program the number of terminals
is bounded by the sizes of register set and constant set (see Section 3.3), i.e., each register
or constant is represented at most once.

1For an explicit parsimony pressure see Section 9.9.3.
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7.3.3 Parameter Settings

Table 7.3 lists the parameter settings for both GP approaches. The parameter settings
are supposed to be general and have not been adapted to a specific problem. Parameters
that are necessarily problem-dependent like the fitness function and the function set have
been introduced together with the benchmark problems in the previous section
More general conclusions may be drawn about the performance of the two GP variants, if
especially parameters that exist for one variant only are not explicitly optimized for each
problem. For linear GP we allow 10 additional registers besides the required minimum
number of (writable) registers that hold the inputs. All registers are regularly initialized
with input data such that each input value is assigned to about the same number of
registers. We have seen in Chapter 6 that both may have a significant influence on the
performance of linear GP, especially for problems with a lower input dimension. Only
if the number of inputs is already much larger than 10, as in case of most BioProben
tasks, no additional registers are provided. In this case the total number of registers may
be sufficiently high while additional registers unnecessarily increase the search space only.
The average size of an initial program comprises about 20 operations in all experiments.
In particular, as many instructions are used in initial linear programs as there are (inner)
nodes in initial tree programs, on average. In linear GP this is realized simply by choosing
the initial program lengths uniformly distributed from an appropriate range. In tree-
based GP we apply the ramped-half-and-half method (see Section 7.1.2). which may be
controlled by a maximum and a minimum depth of initial trees. This results in a more
probabilistic configuration of initial program size in terms of the number of operator nodes.
Note that the maximum number of nodes in a tree of a certain depth depends on the arity
of instruction nodes, too. Therefore, the maximum number of nodes in initial programs
may be restricted additionally.

LGP
Parameter Setting
Number of generations 500 (1000)
Population size 500
Maximum program length 200
Initial program length 10–30
Initialization method random
Number of registers #inputs + 10
Macro variation 90%
Micro mutation 10% (100%)
Selection method tournament
Tournament size 2
Instructions with constant 50%

TGP
Parameter Setting
Number of generations 500 (1000)
Population size 500
Maximum operator nodes 200
Maximum tree depth 17
Initial tree depth 4–7
Initialization method ramped
Crossover 90%
Node mutation 10% (100%)
Selection method tournament
Tournament size 2
Constant Terminals 25%

Table 7.3: General parameter settings for linear GP (left) and tree-based GP (right).

A balanced ratio of population size and generations has been chosen to guarantee both
a sufficient number of evaluations per individual and a sufficient diversity. In general,
the population size should not be too large in relation to the total number of evaluations
trained. Otherwise results depend less on the evolutionary progress made by the genetic
operators but more on random effects. A too small population, instead, would make



7.4 Results and Comparison 155

the performance depend more strongly on the composition of the initial genetic material,
especially when using crossover (see also Section 6.4).
Besides similar complexity bounds, the same steady state EA is used, as described in Sec-
tion 2.3, including the same selection method (tournament selection). Genetic operators
are highly specific for a each representation type, of course. Exactly one genetic operation
is executed per individual. Both linear crossover and tree crossover are unrestricted in
terms of the maximum size of exchanged subprograms.
As noted before, linear crossover, while operating on the imperative code, may affect
multiple crossover points on the functional level. In contrast to that, tree crossover always
affects one crossover point. For that reason crossover may be considered to be more
destructive in linear GP. On the other hand, small pieces of code may be exchanged at all
parts of the linear representation. Moreover, (structural) introns may easily be created at
each position in a linear program to reduce the effective step size. For tree representations
both is more difficult to achieve especially in upper regions (see Section 7.5).
All variations including both crossover and mutations are induced effectively for linear
GP. That is, each genetic operation alters at least one effective instructions. Remember
that operations on program trees are fully effective in this meaning because structural
noneffective code is not defined (see Section 3.2). For linear crossover it is sufficient
to guarantee the effectiveness for the deleted segments (effdel, see Section 5.7.4). Then
noneffective crossover variations may only result from (effectively) identical exchanges
of code which are not avoided explicitly here because these are usually not very likely.
Additionally, we compare a pure mutation-based variant of LGP that applies effective
mutations (effmut2, B1, see Section 5.10.4) as a macro operator with a minimum segment
length (one instruction).
There are only two differences between the parameter configurations used for GPProben
and BioProben. First, a twice as large population size of 1000 individuals is used in
the latter collection of benchmark problems. This implies twice as many evaluations of
individuals for the same number of generations. Second, since the average input dimension
is significantly higher for most BioProben tasks, micro (node) mutations are applied for
100 percent, either in combination with crossover or not. Both a larger population size
and a high mutation rate guarantee a higher instruction diversity in the population. Note
that especially a high input (register) number leads to more possible combinations of
instructions.
As a third countermeasure, the initial average size of programs should be large enough to
guarantee a sufficient number of effective instructions. Too few instructions may result
in many identical programs if a problem requires many (input) registers. A similar effect
might be achieved by a fully effective initialization here (see Section 6.6).

7.4 Results and Comparison

7.4.1 Prediction Quality and Complexity

Tables 7.4 and 7.5 show the performance of the best solution of a run that has been found
with tree-based GP and with linear GP, respectively, for the GPProben collection of test
problems. In TGP program size is given by the number of operator nodes and by the tree
depth. In LGP the absolute and effective program length are differenced. Each complexity
measure is averaged over all programs of a run. Because the execution of programs during
the fitness calculations is by far the most time-consuming step, the average (effective)
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complexity is directly related to the computational overhead of a GP variant. All results
are again averaged over 100 independent runs.
When comparing the prediction errors of both GP approaches, most test problems are
better solved by linear GP (except for distance). In general, the difference is most clear for
the discrete problems here, including Boolean problems and classifications. In particular,
much higher hit rates have been found with 11multiplexer, even8parity and two chains.
Among the continuous (regression) problems the difficult mexican hat problem is treated
significantly better by means of an imperative representation.
In all test cases the size of tree programs occurs much larger in Table 7.4 than the effective
program length in Table 7.5. Because both measurements count the number of executed
instructions, they may be directly compared here. The average absolute length of linear
programs is similar for all problems and comes typically close to the maximum limit
of 200 instructions. As argued in Section 7.3, linear (effective) solutions may be more
compact due to both the existence of structural noneffective code and the underlying
graph structure that allows a multiple reuse of code.
Compared to unrestricted linear crossover, Table 7.6 documents a much higher prediction
quality in linear GP for all eight test problems when using mutations with a minimum
segment length. Especially for most discrete problems, not only the average prediction
error is significantly smaller, but the optimum solution has been found in much more runs,
too. Since variations are always effective here, the worse performance of linear crossover
compared to instruction mutations may be accredited mostly to the difference in step size.
A parsimony effect of both the maximum program length and the noneffective code are
responsible for the very similar effective size of solutions that has been found with crossover
in Table 7.5 and with instruction mutations in Table 7.6. This might be an evidence, too,
that the proportion of semantic introns in effective programs is rather small. At least, it
shows that a difference in (effective) program size may hardly be responsible for the large
difference in prediction quality here.
The prediction quality and complexity of solutions, that have been found for the Bio-
Proben collection of (classification) problems, is printed in Tables 7.7 to 7.9. As already
observed with discrete problems from GPProben, for all BioProben problems the av-
erage performance is higher with a linear representation. Concerning the quality of best
solutions this is only true for the splice junction problem. In all other problem cases the
best errors are similar.
The higher best and average prediction performance that has been found with effective
mutations demonstrates again that this operator outperforms linear crossover clearly. This
is true even if the improvements are relatively smaller for the real-world problems here,
on average, than for the GPProben benchmarks.
For some problems the average effective length grows significantly larger when using in-
struction mutations than this has been found with linear crossover (compare Tables 7.8
and 7.9). One explanation is that a certain amount of noneffective code will always emerge
with crossover. Depending on the maximum bound this restricts the growth of effective
code (as noted above). Another explanation is the relatively high input dimension of
BioProben problems which requires many registers. Since the applied mutation opera-
tor creates each new instruction effectively, the proportion of effective code is much more
independent from the number of registers (see Section 6.1).
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Problem Error #Hits Size Depth
best mean std.

11multiplexer 0.0 186.0 12.1 10 138 15
even5parity 2.0 8.3 0.2 0 143 15
even8parity 0.0 68.6 2.1 1 179 11
two chains 0.0 13.4 1.1 5 146 15
spiral 17.0 36.0 0.9 0 152 15
double sine 0.2 8.7 0.8 0 147 15
distance 0.0 6.8 0.5 0 68 13
mexican hat 0.5 11.6 1.1 0 81 14

Table 7.4: GPProben: Prediction quality and program size using crossover-based TGP.
Average results over 100 runs after 500 generations. Average program size given in oper-
ator nodes.

Problem Error #Hits Length
best mean std. abs. eff. %

11multiplexer 0.0 92.0 9.1 31 189 88 46
even5parity 1.0 8.4 0.3 0 173 46 26
even8parity 0.0 25.9 2.2 22 167 88 52
two chains 0.0 4.7 0.5 24 186 79 42
spiral 7.0 24.6 0.5 0 187 87 46
double sine 0.6 7.7 0.7 0 181 48 27
distance 0.6 8.7 0.3 0 185 31 17
mexican hat 0.05 3.2 0.3 0 189 37 19

Table 7.5: GPProben: Prediction quality and program size using crossover-based LGP.
Average results over 100 runs after 500 generations.

Problem Error #Hits Length
best mean std. abs. eff. %

11multiplexer 0.0 2.3 1.1 94 101 83 82
even5parity 0.0 1.3 0.1 38 77 43 55
even8parity 0.0 1.6 0.3 68 101 85 84
two chains 0.0 0.8 0.1 50 96 77 80
spiral 0.0 10.4 0.4 1 93 80 86
double sine 0.04 2.9 0.3 0 76 45 59
distance 0.0 2.9 0.2 1 74 36 48
mexican hat 0.01 1.0 0.1 0 79 39 49

Table 7.6: GPProben: Prediction quality and program size using mutation-based LGP.
Average results over 100 runs after 500 generations.
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Problem Error #Hits Size Depth
best mean std.

splice junction 211.0 386.0 8.2 0 138 15
splice junction 2 14.0 36.1 2.2 0 137 15
promoters 0.0 5.8 0.6 2 142 15
ecoli 37.0 73.2 2.2 0 151 15
helicases 0.0 2.1 0.1 6 148 14
soybean 79.0 153.5 6.3 0 134 14
wine 0.0 17.4 1.5 2 147 14
dermatology 4.0 57.4 4.8 0 134 14

Table 7.7: BioProben: Prediction quality and program size using crossover-based TGP.
Average results over 50 runs after 500 generations. Average program size given in operator
nodes.

Problem Error #Hits Length
best mean std. abs. eff. %

splice junction 78.0 189.1 10.6 0 160 58 36
splice junction 2 6.0 18.4 1.1 0 163 66 40
promoters 0.0 1.7 0.2 8 181 54 30
ecoli 36.0 54.0 1.4 0 180 77 43
helicases 0.0 1.4 0.1 12 184 79 43
soybean 67.0 95.3 2.2 0 186 70 38
wine 0.0 2.5 0.2 3 138 87 63
dermatology 4.0 14.3 1.3 0 186 69 37

Table 7.8: BioProben: Prediction quality and program size using crossover-based LGP.
Average results over 50 runs after 500 generations.

Problem Error #Hits Length
best mean std. abs. eff. %

splice junction 52.0 97.4 5.2 0 140 110 78
splice junction 2 5.0 11.9 0.7 0 127 104 82
promoters 0.0 0.3 0.1 30 111 89 80
ecoli 22.0 32.2 0.8 0 98 86 88
helicases 0.0 0.7 0.1 36 105 87 83
soybean 30.0 55.6 2.4 0 111 94 84
wine 0.0 1.2 0.1 9 118 103 87
dermatology 2.0 4.3 0.3 0 112 92 82

Table 7.9: BioProben: Prediction quality and program size using mutation-based LGP.
Average results over 50 runs after 500 generations.
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7.4.2 Generalization Ability

The generalization results for the regression problems in Tables 7.10 to 7.12 demonstrate
that both the validation error and the test error come very close to the training error (in
Tables 7.4 to 7.6). That is, a variation operator that improves the training performance
improves the generalization results for almost the same amount here. In such a case we
may assume that the correlation between training data and generalization data is high.
The generalization errors of the tested classification problems may be significantly different
from the training error, especially when using effective mutations.2 This may be accredit
to the use of branches here. In general, branches improve the training performance such
that they support a specialization to certain training examples. Without using branches
the three prediction errors would become more similar (not documented). Nevertheless,
both validation error and test error are smaller with branches. At least, if branches are
essential for finding the optimum solution or guarantee a significantly higher fitness they
may not lead to a worse generalization quality. Another reason may be that training data
and generalization data are less correlated for a problem.
For the same reason the generalization errors are more similar than the training errors when
comparing different GP representations, on the one hand, or different genetic operators,
on the other hand. Obviously, a genetic operator or a representation that performs better
than others on the training set may not necessarily do the same on unknown data if this
originates from a too different region of the data space.

7.5 Discussion

Instruction mutations vary the length of the imperative code in minimum steps. On the
functional level only one operator node is inserted in or deleted from the corresponding
program graph, together with its incoming and outgoing edges. First, because the degree of
freedom is higher in a directed acyclic graph than in a tree, by definition, the imperative
representation allows insertions or deletions of code to be permanently small at each
position.
Second, code parts may become structurally noneffective in linear programs. That means
they may be disconnect only temporarily from the effective graph component (see Section
3.3). Instruction mutations as applied in this section do not avoid such disconnections
(deactivations) of code explicitly (see also Section 5.10.5). On the one hand, the coex-
istence of inactive (disconnected) code in programs avoids an irrecoverable loss of code
and allows its reactivation (reconnection). On the other hand, the graph structure allows
multiple connections of nodes which reduces the probability for disconnections. Addition-
ally, disconnections decrease implicitly in the course of a run as a result of an increasing
connection degree of instruction nodes, as will be demonstrated in Section 8.7.2.
Both is different in tree-based GP. Due to the higher constraints of the tree structure
deletions or insertions of subtrees are not possible as separate operations. A tree structure
requires a removed subtree to be directly replaced at the same position. In linear GP the
register identifiers (pointers) are encoded in the instructions. If those are disconnected
from a subprogram by deactivation, they are either automatically reconnected to other
instructions or represent a terminal.
In general, (macro) mutations that change the size and the shape of trees are less likely
small on higher tree levels. At least deletions of larger subtrees may not be avoided without
restricting the freedom of variation significantly. Since in a tree each node is connected

2Half as many data examples used during validation and testing than during training with splice junction.
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Problem Validation Error #Hits Test Error #Hits
best mean std. best mean std.

two chains 0.0 10.9 0.6 1 1.0 11.9 0.6 0
splice junction 130.0 208.3 3.7 0 144.0 212.2 3.4 0
distance 0.0 6.9 0.6 0 0.0 7.3 0.5 0
mexican hat 0.4 15.9 1.5 0 0.4 16.2 1.4 0

Table 7.10: Generalization ability using crossover-based TGP.

Problem Validation Error #Hits Test Error #Hits
best mean std. best mean std.

two chains 0.0 7.9 0.5 2 2.0 8.4 0.4 0
splice junction 69.0 120.3 5.6 0 55.0 123.8 5.9 0
distance 1.4 10.3 0.3 0 1.2 9.6 0.3 0
mexican hat 0.03 3.3 0.4 0 0.03 3.6 0.5 0

Table 7.11: Generalization ability using crossover-based LGP.

Problem Validation Error #Hits Test Error #Hits
best mean std. best mean std.

two chains 0.0 4.6 0.3 6 2.0 5.1 0.3 0
splice junction 59.0 88.7 3.1 0 57.0 89.7 3.2 0
distance 0.0 3.5 0.3 1 0.0 4.0 0.3 1
mexican hat 0.006 1.1 0.1 0 0.006 1.3 0.1 0

Table 7.12: Generalization ability using mutation-based LGP.

only by one edge on a unique path to the root and since the tree representation does not
allow unconnected components, a disconnection of code always means its loss.
Nevertheless, the probability for such larger mutation steps may be reduced as far as possi-
ble in TGP. Therefore, three elementary tree operations may be distinguished – including
insertion, deletion and substitution of single nodes (as proposed in [70]).
If an operator node is inserted in a tree it replaces a random node that becomes a successor
of the new node (if required). All remaining successors of the newly inserted node become
terminals. Since usually most instructions require more than one operand, almost each
insertion will create a new terminal node, in this way. Accordingly, if a random inner
node is selected for deletion it is replaced by one of its successors (or the largest subtree).
All other successors of the deleted node get lost (including the corresponding subtrees).
Finally, a node may be substituted by another node of the same arity only. This implies
that terminal nodes are exchanged by other terminals only. In so doing, the tree structure
is not changed by substitutions. Otherwise, if this is not practiced, supernumerary subtrees
may be completed by a terminal or deleted, respectively.
In [70] such minimum structural mutations are applied in combination with search tech-
niques like simulated annealing and hill climbing in GP both operating with a single search
point (individual). In [71] the authors combine these search techniques with a standard
population-based search by crossover. Unfortunately, the performance of these mutations
is not compared with standard crossover and the same search method.
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7.6 Conclusion

After an introduction to tree-based GP, we compared this more traditional approach with
linear GP by using two collections of benchmark problems. The comparison was supposed
to be fair particularly with regard to the (maximum) complexity of genetic programs.
(1) With unrestricted crossover LGP performed better than TGP and produced more
compact solutions in terms of the number of executed instructions. Especially for (real-
world) classification problems the difference in performance between a tree representation
and a linear representation was most significant.
(2) Even better prediction results were obtained for linear GP by means of effective in-
struction mutations. This was especially true for the applied GP benchmarks. Here
results showed a much smaller difference in performance between the two representation
forms than between the two linear genetic operators applying maximum (unrestricted)
or minimum step sizes. This recommends a general use of minimum mutation steps in
linear genetic programming and confirms our results from Chapter 5 for a wider range of
applications.
(3) We also argued why, first, LGP allows smaller solutions and, second, a minimization
of grow and shrink operations may only be incomplete in TGP. Both may be reduced to
the two fundamental differences of the representations that have been outlined already
in Chapter 1. In the first case, this means that (effective) linear programs may be more
compact in size because of a multiple usage of register contents and an implicit parsimony
pressure by the structurally noneffective code. In the second case, the higher constraints
of the tree structure and the lack of non-contiguous components avoid that structural step
sizes may be permanently minimum.
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We will now investigate structural and semantic distance metrics for linear genetic pro-
grams. Causal connections between changes of the genotype and the phenotype form a
necessary condition for analyzing structural differences between genetic programs and for
the two major objectives of this chapter: (1) Distance information between individuals
is used to control structural diversity of population individuals actively by a two-level
tournament selection. (2) Variation distance is controlled probabilistically on the effective
code for different linear genetic operators.

8.1 Introduction

In contrast to other evolutionary search algorithms, like evolution strategies (ES), genetic
programming (GP) may fulfill the principle of strong causality, i.e., small variations in
genotype space imply small variations in phenotype space [75], less strongly [78]. Obvi-
ously, changing just a small program component may lead to almost arbitrary changes
in program behavior. However, it seems to be intuitive that the more instructions are
modified, the higher is the probability of a large fitness change.
As discussed in Section 5.4, a fitness landscape on the search space of programs is defined
by a structural distance metric between programs and a fitness function that reflects
the quality of program semantics. The application of a genetic operator corresponds to
performing one step on the landscape. In general, the variation step size should be related
to a distance metric that constitutes a fitness landscape that is smooth at least in local
regions.
The edit distance, sometimes referred to as Levenshtein distance [35], between varying
length character strings has been proposed as a metric for representations in genetic pro-
gramming [46, 72]. Such a metric not only permits an analysis of genotype diversity within
the population but offers a possibility to control the step size of variation operators more
precisely. In [41] correlation between edit distance and fitness change of tree programs has
been demonstrated for different test problems. This chapter introduces efficient structural
distance metrics that operate selectively on substructures of the linear program represen-
tation. Correlation between structural and semantic distance as well as distribution of
distances are documented for different types of variation.
One major objective of this chapter is to control structural diversity, i.e., the average
program distance, in LGP populations explicitly. Therefore, we introduce a two-level
tournament that selects for fitness on the first level and for diversity on the second level.
We will see that this is less motivated by a better preservation of diversity during run
but by a control of a diversity level that is depending on the configuration of the selection
method. We will also see that prediction improves significantly if the diversity level of a
population is increased.
The simplest form of diversity control might be to seed randomly created individuals reg-
ularly into the population during runtime. In [46] a more explicit maintenance of diversity
is proposed by creating and seeding individuals that fill “gaps” of under-represented areas
in genotype space. However, experimental evidence is not given for this rather compli-
cated and computationally expensive approach. Until now, explicit diversity control is a
rarely investigated technique in genetic programming. Recently, de Jong et al. [44] could
improve parsimony pressure through Pareto-selection of fitness and tree size by adding a
(third) diversity objective. A more implicit control of genetic diversity, by comparison,
offer semi-isolated subpopulation, called demes, that are widely used in the area of evolu-
tionary computation (see also Section 4.3.2). Only a certain percentage of individuals is
allowed here to migrate from a deme into another deme during each generation.
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The second major objective of this chapter refers to the structural distance between a
parent program and its offspring, i.e., the variation step size. While the effect on the
absolute program structure, i.e. the absolute variation distance (Definition 5.3), may be
controlled implicitly by the genetic operator, as demonstrated in Chapter 5, the amount of
change induced on the effective code, i.e., the effective variation distance (Definition 5.4),
may differ significantly from the absolute change. By monitoring the effective variation
distance explicitly, structural step sizes are controlled more precisely in relation to their
effect on program semantics. We will demonstrate that even strong restrictions of the
maximum allowed effective mutation distance do not necessarily imply relevant restrictions
of the freedom of variation, too.
We apply two different variants of linear GP in this chapter for macro variations. While
the first approach applies recombination by linear crossover the other approach is based on
(effective) instruction mutations (see Chapter 5). In the first case the absolute variation
distance is unlimited while in the latter case it is restricted to a minimum.

8.2 Structural Program Distance

8.2.1 Edit Distance

The string edit distance [35] calculates the distance between two arbitrarily long character
strings by counting the number of basic operations – including insertion and substitution
of single elements – that are necessary to transform one string into another. Usually each
operation is assigned the same costs (1) independently from the affected type of element.
The standard algorithm for calculating the string edit distance needs time O(n2) with n
denotes the maximum number of components that are compared between two individual
programs. Recently, some more efficient algorithms have been presented [62].
We apply the edit distance metric to determine the structural distance between the effec-
tive part of programs since a difference in effective code may be more directly related to
a difference in program behavior (semantic distance). In general, the correlation between
semantic and structural distance is the more lower the higher the proportion of nonef-
fective code is that occurs with a certain variation operator or parameter configuration.
It is important to realize that the effective distance is not part of the absolute distance.
Actually, two programs may have a small absolute distance while their effective distance is
comparatively large (see Section 8.5). On the other hand, two equally effective programs
might differ significantly in their noneffective code.
For an efficient distance calculation we concentrate on representative substructures of
linear programs and regard only the sequence of operators (from the effective instructions).
The sequence corresponding to Example 8.1 is (−,+, /,+, ∗,−,−, /) when starting with
the last effective instruction. The distance of effective operator symbols has been found
sufficiently precise to differentiate between program structures provided that the used
operator set is not too small. This is also due to the fact that in most cases the modification
of an effective instruction changes the effectiveness status of at least one instruction. Note
that in contrast to the effective distance the absolute operator sequence would not be
altered by the exchange of single registers.
Because identical exchanges of program components are avoided updating a constant by
another constant is the only type of variation that is not registered at all. In general, a
registration of absolutely every structural difference should not be necessary if we take
into account that the correlation between semantic and structural distance is probabilistic
(see Section 8.7.1).
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void gp(r)
double r[5];

{
...

// r[4] = r[2] * r[4];
r[4] = r[2] / r[0];

// r[0] = r[3] - 1;
// r[1] = r[2] * r[4];
// r[1] = r[0] + r[1];
// r[0] = r[3] - 5;
// r[2] = pow(r[1], r[0]);

r[2] = r[3] - r[4];
r[4] = r[2] - 1;
r[0] = r[4] * r[3];

// r[4] = pow(r[0], 2);
// r[1] = r[0] / r[3];

r[3] = r[2] + r[3];
r[4] = r[2] / 7;

// r[2] = r[2] * r[4];
r[0] = r[0] + r[4];
r[0] = r[0] - r[3];

}

Example 8.1: Linear genetic program. Noneffective instructions are commented. Register
r[0] holds the final program output.

