
Logics which allow
Degrees of Truth and Degrees of Validity

A way of handling Graded Truth Assessment

and Graded Trust Assessment within a single framework

Dissertation
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
der Universität Dortmund
am Fachbereich Informatik

von

Stephan Lehmke

Dortmund
2001

Tag der mündlichen Prüfung:

Dekan:

Gutachter:

Preface

In this dissertation, the semantics of logical systems which are able to express vagueness and
graded truth assessment as well as doubt and graded trust assessment are investigated from the
point of view of mathematical logic.

Traditionally, logics for modelling graded truth have been many-valued logics which allow
truth values between 0 (false) and 1 (true). In applications, sometimes truth values are attached
to formulae to assess the truth of the formula.

In logics for modelling graded trust, usually trust (or plausibility, or possibility, or belief)
degrees are attached to formulae from classical two-valued logic to assess the trust in the
knowledge expressed by this formula.

Several logical systems using labelled formulae (i. e. formulae to which some label is attached)
have been described in the literature, with varying interpretations concerning structure and
semantics of labels. In many cases, however, the meaning of a label is not precisely specified,
casting doubt on what, from a semantic point of view, is really formalised by labelled formulae
or a corresponding inference mechanism.

Without a specific background theory for the meaning of labels (as is given, for instance,
by probability theory), of course no canonical paradigm for specifying the structure and pro-
cessing of labels exists. Consequently, several different such paradigms have been developed.
Differences between these systems combined with the lack of a precisely defined semantics for
labels have led to critique of such logical systems as a whole, because it must seem suspicious
if from one and the same knowledge base of labelled formulae, it is possible to infer totally
different results, without a clear semantic theory which can explain the differences.

There have been attempts to clarify this situation, especially by distinguishing whether a
system of labelled logical formulae is used for the representation of graded truth assessment or
graded trust (or possibility, necessity, plausibility, uncertainty, belief) assessment with respect
to the states of affairs being modelled. Logical systems which can accomplish one or the other
task have been defined, studied and compared.

In this dissertation, a very general approach to the definition of labels for expressing graded
truth and graded trust is described. This definition gives rise to a canonical definition of the
concepts of model and semantic consequence for the resulting logic of labelled formulae.

The expressive power of such logics is very high. A label can express uncertainty about
truth or trust or any combination of both. A systematic study of the semantics of these logical
systems is given here, as well as a discussion and comparison of special cases.

iii

Contents

Preface iii

List of Figures viii

1 Introduction 1
1.1 Degrees of Truth vs. Degrees of Validity . 3

1.1.1 Truth Values . 5
1.1.2 Degrees of Validity . 6

1.2 Notation . 7
1.3 Lattices . 7
1.4 L-Fuzzy Sets . 11

2 Fuzzy Filters in Lattices 15
2.1 Basic Definitions and Propositions . 15
2.2 Complete Lattices of Fuzzy Filters of a Lattice 21
2.3 Expanding a Complete Lattice by Another Complete Lattice 33

3 Fuzzy Filter-Based Logics 39
3.1 Syntax . 39
3.2 Semantics . 43
3.3 Properties of and Relations Between Formulae 49
3.4 Expressing Uncertainty in Many-Valued Logics 51

3.4.1 Expressing Graded Truth Assessment 51
3.4.2 Expressing Graded Trust Assessment . 53

3.5 Labels and Labelled Formulae . 55

4 Models and Semantic Consequence 59
4.1 The Model Relation . 59
4.2 Some Logical Concepts Based on the Model Relation 75
4.3 Semantic Consequences . 88

4.3.1 Basic Definitions and Properties . 88
4.3.2 Characterising Validity and Inconsistency using Cons 94
4.3.3 Inconsistency and Refutation . 96
4.3.4 Compatibility wrt Logical Operator Symbols; Normal Forms 119

5 On the Expressive Power of Fuzzy Filter-Based Logics 125
5.1 Degrees of Truth vs. Degrees of Validity . 126

5.1.1 Truth Values . 126
5.1.2 Degrees of Validity . 127

5.2 Logics of Graded Truth Assessment . 127
5.2.1 Using Truth Values as Labels . 132

5.2.1.1 Pavelka-Style Lattice-Based Propositional Logic 134

v

Contents

5.2.1.2 Lee’s Fuzzy Logic with Truth Value-Labelled Formulae 135
5.2.2 Using Sets of Truth Values as Labels . 137

5.3 Logics of Graded Trust Assessment . 137
5.3.1 Possibilistic Logic . 150

5.3.1.1 Possibilistic Logic with Necessity-Valued Formulae 151
5.4 Comparison between graded truth assessment and graded trust assessment . . 154

5.4.1 Definitions of the Logics to be Compared 155
5.4.2 Compactness . 156
5.4.3 Validity Indices and Valid F-Fuzzy Sets of Clauses 159
5.4.4 Inconsistency . 161
5.4.5 Refutation . 163
5.4.6 Concluding Remarks . 167

5.5 Logics of Graded Truth and Graded Trust Assessment 168
5.5.1 Examples of Labels . 169

5.5.1.1 ‘Simple’ Labels . 169
5.5.1.2 Labels Based on True . 175
5.5.1.3 Label Languages . 177

5.5.2 Examples of Inferences . 178
5.6 On the Issue of Compositionality . 192
5.7 Other Paradigms for Defining Logics of Graded Truth and Graded Trust Assess-

ment . 193
5.7.1 Possibilistic Logic with Vague Predicates 194
5.7.2 Possibilistic Logic with Fuzzy Constants (PLFC) 195

5.7.2.1 Syntax . 195
5.7.2.2 Semantics . 196
5.7.2.3 Semantics of Labels . 197
5.7.2.4 Conclusions . 198

5.7.3 Qualitative Fuzzy Possibilistic Logic . 198

6 Summary, Conclusions, and Future Work 201
6.1 Summary and Conclusions . 201

6.1.1 Contributions to the Theory of Fuzzy Filters in Lattices 201
6.1.1.1 Using Arbitrary Complete Lattices as Domain and Range of

Fuzzy Filters . 201
6.1.1.2 ‘Extensional’ Definition of Supremum in the Lattice of Fuzzy

Filters . 202
6.1.1.3 Lattices of Principal Fuzzy Filters and their Embedding into

the Lattice of Fuzzy Filters . 202
6.1.1.4 Expanding a Lattice by another Lattice 203

6.1.2 Separating Degrees of Truth and Degrees of Validity 203
6.1.2.1 Identification and Comparison of Special Cases 203
6.1.2.2 Using Arbitrary Complete Lattices for Truth Values and Valid-

ity Degrees . 204
6.1.3 Development of Fuzzy Filter-Based Logics 206

6.1.3.1 Properties of the Model and Semantic Entailment Relations . 206
6.1.3.2 Axiomatic Characterisation of Logics of Graded Truth and Graded

Trust Assessment . 207
6.1.3.3 Investigation of Normal Forms 207
6.1.3.4 Investigation of Refutation . 207

6.2 Extensions and Future Work . 208

vi

Contents

6.2.1 Syntactic Derivation and Automated Deduction 210
6.2.1.1 Labelled Rules of Inference . 211
6.2.1.2 Normal Forms . 222
6.2.1.3 Refutation . 223
6.2.1.4 Resolution-based Derivation 223
6.2.1.5 Handling First Order Logic . 224

6.2.2 Measure-Theoretic Interpretation of Validity Degrees 224
6.2.3 Applications . 225
6.2.4 Tasks at Hand . 225

Lists of Definitions, Theorems and Examples 227

Bibliography 231

Symbols, Notation, and Glossary of Concepts 241

Index 259

vii

List of Figures

4.1 The smallest non-chain . 102

5.1 Dimensions of many-valuedness. 155
5.2 Some simple labels. 170
5.3 Composition of simple labels. 175
5.4 Labels requiring T = D. 176
5.5 Modifications of True. 178
5.6 Special label Approximately truer than 0.9. 184
5.7 Label resulting from inference with Kleene-Dienes implication. 188
5.8 Label resulting from inference with Lukasiewicz’s implication. 190
5.9 Further labels resulting from inference with Lukasiewicz’s implication. 191
5.10 Graphical summary of inference results with ‘fuzzy’ labels. 191

6.1 A validity degree lattice which is not a chain 206

viii

1 Introduction

uncertain /�nhs�qt(�)n, -t*n/ a. ME. 1 Not determined or
fixed; liable to change, variable, erratic; (of a person) change-
able, capricious. ME. 2 About which one cannot be certain,
unreliable; (of a path etc.) not clearly leading to a certain
goal or destination. ME. 3a Not known with certainty; not
established beyond doubt. ME. b Without clear meaning;
ambiguous. lME. c Not clearly identified, located, or de-
termined; (of something seen) not clearly defined or outlined.
e. [...]

The New Shorter Oxford English Dictionary.

Most disciplines of artificial intelligence, for instance knowledge representation, machine learn-
ing, and planning, profit from research on the theoretical foundations of ‘classical’ two-valued
logic. This is done by employing the logical language for the formulation of knowledge bases and
(via logic programming languages) for the implementation of inference engines. This way, an
extensive theoretical background can be exploited for establishing consistency or independence
of knowledge bases or for the design of automated inference mechanisms.

Whenever problem definitions, input data, or expert knowledge involve uncertainty, clas-
sical two-valued logic alone is often insufficient as a tool for knowledge representation. From the
possible meanings of uncertainty cited above from the New Shorter Oxford English Dictionary,
the following two are focused on in this dissertation.

1. Uncertainty in the sense of ambiguity, vagueness or impreciseness (items 3b and 3c of
the above quote). The concept that this type of uncertainty is given by degree in systems
for knowledge representation is referred to as graded truth assessment1.

2. Uncertainty in the sense that something is ill-known or doubtful (item 3a of the above
quote). The concept that this type of uncertainty is given by degree in systems for
knowledge representation is referred to as graded trust assessment.

In both cases, it is assumed that uncertainty can be given by degree. This dissertation is
devoted to studying logics which allow to represent both types of graded uncertainty, strictly
from the perspective of mathematical logic. For representing the distinct types of uncertainty
in logical systems, two distinct concepts which are two-valued in classical logic are allowed to
become many-valued :

1. Graded truth assessment is achieved by making the classical concept of truth many-
valued and making degrees of truth available within the logical language (in the form of
labels).

1The author has abstained from calling this type of uncertainty uncertainty about truth (and the second type
uncertainty about knowledge) because the term uncertainty is too much overloaded in the literature, especially
by measure-theoretic investigations like Dempster-Shafer theory. Since this dissertation deals exclusively
with the linguistic aspects of uncertainty, i. e. the meaning of this term in natural language and the formalisa-
tion of this meaning as the semantics of suitable logical systems, the chance of misunderstandings is reduced
by avoiding the term uncertainty as much as possible.

1

1 Introduction

2. Graded trust assessment is achieved by making the classical concept of validity many-
valued and making degrees of validity available within the logical language (in the form
of labels). Because of the purpose of many-valued validity for modelling graded trust
assessment, degrees of validity used within the logical language for modelling purposes
are also called degrees of trust.

All this will presently be explained in detail; but first, a short survey of the state of the art.
These two aspects of uncertainty are nowadays discussed and distinguished in most books

on fuzzy logic, usually under the names vagueness and uncertainty. See for instance the
preface to [41] by G. Gerla or [84, section 1.1] by V. Novák, I. Perfilieva, and J. Močkoř

for another discussion of the two concepts (although only vagueness, and hence graded truth
assessment, is studied further in [84]). See also [53, chapter eight] by P. Hájek.

For the representation of graded truth, it seems natural to allow that logical formulae
assume truth values between 0 (for ‘false’) and 1 (for ‘true’). This assures that there is again a
strong theoretical basis, namely the theory of many-valued logic (see for instance S. Gottwald

[45] or P. Hájek [53]).
However, the ‘classical’ approaches to many-valued logic (see S. Gottwald [45] and also

P. Hájek [53]) rely on employing the language of two-valued logic, varying only the set of
truth values and the interpretation of the propositional logical operators (e. g. implication, and,
or, not), of the quantifiers and finally of the concepts of model and semantic consequence.

It has to be stressed again that in most classical approaches to many-valued logic, the ‘outer
appearance’ of logical formulae is retained while all changes happen ‘behind the scenes’.

Obviously, for knowledge representation involving graded truth assessment, the mere change
of interpretation from two-valued to many-valued logic while retaining the logical language is
not sufficient; there has to be a means for assessing the truth of formulae in a knowledge
base. One ‘standard technique’ for the representation of graded truth in the language of logical
formulae which has been investigated also from the theoretical perspective lies in ‘attaching’
truth values to formulae (see for instance J. Pavelka [85], V. Novák et al [84]).

The representation of graded trust has been addressed, for instance, in possibilistic logic
(see D. Dubois, J. Lang, and H. Prade [19]). There, the classical two-valued logic is em-
ployed (i. e. no graded truth is present) and degrees of possibility are attached to formulae.

Logics of both kinds have been studied and compared, for instance, by G. Gerla [41].

Labelled formulae, i. e. formulae from a classical logical language to which some label is
attached, are widely used for the representation of uncertainty in knowledge. In the literature,
various interpretations of the semantics of labels exist, and also variations regarding the struc-
ture of labels (see for instance L. A. Zadeh [105]; J. Baldwin [2]; D. Dubois, J. Lang,
and H. Prade [18]; R. Hähnle [46]; J. J. Lu, N. V. Murray, and E. Rosenthal [74];
E. Y. Shapiro [90]).

In many cases, however, the meaning of a label is not precisely specified in such systems,
casting doubt on what, from a semantic point of view, is really formalised by the labelled
formulae or a corresponding inference mechanism.

There have been attempts to clarify this situation, especially by distinguishing whether a
system of labelled logical formulae is used for graded truth assessment or graded trust assessment
with respect to the states of affairs being modelled (see D. Dubois, H. Prade and others
[17, 18, 24, 28, 30]; compare also P. Hájek and others [54, 56] and G. Gerla [41]). Logical
systems which can accomplish one or the other task have been defined, studied and compared.
It has been remarked that

2

1.1 Degrees of Truth vs. Degrees of Validity

“The frequent confusion pervading the relationship between truth and (un)certainty
in the approximate reasoning literature is apparently due to the lack of a dedicated
paradigm for interpreting graded truth and degrees of uncertainty in a single frame-
work.” [18, p. 210]; see also [19]

Since this comment was formulated, some logical systems have been provided which allow a
combination of many-valued truth with degrees of necessity [1, 29] and degrees of belief [49, 51,
55, 56], respectively (see section 5.7 for a comparison with the approach developed there).

In this dissertation, labelled logics for the representation of graded truth assessment and
graded trust assessment are defined, taking a very general approach which supports a wide
range of possible definitions of labels. In particular, it is possible to define logics which allow
the simultaneous use of graded truth assessment and graded trust assessment in labels, with a
precise definition of the semantic meaning of the labels. Suitable definitions for the fundamental
concepts of model and semantic consequence are given.

Thus, the modelling power of a logic of labelled formulae can be raised without changing
the underlying many-valued logic, simply by employing more expressive concepts of label. The
theoretical apparatus of many-valued logic can still be applied to the underlying logic.

The remainder of the current chapter provides some more motivational remarks and concept
clarifications, as well as some preliminaries from mathematics and fuzzy set theory which are
needed for the further development.

Chapter 2 contains a ‘tool-box’ of results about fuzzy filters in lattices, a notion on which
the definition of label shall be based.

Chapter 3 gives a first introduction of the notions logical formula and labelled formula. In
accordance with the presentation of J. Pavelka [85], the concepts are introduced in a rather
abstract form which is largely independent of the concrete logical system employed.

The central semantic concepts of model and semantic consequence are defined in chapter 4.
A systematic study of their properties is given.

In chapter 5, the logical definitions and theorems are illustrated by giving some special cases
of logical systems definable by the means developed in chapters 3 and 4. It is demonstrated that
some of the most popular logics for the representation of graded truth assessment (for instance,
Pavelka-style logics [85]) and graded trust assessment (for instance, possibilistic logic [19])
can be derived as special cases. The common framework of definition is exploited for giving a
systematic comparison of these two types of logics. Furthermore, some particular cases of logics
of graded truth and graded trust assessment which are generalisations of both Pavelka-style
logics and possibilistic logics are studied. The unified treatment of graded truth and graded
trust in a single framework allows it to shed some light on the issue of compositionality which
has been discussed at length in the literature under the keyword truth-functionality. Chapter
5 concludes with a comparison of existing paradigms for representing graded truth and graded
trust assessment with the system presented in this dissertation.

Chapter 6 is devoted to summarising the results of this dissertation, describing extensions
of the logical systems presented and possibilities for future developments. Among the subjects
covered are some preliminary steps towards automated deduction in the logics described here
(concerning refutation, normal forms and derivation rules) and alternatives to lattice-based
measures for the representation of graded trust.

1.1 Degrees of Truth vs. Degrees of Validity

When a logical system for the formalisation of fuzzy knowledge, i. e. knowledge of which certain
aspects are given by degree, is to be defined, it is natural to start with a system of classical

3

1 Introduction

two-valued logic and make certain parts of it, which may assume bivalent states only in the
classic definition, many-valued.

The most well-known method of defining such logical systems is known as many-valued logic
(see for instance [88]). This leads to the concept of truth value. While truth is two-valued in
classical logic, i. e. a formula is either true or false (under an interpretation), it can assume any
one from a fixed set of truth values in many-valued logic.

There is, however, another concept in classical logic which could be made many-valued,
namely validity. This leads to the concept of validity degree. Validity degrees are relevant for
such concepts as satisfaction, modelness, validity (of a formula), all of which are bivalent in
classical (and also in many-valued) logics.

There are logics in which truth is two-valued and validity many-valued (such as possibilistic
logic, see [19]), but obviously the most interesting case with most expressive power for fuzziness
is the case in which both truth and validity are many-valued.

In this dissertation, a formal methodology is provided for defining logical systems in which
truth and validity form two dimensions for making a logic ‘fuzzy’. This means many-valued
truth and many-valued validity can be studied and applied independently, with a precise spec-
ification of their meaning and impact on the expressive power of the resulting logic.

The crucial idea for the systematic investigation of these logics is the use of labelled formulae.
For precise definitions see chapter 3. For now, it should suffice to state that the definition of
labelled logic is based on an underlying logic which is a classical two-valued or many-valued logic.
To formulae from the underlying logic, labels are attached, and higher-level logical concepts like
model or semantic consequence are defined for labelled formulae only.

While the underlying logic is still subject to all the well-known laws and tools of many-
valued logic, the additional expressive power needed for representing fuzziness is put into the
labels, which are able to express both dimensions of fuzziness studied here.

In the following considerations, truth values will be employed to express graded truth. If
a formula from the underlying logic attains a certain truth value under a given interpretation,
this means it is true to a certain degree. When a truth value t is attached to a formula F

as a label, this shall express a constraint on the truth of the formula: To be valid under an
interpretation, it is sufficient for F to attain or exceed the truth value t. This is in fact a
relaxation of the strong constraint of classical many-valued logic [76], where a formula has to
attain the truth value 1 to be considered valid. Clearly this constraint is too strong in the
presence of fuzziness.

Validity degrees will be employed to express graded trust. When attached to formulae as
labels, validity degrees shall also be called degrees of trust, because they express an assessment
of the trust that the formula is valid. The more trust in the validity of the formula, the higher
the degree attached.

All the concepts motivated here shall be discussed more deeply in the sequel. They are
defined precisely and studied in chapters 3–5.

After having introduced the general framework in chapters 3–4, concrete logical systems are
discussed in chapter 5. There, three types of logics are distinguished:

Logics of graded truth assessment: In this class, all logics are collected for which validity is
two-valued. In this case, it is not possible to express graded trust in a label, and thus
such logics are suited mainly for the expression of knowledge pertaining to graded truth
assessment.

Logics of graded trust assessment: In this class, all logics are collected for which truth is
two-valued. In this case, it is not possible to express graded truth in a label, and thus
such logics are suited mainly for the expression of knowledge pertaining to graded trust
assessment.

4

1.1 Degrees of Truth vs. Degrees of Validity

Logics of graded truth and graded trust assessment: In this class, all logics are collected for
which truth and validity are both many-valued. In this case, a label can express graded
truth as well as graded trust, yielding a logic of very high expressive power. However, this
brings about also a high complexity of the resulting logics, and thus there has not been
much of a formal study of such logics so far. From an informal, semantically oriented
point of view, such logics have been proposed, applied and studied under several names
(see L. A. Zadeh [106] and the survey in [18]).

Note that the logics of graded truth assessment correspond to the case “(b) Fuzzy statement;
complete information” in the survey [18] of D. Dubois, J. Lang and H. Prade. Logics of
graded trust assessment correspond to the case “(c) Crisp statement; incomplete information”
and logics of graded truth and graded trust assessment correspond to the case “(d) Fuzzy state-
ment; incomplete information”.

There are some subtle differences between the cases distinguished in [18] and the different
classes of logics studied here; for instance, to represent knowledge in a logic of graded truth
assessment, it is not necessary to be completely (i. e. unambiguously) informed about the truth
value of a formula which is to be part of a knowledge base; it is just not possible to express
existing incomplete information in the form of graded trust. Some more explanations and
illustrations of the exact modelling power of the classes of logics studied here will be given in
the sequel; see in particular sections 3.4, 5.4, and 5.5.

