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ABSTRACT. Let M, denote the nth moment space of the set of all probability measures on
the interval [0,1], P, the uniform distribution on the set M,, and r,4; the maximal range
of the (n + 1)th moments corresponding to a random moment point C,, with distribution
P,, on M,,. We study several asymptotic properties of the stochastic process (7 |,¢]41)te[o,7]
if n — oo. In particular weak convergence to a Gaussian process and a large deviation
principle are established.
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1. INTRODUCTION

Moment problems have a long history in mathematics, which involves numerous subject
areas, including continued fractions, orthogonal polynomials, approximation theory, proba-
bility theory and statistics [see e.g. Landau (1987)]. In this paper we will study, in some
stochastic sense, the size of the moments space of probability measures on the interval [0, 1].
To be precise let P([0,1]) denote the set of all probability measures on the interval [0, 1].
Further, let for n € N*, @, (z) := (z,2%,...,2") denote the vector of monomials up to the
order n and

M, = {/01 B (@)u(de) : e P, 1])} CR

be the nth moment space. Obviously, M,, is a subset of the cube [0, 1]" and it is the convex
hull of the curve (®,(x))ze0,1) in R™. A vector ¢ € R” is an element of M, if, and only if,
the set

sue) = {uepon)s [ e =}

is non empty. The set M, is a very small compact subset of the unit cube [0, 1] with volume

Vol(M,,) = kli[l 7F(11€()21;€()k) ~c-27"
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[see Karlin and Studden (1966), p. 129] and has a very complicated geometric structure
[see Shohat and Tamarkin (1943) or Karlin and Shapeley (1953)]. As the moment space
M,, has a non void interior we may define P, as the uniform distribution on the set M,,.
The motivation for studying a uniform distribution on the nth moment space stems from
an attempt to obtain a better understanding of the shape and structure of the set M, by
looking, in some sense at a typical point in the set M,, [see Chang, Kemperman and Studden
(1993), Gupta (1999), and Gamboa and Lodaza-Chang (2004)|. If C,, is a random vector
with distribution P, and, for k € {0,...,n}, IT* is the natural projection operator from R" to
R¥, these authors investigate the asymptotic behaviour of the random vector ZF = I (Cy)
as n — oo and k is fixed. In particular a normal limit theorem and some large deviation
princples (LDP) for functions of Z" are established in these references.

The present paper is devoted to the problem of studying random variables on the moment
space M, where the index k varies with the dimension of M, as n — oo. In particular we
are interested in the range of the moment space M, 1, which can be interpreted as the width
of M, 1 in the (n 4 1)th coordinate, if the first n coordinates of a “typical” point of M, are
fixed. To be precise let for ¢ € M,,, denote by

e = s / {1y — 1) () (1.1)

H11,42€Sn

the (n + 1)-th moment range r,.(c). We will study the asymptotic properties of the range
process
Ry =4y, (), e (0,77, (1.2)

where C,, is a random vector with distribution P, on the set M,, 0 < T < 1 and [v]
denotes the integer part of v € R. In particular we prove a law of large numbers for the
process (R} ).cjo,r], weak convergence of an appropriately standardized version of (R})icpo,n)
to a Gaussian process, and establish a large deviation principle with a good rate function.

The remaining part of the paper is organized as follows. The main results are stated in
Section 2. We will make extensive use of the canonical coordinates introduced by Skibinsky
(1967), which will be the main tool for the derivation of the asymptotic properties of the
process (R})ico,r)- The proofs of our main results are presented in Section 3, while some
more technical arguments regarding properties of the beta distribution and gamma function
are given in Section 4.

2. ASYMPTOTIC PROPERTIES OF THE PROCESS (R})ic(o,1]

2.1. Preliminaries. The main tool for our investigations of the asymptotic properties of
the process (R}')icpo,r) is the representation of the random variable

rie1 (IK(CL)), (REN, k€ {0,...,n}) (2.1)

as a product of independent random variables. This representation is achieved by introducing
“canonical” coordinates which map the interior of the nth moment space M,, in a one to one
manner onto the open cube (0, 1)" [see Skibinsky (1967)]. To be precise define for k = 2,3, ...