Beyond that, less different genotypes are distinguished by this selective distance metric
that represent the same phenotype (fitness). By including the program registers into
distance calculation the distance measure might become even more ambiguous. Actually,
most registers are used temporarily only during calculation and may be replaced partly
by others without altering the behavior of a program. In fact, only the last assignment
to an output register in (effective) program and all readings of an input register before
its contents is overwritten for the first time are invariable. Additionally, the distance
between operator sequences is not unique since the order of instructions may be changed
without changing the program behavior, as indicated in Section 3.3.3. Nevertheless, a
linear program may be sufficiently represented by its operator sequence. This is especially
true since the functional dependencies between the instruction nodes usually form a rather
narrow (“linear”) graph structure (see Section 3.3). The more narrow the graph structure
is the more the position of an operator corresponds to its position in the sequence (see
Section 3.4).
Another important motivation for restricting the number of components in the compared
programs is that time of distance calculation is reduced significantly. By regarding only
the sequences of effective operators calculation time of edit distance directly depends on
the (average) number n of effective instructions only. Depending on the percentage of
noneffective code there are k times more elements to compare if one regards the full se-
quence of operators in programs. Extending the distance metric to registers and constants
of instructions, again, results in a factor of 4 maximum. In conclusion, computational cost
of the edit distance would increase by a total factor of (4k)2 up to O(16k2 · n2).
Effective mutations, as introduced in Chapter 5, guarantee that the effective code will
change. Such operations work closely with our effective distance metric here such that not
more than one instruction is inserted, deleted or changed (maximum absolute distance 1).
Recall that macro mutations operate on full instruction level, while micro mutations vary
smaller components within instructions, i.e., operate below instruction level. In order to
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guarantee a sufficient variation and growth of programs, however, the higher number of
variations is performed on macro level (see Section 8.6). Since, in this way, the absolute
step size is not further reducible from operator side, measuring the distance between full
(effective) programs, i.e., on micro level, does not necessarily promise a higher precision.
This is another reason why operator sequences represent a sufficient basis for distance
calculation between linear genetic programs.

8.2.2 Alternative Distance Metrics

In all the following experiments we have applied the edit distance metric as described
above. However, even if a reduction of identifying program elements already accelerates
distance calculation significantly, there are more efficient metrics possible on linear genetic
programs.
One step toward a more efficient distance calculation between two effective programs is
to give up the order of operators and to compare only the numbers of each operator type.
Then program distance may be reduced to the Manhattan distance between two pattern
vectors v and w of equal length n (n = size of operator set). Each vector position vi

represents the frequency of an operator type in the genetic program corresponding to v.
The Manhattan distance is measured along axes at right angles and simply calculates the

sum of absolute differences between equal vector positions, i.e., δman(v, w) =
n∑

i=1
|vi −wi|.

This requires runtime O(n) only while n is much smaller here than for the edit distance.
In other words, computation costs are constant here (O(1)) in terms of the maximum
program length. Although the accuracy of this structural distance is definitely lower than
the edit distance it has proven to be sufficient for an explicit control of diversity.
Another, more efficient distance metric than edit distance is applicable for controlling
step sizes of (effective) instruction mutation. If a certain program position is varied, it
calculates how many of the depending previous instructions in program (including the
mutation point) have changed their effectiveness status. This is exactly the Hamming
distance between the status flags and takes time O(n) only with n is the maximum program
length here.
A more precise Hamming distance may also compare the operator sequences such that
unequal operator position increase the distance by 1. In this way, total distance 0 occurs
less frequently because more variations are registered. For instance, micro mutations of
single operator identifiers are detected. Even if the distance calculated by this metric is
almost identical to the edit distance (for instruction mutations) we stick to the latter here
for consistency reason. Note that, in general, the efficiency of distance calculation is less
important for controlling variation distance than for controlling diversity (see below).

8.3 Semantic Program Distance

The most obvious metric to evaluate the behavior of a genetic program is the fitness
function F . This usually calculates the distance of the predicted outputs gp(~ik) returned
by a program and the desired outputs given by n fitness cases, i.e., input-output examples
(~ik, ok). For example, in Equation 8.1 this is simply the Manhattan distance between the
two output vectors.
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F(gp) =
n∑

k=1

|gp(~ik)− ok| (8.1)

Correspondingly, the semantic differences between two genetic programs may be expressed
by their relative fitness distance (Equation 8.2). In this case, the quality of solving the
overall problem is considered.

δfit(gp1, gp2) = |F(gp1)−F(gp2)| (8.2)

Another possibility is to compare the outputs of two programs directly. The same distance
metric as in the fitness function may be used for computing the distance between the
output vectors of programs (see Equation 8.3). In the following this will be referred
to as output distance. Note that the relative output distance between two programs is
independent from their performance in terms of solving a prediction task. Actually, two
programs may have a similar fitness while their output behavior differs significantly, e.g.,
different subsets of the training data may be approximated with a different accuracy.

δout(gp1, gp2) =
n∑

k=1

|gp1(~ik)− gp2(~ik)| (8.3)

Analogously, for discrete problems like classifications where the fitness function calculates
a classification error, i.e., the number of wrongly classified examples, a Boolean output
distance is defined as follows:

δboolout(gp1, gp2) =
∑

class(gp1( ~ik)) 6=class(gp2( ~ik))
k=1,..,n

1 (8.4)

Function class in Equation 8.4 hides the classification method that maps the continuous
program outputs to discrete class identifiers.

8.4 Control of Diversity

In GP the diversity ∆ of a population may be defined as the average distance of n randomly
selected pairs of programs using a distance metric δ (see Equation 8.5).

∆ =
1
n

n∑

i=1

δ(gp1i, gp2i) (8.5)

The genotype diversity (or structural diversity) of programs is measured by means of a
structural distance metric. Since we apply the edit distance between effective programs
we refer to the effective diversity, accordingly.
We introduce the two-level tournament selection shown in Figure 8.1 for an explicit control
of diversity. On the first level, individuals are selected by fitness. On the second level,
the two individuals with maximum distance are chosen among three fitter individuals, i.e.,
tournament winners of the first round. While an absolute measure, such as fitness, may
be compared between two individuals, selection by a relative measure, such as distance
or diversity, necessarily requires a minimum of three individuals. In general, two from n
individuals are selected with the greatest sum of distances to the n− 1 other individuals.
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Fitness Selection

Diversity Selection

      (1. Level)

        (2. Level)

Winner

Tournament

Variation

Figure 8.1: Two-level selection process.

Selection pressure on the first level depends on the size of fitness tournaments. Pressure
of diversity selection on the second level is controlled by the number of these tournaments.
Additionally, a selection rate controls how often diversity selection takes place at all and,
thus, tunes the selection pressure on the second level more precisely.
The number of fitness calculations and the processing time, respectively, do not increase
with the number of (first-level) tournaments if fitness of all individuals is saved and is
updated only after variation. Only diversity selection itself becomes more computationally
expensive the more individuals participate in it. Because n selected individuals require(
n
2

)
distance calculations an efficient distance metric is important here.

The two-level tournament selection constitutes a multi-objective selection method that
finds individuals that are fitter and more diverse in relation to others. One advantage
over applying fitness selection or diversity selection independently from each other on the
same level is that the proportion of fitness selections is not reduced. Moreover, selecting
individuals only by diversity for a certain probability does not result in more different
directions among better solutions in the population. Dittrich et al. [27] report on a spon-
taneous formation of groups when selecting the most distant of three individuals that are
represented by single real numbers.
Selection for a linear combination of both objectives, fitness and diversity, as this is of-
ten practiced with fitness and length (parsimony pressure), would require an appropriate
weighting. This, however, is rather difficult to find. Another problem is that fitness and
diversity still have the same priority. With the two-level selection, instead, fitness selection
is not only decoupled from diversity selection but has always a higher priority.
An explicit control of effective diversity increases the average distance of individuals.
Graphically, the population spreads more widely over the fitness landscape (see Section
5.4). Thus, there is a lower probability that the evolutionary process gets stuck in a local
minimum and more different search directions may be explored in parallel.
While increasing the effective distance between programs in population affects the diver-
sity of solutions, the absolute distance meassures a more general diversity including the
noneffective code. Selection for absolute distance has also been practiced but found to im-
prove results less (undocumented). Apart from the fact that this is more time-consuming
it confirms that the absolute distance measures the effective program distance only very
imprecise (see Section 8.2).
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Increasing the average distance between programs by diversity selection has the side-
effect of accelerating the growth of (effective) program length. In order to avoid that this
may influence results, we select for the effective edit distance δeff minus the distance in
effective length, i.e., δeff (gp1, gp2)− |leff (gp1)− leff (gp2)|. This is possible because both
edit distance and length distance operate on instruction (operator) level here. By doing so,
a difference in length is no longer rewarded directly during selection. To further reduce the
influence of code growth one might select (additionally) for the relative effective distance
given by Equation 8.6. Note here that the size of the longest pattern string (effective
program) determines the maximum effective distance.

δreleff =
δeff (gp1, gp2)

max(leff (gp1), leff (gp2))
(8.6)

The diversity level can be lowered, too, by a selection for minimum distance. This might
have a positive influence if population diversity is already quite high, e.g., because of a
low fitness selection pressure or a low reproduction rate. In this case, especially crossover
might profit from a reduction of diversity such that variation step sizes become indirectly
smaller. In our experiments, however, selection for minimum distance resulted in the
opposite (negative) effect as selection for maximum distance (undocumented).
Controlling phenotype diversity by a selection for a maximum semantic distance of indi-
viduals has been practiced by comparison. Semantic diversity is controlled by using the
output distance defined in Section 8.3. A selection for maximum output distance may be
implemented efficiently in both calculation time and memory usage, if only the outputs of
individuals are saved that participate in the current tournament(s).
Selection for fitness distance has been found less suitable, instead. Note that both program
fitness and program outputs are related to an absolute optimum. The relative output
distance between programs, however, measures semantic differences more precisely. In-
creasing the relative fitness distance, instead, necessarily increases the diversity of fitness
values in the population which promotes worse solutions. Moreover, selection by fitness
distance has almost no effect on problems that implicate a rather narrow and discrete
fitness distribution.

8.5 Control of Variation Step Size

One problem of GP is that already smallest variations of the symbolic program structure
may affect program behavior heavily. In linear GP these variations especially include
the exchange of registers. Several instructions that precede a varied instruction in a
program may become effective or noneffective respectively. In this way, such mutations
may not only affect the fitness, i.e., program semantics, but the flow of data in linear
genetic programs that represents a directed acyclic graph (see Chapter 3). Even if bigger
variations of program behavior are less likely with smaller structural variation steps, this
effect is rather undesirable.
An implicit control of structural variation distance has been practiced in Chapter 5 by
imposing respective restrictions on different types of variation operators. However, genetic
operations – at least if changing a single variation point only (see Section 5.10.5) – may
only guarantee for the absolute program structure that a certain maximum step size is not
exceeded. Variation steps on the effective code, instead, may still be much bigger though
these appear with a lower probability.
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A major concern of this chapter is an explicit control of the effective variation distance.
The variation of a parent program is repeated until its effective distance to the offspring
falls below a maximum threshold. Therefore, the structural distance between parent and
offspring is measured explicitly by applying the effective distance metric as defined above.
In the following extract of a linear program commented instructions are noneffective if we
assume that the output is held in register r[0] at the end of execution. The program status
on the right represents the result of applying an effective micro mutation to instruction
number 8 (from the top). The first operand register r[3] is exchanged by register r[2].
As a consequence, 5 preceding (formerly non-effective) instructions become effective which
corresponds to an effective mutation distance of 5.

void gp(r) void gp(r)
double r[5]; double r[5];

{ {
... ...

// r[4] = r[2] * r[4]; // r[4] = r[2] * r[4];
r[4] = r[2] / r[0]; r[4] = r[2] / r[0];

// r[0] = r[3] - 1; r[0] = r[3] - 1;
// r[1] = r[2] * r[4]; r[1] = r[2] * r[4];
// r[1] = r[0] + r[1]; r[1] = r[0] + r[1];
// r[0] = r[3] - 5; r[0] = r[3] - 5;
// r[2] = pow(r[1], r[0]); r[2] = pow(r[1], r[0]);

r[2] = r[3] - r[4]; -> r[2] = r[2] - r[4];
r[4] = r[2] - 1; r[4] = r[2] - 1;
r[0] = r[4] * r[3]; r[0] = r[4] * r[3];

// r[4] = pow(r[0], 2); // r[4] = pow(r[0], 2);
// r[1] = r[0] / r[3]; // r[1] = r[0] / r[3];

r[3] = r[2] + r[3]; r[3] = r[2] + r[3];
r[4] = r[2] / 7; r[4] = r[2] / 7;

// r[2] = r[2] * r[4]; // r[2] = r[2] * r[4];
r[0] = r[0] + r[4]; r[0] = r[0] + r[4];
r[0] = r[0] - r[3]; r[0] = r[0] - r[3];

} }

Example 8.2: Change of effective code after effective register mutation (in line 8).

Since identical exchanges of instruction elements – including registers, operators, and
constants – are avoided explicitly, operator mutations will always change the operator
sequence. But operator mutations may induce a variation distance that is larger than
1, too, if the new operator requires a different number of parameters than the former
operator. As a result, single registers may be either inserted or deleted within the particular
instruction. Preceding instructions in program that depend on such a register operand
may change their effectiveness status then by being reactivated or deactivated.
Besides restricting the maximum size of variation steps, we tested a minimum threshold as
well. If small variation steps are avoided or, at least, reduced in frequency, evolutionary
progress might be accelerated. Unfortunately, even smallest stuctural step sizes may
already induce relatively large semantic step sizes. Our experimental results will show
in Section 8.7 that the lowest maximum threshold that restricts effective step sizes to a
minimum produces the best results.
Using an explicit control of the fitness distance between parent and offspring, instead,
requires an additional fitness calculation after each iterated variation and can become
computationally expensive, especially if a larger number of fitness cases is involved. By
comparison, a structural distance like edit distance has to be re-calculated only once after
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Problem sinpoly iris even8parity
Problem type Approximation Classification Boolean function
Problem function sin(x)× x + 5 real-world data set even8parity
Input range [−5, 5] [0, 8) {0, 1}
Output range [0, 7) {0, 1, 2} {0, 1}
Number of inputs 1 4 8
Number of outputs 1 1 1
Number of registers 1+4 4+2 8+0
Number of examples 100 150 256
Fitness function SSE CE SE
Number of generations 500 500 250
Instruction set {+,−,×, /, xy} {+,−,×, /, if >, if ≤} {∧,∨,¬, if}
Set of constants {1, .., 9} {1, .., 9} {0, 1}

Table 8.1: Problem-specific parameter settings

each iteration while its computational costs do not directly depend on the number of
fitness cases. It is also difficult to find appropriate maximum thresholds for the fitness
distance because those are usually problem-specific. Finally, it is not sensible to restrict
positive fitness changes (fitness improvement) at all.

8.6 Experimental Setup

All techniques discussed above have been tested with three benchmark problems including
an approximation, a classification, and a Boolean problem. Table 8.1 summarizes problem
attributes and problem-specific parameter adjustments of our LGP system.
The first problem is referred to as sinpoly in the following and denotes an approximation
of the sine polynomial sin(x) × x + 5 by non-trigonomical functions. Thus, given the
facts that the maximum length of genetic programs is limited and that the sine function
is defined by an infinite Taylor-series the optimum cannot be found. Besides the input
register – that is identical to the output register – there are four additional calculation
registers used with this problem. Recall that this additional program memory is important
in linear GP, especially if the number of inputs is low by problem definition. With only
one register the calculation potential is very restricted in most problem cases. Fitness is
the sum of square errors (SSE). 100 fitness cases have been selected uniformly distributed
over input range [−5, 5].
The second problem iris is a popular classification data set that originates from the UCI
Machine Learning Repository [15]. The real-world data contains 3 classes of 50 instances
each, where each class refers to a type of iris plant. Fitness equals the classification error
(CE), i.e. the number of wrongly classified inputs. A program output gp(~ik) is considered
as correct for an input vector ~ik if the distance to the desired class identifier ok ∈ {0, 1, 2}
is smaller than 0.1, i.e., |gp(~ik) − ok| < 0.1. Note that solution finding would be easier if
this error threshold is extended to the maximum (0.5 here).
Finally, we have tested a parity function of dimension eight (even8parity). This function
computes 1 if the number of set input bits is even, otherwise the output is 0. The Boolean
branch in the instruction set is essential for a high number of successful runs with this
problem. The number of wrong output bits, i.e., the sum of output errors (SE), defines
the fitness.
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Parameter Setting
Population size 2000
Fitness tournament size 4
Maximum program length 200
Initial program length 10
Reproduction 100%
Micro mutation 25%
Macro mutation 75%

Instruction deletion 33%
Instruction insertion 67%

Crossover 75%

Table 8.2: General parameter settings.

More general configurations of our linear GP system are given in Table 8.2. Exactly one
genetic operator is selected at a time to vary an individual program. Either linear crossover
(cross, see Section 5.7.1) or (effective) instruction mutations ((eff)mut, see Section 5.10.4)
are used as macro operator, but not in the same run. The absolute step size of macro mu-
tations is minimum (1 instruction). Instead, an explicit bias (B1)) guarantees a sufficient
growth of programs here (see Section 5.8).

8.7 Experimental Results

8.7.1 Distance Distribution and Correlation

First of all, we demonstrate experimentally that there is a causal connection between the
structural distance and the semantic distance (fitness distance) of linear genetic programs
when applying the edit distance metric on sequences of effective instruction operators
as defined in Section 8.2. Causality forms a necessary precondition for the success of
evolutionary algorithms. Even if already small modifications of the program structure
may result in almost arbitrary changes in program behavior, smaller variations of the
genotype should lead to smaller variations of the phenotype for a higher probability (see
also Section 5.4.
In the first experiment distances of 2000 pairs of randomly selected individuals have been
registered in each generation. Figures 8.2 to 8.4 visualize the resulting relation of (effective)
program distance and fitness distance together with the corresponding distributions of
program distances. In case of all test problems there is a clear positive correlation between
program distance and fitness distance for the majority of measured distances. In principle,
similar phenomena are observed here with the crossover-based and the mutation-based
variant of linear GP.
In a second experiment that is relevant in this context we investigate the structural vari-
ation distance, i.e., the distance between parent and child or, more precisely, the distance
of a modified individual from its original state. Figures 8.5 to 8.7 demonstrate a posi-
tive correlation between program distance and fitness distance, i.e, causality, for all tested
combinations of problem and genetic operator. That is, shorter variation distances on
code level induce shorter variation distances on fitness level, on average. The respec-
tive distributions of variation distances confirms this to be true for almost all measured
distances.
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Figure 8.2: sinpoly: Relation of program distance and fitness distance (left) and distri-
bution of program distances (right) in crossover runs (cross) and in runs using effective
mutations (effmut). Average figures over 100 runs.

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30  35  40  45  50

F
itn

es
s 

D
is

ta
nc

e

Program Distance

cross
effmut

 0

 1

 2

 3

 4

 5

 6

 7

 0  5  10  15  20  25  30  35  40  45  50

F
re

qu
en

cy
 (

%
)

Program Distance

cross
effmut

Figure 8.3: iris: Relation of program distance and fitness distance (left) and distribution
of program distances (right).
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Figure 8.4: even8parity: Relation of program distance and fitness distance (left) and
distribution of program distances (right).
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Figure 8.5: sinpoly: Relation of variation distance and relative fitness distance (left) and
distribution of variation distances (right) in crossover runs (cross) and in runs using effec-
tive mutations (effmut). Average figures over 100 runs.
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Figure 8.6: iris: Relation of variation distance and fitness distance (left) and distance of
variation distribution (right).
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Figure 8.7: even8parity: Relation of variation distance and fitness distance (left) and
distance of variation distribution (right).
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While, in general, variation distances occur the more frequently the shorter they are, the
distribution of crossover distances is wider than the distribution of distances induced by
(effective) mutations.
Interestingly, small structural step sizes on the effective code still induce relatively large
semantic step sizes, on average. This is more noticeable for effective mutations than for
crossover. We will see in Section 8.7.7 that even if the effective step size is permanently
minimum (1 for macro mutations) evolutionary progress is not decelerated. Since the
functional representation of programs describes a rather narrow graph (see Section 3.3)
already small changes may affect many data flow paths simultaneously.
The distribution range of distances is significantly smaller than in the first experiment, as
might have been expected. That means the structural distance between parent and child
is smaller, on average, than between two arbitrary individuals (or between two parents).
This is an important property of evolutionary algorithms in general to work efficiently.
In crossover runs a high amount of operations results in effective distance 0, especially with
the two discrete problems iris and even8parity. The reason is the high rate of structural
introns (see Section 3.2) that occurs with crossover. Moreover, the 25 percent micro
mutations used in all configurations will be most likely noneffective and, thus, produce
effective step size 0. Recall, however, that not all (but only most) variations that induce
distance 0 are necessarily noneffective, too, since our code-selective distance metric does
not register all changes to the effective code (see Section 8.2).
As introduced in Section 5.10.4 effective (macro and micro) mutations definitely vary the
effective code of programs. Effective distance 0 is mostly caused by effective micro muta-
tions, especially those that affect a single register or constant. Since identical exchanges
of such basic elements are avoided explicitly, operator mutations will always change the
operator sequence. But not all substitutions of registers in effective instructions change
the effectiveness of instructions and, thus, the sequence of operators, too.
Furthermore, distance distributions in Figures 8.5 to 8.7 show that almost two thirds of
all effective mutations result in effective distance 1. Interestingly, even though macro
mutations that insert or delete full effective instructions are applied in the majority of
cases, effective distances larger than 1 occur for less than one third only. That means the
effectiveness of other (preceding) instructions (except for the mutated one) changes for a
relatively low probability.

8.7.2 Development of Effective Step Size

The 3D plot in Figure 8.8 demonstrates exemplarily for the iris problem how the distribu-
tion of effective step sizes develops over a run when using the effective mutation operator
(effmut). The distribution is changing such that step sizes 1 and 0 occur more frequently
while for larger step sizes the opposite is true. That is, after about 100 generations changes
are caused almost exclusively at the mutation point rather than by deactivation of de-
pending effective code. Deactivations are mostly responsible for larger effective distances.
Reactivation of (structurally) noneffective code, instead, is much less likely because the
proportion of this code remains less with the applied operator (see Section 5.11.1).
It appears that evolution develops effective program structures which are less fragile
against stronger variation. We found that the effectiveness of an instruction is often guar-
anteed by more than one (succeeding) instruction. As demonstrated in Figure 8.9, the
average effectiveness degree or dependence degree (see Section 3.4) of a program instruc-
tion grows continuously during a run. On the functional level this may be interpreted in
such a way that the number of connections increases between nodes of the effective graph
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Figure 8.8: iris: Development of the frequency distribution of effective step sizes over 500
generations when using effective mutations (effmut). Step sizes range from 0 to 9 here.
Frequency of step size 1 increases clearly over a run. Right figure same as left figure but
rotated by 90 degrees.

component. Thus, the graph-shaped structure allows the effective code to protect itself
against larger disconnections (deactivations). Smaller step sizes on the effective program
structure will result in offsprings with a potentially higher fitness. This is true no matter
whether this self-protection effect is an implicit evolutionary phenomenon or a consequence
of the increasing power and complexity of solutions. In general, reducing the probability
of deactivations by multiple node connections offers a fundamental advantage over tree
programs where each node is connected to the root by only one edge (cmp. Section 7.5).
When investigating the evolution of effective step sizes it has to be considered that this
depends on the evolution of (effective) program length, too. The larger programs become
the larger step sizes are possible, in principle. Although programs grow over a run, the
frequency of step sizes that are larger than 1 decreases in Figure 8.8 when a distance range
of 0 to 9 is observed. Variation distances significantly larger than 10 instructions do not
occur at the beginning of a run due to a small initial program length (see Section 8.6).
But even if the maximum step size increases continuously with the program length in the
course of a run, the proportion of all distances larger than 10 comprises about 2 percent
only. Nevertheless, such events have an influence when calculating the average step size.
Figure 8.9 demonstrates that the average variation distance depends on the number of
(calculation) registers. While smaller register numbers lead to a slightly decreasing or
constant average effective step size, larger numbers lead to an increase. Such a behavior
may be explained by the effectiveness degree of instructions again that turns out to be
lower if more registers are available (see also Section 6.1). Then deactivations of code
become more likely and affect larger parts of code. Nevertheless, the average step size
remains relatively small even for large numbers of registers. It is important to note that
the development of step sizes as shown in Figure 8.8 (for 2 calculation registers) is similar
for different numbers of registers. The frequencies of step sizes 1 and 0 increase during
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Figure 8.9: iris: Development of the average effective mutation step size (left) and the
average degree of effectiveness (right) over the generations for different numbers of cal-
culation registers (2, 16, 64) using effective mutations (effmut). Average figures over 50
runs.
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Figure 8.10: iris: Development of the effective mutation step size (left) and the degree
of effectiveness (right) over the effective program positions. Position 0 holds the first
instruction of a program. Average figures over 50 runs.

a run while the frequencies of step sizes 2 to 9 decrease. These two basic tendencies are
only slightly understated if more registers are used in programs.
Larger step sizes do not result simply from larger programs here. Neither the size of ef-
fective code nor the size of noneffective code are significantly different for larger register
numbers (undocumented). Moreover, the number of effective registers influences the effec-
tive step size and the self-protection effect, i.e., the decreasing proportion of larger effective
step sizes over a run, only indirectly. As defined in Section 3.4, the number of registers
that are effective at a certain program position reflects approximately the width of the
corresponding program graph. Since a higher absolute number of registers involves wider
but not larger program graphs the number of connections (dependence degree) decreases
necessarily between the instruction nodes.
Figure 8.10 compares the effective step size and the effectiveness degree for different (ef-
fective) program positions. At the beginning of a program step sizes are similarly small for
different register numbers. This part usually features the highest effectiveness, especially
if the number of registers is small. Towards the end of a program the effectiveness de-
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creases while the effective step size increases. Larger step sizes are correlated with higher
register numbers here even if the effectiveness is similarly small. As noted earlier, the
effective step size does not only depend on the effectiveness of the mutated instruction but
also on the effectiveness of the preceding (depending) instructions in a program. Such de-
velopments follow from the graph-structured data flow in linear (effective) programs (see
Section 5.11.6). Recall that the last effective instruction represents the root of the (effec-
tive) graph. Instruction nodes closer to the root have less connections and are, therefore,
less protected against disconnections.
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Figure 8.11: iris: Development of the average effective step size (left) and the number of
noneffective instructions (right) for effective mutations (effmut) and free mutations (mut).
Noneffective variations not regarded. Effective step size increases proportionally to the
amount of noneffective code. The number of calculation registers is 2. Average figures
over 100 runs.