The case “(a) Crisp statement; complete information” from [18] corresponds to classical
two-valued logic, which is a special case (i. e. making truth and validity two-valued) of both
logics of graded truth assessment and logics of graded trust assessment.

In the following chapters, the different logical systems are investigated in depth. After
having laid the foundations in chapters 2 and 3, in chapter 4 properties shared by all the logics
from all classes are investigated. Finally, in chapter 5, the different classes of logics distinguished
above are studied separately and compared. To motivate the apparatus developed in chapters
2–4, some remarks on the fundamental differences between degrees of truth and degrees of
validity are given in the following two subsections. Further motivations and explanations are
given in sections 3.4, 3.5, and 4.1.

1.1.1 Truth Values

In classical two-valued and many-valued logic, the concept of truth value is well-known and
well-understood for a long time. A couple of basic, well-known facts about truth values are
listed below.

1. A truth value is induced in a formula by an interpretation of the symbols from the logical
language.

It is obvious that the concept of a “truth value of a formula”does not make sense without
a corresponding interpretation, so“truth” is not a property of a formula in itself, but only
of a formula together with an interpretation.

2. It is not a custom in logic to make interpretations ‘available’. Instead, when defining
higher level concepts like validity, semantic equivalence or semantic consequence, inter-
pretations are usually ‘quantified over’: The definitions are obtained by quantifying over
all interpretations and processing the resulting set of truth values, without regard as to
which interpretation induced which truth value.

5

1 Introduction

3. From the two previous items, a striking fact can be concluded: Truth values, though one of
the most basic concepts of many-valued logics, are for internal use only, not on the ‘user
level’. The person defining and using systems of many-valued logics is not concerned with
interpretations or truth values, but only with validity, semantic equivalence or semantic
consequences of formulae.

In fact, when looking at publications concerned only with many-valued logics (for instance
[5,8,78,100]), one may note that truth values play almost no role at all (unless constants
for truth values are present in the logical language).

4. To summarise: A truth value is a property of a formula together with an interpretation;
it is not available to the ‘user’ of a logical system, but is quantified over when defining
user-level concepts like validity, semantic equivalence or semantic consequence.

1.1.2 Degrees of Validity

Using degrees of validity is much less common in investigations of logical systems. Classically,
validity (and, correspondingly, the model relation) is a bivalent notion, even in many-valued
logics. In many-valued logics, it is common to define a set of designated truth values. If the
truth value of a formula under an interpretation falls into the set of designated truth values, the
interpretation is considered to be a model for the formula (to satisfy the formula), otherwise it
is not considered to be a model for the formula. If a formula is satisfied by all interpretations,
it is considered to be valid.

Obviously, there is no notion of degree associated with this concept of model, and hence,
validity. Even Pavelka’s logic (see [85]) and “fuzzy logic in the narrow sense” (see [84], for
instance), where the set of designated truth values is localised to formulae by attaching a truth
value as a label to every formula, the notions of model and validity are two-valued.

The only logics investigated so far where the model relation and the concept of validity are
given by degrees are based on two-valued logic. These logics are, for instance, possibilistic [19]
and probabilistic [37, 77] logics, where formulae of two-valued logic are labelled by gradual
assessments of the trust, possibility, necessity, or probability of the formula to be valid. The
degree of validity of a labelled formula under an interpretation is then calculated depending on
the truth value induced by the interpretation, based on the ‘trust’ in the formula expressed by
the label.

As there are virtually no investigations so far of many-valued logics in which validity is
given by degree, in the following, the basic intentions behind the forthcoming definitions are
summarised:

1. Degrees of validity are properties of labelled formulae. The degree of validity of a labelled
formula under an interpretation (degree of satisfaction of the formula by the interpre-
tation) can only be determined by considering the truth value of the formula under the
interpretation and the label.

The label expresses the trust in the validity of the statement represented by the formula.
If the formula is completely true, it should be considered completely valid. But if it is not
completely true, it might still be considered somewhat valid (if the statement represented
by the formula cannot be trusted to be always completely true).

The validity of a labelled formula is then calculated by quantifying over the degrees of
satisfaction by all possible interpretations.

2. As the degree of validity of a labelled formula depends essentially on the label, the ‘user’,
i. e. the person using the logical system, has a strong influence on the resulting validity

6

1.2 Notation

degree. If they select a very strong label, the formula will be valid only if it is almost
completely true under all interpretations. If they select a very weak label, the formula
might attain a high degree of validity even if it has a very low truth value under certain
interpretations.

3. Degrees of truth are, from an algebraic point of view, obviously truth-theoretic in nature,
and thus will obey algebraic laws of e. g. MV-algebras, residuated or boolean lattices. In
this thesis, the generic form of a complete lattice (see chapter 3) has been selected as the
most general superstructure of all the possible truth-theoretic algebras.

In contrast with this, degrees of validity seem to be basically measure-theoretic in nature.
By choosing (again) a complete lattice (see chapter 3) as the algebraic structure for
validity degrees, this dissertation is committed to possibility measures (see [12,13]). This
is not the only choice, however. By choosing a Hausdorff space with an appropriate
definition of integral, it would pose no principal problem to consider degrees of validity as
probability degrees, as it has already been investigated for two-valued logics in the field of
probabilistic logics. The adaption of the definitions and results from this dissertation to
the case of probabilistic validity measures is an interesting subject for future investigations
(see chapter 6).

1.2 Notation

The sets of all natural numbers and real numbers are denoted by N(=def {0, 1, . . .}) and
R, respectively. The notation 〈r, s〉 is used for the closed interval of all real numbers t ∈ R
with r 5 t 5 s. The notation (r, s) is used for the open interval of all real numbers t ∈ R
with r < t < s. The half-open intervals (r, s〉 and 〈r, s) are defined accordingly.

The symbol P denotes the classical concept of power set, that is, for an arbitrary set S,
the set of all subsets of S is written PS. The empty set is denoted by ∅.

For two sets S, T , the set of all mappings from S into T is written TS.
The range of a mapping f : S → T is denoted rg f =def

{
t t ∈ T and ∃s ∈ S : t = f(s)

}
.

Ordered pairs are denoted by using square brackets, i. e. the ordered pair of a and b is
written [a, b]. Ordered tuples of arbitrary length are defined canonically by iterating ordered
pairs. For n ∈ N and a set S, the notation Sn denotes the n-fold Cartesian product of S,
i. e. the set of all n-tuples of elements from S, with the special cases S0 =def {∅} and S1 =def S.

1.3 Lattices

Following the approaches of J. A. Goguen [43] and J. Pavelka [85–87], the set of truth
values for the many-valued logic underlying the labelled formulae (the concepts of truth value,
formula and labelled formula are introduced in chapter 3) is assumed to possess a complete
lattice structure [L,u,t] such that L contains at least two distinct elements. This approach
makes it possible to apply the following results to a variety of logical systems, including finitely
and infinitely many-valued logics and (by Observation 1.4.1) even logics the truth values of
which are fuzzy sets. This makes this approach compatible with current trends in applications,
for instance approximate reasoning systems which use fuzzy sets as truth values (see for instance
H. Thiele [94]).

Remark
All lattices considered shall (explicitly or implicitly) be assumed to be complete (see below);
the unit element 1 and the zero element 0 of a complete lattice are assumed to be distinct,

7

1 Introduction

i. e. 1 6= 0 (unless stated otherwise). These properties are not always needed, but for logical
considerations this assures compatibility with the classical case. •

Definition 1.3.1 (Lattice)
Given a non-empty set L and two binary operations u, t on L, the triple L = [L,u,t] is said
to be a Lattice
=def 1. u,t are commutative, i. e. for all a, b ∈ L,

a u b = b u a a t b = b t a(1.1)

2. u,t are associative, i. e. for all a, b, c ∈ L,

a u (b u c) = (a u b) u c a t (b t c) = (a t b) t c(1.2)

3. u,t fulfil the absorption laws, i. e. for all a, b ∈ L,

a u (a t b) = a a t (au b) = a(1.3)

L is said to be the domain of L and u,t are said to be the meet and join of L, respectively.

The fundamentals of lattice theory, which may be found for instance in [4] by G. Birkhoff,
shall not be introduced in detail. It should however be mentioned that the lattice meet u and
join t induce on L a partial order relation v by

a v b =def a u b = a (equivalent with a t b = b). (a, b ∈ L)(1.4)

Vice versa, for every partially ordered set [L,v] for which every two-element subset
M = {a, b} j L has a greatest lower bound

d
M and a least upper bound

⊔
M with

respect to v, one can define a lattice structure [L,u,t] by

a u b =def

l
{a, b}, (a, b ∈ L)(1.5)

a t b =def

⊔
{a, b}.(1.6)

Furthermore, if
d

and
⊔

are defined with respect to the partial order v induced by a lattice
structure [L,u,t] via definition (1.4), then for every a, b ∈ L, a u b and a t b coincide withd{a, b} and

⊔{a, b}, respectively.
The completeness of the lattice [L,u,t] is equivalent with the statement that for every

subset M j L, the greatest lower bound
d

M and the least upper bound
⊔

M with
respect to v exist and lie in L. In particular, [L,u,t] has a unit element 1 and a zero
element 0 defined by

1 =def

⊔
L(1.7)

0 =def

l
L.(1.8)

In the following, it is assumed that always 0 6= 1 holds.
Given a lattice L = [L,u,t], its dual lattice is defined by

D(L) =def [L,t,u] .

L is said to be distributive iff the following equations hold for all a, b, c ∈ L:

a t (b u c) = (a t b) u (a t c),(1.9)

8

1.3 Lattices

a u (b t c) = (a u b) t (a u c).(1.10)

L is said to be completely distributive wrt.
d

iff the following equation holds for all
a ∈ L and M j L:

a t
l

M =
l

{a t b b ∈ M} .(1.11)

Analogously, L is said to be completely distributive wrt.
⊔

iff the following equation holds
for all a ∈ L and M j L:

a u
⊔

M =
⊔

{a u b b ∈ M} .(1.12)

L = [L,u,t] is said to be a chain iff for all a, b ∈ L,

a v b or b v a.(1.13)

A unary mapping ν : L → L is said to be a complementation on a lattice L = [L,u,t]
(with zero 0 and unit 1) iff for all a ∈ L,

a u ν(a) = 0 and a t ν(a) = 1.(1.14)

L is said to be complementary iff there exists a complementation on L. If L is distributive,
then a complementation (if existent) is unique. A complementary and distributive lattice is
said to be a Boolean algebra.

Note that on a Boolean algebra, the complementation is bijective and involutive, i. e.
for all a ∈ L,

ν(ν(a)) = a.

Furthermore, in a Boolean algebra, the complementation is order-reversing, i. e. for all
a, b ∈ L,

a v b iff ν(b) v ν(a).

None of these properties, however, is necessary for a complementation if L is not distributive.
Vice versa, being an involutive, order-reversing bijection is not sufficient for ν to be a

complementation on L.
Given two lattices L = [L,u,t] and L′ =

[
L′,u′,t′], then L is said to be a sublattice of

L′ (L b L′) iff L j L′ and u coincides with u′ and t coincides with t′ on L.

Definition 1.3.2 (Filters of a lattice)
Let L = [L,u,t] be a lattice.

A nonempty subset F of L is said to be a filter of [L,u,t]
=def 1. If a, b ∈ F , then a u b ∈ F .

2. If a ∈ F and b ∈ L, then a t b ∈ F .

The set of all filters of L is denoted by Fl(L).
To each lattice element a ∈ L its principal filter a is associated by

a =def {b b ∈ L and a v b} .(1.15)

The set of all principal filters of L is denoted by PFl(L) =def {a a ∈ L}.

9

1 Introduction

Observations 1.3.1 (Properties of filters)
The following observations are cited from the literature (see for instance [57]):

1. Requirement 2 of Definition 1.3.2 is equivalent with any one of the following statements:

2a If a ∈ F and b ∈ L and a v b, then b ∈ F .

2b If a, b ∈ L and a u b ∈ F , then a ∈ F .

2. Item 2b above implies

A nonempty subset F of L is a filter of [L,u,t] if and only if for all a, b ∈ L,

a, b ∈ F iff a u b ∈ F.

3. If L = [L,u,t] is a lattice with 1, then the ordinary subset relation j induces on Fl(L) a
complete lattice structure, the meet and greatest lower bound of which coincide with the
intersection ∩ and the greatest lower bound

⋂
in the complete lattice of all subsets of L.

This lattice is denoted
[
Fl(L),∩, ·∪].

The join ·∪ of Fl(L) is uniquely determined by definition (1.6), which can be formulated
as follows, for F, G ∈ Fl(L).

F ·∪ G =def

⋂{
H H ∈ Fl(L) and F ∪ G j H

}
This definition is equivalent with

F ·∪ G =def {c c ∈ L and there are a ∈ F, b ∈ G such that a u b v c} .(1.16)

4. The unit element of
[
Fl(L),∩, ·∪] is L. The zero element of

[
Fl(L),∩, ·∪] is {1}. If L is a

chain, then so is
[
Fl(L),∩, ·∪].

5. For every lattice element a ∈ L, the principal filter a is a filter of L. 0 coincides with the
unit element L of

[
Fl(L),∩, ·∪]. 1 coincides with the zero element {1} of

[
Fl(L),∩, ·∪].

6. In the lattice
[
Fl(L),∩, ·∪], the following holds for a, b ∈ L:

a ∩ b = a t b

a ·∪ b = a u b

Thus
[
PFl(L),∩, ·∪]is a sublattice of the complete lattice

[
Fl(L),∩, ·∪].

Furthermore,

a = b iff a = b,

thus · is a lattice isomorphism from L onto the dual lattice
[
PFl(L), ·∪,∩].

7. Let a ∈ L and F ∈ Fl(L).

Then a j F if and only if a ∈ F . •

10

1.4 L-Fuzzy Sets

Remark
A variety of lattice structures shall be employed in the following, for all of which the operations
and induced partial orders may be different, unless stated otherwise. This is made clear by using
different symbols for different operations wherever possible, but at some places, overloading
cannot be avoided. The meaning of overloaded operator symbols will always be clear from the
context. •

Examples 1.3.1 (Lattices)
1. The classical two-valued Boolean lattice B =def

[{0, 1} , and, or
]
, where and and or

are characterised by the ‘truth table’

a b and(a, b) or(a, b)

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

is the basis of two-valued logic. It is finite and thus trivially complete. The induced
partial order coincides on {0, 1} with the usual order 5 of real numbers.

2. The real unit interval, i. e. the closed interval 〈0, 1〉 of real numbers, which plays a
fundamental role in fuzzy logic as the most common set of truth values, is a lattice with
respect to the operations min and max for meet and join, respectively. The induced
partial order is the usual order 5 of real numbers. The lattice F =def

[〈0, 1〉 , min, max
]

is complete.

Unit and zero element turn out to be 1 and 0, respectively.

The Filters of F are all nonempty intervals from 〈0, 1〉 which are closed above with 1, i. e.
if I ∈ Fl(F), then

� there is a real number r ∈ 〈0, 1〉 such that I = 〈r, 1〉
� or there is a real number r ∈ 〈0, 1) such that I = (r, 1〉. •

1.4 L-Fuzzy Sets

Fix a non-empty set U called universe and a complete lattice L = [L,u,t]. In this section,
some simple facts about L-fuzzy set are recalled. The two simple observations at the end of
the section can be found in most textbooks on the subject.

An L-fuzzy set on U (see J. A. Goguen [42]) is defined to be a mapping

F : U → L.

Remark
In the remainder of this dissertation, different types of sets will play the role of universe. •

For u ∈ U , the value F (u) is said to be the degree of membership of u in F .

11

1 Introduction

The lattice operations u,t and the partial ordering v induced by the lattice structure on L
are used for defining on LU a meet ∩, a join ∪ and a subset relation j. Let F , G be L-fuzzy
sets on U .

(F ∩ G)(u) =def F (u)u G(u) (u ∈ U)(1.17)
(F ∪ G)(u) =def F (u)t G(u)(1.18)

F j G =def F (u) v G(u) for every u ∈ U(1.19)

For the unit interval F, these definitions correspond to L. A. Zadeh’s original fuzzy set theory
[104].

Observation 1.4.1 (Complete lattice of L-fuzzy sets)

If [L,u,t] is a complete lattice, then
[
LU ,∩,∪

]
as defined by (1.17) and (1.18) is a complete

lattice with induced partial order j as defined in (1.19). •

Proof
(see also J. Pavelka [85, p. 46])

By the pointwise definitions of ∩,∪, j for L-fuzzy sets, the lattice properties for
[
LU ,∩,∪

]
follow immediately. Furthermore, for every Φ j LU and u ∈ U ,(⋂

Φ
)

(u) =
l{F (u) F ∈ Φ

}
,(1.20) (⋃

Φ
)

(u) =
⊔{F (u) F ∈ Φ

}
,(1.21)

hence the completeness of
[
LU ,∩,∪

]
follows directly from the completeness of [L,u,t]. 2

The empty L-fuzzy set ///© on U is defined for every u ∈ U by

///©(u) =def 0. (where 0 is defined in (1.8))(1.22)

As a possibility of translating between fuzzy sets and classical sets, for F ∈ LU and every
a ∈ L the a-cut of F is defined by

CUTa(F) =def

{
u u ∈ U and a v F (u)

}
.(1.23)

By the completeness of the lattice L, the following simple characterisation of L-fuzzy sets
by their a-cuts is obtained.

Observation 1.4.2 (Constructing a fuzzy set from its cuts)
For every F ∈ LU and every u ∈ U ,

F (u) =
⊔{

a a ∈ L and u ∈ CUTa(F)
}

. •

Proof
The proof is very simple, carried out in two steps.

1. F (u) v ⊔{a a ∈ L and u ∈ CUTa(F)
}
.

It is sufficient to prove that F (u) ∈ {
a a ∈ L and u ∈ CUTa(F)

}
, which is obtained

from u ∈ CUTF(u)(F), which in turn follows by (1.23) from F (u) v F (u).

12

1.4 L-Fuzzy Sets

2.
⊔{

a a ∈ L and u ∈ CUTa(F)
}v F (u).

It is sufficient to prove that for every a ∈ L,

if u ∈ CUTa(F) , then a v F (u).

But this is just the definition of CUTa (see (1.23)). 2

Finally, the support suppF of an L-fuzzy set F ∈ LU is defined by

suppF =def

{
u u ∈ U and F (u) 6= 0

}
.(1.24)

F is said to be finite iff suppF is finite.

13

1 Introduction

14

2 Fuzzy Filters in Lattices

In this chapter, a class of special L-fuzzy sets is defined which form a ‘fuzzy’ counterpart to
filters of a lattice and at the same time form a ‘link’ between two lattice structures. In the
sequel, fuzzy filters of the truth-value lattice are used as labels for formulae, yielding a
considerable gain in expressive power of the resulting labelled logic.

The concept of fuzzy filter on a lattice is well-known in the literature (see for instance
M. A. de Prada Vicente and M. Saralegui Aranguren [16], B. Yuan and W. Wu [103],
P. Eklund and W. Gähler [32], W. Gähler [39,40], Y. J. Lee [65]). Some of the approaches
referred to make strong assumptions on the lattices involved (of being distributive, chains, or
function spaces; sometimes only the unit interval is considered as the lattice of membership
values).

One of the more general and comprehensive studies of fuzzy filters on a lattice has been
reported by B. Yuan and W. Wu [103], for the special case that the lattice is distributive and
that the membership degrees of the fuzzy sets which are used to model fuzzy filters are taken
from the unit interval F.

In the following, a more general definition is given, leaving out the distributivity condition
and considering membership degrees from an arbitrary complete lattice. Furthermore, the
thrust of the investigations presented here is slightly different. While B. Yuan and W. Wu

study the relationship between fuzzy filters and fuzzy congruences on a distributive lattice, in
the following the complete lattice of fuzzy filters of an arbitrary complete lattice is investigated.
Selected results from this chapter have been reported by the author in [71].

In further chapters, the semantics of logics in which formulae are labelled by fuzzy filters
of the truth-value lattice are studied, which is impossible without a fairly complete theory of
fuzzy filters on a lattice. The lattice-theoretic foundations for theoretical investigations of the
semantics of fuzzy filter-based logics are laid in this chapter.

2.1 Basic Definitions and Propositions

Let L = [L,u,t], L′ =
[
L′, f, g

]
be complete lattices with induced partial orders v, 4,

respectively. The following definition of a fuzzy filter is well-known in the literature, with
slight differences stemming from the fact that in most publications, the lattices L and/or L′

have a special form. In particular, L is often a lattice of mappings, and L′ is frequently the
real unit interval. The definition given here is the most general one. The definition (2.1) of a
principal fuzzy filter is also found in [39, section 4.1].

Definition 2.1.1 (Fuzzy filters of a lattice)
An L′-fuzzy set F on L is said to be an L′-fuzzy filter of L

=def 1. For all a, b ∈ L, F (a) f F (b) 4 F (au b).

2. For all a, b ∈ L, F (a) 4 F (at b).

3. F (1) = 1.

The set of all L′-fuzzy filters of L is denoted by L′-Fl (L).