and for a given point (c1,...,c,-1) € My—1 ¢ = ¢ (c1,...,c—1) and ¢, = ¢; (c1,...,Cp1)
as the largest and smallest value of ¢; such that (cq,...,cx) € Mg, that is

1
G = min{/ 2 u(dr) | g€ Sp_i(c, .. .,ck_l)},
0

1
o = max{/ o*u(dr) | p e Sk_l(cl,...,ck_l)}.
0

Note that ¢, < ¢; < ¢ and that both inequalities are strict if and only if (¢1,...,¢—1) €
intMy_; where int B denotes the interior of the set B [see Skibinsky (1967)]. For a moment
point ¢ = (¢q,...,¢,) in the interior of M, the canonical moments or canonical coordinates
of ¢ are defined by

Ck—C Cp — Cp,

p1=c1, and pp = — - =
o —c,  riler, ..o cpm)

Note that 0 < pr < 1 (k = 1,...,n) if (¢1,...,¢,) €intM,, and that the definition (2.2)
defines a one to one mapping between int M,, and the open unit cube (0, 1)™. For more details

k=2....n (2.2)

regarding canonical moments we refer to the work of Skibinsky (1967, 1968, 1969) and to
the monograph of Dette and Studden (1997). In particular it is shown in these references
that the range can be represented as

Tre1(Cl, ..o\ C Hp] —p;), (k>1). (2.3)

Moreover, from the representation (2.2) it is easy to see that

dey, 0 it 7>k
dcr _ . ' 2.4
Op; { T =1k(c, . 00m) i j =k .

(with the convention m; = 1), and consequently the canonical moments pgn), . ..,pS” of

random moment vector C,, with a uniform distribution on M, have a density given by

H 27? _]2]2 H H 2n — 2] U pi(1—pi))" ™" (2.5)

In other words the (k + 1)th range of a random moment point C,, can be represented as

k
Tk-l—l H p] 1 _p] ) (n € N7 k € {07 . ‘7n})7 (26)

Jj=1

where (p)neni1<j<n is a triangular array of independent random variables and for j =
1,...,n—1 the random variable p follows a B(n—j,n—j) distribution. The representation
(2.1) will be essential for our investigations of the asymptotic properties of the range process
in the following discussion. In the whole paper, we take the convention that log7 = —o0
whenever 7 < 0 and we denote the set of all continuous functions on [0, 7] by C([0,T7).



2.2. Law of large numbers and weak convergence. In the present and next sections,
(R})iejo,r) will be considered as a process with c.a.d-l.a.g. pathes. Thus, we consider conver-
gence in Skorohod topology [see [Billingsley(1999)||. Moreover, we will denote by the symbol
~> the convergence in distribution.

Theorem 2.1. For 0 <T <1, (R})cjo,r) converges in probability towards the deterministic

process (V1 —t)icpom-

Theorem 2.2. Let (By)icjo,r) denotes the standard Brownian motion, then for any0 < T <1

we have
~ | exp .
V19—t e V2o 1=u/cpom

2.3. Large deviations. Recall (see for example |[Dembo and Zeitouni(1998)|) that a se-
quence (@) of probability measures on a measurable Hausdorff space (U, B(U)) satisfies a
large deviation principle (LDP) with rate function I if

[0,T]

i) I is lower semicontinuous (Isc), with values in Rt U {+o0}.
ii) For any measurable set A of U:

—I(IntA) < liminf 1 log @, (A) < limsup 1 log Q,(A) < —I(CloA),

n—oo 1 n—oo T

where [(A) = infecy 1(€) and IntA (resp. CloA) is the interior (resp. the closure) of
A.

Moreover, the rate function I is called good if its level sets {x € U : I(x) < a} are compact
for any a > 0. More generally, a sequence of U-valued random variables is said to satisfy a
LDP if their distributions satisfy a LDP.