When using random instruction mutations (mut) the amount of noneffective instructions
in programs increases continuously during a run while it remains mostly constant with
the effective mutation operator (see Figure 8.11). The number of effective instructions
is even smaller here than this has been found with effmut (not shown). The resulting
higher proportion of noneffective code leads to more noneffective variations (distance 0)
and, thus, to a smaller average effective step size. But if only the effective variations (most
distances larger than 0) are included, there is a linear increase in average step size (see
Figure 8.11). Apparently, the increasing number of noneffective instructions increases the
probability for reactivations. (As documented above, the effective step size on the effective
code decreases, even though the effective code grows.) It has to be noted, however, that
the increase in step size is still small compared to the increase in noneffective code. From
this we may conclude that also the dependence between intron instructions increases over a
run. The self-protection effect is however weaker here than for the effective code. Actually,
noneffective instructions may be much more loosely connected in programs over register
dependences, since they are not directly influenced by fitness selection. The reader may
recall that this code can form several disconnected graph components on the functional
level (see Section 3.3). This experiment identifies larger effective step sizes as a second
reason, besides a higher rate of noneffective variations, why free instruction mutations
perform worse than effective mutations.
Finally, we compare the development of effective step size for linear crossover (cross) in
Figure 8.12. In contrast to the results found with instructions mutations, the step size
decreases with a larger number of registers, even though the average effectiveness degree
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Figure 8.12: iris: Development of the average effective step size (left) and the proportion
of noneffective length (right) over the generations for different numbers of calculation
registers (2, 16, 64) using linear crossover (cross). Higher proportion of noneffective code
leads to smaller effective step sizes. Average figures over 50 runs.

remains similar to that in Figure 8.9. This is true because a higher number of registers
implies a higher proportion of noneffective code when using segment variations (see Section
6.1). As already noted, the proportion of noneffective instructions in a program may act
as a second implicit protection mechanism that reduces the effective step size, besides the
described self-protection effect. This is true at least for variations that comprise more
than one instruction. Then a higher robustness of effective code seems to be less relevant
for a reduction of effective step sizes than a higher rate of noneffective code. However,
the former might be responsible for the small difference in effective step size between
configurations with 2 and 16 calculation registers.

8.7.3 Structural Diversity Selection

For the three test problems introduced in Section 8.6, Table 8.3 shows average error
rates obtained with and without selecting for structural diversity. Different selection
pressures have been tested. For the minimum number of fitness tournaments (three)
that are necessary for a diversity selection on the second level (see Section 8.4) we used
selection probabilities 50 percent and 100 percent. Higher selection pressures are induced
by increasing the number of tournaments (up to four or eight here).
The application of diversity selection is demonstrated with a population-dependent
crossover-based approach and a mutation-based approach which is more independent from
the diversity of the genetic material. It is conspicuous that in all three test cases linear GP
works significantly better by using (effective) mutations instead of crossover. In Chapters
5 and Chapter 7 we have already demonstrated that the linear program representation,
in particular, is more suitable for being developed by small mutations only, especially if
those are directed towards effective instructions.
For each problem and both forms of variation the performance increases continuously by
the influence of diversity selection in Table 8.3. The highest selection pressure that has
been tested results in a twofold or higher improvement of prediction error. To achieve
this, problem sinpoly requires a stronger pressure with crossover than the two discrete
problems.
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sinpoly iris even8parity
Variation Selection SSE CE SE

% #T mean (± std.) mean (± std.) mean (± std.)
cross 0 2 3.01 (0.35) 2.11 (0.10) 58 (3.4)

50 3 2.89 (0.34) 1.42 (0.08) 35 (2.4)
100 3 2.77 (0.34) 1.17 (0.07) 27 (2.2)
100 4 1.96 (0.22) 1.09 (0.07) 19 (1.8)
100 8 0.69 (0.06) — —

effmut 0 2 0.45 (0.04) 0.84 (0.06) 15 (1.2)
50 3 0.43 (0.03) 0.63 (0.05) 12 (1.0)
100 3 0.30 (0.02) 0.60 (0.05) 10 (1.1)
100 4 0.23 (0.02) 0.33 (0.04) 7 (0.8)
100 8 0.17 (0.01) — —

Table 8.3: Second-level selection for structural diversity with different selection pressures.
Selection pressure controlled by selection probability and number of fitness tournaments
(T). Average error over 200 runs. Statistical standard error in parenthesis.

8.7.4 Development of Effective Diversity

In Section 8.4 the (structural) diversity of a population has been defined as the aver-
age effective distance between two randomly selected individuals. Figures 8.13 to 8.15
illustrate the development of diversity during runs for different selection pressures and
different variation operators. The higher the selection pressure is adjusted the higher is
the diversity. Interestingly, the average (effective) program distance does not drop even
if diversity selection is not applied. Instead of a premature loss of diversity we observe
an inherent increase of structural diversity during runs with linear GP. This is true even
with the applied 100 percent reproduction and a selection pressure of four individuals per
tournament. While the effective diversity increases with crossover until a certain level and
stays rather constant then, the increase with effective mutations is more linear.
Such a behavior results partly from the variable-length representation in genetic program-
ming. The longer effective programs develop during a run the larger effective distances are
possible. The growth of effective code is restricted earlier with crossover by the maximum
size limit than with effective mutations due to the much higher proportion of noneffective
code that occurs with this operator – approximately 50 to 60 percent in the experiments
conducted here. Nevertheless, by the influence of distance selection the average (effective)
program length has been found to increase only slightly compared to the average program
distance.
When using (macro) mutations a high degree of innovation is introduced continuously
into the population. This may lead to a higher diversity of effective code than occurs with
crossover (see Figures 8.13 to 8.15) in consideration of the fact that the average effective
length is about the same here for crossover and effective mutations in the final generation.
The stronger it is selected for diversity, however, the more diversity is gaining ground
in crossover runs. Apparently, there is a stronger influence of diversity selection with
crossover than with mutations. Compared to mutation the success of recombination de-
pends more heavily on the composition (diversity) of the genetic material in the population.
The more different two recombined solutions are, the higher is the expected innovation of
their offspring.
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Figure 8.13: sinpoly: Structural diversity (average effective distance) with different se-
lection pressures. Selection pressure controlled by selection probability and number of
fitness tournaments (T). Average figures over 100 runs. Macro variation by sf cross (left)
or effmut (right).
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Figure 8.14: iris: Structural diversity with diversity selection and different selection pres-
sures.
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Figure 8.15: even8parity: Structural diversity with diversity selection and different selec-
tion pressures.
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We also tested a diversity selection that uses the relative effective distance metric from
Equation 8.6, exemplarily for the iris problem. (Similar results have been found with
even8parity and sinpoly in principle.) Figure 8.16 compares the development of this nor-
malized effective diversity with and without diversity selection. Apart from an early drop
of diversity during the first 50 generations there is no further decrease in later generations.
Actually, both forms of variation, linear crossover and effective mutation, maintain the
diversity over a run already implicitly, i.e., without an explicit distance control. Note that
crossover is applied for 100 percent here. For crossover the reason may be the free choice
of crossover points which do not have to be the same for both parents in (linear) GP in
contrast to other disciplines of evolutionary algorithms. As a result, even two identical
parents may produce different offsprings. Another reason might be the large unrestricted
step size of crossover. Finally, the high amount of noneffective code may contribute to the
diversity of effective code with this operator.
The normalized diversity may even increase again in the course of a run, when using
effective mutations and/or diversity selection. But at the end it levels off at a certain
more-or-less constant value. Since the growth of effective code is hardly affected by the
diversity selection here (see Figure 8.17) the influence of differently long patterns on the
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Figure 8.16: iris: Normalized effective diversity (average relative distance) with and with-
out diversity selection. Selection pressure controlled by selection probability and number
of fitness tournaments (T). Average figures over 100 runs. Macro variation by 100 percent
cross (left) or effmut (right).
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Figure 8.17: iris: Average effective program length with and without diversity selection.
Difference in program lengths negligibly small compared to difference in diversity.
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distance calculation can be neglected.

8.7.5 Semantic Diversity Selection

The computational overhead of a structural distance control has been found affordable
for linear genetic programs, especially if the order of instructions is not regarded (see
Section 8.2). In order to justify its usage more generally we test a semantic diversity
selection for comparison. Semantic diversity is defined here as the average output distance
of two individuals that have been randomly selected from the population (see Section 8.3).
For each problem the same distance metric has been used as in the corresponding fitness
function (see Table 8.1).

sinpoly iris even8parity
Variation Selection SSE CE SE

% #T mean (± std.) mean (± std.) mean (± std.)
cross 0 2 3.01 (0.35) 2.11 (0.10) 58 (3.4)

50 3 2.40 (0.22) 1.82 (0.09) 40 (2.5)
100 3 3.51 (0.36) 1.62 (0.08) 46 (3.1)
100 4 3.42 (0.33) 1.80 (0.09) 42 (2.8)

effmut 0 2 0.45 (0.04) 0.84 (0.06) 15 (1.2)
50 3 0.33 (0.02) 0.77 (0.06) 13 (1.2)
100 3 0.43 (0.03) 0.68 (0.05) 12 (1.1)
100 4 0.49 (0.05) 0.42 (0.05) 9 (0.9)

Table 8.4: Second-level selection for semantic diversity with different selection pressures.
Selection pressure controlled by selection probability and number of fitness tournaments
(T). Average error over 200 runs. Statistical standard error in parenthesis.

When comparing results in Table 8.4 with results in Table 8.3 it follows that semantic
diversity selection, in general, has a much smaller effect on the prediction quality than a
selection for structural diversity. Especially the continuous problem sinpoly could not be
solved more successfully by semantic diversity selection. For the two discrete problems we
observe a significant influence only on runs with effective mutations.
One explanation is that, in contrast to program structure, program semantics is related
to a unique optimum. For the program outputs this is the set of desired outputs given
by the fitness cases. Hence, the number of possibly different output patterns reduces the
closer fitness approaches the optimum (0). Compared with this the diversity of program
structure is much more independent from fitness.

8.7.6 Diversity and Fitness Progress

Another interesting observation can be made when comparing the convergence of best fit-
ness and population diversity over a single run. The fitness of the currently best individual
reflects the progress of the evolutionary search.
First of all, there is no continuous increase of the average effective distance as one might
expect from the average results over multiple runs (see Figures 8.13 to 8.15). The de-
velopment of structural diversity in Figures 8.19 and 8.20 is interrupted by sudden rapid
drops (diversity waves). Simultaneously, periods of fast fitness convergence can be ob-
served where the currently best individual is replaced once or a few times in a row. Code
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Figure 8.18: sinpoly: Development of best fitness and structural diversity. Two typical
example runs.
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Figure 8.19: iris: Development of best fitness, structural diversity, and semantic diversity.
Structural diversity grows during phases of fitness stagnation. Two typical example runs.
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diversity. Structural diversity grows during phases of fitness stagnation. Two typical
example runs.
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diversity decreases so quickly because a new best individual spreads in the population
within a few generations via reproduction and variation. How quickly program diversity
recovers after such an event depends on how many generations have elapsed so far. The
higher a diversity level has been reached before the sharper is the increase. Typical ex-
ample runs in Figures 8.19 and 8.20 demonstrate that structural diversity increases on
fitness plateaus, i.e., during periods where the best fitness stagnates. During that time
the population individuals spread over the fitness landscape and explore the search space
of programs more widely. The achieved diversity level depends on both the duration of
the stagnation period and the current number of generations. Comparable runs have been
found with both kinds of macro variations.
A different behavior has been observed with the continuous problem (sinpoly). Structural
diversity progresses wave-like, too, but with a higher frequency and a smaller amplitude
(see Figure 8.18). A global correlation with the best fitness is less clear here already
because the phases of fitness stagnation are shorter.
While structural diversity decreases quickly with the discrete problems when best fitness
improves, a sudden increase of semantic diversity (average fitness distance here) can be
observed. This phenomenon may be explained by a fast propagation of the new best
fitness value in the population again by what semantically divers individuals are selected
more frequently. During a period where best fitness stays constant the average fitness dis-
tance decreases again. The wider fitness range of the continuous problem, instead, allows
stronger outliers. As a consequence, the average fitness distance develops too irregularly
here (not printed).
It is important to note that the increase of structural diversity on fitness plateaus hap-
pens implicitly, that is without applying an explicit control of diversity. Using diversity
selection increases the structural distance between individuals on fitness plateaus accord-
ingly. Radical drops of diversity as a consequence of sudden accelerations of convergence
speed, however, are just as possible as without diversity selection. This shows that an
active increase of structural diversity does not slow down the global convergence of the
best fitness over run. On the contrary, better prediction results have been observed with
diversity selection in Table 8.3.

8.7.7 Control of Effective Mutation Step Size

In Section 8.5 we motivated to control the effective distance between parent and offspring
explicitly. We will restrict ourselves to instruction mutations here. Recall that our distance
metric regards instructions (operators) as smallest units. Correspondingly, variation is
dominated by macro mutations with an absolute step size that is permanently minimum
(1 instruction). In contrast to that, the effective step size may become significantly larger
than 1 (see Section 8.7.1) and is altered by micro mutations, too (see Example 8.2).
In particular, we want to find out whether solution quality may be further improved
by reducing the effective mutation distances probabilistically. Therefore, a program is
mutated repeatedly until its distance to the offspring falls below a maximum threshold.
Each time a mutation is not accepted its effect on the program is reversed while the choice
of the mutation point is free in every iteration. In any case, iteration is stopped after a
predefined maximum number of trails has been exceeded. The variation is executed once
without restrictions then.
Table 8.5 compares average prediction errors for different maximum mutation distances.
The maximum possible distance equals the maximum program length (200 instructions)
and imposes no restrictions. Setting the maximum effective distance to 0 is not considered.
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sinpoly iris even8parity
Variation Maximum SSE CE SE

Distance mean (± std.) mean (± std.) mean (± std.)
effmut — 0.46 (0.06) 0.90 (0.06) 16 (1.3)

20 0.41 (0.05) 0.83 (0.06) 15 (1.2)
10 0.35 (0.04) 0.72 (0.06) 13 (1.2)
2 0.28 (0.03) 0.68 (0.05) 11 (1.1)
1 0.26 (0.03) 0.54 (0.05) 9 (0.9)

Table 8.5: Maximum restriction of effective mutation distance. Average error over 200
runs. Statistical standard error in parenthesis.

This would not allow programs to grow even if it is possible that inserting an instruction
does not change the effective distance. For all three benchmark problems best results are
obtained with maximum effective distance 1. Thus, at most one instruction may change
its effectiveness status, i.e., one node of the effective graph component is added or removed
(see Section 3.3). It is interesting to note that in this case insertions or deletions of full
instructions do not create non-effective code at all. For micro mutations this is true only
for maximum step size 0.
Such a result is all the more interesting if we consider that a restriction of variation
distance always implies a restriction in variation freedom, too. More specifically, certain
modifications might not be executed at certain program positions because too many other
instructions would be affected. It is important in this context to check the required number
of iterations until a mutation gets accepted. On the one hand, the average number of
iterations reveals how strongly the variation freedom is restricted. On the other hand,
multiple recalculations of effective distance may produce computational costs that cannot
be neglected here.

Variation Maximum #Iterations
Distance sinpoly iris even8parity

effmut — 1.00 1.00 1.00
10 1.02 1.02 1.02
5 1.06 1.05 1.05
2 1.18 1.12 1.12
1 1.37 1.18 1.20

Table 8.6: Average number of iterations until a maximum mutation distance is met.

As we can learn from Table 8.6, the average number of iterations until a maximum effective
distance is met increases only slightly if the threshold is lowered. Not even one and a half
iterations are necessary, on average, with the smallest distance. Besides, the maximum
number of iterations (10 here) has hardly ever been exceeded. Both aspects, together with
the results from Table 8.5 emphasize that freedom of variation is restricted only slightly
and that computational overhead of this distance control is affordable.
It may be pointed out that these results correspond to the distribution of mutation dis-
tances in Figures 8.5 to 8.7 where about 20 to 40 percent of all measured step sizes are
larger than 1. Hence, effective programs become increasingly robust against larger disrup-
tions since this increases their survival probability. Two main reasons for this have been
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identified in Section 8.7.2. First, the effectiveness of an instruction depends on more than
one succeeding instruction in a program, on average. This reduces the probability that
deactivations of effective instructions increase the effective step sizes. Second, because
of the low rate of noneffective instructions that has been found with effective mutations
reactivation may hardly play any role here.
Even though the average effective step size has turned out to be small already implicitly,
an explicit minimization leads to an even better performance. This is due to the fact that,
on average, minimum step size on the (effective) program structure is still comparatively
large on the semantic level (see Figures 8.5 to 8.7).

8.8 Alternative Selection Criteria

A two-level tournament selection may also be used for implementing complexity control,
as we will see in Section 9.9.4. The separation of linear genetic programs into effective and
noneffective instructions offers the possibility for a selective complexity selection. That
means it may be selected specifically for the smallest effective, non-effective, or absolute
program length.
Diversity selection and complexity selection may be applied in combination, too. Either
a third selection level is added or both objectives are combined into a weighted sum
for selection on the second level. In the latter case, selection priority for diversity and
complexity may be more-or-less the same. In the first case, this may be achieved by using
an independent selection probability for each level. Then selection for minimum length
may happen on the second level while selection for maximum distance is skipped on the
third level.
Besides a smaller length or a larger distance of programs there are other properties of
linear genetic programs that may be selected for (see Chapter 3). For instance, one
might want to select for a smaller or larger average number of effective registers in linear
genetic programs. Like optimum program length, i.e, optimum number of nodes, optimum
width of functional program structure may vary with problem definition. Another possible
alternative might be to select for a higher effectiveness of instructions, i.e., for a higher
connectivity of nodes. In doing so, programs are preferred whose effective code is protected
best.
Finally, an active selection for more diverse individuals may also be used to reduce the
population size significantly without leading to a decrease in performance. By maintaining
the (same) level of diversity, a smaller population may still cover a wide area of the search
space, even if less search points are examined simultaneously. Smaller population sizes
mean less fitness evaluations per generation what may result in an enormous speedup,
especially in time-critical applications.
Basically, the development of population diversity over a run is dependent on the following
control parameters of an EA: population size, fitness selection pressure (tournament size),
and reproduction rate. The structural distance metrics introduced here for linear GP
allow a detailed analysis of such parameter influences. It remains to be a subject of
future research, for instance, how strongly larger population sizes are correlated with
higher diversity. In the experiments above these parameters have been configured with
(constant) standard settings. Nonetheless, we experienced that diversity selection works
with very different configurations, including smaller and larger population sizes. The only
adaptation that might be necessary is a reconfiguration of selection pressure.
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8.9 Conclusion

In this chapter we measured and controlled the diversity of effective programs and the
effective step size of different variation operators explicitly for three different benchmark
problems. We proposed different metrics to calculate structural or semantic distance
between linear genetic programs. The following conclusions may be drawn:
(1) A clear positive correlation between structural distance and fitness distance of programs
was demonstrated. In particular, measuring structural differences specifically between
subcomponents of effective programs has been found to demonstrate causality of variation
step sizes.
(2) An explicit control of code diversity was introduced in terms of a two-level selection
process that selects for fitness on the first level and for diversity on the second level.
Fitness selection always has higher priority with this multi-objective selection method.
By increasing structural distance between effective programs (effective diversity) in the
population performance improved significantly.
(3) The level of effective diversity has been found to stabilize early during a run even if
crossover is applied exclusively. This level is directly determined by the applied selection
pressure on diversity.
(4) Instruction mutations were introduced in Chapter 5 to cause minimum structural
variations on linear genetic programs. Only one instruction was varied to let programs
grow or shrink. In this chapter we tried to achieve this on the level of effective code, too.
In particular, it turned out to be most successful if not more than one effective instruction
in a program changes its effectiveness status through mutation. On the functional level
only one node of the effective graph component may be added or removed. Thereby, the
average number of iterated mutations that is necessary to comply with this condition was
small.
(5) Effective mutation step sizes were measured much smaller than expected. Actually,
effective program structures emerged that were quite robust against larger destructions
(deactivations) in the course of evolution. An increasing degree of effectiveness of instruc-
tions was held responsible for this self-protection effect. In this way, multiple connections
of instruction nodes (on the functional level) offer a fundamental advantage of linear pro-
grams over tree programs.
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This chapter brings together theories about neutral variations and code growth in genetic
programming. In doing so, the importance of neutral variations for the growth of code is
emphasized. Existing theories about code growth are verified for linear GP, in particular,
and are partly reevaluated from another perspective.
In evolutionary computation neutral variations are argued to explore flat regions of the
fitness landscape while non-neutral variations exploit regions with (positive or negative)
gradient information. We investigate the influence of different variation effects on the
growth of code and the prediction quality for different kinds of variation operators. It is
a well-known fact, that a high proportion of neutral code (introns) in genetic programs
may increase the probability for variations to become neutral. But which type of variation
creates the intron code in the first place ? Especially if linear GP is applied with minimum
mutation step sizes results show that neutral variations almost exclusively represent a cause
of (and not only a result of) the emergence and the growth of intron code. The influence
of non-neutral – especially destructive – variations on code growth has been found to be
considerably smaller, by comparison, even if larger variation step sizes are applied.
Furthermore, different linear genetic operators are examined for an implicit length bias.
In contrast to an explicit bias, an implicit bias does not result from the dynamics of the
operator only, but requires the existence of a fitness pressure.
We close with some considerations about how code growth may be controlled in linear
GP. Different ways are suggested including variation-based methods and selection-based
methods. Both may be done specifically for the effective code and/or the noneffective code
of linear genetic programs. In particular, it will be demonstrated that mutation on linear
genetic programs influences code growth much less than recombination. This is the more
true the less code growth is limited by other factors, like the maximum program size or
the maximum step size.

9.1 Code Growth in GP

One characteristic of genetic programming is that the variable-length individuals grow in
size. To a certain extent this growth is necessary to direct the evolutionary search into
regions of the search space where sufficiently complex solutions with a high fitness are
found. It is not recommended in general to initiate the evolutionary algorithm already
with programs of a too large or even maximum size (as demonstrated in Section 6.6).
If the initial complexity of programs is too high the population may be too inflexible to
develop towards a region of the search space with highly fit programs.
However, by the influence of the variation operator – especially the variation step size –
and other reasons that are discussed in this chapter genetic programs may grow too fast
and too large such that the minimum size of programs required to solve the problem is
exceeded significantly. As a result, finding a solution may become more difficult. This
negative effect of code growth, i.e., that programs become larger than necessary without
corresponding fitness improvements became known as the bloat effect. Code growth has
been widely investigated in the GP literature [51, 2, 16, 65, 84, 54, 85, 55, 90, 12] (see
below).
In general, a high complexity of GP programs causes an increase of evaluation time and
reduces the flexibility of genetic operations in the course of the evolutionary process.
Besides, unnecessarily large solutions are more difficult to analyze and may lead to a
worse generalization performance [79].
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Depending on the proportion of noneffective code that occurs with a certain combination
of variation operators, the problem of longer processing time may be relaxed significantly
in linear GP by removing structural introns from a genetic program each time before its
fitness is calculated (see Section 3.2.1). Thus, only the (structurally) effective code causes
relevant computational costs during program execution.
The length of a linear genetic program is measured as the number of instructions it holds.
As already noted, the absolute program length and the effective program length are distin-
guished in linear GP. Correspondingly, we distinguish code growth concerning all instruc-
tions from the growth of (structurally) effective instructions only. This is referred to as
absolute growth and effective growth, respectively.

9.2 Proposed Causes of Code Growth

Several theories have been proposed to explain the phenomenon of code bloat in genetic
programming. Basically, three different causes of code growth are distinguished up to now
that do not contradict each other and may coexist while each being capable of causing
code growth for itself. Most theories explain the growth of intron code. In general, the
minimally required complexity of a solution may be exceeded by incorporating intron code
(may be removed without changing the program behavior) or by mathematically equivalent
extensions (see Chapter 3). All causes require the existence of fitness information, i.e.,
may not hold on (completely) flat fitness landscapes. In this way, fitness may be regarded
as a necessary precondition for code growth. Only the (semantically) effective program
size directly depends on the fitness. At least to a certain extent, solutions have to increase
their effective complexity to improve their fitness performance.
We assume for the following considerations that all variation operators are designed and
configured such that they are not explicitly biased towards creating longer offsprings more
frequently, at least not independently from the fitness selection.