15

2 Fuzzy Filters in Lattices

For d ∈ L′, associate with each lattice element a ∈ L its principal fuzzy d-filter da by

da (b) =def


1, if b = 1
d, if b 6= 1 and a v b

0, if not a v b

(b ∈ L)(2.1)

The set of all principal fuzzy d-filters of L is denoted by d-PFl (L) =def

{
da a ∈ L

}
. The set

of all principal fuzzy filters of L is denoted by L′-PFl (L) =def
⋃{

d-PFl (L) d ∈ L′}.
Note that the concept of fuzzy filter is meant to be a generalisation of the concept of filter

with respect to the lattice L. This should be distinguished carefully from the concept of filter
with respect to the lattice

[
LU ,∩,∪

]
, which is not related.

First of all, some compatibility results with the classical case.

Proposition 2.1.1 (Cuts of fuzzy filters are filters)
1. F ∈ L′-Fl (L) if and only if for every d ∈ L′, the d-cut CUTd(F) of F is a Filter of L.

2. For every d, d′ ∈ L′, CUTd

(
d′a
)
∈ Fl(L). In particular, if d 6= 0, then CUTd

(
da
)

is

the principal filter a.

Proof
ad 1. Both implications are proved separately.

1. If F ∈ L′-Fl (L), then for every d ∈ L′, CUTd(F) ∈ Fl(L).
That for every d ∈ L′, CUTd(F) is nonempty is guaranteed by condition 3 of Defi-
nition 2.1.1. Conditions 1 and 2 of Definition 1.3.2 remain to be checked.

ad 1. Let a, b ∈ CUTd(F). By definition of CUTd, d 4 F (a) and d 4 F (b). Thus,
d is a lower bound of F (a) and F (b), hence

d 4 F (a) fF (b)

and because F is an L′-fuzzy filter of L,

F (a) fF (b) 4 F (au b),

thus

d 4 F (au b).

This means a u b ∈ CUTd(F), which establishes condition 1.
ad 2. Let a ∈ CUTd(F) and b ∈ L. By definition of CUTd, d 4 F (a). By condition

2 of Definition 2.1.1,

d 4 F (at b).

This means a t b ∈ CUTd(F), which establishes condition 2.

2. If for every d ∈ L′, CUTd(F) ∈ Fl(L), then F ∈ L′-Fl (L).
Conditions 1, 2, and 3 of Definition 2.1.1 are to be checked.

16

2.1 Basic Definitions and Propositions

ad 1. Let a, b ∈ L. Then

F (a) fF (b) 4 F (a)
F (a) fF (b) 4 F (b)

and thus by (1.23),

a ∈ CUTF(a)fF(b)(F)

b ∈ CUTF(a)fF(b)(F),

hence, because CUTF(a)fF(b)(F) is a filter of L,

a u b ∈ CUTF(a)fF(b)(F),

thus, again by (1.23),

F (a) f F (b) 4 F (au b),

which had to be proved.
ad 2. Let a, b ∈ L. Obviously,

a ∈ CUTF(a)(F)

and thus, because CUTF(a)(F) is a filter of L,

a t b ∈ CUTF(a)(F).

By definition (1.23) of CUT, this means

F (a) 4 F (at b),

which had to be proved.
ad 3. Trivial, because 1 is an element of every filter of L, thus also of CUT1(F).

ad 2. To prove that for every d, d′ ∈ L′, CUTd

(
d′a
)
∈ Fl(L), three cases are distinguished.

Case 1. d = 0.
By definition (1.23), CUTd

(
d′a
)

= L, which is obviously a filter of L.

Case 2. d 6= 0 and d 4 d′.
By definition (1.23),

CUTd

(
d′a
)

=
{
b b ∈ L and d 4 d′a (b)

}
.(2.2)

Excluding the case d′a (b) = 0 from definition (2.1) because d 6= 0, and considering
that d 4 d′, this yields

= {b b ∈ L and a v b} ,

which is just the definition of a by (1.15), thus establishing the result by Observa-
tion 1.3.1.5.

Case 3. Not d 4 d′.
Considering (2.2) and (2.1), in this case CUTd

(
d′a
)

= {1}, which is a filter of L.

The claim that if d 6= 0, then CUTd

(
da
)

= a has been proved in case 2 above. 2

17

2 Fuzzy Filters in Lattices

Corollary 2.1.2 (Principal fuzzy filters are fuzzy filters)
For every lattice element a ∈ L and d ∈ L′, the principal fuzzy d-filter da is an L′-fuzzy

filter of L.

Proof
By combining item 2 and item 1 of Proposition 2.1.1. 2

The following lemma corresponds to [39, proposition 4.1].

Lemma 2.1.3 (Monotonicity properties of principal fuzzy filters)
1. Let a, b ∈ L and d, d′ ∈ L′. If b v a and d 4 d′, then

da j d′
b(2.3)

2. Let a, b ∈ L and d, d′ ∈ L′. If a 6= 1 and d 6= 0 and

da j d′
b ,

then b v a and d 4 d′.

Proof
Follows immediately from the definitions (2.1) and (1.19). 2

Observation 2.1.4 (Fuzzy filters of a chain)
If L is a chain, then for every F ∈ L′-Fl (L) and all a, b ∈ L,

F (a) g F (b) = F (a t b) .(2.4) •

Proof
F (a) g F (b) 4 F (a t b) follows immediately from Definition 2.1.1.2.

For establishing F (a t b) 4 F (a) g F (b), observe that from the fact that L is a chain, it
follows that a t b = a or a t b = b. But F (a) 4 F (a) g F (b) and F (b) 4 F (a) g F (b) hold
trivially. 2

The following proposition is meant to tighten the compatibility with the paper of B. Yuan

and W. Wu [103].

Observation 2.1.5 (Fuzzy filters are fuzzy sublattices)
Every L′-fuzzy filter of L is a L′-fuzzy sublattice of L. This means that for every F ∈ L′-Fl (L)
and all a, b ∈ L,

F (a) fF (b) 4 F (at b) fF (au b).(2.5) •

Proof
By Definition 2.1.1, F (a) fF (b) 4 F (au b) and F (a) 4 F (at b).

The result then follows immediately from the fact that L′ is a lattice. 2

The results collected in Observations 1.3.1 are now obtained in a generalised form as the-
orems. Some of the easier observations are stated in the remainder of this section, while the
more involved results concerning complete lattices of fuzzy filters are presented in section 2.2.

18

2.1 Basic Definitions and Propositions

Proposition 2.1.6 (Equivalent definitions of fuzzy filter)
Requirement 2 of Definition 2.1.1 is equivalent with any one of the following two equivalent

statements:

2a For all a, b ∈ L, if a v b, then F (a) 4 F (b).

2b For all a, b ∈ L, F (au b) 4 F (a) fF (b).

Proof
2 ⇒ 2a. Let a, b ∈ L such that a v b. By (1.4), this means a t b = b, thus F (a) 4 F (b) by

condition 2.

2a ⇒ 2b. Let a, b ∈ L. au b is a lower bound of a and b, thus au b v a and au b v b. By 2a,
F (au b) 4 F (a) and F (au b) 4 F (b). Thus F (au b) is a lower bound of F (a) and F (b),
hence F (au b) 4 F (a) fF (b).

2b ⇒ 2. Let a, b ∈ L. Then

F (a) = F (au (au b)) (by the absorption law of lattices)
4 F (a) f F (at b) (by 2b)

and, because F (a) f F (at b) is a lower bound of F (a) and F (at b),

4 F (at b) 2

Remark
B. Yuan and W. Wu [103] characterise fuzzy filters by (2.5) and 2a.

Thus an F-fuzzy filter of L is a fuzzy filter on L in the sense of [103]. The reverse direction
does not hold, in general, because of the additional condition 3 in Definition 2.1.1.

In fact, B. Yuan and W. Wu do not state any non-emptiness condition for fuzzy filters,
thereby sacrificing the compatibility with the classical case.

For this definition, condition 3 cannot be weakened without sacrificing either the fact that
every filter must in some sense be non-empty or the completeness of the lattice of fuzzy filters
established in theorem 2.2.1. •

Corollary 2.1.7 (Short definition of fuzzy filter)
An L′-fuzzy set F on L is an L′-fuzzy filter of L if and only if F (1) = 1 and for all a, b ∈ L,
F (a) fF (b) = F (au b).

Proof
Follows immediately from Definition 2.1.1 and item 2b above. 2

Remark
As remarked in [103], Corollary 2.1.7 implies that F is an L′-fuzzy filter of L if and only if F
is a homomorphism from the structure [L,u, 1] into the structure

[
L′, f, 1

]
. •

The following lemma corresponds to [39, proposition 4.1].

Lemma 2.1.8 (Degree of membership vs. containment of principal filter in a fuzzy filter)
Let a ∈ L, let d ∈ L′ and F ∈ L′-Fl (L). Then da j F if and only if d 4 F (a).

19

2 Fuzzy Filters in Lattices

Proof
The result is proved in two steps.

Step 1:
”
⇒“. Assume da j F .

By the assumption and definition (1.19),

da (a) 4 F (a)(2.6)

and by definition (2.1),

d 4 da (a).(2.7)

From (2.6) and (2.7) it follows by the transitivity of 4 that

d 4 F (a),

which had to be proved.

Step 2:
”
⇐“. Assume d 4 F (a). By definition (1.19) it suffices to prove that for every b ∈ L,

da (b) 4 F (b).

Case 1. b = 1.
By definitions (2.1) and 2.1.1.3,

da (b) = 1 = F (b).

Case 2. b 6= 1 and a v b.
This means

da (b) = d (by (2.1))
4 F (a) (by assumption)
4 F (b). (by Proposition 2.1.6.2a)

Case 3. Not a v b.
In this case,

da (b) = 0 (by (2.1))
4 F (b). (by definition (1.8) of 0) 2

Examples 2.1.1 (Fuzzy filters)
1. A B-fuzzy filter of L is just the characteristic function of a filter of L. This follows

from Proposition 2.1.1.1 and the two-valuedness of B.

2. The F-fuzzy filters of the lattice F (see example 1.3.1.2) are all functions f : 〈0, 1〉 → 〈0, 1〉
which are nondecreasing with respect to the usual order 5 of the reals and fulfil f(1) = 1.

This class includes the ‘positive’ examples of truth value restrictions given by J. F. Bald-

win [2], i. e. true, very true, fairly true, absolutely true, and unrestricted. •

20

2.2 Complete Lattices of Fuzzy Filters of a Lattice

2.2 Complete Lattices of Fuzzy Filters of a Lattice

The statement of the following theorem is mentioned in [103] and also in [69], without proof.

Theorem 2.2.1 (Complete lattice of fuzzy filters of a lattice)
Let L = [L,u,t], L′ =

[
L′, f, g

]
be complete lattices with induced partial orders v, 4, respec-

tively.

The ordinary fuzzy subset relation j from (1.19) induces on L′-Fl (L) a complete lattice
structure, the meet and greatest lower bound of which coincide with the meet ∩ and the greatest

lower bound
⋂

in the complete lattice of all L′-fuzzy sets on L (see Observation 1.4.1).

This lattice is denoted by
[
L′-Fl (L) ,∩, ·∪].

The join ·∪ of L′-Fl (L) is uniquely determined by definition (1.6), which can be formulated

as follows, for F , G ∈ L′-Fl (L).

F ·∪ G =def

⋂{H H ∈ L′-Fl (L) and F ∪ G j H} .(2.8)

Proof
First of all, prove that for every Φ j L′-Fl (L), the element

⋂
Φ of L′L (see Observation 1.4.1)

is an element of L′-Fl (L). For this, the conditions from Corollary 2.1.7 are verified separately.

1.
(⋂

Φ
)

(1) = 1.

(⋂
Φ
)

(1) =
k{F (1) F ∈ Φ

}
(by (1.20))

=
k

{1} (by Definition 2.1.1)

= 1

2. For all a, b ∈ L,
(⋂

Φ
)

(a) f
(⋂

Φ
)

(b) =
(⋂

Φ
)

(a u b).

Let a, b ∈ L. Then(⋂
Φ
)

(a) f
(⋂

Φ
)

(b)

=
k {F (a) F ∈ Φ

}
f

k{F (b) F ∈ Φ
}

(by (1.20))

=
k ({F (a) F ∈ Φ

} ∪ {F (b) F ∈ Φ
})

(by (1.5))

=
k {F (a) fF (b) F ∈ Φ

}
(by (1.5))

=
k {F (au b) F ∈ Φ

}
(by Corollary 2.1.7)

=
(⋂

Φ
)

(a u b) (by (1.20))

As
⋂

Φ is the greatest lower bound of Φ wrt. j in L′L, of course by
⋂

Φ ∈ L′-Fl (L), it is also
the greatest lower bound of Φ wrt. j in the subset L′-Fl (L) of L′L.

The meet induced by j is obtained from definition (1.5); of course it is identical with the
meet ∩ from (1.17).

It is well known from lattice theory that from the previous part of this proof, it already
follows that j induces a complete lattice structure on L′-Fl (L), and that the least upper bound

21

2 Fuzzy Filters in Lattices

of a set Φ j L′-Fl (L) (which shall be denoted by ·⋃Φ) is given by the greatest lower bound of
the set of upper bounds of Φ:

·⋃Φ =
⋂{

H H ∈ L′-Fl (L) and
⋃

Φ j H
}

.

Equation (2.8) then immediately follows from (1.5). 2

Theorem 2.2.2 (Alternative definition of join in the lattice of fuzzy filters)
Let L = [L,u,t], L′ =

[
L′, f, g

]
be complete lattices with induced partial orders v, 4, respec-

tively. Furthermore, let L′ be completely distributive wrt.
b

(see (1.12)).
The join of

[
L′-Fl (L) ,∩, ·∪] is also given by the following equation, for F , G ∈ L′-Fl (L):

(F ·∪ G)(c) =
j {F (a) f G(b) a, b ∈ L and a u b v c

}
. (c ∈ L)(2.9)

Proof
Define U ∈ L′L by

U(c) =def

j{F (a) f G(b) a, b ∈ L and a u b v c
}

. (c ∈ L)

It is to be proved that F ·∪ G = U .
This is done in three steps:

1. U is an upper bound of F , G wrt. j.

Let c ∈ L. It is sufficient to prove F (c) 4 U(c) and G(c) 4 U(c).

In fact,

c u 1 = c v c

and thus

F (c) f G(1) = F (c) ∈ {F (a) f G(b) a, b ∈ L and a u b v c
}

,

hence

F (c) 4
j{F (a) f G(b) a, b ∈ L and a u b v c

}
= U(c).

G(c) 4 U(c) is proved analogously.

2. U j F ·∪ G.

Let c ∈ L. It is sufficient to prove that for all a, b ∈ L with a u b v c,

F (a) f G(b) 4 (F ·∪ G)(c).

First of all,

F (a) 4 (F ·∪ G)(a)
G(b) 4 (F ·∪ G)(b)

and thus

F (a) f G(b) 4 (F ·∪ G)(a) f (F ·∪ G)(b)
4 (F ·∪ G)(au b) (by condition 1 of Definition 2.1.1)
4 (F ·∪ G)(c) (by condition 2a of Proposition 2.1.6)

22

2.2 Complete Lattices of Fuzzy Filters of a Lattice

3. U ∈ L′-Fl (L).

This is proved by verifying the conditions from Corollary 2.1.7.

3.1. U(1) = 1.
Trivially, 1 u 1 v 1 and thus

1 = F (1) f G(1) ∈ {F (a) f G(b) a, b ∈ L and a u b v 1
}

,

hence

U(1) =
j{F (a) f G(b) a, b ∈ L and a u b v 1

}
= 1.

3.2. For all c, d ∈ L, U(c) f U(d) = U(c u d).
By expanding definitions,

U(c) f U(d) =
j{F (a) f G(b) a, b ∈ L and a u b v c

}
f

j{F (a′) f G(b′) a′, b′ ∈ L and a′ u b′ v d
}

,

from which it follows by (1.12) that

=
j
F (a) f G(b) f F (a′) f G(b′)

a, b, a′, b′ ∈ L
and a u b v c

and a′ u b′ v d


and by Corollary 2.1.7

=
j
{
F (au a′) f G(b u b′) a, b, a′, b′ ∈ L

and a u b v c and a′ u b′ v d

}
.

Furthermore,

U(c u d) =
j{F (a) f G(b) a, b ∈ L and a u b v c u d

}
.

To establish U(c) f U(d) = U(c u d), it is sufficient to prove that{
F (au a′) f G(b u b′) a, b, a′, b′ ∈ L

and a u b v c and a′ u b′ v d

}
=
{F (a) f G(b) a, b ∈ L and a u b v c u d

}
.

This is demonstrated in two steps.
First, show that for all a, b, a′, b′ ∈ L such that a u b v c and a′ u b′ v d,

F (au a′) f G(b u b′) ∈ {F (a) f G(b) a, b ∈ L and a u b v c u d
}

.

For this, it is sufficient to prove that for all a, b, a′, b′ ∈ L such that a u b v c and
a′ u b′ v d,

(a u a′) u (b u b′) v c u d.

But this follows trivially from the properties of a lattice.

23

2 Fuzzy Filters in Lattices

Secondly, show that for all a, b ∈ L such that a u b v c u d,

F (a) f G(b) ∈
{
F (au a′) f G(b u b′) a, b, a′, b′ ∈ L

and a u b v c and a′ u b′ v d

}
.(2.10)

For this, two simple observations are sufficient. First of all, it is obvious that under
the precondition a u b v c u d,

a u b v c and a u b v d.

From this it follows that

F (au a) f G(b u b) ∈
{
F (au a′) f G(b u b′) a, b, a′, b′ ∈ L

and a u b v c and a′ u b′ v d

}
,

and finally the claim (2.10) by the fact that a u a = a and b u b = b.

From step 1 and step 3, it follows that F ·∪ G j U , and together with step 2, U = F ·∪ G is
obtained, which concludes the proof. 2

Observation 2.2.3 (∪ vs. ·∪)
Let F , G ∈ L′-Fl (L). If F ∪ G ∈ L′-Fl (L), then F ∪ G = F ·∪ G. •

Proof
Trivial by (2.8). 2

The following observation follows from the previous one by verifying the conditions from
Corollary 2.1.7 for F ∪ G.

Observation 2.2.4 (Join in the lattice of fuzzy filters of a chain)
Let L = [L,u,t], L′ =

[
L′, f, g

]
be complete lattices. Furthermore, let L be a chain.

Then in the complete lattice
[
L′-Fl (L) ,∩, ·∪], F ·∪ G = F ∪ G. •

Remark
In Theorem 2.2.2 and Observation 2.2.4, for the first time, additional assumptions have been
placed on L or L′, apart from being complete lattices. It should be observed, however, that
the examples B, F from Example 1.3.1 fulfil all the assumptions made in Theorem 2.2.2 and
Observation 2.2.4, so each could play the role of L as well as the role of L′ in each of Theorem 2.2.2
and Observation 2.2.4. •

In the following, the remaining items of Observation 1.3.1 are translated to fuzzy filters. Let
L = [L,u,t], L′ =

[
L′, f, g

]
be complete lattices with induced partial orders v, 4, respectively.

Observation 2.2.5 (Zero and unit in the lattice of fuzzy filters)
1. The zero element of the complete lattice

[
L′-Fl (L) ,∩, ·∪] is the mapping 0 : L → L′

defined for a ∈ L by

0(a) =

{
0, if a 6= 1
1, if a = 1

(2.11)

2. The unit element of the complete lattice
[
L′-Fl (L) ,∩, ·∪] is the mapping 1 : L → L′

defined for a ∈ L by

1(a) = 1.(2.12) •

24

2.2 Complete Lattices of Fuzzy Filters of a Lattice

Proof
Trivial by 0, 1 ∈ L′-Fl (L), by the fact that the induced partial order of

[
L′-Fl (L) ,∩, ·∪] is the

usual subset relation j for fuzzy sets, and by condition 3 of Definition 2.1.1. 2

Observation 2.2.6 (Special fuzzy principal filters)

The principal fuzzy 1-filter 10 of 0 coincides with the unit element 1 of
[
L′-Fl (L) ,∩, ·∪].

For every lattice element d ∈ L′, d1 coincides with the zero element 0 of
[
L′-Fl (L) ,∩, ·∪].

For every lattice element a ∈ L, 0a coincides with the zero element 0 of
[
L′-Fl (L) ,∩, ·∪].

•

Proof
Follows trivially from definition (2.1) and Observation 2.2.5. 2

Next, lattice structures based on principal fuzzy filters are studied. Some preparations
are necessary for this. First, it is demonstrated that from every element of L′-PFl (L), the
parameters d and a can be ‘reconstructed’ if d 6= 0 or a 6= 1, using newly defined functions δ, α
to be applied to principal fuzzy filters.

Definition 2.2.1 (Operators for extracting the parameters of a fuzzy principal filter)
Let F ∈ L′L. Define δ : L′L → L′, α : L′L → L by

δ(F) =def

j{F (b) b ∈ L \ {1}}
α(F) =def

l{
b b ∈ L and F (b) 6= 0

}
Lemma 2.2.7 (Conditions for extracting the parameters of fuzzy principal filters)

1. Let a ∈ L and d ∈ L′. Then

1.1. if d 6= 0, then α
(

da
)

= a,

1.2. if a 6= 1, then δ
(

da
)

= d,

1.3. if d = 0 or a = 1, then α
(

da
)

= 1 and δ
(

da
)

= 0.

2. Let P ∈ L′-PFl (L). Then

P =
δ(P)

α(P) .