In order to make this paper self-contained let us recall some known facts and tools of the
theory of large deviations which will be useful in the paper (we refer to [Dembo and Zeitouni(1998)]
for more results regarding large deviations). In particular we will use the following two con-
cepts throughout this paper.

e Contraction principle. Assume that (Q),,) satisfies an LDP on (U, B(U)) with good
rate function /. Let T" be a continuous mapping from U to another space V. Then,
(Qn o T7) satisfies an LDP on (V, B(V)) with good rate function

I'(y)= inf I(x), (yeV).
z:T(x)=y

e Exponential approximation. Assume that U is a metric space and let d denotes
the metric on U. Let (X, )n,en be a U-valued random sequence satisfying an LDP
with good rate function I. Let (Y},)nen be another U-valued random sequence. If for
any £ > 0

lim sup = log P(d(X,, Yn) > &) = —o0,

n—oo I

then (Y,)nen shares the same LDP as (X,,)nen-



In the following let BV ([0, T]) denote the set of all real valued functions of bounded variation
on the interval [0,7]. We identify BV ([0,T]) with the set M([0,T]) of all real measures

n [0,7]. Indeed, if f is an element of the set BV ([0,77]), there exists a unique measure
pr € M([0,T]) with

F) = [ sty = [ pian = [z, (2.7

where, for p € M([0,T]), 0 = p* — p~ is the Jordan decomposition of the measure pu.
The Lebesgue decomposition of the measure p with respect to the Lebesgue measure will be
denoted as

p(du) = hy,(u)du + o, (du). (2.8)

Up to the identification of BV ([0,T]) by M([0,T]), C([0,T]) is the topological dual of
BV ([0,T7). Thus, we endow BV (][0, T]) with the weak-* topology (duality (BV ([0, T], C(]0,TY)).
Let

BVH([0,T]) = {f € BV([0,T]) : f(0) =0, f non decreasing on [0,7]}, (2.9)
and
BV ([0,T])={f € BV([0,T]): f(0) =1, f >0, f non increasing on [0,7]}.  (2.10)

Theorem 2.3. For any 0 <T < 1, the process (R} )icio,r) satisfies an LDP on BV ([0,T7)
with rate function I;. 1y is a good rate function which is only finite for functions f €
BV ([0,T)). Indeed, for f € BV, ([0,T]) the rate function has the representation

1 T
L(f) = —5/0 log [2(1_“)hu10g(1/f>(u) du
r T
[ 0= wimp ) - 5 (211)

Using the change of variable formula for Stieljes integrals (see for example |[Protter (2004)]
Theorem 54), we obtain the following Proposition.

Proposition 2.4. Let f € BV ([0,T)) and write

iy (du) = —pf(du) + 6o(du) Z ajétf (du),

]EAf

where ,ufe is a diffuse positive measure and the measure py has jumps at the positive points

(tf)jeAf. Then,
(L) [ Eild) ) al
s (75) = | " * §:1g<“+ﬂﬁ)

: 4f
]EAf.tj <t




Moreover,

L(f) = —%/0 log[2(1—u)hw(u)} du—l—%/o log f(u)du

4 T
+ /0(1—u ) +Z[log< I ))(1 t;)]_i

]EAf

3. PROOFS

3.1. Proof of Theorem 2.2. We will prove the theorem by showing the following propos-
tion.

Proposition 3.1. For any 0 < T < 1,

W(long—logm))te[o,w( ~ / 1B, ) .

where (Bu)ue[o,l] denotes a standard Brownian motion.

Proof. From (1.2) and (2.6), we may write, for ¢ € [0, 7],

[nt]
Vn(log R} —logv/1—1t) = ﬁ(Z log [p} (1 —pl)] — %log(l —t) + 2|nt] log 2)

j=1
|nt]
= »f‘j{: "—E[p}]) + Ault), (3.1)
where
p} =log [pi(1 —pl)] (3.2)

and the random variable A, (¢) is defined by

Int)
&M:WZZEW}%m@w+WMm2. (3.3)

J=1

First, notice that as the function (1 —¢)~%, (« > 0) is increasing on the interval [0, 7], we
have for any t € [0, 7]

In a first step we show that the process A,(t) converges to 0, uniformly on the interval
[0,7]. Indeed, using inequality (4.12) in the Appendix and the monotonicity properties of



the functions (1 —z)~! and (1 — z)~? we obtain

[nt)

|nt] .
VROIIERY e P S— L] Z;_/o du

_ 2 _ —
j:l(n j+1) 2 |“Zn—j+1 1—wu
= n3/2 2 o 1—u nj:11—%
1
< (CiL+(1-T) N (T+21-T)"1), (3.4)

%
for some constants C, 75 > 0. This implies that A,, converges uniformly to 0 on the interval
[0, T7.