9.2.1 Protection Theory

The protection theory [65, 16, 12, 90] argues that code growth and, in particular, the
growth of introns occurs as a protection against the destructive effects of variation. The
protection effect is sometimes explained by an increasing proportion of neutral variations
(and a corresponding decrease of destructive variations) that results from a higher rate of
intron code in programs. We will demonstrate below why such an explanation may not be
a sufficient one. First, the rate of destructive variations is not necessarily decreasing during
a run, especially if the variation step size is large, e.g., restricted only by the program size
(see Section 9.8.4). Second, in this case programs may even grow without neutral and/or
destructive variations (see Section 9.8.3). Finally, neutral variations reduce the number of
variations that happen to the non-neutral code which may not always be advantageous.
A more general explanation for the protection effect and its influence on code growth
may be found by regarding the structural step size of variations. In particular, this in-
cludes non-neutral variations, too. The destructive influence of a variation on the program
structure strongly depends on its step size. If the maximum amount of code is large or
even unrestricted that may be exchanged or deleted in one variation step (absolute step
size), evolution may reduce the variation strength on the effective code (effective step
size) by developing a higher proportion of introns in programs and, thus, in the varied
subprograms. This phenomenon may occur when using crossover as well as subprogram
mutations. In this way, the intron code controls the (relative) effective step size which
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depends on the ratio of effective and noneffective code in programs. Programs with a
higher rate of noneffective code (and the same absolute length) produce fitter offsprings
on average, i.e., offsprings with a higher survival probability. It is argued that code grows
because such offsprings will be more likely reselected for reproduction and variation [65].
Nevertheless, it is true that a higher intron rate in programs may increase the probability
for variations to become neutral, especially if the variation step size is small. This is not
only valid for code deletions, but also for insertions. Note that in larger intron regions the
number of effective registers may be supposed to be lower. In particular, the effective step
size is zero for neutral variations while the survival probability of offsprings is definitely
higher after neutral variations than after destructive variations.

9.2.2 Drift Theory

Another theory (drift theory) [54, 55] claims that code growth results from the structure
of the search space or, more precisely, from the distribution of semantically identical
solutions. The same phenotype function may be represented by many structurally different
(genetic) programs. There are many more larger genotypes than there are smaller ones
for a certain fitness value. This is caused by intron code or mathematically equivalent
code extension. Therefore, the genetic operators will create longer offsprings for a higher
probability that perform as well as their parents. Since the population programs represent
a sample of the search space, longer solutions will be selected more frequently, too. Both
will make the population to evolve in a random drift towards more complex regions of the
search space.
This general drift theory may be criticize because it assumes that longer programs emerge
due to a certain structure of the search space only. It has to be noted that not all
programs of the search space are created equally likely and, thus, may be composed of
an arbitrarily large amount of introns. This depends strongly on the applied variation
operator and, in particular, on the variation step size (see discussion below). Only because
genetic operators search in genotype space, the programs in the population do not have
to become significantly larger than necessary, as demonstrated in Section 5.11 for the
effective mutation approach. Hence, the part of the actual search space that is visited by
a certain operator may be much smaller than the search space of all possible solutions.

9.2.3 Bias Theory

A third theory (bias theory) of code growth is based on the hypothesis of a removal bias
in tree-based GP [86, 55, 90]. The change caused by removing a subtree can be expected
the more destructive the bigger the subtree is. The effect of the replacing subtree on the
fitness, instead, is independent from its size. As a results, the growing offspring from
which the smaller subtree is removed (and in which the longer is inserted) will survive for
a higher probability than the shrinking offspring.
It has to be noted, however, that the size of the exchanged subprograms may not be the
only reason for code growth. The lower fitness of the parent individual from which the
larger subtree is extracted may simply result from the fact, too, that the subtree root
(crossover point) lies closer to the tree root, on average. In this region crossover is more
likely destructive. Accordingly, the smaller subtree originates more likely from lower tree
regions.
The removal bias theory presumes that there are no side-effects induced by the program
functions in the problem environment. It is further important that both parents have
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the same size, on average, since the destructiveness of a removed subtree depends on the
absolute size of program, too. Finally, this cause strongly relies on the fact that the
variation operators only affect a single point in a program tree. We will see in Section 9.8
that such an implicit grow bias cannot be identified that clearly in linear GP.

9.3 Influence of Variation Step Size

The (maximum) step size of a variation operator determines the potential speed of code
growth that is possible in one variation step but does not represent a direct cause. In
general, we have to distinguish more-or-less necessary preconditions (indirect causes) for
code growth from driving forces (direct causes) as introduced in the last section. A larger
step size reduces the probability for neutral variations, but increases the probability that
neutral code may directly emerge from non-neutral variations.
If we want to clearly identify a direct or indirect reason for code growth it is important to
design the experiment in such a way that other causes are disabled as much as possible.
The protection effect (see Section 9.2.1) may be at least significantly lower if the step size
of variation operators is reduced to a minimum and if code is not exchanged. Both may
be achieved in linear GP for the imperative program structure by mutations that insert
or delete single random instructions only, as described in Section 5.10. (No code growth
is possible by substitutions of single instructions only.) Then a protection effect may not
occur in form of a reduction of effective step size, at least for all non-neutral variations
that alter the program length. The only protection effect that is remaining may result
from reducing the proportion of destructive variations in favor of neutral variations. This
is possible by a higher intron rate in programs.
If the mutation step size is constantly one, intron instructions cannot be inserted or deleted
directly along with a non-neutral variation, but only by a neutral variation. In particular,
this allows destructive variations to be analyzed with only a minimum influence on the
amount of intron code. Introns may only emerge indirectly from non-neutral variations by
deactivation of depending instructions (apart from the mutation point). The larger the
intron code has already developed the more likely this situation becomes. This is true for
introns on the structural level and on the semantic level. With large or even unrestricted
step sizes, instead, programs may grow quickly even by a small number of variations.
The high variability of the linear representation allows structural step sizes to be perma-
nently minimum at each program position. Reasons for this are both the graph-based
data flow and the existence of structural noneffective code in linear genetic programs (see
Section 3.3). Due to stronger constraints of the tree representation, small macro variations
are especially difficult in upper tree regions. If single tree nodes are tried to be deleted,
for instance, only one of its subtrees may be reconnected while the others get lost (see
also discussion in Chapter 7). Also due to structural constraints, introns hardly occur in
nodes near the root but are concentrated near the leaves [90]. Probably, the number of
effective nodes might be too restricted, otherwise.
A possible drift effect is reduced, too, because the difference between parent and offspring
comprises only one instruction. By using minimum variation steps exclusively the evolu-
tionary process will drift less quickly towards more complex regions of the search space.
In particular, a drift of intron code is hardly possible by non-neutral variations then.
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9.4 Neutral Variations

Most evolutionary computation approaches model the Darwinian process of natural se-
lection and adaptation. In the Darwinian theory of evolution organisms adapt to their
environment in such a way that mutations of the genotype spread in a population if they
offer a fitness advantage. Natural selection is considered to be the dominating force for
molecular evolution. In particular, the theory claims that most changes by mutations are
expressed in fitness. Most mutations are believed to be destructive and to be sorted out
of the population quickly by selection. That is, a mutation is only believed to survive over
generation if it improves the fitness.
Contrary to this theory, Kimura’s [48] neutral theory states that the majority of evolu-
tionary changes on molecular level are due to neutral or nearly neutral mutations. The
neutral theory does not deny the existence of natural selection but assumes that only a
small proportion of changes happens adaptively, i.e., follows a fitness gradient. The bigger
proportion of mutations is believed to stay silent on phenotype level, i.e., have no signifi-
cant influence on survival or reproduction. Those neutral genes spread within populations
by a random genetic drift which is considered to be a main force of evolution. The neutral
theory is supported by recent experimental data [49].
In linear GP we discern two types of neutral variations. While noneffective neutral varia-
tions change the (structurally) noneffective code only, effective neutral variations change
the effective code, too (see Section 5.1). The first type may be avoided if genetic opera-
tions are explicitly guaranteed to alter the effective code. In Chapter 5 neutral instruction
mutations have been identified as a motor of evolutionary progress. Best results were
obtained by increasing the proportion of effective neutral mutations actively.
Neutral variations do not provide any gradient information to the evolutionary algorithm.
This reduces the probability for improving the fitness by a gradient descent (exploitation).
Instead, neutral variations allow evolution to faster overcome plateaus of the fitness land-
scape. As a result, the fitness landscape may be explored more widely and searched more
efficiently for potentially better suboptima (exploration). In doing so, neutral variations
may be expected to prevent the evolutionary search from getting stuck in local suboptima.
When destructive variations dominate the evolutionary process, it is harder for an individ-
ual to improve step-by-step and to spread within the population. For a higher probability
it will get worse with each mutation until it is replaced by a better individual. By neutral
variations, instead, an individual may be altered without changing its ability to succeed in
fitness selection. This offers evolution the possibility to develop solutions “silently”, i.e.,
without exposing changes to fitness selection after each variation step. This intron code
may become relevant when being reactivated later in the course of the evolutionary process
(see Section 9.8.5). In principle intron manipulations may be carried out by non-neutral
variations, too, if the variation step size is large enough. However, it is important to note
that they will survive less likely since the vast majority of such variations is destructive.
Banzhaf [10] first emphasized the relevance of neutral variations in genetic programming
when a search space of almost unconstrained genotypes (binary strings) is distinguished
from a search space of constrained phenotypes (program trees) in genetic programming. A
special genotype-phenotype mapping is applied to guaranteed the feasibility of phenotype
solutions while the genetic operators may search in the genotype space without constraints.
Yu and Miller [103] demonstrated that neutral variations are advantageous after extra
neutral code has been explicitly included into a graph representation of programs. A
better performance was found for a Boolean problem (even-3-parity) if neutral mutations
are allowed in a modified (1+4)EA, compared to accepting fitness improvements only.
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It has to be noted, however, that the proportion of constructive variations is usually
rather low in genetic programming why in the latter case only a very small proportion of
variations may have an influence on the evolution of code. The authors do not compare
their results with an approach that accepts destructive variations, too.

9.5 Conditional Reproduction

We use a steady state evolutionary algorithm (see Section 2.3) that applies tournament
selection with a minimum of two participants per tournament. Variations happen on
copies of the parent individuals that may either replace the originals in the populations (no
reproduction) or the tournament losers (reproduction). When using tournament selection
the reproduction rate determines the number of parent individuals that survive a variation
step, i.e., that are taken over into the next “generation” of the steady-state population
together with the offsprings. With such a local selection scheme, it is not recommended
in general to restrict the reproduction rate significantly in genetic programming. Even
if diversity is better preserved in a population if less individuals are overwritten, fitness
convergence may be influenced rather negatively. This is not only true because better
solutions may spread more slowly within the population but because these individuals
get lost with a higher probability, especially if the proportion of destructive variations is
high. In particular, the loss of a new best-fit individual becomes possible if reproduction is
not strictly applied with tournament selection. Because of the high complexity of genetic
programs and the comparatively low rate of constructive variations (improvements) during
a GP run, information that has once been lost is hard to be regained in the following
evolutionary process.
The question is now under which conditions reproduction may be skipped without risking
to loose better solutions and when it is absolutely necessary. Obviously, after noneffec-
tive variations the effective code has not changed and is already completely reproduced
through the offspring individual. In this case, the variation already includes a reproduc-
tion and additional copies of the parent individuals do not contribute to the preservation
of information, but only to a loss of diversity. If reproduction happens after effective vari-
ations only, solution-relevant information cannot get lost while unnecessary reproductions
of the effective program are avoided. This approach is referred to as effective reproduction
and is another method to better preserve the effective diversity in the population, besides
the diversity selection discussed in Chapter 8. It may, however, be applied only if not all
variations are effective.
Noneffective variations, by definition, are always neutral in terms of a fitness change, but
not vice versa. While noneffective variations preserve the effective solutions completely,
skipping the reproduction step after neutral variations is more critical. If a neutral varia-
tion alters the (structurally) effective code the original solution code gets lost. Moreover,
such variations may only be neutral in terms of the fitness cases, not in terms of all possible
input data. This may reduce the generalization performance.
An omission of the reproduction step after destructive variations is even less motivated,
since better individuals would be exchanged by worse. This necessarily must lead to worse
results. Finally, reproduction after constructive variations should be retained, already
because the probability of such events is rather low.
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9.6 Conditional Variation

Besides the reproduction of the parent individuals, the integration of newly created in-
dividuals into the population (by replacing tournament losers) may be restricted so that
offsprings are accepted only if they result from certain types of variation. Such a condi-
tional acceptance of a variation implies automatically that the reproduction of parents is
omitted, too, since the population remains unchanged. Otherwise, if reproduction would
always take place, the parental information is doubled while overwriting existing informa-
tion in the steady-state population.

9.7 Experimental Setup

The different experiments documented in this chapter are conducted with the four bench-
mark problems that have already been introduced in Section 5.8.1. Unless otherwise agreed
the same system configuration is used here as in Section 5.8.2. Variants of this standard
configuration will be described with the corresponding experiments in the following.

9.8 Experimental Results

9.8.1 Conditional Instruction Mutations

The experiments documented in Tables 9.1 to 9.4 investigate the influence of different
variation effects on both the complexity of (effective) programs and the prediction perfor-
mance. The average prediction error is calculated by the best solutions of 100 independent
runs together with the statistical standard error. The absolute and the effective program
length are averaged over all programs that are created during runs. (Figure 9.1 shows ex-
emplarily the generational development of the average program length in the population.)
Due to the small step size of mutations used here, the average length of best individuals
develops almost identically (not documented). The proportion of effective code is given
in percent while the remaining proportion comprises the structural introns. Additionally,
we calculate the average proportions of constructive, neutral and noneffective variations
among all variations during a run. The rates of destructive and effective variations are
obvious then.
In the no∗ experiments of Tables 9.1 to 9.4 offsprings are not inserted into the population
if they result from a certain type of variation. Additionally, the reproduction of the parent
individuals is skipped. Simply put, the variation is canceled completely without affect-
ing the state of the population. Note that this is different from the control of neutrality
discussed in Section 5.10.7 where variations are repeated until they are neutral. Never-
theless, with all configurations the same number of variations (and evaluations) happens,
i.e., the same number of new individuals (1000) defines a generation. Thus, non-accepted
variations are still included in the calculation of the prediction error, the program lengths
and the variation rates.
Standard instruction mutations (mut) are characterized by a balanced emergence of neutral
operations and non-neutral operations, on the one hand, and effective operations and
noneffective operations, on the other hand.
Destructive variations hardly contribute to the evolutionary progress here. For all test
problems, the prediction error changes only slightly compared to the standard approach if
offsprings from destructive variations are not accepted (nodestr). This is true even though
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Experiment SSE Length Variations (%)
mean std. abs. eff. % constr. neutral noneff.

mut 3.5 0.5 140 60 43 0.8 54 52
nodestr 3.3 0.5 139 61 44 0.2 53 52
noneutr 1.6 0.1 38 28 72 7.5 37 34
nononeff 1.5 0.1 41 30 74 4.8 41 32
effrepro 1.5 0.2 126 50 40 3.3 60 52

Table 9.1: mexican hat: Conditional acceptance of mutation effects and conditional repro-
duction (mut, B1). Average results over 100 runs.

Experiment SSE Length Variations (%)
mean std. abs. eff. % constr. neutral noneff.

mut 6.5 0.3 78 32 41 0.5 63 63
nodestr 8.0 0.3 78 32 41 0.1 64 63
noneutr 6.0 0.3 24 15 63 6.3 48 47
nononeff 6.5 0.2 25 16 62 4.7 52 48
effrepro 4.8 0.3 56 25 44 4.1 61 58

Table 9.2: distance: Conditional acceptance of mutation effects and conditional reproduc-
tion (mut, B0). Average results over 100 runs.

about 50 percent of all variations are rejected and even if the rate of constructive variations
decreases significantly, especially with the classification problems (in Tables 9.3 and 9.4).
In contrast to that the rate of neutral variations remains more-or-less unaffected in this
experiment. Obviously, the probability for selecting an individual, that performs worse
than its parent, seems to be so low, on average, that it hardly makes any difference if
this individual is copied into the population or not. Due to a low survival rate of these
offsprings and due to the small mutation step size, destructive mutations almost do not
have any influence on code growth here, too. Note again that intron instructions cannot
be directly inserted by a non-neutral variation and all changes of a program are exposed
to fitness selection.
The influence of neutral variations is in clear contrast to the influence of destructive
variations. Obviously, the survival probability of offsprings is higher after a neutral (or a
constructive) variation. This facilitates both a continuous further development of solutions
and the growth of programs. In doing so, neutral variations explore plateaus of the fitness
landscape by a random walk. It is an important result that both the absolute size and the
effective size of programs are reduced most if we exclude neutral variation results from the
population (noneutr).1

Noneffective neutral variations create or modify noneffective instructions, i.e., structural
introns. Accordingly, we may assume that mostly effective neutral variations are respon-
sible for the emergence of semantic introns – within the (structurally) effective part of
program. Effective neutral variations (and semantic introns) are harder to induce if the
fitness function is continuous and, thus, occur less frequently. This is reflected here with
the two regression problems by similar rates of noneffective operations and neutral opera-
tions. For the discrete classification problems, instead, the proportion of neutral variations

1This is true here even if an explicit grow bias has been used with some problems (see Section 5.8).
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Experiment CE Length Variations (%)
mean std. abs. eff. % constr. neutral noneff.

mut 13.6 0.6 128 64 50 0.3 50 42
nodestr 12.4 0.5 117 64 55 0.02 46 39
noneutr 20.0 0.6 37 31 82 5.0 32 20
nononeff 13.1 0.5 69 62 89 1.5 32 13
effrepro 9.2 0.4 117 83 71 1.1 45 25

Table 9.3: spiral: Conditional acceptance of mutation effects and conditional reproduction
(mut, B1). Average results over 100 runs.

Experiment CE Length Variations (%)
mean std. abs. eff. % constr. neutral noneff.

mut 15.5 0.6 132 57 43 0.2 62 49
nodestr 16.4 0.7 124 53 43 0.03 62 49
noneutr 24.6 0.8 34 28 82 5.3 38 20
nononeff 12.9 0.7 80 71 88 1.0 45 13
effrepro 12.4 0.6 116 89 76 0.7 54 22

Table 9.4: three chains: Conditional acceptance of mutation effects and conditional repro-
duction (mut, B1). Average results over 100 runs.

has been found significantly larger than the proportion of noneffective variations which
means a higher rate of effective neutral variations.
Additionally, the frequency of neutral variations on the effective code depends on the
function set. Especially, branches create semantic introns easily while the resulting larger
effective code indirectly increases the probability for effective (neutral) variations.
In the nononeff experiments noneffective variations are rejected, i.e., only effective varia-
tions are accepted. In contrast to the noneutr, this includes effective neutral variations,
too. Semantic introns created by those variations may be responsible for the larger effec-
tive code that occurs with both classifications in nononeff runs. With the two regressions
the effective size is half-reduced for both noneutr and nononeff because most neutral varia-
tions are noneffective here. If we would compare results after the same number of effective
evaluations this approach more-or-less corresponds to the effmut operator that calculates
effective mutations algorithmically.
In both noneutr and nononeff runs the rate of noneffective code is reduced significantly. As
a result, the rates of neutral variations and noneffective variations are smaller here. This
demonstrates that the intron code in programs does not only emerge mostly from neutral
variations, but increases the probability for a neutral variation again.
We may conclude that neutral variations – in contrast to destructive variations – dominate
code growth almost exclusively. Since mutation step sizes are small, constructive variations
may only play a minor role for code growth already because of their low frequency. This
is true even if the rate of constructions increases (together with the rate of destructions)
when not accepting the result of neutral variations in the population (noneutr). One
reason for this is the lower rate of structural and semantic introns. Moreover, non-neutral
variations may hardly be responsible for an (unnecessarily) growth of code here because
the variation step size is minimum. Then intron code cannot be directly created by such
operations and all changes of a program are exposed to fitness selection.
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As already noted in Section 9.1, the possibility to induce small structural mutations at each
position of the linear representation is important for our results. Indirect creation of intron
instruction by deactivations seems to play a minor role only. Note that due to changing
register dependences noneffective (effective) instructions may be reactivated (deactivated)
in a linear genetic program above the mutated instruction. Besides, an increasing ro-
bustness of the effective code lets deactivation of instructions occur less frequently in the
course of a run (see Section 8.7.2).
When step sizes are larger, i.e., more than one instruction may be inserted per variation,
as this occurs with crossover, programs may grow faster and by a smaller total number of
variations. In particular, introns may be directly inserted by variations, too, that are not
neutral as a whole.
Concerning the prediction quality the noneutr experiment has a small positive or no effect
with the two approximation problems but a clear negative effect with the two classification
problems. Contrary to this, the performance never drops in the nononeff experiment
(compared to the baseline result). Apparently, fitness is not negatively affected if only
noneffective neutral variations are excluded. Consequently, effective neutral variations
may be supposed to be more relevant than noneffective neutral variations in general.
This is not obvious, because all neutral changes may be reactivated later in (non-neutral)
variations.
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Figure 9.1: Development of average absolute program length for distance (left) and three
chains (right) (similar for mexican hat and spiral). Code growth significantly reduced
without neutral variation effects. Average figures over 100 runs.

We may not automatically conclude here that neutral variations are more essential for
solving classifications only because those problems are discrete. At least small plateaus in
fitness landscape also exist with problems whose output range is continuous. It has to be
noted, that a better performance may also result from the fact that programs grow larger
by neutral variations due to a step-by-step improvement of solutions. Depending on the
problem definition, the configuration of the instruction set, and the observed number of
generations, the optimum speed of code growth may be quite different. By making use of
branches, that allow many special cases to be considered in a program, both classification
problems profit less from a lower complexity of solutions than the two symbolic regressions.
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9.8.2 Effective Reproduction

Reproduction after effective operations only (effrepro) is characterized by a clear gain in
performance compared to the standard approach (mut) in Tables 9.1 to 9.4. Since the
reproduction step is rather pointless if the effective code has not been altered (see Section
9.5), the diversity of solutions may be better maintained without. Recall that about 50
percent of all variations are noneffective with mut. This assumption is also confirmed by
a higher average fitness and standard deviation that have been found with effrepro (not
documented).
In contrast to nononeff, newly created individuals are always accepted and find their way
into the population here. Interestingly, the average prediction error is smaller than or equal
to the error obtained in nononeff runs. This is probably due the fact that the (effective)
program size is less reduced here by a lower reproduction rate of parents than by a lower
acceptance rate of their offsprings.

9.8.3 Conditional Segment Variations

Soule et al. [85] demonstrated for tree-based GP that code growth (especially of introns)
remains significantly lower if only those offsprings are incorporated into the population
that perform better than their parents. The authors hold the missing destructive crossover
results directly responsible for this behavior. The researchers observed that the reduced
complexity of programs is mostly due to a much lower rate of intron code – using a control
problem where (semantic) intron code is partly easy to identify in program trees. The
researchers also observed that the size of effective code is reduced in size.
While a direct influence of destructive variations on the growth of (intron) code is not
doubted in principle here, it has to be noted, however, that not only destructive but
also neutral variations are excluded from evolutionary progress in [85]. Moreover, the
proportion of (the remaining) constructive variations is usually rather low in GP. It may
be difficult to decide then whether the reduced program growth is not just the result of
too few individuals that find their way into the population.
This section documents the influence of different variation effects on code growth when
using unrestricted segment operators in linear GP – including two-segment recombination
(crossover, cross) and one-segment mutations (onesegmut). In Tables 9.5 to 9.8 either
destructive variations (nodestr), neutral variations (noneutr) or both (noneutr+nodestr)
have been canceled in separate experiments. In doing so, both the reproduction of parents
as well as the integration of offsprings into the population are skipped for the corresponding
variation types.
Since variation step sizes comprise more than one instruction (structural and semantic) in-
tron instructions may be inserted by both neutral and non-neutral variations, in principle.
Here the segment length is restricted by the absolute program length only. In general, the
more instructions may be inserted in one variation step the less variations are necessary
to let programs bloat provided that there is at least one valid reason for code growth for
the applied genetic operator(s).
As already documented in Section 5.9.2, smaller solution sizes occur in general when
using (one-)segment mutations instead of recombination in Tables 9.6 and 9.8. It will be
argued in Section 9.9.2 that this is a result of the fact that randomly created segments
restrict the formation and propagation of introns in the population. Similar to the results
found with instruction mutations in Section 9.8.1 code growth is hardly affected here if
destructions are not accepted (nodestr). As noted above, the fitness of an offspring might
be comparatively low within the population after a destructive variation. Therefore, it
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Experiment SSE Length Variations (%)
mean std. abs. eff. % constr. neutral noneff.

cross 15.4 1.5 180 67 37 4.9 26 22
nodestr 12.4 1.4 177 68 38 0.5 23 22
noneutr 9.9 1.2 170 70 42 10.9 21 18
noneutr+nodestr 3.3 0.4 122 53 43 2.8 19 17

Table 9.5: mexican hat: Conditional acceptance of variation effects using crossover (cross).
Average results over 100 runs after 1000 generations.

Experiment SSE Length Variations (%)
mean std. abs. eff. % constr. neutral noneff.

onesegmut 4.2 0.5 92 38 42 4.6 26 21
nodestr 5.3 0.6 99 43 43 0.2 20 19
noneutr 2.9 0.2 96 43 44 10.4 23 18
noneutr+nodestr 3.2 0.2 75 36 48 2.0 20 19

Table 9.6: mexican hat: Conditional acceptance of variation effects using one-segment
mutation (onesegmut). Average results over 100 runs after 1000 generations.

is rather unlikely for a program solution to be processed and to grow in a sequence of
destructive operations (without being overwritten).
In contrast to Section 9.8.1, however, programs grow here even if neutral offsprings do not
get into the population (noneutr). A significantly smaller complexity has been found only
for the spiral classification when using one-segment mutations. Without neutral variation
effects the performance decreases for this problem. Instead, fitness improves significantly

Experiment SSE Length Variations (%)
mean std. abs. eff. % constr. neutral noneff.

cross 26.1 0.7 185 102 55 3.6 23 14
nodestr 25.0 0.7 184 103 56 0.1 21 15
noneutr 27.6 0.6 174 106 61 8.7 25 12
noneutr+nodestr 26.1 0.5 101 57 56 1.1 23 13

Table 9.7: spiral: Conditional acceptance of variation effects using crossover (cross). Av-
erage results over 100 runs after 1000 generations.