Proof
ad 1.1. In the case d 6= 0, Proposition 2.1.1.2 yields{

b b ∈ L and da (b) 6= 0
}

= a = {b b ∈ L and a v b} ,

thus α
(

da
)

=
d {b b ∈ L and a v b} = a is obvious.

ad 1.2. In the case a 6= 1, it holds by definition of da that{
da (b) b ∈ L \ {1}

}
= {0, d},

thus δ
(

da
)

=
b{0, d} = d is obvious.

25

2 Fuzzy Filters in Lattices

ad 1.3. Observation 2.2.6 yields that in the case d = 0 or a = 1, da = 0 and thus{
da (b) b ∈ L \ {1}

}
= {0}{

b b ∈ L and da (b) 6= 0
}

= {1},

hence trivially α
(

da
)

=
d{1} = 1 and δ

(
da
)

=
b{0} = 0.

ad 2. From P ∈ L′-PFl (L), it follows that there exist a ∈ L and d ∈ L′ such that P = da .
Two cases are distinguished:

Case 1. d = 0 or a = 1.
By Observation 2.2.6, P = 0. Furthermore, α(P) = 1 and δ(P) = 0 by item 1.3.
Hence

δ(P)
α(P) = 01 = 0 = P .

Case 2. d 6= 0 and a 6= 1.
By items 1.1 and 1.2,

α(P) = a,

δ(P) = d,

thus
δ(P)

α(P) = da = P . 2

Secondly, a new operation for combining principal fuzzy filters is defined.

Definition 2.2.2 (Alternative join for principal fuzzy filters)
Let P ,P ′ ∈ L′-PFl (L).

P ∗∪ P ′ =def
(δ(P)gδ(P ′))

α(P) u α(P ′) .(2.13)

Observation 2.2.8 (Joining principal fuzzy filters)
Let a, b ∈ L and d, d′ ∈ L′. If a, b 6= 1 and d, d′ 6= 0, then

da ∗∪ d′
b = (dgd′)

a u b . •

Proof
Trivial from the definition and Lemma 2.2.7. 2

Remark
Note that this result can not be extended to arbitrary a, b ∈ L and d, d′ ∈ L′, in general,
because for instance if d = 0, then the value of a cannot be obtained from da . •

Theorem 2.2.9 (Lattice of principal fuzzy filters)
For all a, b ∈ L, and d, d′ ∈ L′,

da ∩ d′
b = (dfd′)

a t b(2.14)

Furthermore,
[
L′-PFl (L) ,∩, ∗∪] is a lattice.

26

2.2 Complete Lattices of Fuzzy Filters of a Lattice

Proof
First, (2.14) is proved.

Let c ∈ L. By definition (1.18), it suffices to prove

(dfd′)
a t b (c) = da (c) f d′

b (c)(2.15)

Case 1 c = 1.

By definition (2.1),

(dfd′)
a t b (c) = 1 = 1 f 1 = da (c) f d′

b (c).

Case 2. c 6= 1 and a t b v c.

By definition (2.1),

(dfd′)
a t b (c) = d f d′.

Furthermore, a t b is an upper bound of a, b, so

a v c

b v c,

thus by (2.1),

da (c) = d

d′
b (c) = d′

thus

da (c) f d′
b (c) = d f d′

which establishes (2.15) in this case.

Case 3. not a t b v c.

By definition (2.1),

(dfd′)
a t b (c) = 0.

Furthermore, a t b is the least upper bound of a, b, so

not a v c or not b v c,

which means by definition (2.1)

da (c) = 0 or
d′

b (c) = 0

thus

da (c) f d′
b (c) = 0 = (dfd′)

a t b (c),

which establishes (2.15) in this case.

27

2 Fuzzy Filters in Lattices

For the demonstration that
[
L′-PFl (L) ,∩, ∗∪] is a lattice, so far it has been established that

for all P ,P ′ ∈ L′-PFl (L), P ∩ P ′ ∈ L′-PFl (L). This means by (1.4) that if
[
L′-PFl (L) ,∩, ∗∪]

is a lattice, then its induced partial order is the fuzzy subset relation j.
To establish that

[
L′-PFl (L) ,∩, ∗∪] is indeed a lattice, it is now sufficient to prove the

following.

1. For all P ,P ′ ∈ L′-PFl (L), P ∗∪ P ′ ∈ L′-PFl (L).

This is obvious by definition (2.13).

2. For d, d′ ∈ L′ and a, b ∈ L, da j da ∗∪ d′
b and

d′
b j da ∗∪ d′

b .

It is proved that da j da ∗∪ d′
b . The statement

d′
b j da ∗∪ d′

b is proved analogously.

Case 1. d = 0 or a = 1.
In this case, da = 0, thus trivially da j da ∗∪ d′

b .

Case 2. d 6= 0 and a 6= 1.
By Lemma 2.2.7,

da ∗∪ d′
b =

(
dgδ

(
d′

b

))
a u α

(
d′

b

)
.

Furthermore,

d 4 d g δ

(
d′

b

)
,

a u α

(
d′

b

)
v a.

From this,

da j da ∗∪ d′
b

follows by (2.3).

3. For d, d′, d′′ ∈ L′ and a, b, c ∈ L, if da j d′′c and
d′

b j d′′c , then da ∗∪ d′
b j d′′c .

Case 1. d = 0 or a = 1.
By Lemma 2.2.7, α

(
da
)

= 1 and δ
(

da
)

= 0, thus by definition (2.13),

da ∗∪ d′
b = d′

b ,

and d′
b j d′′c holds by assumption.

Case 2. d′ = 0 or b = 1.
Is handled exactly as the previous case.

Case 3. d 6= 0 and a 6= 1 and d′ 6= 0 and b 6= 1.
By Lemma 2.1.3, d v d′′ and d′ v d′′ and c v a and c v b. Thus

d g d′ 4 d′′,
c v a u b.

28

2.2 Complete Lattices of Fuzzy Filters of a Lattice

and by (2.3), (dgd′)
a u b j d′′c . By Observation 2.2.8,

(dgd′)
a u b = da ∗∪ d′

b ,

hence the result.

Thus, the theorem is proved. 2

Theorem 2.2.10 (‘Horizontally’ embedding lattices of principal fuzzy filters)
For all a, b ∈ L, and d ∈ L′,

da ∩ d
b = d

a t b(2.16)
da ·∪ d

b =
d
a u b(2.17)

Thus,
[
d-PFl (L) ,∩, ·∪] is a sublattice of the complete lattice

[
L′-Fl (L) ,∩, ·∪].

Furthermore,
[
d-PFl (L) ,∩, ·∪] is a sublattice of the lattice

[
L′-PFl (L) ,∩, ∗∪].

Proof
(2.16) holds by (2.14) and the fact that d f d = d.

(2.17) is proved in two steps.

Step 1. To prove
d
a u b j da ·∪ d

b , by (2.8) it is to be proved that

d
a u b j

⋂{
F F ∈ L′-Fl (L) and da ∪ d

b j F
}

,

thus it suffices to show that for every L′-fuzzy filter F of L such that

da ∪ d
b j F ,(2.18)

it holds that

d
a u b j F .

By Lemma 2.1.8 it suffices to show

d 4 F (au b).(2.19)

By (2.18),

da j F and
d
b j F ,

thus again by Lemma 2.1.8

d 4 F (a) and d 4 F (b),

so, because F (a) fF (b) is the greatest lower bound of F (a),F (b),

d 4 F (a) fF (b)(2.20)

and, because F is an L′-fuzzy filter of L, it follows from Definition 2.1.1.1 that

F (a) fF (b) 4 F (au b),(2.21)

so (2.19) follows from (2.20) and (2.21) by the transitivity of 4.

29

2 Fuzzy Filters in Lattices

Step 2. To prove da ·∪ d
b j d

a u b , by (2.8) it is sufficient to prove that
d
a u b ∈

{
F F ∈ L′-Fl (L) and da ∪ d

b j F
}

,(2.22)

thus it suffices to show that
d
a u b ∈ L′-Fl (L)(2.23)

and

da ∪ d
b j d

a u b .(2.24)

(2.23) follows from Corollary 2.1.2. It remains to be proved that (2.24) holds. By (1.18)
and (1.19), it suffices to show that for every c ∈ L,

da (c) g d
b (c) 4 d

a u b (c)(2.25)

Case 1. c = 1.
By definition (2.1),

da (c) g d
b (c) = 1 g 1 = 1 =

d
a u b (c).

Case 2. c 6= 1 and (a v c or b v c).
Because a u b is a lower bound of a and b,

a u b v c,

thus by definition (2.1)

d
a u b (c) = d.

By assumption and definition (2.1),

da (c) 4 d

d
b (c) 4 d,

thus

da (c) g d
b (c) 4 d g d = d =

d
a u b (c)

Case 3. not a v c and not b v c.
This case is trivial because by definition (2.1),

da (c) g d
b (c) = 0 g 0 = 0.

Thus (2.24) and consequently (2.22) is proved.

This completes the proof of (2.17).
The result that

[
d-PFl (L) ,∩, ·∪] is a sublattice of the complete lattice

[
L′-Fl (L) ,∩, ·∪]

follows immediately.
To show that

[
d-PFl (L) ,∩, ·∪] is a sublattice of the lattice

[
L′-PFl (L) ,∩, ∗∪], by (2.16), it

suffices to prove that for all a, b ∈ L, and d ∈ L′,
da ·∪ d

b = da ∗∪ d
b .(2.26)

In the case d = 0, d-PFl (L) = {0}, so this case is trivial. The case a = 1 or b = 1 is also trivial.
Otherwise, (2.26) follows from Observation 2.2.8 and the fact that d g d = d. 2

30

2.2 Complete Lattices of Fuzzy Filters of a Lattice

Remark
Note that

[
L′-PFl (L) ,∩, ∗∪] is not a sublattice of

[
L′-Fl (L) ,∩, ·∪], in general, because for

arbitrary principal fuzzy filters P ,P ′ ∈ L′-PFl (L), P ∗∪ P ′ will not be equal with P ·∪ P ′, in
general (P ·∪ P ′ is a fuzzy filter, but not necessarily a principal fuzzy filter). •

Theorem 2.2.11 (L is isomorphic with D
([

d-PFl (L) , ∩, ·∪]))
For all a, b ∈ L, and d ∈ L′ \ {0},

da =
d
b iff a = b(2.27)

Thus, d· is a lattice isomorphism from L onto the dual lattice

D
([

d-PFl (L) ,∩, ·∪]) =
[
d-PFl (L) , ·∪,∩] .

Proof
(2.27) follows immediately from the definition of d· , and follows also by Lemma 2.1.3.

That d· is a lattice isomorphism from L onto
[
d-PFl (L) ,∩, ·∪] is then obvious by Theo-

rem 2.2.10. 2

Fixing the ‘horizontal direction’ L and varying the ‘vertical direction’ L′ yields a result
analogous with Theorems 2.2.10 and 2.2.11 as simple conclusions of the definitions.

For this result, however, an additional definition is necessary.

Definition 2.2.3 (Set of all principal fuzzy filters of a lattice element)
The set of all principal fuzzy filters of a lattice element a ∈ L is denoted by

L′-PFl (a) =def

{
da d ∈ L′

}
.

Observation 2.2.12 (‘Vertically’ embedding lattices of principal fuzzy filters)
For all a ∈ L and d, d′ ∈ L′,

da ∩ d′a = (dfd′)a(2.28)
da ·∪ d′a = (dgd′)a = da ∪ d′a(2.29)

Thus,
[
L′-PFl (a) ,∩, ·∪] =

[
L′-PFl (a) ,∩,∪] is a sublattice of the complete lattice[

L′-Fl (L) ,∩, ·∪].
Furthermore,

[
L′-PFl (a) ,∩, ·∪] is a sublattice of the lattice

[
L′-PFl (L) ,∩, ∗∪]. •

Proof
Trivial from the definitions, especially definition (1.18). 2

Observation 2.2.13 (L′ is isomorphic with
[
L′-PFl (a) , ∩, ∪])

For all a ∈ L \ {1} and d, d′ ∈ L′,

da = d′a iff d = d′(2.30)

Thus, ·a is a lattice isomorphism from L′ onto
[
L′-PFl (a) ,∩, ·∪] =

[
L′-PFl (a) ,∩,∪]. •

31

2 Fuzzy Filters in Lattices

Proof
Is also trivial. 2

Remark
Note that both lattices

[
d-PFl (L) , ·∪,∩] and

[
L′-PFl (a) ,∩,∪] are complete lattices by the

isomorphisms established in Theorem 2.2.11 and Observation 2.2.13.
But

[
d-PFl (L) , ·∪,∩] is not necessarily a complete sublattice of

[
L′-Fl (L) , ·∪,∩], because

the greatest lower bound and least upper bound, respectively, of a subset of d-PFl (L) may be
different when taken wrt

[
d-PFl (L) , ·∪,∩] and

[
L′-Fl (L) , ·∪,∩], respectively.

In contrast with this,
[
L′-PFl (a) ,∩,∪] is (trivially) indeed a complete sublattice of[

L′-Fl (L) ,∩, ·∪]. •

Observation 2.2.14 (‘Vertically’ embedding lattices of principal fuzzy filters is complete)
For all a ∈ L and M j L′,

⋂
d∈M

da =

(
c

d∈M
d

)
a(2.31)

·⋃
d∈M

da =

(
b

d∈M
d

)
a(2.32)

Thus,
[
L′-PFl (a) ,∩, ·∪] =

[
L′-PFl (a) ,∩,∪] is a complete sublattice of the complete lattice[

L′-Fl (L) ,∩, ·∪]. •

Proof
Trivial from the definitions. 2

It has been remarked above that
[
L′-PFl (L) ,∩, ∗∪] is not a sublattice of

[
L′-Fl (L) ,∩, ·∪],

and that applying ·∪ to fuzzy principal filters will lead out of L′-PFl (L), in general. In spite
of this, sublattices of

[
L′-Fl (L) ,∩, ·∪] which contain L′-PFl (L) will be studied in the next

section and subsequent chapters. To ease formulations, an explicit definition of the sublattice
of
[
L′-Fl (L) ,∩, ·∪] generated by L′-PFl (L) is given.

Definition 2.2.4 (Sublattice of
[
L′-Fl (L) , ∩, ·∪] generated by L′-PFl (L))

The smallest subset of L′-Fl (L) which contains L′-PFl (L) and is closed wrt. the lattice oper-
ations of

[
L′-Fl (L) ,∩, ·∪] is defined to be

P(L′, L) =def

⋂{
Φ L′-PFl (L) j Φ and [Φ,∩, ·∪] b

[
L′-Fl (L) ,∩, ·∪]}(2.33)

The sublattice of
[
L′-Fl (L) ,∩, ·∪] generated by L′-PFl (L) is

[
P(L′, L),∩, ·∪].

Proposition 2.2.15 (Characterisation of P(L′, L))
F ∈ P(L′, L) if and only if there exists n ∈ N, n = 1 and P1, . . . ,Pn ∈ L′-PFl (L) such that F
is obtained from P1, . . . ,Pn by finitely many applications of ∩, ·∪ (within

[
L′-Fl (L) ,∩, ·∪]).

Proof
Trivial. 2

32

2.3 Expanding a Complete Lattice by Another Complete Lattice

Remarks
1. Obviously,

[
P(L′, L),∩, ·∪] is a lattice, and hence a sublattice of

[
L′-Fl (L) ,∩, ·∪].

2. The structure of
[
P(L′, L),∩, ·∪] is not studied any further here. Obviously, P(L′, L) is

very large, much larger than L′-PFl (L).

If L′-Fl (L) is finite, then trivially, P(L′, L) = L′-Fl (L). But if L′-Fl (L) is infinite, then
P(L′, L) is a proper subset of L′-Fl (L), in general. •

2.3 Expanding a Complete Lattice by Another Complete Lattice

In this section, a method is defined which is needed in section 3.5 for expanding a truth value
lattice T into a label lattice L by means of a lattice D of degrees of trust. In this way,
the expressive power of the logic can be raised in a controlled way and a canonical method
is established for defining a model relation graded by elements from D.

Definition 2.3.1 (Expansion)
Given three complete lattices L1 = [L1,u,t], L2 = [L2, f, g], L3 = [L3, e, d] and a mapping
ι : L3 → L2-Fl (L1), L3 is said to be an expansion of L1 by L2, by means of ι

=def There exists a lattice L′
3 such that

1.
[
P(L2, L1), ·∪,∩] b L′

3 b
[
L2-Fl (L1) , ·∪,∩].

2. ι is a lattice isomorphism from L3 onto L′
3.

Remarks
1. Note that by the isomorphism between L3 and L′

3, the lattice L′
3 is necessarily complete,

but not necessarily a complete sublattice of
[
L2-Fl (L1) , ·∪,∩].

This means that for every subset L′′
3 of L′

3, a greatest lower bound and least upper bound
in L′

3 exist, but are not necessarily identical with the greatest lower bound and least
upper bound of L′′

3 in
[
L2-Fl (L1) , ·∪,∩].

2. As the choice of ι plays an important role the later definition of the model relation
and thus influences the semantics of fuzzy filter-based logics (see section 4.1), ι is
incorporated into the definition of expansion.

It should be noted that if L3 is a finite chain, then ι is uniquely determined. In particular,
in this case a successor relation can be defined which will cover the range from 0 to 1,
via all elements of L3, and which has to be respected by ι. From this it follows that ι is
unique.

3. In case ι can be disregarded, it does not need to be mentioned, i. e. “L3 is an expansion of
L1 by L2” means there exists a mapping ι : L3 → L2-Fl (L1) such that L3 is an expansion
of L1 by L2, by means of ι. •

The following result gives a first justification of the above definition by establishing that an
expansion of a lattice L1 can be regarded to be a ‘generalisation’ of L1.

Proposition 2.3.1 (If L3 is an expansion of L1 by L2, then L1 is embeddable into L3)
Given three complete lattices L1, L2, L3, such that L3 is an expansion of L1 by L2.

L1 is embeddable into L3, i. e. there exists a lattice monomorphism (an injective lattice

homomorphism) from L1 into L3 (see P. M. Cohn [10]).

33

2 Fuzzy Filters in Lattices

Proof
Let L1 = [L1,u,t] and L′

3 =
[
L′

3, ·∪,∩] be the sublattice of
[
L2-Fl (L1) , ·∪,∩] from Defini-

tion 2.3.1; let ι be the isomorphism between L3 and L′
3 by means of which L1 is expanded to

L3. It is sufficient to prove that for the unit element 1 of L2,

h =def ι−1 ◦ 1·(2.34)

is a lattice monomorphism from L1 into L3. By the fact that ι is an isomorphism, it suffices to
show that 1· is a lattice monomorphism from L1 into L′

3.
By Theorem 2.2.10,

[
1-PFl (L1) , ·∪,∩] is a sublattice of

[
L2-Fl (L1) , ·∪,∩]. Furthermore,

1-PFl (L1) j L′
3 by item 1 of Definition 2.3.1. So

[
1-PFl (L1) , ·∪,∩] is a sublattice of L′

3.
By Theorem 2.2.11 and the fact that 0 6= 1 (see the introduction), L1 is isomorphic with[

1-PFl (L1) , ·∪,∩] and thus, because
[
1-PFl (L1) , ·∪,∩] is a sublattice of L′

3, trivially monomor-
phic with L′

3. 2

For illustrating the concept of expansion, some examples of lattices are given in the following.

Examples 2.3.1 (Lattices for expansions)
1. Denote the classical Boolean lattice of two-valued logic by B =def

[{0, 1} , and, or
]

(see
Example 1.3.1.1). The induced partial order of this lattice coincides on {0, 1} with the
standard ordering relation 5 of real numbers.

2. For a fixed complete lattice L = [L,u,t], denote the complete lattice structure
for filters of L described in Observation 1.3.1 by

[
Fl(L),∩, ·∪]. The dual lattice

D
([

Fl(L),∩, ·∪]) =
[
Fl(L), ·∪,∩] is denoted by F (L). The induced partial order of

this lattice is the superset relation k.

3. For a fixed complete lattice L = [L,u,t], denote the complete lattice structure for
L-fuzzy filters of L established in Theorem 2.2.1 by

[
L-Fl (L) ,∩, ·∪]. The dual lattice

D
([

L-Fl (L) ,∩, ·∪]) =
[
L-Fl (L) , ·∪,∩] is denoted by FF (L). The induced partial order

of this lattice is the superset relation k for L-fuzzy sets (the inversion of the relation j
defined in (1.19)). •

The following observations are to illustrate the concept of expansion (using the examples
above). Let L, L′ be complete lattices.

Proposition 2.3.2 (Lattices expanded by the two-valued Boolean lattice)
L is expanded to L′ by B if and only if there exists a lattice L′′ isomorphic with L′ such that[

PFl(L), ·∪,∩] b L′′ b
[
Fl(L), ·∪,∩] .

Proof
By Definition 2.3.1, it is sufficient to prove that

[
PFl(L), ·∪,∩] is isomorphic with[

P(B, L), ·∪,∩] and
[
Fl(L), ·∪,∩] is isomorphic with

[
B-Fl (L) , ·∪,∩].

These results are proved separately.

1.
[
PFl(L), ·∪,∩] is isomorphic with

[
P(B, L), ·∪,∩].