We will now show that the process defined in (3.1) converges to the limit given in the
proposition. To obtain this result, we will use the general martingale theorem stated in
|[Dacunha-Castelle and Duflo (1993)] (Theorem 7.4.28 p. 226). In order to use this general
result, we have to check the following three assumptions:

(A1) For all € > 0,
[nT |

nhrEoZIP’\ " >¢e) =0.

(A2) There exists an € > 0, such that for all t € [0, T,

[nt)
lim y E (ﬂ{\ﬁyka}ﬁ?) =0.
j=1

(A3) There exists an € > 0, such that for all ¢ € [0, 77,
[nt]

lim E Var <]I 5 ~") = /t du = !
no £ Up1<edi ) = ) ol —w)2 — 2(1—t)’
J=1

where we used the notation g} = /n(p} — E[p}]) and T4 denotes the indicator function of
the set A.

Let us first check that the assumption (A1) holds. Using Markov’s inequality and the
estimate (4.16) in the Appendix for the fourth moment of the centered random variable p}
we may write for e >0, n € N*and j € {1,...,n}

n? n?Cy
P (g} =€) < ZE(p} —E[pI))! < 07—
(1671 =€) < ! (p] o))" = An—j+ 14

(3.5)

with some positive constant C5. This gives

[nT|

CsZ.
2 PIze) <

)
54




and assumption (A1) follows.
To prove assumption (A2) notice that the random variables p are centered and therefore it
is sufficient to show that for one € > 0,
LnT ]
lim » E <H{|ﬁy\26}\ﬁ?|) =0. (3.6)

n—oo
j=1

Now, using Cauchy Schwartz inequality, the bound (3.5) and the estimate (4.14) in the
Appendix yields

~Nn Ve ~-n 0203
B (Lgeall) < iV /(7 = o) < e

with positive constants C5, C'5. Therefore we obtain

[nT]

- V03T
> E (H{\ﬁ?|28}|pj \) ST (3.7)
j=1

and assumption (A2) follows.

To show the remaining property (A3), first notice that, for t € [0,7], using the estimate
(4.13) in the Appendix for the variance of 7 , we can mimic the derivation of the inequality
(3.4) to easily obtain

Lnt]
. - t
fim ) Vardy = 5y 3

J=1

Now,
2
Varpj = Var <ﬁ?1{\ﬁ?|<6}> +E <(ﬁ?)2ﬂ{\ﬁy|za}> + [E (ﬁ?ﬂﬂﬁﬁza}ﬂ :

On the one hand, using once more the Cauchy Schwartz inequality and the estimate (4.14)
and (4.16) of the Appendix we may easily show that

[T
lim » E ((ﬁ?)2ﬂ{\ﬁy\25}> =0.
j=1

On the other hand, this also implies

(n7)| ,
lim D [E (ﬁ?ﬂ{\ﬁﬁza}ﬂ =0,
j=1

and assumption (A3) holds, which completes the proof of the Proposition. O



3.2. Proof of Theorem 2.3. To prove Theorem 2.3, we will first show that an LDP holds
for the following positive random measure on the interval [0,7] (0 < T < 1)

[nT]
Vn(dx) = Z(&n—j +2 IOg 2)6]/n(dx)7
j=1
where 9§, denotes the Dirac measure at the point y, &,...,&, are independent random vari-

ables distributed such that & = log(z;(1 — x;)) and x; has a (3(i,4) distribution. Indeed,
endowing the set M ([0,7]) of all positive measures on the interval [0,7] with the weak
topology, we have the following theorem.

Theorem 3.2. The sequence of random measures (v,,) satisfies an LDP with a good convex
rate function given by

B0 = =5 [ g2~ wh () du+ [ (1= upp(d) = 5. (e My(0.T]). (9)

Proof. The idea of the proof is to check that the assumptions of the abstract Géartner-Ellis
theorem are fulfilled (see theorem 4.5.20 in [Dembo and Zeitouni(1998)], [Gamboa et al(1999)],
[Gamboa and Gassiat(1997)] and [Najim(2002)]). For this let f € C([0,7]), we will first
compute the normalized cumulant generating function of v, at point f that is

Malf) = 1 logE (explava (/)
[T
= % log £ H exp [—nf(j/n)(&n—; + 2log 2)]
| L)
= 52 Wy (sl = 20/ g2 (3.10)

where 1, _;(t) = log E[e®"~i] denotes the cumulant generating function of the random vari-
able &,_;. Now, using the representation (4.2) for the function v(t) in the Appendix, we
obtain:
e First case
oy 1)
uelpr) 1 —u
For n large enough, A, (f) is finite and using the representation (4.4) in the Appendix
it follows that

< 1.