Experiment CE Length Variations (%)
mean std. abs. eff. % constr. neutral noneff.

onesegmut 21.2 0.6 126 65 51 2.4 27 19
nodestr 18.0 0.7 125 66 53 0.04 23 18
noneutr 27.8 0.6 63 36 56 7.2 29 17
noneutr+nodestr 31.4 0.5 37 21 59 0.7 25 19

Table 9.8: spiral: Conditional acceptance of variation effects using one-segment mutation
(onesegmut). Average results over 100 runs after 1000 generations.
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for the mexican hat problem. Additionally, in both cases the rate of constructive variations
is more than doubled compared to the standard approach. It is important to note that
constructive operations are responsible for the growth of noneffective and effective code
here since the variation step size is unrestricted. The difference in average fitness with
and without using neutral variations cannot result from a difference in solution size, at
least for mexican hat, as this may be true for the corresponding test series with instruction
mutations in Section 9.8.1.
If both neutral and destructive changes are rejected (noneutr+nodestr) the evolutionary
progress and code growth are controlled by constructive variations exclusively. Since the
rate of constructions is even lower here than in normal runs hardly any new individuals
get into the population. Average code size is limited significantly only with the spiral
problem (see Table 9.8).
The maximum size limitation lets the average program length be more similar in the
crossover experiments (Tables 9.5 and 9.7). Only Figure 9.2 reveals significant differences
if the maximum limitation is chosen so large (1000 instructions) that it may not affect the
development of program lengths until about generation 200 with mexican hat and until
about generation 125 with spiral. In general, one can see that code growth is more reduced
without neutral variation effects than without destructive effects, even if destructions occur
three times more frequently. On the mexican hat problem destructive variations even do
not seem to have any influence at all. It also becomes clear here that code growth is much
more restricted if neither destructive nor neutral crossover effects are accepted. Then the
comparatively low number of constructive effects is not sufficient to let programs bloat
even though arbitrarily large segments are used.
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Figure 9.2: Development of average absolute program length when using crossover (cross)
almost without a restriction by the maximum program length (1000 instructions). Code
growth more reduced without neutral variation effects than without destructive effects.
Bars show standard deviation of program length in the population. Average figures over
30 runs for mexican hat (left) and spiral (right).

Semantic Diversity

We have seen above that the average fitness of best solutions changes only little if destruc-
tions are not accepted. This is quite different for the average fitness in the population as
a comparison between Figures 9.3 and 9.4 reveals. By including the destructive crossover
results the average fitness develops much more diverse and much more different from the
best fitness. Note that the standard deviation applies to the fitness values in the popula-



9.8 Experimental Results 205

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 100  200  300  400  500  600  700  800  900  1000

Generation

Average Fitness
Standard Fitness Deviation

 0

 20

 40

 60

 80

 100

 100  200  300  400  500  600  700  800  900  1000

Generation

Best Fitness
Average Fitness

Standard Fitness Deviation

Figure 9.3: Development of average fitness and standard deviation in the population for
mexican hat (left) and the spiral (right) using crossover (cross). Standard deviation is
printed 5 times smaller for mexican hat. Average figures over 100 runs.
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Figure 9.4: Development of average fitness and best fitness for mexican hat (left) and spiral
(right). very similar if destructive variations are canceled (nodestr). Standard deviation
is below 1 (not printed). Average figures over 100 runs.

tion, not to the development of average fitness over multiple runs. Typically, the difference
between average fitness and best fitness is more significant for the continuous problem in
contrast to the discrete task with its more narrow range of fitness values. The development
of average fitness in noneutr runs, by contrast, has not been found very different from the
development in normal runs (not documented).
For both problems average fitness and best fitness are almost congruent in Figure 9.4 if
worse offsprings are excluded from the population (nodestr). Then most individuals in the
population share the same fitness value. A low standard deviation of fitness values is an
indication for a low semantic diversity of programs in the population. Accordingly, the
diversity of the effective code (structural diversity) in the population may be expected
lower, too. This is due to much less effective variations of individuals that reach the
population and because most neutral variations alter the noneffective code only. Even if
better individuals are selected more frequently (because more exist in the population) the
low diversity may reduce the probability for improvements. If a better individual occurs
it will most likely become the best individual of the population, too, and the population
follows this new fitness gradient quickly. Additionally, (effective) code may spread faster
in the population because worse offsprings cannot overwrite better tournament losers.
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Figure 9.5: Development of crossover effects (cross) for mexican hat (left) and spiral (right).
Average figures over 100 runs.
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Figure 9.6: Development of length ratios with crossover (cross) for mexican hat (left) and
spiral (right). Average figures over 100 runs.

9.8.4 Development of Variation Effects

It has already been demonstrated in Sections 5.9.4 and 5.11.4 that larger variation step
sizes may lead to a higher proportion of noneffective code in programs. Especially when
using multiple instruction mutations this does not necessarily produce larger programs,
too, which is a clear experimental evidence of the protection effect in terms of a reduction
of effective step size. The protection effect has also been held responsible for promoting the
creation of semantic introns with crossover in Section 5.9.1 after all structural introns have
been removed. Moreover, a better protection was achieved in terms of smaller effective
step sizes by increasing the proportion of explicit introns (see Section 5.9.5).
In the following we are interested in how the proportions of structural and semantic vari-
ation effects (see Section 5.1), on the one hand, and the proportion of (non)effective code,
on the other hand, develop over a run. This is demonstrated for a segment variation oper-
ator (cross) and for instruction mutations (mut). How does the protection effect influence
the growth of code and the development of introns ? Is the protection effect reinforced in
the course of a run (by a higher rate of neutral variations and/or neutral code) ?
In genetic programming typically a high amount of crossover operations result in offsprings
which fitness is worse than the fitness of their parents. On average, about 70 to 90 percent
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Figure 9.7: Development of variation effects with instruction mutations (mut, B0) for
mexican hat (left) and spiral (right). Average figures over 100 runs.
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Figure 9.8: Development of length ratios with instruction mutations (mut, B0) for mexican
hat (left) and spiral (right). Average figures over 100 runs.

of all crossover variations of a run are destructive when using unrestricted linear crossover
(see Section 5.9.3). Nordin and Banzhaf [65] argue that the ratio of effective length and
absolute length of a program leff

labs
is related to the probability that (unrestricted) linear

crossover will be destructive. An increasing proportion of noneffective code is supposed to
increase the rate of neutral crossover, i.e., two segments are exchanged which act as intron
code in both the parents and the children. We use the information about the structural
intron code to verify this correlation. While such a correlation is not doubted here in
principle, a relevant increase of neutral variations has not been observed.
The two counterexamples in Figure 9.5 reveal that the destruction rate does not drop
over a period of 1000 generations when using linear crossover as defined in Section 5.7.1.
On the contrary, destructive operations mostly increase until their number converges to
a certain maximum. The rate of neutral operations decreases, accordingly, while the rate
of constructive operations is constantly low. Neutral and destructive variation effects are
correlated with the rates of effective variations and noneffective variations, respectively.
These structural variation effects are in turn correlated with the proportions of effective
code and noneffective code in programs (see Figure 9.6). Both correlations are stronger
for the mexican hat problem due to less less effective neutral variations and, therefore, less
semantic introns.
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Only during the first generations the proportion of effective code in Figure 9.6 as well
as the proportions of effective and destructive variations in Figure 9.5 decrease. This is
true until about generation 100 for the mexican hat problem. Only up to that point the
growth of programs is unrestricted by the maximum size limit (compare Figures 5.5 and
5.6). After most programs have reached the maximum size, both the rate of destructive
variations and the extent of destruction on code level increase again. These effects are
weaker with the spiral problem because of a more rapid (and stronger) increase of effective
code already at the beginning of a run. Semantic introns may emerge almost as easily as
structural introns here which results from both the discrete fitness function and the use
of branches.
We may conclude that the protection effect increases the rate of noneffective code (if ever)
only at the beginning of a run until the program lengths are maximum. Note that an
additional drift of intron code may not be excluded during this initial grow phase. This
is especially true because the variation step size is unrestricted and the rate of neutral
variations is highest in the early generations. In the following generations the intron rate
decreases since the fitness force lets the effective program length grow further. Apparently,
this force is stronger than the protection force on the intron rate. As demonstrated in
Chapter 6, even with a larger maximum size limit or more registers, i.e., longer or wider
program graphs, the proportion of effective code does not decrease over a run.
We have seen that the ratio of noneffective code influences the ratio of neutral variations
if the segment length is unrestricted. But both ratios develope still quite differently.
We will now demonstrate that this is different for instruction mutations, i.e., minimum
absolute step sizes. Figures 9.7 and 9.8 show that, in this case, the average proportions of
neutral variations and introns are almost identical since introns are almost only created
by neutral variations. Both proportions decrease although code growth is not limited by
the maximum program bound here. (The average length in generation 1000 is about 70
only.) The decrease is much faster at the beginning than towards the end of a run. For
spiral there is even a slight increase at the end after a longer period of stagnation.

9.8.5 Neutral Drift ?

Figures 9.9 and 9.10 show two characteristic example runs with the spiral problem and
instruction mutations (mut). The development of the best fitness reflects approximately
the progress in the population. Longer stagnation phases of the best fitness, as those occur
especially with discrete problems, are correlated with periods of many neutral variations.
Actually, the rate of neutral variations increases continuously here during such exploration
phases while the rate of destructions decreases, accordingly. As a result, the noneffective
neutral code grows in the population individuals. One can see that both neutral code and
neutral variations react only slightly delayed for a few generations to a new (best) fitness
situation.
If a better (effective) solution occurs this may spread rapidly within a few generation.
That is, the population follows (exploits) a newly detected positive fitness gradient. Inter-
estingly, the amount of noneffective code drops again together with the number of neutral
variations in this case. Almost simultaneously, the effective length increases which is re-
flected by a stepwise progression in Figure 9.10. Such an observation may be explained
by reactivations only. After a period of neutral (and destructive) variations the “silently”
developed neutral code is suddenly reactivated in a constructive way. During such neutral
walks over plateaus of the fitness landscape the individual structure may be developed
continuously (in quality and size) by neutral changes while destructive offsprings more
likely extinct, i.e., be replaced within the population.
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Figure 9.9: spiral: Development of best fitness and the rate of neutral variation over two
typical example runs using instruction mutations (mut, B0). Rate of neutral variations
increases almost only on fitness plateaus (during stagnation periods of the best fitness).
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Figure 9.10: spiral: Development of best fitness, average effective length, and average
noneffective length over the same runs as in Figure 9.9. Neutral noneffective code grows
continuously on fitness plateaus and shrinks on fitness gradients. Effective code grows
stepwise. Length figures have been slightly shifted in vertical direction for a better view.

The fact that reactivations of intron segments improve the (best) fitness shows that in-
trons do not only contribute to unnecessary code growth, but are relevant for evolutionary
progress and for the growth of effective code, too, and so are neutral variations. In partic-
ular, the results demonstrate that the structural noneffective code (created by noneffective
neutral variations) is used for solution finding, at least with random instruction mutations.
Similar correlations as in Figures 9.9 and 9.10 may be supposed for the development of
effective neutral variations and semantic introns.
Since instruction mutations reduce the step size of macro variations to a minimum, neutral
variations are a necessary condition for code growth and for the evolutionary progress.
Moreover, intron code emerges almost exclusively from neutral variations in this case. The
above analysis of single runs has shown how neutral variations, code growth and fitness
progress are connected. But what is the driving force that lets both neutral variations
and neutral code increase during phases where the best fitness stagnates ? Two possible
theories may be valid here.
(1) Neutral variations preserve the semantics of a solution and, therefore, guarantee a high
survival rate of offsprings. Actually, since the survival rate of offsprings has been found
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very low after destructive variations and since the rate of constructive variations is low,
too, mostly individuals will be selected that result from neutral variations.
If the best fitness stagnates the population explores a plateau region of the fitness landscape
more widely while the proportion of neutral variations increases. Another important
reason why neutral variations have a high impact on the growth of intron code is that
(the size of) this code does not influence the program fitness directly. Especially the
structurally noneffective code emerges relatively easy in linear GP. Thus, introns may be
argued to grow by a random drift if the population spreads over a plateau of the fitness
landscape.
As mentioned in Section 9.4, Kimura’s [48] neutral theory considers a random genetic
drift of neutral mutations as a main force of natural evolution. Accordingly, a neutral
drift theory of code growth may regard a drift of intron code by neutral variations as a
dominating force of code growth. At least this may play an important role for instruction
mutations.
(2) By applying only deletions or insertions of single instructions a possible influence of
a protection effect in terms of a reduction of effective step size is restricted as far as
possible, as discussed in Section 9.3. However, protection may still occur here such that
a high proportion of neutral code increases the probability for neutral variations. This
effect may also be responsible for the growth of intron code on fitness plateaus since it lets
(effective) programs with a higher intron rate survive for a higher probability.

9.8.6 Crossover Step Size

For the following considerations the reader may recall that linear genetic programs as
used in this thesis may be represented as an equivalent directed acyclic graph (DAG,
see Section 3.3). The maximum width of such a graph is restricted by the available
number of registers while the maximum depth is limited by the number of instructions,
i.e., inner graph nodes. In narrow graphs more program paths are affected, on average,
by linear crossover when exchanging instruction segments on the imperative level. Then
most segments may separate the “linear” graph structure almost completely.
This let us assume that the influence of a segment on the fitness depends only partly on
its length. At least, linear crossover might not be significantly more destructive beyond a
certain segment length. The relative fitness change is defined as the difference in fitness
between parent and offspring (absolute fitness change) divided by the parental fitness:

Fp −Fo

Fp
(9.1)

The average fitness change is usually negative since much more variation effects are de-
structive than constructive. Recall that the optimum fitness value F is zero.
Figure 9.11 confirms our assumption. In a linear genetic program the segment length
(structural step size) is proportional to the fitness change (semantic step size) only to a
certain degree. Even if only the relative fitness change is printed in Figure 9.11 this has
been found to be true for absolute fitness changes as well. One can see that the more
registers are provided the larger is the segment length beyond that the average fitness
stagnates.
To achieve that the average segment length stays the same over the whole run, the program
length is constant here. Thus, crossover exchanges equally-long segments between two
individuals right from the beginning. Nevertheless, crossover steps become relatively more
destructive over a run. Figure 9.12 compares the development of relative fitness changes.
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Figure 9.11: Average relative fitness change per segment length when using crossover
(cross) and a constant program length of 200 instructions. Larger segments do not become
more destructive beyond a certain segment lengths depending on the number of calculation
registers (0, 4, 8, and 16). Average figures over 30 runs for mexican hat (left) and spiral
(right).
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Figure 9.12: Development of the average relative fitness change when using crossover
(cross) and a constant program length of 200 instructions. Crossover becomes relatively
more destructive during run. Average figures over 30 runs for mexican hat (left) and spiral
(right).

The more the program fitness improves the larger is the relative destruction. This is all the
more valid the more registers are used for calculations. Using the absolute fitness change
is less appropriate here because it necessarily decreases in the course of a run. Also note
that very similar figures may be produced for two-segment mutations.

9.8.7 Implicit Bias: Linear Crossover

Let a variation operator be free from an explicit bias if there is no significant code growth
without fitness. That is, on average, the same amount of code is added as it is removed
from the programs. The exchange of subprograms between individuals during crossover
may not increase the average program size in the population. In contrast to crossover,
subprogram mutations have to be implemented explicitly such that the average program
size in population is not changed. This has been realized in Section 5.7.5 by selecting the
segment length in relation to the length of another randomly selected individual. We refer
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to an implicit bias here if program growth is forced in the presence of fitness only, but
does not result from an explicit configuration of variation parameters.
As noted in Section 9.2.3, a removal bias has been argued to be a direct cause of code
growth in tree-based genetic programming when using subtree crossover. Such an implicit
grow bias results from the fact that the removed subtree may cause a fitness change that
depends on the subtree size in relation to the program size (relative subtree size). The
fitness change caused by the added subtree, instead, is more independent from its size.
One reason for this is the single connection point (edge) at which all subtrees may influence
the result of the main program.
The situation is less clear when using crossover in linear GP. There are several reasons why
the effect of an inserted instruction segment is not independent from its length. First, the
more instructions are removed from or inserted in a linear program the more (effective)
register contents may be changed, on average. Remember that register manipulations
correspond to modification of edges in the graph representation of a linear genetic program.
Thus, the longer an inserted instruction sequence is the more variation points may be
affected on the functional level.
Second, the available number of registers determines the maximum width of the (effective)
DAG (see Section 6.1). The wider the program graphs are the less program paths (variation
points) may be modified At least theoretically a removal bias becomes more likely then.
Since linear crossover works on instruction level, however, it is rather unlikely in general
– especially with many registers – that exchanged instruction segments form contiguous
subgraphs.
Third, not all register manipulations will be effective, since usually not all instructions of an
inserted or deleted segment contribute to the effective code. It may be demonstrated easily
that the effective length of crossover segments is approximately the same for insertions
and deletions. The average effective segment length strongly depends on the total rate
of effective instructions in program. This is true for both types of operation, segment
deletions and insertions. In general, it depends on the program context, how many segment
instructions will be effective. For insertions, this is influenced by the number of effective
registers at the insertion point and the number of registers manipulated by the segment
code as a whole. Additionally, it is important how much the segment instructions are
interconnected on the level of register dependences.
Fourth, The directed graph structure allows inserted components not only to be used by
the program but to use parts of the program graph itself. This happens the more likely
in linear programs the less registers are available, i.e., the more the graph is restricted in
width (see Section 3.3). In more narrow (“linear”) graphs more paths lead from the root
through an instruction node than in wider graphs (or trees). At least in the former case,
we may not expect that an insertion is less destructive than a deletion of equal size.
Recently, Soule and Heckendorn [90] gave an experimental evidence of the removal bias
theory in tree-based GP. We repeat the experiment here for the linear program represen-
tation and linear crossover. Basically, the correlation between the relative fitness change
and the relative segment length is calculated separately for inserted and deleted segments.
The relative segment length denotes the absolute length of an inserted (deleted) segment
as a percentage of the length of the destination (source) program. Note that an inserted
segment may exceed the size of the destination program. However, since this situation
does not occur very often it may be neglected here.
A removal bias may only be relevant for linear crossover or two-segment variations in
general if the lengths of the inserted segment and the deleted segment may be different.
Due to the influence of the maximum length bound, however, this period will not last very
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Figure 9.13: Average relative change in fitness per relative length of the inserted and the
deleted crossover segments (cross). Average figures over 30 runs for mexican hat (left) and
spiral (right).
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Figure 9.14: Frequency distribution of relative and absolute lengths of inserted and deleted
crossover segments (cross). Average figures over 30 runs for mexican hat (similar for spiral).

long. Recall that in our crossover implementation equally-long segments are exchanged
if an offspring would exceed the maximum size limit, otherwise. Therefore, we allow a
maximum program length (as well as a maximum segment length) of 1000 instructions
in this section. This guarantees that programs may grow almost unrestrictedly. At least,
the average length does not reach the maximum within the 250 generations observed here
(see Figure 9.2).
In Figure 9.13 a removal bias occurs only for relative segment lengths larger than 70%. For
two reasons it may be questioned that such a bias has a relevant influence on code growth
when using linear crossover. First, programs resulting from larger destructions may be
selected only for a low probability, as noted before. Thus, large destructive variations may
hardly contribute to code growth or be relevant for the evolutionary progress. Second,
such large relative segment lengths do not occur very frequently as we learn from the
frequency distribution in Figure 9.14. Only the distribution of absolute segment lengths
depends on the absolute program length such that the probability for selecting shorter
segments decreases with the program length.
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9.8.8 Implicit Bias: Effective Instruction Mutations

In Section 5.11.3 we have seen how an explicit grow bias influences both code growth
and prediction performance if instruction mutations are applied. Now we will investigate
whether such mutations are implicitly biased even if instructions are deleted or inserted
for the same probability. Is deletion of a single instruction more likely destructive than
insertion ? If a randomly selected instruction is deleted, it depends on the proportion
of (non-)effective instructions in a program whether the deletion is effective or not. If
a random instruction is inserted at a program position, its destination register will be
effective depending on the proportion of registers that are effective at that position. In
a larger intron block the average number of effective registers is rather low. Thus, if an
instruction is inserted in a context of other introns the probability that a new instruction
becomes an intron may be expected higher. Such interactions lead to similar proportions of
semantic and structural variation effects for instruction deletions and instruction insertions
(not documented).
Let us now consider (explicitly) effective instruction mutations as described in Section
5.10.4. Recall that the deletion of an effective instruction node comprises the removal of
several edges from the corresponding program graph – one for each operand register and at
least one for the destination register – while each removed edge (register) may lead to dis-
connections (deactivations) of code. During an effective insertion, instead, only the choice
of the destination register can be a source of deactivation. This happens if another in-
struction becomes inactive that uses the same destination register. The operand registers,
instead, just add new register dependences to other instruction, i.e., edges to the effective
graph component. This may result in reactivations of formerly inactive code but not in
deactivations (see also Section 5.10.5). Since the rate of inactive instructions is usually
low with effective mutations reactivations may occur less frequently than deactivations.
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Figure 9.15: Development of the average relative fitness change for mexican hat (left)
and spiral) (right) when using effective instruction mutations (effmut). Insertions more
destructive than deletions (implicit shrink bias). Average figures over 30 runs.

Interestingly, experimental results show that effective insertions lead to larger semantic
variation step sizes, i.e., a larger average fitness change, than effective deletions (see Figure
9.15). As indicated before, the proportion of destructive variations is approximately the
same for both variations. Apparently, effective deletions are less destructive because the
effective code stabilizes over a run (as demonstrated in Chapter 8). Consequently, this
imbalance leads to an implicit shrink bias or insertion bias.
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An implicit shrink bias may be another reason why the absolute size of programs stays
small if only effective code is created – besides the fact that noneffective instructions are not
inserted directly. In principle, a shrink bias occurs with random instruction mutations, too.
However, noneffective variations create much more noneffective code with these operations.
Note that, by our definition, an implicit bias may affect non-neutral variations only, i.e.,
variations that change the fitness. This means for one-instruction mutations that an
implicit bias influences the growth of effective code rather than the number of introns (see
also Section 9.3).

9.9 Control of Code Growth

We discuss different possibilities how code growth may be controlled implicitly or explicitly
in linear genetic programming. Basically, we distinguish between a control of code growth
by variation or selection. The following section summarizes results from Chapter 5 and this
chapter concerning the influence of different variation operators and variation parameters
on code growth. Additionally, the phenomenon is analysed why code growth occurs to be
so much more aggressive with segment recombination than with segment mutation.