First of all,
[
PFl(L), ·∪,∩] is isomorphic with L by Observation 1.3.1.6.

Secondly, L is isomorphic with
[
1-PFl (L) , ·∪,∩] by Theorem 2.2.11.

34

2.3 Expanding a Complete Lattice by Another Complete Lattice

It remains to prove that
[
1-PFl (L) , ·∪,∩] is isomorphic with

[
P(B, L), ·∪,∩]. For this,

it is sufficient to prove

B-PFl (L) = 1-PFl (L) .(2.35)

Obviously,

B-PFl (L) = 0-PFl (L) ∪ 1-PFl (L) .

By Observation 2.2.6,

0-PFl (L) =
{

11
}

,

hence

0-PFl (L) j 1-PFl (L) ,

establishing (2.35).

2.
[
Fl(L), ·∪,∩] is isomorphic with

[
B-Fl (L) , ·∪,∩].

Consider the mapping

h : Fl(L) → {0, 1}L

h(F)(a) =def

{
0, if a /∈ F

1, if a ∈ F
F ∈ Fl(L), a ∈ L(2.36)

That h is a bijection between Fl(L) and B-Fl (L) follows from Proposition 2.1.1.1, by
observing that CUT1

(
h(F)

)
= F and CUT0(F) = L ∈ Fl(L) for all F ∈ {0, 1}L.

That h is a lattice homomorphism is assured by definition (1.17), taking into account
that the lattice operation involved is the Boolean operation and which is also the basis
for defining the set intersection, and that ·∪ is uniquely determined by ∩.

Hence, h is a lattice isomorphism between
[
Fl(L), ·∪,∩] and

[
B-Fl (L) , ·∪,∩], establishing

the claim. 2

Corollary 2.3.3 (Lattices expanded by the two-valued Boolean lattice)
1. If L is isomorphic with L′, then L is expanded to L′ by the Boolean lattice B.

2. L is expanded to L by B.

3. L is expanded to F (L) by B.

Proof
Follows immediately from Proposition 2.3.2. 2

Proposition 2.3.4 (Expanding the two-valued Boolean lattice)
Given lattices L, L′, L is an expansion of B by L′ if and only if L is isomorphic with D(L′).

35

2 Fuzzy Filters in Lattices

Proof
Let L′ =

[
L′, f, g

]
. First, show that L′-PFl (B) = L′-Fl (B). It is a trivial observation that B

has only two filters, namely

{0, 1} = 0,
{1} = 1.

It is easy to conclude from definition (2.1) and the fact that by Proposition 2.1.1, every cut of
every fuzzy filter of B is one of 0, 1 that all fuzzy filters of B are fuzzy principal filters, i. e.
every F ∈ L′-Fl (B) is either `0 or `1 for ` ∈ L′.

Furthermore, Observation 2.2.6 yields

L′-PFl (1) =
{

00
}

,

hence

L′-PFl (0) = L′-PFl (B) = L′-Fl (B) .

By item 1 of Definition 2.3.1, thus every expansion of B by L′ is isomorphic with[
L′-PFl (0) , ·∪,∩].

By Observation 2.2.13, D(L′) is isomorphic with
[
L′-PFl (0) , ·∪,∩], hence the result. 2

Observation 2.3.5 (Expanding a lattice by itself)
L is expanded to FF (L) by L. •

Proof
Obvious by the definition of FF (L). 2

In chapter 5, logics based on the examples of expansions given above shall be discussed in
detail. There, a truth value lattice T is expanded into a label lattice L by a lattice D of
degrees of trust. The logical implications of basing the definition of label on the concept of
expansion are discussed at the end of the following chapter.

This chapter is closed with a discussion of criteria for an expansion to be a chain.

Proposition 2.3.6 (Expanding chains)
Let complete lattices L1, L2, L3 be given, such that L3 is an expansion of L1 by L2.

Then L3 is a chain if and only if L1 is a chain and L2 = B or L1 = B and L2 is a chain.

Proof
The ‘if’ direction is proved first, i. e. if L1 is a chain and L2 = B or L1 = B and L2 is a chain,
then L3 is a chain. Two cases are distinguished:

Case 1. Assume L1 is a chain and L2 = B.

It is sufficient to prove that
[
B-Fl (L1) , ·∪,∩] is a chain, from which the same follows for

every lattice isomorphic with a sublattice of
[
B-Fl (L1) , ·∪,∩].

In the proof of Proposition 2.3.2, it has been shown that
[
B-Fl (L1) , ·∪,∩] is isomorphic

with F (L1) =
[
Fl(L1), ·∪,∩]. By Observation 1.3.1.4,

[
Fl(L1),∩, ·∪] is a chain, so F (L1)

and hence
[
B-Fl (L1) , ·∪,∩] are chains, too.

36

2.3 Expanding a Complete Lattice by Another Complete Lattice

Case 2. Assume L1 = B and L2 is a chain. It is sufficient to prove that
[
L2-Fl (B) , ·∪,∩] is

a chain, from which the same follows for every lattice isomorphic with a sublattice of[
L2-Fl (B) , ·∪,∩].

In the proof of Proposition 2.3.4, it has been shown that
[
L2-Fl (B) , ·∪,∩] is isomorphic

with D (L2), which is just the dual lattice of L2 and thus a chain. Hence
[
L2-Fl (B) , ·∪,∩]

is a chain, too.

Next, the ‘only if’ direction is proved, i. e. if L1 is a chain, then L1 is a chain and L2 = B or
L1 = B and L2 is a chain. For the proof by contradiction, two cases are distinguished:

Case 1. L1 6= B and L2 6= B.

This means that there exists `1 ∈ L1 such that `1 6= 0 and `1 6= 1 holds and there exists
`2 ∈ L2 such that `2 6= 0 and `2 6= 1 holds.

It is sufficient to prove that
[
P(L2, L1), ·∪,∩] is not a chain. From this it trivially follows

that every expansion of L1 by L2 is not a chain (see Definition 2.3.1).

Define the following two L2-fuzzy sets F , G on L1, for ` ∈ L1:

F (`) =def

{
`2, if ` 6= 1
1, if ` = 1

G(`) =def

{
1, if `1 v `

0, if not `1 v `

i. e. F = `20 and G = 1
`1 .

It is obvious that F , G are both in L2-PFl (L1), and F 6= G. But it is also simple to
check that neither F j G nor G j F , because G(0) = 0 v `2 = F (0), where 0 6= `2 and
F (`1) = `2 v 1 = G(`1), where `2 6= 1.

It follows that
[
P(L2, L1), ·∪,∩] is not a chain.

Case 2. L1 is not a chain or L2 is not a chain.

By Definition 2.3.1, L3 contains a sublattice isomorphic with
[
P(L2, L1), ·∪,∩].

By Theorem 2.2.11,
[
P(L2, L1), ·∪,∩] contains a sublattice isomorphic with L1.

By Observation 2.2.13,
[
P(L2, L1), ·∪,∩] contains a sublattice isomorphic with the dual

of L2.

If either one of L1 or L2 were not a chain, then trivially, L3 wouldn’t be a chain, either.

As all possible cases are covered, the proof is complete. 2

37

2 Fuzzy Filters in Lattices

38

3 Fuzzy Filter-Based Logics

In this chapter, the basic concepts of the logical systems considered in this dissertation are
defined. Features of the underlying logic for the labelled formulae are not referred to in any
depth, apart from the fact that truth values of formulae are taken from a given lattice T.

After having defined the underlying T-valued logical formulae, the concept of labelled
formula is established. The remainder of this dissertation is devoted to the study of the
fuzzy filter-based logics defined in this chapter. The concepts of model and semantic
consequence are studied in chapter 4. Chapter 5 contains a study of different variants of fuzzy
filter-based logics and their expressive power and gives examples of some particular logics.

In the following, three distinct lattices shall frequently be referred to, assumed to be given
when defining a particular logic:

� A complete lattice T of truth values.

� A complete lattice D of degrees of trust (or validity).

� A complete lattice L of labels, to be attached to formulae as an assessment of their
validity.

These lattices are illustrated by (few) examples, and there are scattered remarks in this and the
following chapters, trying to explain the meaning of the values from T, D, and L, but basically,
in this chapter and chapter 4, the lattices are treated as abstract algebraic entities without a
specific fixed meaning. This allows to formulate properties of the logics under consideration
from a very abstract point of view, neglecting superficial details of semantics which depend on
the applications.

For a better understanding of the expressive power of the logics which are studied from an
abstract point of view in chapter 4, in chapter 5 particular classes of logics resulting from the
choice of particular lattices for T, D, and L are presented and compared.

3.1 Syntax

Following Pavelka [85], an arbitrary nonempty set Frm of logical formulae is assumed to
be given. For the time being, no assumptions whatsoever are made about the structure of Frm.

Example 3.1.1 (Propositional logic)
The most simple example of a logical language is that of propositional logic. It is determined
by

1. A non-empty set PV of propositional variables.

2. A non-empty set Ω of operator symbols or connectives.

3. A mapping Ar : Ω → N giving the arity of each operator.

39

3 Fuzzy Filter-Based Logics

Definition 3.1.1 (Propositional formula)
The set PFrm(PV, Ω, Ar) of all propositional formulae with respect to the sets PV, Ω and

the mapping Ar as defined above is the smallest set such that

1. PV j PFrm(PV, Ω, Ar),

2. For each ω ∈ Ω and formulae x1, . . . , xAr(ω) ∈ PFrm(PV, Ω, Ar), the symbol sequence

ω x1 . . .xAr(ω)

is contained in PFrm(PV, Ω, Ar).

Remark
When an operator symbol ω ∈ Ω is binary, i. e. Ar(ω) = 2, then the infix notation

(x1 ω x2) instead of ω x1x2

is also allowed. •

Example 3.1.2 (First order predicate logic)
The most common logical language is that of first order predicate logic. It is determined
by

1. A non-empty set IV of individual variables.

2. A set Func of function symbols.

3. A non-empty set Pred of predicate symbols.

4. Mappings Ar Func : Func → N giving the arity of each function and Ar Pred : Pred → N

giving the arity of each predicate.

0-ary function symbols are called individual constants and 0-ary predicate symbols are
called propositional constants.

5. A non-empty set Ω of operator symbols or connectives.

6. A mapping Ar : Ω → N giving the arity of each operator.

Definition 3.1.2 (Terms and formulae in first order logic)
1. The set Term(IV, Func, Ar Func) of all terms with respect to the sets IV, Func and the

mapping Ar Func as defined above is the smallest set such that

1.1. IV j Term(IV, Func, Ar Func),

1.2. for each f ∈ Func and terms t1, . . . , tAr Func(f) ∈ Term(IV, Func, Ar Func), the symbol
sequence

f t1 . . . tAr Func(f)

is contained in Term(IV, Func, Ar Func).

2. The set FOFrm(IV, Func, Ar Func, Pred, Ar Pred, Ω, Ar) of all first order formulae with

respect to the sets IV, Func, Pred, Ω and the mappings Ar, Ar Func, Ar Pred as defined
above is the smallest set such that

40

3.1 Syntax

2.1. For each p ∈ Pred and terms t1, . . . , tAr Pred(p) ∈ Term(IV, Func, Ar Func), the symbol
sequence

p t1 . . . tAr Pred(p)

is contained in FOFrm(IV, Func, Ar Func, Pred, Ar Pred, Ω, Ar).
This type of formula is called atomic formula.

2.2. For each ω ∈ Ω and formulae

x1, . . . , xAr(ω) ∈ FOFrm(IV, Func, Ar Func, Pred, Ar Pred, Ω, Ar),

the symbol sequence

ω x1 . . . xAr(ω)

is contained in FOFrm(IV, Func, Ar Func, Pred, Ar Pred, Ω, Ar).

2.3. For each v ∈ IV and each formula

x ∈ FOFrm(IV, Func, Ar Func, Pred, Ar Pred, Ω, Ar),

the symbol sequences

∀v x (universal quantifier)

and ∃v x (existential quantifier)

are contained in FOFrm(IV, Func, Ar Func, Pred, Ar Pred, Ω, Ar).
Formulae of this type are called quantified formulae.

Note that many other variants for defining formulae of first order predicate logic exist in
the literature.

For instance, in many variants function symbols are not present or a special equality pred-
icate = is required to be in Pred.

Typical extensions of the variant presented here include the many-sorted variant and a
variant where instead of fixing quantifiers to universal and existential one, an arbitrary set
of quantifier symbols is employed. The latter variant is especially interesting for many-valued
logics, but is neglected here to avoid cluttering up the presentation. •

The remark above allowing infix notation for binary operator symbols is used for first order
formulae as well.

Furthermore, for better readability, a term of the form

f t1 . . . tn

will sometimes be written f(t1, . . . , tn) or even (t1 f t2) if n = 2 and a first order formula

p t1 . . . tm

will sometimes be written p(t1, . . . , tm) or even (t1 p t2) if m = 2.

41

3 Fuzzy Filter-Based Logics

Example 3.1.3 (Classical Logical Operators)
The standard set of logical operator symbols is defined by

ΩS =def {¬,∧,∨,→}
Ar S(¬) =def 1 (Negation)
Ar S(∧) =def 2 (Conjunction)
Ar S(∨) =def 2 (Disjunction)

Ar S(→) =def 2 (Implication)

For a fixed set PV of propositional variables, a shorthand for the standard propositional
language is defined by PFrmS =def PFrm(PV, ΩS, Ar S).

Assuming that p, q ∈ PV, examples for propositional formulae from PFrmS include

p

¬q

(p ∨ q)
¬(¬p ∧ ¬q)

For a fixed set IV of individual variables, a fixed set Func of function symbols with corre-
sponding arity mapping Ar Func : Func → N, and a fixed set Pred of predicate symbols with
corresponding arity mapping Ar Pred : Pred → N, a shorthand for the standard first order
language is defined by

FOFrmS =def FOFrm (IV, Func, Ar Func, Pred, Ar Pred, ΩS, Ar S) .

Assuming that v, w ∈ IV, ξ, f, ∗ ∈ Func such that Ar Func(ξ) = 0, Ar Func(f) = 1, and
Ar Func(∗) = 2, and furthermore p, = ∈ Pred such that Ar Pred(p) = 1 and Ar Pred(=) = 2, then
the following are examples for first order formulae from FOFrmS:

p(f(ξ))
¬(v = f(v))

∃v∃w((v ∗ f(w)) = ξ)
∀v(p(v)∨ p(f(v)))

•

There are logical languages with even more expressive power than first order predicate logic,
for instance second order predicate logics or modal logics. As the semantic considerations in
the following chapters are very general in nature, and are potentially applicable to a wide range
of logical systems, the logical language is restricted as little as possible, and the examples of
concrete languages given above are used only where examples of formulae are needed. In this
case, propositional logic is mostly sufficient for demonstrating certain effects; first order logic
is only used in some examples of knowledge representation at the very end of this dissertation
(see section 5.5.2).

In the major part of this dissertation, however, Frm is completely arbitrary.
It will sometimes be interesting to study the behaviour of semantic operators (like seman-

tic entailment) wrt. certain logical connectives, without having to restrict the set of formulae
to a specific type of logical language. To this end, in the following a logical language Frm shall
be said to contain a connective ω of arity n ∈ N if and only if for all x1, . . . , xn ∈ Frm,

ω x1 . . .xn ∈ Frm,(3.1)

42

3.2 Semantics

and furthermore, for every x ∈ Frm, it can be uniquely determined whether it is of the form
(3.1). This way, it is possible to speak in a sensible manner about formulae constructed by
using ω without overly restricting the range of concrete structures of logical formulae. If n = 2,
the notation

(x1 ω x2) instead of ω x1x2

is also allowed.

3.2 Semantics

The basis for the definition of many-valued semantics is a complete lattice T =def [T , Tu, Tt].
The members of T are called truth values.

Because the structure of logical formulae has not been fixed, the semantics of a logic are
defined to be an arbitrary collection of truth valuation functions, i. e. a semantics for Frm
is a set

S j T Frm

of truth valuation functions Val ∈ S, Val : Frm → T .
For some characterisation theorems, the following property will be necessary:

For every t ∈ T there exists Val t ∈ S and xt ∈ Frm such that Val t(xt) = t.(3.2)

This fundamental property will be assumed in the following without further mention. It is not
really a very severe restriction on the admissible logical systems. In proofs, it shall be indicated
where it is essential.

Example 3.2.1 (Semantics for Propositional Logics)
The semantics for a propositional language PFrm(PV, Ω, Ar) is a set of valuation functions
induced by assignments of truth values to the propositional variables.

An assignment of truth values to the propositional variables is a mapping of the form

A : PV → T.

Following the principle of extensionality, it is assumed that an Ar(ω)-ary truth value func-
tion

ϕω : T Ar(ω) → T

is associated with each operator symbol ω ∈ Ω.
With every assignment A ∈ T PV, a valuation function Val A is associated inductively as

follows. Let x ∈ Frm.

Definition 3.2.1 (Valuation function in propositional logic)
1. If x ∈ PV, then Val A(x) =def A(x).

2. If there are ω ∈ Ω and propositional formulae x1, . . . , xAr(ω) such that

x = ω x1 . . .xAr(ω)

then

Val A(x) =def ϕω

(
Val A(x1), . . . , Val A

(
xAr(ω)

))
.

43

3 Fuzzy Filter-Based Logics

Assuming T, PV, Ω, Ar and the mappings ϕω for all ω ∈ Ω to be given, the semantics S

for PFrm(PV, Ω, Ar) is defined to be

S =def {Val A A : PV → T} .(3.3)

For the example of propositional logic, assumption (3.2) is trivially fulfilled. For an arbitrary
propositional variable p ∈ PV, define xt =def p for every t ∈ T , and as Val t, employ any
valuation function Val A such that A(p) = t. •

Example 3.2.2 (Semantics for First Order Logics)
The semantics for a first order language FOFrm(IV, Func, Ar Func, Pred, Ar Pred, Ω, Ar) is
a set of valuation functions induced by interpretations which specify a domain containing all
individuals under consideration and assign fuzzy relations (on the domain) to predicate symbols,
and functions (on the domain) to function symbols.

Definition 3.2.2 (Interpretations in First Order Logic)
Given a first order language Frm = FOFrm(IV, Func, Ar Func, Pred, Ar Pred, Ω, Ar) (see Ex-
ample 3.1.2 for a definition of IV, Func, Ar Func, Pred, Ar Pred, Ω, and Ar), an interpretation

for Frm is given by a tuple

I = [U, Π, Φ]

where

1. U is an arbitrary non-empty set called domain or universe.

2. Π : Pred → ⋃{
TUn

n ∈ N
}

such that for every p ∈ Pred, Π(p) ∈ TUArPred(p)
.

3. Φ : Func → ⋃{
UUn

n ∈ N
}

such that for every f ∈ Func, Φ(f) ∈ UUArFunc(f)
.

Logical operator symbols are interpreted as for propositional logic (see Example 3.2.1),
i. e. it is assumed that an Ar(ω)-ary truth value function

ϕω : T Ar(ω) → T

is associated with each operator symbol ω ∈ Ω.
With every interpretation I = [U, Π, Φ] as specified above, a valuation function Val I is

associated inductively as follows.

Definition 3.2.3 (Valuation of terms and formulae in first order logic)
Let a first order language Frm = FOFrm(IV, Func, Ar Func, Pred, Ar Pred, Ω, Ar) and an in-
terpretation I = [U, Π, Φ] for Frm be given.

For this definition, assignments

σ : IV → U

are used. Given an assignment σ : IV → U , an individual variable v ∈ IV and an element
u ∈ U of the domain, the notation σv:=u denotes the assignment given for w ∈ IV by

σv:=u(w) =def

{
u, if w = v

σ(w), if w 6= v.

Next, the interpretation of terms and formulae of (multiple-valued) first order logic is de-
fined.

44

3.2 Semantics

1. Given an assignment σ : IV → U and a Term t ∈ Term(IV, Func, Ar Func), the individual
associated with t by I and σ is denoted by Ind(t, I, σ) ∈ U and defined inductively by

1.1. Ind(t, I, σ) =def σ(t) if t ∈ IV;

1.2. for f ∈ Func and t1, . . . , tAr Func(f) ∈ Term(IV, Func, Ar Func) such that

t = f t1 . . . tAr Func(f),

Ind(t, I, σ) =def Φ(f)
(

Ind (t1, I, σ) , . . . , Ind
(
tAr Func(f), I, σ

))
.

2. Given an assignment σ : IV → U and a Formula x ∈ Frm, the truth value associated

with x by I and σ is denoted by Val(x, I, σ) ∈ T and defined inductively as follows.

2.1. For p ∈ Pred and t1, . . . , tAr Pred(p) ∈ Term(IV, Func, Ar Func) such that

x = p t1 . . . tAr Pred(p),

Val(x, I, σ) =def Π(p)
(

Ind (t1, I, σ) , . . . , Ind
(
tAr Pred(p), I, σ

))
.

2.2. For ω ∈ Ω and x1, . . . , xAr(ω) ∈ Frm such that x = ω x1 . . .xAr(ω),

Val(x, I, σ) =def ϕω

(
Val(x1, I, σ), . . . , Val

(
xAr(ω), I, σ

))
.

2.3. For v ∈ IV and y ∈ Frm such that x = ∀v y,

Val(x, I, σ) =def T
l{

Val (y, I, σv:=u) u ∈ U
}

.(3.4)

2.4. For v ∈ IV and y ∈ Frm such that x = ∃v y,

Val(x, I, σ) =def T
⊔{

Val (y, I, σv:=u) u ∈ U
}

.