LnTJ .
M) = o Z{ 3108 (1- 21020
+ 4fpo(n—j+1=nflj/n]) —po(n—j+1)]

— 2[po[2(n —j +1—nflj/n])] = o(2n — 2j + 2)]},



where the function ¢ is defined by

+oo arctan(l)
= ———2~dt. A1
#ol2) /0 exp(2nt) — 1 (3:11)
By Lemma 4.1 in the Appendix we therefore obtain the estimate
[nT] ) [nT | .
1 1 nf(j/n) 510 f(G/n)
An(ngZ?Og(l—n_(i-/H) <2 p= JUm) o
=1 J o (=5 = rGm) A (=55

where a A b denotes the minimum of a and b. This last inequality allows to conclude

that g o
im n(f)_—§/0 log<1——>du. (3.12)

n— 00 l1—u

e Second case

sup f(u) > 1.
u€[0,T 1—-u

As f is continuous, for n large enough, at least one of the summand in (3.10) is
infinite. Hence

lim A,(f) = +oc. (3.13)
e Third case sup,co7 {(12 1.

We do not know in general what happens in this case. But, as in the proof of theorem
4 in [Gamboa et al(1999)] it does not matter.

Now, for f € C([0,T]), let

A(f) = —% /OTlog (1 - %) du.

Further, for p € M_([0,T1), let

N s [/ Fluutdo) - AP

Making the change of variable g(-) = f(-)/(1—-) in the last equation and using the duality re-
sults of Section 3 in [Borwein and Lewis(1993)] we may deduce, that for any p € M, ([0,T7)

A" () = Lx(p).

The remaining part of the proof now follows by exactly the same arguments as given in
|Gamboa et al(1999)] where the authors use a variant of the Gértner-Ellis-Baldi’s theorem
(see |Dembo and Zeitouni(1998)| p. 157). We just give the skeleton of the proof and refer
to [Gamboa et al(1999)| for more details.

The upper bound is proved in a classical way by first showing that it holds for compact sets
of M ([0,T7]). This is a direct consequence of Theorem 4.5.3 b) of [Dembo and Zeitouni(1998)].
To enlarge this upper bound to non compact sets, we use the following lemma that sets the
exponential tightness of the sequence (v,).



Lemma 3.3.

1
lim limsup — logP sup / f(@)vp(dz) > a | = —o0. (3.14)
fec(| (0,77

a7F0 n—oo T 0,7D:NIfllo=1

Proof. Obviously

nT
{ sup (x)vp(dz) > a} Cq— szj(fn_j +2log2) > a
feC((0,1]):l fllo=1 J[0,T] =1
OJ
Furthermore Markov exponential inequality and the limit in (3.12) give, for 6 <1 —T
. 1 [nT]
hin_)sogp - loglP | — ;(ﬁn_j +2log2)>a| <

—6@—1—%[(1—H—T)log(l—Q—T)—(l—T)log(l—T)—(1—8)10g(1—«9)].

Optimizing the last bound with respect to § < 1 — T we finally obatin
1 [nT]
lim sup — log P —Z(&n_j+210g2) >a | <

n
n—00 =1

L4 (T =D 1[=T+2T = De T 42T - 1)
R —— 2 [T B T
(T —2)e** (T —2)e*
—(1=T)log(1-T) — o log o

which yields to the result.

The lower bound is more technical. As usual, it is performed using the tilted probability
technique. Here, the tilted probability depends on a function f, associated to the measure p
on which we recenter the process. There are essentially two steps. In the first one we show
that there exist nice measures for which the associated functions exist and fall in the first
case of the previous discussion about the limit of the function A,. Roughtly speaking, this
is equivalent to the fact that the supremum of the function A* is attained for f,. In the
second step we show that these nice measures are dense in the space M ([0, T]). O

By the same arguments as given in the proof of Theorem 4.1 in [Najim(2002)|] we obtain
from the last theorem and the contraction principle the following corollary.