9.9.1 Variation-Based Control

As defined in Section 5.3 the absolute variation step size denotes the amount of code that
is deleted and/or inserted during one variation step. Because a deletion and an insertion
are always applied together during a crossover operation (cross) or a two-segment mutation
(segmut), the possible speed of code growth depends on the maximum difference in size
between the deleted and the inserted segment (see Section 5.9.4). Obviously, there is
no code growth possible if this difference is set to zero. Another possibility to limit the
length distance between parent and offspring is to use a smaller maximum segment length
which indirectly restricts the maximum difference of segment lengths. Linear crossover
may not be explicitly biased towards creating larger or smaller programs since it only
moves existing code within the population by a mutual exchange between individuals.
Hence, the average program length may not be changed by crossover. Segment mutations
must be explicitly configured such that newly created segments are not larger than deleted
segments, on average.
A control of code growth by removing (structural) introns explicitly from the population
individuals (effcross) turned out to be insufficient for linear crossover. Mostly the protec-
tion effect leads to an increase of other (semantic) introns in programs then. Depending
on the configuration of the instruction set this replacement may let programs become sim-
ilarly large. Besides, the processing time is increased since, in general, semantic introns
may not be detected efficiently and removed before the fitness evaluation during runtime.
The more probabilistic one-segment recombination operator (oneseg) as well as one-
segment mutations (onesegmut) either insert or delete a segment for certain independent
probabilities. Unlike two-segment variations there is no substitution of code. This allows
the speed of code growth to be controlled by an explicit bias. For instance, a shrink bias
may be induced either by allowing bigger parts of code to be deleted, on average, or (bet-
ter) by applying deletions of code more frequently than insertions. The latter variant does
not increase the average variation step size in contrast to the former one.
Figure 9.16 compares code bloat for one-segment variations (almost) without a maximum
limitation of program length. More precisely, the maximum limit of 1000 instructions
influences code growth only slightly over a period of 250 generations. In general, no
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Figure 9.16: Development of average (effective) program length when using one-segment
variations (oneseg, onesegmut, effonesegmut) with a maximum program length of 1000
instructions. Programs significantly smaller with randomly created segments. Bars show
standard deviation of program length within the population. Average figures over 30 runs
for mexican hat (left) and spiral (right).

influence may be expected until the program lengths exceed lmax
2 with lmax is the maximum

program length. Until that point, selected segment lengths are smaller than the remaining
program space. It is an important result, that recombination leads to a much faster and
larger code bloat here than mutations even if for both variation types the segment length
and, thus, the absolute step size is limited only by the program length. Reasons for this
will be discussed below. Hence, using mutation instead of recombination forms one out of
three methods reviewed here to limit the influence of a protection effect or a drift effect
on the growth of (intron) code. Note that the relative difference in effective code may be
smaller (but still significant) since this code depends more strongly on the problem fitness.
For the discrete spiral problem the effective code grows larger also because the applied
function set allows semantic introns to be created much more easily.
Also note that similar observations have been made when comparing code growth of two-
segment recombination (crossover) and two-segment mutation (not shown). The difference
in program size between recombination and segment mutations occurs to be smaller in
Sections 5.9.1 and 5.9.2 due to a lower maximum bound only (200 instructions). This has
been used to assure a comparison of prediction errors that is not too much depending on
the program size.
By reducing the absolute mutation step size to one instruction (mut) a less explosive
increase of program length is possible as this occurs if a large number of instructions is
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Figure 9.17: Development of average program length when using instruction mutations
(mut, effmut) compared to segment mutations (onesegmut, effonesegmut) without a max-
imum limitation of program length. Programs significantly smaller if only effective in-
structions are created. Small difference in program length between using minimum or
maximum segment lengths, especially with effective mutations. Bars show standard devi-
ation of program length within the population. Average figures over 30 runs for mexican
hat (left) and spiral (right). Configuration: 100% macro mutations without explicit length
bias (B0).

allowed to be deleted or inserted per variation step. One reason for this is that evolution
may not further reduce the destructive influence (effective step size) of deletions implicitly
by producing more intron code. In this way, the evolutionary advantage of both structural
introns and semantic introns is suppressed. Instead, the probability for neutral variations
is increased by both smaller step sizes and more intron code. In general, a smaller absolute
step size acts as a second measure against code growth.
It is interesting to see that the difference in average program size between unrestricted
one-segment mutations (maximum step size) and one-instruction mutations (minimum
step size) is smaller than this might have been expected (see Figure 9.17). This may
be taken as another hint that the variation step size influences code growth only indi-
rectly (see also Section 9.3). An influence by the maximum size bound (1000 instructions)
can be excluded here for all mutation operators, simply because programs remain sig-
nificantly smaller. Moreover, none of the operators is explicitly biased towards creating
larger solutions already on its own, i.e., insertions and deletions are applied for 50 percent
each. When applying recombination with a minimum segment length of one instruction
programs grow similarly as with instruction mutations (not shown). Thus, the relative
difference in program growth is much smaller compared to using segments of arbitrary
length for both variation types.
A direct insertion (and variation) of noneffective instructions is avoided by inducing ef-
fective mutations exclusively (effmutX). That is, newly created instructions are always
effective. Then noneffective code (structural introns) may only result from indirect deac-
tivations of depending instructions. The avoidance of noneffective neutral variations leads
to a significant reduction of noneffective code in particular. In this way, the effective mu-
tation operator realizes an implicit control of code growth in linear GP. Actually, it makes
the size of program solutions depend more on their fitness than on variation and be closer
to the required minimum size.
Alternatively code growth is reduced, if only the direct creation of structural introns is
disabled while the mutation step size is unrestricted. This is done by (fully) effective



218 9 Code Growth and Neutral Variations

segment mutations (effonesegmut). In Figure 9.17 the absolute program length develops
not even half as large as if segments are created completely by random (onesegmut). The
effective lengths are rather similar, however (not shown). Avoiding a direct insertion of
(structural) intron code denotes a third possibility to reduce code growth. This is true
even though semantic intron formation could still increase the complexity of programs
by acting as a protection of the (semantically) effective code. One explanation may be
that the creation of large semantic introns is more difficult than the creation of structural
introns. Another possible explanation is that structurally noneffective instructions may
be deleted but not directly inserted here during a genetic operation which corresponds to
an explicit shrink bias in terms of this type of intron code.

9.9.2 Why Mutations Cause Less Bloat

An interesting question that arises when analysing code growth in linear GP is why so
much smaller programs occur with (segment) mutation than with recombination although
the segment length is not explicitly restricted in both cases. Instead, the proportion of
(non)effective code in programs (and segments) is similar over a run for both kinds of
variations
In the following paragraphs we summarize different hypotheses which may explain this
phenomenon and support them by experimental results. In general, causes given here
represent preconditions for code growth rather than driving forces (see Section 9.2). Nev-
ertheless, these conditions may significantly increase the influence of a driving force on the
size of solutions.
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Figure 9.18: Development of effectiveness degree over the segment length when using
recombination (oneseg) or mutation (onesegmut). Higher effectiveness with recombination
and spiral. Average figures over 30 runs for mexican hat (left) and spiral (right).

(1) One explanation for a stronger code growth by recombination might be that it uses
only material from the population. This facilitates a stabilization of the (functional)
program structure over a run in contrast to insertions of large random segments. We have
seen in Section 8.7.2 that the effectiveness degree, i.e., the dependence degree of effective
instructions, increases over a run. This may be expected at least in part for the noneffective
instructions, too. Such introns may form less and larger graph components with a higher
(in)degree of nodes. Instead, if large random segments are inserted, program structures
might become less robust because the dependence degree of (effective and noneffective)
instructions is lower in general. As a result, depending program instructions are more likely
deactivated or reactivated, respectively, during variations by what the effective step size
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may be increased. In particular, larger (effective) programs may produce offsprings with
a lower fitness (see cause (2)). The reader may recall that the situation may be different
for restricted (or minimum) mutation step sizes which are very well able to create robust
program structures with a high dependence of instructions (see Section 8.7.2).
But not only the implementation of large robust (intron) code may be restricted by using
segment mutations. Obviously, also a propagation of code in the population is not possible
– at least not by the variation operator – if segments are created randomly.
The above assumptions are partly confirmed by the results in Figure 9.18. At least for the
spiral problem the dependence degree of effective instructions is significantly higher with
(one-segment) recombination than with mutation. Recall that instruction dependence is
usually higher if programs include branches (see Section 3.4). We have not calculated the
dependence degree of noneffective instructions that may be more different in case of the
mexican hat problem.
On a structural level subtree mutation and recombination are more similarly destructive
in tree-based GP, since the indegree of tree nodes is constantly 1, by definition. Corre-
spondingly, the effect of both operators on code bloat may be more similar than this is
found in linear GP.
(2) The average fitness of individuals in the population should be higher than the fitness
of equally sized random programs. We may assume that this is true for arbitrary large
subprograms (building blocks), too. Thus, a lower fitness change (semantic step size) may
be caused by segments that originate from another population individual than by segments
that are created randomly.
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Figure 9.19: Development of fitness change over the segment length when using recom-
bination (oneseg) or mutation (onesegmut). Mutation increasingly more destructive than
recombination for larger segment lengths. Average figures over 30 runs for mexican hat
(left) and spiral (right).

Figure 9.19 compares the average fitness change between recombination and mutation.
Especially for mexican hat mutated segments turn out to be much more destructive than
recombined segments of equal size. This difference increases with the segment length.
Since the diversity of population code is usually lower than random code, more similar
segments may be exchanged (only) by recombination. The number of identically exchanged
instructions between individuals increases with the segment length already because more
identical program positions may be affected. Interestingly, even if recombined segments
cause smaller semantic step sizes than random segments, their structural step sizes are
larger, on average, as a result of larger program sizes.
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(3) The final cause that shall be mentioned here is the duplication of code in genetic
programs. Code duplication may increase the amount of noneffective code in programs.
This is much more likely with recombination by using existing genetic material from
the population only. At least sequences of single identical instructions may be observed
in linear genetic programs where only the last instruction can be effective. For single
operations, e.g., r0 := r1 + 2, this is valid if the operand register(s) are different from
the destination register. For noneffective duplications of instruction blocks all destination
registers may not be used in later instructions of the same block, accordingly. The more
registers are available the more likely this situation becomes.

9.9.3 Selection-Based Control

The simplest form of growth control in genetic programming is to choose the maximum size
limit of programs as small as necessary for representing successful solutions (see Section
6.5). The problem is, however, that the optimum solution size is not known in advance.
A popular approach to control program growth more implicitly is referred to as parsi-
mony pressure. In contrast to a growth control over the variation operators (see previous
section) a parsimony pressure is induced by means of selection. Usually this technique
is implemented by integrating a size component into the fitness function that punishes
longer programs by calculating a weighted sum of the two objectives fitness and size [51].
Following the principle of Occam’s Razor a shorter solution can be expected better and
more generic than a longer solution to the same problem. In general, parsimony pressure
relies on the assumption that there is a positive correlation between shorter programs
and better solutions. That is, solution finding profits from parsimony pressure when most
good solutions are located in low-complex regions of the search space. Because such a
correlation may not be assumed for each particular problem and each configuration of GP
(see Section 6.5) parsimony pressure may not always be advantageous.
In the first place, the influence of parsimony pressure on the complexity and the evaluation
time of linear genetic programs is interesting for the (structurally) effective code only.
Recall that all structural introns can be removed efficiently from a linear genetic program
and, thus, do not cause computational costs (see Section 3.2.1) during program execution
in the fitness calculation or in the application domain.
In general, parsimony pressure is less important for the performace of linear GP. First,
influence may be taken more directly on code growth over variation (parameters) than this
is possible with a tree representation of programs. Reasons for this have been discussed in
Sections 5.10.1 and 7.5. Basically, the higher variability of the linear representation has
been held responsible for this which allows single instructions to be deleted or inserted
freely at all program positions. Second, the presence of noneffective code, in general,
already imposes an implicit parsimony pressure on the effective code in genetic program-
ming. This is especially interesting when using crossover in linear GP (see also Chapter
7) where structural introns may be detected efficiently. Another important argument for
using a variation-based growth control is that fitness selection is not disturbed.

9.9.4 Effective Complexity Selection

The separation of linear genetic programs in active code and inactive code on a structural
level offers the possibility for a code-specific complexity control. This may be realized
by a two-level tournament selection, a multi-objective selection method that has been
introduced in Section 8.4. First, a certain number of individuals (n > 2) is selected by
fitness and, second, among those only the two shortest programs are allowed to participate
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Code Selection SSE Length Variations (%)
% mean std. abs. eff. % constr. neutral noneff.

— — 15.4 1.5 180 67 37 4.9 26 22
abs. 25 11.1 1.4 153 59 39 5.3 25 22
abs. 50 9.6 1.4 78 37 47 5.6 29 24
abs. 100 30.7 2.2 8 5 62 5.0 38 24
eff. 25 12.9 1.5 183 58 32 4.5 28 26
eff. 50 12.2 1.4 184 47 26 3.5 34 31
eff. 100 14.9 1.4 181 27 15 1.7 51 50
noneff. 25 10.9 1.4 149 64 43 5.7 24 21
noneff. 50 9.4 1.3 95 54 57 6.5 24 19
noneff. 100 19.3 2.1 51 45 88 7.0 26 16

Table 9.9: mexican hat: Second-level selection for effective, noneffective, and absolute
complexity with selection rates 100%, 50%, 25% with crossover (cross). Average results
over 100 runs after 1000 generations.

in variation. In order to limit code growth we may put a specific selection pressure on the
individuals by choosing the smallest effective, noneffective, or absolute program length on
the second level. Selection pressure is controlled by a selection probability that determines
how often the complexity selection is applied.
Code-specific parsimony pressure has been proposed by Soule et al. [84] as a mean to
restrict the growth of programs without restricting their effective code. The authors
identified introns partly in tree programs as non-executed subtrees. These introns were
induced by nested branches whose contradicting conditions were relatively easy to identify
for a control problem. Recall that a relevant detection of introns in tree-based GP strongly
depends on the program functions.
Experimental results in Tables 9.9 and 9.10 show for two test problems, mexican hat and
spiral, that noneffective complexity selection is more successful than effective complexity
selection when using unrestricted linear crossover. Mexican hat profits slightly from the
latter variant, probably due to a stronger correlation between shorter programs and better
solutions. This is in contrast to the spiral problem which is not better solved by an effective
complexity selection at all. By imposing a specific pressure on the effective size the actual
solution size is punished more specifically while the growth of noneffective code is almost
not affected (see Tables 9.9 and 9.10). Thus, a smaller proportion of effective instructions
is maintained in programs that reduces the effective crossover step size, but may increase
the proportion of noneffective and neutral variations.
In both test cases a moderate punishment of the noneffective complexity has a positive
influence on the prediction performance, by comparison. This is true even if effective
step size becomes larger if the proportion of effective code increases, i.e., the rate of
introns decreases. Instead, the proportion of noneffective and neutral variations becomes
smaller. In Table 9.9 the absolute length is relatively more reduced than the effective length
the higher this selection pressure is adjusted. In Table 9.10, instead, the effective size
increases while the absolute size remains more-or-less unaffected. While in the first case the
performance becomes worse, in the latter case the loss of structural introns is compensated
by semantic introns. A similar effect has been obtained by removing the noneffective code
completely during effective crossover (see Section 5.9.1) which corresponds more-or-less to
a 100 percent selection for smallest noneffective code here.
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Code Selection CE Length Variations (%)
% mean std. abs. eff. % constr. neutral noneff.

— — 26.1 0.7 185 102 55 3.6 23 14
abs. 25 22.7 0.7 167 102 61 4.1 21 12
abs. 50 20.9 0.7 132 92 69 4.8 19 10
abs. 100 32.4 1.0 30 25 83 6.3 18 10
eff. 25 26.5 0.7 188 78 42 3.2 26 21
eff. 50 26.0 0.6 185 66 36 2.9 29 24
eff. 100 27.3 0.7 184 43 24 1.7 40 37
noneff. 25 22.3 0.7 179 134 75 4.1 20 8
noneff. 50 22.6 0.7 172 160 93 4.1 19 3
noneff. 100 23.1 0.7 182 181 99 3.5 20 1

Table 9.10: spiral: Second-level selection for effective, noneffective, and absolute complex-
ity with selection rates 100%, 50%, 25% with crossover (cross). Average results over 100
runs after 1000 generations.

A code-specific complexity selection also allows us to investigate how much a selection
pressure on the absolute length is depending on the reduction of effective code or non-
effective code. If a general pressure works better than any code-specific pressure, the
specific forms might complement each other. Unfortunately, prediction performance with
an absolute complexity selection is hardly different from the results obtained with a non-
effective complexity selection. This is true at least for moderate selection probabilities
of 25 or 50 percent here. An absolute complexity selection produces smaller (effective)
programs, however. At least when using crossover it prevents the semantic introns (in
the structurally effective code) from growing as a protection against destructive variation
effects.
A more reliable and stronger reduction of crossover step size on the effective code may be
obtained by explicit introns (see Section 5.7.6). Those replace most noneffective instruc-
tions and, thus, reduce side-effects by reactivations. As a result, smaller effective solutions
are possible. The reader may recall that EDIs constitute another method for controlling
growth of effective code by means of selection.
One advantage of the two-level selection process over punishing the program length over
a weighted term in the fitness function is that the primarily selection by fitness is less
influenced. The two-level selection process better considers that fitness selection is prior
to complexity selection. Furthermore, the selection pressure is easier to handle. Including
multi-objective goals into the fitness requires an appropriate weighting of the objective
terms to be found. Another problem of a (constant) weighting is that the pressure is
stronger at the end of a run than at the beginning where programs are small. A second-
level selection for complexity puts a more uniform pressure on the individuals that is
more independent from their actual program length, but regards the relative differences
in length.
Another variant of parsimony pressure, that is often applied in GP, selects the smaller
individual only if two compared individuals share the same fitness. Obviously, with this
method the selection pressure depends on the number of neutral fitness comparisons that
occur with a problem and a system configuration (function set). Therefore, discrete fitness
functions might be more affected than continuous fitness functions.
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9.10 Conclusion

This chapter was about the phenomenon of code growth in genetic programming. Different
reasons for code growth were investigated for the linear GP approach.
(1) We analyzed the influence of different variation effects on program size for different
genetic operators in linear GP. In general, neutral variations were identified as a major
cause of code growth and the emergence of introns. Almost no code bloat occurred if
neutral variations are not accepted and if the structural step size of variations is reduced
to a minimum. Both conditions make sure that intron instructions may not be created
directly at the variation point. Recall that the linear (imperative) representation of pro-
grams allows structural variation steps to be constantly small. In general, the meaning of
neutral variations is emphasized as a motor of evolutionary progress and code growth.
(2) We also reported on implicit length biases for some variation operators. In general, a
relevant influence of the identified biases on the growth of genetic programs is doubtful.
In particular, the removal bias theory could not be confirmed for linear crossover. Instead,
an implicit shrink bias was detected with effective instruction mutations.
(3) Different methods for controlling code growth by variation or selection were presented.
Recombination has been found to increase the size of programs much more dramatically
than mutations in linear GP, especially if the variation step size is unrestricted for both
macro operators. Several possible reasons were discussed to explain this phenomenon.
Actually, code growth was affected only partly by the step size of macro mutations. More-
over, the two-level selection method from Chapter 8 was applied for a selective control of
effective or noneffective program complexity.
In general, the following measures have proven to reduce the growth of code in linear GP,
independently from their influence on the performance.

¤ Using macro mutation instead of recombination

¤ Reduction of variation step size

¤ Avoidance of neutral variations

¤ Avoiding a direct creation of neutral code (also by non-neutral variations)

¤ Implicit or explicit shrink bias in the variation operator

¤ (Effective) complexity selection
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This chapter applies linear GP for the evolution of teams to several prediction problems
including both classifications and regressions. Different linear methods for combining the
outputs of the team programs are compared. These include hybrid approaches where (1)
a neural network is used to optimize the weights of programs in a team for a common
decision and (2) a real-numbered vector (the representation of evolution strategies) of
weights is evolved with each team in parallel. The cooperative team approach results
in an improved training and generalization performance compared to the standard GP
method.

10.1 Introduction

Two main approaches can be distinguished concerning the combination of individual so-
lutions in genetic programming: Either the individuals (genetic programs) can be evolved
independently in different runs and combined after evolution, or a certain number of indi-
viduals can be coevolved in parallel as a team. The focus of this chapter is on the second
approach.
Team evolution is motivated strongly by natural evolution. Many predators, e.g., lions,
have learned to hunt pray in a pack most successfully. By doing so, they have developed
cooperative behavior that offers them a much better chance to survive than single fellows.
In GP the parallel evolution of team programs is expected to solve certain tasks more
efficiently than the usual evolution of individuals. To achieve this the individual members
of a team may solve the overall task in cooperation by specializing in subtasks for a certain
degree.
Post-evolutionary combination, instead, suffers from the drawback that successful com-
positions of programs are detected randomly only. That might require a lot of runs to
develop a sufficient number of individual solutions and a lot of trails to find a successful
combination. Coevolution of k programs, instead, will turn out to be more efficient in
time than k independent runs. Teams with highly cooperating and specialized members
are hard to find by random especially since those usually require only a certain adap-
tation of their members to the training data. Most combinations of too much adapted
(best-of-a-run) individuals may reduce the noise but may hardly develop cooperation.
Team solutions require the multiple decisions of their members to be merged into a col-
lective decision. Several methods to combine the outputs of team programs are compared
in this work. The coevolutionary team approach not only allows the combined error to be
optimized but also an optimal composition of the programs to be found. In general, the
optimal team composition is different from simply taking individual programs that are
already quite perfect predictors for themselves. Moreover, the diversity of the individual
decisions of a team may become an object of optimization.
In this chapter we also present a combination of GP and neural networks, the weighting
of multiple team programs by a linear neural network (NN). The neural optimization
of weights may result in an improved performance compared to standard combination
methods. Recall that the name linear GP refers to the linear structure of the genetic
programs. It does not mean that the method itself is linear, i.e., may solve linear separable
problems only, as this is valid for linear NN. On the contrary, prediction models developed
by GP may be highly non-linear.
In another hybrid approach the representations of linear GP and evolution strategies (ES)
[91] are coevolved in that a vector of programs (team) and a vector of program weights
form one individual and undergo evolution and fitness calculation simultaneously.
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10.2 Team Evolution

Haynes et al. [38] introduced the idea of team evolution into the field of genetic program-
ming. Since then evolution of teams has been investigated mostly in connection with
cooperating agents solving multi-agent control problems. Luke and Spector [57] tested
teamwork of homogeneous and heterogeneous agent teams in a predator/prey domain and
showed that the heterogeneous approach is superior. In contrast to heterogeneous teams
homogeneous teams are composed of completely identical agents and can be evolved with
the standard GP approach. Haynes and Sen [39] tested a similar problem with different
recombination operators for heterogeneous teams.
Preliminary studies about using a team approach for classifications appeared in [25] from
the author of this work. Concurrently, Soule [88] applied teams to another non-control
problem – a parity problem – by using majority voting to combine the Boolean member
outputs. He [89] also documented specialization in teams for a linear regression problem
and found better performance with teams when using a special voting method but not
with averaging.
In this thesis the team approach is applied to three different prediction problems, two clas-
sification tasks and one approximation task. In data mining the generalization quality of
predictive models, i.e., genetic programs here, is the most important criterion. In contrast
to control tasks only heterogenous teams are of interest here, because for prediction tasks
there is nothing to be gained from the combination of the outputs of completely identical
programs (homogeneous teams).

10.2.1 Team Representation

In general, teams of individuals can be implemented in different ways. Firstly, a certain
number of individuals can be selected randomly from the population and evaluated in
combination as a team. The problem with this approach is known as the credit assignment
problem: The combined fitness value of the team has to be shared and distributed among
the team members.
Secondly, team members can be evolved in separate subpopulations which provide a more
specialized development. In this case, the composition and the evaluation of teams might
be separated from the evolution of their members by simply taking the best individuals
from each deme in each generation and combining them. However, this raises another
problem: An optimal team is not necessarily composed of best individuals for each team
position. Specialization and coordination of the team’s individuals is not a matter of
evolution there. These phenomena might only emerge accidentally.
The third approach, favored here, is to use an explicit team representation that is consid-
ered as one individual by the evolutionary algorithm [39]. The population is subdivided
into fixed, equal-sized groups of individuals. Each program is assigned a fixed position
index in its team (program vector). The members of a team undergo a coevolutionary
process because they are always selected, evaluated and varied simultaneously. This elim-
inates the credit assignment problem and renders the composition of teams an object of
evolution.
Figure 10.1 shows the partitioning of the total population used in the experiments de-
scribed below. First, the population is subdivided into demes [94] which, in turn, are
subdivided into teams of individual programs. Exchange of genetic information between
demes has not been realized by migration of whole teams. Instead, teams (tournament win-
ners) are selected for recombination occasionally from different demes while their offspring



228 10 Evolution of Program Teams

2
3
4

1

          Position Index

Population Team

DemeIndividual

Figure 10.1: Population subdivided into teams and demes.

inherit code from both demes (interdemetic recombination). Demes are used because they
better preserve the diversity of a population. This, in turn, reduces the probability of the
evolutionary process to get stuck in a local minimum.
The coevolutionary approach prohibits teams of arbitrary size because the complexity of
the search space and the training time, respectively, grow exponentially with the number
of coevolved programs. On the other hand, the team size has to be large enough to
cause an improved prediction compared to the traditional approach, i.e., team size one.
Our experimental experience with this trade-off suggests that moderate numbers of team
members are adequate (see Section 10.5).

10.2.2 Team Operators

Team representations require special genetic operators, notably for recombination. Ge-
netic operations on teams, in general, reduce to the respective operations on their mem-
bers which can be selected randomly. Researches [39] found that a moderate number
of crossover points works better than recombining either one or every team position per
operation. This is due to the trade-off between a sufficient variation, i.e., speed of the
evolutionary process, and the destructive effect of changing too many team members at
the same time.
For recombination the participating individuals of the two parent teams can be chosen of
arbitrary or equal position. If recombination between team positions is forbidden com-
pletely, the members of a team evolve independently in isolated “member demes”. Luke
and Spector [57] showed for a control problem that team recombination restricted in this
way can outperform free recombination. Isolated or semi-isolated coevolution of the team
members is argued to promote specialization in behavior.
A possible alternative to a random selection might be genetic operators that modify the
team members depending on their respective individual fitness. Members may be sorted
by error and the probability that an individual becomes a subject of mutation or crossover
depends on its error rank. By doing so, worse member individuals are varied more often
than better ones. Improving the fitness of worse members might have a better chance to
improve the overall fitness of the team. However, we will see that there is not necessarily a
positive correlation between a better member fitness and a better team fitness (see Section
10.5). Also note that this technique does not allow the member errors to differ much in a
team which might have a negative effect on specialization, too.
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10.3 Combination of Multiple Predictors

In principle, this chapter integrates two research topics, the evolution of teams discussed
above and the combination of multiple predictors, i.e., classifiers or regressors. In con-
trast to teams of agents, teams whose members solve a prediction problem require the
aggregation of the member’s output to produce a common decision.
In the neural network community different approaches have been investigated dealing with
the combination of multiple decisions in neural network ensembles [36, 73, 53]. Usually,
neural networks are combined after training and are hence already quite perfect in solving
a classification or approximation problem on their own. The ensemble members are not
trained in combination and the composition of the ensemble does not undergo an opti-
mization process. In [102] neural networks are evolved and a subset of the final population
is combined afterwards. Different combination methods – including averaging and major-
ity voting – are compared while a genetic algorithm is used to search for a near optimal
ensemble composition.
For genetic programming Zhang et al. [104] applied a weighted majority algorithm in clas-
sification to combine the Boolean outputs of a selected subpopulation of genetic programs
after evolution. This approach resulted in an improvement in generalization performance,
i.e., robustness, compared to standard GP and simple majority voting, especially with
sparse and noisy training data.
The decisions of different types of classifiers including neural networks and genetic pro-
grams are combined by an averaging technique in [83]. The result is an improved predic-
tion quality of thyroid normal and thyroid carcinoma classes that has been achieved in a
medical application.