3. The valuation function Val I : Frm → T induced by I is now defined as follows. Let
x ∈ Frm be given. Then

Val I(x) =def T
l{

Val (x, I, σ) σ : IV → U
}

(3.5)

Assuming T, IV, Func, Ar Func, Pred, Ar Pred, Ω, Ar and all the mappings ϕω to be given,
the semantics S for FOFrm(IV, Func, Ar Func, Pred, Ar Pred, Ω, Ar) is defined to be

S =def

{
Val I I = [U, Π, Φ] as defined in Definition 3.2.2

}
.(3.6)

For the example of first order logic, assumption (3.2) is trivially fulfilled. As Pred is required
to be non-empty, there exists p ∈ Pred. Given t ∈ T , define xt =def p t1 . . . tAr Pred(p) for arbitrary
terms t1, . . . , tAr Pred(p) and define Val t as Val [U,Π,Φ] such that Π(p) is constantly t. •

Remarks
1. Note that several variants for defining the semantics of fuzzy first order logic exist.

Some are driven by variants of syntax. For instance, in many-sorted logics, an interpre-
tation has to contain several domains associated with sorts. When a specialised equality
predicate = exists, then there has to be a fixed fuzzy equality relation (see [58, 59]) inter-
preting it.

45

3 Fuzzy Filter-Based Logics

Other variants result from different ways of handling free individual variables. The
variant presented here is generalisation invariant, i. e. for an arbitrary individual vari-
able v, formula x and interpretation I, it holds that

Val I(x) = Val I(∀v x).

Exchanging T
d

with T
⊔

in (3.5) leads to specialisation invariance, i. e. for an arbitrary
individual variable v, formula x and interpretation I, it holds that

Val I(x) = Val I(∃v x).

A third variant, namely including an assignment σ : IV → U into every interpretation
and defining Val I(x) to be Val(x, I, σ) for this specific assignment leads to an equivalence
between free individual variables and individual constants, i. e. 0-ary function symbols.

Another possible variation of semantics could be wrt quantifiers. Here, the canonical
quantifiers given by the infinitary lattice connectives are used. An alternative is to use
fuzzy quantifiers as described in [95,96] as a replacement for or addition to the canonical
ones.

Finally, the definition of terms given here is in a certain sense two-valued. The terms
themselves are interpreted by individuals in a crisp way. Fuzziness is introduced at the
level of predicate symbols acting on terms as fuzzy predicates. In contrast with this defini-
tion, in the domain of fuzzy logic, constants like“high temperature” are often interpreted
by fuzzy sets over the domain (also called linguistic terms). The way first order many-
valued logic is introduced here, it would be very hard to incorporate terms which are
interpreted by fuzzy sets. The logic PLFC (see section 5.7.2), for instance, allows fuzzy
constants, but uses two-valued predicates. Still, a complicated definition is needed for
evaluating the truth value of an atomic formula involving fuzzy constants. With fuzzy
predicates on top of that, the semantics of a simple atomic formula would get even more
complicated. Among other problems, there is in fact no canonical method for calculating
the truth value of an atomic formula in this case, which involves several applications of
operators for combining truth values. These operators are by no means unique, creating
a lot of case distinctions to be considered.

Note that fuzzy constants can be simulated in the first order many-valued logic defined
here by defining an indicator predicate pf for the fuzzy constant f such that for an indi-
vidual variable v, the atomic formula pf (v) gives the membership degree of the individual
assigned to v in the fuzzy constant f .

2. For examples of knowledge modelling to be given in the sequel, it will sometimes be
convenient to fix several properties of an interpretation, i. e. to restrict the range of
interpretations forming the basis of semantics.

This will be done here in a completely naive way, i. e. the statement“fix the domain to be
the set of all natural numbers and the function symbol + to be interpreted by addition”
means that for the example at hand, S consists only of those valuations Val [U,Π,Φ] for
which U = N and Φ(+) is the usual addition of natural numbers.

From a model-theoretic point of view, and in particular for the axiomatisation of the
respective logic, this kind of restriction can lead to severe problems, but as it doesn’t
compromise the property (3.2), and as first order logic is used here only for simple exam-
ples of knowledge bases anyway, this doesn’t lead to problems in this dissertation.

For a proper handling of this kind of restriction in first order logic, the respective con-
straints should be expressed by axioms to be added to the knowledge base, effecting a

46

3.2 Semantics

restriction of the set of admissible interpretations from within the knowledge base. This
can lead to problems because of the limited expressive power of first order logic (for in-
stance, the natural numbers cannot be characterised up to isomorphism by axioms in first
order predicate logic), but it is neutral from a model theoretic point of view. •

Example 3.2.3 (Logical operators based on the lattice connectives)
Given a truth value lattice T = [T, Tu, Tt], the simplest interpretation of the classical logical
operator symbols from ΩS is the one which is defined using the lattice connectives. To this
end, ∧ and ∨ are interpreted by the lattice connectives Tu and Tt of T, respectively, i. e.

ϕ∧ =def Tu
ϕ∨ =def Tt

Additionally, an interpretation for the negation connective ¬ is needed. For this, assume
that a bijective unary function ϕ¬ : T → T is given which is order-reversing, i. e. for s, t ∈ T ,

s Tv t iff ϕ¬(t) Tv ϕ¬(s).

Such functions on a lattice have been studied, for instance, by G. de Cooman and E. E. Kerre

[15] under the name negation operators.
For the implication connective, basically two choices for defining the corresponding truth

value function ϕ→ exist.
Choosing the s-implication of Tt wrt. ϕ¬ means that ϕ→ is expressed directly in terms of

Tt and ϕ¬ as follows, for s, t ∈ T :

ϕ→(s, t) =def ϕ¬(s) Tt t.(3.7)

This choice has the disadvantage of not adding to the expressive power of the logical operators,
but on the other hand, it means that implication is easily eliminated from formulae, for instance
when constructing normal forms. The situation is exactly opposite for the next definition.

Choosing the r-implication of Tu means that ϕ→ is expressed indirectly in terms of Tu as
follows, for s, t ∈ T :

ϕ→(s, t) =def T
⊔

{r r ∈ T and s Tu r Tv t} .(3.8)

Implications will not be used very much in this dissertation, so the issue is not discussed
further here. See [61] for a deep study of this subject. •

Example 3.2.4 (Lattice logics on the two-valued lattice and the unit interval)
The previous example is illustrated further by taking a look at the resulting logics for two
particular lattices (see Examples 1.3.1).

1. For the classical two-valued Boolean lattice B =def

[{0, 1} , and, or
]
, the only negation

operator is the classical two-valued negation ϕ¬ : {0, 1} → {0, 1}, defined by

ϕ¬(0) =def 1, ϕ¬(1) =def 0.(3.9)

S-implication as well as r-implication both yield the same truth value function in this
case, namely classical two-valued implication, given by the following truth table:

s t ϕ→(s, t)

0 0 1
0 1 1
1 0 0
1 1 1

47

3 Fuzzy Filter-Based Logics

Hence, the resulting lattice-based logic on the two-valued lattice is uniquely determined
to be the classical Boolean propositional logic, with the following interpretations of the
logical operators:

t ϕ¬(t)

0 1
1 0

s t ϕ∧(s, t) ϕ∨(s, t) ϕ→(s, t)

0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 1

The semantics for propositional logic defined (wrt. ΩS, Ar S, and a fixed set PV of
propositional variables) by (3.3) is denoted by SP

B.

The semantics for first order predicate logic defined (wrt. ΩS, Ar S, and fixed IV,
Func, Ar Func, Pred, Ar Pred, see Example 3.1.2) by (3.6) is denoted by SF

B.

2. For the real unit interval F =def

[〈0, 1〉 , min, max
]
, the canonical choice for a negation

operator is the classical Lukasiewicz negation ϕ¬ : 〈0, 1〉 → 〈0, 1〉, defined by

ϕ¬(t) =def 1 − t. (t ∈ 〈0, 1〉)(3.10)

Concerning implication, the s-implication and r-implication in this setting are differ-
ent. For the s-implication, (3.7) yields the Kleene-Dienes implication impKD, given for
s, t ∈ 〈0, 1〉 by

impKD(s, t) = max(1 − s, t).(3.11)

For the r-implication, (3.8) yields the Gödel implication impG, given for s, t ∈ 〈0, 1〉 by

impG(s, t) =

{
1, if s 5 t

t, if s > t
(3.12)

Here, the s-implication impKD is chosen as the ‘standard’ interpretation of the implication
operator → for lattice-based logic on the unit interval. This means that → is a defined
operator ; in particular, all logical operators from ΩS can be expressed by means of ∨,¬,
which is important for considerations involving clausal form (compare Example 4.2.1,
Example 4.3.1, Observation 5.2.6, and section 5.4.1).

This way, the well-known min-max fuzzy logic on the unit interval is obtained, which was
studied for instance by Lee and Chang [63, 64]. For convenience, the interpretations of
the logical operators from ΩS are repeated here, for s, t ∈ 〈0, 1〉:

ϕ¬(t) = 1 − t

ϕ∧(s, t) = min(s, t)
ϕ∨(s, t) = max(s, t)
ϕ→(s, t) = max(1 − s, t).

The semantics for propositional logic defined (wrt. ΩS, Ar S, and a fixed set PV of
propositional variables) by (3.3) is denoted by SP

F.

The semantics for first order predicate logic defined (wrt. ΩS, Ar S, and fixed IV,
Func, Ar Func, Pred, Ar Pred, see Example 3.1.2) by (3.6) is denoted by SF

F. •

48

3.3 Properties of and Relations Between Formulae

Remark
Note that the standard interpretation of logical operators chosen here for two-valued logic is in
fact the only sensible one, while for many-valued logic there are many possible choices, none of
which is popular enough to have become a ‘standard’.

In fact, the interpretation chosen in Example 3.2.4.2 isn’t even a very popular one as it has
very limited expressive power. Its advantage wrt the considerations in this dissertation are
mainly that all connectives are based purely on the lattice structure of the truth values and a
simple order-reversing bijection interpreting the negation operator, and hence no more compli-
cated algebraic structures, like residuated lattices or MV-algebras have to be considered.

When more expressive power is required, then the implication operator should be interpreted
by impG (leading to a residuated lattice structure) or by the Lukasiewicz implication imp L,
given for s, t ∈ 〈0, 1〉 by

imp L(s, t) = min(1, 1− s + t).

This leads to the well-known Lukasiewicz infinitely many-valued logic (compare [76]) and
equips the truth value lattice with an MV algebra structure (compare [9]). •

For investigating properties of logical operators without having to completely fix the struc-
ture of logical formulae, a logic defined by Frm, T and S is said to contain an n-ary connective
ω interpreted by the n-ary function ϕω : T n → T if and only if Frm contains ω and for every
formula x ∈ Frm of the form (3.1), and for every Val ∈ S,

Val(x) = ϕω(Val(x1), . . . , Val(xn)).(3.13)

From this point of view, every logic of the form described in Example 3.2.3 contains a binary
operator ∧ interpreted by Tu.

3.3 Properties of and Relations Between Formulae

Neither properties of nor relations between formulae are studied in depth in this dissertation,
as considerations are focused on properties of and relations between labelled formulae (see
section 4.2). In the following, only those concepts are defined which are needed later for
establishing properties of and relations between labelled formulae.

For two logical formulae the meaning of their being semantically equivalent is obvious.
Later, it will become apparent that the model relation is needed to define the same for labelled
formulae.

Definition 3.3.1 (Semantic equivalence of formulae and sets of formulae)
1. Two formulae x, y ∈ Frm are said to be semantically equivalent (x ≡ y)

=def for every Val ∈ S,

Val(x) = Val(y).

2. Let X, Y j Frm. Then X and Y are said to be semantically equivalent (X ≡ Y)

=def for every Val ∈ S,

T
l

x∈X

Val(x) = T
l

y∈Y

Val(y).

49

3 Fuzzy Filter-Based Logics

Remark
Obviously, for x, y ∈ Frm, x ≡ y is equivalent with {x} ≡ {y}. •

Observation 3.3.1 (≡ is an equivalence relation)
≡ is an equivalence relation on Frm and also on PFrm. •

Proof
Follows immediately from the definitions. 2

Definition 3.3.2 (Equivalence classes of formulae)
1. Given x ∈ Frm, the equivalence class [x] of x wrt. ≡ is defined by

[x] =def {y y ∈ Frm and x ≡ y} .(3.14)

2. For X j Frm, the quotient set X≡ of X wrt. ≡ is defined by

X≡ =def

{
[x] ∩ X x ∈ X

}
.(3.15)

Definition 3.3.3 (Semantic covering, syntax transformation)
1. Given X, Y j Frm, X is said to be a semantic covering of Y (denoted Y 5 X)

=def for every y ∈ Y , there exists x ∈ X such that y ≡ x.

2. Given X j Frm, an operator T : Frm → PFrm is said to be a semantic-preserving
syntax transformation operator wrt X

=def for every x ∈ X , T (x) is finite and {x} ≡ T (x).

Remarks
1. The notion of semantic covering is very strong. In particular, it is not implied by semantic

equivalence, in general (but X 5 Y and Y 5 X obviously implies X ≡ Y). It is useful
mainly for normal form theorems, where Y is an arbitrary set of formulae and X is a set
of formulae in normal form.

2. A syntax transformation operator is obviously also useful mainly for transformation into
normal form. In contrast to a normal form given by a semantic covering, a syntax transfor-
mation operator can be used for weak normal forms where a set of formulae is associated
with every formula, e. g. clausal form.

3. Obviously, if X 5 Y , then there exists a semantic-preserving syntax transformation
operator T wrt X such that

⋃
rg T j Y . Simply let T (x) = {y} for y ∈ Y such

that x ≡ y (such an y exists by X 5 Y).

But for arbitrary X, Y j Frm, the existence of a semantic-preserving syntax transforma-
tion operator T wrt X such that

⋃
rg T j Y does not imply X 5 Y , in general.

4. Given X, Y j Frm, if there exists a semantic-preserving syntax transformation operator
TX wrt X such that

⋃
rg TX j Y and vice versa there exists a semantic-preserving

syntax transformation operator TY wrt Y such that
⋃

rg TY j X , this implies X ≡ Y .

But X ≡ Y does not imply the existence of semantic-preserving syntax transformation
operators TX or TY as described above, in general. •

50

3.4 Expressing Uncertainty in Many-Valued Logics

Definition 3.3.4 (Tautology and satisfiability index)
1. For a formula x ∈ Frm, its inherent truth (or tautology index) taut(x) is given by

taut(x) =def T
l{

Val(x) Val ∈ S
}

.

A formula x is said to be a tautology iff taut(x) = 1. The set of all tautologies is

denoted Taut.

2. For a formula x ∈ Frm, its satisfiability index sat(x) is given by

sat(x) =def T
⊔{

Val(x) Val ∈ S
}

.

A formula x is said to be insatisfiable iff sat(x) = 0.

Remark
Obviously, for x ∈ Frm,

x ∈ Taut iff ∀Val ∈ S, Val(x) = 1.(3.16) •

3.4 Expressing Uncertainty in Many-Valued Logics

Before in the next section, the labelled logics to be used in the remainder of this dissertation
are introduced and justified, in this section a short discussion is given concerning means of
expressing graded truth assessment and/or graded trust assessment in logical systems
like those defined in the preceding part of this chapter.

The conclusion of this section is that graded truth assessment and graded trust assessment
is best expressed in labelled logics the labels of which are (essentially) fuzzy filters, as will be
done in the remainder of this dissertation. For alternative approaches, see section 5.7.

The power of a multiple-valued logic to express uncertainty is illustrated using the model
relation |= between valuations and formulae defined in the respective logic. Several levels
of definitions for this concept with increasing expressive power are presented in the next two
subsections. Note that higher logical concepts like semantic consequence, semantic equivalence
and validity (of a formula) are all based on the model relation. In chapter 4, the interrelations
between these concepts are presented in detail.

Note that the presentation in this section is still very much from the intuitive point of view.
The respective logics are described only briefly, just enough to compare their expressive power.
Only labelled logics with fuzzy filters as labels are studied more deeply in the sequel. However,
most of the other levels can be embedded in this system, because of the very high expressive
power (see section 5.5).

3.4.1 Expressing Graded Truth Assessment

As explained in chapter 1, the expression graded truth assessment is used in this dissertation
to describe the modelling of vagueness or ambiguity using a given many-valued logic. For
carrying out this modelling, there has to be a possibility of assessing the truth of formulae,
and the definition of the model relation should reflect this assessment.

Level 1: Classical Many-valued Logic. In this case, Val ∈ S is said to be a model for a
formula x ∈ Frm (Val |= x) iff Val(x) = 1.

51

3 Fuzzy Filter-Based Logics

In this level, a priori there is no means of expressing graded truth assessment wrt a
formula. Val has to make x completely true to be considered a model of x.

If Frm contains truth constants and a residual implication, then graded truth assessment
can be expressed inside the logical language (compare [53]), but this aspect will not be
investigated any further here (see, however, section 5.7).

Level 2: Using a set of Designated Truth Values. Slightly more expressive power than in
level 1 is gained by defining a set D j T of designated truth values and considering
Val ∈ S to be a model for x ∈ Frm (Val |= x) iff Val(x) ∈ D.

Obviously, level 1 is reduced to level 2 by defining D =def {1}.

This level leaves at least a little room for graded truth assessment because D can be
chosen to reflect an application-specific assessment of the truth of the formulae in a given
knowledge base; the expressive power is very limited, however, because one and the same
set D of designated truth values is employed for all formulae, making it impossible to
assess the truth of individual formulae differently.

Note that for modelling uncertainty about the truth of formulae, it can be expected that
D is a filter of T. Property 2a from Observation 1.3.1.1 is essential in this case, because
it guarantees the monotonicity of |=. Assume that for fixed Val ∈ S, x ∈ Frm, it holds
that Val |= x and there exists a formula y such that Val(x) Tv Val(y), i. e. y is ‘more true’
under the interpretation Val than x. It is to be expected that Val |= y should also hold,
which is exactly the property guaranteed by property 2a from Observation 1.3.1.1.

For more information concerning logics on this level compare [45] by S. Gottwald.

Level 3: Using Truth Value-Labelled Formulae. This level addresses the problem of indepen-
dently assessing the truth of different formulae. This is effected by appending a truth
value to every formula, i. e. a truth value-labelled formula is an ordered pair [x, t]
for x ∈ Frm and t ∈ T . Val ∈ S is considered to be a model for [x, t] (Val |= [x, t]) iff
t Tv Val(x).

Obviously, this corresponds to an individualisation of the set D of designated truth values
if D is the principal filter t (see (1.15)), i. e. every labelled formula [x, t] has its own set
of designated truth values t.

Hence, level 2 can be reduced to level 3 iff there exists t ∈ T such that D = t by choosing
t as the label for every formula.

The resulting labelled logic corresponds to the one defined and studied by J. Pavelka

[85–87]; compare section 5.2.1.

Level 4: Labelling formulae with Sets of Truth Values. The next level consists of assigning
an individual set of designated truth values to every formula, i. e. a set-labelled
formula is an ordered pair [x, D] for x ∈ Frm and D j T . Val ∈ S is considered to be a
model for [x, D] (Val |= [x, D]) iff Val(x) ∈ D.

Level 2 can be reduced to level 4 by choosing the set D of designated truth values as the
label for every formula. Level 3 can be reduced to level 4 by restricting labels to principal
filters t for t ∈ T .

By the reasoning given in the description of level 2, in this dissertation only filters of T

will be employed as labels for set-labelled formulae. Labels of this kind have been used
in [68, 72] for resolution-based automated reasoning. Compare also [47].

52

3.4 Expressing Uncertainty in Many-Valued Logics

3.4.2 Expressing Graded Trust Assessment

As explained in chapter 1, the expression graded trust assessment is used in this dissertation to
describe the modelling of (graded) ill-knowledge or doubt using formulae of a given many-valued
logic. For carrying out this modelling, there has to be a possibility of assessing the trust in the
information expressed by a formula, and the definition of the model relation should reflect this
assessment.

A completely novel approach taken in this dissertation lies in assuming to be given a (com-
plete) lattice D = [D, Du, Dt] of degrees of validity using which the graded trust assessment is
achieved.

The lattice D can be chosen freely and independently from T. In particular, it is possible to
choose D = B, leading to two-valued validity and hence to a logic of graded truth assessment
(see section 5.2), or to choose T = B, leading to two-valued truth and hence to a logic of graded
trust assessment (see section 5.3).

That graded trust assessment and graded truth assessment should be distinguished is illus-
trated by the following example. Consider the statement

“The door is locked.”

Leaving time- and context-dependency of this statement aside, it makes no sense to express
uncertainty about this statement using graded truth assessment. The door can only be locked
or not locked, not anything in-between. In particular, no paradox arises from evaluating this
statement in two-valued logic.

If the knowledge about this statement stems from second-hand information, however, it
makes sense to model the resulting uncertainty using graded trust assessment, even if the
underlying logic is two-valued. Arbitrarily casting this statement in many-valued logic and
employing graded truth assessment for expressing uncertainty caused by a doubtful source is
bound to lead to paradoxical and uninterpretable results. See section 5.4 for a demonstration
that even the simplest examples of logics of graded truth assessment and logics of graded trust
assessment show significant semantical differences.