Corollary 3.4. The process (—log R} )icjo ) satisfies an LDP in BV, ([0,T]) with a good
rate function given by

B(P) = =5 [ loa (20— why, (] dut [ (—wpldn) =5 (7 € BY(0.7D). (315)

where the function h,, has been defined by (2.8).



Further the mapping W from BV, ([0,T]) to BV, ([0,T]) defined by
W(f)=exp(—f) . (f € BV, ([0,T]))

is continuous. Indeed, exp(—f) has jumps at the same points as the function f and the
weak convergence is equivalent to the pointwise convergence on set of continuity points of
the limit. Hence, the proof of Theorem 2.3 follows from the contraction principle and the
last Corollary.

4. APPENDIX: AROUND THE [3 DISTRIBUTION

Let «, 3 > —1, recall that the distribution [(a,3) is the probability measure on the
interval [0, 1] with density

 (l—a)"
fa,ﬂ(x) - B(ﬁ—}-l,oz—i—l)’

where the Beta integral B may be expressed by the way of the Gamma function:

(x € [0,1]),

' L'(p)I'(q)
Bp,q:/xp_ll—xq_lda:: , (p,g>0).
pa)= [ w0 = 5P (.00
For any integer k, let ¢ be a random variable with distribution 3(k, k) and set
& = log [tk (1 — 1g)] = log tg + log(1 — ). (4.1)

As dexp & ~ B(—3, k), for 7 € R, the cumulant generating function of & is given by

2logl(7+ k+ 1) +log'(2k + 2)

—logI'(27 + 2k +2) — 2logl'(k+1) if7>—-1—k

k(1) = log Elexp(7&;)] = (4.2)

+00 otherwise.
For z € C with $(z) > 0, Binet’s second formula (see for [Abramowitz and Stegun (1964)]),
gives an alternative expression for the logI' function, that is
1 1
logT'(2) = (2 — é)logz—z%— 510g27r+2g00(z), (4.3)

where the function ¢ is defined by
+oo arctan(t
oole)i= [ ot
o exp(2nt) —1
Using this representation we may rewrite, for 7 > —1 — k
1 T
= —1 1+ ——) —27log2
Ui (7) 5 og( +k+1) 7 log
+ 4lpo(t+k+1) —po(k+1)]
+ 2[po(2k + 2) — po(27 + 2k + 2)]. (4.4)



Moreover, the first derivative of 1, can be represented as

, L 1
vilr) = 2(k +1+7)
+ Alog(T+k+1) — @p(27 + 2k + 2)],

— 2log?2

and, for [ > 2 integer, the derivative of order [ of w,(f) is

1= 1)!
D(r) = % 40P 4 k1) — 24100 (27 + 2%k + 2).

From the last equations we may deduce

E(&) = v,(0) = —ﬁ — 2log?2
+4[pp(k + 1) — ¢o(2k +2)],
Var(€) = W{(0) = g + 4 lebk 1) — 2(2k 4 2)].
Bl - B = w7 0)+ 300 = gy +4a (k)
_32(p(()4)(2/€ + 2) + 12 (308(]{ +(?+_12)9208(2k + 2))

+48 [ (k + 1) — 20 (2k +2))°.
Further, we have the following obvious lemma.

Lemma 4.1. For a >0 andn > —«

7|
aA(a+n)2 "
7271,

ad

[po(a+m) — wola)| < (

IO 2 21-0 4
o)l < =5 It (@) < = and o’ (@)] <

with

+o00 t
i
o exp(2mt) —1

(4.5)

(4.6)

(4.10)

(4.11)



Using the previous lemma and equations (4.7), (4.8) and (4.9), we obtain the following
bounds for the moments of the random variables &

1 57, L 4
=60~ (e 22)| < o~ e )
1 0z, 20
Var (&) — e < R (4.13)
1 10, _ 1/2 + 10T, C,
Varl&e) S s e Y S r 12 S G (4.14)
E (& — E(&))'
15 3197, 30072
St TG Ry (4.15)
_ 15/4 43197, + 30013 _ _ Cy o

(k+ 1) ~ (k4 1)

with positive constants C, Cy, Cs.
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