10.3.1 Making Multiple Decisions Differ

In principle, all members in a team of predictors are intended to solve the same full task.
The problem is not artificially subdivided among the members and there are no subprob-
lems assigned to special team positions explicitly. In many real-world applications such
subdivision would not be possible because the problem structure is completely unknown.
We are interested in teams where specialization, i.e., a partitioning of the solution, emerges
from the evolutionary process itself.
Specialization strongly depends on the heterogeneity of the teams. Heterogeneity is
achieved by evolving members that produce slightly diverging outputs for the same input
situations. Nothing will be gained from the combination of the outputs of completely
identical predictors (homologous teams) as far as the quality of the solutions is concerned.
Note that this is in contrast to agent teams that solve a control task where each agent
program usually has side effects on the problem environment.
In genetic programming the inherent noise of the evolutionary algorithm already provides
a certain heterogeneity of the team members. Additionally, it can be advantageous to
restrict recombination between different team positions [57]. This is especially true if a
team member does not “see” the full problem and is facing a more-or-less completely
different subtask than the other members.
Otherwise, allowing interpositional recombination of teams allows innovative code to
spread to the other positions in the team. Moreover, this exchange of genetic information
between the “member demes” helps to better preserve the diversity of the overall team
population. We will see in Section 10.5.3 that for teams of predictors an interpositional
exchange of code does not necessarily reduce specialization potential and quality of results.
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Besides restricted recombination there are more specific techniques to increase heterogene-
ity in teams and, thus, to promote the evolution of specialization:
One possible approach is to force the individuals of a team to disagree on decisions and to
specialize in different domains of the training data. This can be achieved by either using
different fitness functions for each member or by training each member with (slightly)
different data sets. Both techniques require the individual errors of the members to be
integrated into the fitness function (see Section 10.4.2). Otherwise, the effect of the differ-
ent input situations cannot be made known to the evolutionary algorithm. Note that only
member outputs of equal input situations can be used to calculate the combined error of
the team.
Different training subsets for the team members can be derived from the full data set that
is used to determine the training error of the team. For instance, small non-overlapping
subsets may be left out as done with cross validation, a method used to improve the
generalization capabilities of neural networks over multiple runs. The subsets may be
sampled either at the beginning of run or resampled after a certain number of generations.
The latter technique (stochastic sampling) introduces some additional noise in the sampling
process. This may allow smaller and more different subsets to be used for the individual
members since it guarantees that every team position over time is confronted with every
training example.
Finally, different function sets can be chosen for different team positions to promote
specialization as well. If recombination between different positions is allowed the team
crossover operator has to be adapted in a way that only individual members built from
the same function set are allowed to be recombined.

10.3.2 Combination Methods

The problem that arises with the evolution of team predictors is in the combination of the
outputs of the individual members during fitness evaluation of a team. Different combina-
tion methods have been tested here. All methods compute the resulting team output from
a linear combination of its member’s outputs. Non-linear combination methods cannot
necessarily be expected to produce better aggregations of multiple predictions since the
actual problem, linear or non-linear, is already solved by the GP predictors. Figure 10.2
illustrates the general principle of the approach.
Moreover, only basic combination methods are documented and compared in this chapter.
Even if there are hybridizations of the methods possible, e.g., EVOL/OPT or EVOL/MV
(weighted majority voting), the concurrent application of two combinations is not neces-
sarily more successful. We noticed that more complicated combination schemes are rather
difficult to handle for the evolutionary algorithm. These might be more reasonable with
post-evolutionary combinations of (independent) predictors. Most of the methods – except
WTA (see Section 10.3.2) – can be applied to parallel as well as to sequentially evolved
programs
For classification problems there exist two major possibilities to combine the outputs
of multiple predictors: Either the raw output values or the classification decisions can be
aggregated. In the latter case the team members act as full (pre)classifiers themselves. The
drawback is that the mapping of the continuous outputs to discrete class identifiers before
they are combined reduces the information content that each individual might contribute
to the common team decision. Therefore, we decided for the former and combined raw
outputs – except for majority voting (see below) that requires class decisions implicitly.
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Figure 10.2: Linear combination of genetic programs.

Some of the combination methods are only applicable to classification tasks and are based
upon one of the following two classification methods:

¤ Classification with intervals (INT). Each output class of the problem definition cor-
responds to a certain interval of the full value range of the (single) program output.
In particular, for classification problems with two output classes the continuous pro-
gram output is mapped to class output 0 or 1 here – depending on a classification
threshold of 0.5. More generally, the class identifier is selected that is closest to the
program output.

¤ Winner-takes-all classification (WTA). Here for each output class exactly one pro-
gram output (output register) is necessary. The output with the highest value de-
termines the class decision of the individual.

The following combination methods are introduced for problems with two output classes
while a generalization to more output classes is not complicated. Even more important is
to note that none of the methods presented here produces relevant extra computational
costs.

Averaging (AV)

There are different variants of combination possible by computing a weighted sum of
the outputs of the team programs. The simplest form is to use uniform weights for all
members, i.e., the simple average of k outputs as team output. In this way the influence
of each individual on the team decision is exactly the same. The evolutionary algorithm
has to adapt the team members to the fixed weighting only.

oteam =
k∑

i=1

1
k
oindi (10.1)
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Weighting by Error (ERR)

An extended method is to use the fitness information of each team member for the com-
putation of its weight. By doing so, better individuals get a higher influence on the team
output than worse.

wi = 1/eβE(gpi). (10.2)

E(gpi) is the individual error explained in Equation 10.9. β is a positive scaling factor to
control the relation of the weight sizes. The error-based weighting gives lower weights to
worse team members and higher weights to better ones. In order to restrict their range
the weights always undergo normalization in that they are all positive and sum to one:

wi =

∥∥∥∥∥
wi

kP
j=1

wj

∥∥∥∥∥ (10.3)

With this approach evolution decides over the weights of a program member by manipulat-
ing its error value. In our experiments the individual weights are adjusted during training
using the fitness information. Using data different from the training data may reduce
overtraining of teams and increase their generalization performance. It has, however, the
drawback of increasing computation time.
In general, the error-based weighting approach has not been found to be always better than
the simple average of member outputs (see Section 10.5). The reason might be that the
quality of a single member solution must not be directly related to the fitness of the whole
team. If the combined programs had been evolved in single independent runs, deriving
the member weights from this independent fitness might be a better choice. In such a case
stronger dependences between programs – that usually emerge during team evolution by
specialization – cannot be expected.

Coevolution of Weights (EVOL)

With this approach member weights are evolved in parallel with every team in the pop-
ulation (see Figure 10.3). The real-valued vector of weights is selected together with the
vector of programs (team) by tournament selection. During each fitness evaluation the
weight vector is varied by a certain number of mutations. In doing so, only better muta-
tions are allowed to change the current state of weighting, a method typical for an (1+1)ES
[91]. The mutation operator updates single weight values by allowing a constant standard
deviation (mutation step size) of 0.02. The initial weights are randomly selected from the
interval [0, 1].
Alternatively, a complete (1+1)ES run might be initiated to optimize the weighting of
each team during fitness calculation. This, of course, increases the computational costs
significantly depending on the run length. It also might not be necessarily advantageous
since the program teams adapt to a given weighting situation concurrently. With our
approach optimization of the weighting is happening in coevolution with the members, not
during each team evaluation. Thus, the coevolutionary aspect that allows team solutions
to adapt to different weighting situations is the most important point here. Even if the
diversity of the population decreases at the end of a GP run there are still improvements
possible by changing the influences of the single team members.



10.3 Combination of Multiple Predictors 233

1w 3w2w kw

Weight Vector

. . .

Individual

Program Vector (Team)

1GP GP2 GP3 GPk. . .

Figure 10.3: Coevolution of program team and vector of weights as individual.

Majority Voting (MV)

A special form of linear combination is majority voting which operates on class outputs.
In other words, the continuous outputs of team programs are transformed into discrete
class decisions before they are combined.
Let us assume that there are exactly two output classes, 0 and 1. Let Oc denote the subset
of team members that predict class c:

O0 := {i|oindi
= 0, i = 1, .., k} (10.4)

O1 := {i|oindi = 1, i = 1, .., k} (10.5)

The class which most of the individuals predict for a given example is selected as team
output:

oteam =
{

0 : |O1| < |O0|
1 : |O1| ≥ |O0| (10.6)

Note that clear team decisions are forced for two output classes if an uneven number of
members participates. Majority voting also works with an even number of members as
long as the team decision is defined for equality (class 1 here).

Weighted Voting (WV)

Another voting method, weighted voting, is introduced here for the winner-takes-all classi-
fication (see above) where each team program returns exactly one output value for each of
m output classes. For all classes c these values are summed to form the respective outputs
of the team:

oteam,c =
k∑

i=1

oindi,c∀c ∈ {0, .., m} (10.7)

The class with the highest output value defines the response class of the team as illustrated
in figure 10.4.
With this combination method each team individual contributes a continuous “weight”
for each class instead of a clear class decision. If discrete (class) outputs would be used
the method corresponds to majority voting. Here the weighting comes from the member
programs themselves. When using interval classification instead of WTA classification
each program might compute its own weight in a separate (second) output variable.



234 10 Evolution of Program Teams

i1

o 11 o 1m

GP1 GP GP GP2 3 . . . k

i n. . .

. . .

Team

Σ Σ Σ

o o o1 2 m. . .MAX( )  =  o

Figure 10.4: Combination of genetic programs by weighted voting.

Winner-Takes-All (WTA)

Two different winner-takes-all combination methods are distinguished: The first WTA
combination variant selects the individual with the clearest class decision to determine
the output of a team. With interval classification the member output that is closest to
one of the class numbers (0 or 1) is identified as the clearest decision. The winner may
also be seen as the individual with the highest confidence in its decision. Specialization
may emerge if different members of the team win this contest for different fitness cases.
If separate outputs are used instead of output intervals (WTA classification) the clearest
decision might be defined as the biggest difference between the highest output and the
second highest output of a team member.
The second and simplest WTA combination (referred to as WTA2) just chooses the min-
imum output as team output. (Note that this is by definition and could be the maximum
output as well.) This selection happens before the continuous outputs are transformed into
class decisions and is valid for interval classification. For WTA classification the member
with the lowest sum of outputs could be chosen. This combination variant is also possible
for regression problems.
Of course, it is not a feasible alternative to select the member which output is closest to
the desired output during training. Then a decision on unknown data is only possible if
the right outputs are known in advance and is not made by the team itself.

Weight Optimization (OPT)

The final approach tested here uses a linear neural network in form of a perceptron without
hidden nodes to find an optimal weighting of the team individuals. The learning method
applied is RPROP [76], a backpropagation variant about as fast as Quickprop but with
less adjustments of the parameters necessary. With this approach data is processed first
by the team programs before the neural network combines their results (see also Figure
10.2). Actually, only a single neuron weights the connections to the genetic programs
whose outputs represent the input layer of the linear neural network here. The outputs
of the programs are, of course, only computed once for all data inputs before the neural



10.4 Experimental Setup 235

weighting starts. In general, a predictor is trained using the outputs of multiple other
predictors as inputs [99].
Like with the other approaches the neural weighting might be done each time the fitness
of a team is calculated. Obviously, this has the drawback of an enormous increase in
runtime even with a small neural network and a relatively low number of epochs trained.
A much less time-consuming variant, that has been practiced here, is to apply weighting
by average (AV) and to use the neural network only for optimizing the weights of the
currently best team (outside of the population). By doing so, the process of finding an
optimum weighting for the members is decoupled from the contrary process of breeding
team individuals with a more balanced share in cooperation. By applying the neural
weighting to all teams during evolution, instead, worse members may easily be “weighted
out” of a team just by assigning them very low weights.

We compare only linear combination methods for the following reasons: First, non-linear
combination of already non-linear predictors (genetic programs) will not necessarily re-
sult in better performance. Second, a non-linear combinator might solve too much of
the prediction problem itself. The linear network structure assures that there is only a
weighting of program outputs possible by the neural network and that the actual, non-
linear problem is solved exclusively by the genetic programs. The neural combinator has
been applied here for optimization because weighting is an inherent property of neural
networks. Actually, using a non-linear (multi-layer) perceptron for the combination of the
team programs instead did not produce significantly different results here than the linear
aggregation. Moreover, the genetic programs stayed quite small (only a few effective in-
structions) and could hardly be regarded as a stand-alone team of predictors evolved by
genetic programming.

10.4 Experimental Setup

We examine the team approach with different combination methods discussed earlier using
two classification problems and one regression problem. First of all, the structure of the
data that represents the respective problems is documented in further detail.

10.4.1 Structure of Experimental Data

The heart data set is composed of four data sets from the UCI Machine Learning Repos-
itory (Cleveland, Hungary, and Switzerland) and includes 720 examples altogether. The
input dimension is 13 while two output classes (1 or 0) indicate the diagnosis (ill or not ill).
The heart problem incorporates noise because inputs – including continuous and discrete
values – are missing and have been completed with 0. The diagnosis task of the problem
is to predict whether the diameter of at least one of four major heart vessel is reduced by
more than 50 percent or not.
Two chains denotes a popular machine learning problem where two chained rings that
represent two different classes – of 500 data points each – have to be separated. The two
rings in Figure 10.5 “touch” each other at two regions without intersection.
The regression problem three functions tests the ability of teams to approximate three
different functions at the same time which are a sine, a logarithm and a half circle (see
Figure 10.6). 200 data examples were sampled for each function within input range [0, 2π].
A function index has to be passed to the genetic programs as an additional input to
distinguish the three functions.
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Figure 10.6: three functions problem.

The data examples of each problem were subdivided randomly into three sets: training
set (50%), validation set (25%) and test set (25%). Each time a new best team occurs
its error is calculated using the validation set in order to check its generalization ability
during training. From all these best teams emerging over a run the one with minimum
validation error is tested on the test set once after the training is over.

10.4.2 Team and Member Fitness

The fitness F of a team might integrate two major goals: the overall error of the team
E(team) and (optionally) the errors of its program members E(gpj) can be minimized.

F(team) = E(team) + δ · 1
m

m∑

j=1

E(gpj) (10.8)
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In our experiments the combined team error and the member errors are both calculated
for the complete training data. Provided that the outputs of the team members are saved
the member errors are computed with almost no additional overhead.
The influence of the average member error on team fitness is controlled by a multiplicative
parameter δ. Including the individual errors as a second fitness objective (by choosing
δ = 1) has not been observed to produce better results (see Section 10.5.3). If one wants
to use different training sets for the different team positions (see Section 10.3.1), however,
fitness shares of members are absolutely necessary. Note that the combined output of the
team is computed for equal member inputs.
In Equation 10.8 E denotes the error of a predictor gp that is computed as the sum of
square distances (SSE) between the predicted output(s) gp(~ik) and the desired output(s)
~ok over n examples (~ik, ~ok):

E(gp) =
n∑

k=1

(gp(~ik)− ~ok)2 + w · CE = SSE + w · CE (10.9)

The classification error (CE) is calculated as the number of incorrectly classified examples
in Equation 10.9. The influence of the classification error is controlled by a weight factor
w. For classification problems w has been set constantly to 2 in order to favor classification
quality (0 otherwise).

10.4.3 Parameter Settings

Table 10.1 lists the parameter settings of our linear GP system used for all experiments and
problem definitions described above. The population size is 3000 teams while each team
is composed of the same number of individual members. The population has been chosen
sufficiently large to conserve diversity of the more complex team solutions. The total
number of members per team and the number of members that are varied during crossover
and mutation are the most important parameters when investigating the evolution of
teams. Different settings of these parameters are reported in further detail in the next
section.

Parameter Setting
Number of generations 1000
Number of teams (population size) 3000
Number of team members 4
Number of varied team members 1–2
Number of demes 6
Interdemetic crossover 3%
Crossover probability 100%
Mutation probability 100%
Mutation step size for constants 5
Instruction set {+,−,×, /, xy}
Set of (integer) constants {0,..,99}
Maximum member length 128
Maximum initial member length 32

Table 10.1: General parameter settings.
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The number of generations is limited to 1000, both for GP teams and standard GP. Note
that member individuals are varied much less – one or two per team only – than stand-
alone individuals. While this may reduce the progress speed of single team members it
does not necessarily hold for the fitness progress of the whole team as we will see below.
A team is always varied simultaneously by crossover and mutation in our configuration.
Mutations are only applied to member positions that have been changed during recombi-
nation.

10.5 Experimental Results

We now document the results obtained by applying the different team approaches de-
scribed in 10.3.2 to the three problems of Section 10.4.1. Prediction accuracies and code
sizes are compared for the team configurations and a standard GP approach.
The team approach, in general, has been found to produce better results than the stan-
dard GP approach for all three prediction tasks. First, mainly problems profit from a
team evolution that may be divided at least partly into simpler subproblems that may be
distributed among different problem solvers (team members). Only then team members
may specialize and solve the overall task more successfully in cooperation.
Second, team solutions can be expected less brittle and more general in the presence of
noisy training data. Due to their collective decision making the effect of noise may be
reduced significantly. This functionality is true, however, already for combinations of
stand-alone solutions.
If nearly optimal solutions already occur with the standard approach teams cannot be
expected to be beneficial. In this case the additional computational overhead of the more
complex team solutions outweighs the possible advantages.

10.5.1 Prediction Accuracy

Table 10.2 summarizes the different team approaches that have been discussed in Section
10.3.2. The outputs of the team members are continuous except for majority voting (MV)
where the raw outputs have to be mapped on discrete class identifiers first. Only our
weighted voting approach (WV) is based on the WTA classification method. All other
methods use interval classification.

Method Config. Combination Classification Outputs
GP — — INT cont
TeamGP AV AVeraging (standard) INT cont

OPT weight OPTimization INT cont
ERR weighting by ERRor INT cont
EVOL coEVOLution of weights INT cont
MV Majority Voting INT class
WV Weighted Voting WTA cont
WTA Winner-Takes-All INT cont
WTA2 Winner-Takes-All INT cont

Table 10.2: Configuration of the different team approaches.
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The following tables compare best results of standard GP and the different team ap-
proaches for the three test problems introduced in Section 10.4. Minimum training error
and minimum validation error are determined among best solutions (concerning fitness)
of a run. The solution with minimum validation error is applied to unknown data at the
end of a run to compute the test error. All figures given below denote average results from
series of 60 test runs. In order to avoid unfair initial conditions and to give more reliable
results each test series (configuration) has been performed with the same set of 60 random
seeds.
Considering the classification rates for the two chains problem in Table 10.3 already the
standard team approach (AV) reaches approximately an eight times better training per-
formance than standard GP. Most interesting are the results of the winner-takes-all com-
bination that select a single member program to decide for the team on a certain input
situation. Both team variants (WTA and WTA2) nearly always found the optimum (0%
CE) for training data and validation data. With standard GP the optimum solution has
not even been found once during 60 trials here. This is a strong indication of a high
specialization of the team members. It demonstrates clearly that highly coordinated be-
havior emerges from the parallel evolution of programs. This cannot be achieved by a
combination of standard GP programs which have been evolved independently. Team
evolution is much more sophisticated than just testing random compositions of programs.
In fact, the different members in a team have adapted strongly to each other during the
coevolutionary process.

Method Training CE (%) Member CE (%) Validation CE (%) Test CE (%)
GP 3.67 (0.25) — 5.07 (0.30) 5.69 (0.37)
AV 0.44 (0.08) 25.8 (1.96) 0.82 (0.12) 2.08 (0.14)
OPT 0.36 (0.07) 32.1 (0.71) 0.69 (0.09) 1.96 (0.15)
ERR 1.31 (0.15) 20.9 (1.49) 1.91 (0.20) 2.73 (0.18)
EVOL 0.33 (0.07) 28.0 (2.09) 0.71 (0.16) 2.00 (0.17)
MV 0.37 (0.08) 25.7 (1.51) 1.48 (0.17) 2.17 (0.19)
WV 0.39 (0.09) 27.7 (1.98) 0.76 (0.14) 1.91 (0.18)
WTA 0.02 (0.01) 59.2 (2.27) 0.00 (0.00) 0.33 (0.18)
WTA2 0.00 (0.00) 64.3 (1.53) 0.00 (0.00) 0.65 (0.29)

Table 10.3: two chains: Classification error (CE) in percent, averaged over 60 runs. Sta-
tistical standard error in parentheses.

Among the “real” team approaches which combine outputs of several individual members
WV turned out to be about as successful as OPT and EVOL. This is remarkable because
the WV method requires twice as many output values – two instead of one output per
member – to be coordinated. Furthermore, the optimization of weights is coming from
the member programs themselves within this variant.
Table 10.4 shows the prediction results for the heart problem. This application demon-
strates not only the ability of teams in real data-mining but also in noisy problem en-
vironments since many data attributes are missing or are unknown. The difference in
prediction error between GP and TeamGP is about 2 percent which is significant in the
respective real problem domain. The problem structure does not offer many possibilities
for specialization, especially in case of the winner-takes-all approaches which do not gen-
eralize significantly better here than the standard approach. The main benefit of the other
combination methods seems to be that they improve fitness and generalization quality for
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Method Training CE (%) Member CE (%) Validation CE (%) Test CE (%)
GP 13.6 (0.16) — 14.5 (0.17) 19.0 (0.36)
AV 11.5 (0.15) 28.1 (2.18) 13.4 (0.18) 18.2 (0.30)
OPT 11.5 (0.17) 32.0 (2.03) 12.8 (0.18) 17.5 (0.26)
ERR 11.9 (0.12) 28.6 (1.79) 12.9 (0.13) 18.0 (0.25)
EVOL 11.4 (0.13) 32.9 (2.39) 12.7 (0.13) 18.1 (0.28)
MV 10.9 (0.13) 24.6 (1.34) 13.6 (0.16) 17.5 (0.23)
WV 11.5 (0.11) 32.4 (2.41) 12.9 (0.15) 17.9 (0.24)
WTA 11.9 (0.17) 60.5 (2.44) 14.5 (0.22) 18.5 (0.31)
WTA2 12.9 (0.16) 61.5 (2.27) 14.9 (0.26) 19.2 (0.32)

Table 10.4: heart: Classification error (CE) in percent, averaged over 60 runs. Statistical
standard error in parentheses.

the noisy data by a collective decision making of more than one team program.
Experimental results for the three functions problem are given in Table 10.5. Note that
not all team variants are applicable to a regression problem. The regression task at
hand has been solved most successfully by EVOL teams. This combination variant allows
different weighting situations to be coevolved with the program teams and results in
smaller prediction errors compared to uniform weights (AV). The standard team approach
is found to be about four times better in training and generalization than the standard
GP approach. Note that the average member error can become extremely high compared
to the respective team error with this problem.

Method Training MSE Member MSE Validation MSE Test MSE
GP 16.9 (0.90) — 16.2 (0.98) 16.6 (0.99)
AV 4.7 (0.27) 738 (50) 3.9 (0.22) 4.3 (0.25)
OPT 4.4 (0.30) 913 (69) 3.7 (0.27) 3.8 (0.27)
ERR 4.6 (0.33) 6340838 (4030041) 3.9 (0.30) 4.0 (0.30)
EVOL 3.2 (0.27) 33135 (11041) 2.6 (0.22) 2.7 (0.24)
WTA2 11.0 (0.68) 154762629 (9025326) 9.8 (0.68) 10.1 (0.68)

Table 10.5: three functions: Mean square error (MSE × 100), averaged over 60 runs.
Statistical standard error in parentheses.

Finally, some general conclusions can be drawn from the three applications:
Teams of predictors have proven to give superior results for known data as well as unknown
data. On the one hand, specialization of team members has been held responsible for this.
On the other hand, the improved generalization performance of teams may results from
the increased robustness of team solutions against noise in the data space. This, in turn,
is mainly due to the combination of multiple predictions that absorb (“smooth”) larger
errors or wrong decisions made by single members.
Comparing the different team configurations among each other further shows that different
combination methods dominate for different problems. A general ranking of the methods
cannot be produced. It is worth trying several variants when dealing with the evolution
of multiple predictors.
Some methods that allow various weighting situations outperformed the standard team
approach using uniform weights (AV). Among those methods the parallel evolution of
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weights together with the team programs (EVOL) turned out to be most successful. Opti-
mizing the weights by using a neural network (OPT), instead, is done independently from
evolution here (see Section 10.3.2). Because the individuals in best teams are already
quite adapted to a fixed (uniform) weighting, optimization cannot be expected to lead to
the same significant improvements.
For all three examples the average member error was highest with winner-takes-all combi-
nations. This is not surprising since only one member is selected to make a final decision
for the whole team while outputs of the other team individuals could be arbitrarily worse
(WTA) or higher (WTA2) respectively. Apparently, specialization potential is highest
with this combinations. In general, the member performance in teams is significantly
worse than the performance of stand-alone GP individuals.

10.5.2 Code Size

The computational costs of team evolution (as compared to individual evolution) can be
paid, at least in part, by the savings obtained from the following two effects:

¤ Only the (structurally) effective code is executed.

¤ The average effective code size of team members is significantly smaller than the
effective size of stand-alone individual solutions.