This justifies considering a second dimension of many-valuedness corresponding to trust.
In the following discussion of the different levels of logics for expressing graded trust assessment,
it is explained how this second dimension is provided by the lattice D of degrees of validity.
See also section 5.5 for an illustration of how the two dimensions are employed for uncertainty
modelling.

Next, consider the statement

“The highway is jammed.”

Here, “jammed” obviously is a vague predicate, so two scenarios are conceivable:

1. The information is completely certain, so graded truth assessment is sufficient for express-
ing the vague knowledge.

2. The source of the information is doubtful, so graded truth assessment and graded trust
assessment have to be combined for expressing the vague and uncertain knowledge.

In this subsection, the expression of graded trust assessment is illustrated independently of the
question whether the underlying logic is two-valued or many-valued, so no assumptions are
made about the nature of T. A systematic study of the most general case is given in chapter
4; the special case of an underlying two-valued logic is studied in section 5.3; see also sections
5.4 and 5.5 for further illustrations of the similarities and differences between graded truth
assessment and graded trust assessment.

53

3 Fuzzy Filter-Based Logics

That validity degrees are used for expressing graded trust assessment naturally leads to
a graded model relation (graded with values from D), for two reasons. First, as remarked
above, the model relation as the most basic semantic concept should reflect the graded trust
assessment placed on a formula, and there is no other way for this, in particular when T is
two-valued. Secondly, in the absence of validity degrees, the validity of a formula is defined by
applying a universal quantifier to the set of all models of the formula. In the case that validity
is many-valued, it sees natural to define the degree of validity of a formula by applying a fuzzy
universal quantifier (in this case, the infimum of the complete lattice D) to the fuzzy set of
models (induced by the graded model relation) of the formula.

Consequently, the model relation is assumed to be graded by values from D in the follow-
ing. Next, several levels of definitions for this concept, with increasing expressive power, are
presented.

Level 1′: Identifying truth values and validity degrees. This level requires T = D. Val ∈ S

is said to be a model for a formula x ∈ Frm to degree d ∈ D (Val d|== x) iff Val(x) = d.

This level lacks several of the advantages of using separate lattices for truth values and
validity degrees, respectively, underlined in the beginning of this subsection. For instance,
the strict distinction between truth values and validity degrees is obscured and the range
of all definable logics is radically reduced when no two different lattices may be chosen.

Defining the validity of a formula on this basis leads to the concept called tautology
index in Definition 3.3.4.1; in this dissertation, it is classified as a truth-theoretic concept
and not used for expressing graded trust assessment.

The above definition of graded model relation (or rather, the semantic consequence op-
erator based on this definition) has been used seldomly in the literature on many-valued
logics (compare [64]), but not in the context of graded trust assessment.

One more disadvantage of this approach is that there is no straightforward way of com-
bining it with labelled formulae for graded truth assessment.

Level 2′: Using a Fuzzy Set of Designated Truth Values. For this level, a D-fuzzy set
D ∈ DT representing a degree of designation of truth values is assumed to be
given. Then Val ∈ S is a model for x ∈ Frm to degree d ∈ D (Val d|== x) iff
D (Val(x)

)
= d.

Obviously, in the case T = D level 1′ is reduced to level 2′ by defining D(t) =def t.

This level allows ‘real’ graded trust assessment by expressing the trust in the source of
the information represented by formulae through the definition of D. If the information is
completely trusted, then the characteristic function of an appropriate set D of designated
truth values in the sense of level 2 should be used for D. If the information is completely
mistrusted, then D should be chosen to be always 1 because in the absence of information,
no constraint should be placed on the truth values a formula may assume. Usually, the
trust placed in the given information will be somewhere between complete trust and
complete mistrust, so there will be some truth values which are completely excluded by
the constraint placed by D (i. e. the value of D is 0), some truth values which lead to
full validity even under the constraint placed by D (i. e. the value of D is 1), and further
values which are not fully constrained, but also don’t lead to full validity (i. e. the value
of D is strictly between 0 and 1).

How this indeed leads to an adequate modelling of graded trust assessment is illustrated
further by remarks in the next section, at the beginning of section 4.1 and by the examples
in chapter 5.

54

3.5 Labels and Labelled Formulae

By an analogous reasoning as for level 2, for modelling uncertainty it is assumed that the
class of possible definitions for D is essentially the class of all D-fuzzy filters of T (in
particular, if a formula gets more true, it has to be considered to be more valid).

The flaw of this level lies in the fact that D is applied to all formulae, making it impossible
to assess the trust in individual formulae differently. This level, as the previous one,
furthermore offers no natural way of combining graded trust assessment with labelled
formulae for graded truth assessment.

To the author’s knowledge, logics of this level have not been studied in the literature.
They are not considered any further here, but this level forms a special case of level 4′

(see below), so the considerations there can also be applied to this level.

Level 4′: Labelling formulae with Fuzzy Sets of Truth Values. This level consists of assign-
ing an individual fuzzy set to every formula, i. e. a fuzzy set-labelled formula is an
ordered pair [x,D] for x ∈ Frm and D ∈ DT . Val ∈ S is considered to be a model for
[x,D] to degree d ∈ D (Val d|== [x,D]) iff D (Val(x)

)
= d.

This corresponds to an individualisation of the fuzzy set D, i. e. every labelled formula
[x,D] has its own graded assessment of the trust placed in the information represented by
the formula. This way, the expression of graded trust assessment is effectively possible.
Note further that every label indeed represents a combination of graded truth assessment
and graded trust assessment.

Level 2′ can be reduced to level 4′ by choosing the same fuzzy set D as the label for every
formula. Note that there is no level 3′ because it makes no sense to create a special level
just for principal fuzzy filters.

By the reasoning given for levels 2 and 2′, in this dissertation only D-fuzzy filters of T

will be employed as labels for fuzzy set-labelled formulae. Labels of this kind have not
been used in the literature before. The rest of this dissertation is devoted to their study.

Remark
Of course, other approaches for defining a graded model relation than those sketched above
exist in the literature. Some of them are described in section 5.7.

One variant which is not comparable with the approaches described here is similarity-
based logic [36]. Here, the underlying logic is two-valued, and a fuzzy equivalence relation
(similarity relation) is declared on the set of all interpretations. The degree of modelness of an
interpretation wrt. a formula is defined to be the supremum of the degrees of similarity of this
interpretation with all models of the formula.

This variant is too far away from the approach of this dissertation to be considered here.
It will not be mentioned any more in the following. •

In the following section, the syntax used here for logics of level 4′ is formally defined. In
chapter 4, the semantics (in particular, the model relation and semantic consequence relation)
are formally defined and studied. Chapter 5 contains a discussion of special cases, including
some logics on levels 3 and 4.

3.5 Labels and Labelled Formulae

As already stated in the introduction, classically (see J. Lukasiewicz and A. Tarski [75] or
C. C. Chang [7]), concepts of model or semantic consequence are defined with respect to
sets of logical formulae.

55

3 Fuzzy Filter-Based Logics

In chapter 1, it has been argued that this representation is insufficient for the modelling
of uncertain knowledge. This is remedied here by developing means to assess the validity of a
formula which is part of the knowledge base. This means that to every formula present in a
knowledge base, a label is attached for the purpose of assessing its validity, thereby expressing
the knowledge engineer’s uncertainty about the validity of each individual formula. This
expression of uncertainty may take several forms:

1. It may be known exactly that a formula does not need to take always the highest truth
value to be valid. If a range of truth values can be given for which the formula can still
be considered valid, then this range should be expressible in the form of a label. This is
the case of graded truth assessment because the formula can take ‘suboptimal’ truth
values and still be valid.

2. One may be sure that a formula has to be absolutely true to be absolutely valid, but
be uncertain about the reliability of the source of this formula. If conclusions are drawn
from this formula, it should be ascertained that these conclusions are also not completely
reliable. This is the case of graded trust, and it should be possible to express this type
of uncertainty in a label in the form of a degree of trust.

3. Combinations of the above should be possible, in particular a label should be able to
express different degrees of trust for different truth values a formula can take.

In applications, this could mean that a language of ‘names’ for labels is provided (like true,
false, ambiguous) and ‘modifiers’ (like very, fairly) in the sense that an assessment of
its validity is attached to each formula in the knowledge base. This leads to formulae named
“Type IV” in L. A. Zadeh’s paper [105] (in particular, truth and possibility qualifications).
An example from [105]:

“Abe is young is not very true.”

Here, “Abe is young” could be translated into a formula of the underlying logic (as defined in
section 3.1) while “is not very true” could be translated into the label for the formula (see
for instance Zadeh [105, Sec. 6] or Baldwin [2]).

In the following, an ‘algebraic’ definition for the concept of label is given which is based
on the results of chapter 2 and which shall be justified by the definition of the model and
semantic consequence relations in chapter 4.

In addition to the truth value lattice T, let a lattice D of degrees of trust (or validity)
be given. The lattices T and D need not be equal; in fact, the distinction between logics of
graded truth assessment and logics of graded trust assessment (see chapter 5 for some
examples), which is possible precisely because T and D can be chosen to be different, is one of
the most interesting features of the logics thus defined.

The degrees of validity given by the lattice D are used to measure ‘how valid’ a formula can
be assumed to be, given that its truth value (from T) is known. The correspondence between
the truth values and the degrees of validity is given by the label associated with a formula. To
this end, a lattice L of labels is required, which is an expansion (see Definition 2.3.1) of T by
D. Hence, every label ` from L is associated with a D-fuzzy filter of T, i. e. a mapping from T

into D. Given a formula x ∈ Frm, a valuation Val ∈ S and the truth value Val(x) of x under
the valuation Val, the degree to which x, labelled by `, is valid under Val, is the value from D

associated with Val(x) by `. This is basically the definition of the model relation of this logical
system. Before a mathematical definition and a deeper study of this model relation is given in
chapter 4, the concept of labelled formula is defined.

56

3.5 Labels and Labelled Formulae

Let a fixed set Frm of logical formulae and a fixed complete lattice L = [L, Lu, Lt] with
induced partial order Lv be given.1 For the definition of a labelled formula, it is not necessary
to postulate anything further about the structure of L. As a matter of fact, different alternatives
for characterising L (algebraically by fixing L to be an expansion or logically by axioms about
the model relation) are discussed in section 4.1.

The elements of L shall be called labels. In the following, L-fuzzy sets of formulae are
considered.

Definition 3.5.1 (Labelled formula)
An L-fuzzy set x ∈ LFrm is said to be an L-labelled formula if and only if x = ///© or there
exists x ∈ Frm such that supp x = {x}. If supp x = {x}, then x is identified with the ordered

pair
[
x, x(x)

]
.

To avoid special cases, given x ∈ Frm the notation [x, 0] is allowed for the L-labelled formula

///©, although it is no longer possible to unambiguously identify x with the ordered pair [x, 0].
For a fixed L, the set of all L-labelled formulae is denoted by LFrm.

Remarks
1. The idea of using fuzzy sets of formulae goes back to J. Pavelka [85]. Alternatively,

it would be possible to start from the definition of labelled formula (as an ordered pair
[x, `]) and then use sets of labelled formulae. There are subtle differences between both
approaches which are inconsequential for considerations concerned only with semantics,
but can lead to problems when syntactic derivations are concerned. This issue is discussed
further in the sequel.

2. The crucial idea in this definition of labelled formulae is the separation of truth value
and label structures. This gives additional flexibility for knowledge modelling; on the
other hand, strong connections between truth values and labels are established by Defini-
tion 2.3.1 and Conclusion 2.3.1 (in the case of an algebraic definition of labels) or by the
logical axioms which are given in Definition 4.1.3.

Some possible combinations of truth value and label structures are illustrated in Exam-
ples 2.3.1, Proposition 2.3.2, Corollary 2.3.3, Proposition 2.3.4, Observation 2.3.5. In chapter
5, an extensive overview of logics representable as fuzzy filter-based logics is given.

3. The idea of using (practically) D-fuzzy sets on T as labels for logical formulae and using
this as the basis for logics of graded truth assessment and graded trust goes back to the
fuzzy truth values of L. A. Zadeh [106]. Such logics have been applied in fuzzy
expert systems and also studied from a theoretical point of view, under various names
(see [18] for an overview), but so far, a complete theory of such logics from the perspective
of mathematical logic seems to be lacking.

Furthermore, the name fuzzy truth value invites misunderstandings in the sense that
somehow the truth value Val(x) of a formula x under a valuation Val is being ‘fuzzified’.
To avoid such misunderstandings, a careful distinction shall be made in the sequel between
the following concepts:

� The truth value Val(x) ∈ T of a formula x under a valuation Val.

1Note that by being an expansion of T by D, L is essentially isomorphic with the dual of a lattice of fuzzy
sets. Lt corresponds to the fuzzy set intersection ∩ and Lu corresponds to the fuzzy filter join ·∪. The induced
partial order Lv of L corresponds to the inversion of the fuzzy subset relation.

57

3 Fuzzy Filter-Based Logics

� The label ` ∈ L associated with a formula by its membership degree in a fuzzy set
X ∈ LFrm, which is by the fact that T is expanded to L by D essentially a mapping
from T into D.
See the remark following Definition 4.1.1 for a “logical” interpretation of labels and
their ordering.

� The degree of validity of a labelled formula [x, `] under a valuation Val, which
coincides with the degree to which Val is a model of [x, `] (see chapter 4).

By strictly distinguishing between the lattices T, D and L and the different meanings
of their elements, some common misconceptions can be avoided which seem to pervade
discussions about logics of graded truth assessment and logics of graded trust assessment
(for instance, the mystical truth-functionality).

By introducing the isomorphism ι explicitly into the definition of expansion, it is not
necessary to use fuzzy sets of truth values explicitly as labels, unless the great expressive
power provided by choosing neither T nor D to be the two-valued lattice B is needed. This
way, it can easily be verified that most commonly used logics of graded truth assessment
and logics of graded trust assessment are indeed special cases of this definition. See
Examples 2.3.1, Proposition 2.3.2, Corollary 2.3.3, Proposition 2.3.4, Observation 2.3.5 for a
first illustration and chapter 5 for an extensive survey. •

58

4 Models and Semantic Consequence

In chapters 2 and 3, the foundation has been laid on which a very general class of logical systems
based on labelled logical formulae can be defined.

Let a fixed set Frm of logical formulae and a semantics S of valuation functions for Frm be
given, based on a complete lattice T = [T, Tu, Tt] with induced partial order Tv. Furthermore,
let fixed complete lattices L = [L, Lu, Lt] with induced partial order Lv and D = [D, Du, Dt] with
induced partial order Dv be given.

4.1 The Model Relation

First, a model relation for labelled formulae is defined in a purely algebraic fashion by assuming
L to be an expansion of T by D.

Definition 4.1.1 (Model relation for labelled formulae)
Assume that L is an expansion of T by D (see Definition 2.3.1). Furthermore, fix the isomor-
phism ι by means of which T is expanded to L by D.

A ternary model relation |== is defined as follows:

Given a valuation Val ∈ S, an L-labelled formula [x, `] ∈ LFrm and a validity degree d ∈ D,

Val is a model for [x, `] to the degree d,

Val d|== [x, `] =def d = ι(`)(Val(x)).(4.1)

Remark
Considering the definition of the model relation based on the algebraic characterisation of fuzzy
filters on the truth value lattice, a first explanation of the meaning of the different lattice
structures from a logical point of view can be given.

1. The truth value lattice T provides a set of truth values for logical formulae. The induced
partial order Tv of this lattice is to be interpreted as meaning less true than or equally
true, i. e. if two formulae x, y ∈ Frm assume truth values s =def Val(x) and t =def Val(y)
under some valuation Val ∈ S, and furthermore,

s Tv t, t 6= s,

then y can be assumed to be more true than x under Val.

In this context, the truth value 1 means completely true and 0 means completely false.
Observe that if the logic contains a ‘decent’ unary negation operator ¬, then Val(x) = 0
will mean Val(¬x) = 1.

2. The lattice D of degrees of validity makes it possible to specify in Definition 4.1.1 a graded
model relation between valuation functions and labelled formulae which gives the degree
of validity of a labelled formula under a given valuation.

59

4 Models and Semantic Consequence

The induced partial order Dv of the lattice D is to be interpreted as meaning less valid
than or equally valid, i. e. if for two labelled formulae x, y ∈ LFrm, it holds that Val c|== x

and Val d|== y, for some valuation Val ∈ S, and furthermore,

c Dv d, c 6= d,

then y can be assumed to be more valid than x under Val.

In this context, the validity degree 1 means completely valid and 0 means completely
invalid. Observe that no logical connectives which operate on labelled formulae have
been defined, so given x ∈ LFrm, there is (yet) no way of deriving from x some other
labelled formula y such that Val 1|== x if and only if Val 0|== y.

3. A label ` from the lattice L corresponds to a D-fuzzy set ι(`) on T by the isomorphism ι.

Thus from the logical point of view, a label associates with every truth value a degree of
validity. The interpretation of this fact is as follows:

� If a formula x is completely true under a valuation Val, then [x, `] is completely
valid under Val for every label ` (which is assured by the axioms of fuzzy filters, see
Definition 2.1.1).

� Whenever x is not completely true under Val, the trust in the validity of the formula
expressed by the label has to be considered. When the formula is trusted to be
always necessarily completely true, then the labelled formula has to be considered
invalid under Val. Otherwise, a certain degree of validity can be attained because
the formula (as part of a knowledge base) is not completely trusted.

In fact this is a relaxation of the laws of classical logic: In classical many-valued logics like
Boolean or Lukasiewicz’s logic, a formula is said to be valid under an interpretation
if and only if its truth value is exactly 1; otherwise it is considered completely invalid.

If the knowledge about the validity of formulae which are to be put into a knowledge base
is uncertain, this is too hard a constraint: For a valuation to be a model of the knowledge
base, it would be necessary for every formula in the knowledge base to be completely
true, in contradiction with the uncertainty. So the label attached to a formula can be
interpreted as the expression of a soft constraint on the validity of this formula.

The induced partial order Lv of the label lattice is an order of strength, i. e. if for two
labels `, `′,

`′ Lv `, `′ 6= `,

then ` can be assumed to be a stronger constraint on the validity of a logical formula
than `′. This is consistent with the fact that Lv corresponds via ι to the inverse of the
partial order j of fuzzy sets: If a fuzzy set associating validity degrees with truth values
gets smaller, it expresses a stronger constraint.

Thus the label 1, corresponding to the function 0 (see (2.11)), is the strongest constraint,
expressing complete certainty about the complete truth of a formula and thus equivalent
with the classical concept of validity, while the label 0, corresponding to the function 1

(see (2.12)), is the weakest constraint (in fact, no constraint at all; every truth value, even
0 is considered equally completely valid), expressing complete uncertainty. •

60

4.1 The Model Relation

Proposition 4.1.1 (Properties of the graded model relation)
1. For every valuation Val ∈ S and every L-labelled formula [x, `] ∈ LFrm, there exists a

unique d ∈ D such that Val d|== [x, `].

Thus |== can be regarded as a mapping from S× LFrm to D.

2. For all Val ∈ S and x ∈ Frm,

Val 1|== [x, 0] .(4.2)

3. For all Val ∈ S, x ∈ Frm, and ` ∈ L,

if Val(x) = 1 , then Val 1|== [x, `] .(4.3)

4. For all Val 1, Val 2, Val 3 ∈ S, x, y, z ∈ Frm, ` ∈ L, and d1, d2, d3 ∈ D such that

Val 1 d1
|== [x, `] and Val 2 d2

|== [y, `] and Val 3 d3
|== [z, `] ,

the following holds:

if Val 1(x) Tu Val 2(y) = Val 3(z) , then d1 Du d2 = d3.(4.4)

5. For all Val ∈ S, x ∈ Frm, `, `′ ∈ L, and c, d, e ∈ D,

if Val c|==
[
x, `′

]
and Val d|== [x, `] , then Val cDud|==

[
x, `′ Lt `

]
.(4.5)

6. Let Val ∈ S, x ∈ Frm and M j L. Furthermore, let

C =def

{
d d ∈ D and there exists ` ∈ M such that Val

d
|== [x, `]

}
.

Then

Val
D
d

C
|==

[
x, L
⊔

M
]
.(4.6)

7. For all Val ∈ S, x ∈ Frm, `, `′ ∈ L, and d ∈ D,

(4.7) if Val d|==
[
x, `′ Lu `

]
,

then D
⊔d1 Du d2

There exist Val 1, Val 2 ∈ S, y, z ∈ Frm, and d1, d2 ∈ D

such that Val 1 d1
|==

[
y, `′

]
and Val 2 d2

|== [z, `]
and Val 1(y) Tu Val 2(z) Tv Val(x)

 Dv d.

8. In each of the following cases,

8.1. T is a chain or

8.2. D is completely distributive wrt. D
⊔

,

the following holds.

For all Val ∈ S, x ∈ Frm, `, `′ ∈ L, and d ∈ D,

if Val d|==
[
x, `′ Lu `

]
,

then d = D
⊔d1 Du d2

There exist Val 1, Val 2 ∈ S, y, z ∈ Frm, and d1, d2 ∈ D
such that Val 1 d1

|==
[
y, `′

]
and Val 2 d2

|== [z, `]
and Val 1(y) Tu Val 2(z) Tv Val(x)

 .