As explained in Chapter 3 the (structurally) noneffective code is not executed and, thus,
does not cause any computational costs no matter how complex it might become during
the evolutionary process. The second effect is demonstrated in this section by comparing
effective code sizes for different team configurations and standard GP. If no parsimony
pressure is used, there is no selection pressure on the noneffective part of code. As a
result, the absolute program size may grow almost unbounded and is limited only by the
maximum size (number of members × 128 instructions here).
For the three example cases Tables 10.7, 10.6, and 10.8 show the effective and absolute
code size of the best solutions. All teams hold the same number of members (4 here). WV
combination that is based on winner-takes-all classification produces the largest teams.
It seems that the multiple outputs calculated by WV members increase their complexity.
WTA teams are found to be smallest in code size. Actually, they are not much bigger than
a single standard individual in effective size and might even become smaller (see Table
10.6). This might be seen as another indication for the high specialization potential of the
members in those teams. Among the other variants teams with non-uniform weights, like
EVOL, are often found smaller than standard teams (AV). In general, concerning effective
size teams become only about twice as big as standard individuals. For the heart problem
they are not even 50 percent bigger. That means that, on average, a single member
solution is definitely smaller than an individual solution.
The rates of noneffective code are comparably high for all team approaches. The intron
rates of individual GP solutions are lower mostly because of a (relatively) higher restriction
by the maximum size limit.
The average code size of teams in the population (not documented) has developed quite
similar to the code size of best teams (averaged over multiple runs). Only for the two chains
problem is the average size of WTA teams bigger. Note again that only the difference in
average effective size of teams corresponds directly to the increase in runtime, when using
intron elimination in linear GP (see Section 3.2.1).
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Method Code Size Effective Size Introns (%)
GP 128 45 64.8
AV 347 86 75.2
OPT 332 76 77.1
ERR 320 78 75.6
EVOL 294 67 77.2
MV 451 99 78.0
WW 448 124 72.3
WTA 92 33 64.1
WTA2 98 33 66.3

Table 10.6: two chains: Absolute and effective code size of teams with 4 members and
standard GP in instructions. Effective code of teams about twice as big as standard
individuals on average. WTA solutions are smaller than standard individuals.

One reason for the reduced growth of the (effective) team members could be seen in the
lower variation probability compared to standard GP individuals. We will see in the fol-
lowing Section 10.5.3 that it is not recommended to vary too many members concurrently
during a team operation. Best team prediction is obtained by varying about one member
only. If only one team member is changed the probability for crossover at a certain team
position is reduced by a factor equal to the number of members. One might conclude that
member programs grow faster the more members are varied. That this is not true will
be demonstrated in the experiments documented in Table 10.11 and 10.12 further below.
Members with the best prediction accuracy and the biggest effective length occur with the
lowest variation rate.

Method Code Size Effective Size Introns (%)
GP 128 38 70.3
AV 488 56 88.5
OPT 485 48 90.1
ERR 479 46 90.3
EVOL 481 44 90.9
MV 497 56 88.7
WV 504 68 86.5
WTA 479 57 88.1
WTA2 405 48 88.1

Table 10.7: heart: Absolute and effective code size of teams with 4 members and standard
GP in instructions. Effective code of teams not even 50 percent bigger than standard
individuals on average.

As a result, there must be another reason than variation speed for the relatively small
(effective) size of teams. We have already seen in the last section that teams perform
better than standard individuals after a sufficient number of generations. In order to
make team solutions more efficient there must be cooperations occurring between the
members that specialize to solve certain subtasks. These subtasks can be expected to be
less difficult than the main problem wherefore the respective subsolutions are more likely
less complex in effective size than a full one-program solution. Conclusively, a positive
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correlation between smaller (effective) member size and higher degree of specialization
might be supposed.

Method Code Size Effective Size Introns (%)
GP 128 58 54.7
AV 435 131 69.9
OPT 432 125 71.1
ERR 465 136 70.8
EVOL 456 123 73.0
WTA2 354 76 78.5

Table 10.8: three function: Absolute and effective code size of teams with 4 members and
standard GP in instructions.

10.5.3 Parameter Analyses

In this section we analyze the influence of the most relevant parameters when dealing with
the evolution of program teams. First of all, those are the number of team members (team
size) and the number of members that are selected from a team during a genetic operation.
Both prediction errors and code sizes are compared for various settings of these parameters.
Beyond that, two further parameters are under consideration that are of interest in this
context: the influence of free recombination between member positions and the individual
member errors on the fitness. In the preceding experiments recombination was restricted
to equal positions exclusively while the individual errors were not regarded (see Section
10.4.2).
Instead of giving a detailed analysis for each team variant and each test problem, we restrict
the following experiments to the standard team approach (AV). Combination by simple
average has the advantage that each member solution has exactly the same influence on
the team decision. This makes teams with a single dominating member less likely. Even if
experiments are not documented for all problems very similar results have been observed
with the other prediction tasks.

Number of Team Members

Each team member is varied by crossover or mutation with a probability of 50 percent in
order to guarantee a comparison as fair as possible. Modifying only one member at a time,
for instance, would be unfair since then the variation speed of members reduces directly
with their number. But, on the other hand, the more members are varied at the same time
the more difficult it becomes to make small improvements to the combined team output.
Table 10.9 compares the classification errors (CE) for the two chains problem and differ-
ent numbers of team members ranging from one (standard GP) to eight. Using teams
with more individuals might be rather computationally unacceptable even though only
effective instructions are executed in our GP system. Both prediction performance and
generalization performance increase with the number of members. But from a team size
of about 4 members significant improvements do not occur any more.
The correlation between the number of members and the average code size of a member
(in number of instructions) is shown in Table 10.10. The maximum code size of each
member is restricted to 128 instructions. The absolute size and the effective size per
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#Members Training CE (%) Member CE (%) Validation CE (%) Test CE (%)
1 3.33 (0.31) 3.3 (0.31) 4.70 (0.35) 5.59 (0.39)
2 1.33 (0.21) 16.5 (1.23) 2.34 (0.33) 3.31 (0.31)
3 0.89 (0.17) 23.1 (1.89) 1.59 (0.27) 2.64 (0.28)
4 0.37 (0.06) 27.4 (1.91) 0.69 (0.12) 1.84 (0.20)
5 0.36 (0.08) 32.8 (1.53) 0.47 (0.12) 1.90 (0.17)
6 0.38 (0.08) 32.6 (2.01) 0.58 (0.11) 1.76 (0.16)
7 0.30 (0.06) 30.2 (2.35) 0.48 (0.10) 1.78 (0.16)
8 0.39 (0.09) 34.1 (2.32) 0.48 (0.09) 1.76 (0.11)

Table 10.9: two chains: Classification error (CE) in percent for different number of team
members, averaged over 60 runs. Statistical standard error in parentheses. Half of the
team members are varied.

#Members Member Size Effective Size Introns (%)
1 128 46 64.0
2 126 36 71.4
3 98 25 74.5
4 94 20 78.7
5 82 19 76.8
6 85 21 75.3
7 75 18 76.0
8 73 18 75.3

Table 10.10: two chains: Average member size in instructions for different numbers of
team members. Half of the team members are varied.

member decrease up to team size 4 here. Beyond that, both sizes stay almost the same.
This corresponds directly to the development in prediction quality from Table 10.9. Note
that the amount of genetic material of the whole team still increases with the number of
members.
The reason for the reduction in effective member size can be seen in a distribution of the
problem task among the team individuals whereby the subtask each member has to fulfill
gets smaller and easier. A second indication for that might be the average member error
that has been calculated for the full training set here. As shown in Table 10.9 the error
increases respectively. Probably, beyond a certain number of individuals the task cannot
be split more efficiently so that some members must fulfill more-or-less the same. As a
result, members keep to a certain effective size and prediction quality.
The intron rate is not affected significantly even though genetic operators change more
members (always 50 percent) simultaneously in bigger teams. Only with very few members
this rate is lower. But this is due to the maximum size limit that restricts mainly the
growth of intron code. The otherwise rather constant rate of noneffective code (and
effective code respectively) can be explained by the influence of each member on the team
output that decreases with the total number of members – especially if uniform member
weights are used. As a result, the intervention of crossover should be almost the same here
for all configurations (in contrast to Table 10.11) and higher protection by more introns
is not needed. Moreover, this is also an explanation of why team errors in Table 10.9 do
not get worse again from a certain number of individuals.
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Number of Varied Members

As stated above best results occur when only a moderate number of team members, i.e.,
one or two, is varied simultaneously by crossover or mutation. This is demonstrated in
Table 10.11 where the number of varied members ranges from 1 to a maximum of 4 while
the team size stays fixed. Prediction and generalization performance are found best if only
one individual is varied at a time.
Table 10.12 demonstrates the correlation between the number of varied team members
and the code size of teams. Interestingly, effective and absolute code size reduce with the
variation strength. Although the variation probability per member is lowest if only one
member is varied during a team operation the (effective) code is biggest. Concurrently,
the overall prediction accuracy of teams increases while the (average) member error is
highest with the lowest level of variation in Table 10.11. Some reasons can be found to
explain these phenomena:

#Varied Members Training MSE Member MSE Validation MSE Test MSE
1 4.1 (0.37) 903 (92) 3.4 (0.30) 3.7 (0.36)
2 5.4 (0.47) 730 (73) 4.8 (0.45) 4.9 (0.47)
3 6.5 (0.44) 538 (50) 5.5 (0.38) 6.3 (0.48)
4 8.3 (0.66) 421 (53) 7.1 (0.61) 7.6 (0.70)

Table 10.11: three functions: Mean square error (MSE × 100) with different numbers of
varied members, averaged over 60 runs. Statistical standard error in parentheses. Number
of team members is 4.

#Varied Members Code Size Effective Size Introns (%)
1 440 148 66.4
2 424 125 70.5
3 388 113 70.9
4 320 99 69.1

Table 10.12: three functions: Code size of team in instructions for different numbers of
varied members. Number of team members is 4.

One reason might be the fact that, in general, smaller steps in variation allow more directed
improvements of a solution than bigger steps. In particular, single team individuals may
specialize stronger within the collective. By doing so, their errors in relation to a solution
of the overall task as well as their complexity increase. As already observed in Section
10.5.1 higher member errors correspond to a higher degree in specialization again.
On the other hand, the effect of variation on a team becomes more destructive the more
members participate in it. Then it might be easier for smaller (effective) team solutions to
survive during evolution. Decreasing complexity is the dominating protection mechanism
here. The intron rate is not affected significantly, i.e., the proportion of effective and
noneffective code stays rather constant. The reader may recall that similar results have
been found in Section 5.11.4 such that smaller variation step sizes (numbers of mutation
points) produced better and larger effective programs.
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Interpositional Recombination

It has been argued in Section 10.3.1 that in teams of multiple predictors – where by defi-
nition each member solves the same problem – allowing recombination between different
member positions might be more successful than restricting it to equal positions only (in-
trapositional recombination). Only by interpositional recombination member code can be
moved from one position to another in the team.

Recombination Training MSE Member MSE Validation MSE Test MSE
free 0.34 (0.05) 25.7 (1.42) 0.65 (0.10) 1.82 (0.11)
restricted 0.44 (0.08) 25.8 (1.96) 0.82 (0.12) 2.08 (0.14)

Table 10.13: two chains: Classification error (CE) in percent, averaged over 60 runs, with
restricted (reprinted from Table 10.3) and unrestricted recombination. Statistical standard
error in parentheses.

Recombination Training MSE Member MSE Validation MSE Test MSE
free 4.4 (0.27) 682 (44) 3.7 (0.23) 3.8 (0.23)
restricted 4.7 (0.27) 738 (50) 3.9 (0.22) 4.3 (0.25)

Table 10.14: three functions: Mean square error (MSE × 100), averaged over 60 runs,
with restricted (reprinted from Table 10.5) and unrestricted recombination. Statistical
standard error in parentheses.

Tables 10.13 and 10.14 show results for restricted and unrestricted recombination when
using combination by simple average (AV). Actually, free recombination performs slightly
better than restricted recombination with the tested problems. At least, it does not seem
to have any negative influence here. Thus, intrapositional recombination might be less
relevant when dealing with teams of predictors. Experiments with other combination
methods produced comparable results.

Member Fitness

δ Training MSE Member MSE Validation MSE Test MSE
0 0.44 (0.08) 25.8 (1.96) 0.82 (0.12) 2.08 (0.14)
1 1.91 (0.21) 12.4 (0.61) 3.00 (0.25) 3.92 (0.28)

Table 10.15: two chains: Classification error (CE) in percent, averaged over 60 runs,
with and without including member fitness in Equation 10.8. Statistical standard error in
parentheses.

δ Training MSE Member MSE Validation MSE Test MSE
0 4.7 (0.27) 738 (50) 3.9 (0.22) 4.3 (0.25)
1 19.4 (0.49) 34.6 (1.6) 18.0 (0.49) 18.1 (0.51)

Table 10.16: three functions: Mean square error (MSE × 100), averaged over 60 runs,
with and without including member fitness. Statistical standard error in parentheses.
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Finally, we investigate the effect of including (δ = 1) or not including (δ = 0) the average
member error in the fitness function (Equation 10.8). Results documented in Tables 10.15
and 10.16 for weighting by average have been found to be representative for other combi-
nation methods, too. The average fitness of team members becomes significantly better.
Actually, this reduces the specialization potential of members because the cooperating
individuals are restricted to be good predictors on their own. As a result, the quality of
team prediction decreases significantly if individual errors are included.
If, on the other hand, individual errors are not included in the fitness function there is no
direct relation between fitness of a single member and the quality of the common team
solution. This allows the errors of members to differ quite strongly within a team and to
be significantly larger than the team error.

10.6 Combination of Multiple Program Outputs

In standard case, a single register content is defined as the output of a linear program.
Apart from that, linear GP allows the program response to be derived from more than
one or all registers. These outputs may be interpreted as multiple predictions of a single
program solution and can be combined by using the same methods as proposed for team
solutions in this chapter.
On the one hand, an aggregation of multiple outputs may be supposed to promote an
internal parallelism of calculations as well as a specialization of subprograms. On the other
hand, it has to be noted that a linear program may already combine multiple calculation
paths, i.e., the contents of multiple registers, inside itself.
Depending on the number of registers provided by the user complementary subsolutions
may be computed by using more-or-less independent sets of registers in the same program.
These subprograms represent more-or-less disconnected components of the data flow graph
(see Section 3.3). A complete disconnection as between team members, however, is rather
unlikely, even if the number of registers is high (compared to the number of inputs).
Finally, the (effective) programs are probably larger when using multiple outputs than
programs with a single output only. This is already true because registers will be effective
for a higher probability. As a result, the speed advantage of evaluating a single program
instead of multiple team members only would be relaxed, at least in part.

10.7 Discussion and Future Research

First of all, it is interesting to determine problem classes for which the team approach
is suitable in general or for which it cannot produce better results than the standard
approach.
The exchange of information between the individuals of a team might help to evolve a
better coordinated behavior. One possibility in linear GP is, for instance, to share some
calculation variables between team members that together implement a collective memory.
Values can be assigned to these variables by one individual and used by others that are
executed later on. Note that with using such a shared memory the evaluation order of the
team members has to be observed. Another possible form of information sharing is the
coevolution of submodules with each team that can be used by all its members in common
(shared submodules).
Teams offer the possibility for an alternative parallelization approach in genetic program-
ming that is different from distributing subpopulations of individuals to multiple pro-
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cessors. The member programs of a team can be executed in parallel by assigning each
member to its own processing unit. If all members of the same position index (“member
deme”) belong to the same unit and interpositional recombination is not applied then
migration of program code between processing nodes is not necessary. The only commu-
nication overhead between the units would be the exchange of team identifier and team
outputs.
Finally, the numerous alternatives that have been given in the text may be a subject of
future research.
A drawback of team solutions could be that they are probably more difficult to analyze
than single genetic programs. But because already single solutions are often quite difficult
to understand this might be a rather negligible disadvantage. Moreover, a combination of
subsolutions can be more simple than a one-program solution as well.

10.8 Conclusion

The results of this chapter may be summarized as follows:
(1) The team approach was applied successfully to several prediction problems and has
been found to reduce both training error and generalization error significantly compared
to the individual approach. This was already achieved by using standard averaging to
combine the outputs of the team programs.
(2) Several linear combination methods were compared while different methods turned out
to be the most successful ones. Two benchmark problems were presented on which either
a winner-takes-all combination (WTA) or the coevolution of variable member weights
(EVOL) performed notably better than other approaches.
(3) The average effective complexity of teams with four members was only about two times
larger than stand-alone solutions. With some combination methods team solutions have
been found that are even smaller. Thus, the evolution of program teams is quite efficient
provided that noneffective instructions are not executed.
(4) A high degree of specialization and cooperation has been observed such that team
members showed a much lower prediction performance and a smaller (effective) size than
individuals. Beyond a certain optimum number of team members, however, both features
did not change anymore. One explanation could be that the overall problem task cannot
be further divided into smaller subtasks.
(5) By including the prediction errors of members in the fitness function (of teams) their
specialization potential may be reduced drastically. While the average member perfor-
mance increased here the overall team performance decreased.
(6) The best team solutions emerged if not more than one team member is varied at a time.
Interestingly, teams occured to be smaller and less highly specialized if several members
are varied simultaneously.



Chapter 11

Summary and Outlook

This thesis reports on linear genetic programming (LGP), a variant of genetic program-
ming (GP) that evolves computer programs as sequences of instructions of an imperative
programming language. In general, the research focus is on basic structural aspects of the
linear representation rather than on problem-specific or semantic aspects, like the evolved
programming language. Fundamental differences to the traditional tree representation
comprise the graph-based functional structure of linear genetic programs as well as the
existence of structurally noneffective code, i.e., graph components that are not connected
to the effective component or data flow. These structural aspects motivate in part the two
major objectives of this thesis: (1) the development of advanced LGP methods and genetic
operators to produce better and more compact program solutions and (2) the analysis of
general EA/GP phenomena in the area of linear GP.
The first two chapters give an introduction to the general GP approach and into linear
GP in particular. Chapter 3 shows how the special imperative representation of programs
that is used in this thesis may be transformed into a directed acyclic graph (DAG). Thus,
linear GP may be reduced to a special form of graph-based GP. Efficient algorithms
are introduced for analyzing linear genetic programs in terms of certain features of their
imperative structure or functional structure. Besides structural introns, these features
comprise the number of effective registers at a program position, the dependence degree of
(effective) instructions, and the effective dependence distance. Fundamental results of this
chapter are published in [19, 13].
Especially, the elimination of noneffective code during runtime, which happens once be-
fore a program is executed repeatedly during the fitness calculation, may accelerate the
processing time of GP significantly. Among other things, this is demonstrated in Chapter
4 and publication [19]. The proportion of noneffective code in programs depends on the
genetic operators and on the configuration of various system parameters.
In Chapter 5 possible variation operators for the linear program representation are dis-
cussed and compared primarily in terms of their influence on prediction quality. In general,
larger improvements in performance occurred in combination with a significant restriction
of the maximum variation step size, either indirectly over a smaller solution size or di-
rectly over variation parameters. Noteworthy small or even minimum step sizes on the
instruction level turned out to be optimum. In general, a linear (imperative) representa-
tion is more suitable to be varied in small steps than a tree structure. Due to its weaker
constraints and the possibility of structural code deactivations, variation step sizes may be
permanently small at each program position. Additionally, the efficiency of variations is
enhanced significantly by increasing the proportion of (structurally) effective and/or (se-
mantically) neutral variations. To achieve this, information about the program structure
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and/or about the program behavior need to be integrated into the variation process. A
combination of both strategies leads to effective instruction mutations which performed
most successfully. This approach appeared in [13].
Moreover, variation-specific parameters are analysed in Chapter 5 together with the cor-
responding variation operators. More general control parameters of linear GP are the
subject of Chapter 6. For instance, the number of registers in imperative genetic pro-
grams influences their functional structure, i.e., the maximum width and depth of the
DAG as well as the degree of node connections.
Comparisons of linear GP with other methods are conducted in Chapters 4 and 7. In
Chapter 4 the standard LGP approach is compared with backpropagation neural networks
using the RPROP learning rule. On a collection of medical classification problems both
approaches show a competitive generalization performance (see [19]).
In Chapter 7 we compare tree-based GP with different variants of linear GP in terms of
both prediction quality and solution size. Two sets of benchmark problems have been
composed. One includes artifical GP benchmarks while the other one includes classifi-
cation problems from bioinformatics. Linear GP is superior, especially when applying
the more sophisticated operators from Chapter 5. In general, a larger difference in per-
formance has been found between maximum and minimum step sizes of linear genetic
operators than between the two representation types (when applying unrestricted recom-
bination). Moreover, (effective) linear genetic programs have been found more compact
due to (1) a multiple usage of register contents and (2) an implicit parsimony pressure by
the structurally noneffective code.
While in Chapter 5 minimum variation steps are investigated in terms of the absolute
program structure, the step size on the effective program is minimized in Chapter 8.
Therefore, this effective step size is quantified by means of a structural distance metric
which is sufficiently correlated to the fitness distance. Best solutions emerge if not more
than one effective instruction changes its effectiveness status after variation. That is, only a
single node may be connected to or disconnected from the effective component in the DAG.
Even without applying such an explicit control mechanism, the effective code develops
increasingly robust against deactivations over the generations. That is, the frequency of
effective step sizes decreases already implicitly to a certain extent. This effect is referred
to as self-protection. Furthermore, noteworthy improvements in performance have been
achieved by increasing the diversity, i.e., the structural distance between programs, in the
population actively. Results of Chapter 8 may be found in [21, 13].
The phenomenon of code bloat in linear GP is in the center of interest in Chapter 9.
Mostly by intron code genetic programs may grow larger than necessary without showing
corresponding improvements in fitness. When using instruction mutations almost only
neutral variations turned out to be responsible for both the creation and the propagation
of introns in genetic programs. Actually, programs hardly grow if neutral variation effects
are not accepted and if the step size of macro variations is minimum. In doing so, effective
instruction mutations have been identified as a genetic operator with which programs grow
hardly larger than necessary. Especially, the emergence of noneffective code is reduced
significantly. Thus, this operator realizes an implicit complexity control in linear GP which
reduces a possible negative effect of code growth to a minimum. Another interesting result
is that the program size increases strongly with recombination while it is hardly influenced
by mutation in linear GP even if the maximum step size is not explicitly restricted in both
cases. The first part of Chapter 9 has been adopted from [22].
Most results presented in this thesis refer to genetic programs as linear sequences of im-
perative operations. Program teams are investigated as one possibility to enlarge the
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complexity and dimension of LGP solutions. Chapter 10 reflects results of contribution
[20] and applies the team approach to several prediction tasks. This requires a definite
way of how the multiple predictions of team members are combined. Depending on the
problem, different combination methods proved to be the most successful ones. We demon-
strate that much more powerful solutions are possible with a team representation than
those that may be found by the evolution of individuals. Moreover, the effective complex-
ity of teams is surprisingly small compared to individual solutions. Both is possible by a
high degree of specialization and cooperation of the team members.

Future research may proceed in the following directions. These result from restrictions
that have been imposed on the program representation or from initial conventions that
have been made for this thesis.
(1) Representation and Genetic Operators. This thesis deals with linear genetic programs
as sequences of operations and conditional operations. The expressiveness of programs
may be increased by applying more advanced programming concepts. A general overview
of possible concepts has been given in Chapter 2. Their capability may be verified es-
pecially for prediction problems that have been favored in this thesis. On the one hand,
the evolved programming language may be enhanced, for instance, by conditional for-
ward jumps or backward jumps (loops) over larger instruction blocks. This makes the
linear order of instructions to differ more strongly from the execution order. Moreover, an
analysis of (functional and imperative) program features may become more difficult and
more computationally expensive. This is true, for instance, for the detection of structural
introns because registers that are effective at a certain program position may change dy-
namically during multiple executions of code blocks. For the same reason, the proportion
of structural introns may be expected smaller. Instead, the proportion of semantic introns
may be larger if the execution of several instructions depends on the same condition.
On the other hand, the complexity of the (linear) representation may be increased by
combining multiple instruction sequences (blocks) in a more-or-less predefined manner.
Concerning the team approach from Chapter 10 this is a linear combination of mem-
ber outputs. In [45] instruction sequences are connected by a branching graph structure
(see Section 2.1.4). Such two-level program representations require appropriate two-level
variation operators to be defined.
As argued before, the efficiency of a programming concept or a program representation
strongly depends on the genetic operators. If a concept is not really needed for more suc-
cessful solutions or if a profitable usage is rather unlikely during the automatic evolution,
the resulting larger search space may influence solution finding rather negatively.
(2) GP Phenomena. Second-level program structures may develope different variants of
structural (and semantic) introns which require more sophisticated detection algorithms
and may contribute to the growth of programs in different ways.
(3) Evolutionary Algorithm. While this thesis concentrates on aspects of linear GP that are
closely related to the representation of programs, other parts of the evolutionary algorithm
have been kept unchanged. For instance, the selection method is always tournament
selection in combination with a steady-state population. Other selection schemes and
representation-independent EA parameters may be investigated in terms of their influence
on the performance of linear GP and the particular methods that have been developed
here.
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(4) Cross Analyses. It would go beyond the scope of this thesis to test all interesting
combinations of the parameter analyses, methods, and genetic operators that have been
discussed. Hence, there are still interesting configurations left. For instance, the team
approach could be applied together with effective instruction mutations. In general, the
documented results may be verified for other test problems or configurations as those that
have been used here.
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