(For the proof of this item, assumption (3.2) is needed.)

61

4 Models and Semantic Consequence

9. |== has the following monotonicity property, for Val, Val ′ ∈ S, `, `′ ∈ L, c, d ∈ D, and
x, y ∈ Frm:

If Val(x) Tv Val ′(y) and `′ Lv ` and Val d|== [x, `] and Val ′ c|==
[
y, `′

]
, then d Dv c.

Proof
ad 1. Follows immediately from the definition of |==.

ad 2. It is sufficient to prove

ι(0)(Val(x)) = 1

for every Val ∈ S and x ∈ Frm.

Being an isomorphism, ι maps the zero element 0 of L to the zero element of a sublattice
L′ =

[
L′, ·∪,∩] of the dual lattice

[
D-Fl (T) , ·∪,∩] of the complete lattice

[
D-Fl (T) ,∩, ·∪]

(see Definition 2.3.1 and Theorem 2.2.1).

By Observation 2.2.5, the zero element 1 of
[
D-Fl (T) , ·∪,∩] is a principal fuzzy filter,

contained in L′ by Definition 2.3.1, hence ι(0) = 1. Thus,

ι(0)(Val(x)) = 1(Val(x)) = 1

by definition (2.12).

ad 3. It is sufficient to prove that for every ` ∈ L,

ι(`)(Val(x)) = 1

if Val(x) = 1.

By definition, ι maps ` to a D-fuzzy filter F of T. By item 3 of Definition 2.1.1,

ι(`)(Val(x)) = F (1) = 1.

ad 4. Let Val 1, Val 2, Val 3, x, y, z, `, d1, d2, d3 be given as assumed. It is sufficient to prove that

if Val 1(x) Tu Val 2(y) = Val 3(z) , then ι(`)(Val 1(x)) Du ι(`)(Val 2(y)) = ι(`)(Val 3(z)).

This follows trivially from the fact that ι(`) is a D-fuzzy filter of T, and Corollary 2.1.7.

ad 5. Let Val, x, `, `′, c, d be given as assumed and let

Val c|==
[
x, `′

]
and Val d|== [x, `] .

It is sufficient to prove that

ι(`′ Lt `)(Val(x)) = ι(`′)(Val(x)) Du ι(`)(Val(x)).(4.8)

Let L′ =
[
L′, ·∪,∩] be the sublattice of the dual lattice

[
D-Fl (T) , ·∪,∩] of the complete

lattice
[
D-Fl (T) ,∩, ·∪] such that ι is an isomorphism between L and L′ (see Definition 2.3.1

and Theorem 2.2.1).

By the fact that ι is an isomorphism,

ι(`′ Lt `) = ι(`′) ∩ ι(`),

thus (4.8) follows trivially from the definition (1.17) of ∩.

62

4.1 The Model Relation

ad 6. Is proved exactly as item 5, taking into account that L is a complete lattice and thus the
isomorphism ι admits arbitrary joins.

ad 7. Let Val, x, `, `′, d be given such that

Val d|==
[
x, `′ Lu `

]
.(4.9)

Let L′ =
[
L′, ·∪,∩] be the sublattice of the dual lattice

[
D-Fl (T) , ·∪,∩] of the complete

lattice
[
D-Fl (T) ,∩, ·∪] such that ι is an isomorphism between L and L′ (see Definition 2.3.1

and Theorem 2.2.1).

(4.9) means that

ι(`′ Lu `)(Val(x)) = d.

By the fact that ι is an isomorphism,

ι(`′ Lu `) = ι(`′) ·∪ ι(`).

Define

d′ =def D
⊔{

ι(`′)(Val 1(y)) Du ι(`)(Val 2(z))
Val 1, Val 2 ∈ S, y, z ∈ Frm,
and Val 1(y) Tu Val 2(z) Tv Val(x)

}
.(4.10)

It is sufficient to prove that

d′ Dv d(4.11)
= (ι(`′) ·∪ ι(`))(Val(x)).

Obviously,{
ι(`′)(Val 1(y)) Du ι(`)(Val 2(z))

Val 1, Val 2 ∈ S, y, z ∈ Frm,
and Val 1(y) Tu Val 2(z) Tv Val(x)

}
j
{
ι(`′)(s) Du ι(`)(t) s, t ∈ T and s Tu t Tv Val(x)

}
.

On page 22 (proof of Theorem 2.2.2, ad (2.9), item 2), it has been proved that in general,

D
⊔{

ι(`′)(s) Du ι(`)(t) s, t ∈ T and s Tu t Tv Val(x)
}

Dv d,

hence

d′ = D
⊔{

ι(`′)(Val 1(y)) Du ι(`)(Val 2(z))
Val 1, Val 2 ∈ S, y, z ∈ Frm,
and Val 1(y) Tu Val 2(z) Tv Val(x)

}
Dv D
⊔{

ι(`′)(s) Du ι(`)(t) s, t ∈ T and s Tu t Tv Val(x)
}

Dv d.

ad 8. Let everything be given and defined as in item 7.

Bearing in mind this item, it is sufficient to prove that

d Dv d′.(4.12)

Distinguish two cases:

63

4 Models and Semantic Consequence

Case 1. Assumption 8.1 holds.
By Observation 2.2.4,

ι(`′) ·∪ ι(`) = ι(`′) ∪ ι(`),

thus

d = (ι(`′) ∪ ι(`))(Val(x)) = ι(`′)(Val(x)) Dt ι(`)(Val(x)).

To establish the claim of this item, it is thus sufficient to prove

ι(`′)(Val(x))(4.13)

∈
{

ι(`′)(Val 1(y)) Du ι(`)(Val 2(z))
Val 1, Val 2 ∈ S, y, z ∈ Frm,
and Val 1(y) Tu Val 2(z) Tv Val(x)

}

and

ι(`)(Val(x))(4.14)

∈
{

ι(`′)(Val 1(y)) Du ι(`)(Val 2(z))
Val 1, Val 2 ∈ S, y, z ∈ Frm,
and Val 1(y) Tu Val 2(z) Tv Val(x)

}
.

By assumption (3.2), there are Val 2 ∈ S and z ∈ Frm such that Val 2(z) = 1. Then

Val(x) Tu Val 2(z) = Val(x) Tu 1 = Val(x)(4.15)

and, because ι(`) is a D-fuzzy filter of T,

ι(`)(Val 2(z)) = ι(`)(1)
= 1,

hence because of (4.15),

ι(`′)(Val(x))
= ι(`′)(Val(x)) Du 1
= ι(`′)(Val(x)) Du ι(`)(Val 2(z))

∈
{

ι(`′)(Val 1(y)) Du ι(`)(Val 2(z))
Val 1, Val 2 ∈ S, y, z ∈ Frm,
and Val 1(y) Tu Val 2(z) Tv Val(x)

}
.

(4.14) is proved analogously.

Case 2. Assumption 8.2 holds.
By assumption (3.2), (4.12) is equivalent with

D
⊔{

ι(`′)(s) Du ι(`)(t) s, t ∈ T and s Tu t Tv Val(x)
}

Dv d′.

But under this interpretation, (4.11) has been proved in Theorem 2.2.2, equation
(2.9).

64

4.1 The Model Relation

ad 9. It has to be proved that under the given conditions,

ι(`)(Val(x)) Dv ι
(
`′
) (

Val ′(y)
)
.

Let L′ =
[
L′, ·∪,∩] be the sublattice of the dual lattice

[
D-Fl (T) , ·∪,∩] of the complete

lattice
[
D-Fl (T) ,∩, ·∪] such that ι is an isomorphism between L and L′ (see Definition 2.3.1

and Theorem 2.2.1).

By the fact that the induced partial order of L′ is the usual superset relation k of fuzzy
sets, by the fact that ι is an isomorphism and by `′ Lv `,

ι(`) j ι(`′).(4.16)

Now, because ι(`) and ι(`′) are both D-fuzzy filters of T, condition 2a of Proposition 2.1.6
can be applied to the fact that Val(x) Tv Val ′(y), yielding

ι(`)(Val(x)) Dv ι(`)(Val ′(y)).(4.17)

Summing up,

d = ι(`)(Val(x)) (by definition)
Dv ι(`)(Val ′(y)) (by (4.17))
Dv ι(`′)(Val ′(y)) (by (4.16))
= c. 2

From Proposition 4.1.1, one can already get the impression that Definition 4.1.1 indeed charac-
terises a large class of ‘sensible’ labelled logics. The remainder of this dissertation is devoted
to the study of the resulting logics. In the remainder of this chapter, these logics are investi-
gated from an abstract point of view, defining logical concepts like semantic consequence,
semantic equivalence etc, and studying their interrelationship. In the subsequent chapter,
the expressive power of the definitions made here is illustrated, giving examples of concrete
logics from this class.

To facilitate discussions about the labelled logics studied here, a formal definition of the
class of logics generated by Definition 4.1.1 is given.

Definition 4.1.2 (Fuzzy filter-based logic)
A tuple Λ =def [Frm, T, S, D,L, ι] shall be called a fuzzy filter-based logic

� with logical language Frm,

� with truth value lattice T,

� with semantics S,

� with validity degree lattice D,

� and with label lattice L,

=def 1. Frm is a nonempty set,

2. T = [T, Tu, Tt], D = [D, Du, Dt], L = [L, Lu, Lt] are complete lattices with at least two

elements each, with induced partial orders Tv, Dv, Lv, respectively,

3. S j T Frm,

65

4 Models and Semantic Consequence

4. ι : L → D-Fl (T),
5. L is an expansion of T by D, by means of ι.

The relation |== defined in Definition 4.1.1 shall be called the model relation induced
by Λ.

Observe that claim 5 of Definition 4.1.2 is not really logically justified. It is demonstrated
in Proposition 4.1.1 that the ‘logical’ consequences of this claim are reasonable, but it would
be more satisfying to replace claim 5 by assumptions on the ‘logical’ properties of the model
relation, thus avoiding the detour of employing fuzzy filters and the mapping ι. Indeed, it is
possible to characterise a large subclass of all fuzzy filter-based logics by those properties which
were presented in Proposition 4.1.1.

Definition 4.1.3 (Logic of graded truth and graded trust assessment)
(Excessive use of assumption (3.2) is made in the following definition, especially of the valuation

Val t and the formula xt with Val t(xt) = t, for t ∈ T .)
A tuple Λ =def

[
Frm, T, S, D,L, |==

]
shall be called a logic of graded truth and graded

trust assessment

� with logical language Frm,

� with truth value lattice T,

� with semantics S,

� with validity degree lattice D,

� with label lattice L,

� and with model relation |==,

=def 1. Frm is a nonempty set,

2. T = [T, Tu, Tt], D = [D, Du, Dt], L = [L, Lu, Lt] are complete lattices with at least two

elements each, with induced partial orders Tv, Dv, Lv, respectively,

3. S j T Frm,

4. |== is a ternary relation on S × LFrm × D such that for every Val ∈ S, x ∈ Frm,

and ` ∈ L there exists a unique d ∈ D such that Val d|== [x, `],
5. if x, y ∈ Frm and Val, Val ′ ∈ S such that Val(x) = Val ′(y), then for all ` ∈ L and

d ∈ D,

Val d|== [x, `] iff Val ′ d|== [y, `] ,(4.18)

6. if `, `′ ∈ L such that `′ 6= `, then there exists t ∈ T such that for d, d′ ∈ D,

if Val t d|==
[
xt, `

′] and Val t d′|== [xt, `] , then d 6= d′,(4.19)

7. for all ` ∈ L,

Val 1 1|== [x1, `] ,(4.20)

8. for every t ∈ T and d ∈ D, there exists `t
d ∈ L such that for t′ ∈ T and d′ ∈ D,

if Val t′ d′|==
[
xt′ , `

t
d

]
, then d′ =


1, if t′ = 1
d, if t′ 6= 1 and t Tv t′

0, if not t Tv t′
(4.21)

66

4.1 The Model Relation

9. for s, t ∈ T , ` ∈ L, and c, d ∈ D such that

Val s c|== [xs, `] and Val t d|== [xt, `] ,

it holds that

Val sTut cDud|== [xsTut, `] ,(4.22)

10. for t ∈ T , `, `′ ∈ L, and c, d ∈ D such that

Val t c|==
[
xt, `

′] and Val t d|== [xt, `] ,

it holds that

Val t cDud|==
[
xt, `

′
Lt `
]
,(4.23)

11. for t ∈ T , `, `′ ∈ L, and d ∈ D such that

Val t d|==
[
xt, `

′
Lu `
]
,

it holds that

d = D
⊔d1 Du d2

There exist t1, t2 ∈ T and d1, d2 ∈ D

such that Val t1 d1
|==

[
xt1, `

′] and Val t2 d2
|==

[
xt2 , `

]
and t1 Tu t2 Tv t

 .(4.24)

First of all, it is a simple observation that most ‘sensible’ fuzzy filter-based logics are also
logics of graded truth and graded trust assessment.

Observation 4.1.2 (From fuzzy filter-based logics to logics of graded truth and graded trust assessment)

If [Frm, T, S, D, L, ι] is a fuzzy filter-based logic with induced model relation |== and further-
more

1. T is a chain or

2. D is completely distributive wrt. D
⊔

,

then [Frm, T, S, D, L, |==] is a logic of graded truth and graded trust assessment, where (see
Definition 4.1.3.8) ι

(
`t
d

)
= d

t . •

Proof
Items 1–3 of Definition 4.1.3 are identical with the respective items of Definition 4.1.2.

Items 4, 7, and 9–11 of Definition 4.1.3 have been proved, under the given assumptions, in
Proposition 4.1.1.

Item 5 of Definition 4.1.3 follows immediately from definition (4.1).
Item 6 of Definition 4.1.3 follows from definition (4.1) by assumption (3.2) and the injectivity

of ι.
Item 8 of Definition 4.1.3 and the condition ι

(
`t
d

)
= d

t follow from definition (4.1) by item
1 of Definition 2.3.1. 2

The proof of the fact that the class of all logics of graded truth and graded trust assessment
is a subclass of the class of all fuzzy filter-based logics requires a little more effort, because a
suitable lattice of fuzzy filters and an isomorphism have to be provided.

67

4 Models and Semantic Consequence

Theorem 4.1.3 (From logics of graded truth and graded trust assessment to fuzzy filter-based logics)

If [Frm, T, S, D, L, |==] is a logic of graded truth and graded trust assessment, then there

exists a mapping ι : L → D-Fl (T) such that [Frm, T, S, D, L, ι] is a fuzzy filter-based logic with

induced model relation |== and (see Definition 4.1.3.8) ι
(
`t
d

)
= d

t .

Proof
Define a mapping ι : L → DT for ` ∈ L and t ∈ T by

ι(`)(t) =def d such that Val t d|== [xt, `] .(4.25)

That by (4.25), ι is indeed uniquely defined to be a mapping from L into the set of all D-fuzzy
sets on T is guaranteed by assumption (3.2) and item 4 of Definition 4.1.3.

For convenience, in the remainder of this proof the D-fuzzy set ι(`) on T (given ` ∈ L) shall
be denoted by F`.

Next, define a set

L′ =def {F` ` ∈ L} .

It is to be proved that
[
L′, ·∪,∩] is a sublattice of the dual lattice

[
D-Fl (T) , ·∪,∩] of the

complete lattice of D-fuzzy filters of T and that ι is an isomorphism from L onto
[
L′, ·∪,∩] such

that the conditions of Definition 2.3.1 are fulfilled.
First of all, prove that every F ∈ L′ is a D-fuzzy filter of T. To this end, the conditions

from Corollary 2.1.7 are verified.
Let ` ∈ L such that F = F`.

1. F`(1) = 1.

It is sufficient to show

Val 1 1|== [x1, `] .

But this is equivalent with assumption 7 of Definition 4.1.3.

2. For all s, t ∈ T , F`(s) DuF`(t) = F`(s Tu t).

Let c, d, e ∈ D be such that

Val s c|== [xs, `] and Val t d|== [xt, `] and Val sTut e|== [xsTut, `] .

By definition (4.25), it suffices to show

c Du d = e,

which follows from assumption 9 of Definition 4.1.3.

So far, it is proved that L′ j D-Fl (T). To establish that
[
L′, ·∪,∩] is a sublattice of[

D-Fl (T) , ·∪,∩], it suffices to prove that for all F , G ∈ L′,

F ∩ G ∈ L′(4.26)
and F ·∪ G ∈ L′.(4.27)

Let `, `′ ∈ L such that F = F`′ and G = F`.

68

4.1 The Model Relation

ad (4.26). It is sufficient to prove

F`′ ∩ F` = F`′Lt`.(4.28)

For t ∈ T ,

(F`′ ∩ F`)(t) = F`′(t) Du F`(t).

Let c, d ∈ D be such that Val t c|==
[
xt, `

′] and Val t d|== [xt, `]. By definition, this means

(F`′ ∩ F`)(t) = c Du d.

To obtain

(F`′ ∩ F`)(t) = (F`′Lt`)(t),

It is thus sufficient to prove

Val t cDud|==
[
xt, `

′
Lt `
]
.

But this is true by assumption 10 of Definition 4.1.3.

ad (4.27). The equation

F`′ ·∪ F` = F`′Lu`(4.29)

is proved in two steps.

1. F`′ ·∪ F` j F`′Lu`.
By equation (2.8), it is sufficient to prove

F`′Lu` ∈
{H H ∈ D-Fl (T) and F`′ ∪ F` j H} .

Thus it suffices to show that

F`′Lu` ∈ D-Fl (T)(4.30)

and

F`′ ∪ F` j F`′Lu`.(4.31)

(4.30) has been proved already. For demonstrating (4.31), it is sufficient to show
that for every t ∈ T ,

(F`′ ∪ F`)(t) Dv F`′Lu`(t),

i. e.

F`′(t) DtF`(t) Dv F`′Lu`(t).

In the following, it is established that

F`′(t) Dv F`′Lu`(t).(4.32)

69

4 Models and Semantic Consequence

F`(t) Dv F`′Lu`(t) is proved analogously, and the result then follows from the fact that
F`′(t) Dt F`(t) is the least upper bound of F`′(t) and F`(t).
Proving (4.32) boils down to showing that for c, d ∈ D such that Val t c|==

[
xt, `

′]
and Val t d|==

[
xt, `

′
Lu `
]
, it holds that c Dv d.

By the absorption law of the lattice L,

`′ Lt (`′ Lu `) = `′,

so by assumption 10 of Definition 4.1.3,

c = c Du d.

But this is equivalent with c Dv d by equation (1.4).

2. F`′Lu` j F`′ ·∪ F`.
It is sufficient to prove that for every t ∈ T ,

F`′Lu`(t) Dv (F`′ ·∪ F`)(t).

Let

d =def D
⊔{F`′(t1) Du F`(t2) t1, t2 ∈ T and t1 Tu t2 Tv t

}
.

On page 22 (proof of Theorem 2.2.2, ad (2.9), item 2), it has been proved that

d Dv (F`′ ·∪ F`)(t).

Thus it is sufficient to prove that

F`′Lu`(t) Dv d.(4.33)

By definition (4.25), for d′ =def F`′Lu`(t) it holds that

Val t d′|==
[
xt, `

′
Lu `
]
.

By assumption 11 of Definition 4.1.3, this means

d′ = D
⊔d1 Du d2

There exist t1, t2 ∈ T and d1, d2 ∈ D

such that Val t1 d1
|==

[
xt1, `

′] and Val t2 d2
|==

[
xt2, `

]
and t1 Tu t2 Tv t

 .

Again by definition (4.25),

d′ = D
⊔{F`′(t1) DuF`(t2) t1, t2 ∈ T and t1 Tu t2 Tv t

}
= d,

from which (4.33) follows.

So far, it has been established that
[
L′, ·∪,∩] is a sublattice of

[
D-Fl (T) , ·∪,∩].

Next, prove that

D-PFl (T) j L′.

70

4.1 The Model Relation

Let d ∈ D and t ∈ T . By assumption 8 of Definition 4.1.3, there exists `t
d ∈ L defined by

equation (4.21). It is sufficient to prove that

F`t
d

= d
t ,

additionally establishing the condition ι
(
`t
d

)
= d

t of the theorem.
Prove that for all t′ ∈ T ,

F`t
d
(t′) = d

t (t′).(4.34)

Let F`t
d
(t′) = d′. By definition (4.25), this is equivalent with

Val t′ d′|==
[
xt′ , `

t
d

]
.

The claim (4.34) now follows immediately from the definitions (2.1) and (4.21).
To complete the proof, it only remains to present an isomorphism from [L, Lu, Lt] onto[

L′, ·∪,∩] and to prove that |== coincides with the relation defined in (4.1).
By the definition (4.25) and by the equations (4.28) and (4.29) which have already been

established, it is obvious that the mapping ι is a surjective lattice homomorphism from [L, Lu, Lt]
onto

[
L′, ·∪,∩]. To prove that ι is an isomorphism, it remains to show that ι is injective.

Let `, `′ ∈ L be given such that

F`′ = F`.

This means that for all t ∈ T and d ∈ D,

Val t d|==
[
xt, `

′] iff Val t d|== [xt, `] .

But from this it follows by assumption 6 of Definition 4.1.3 that `′ = `, thus the injectivity of ι

and hence the fact that ι is the desired isomorphism from [L, Lu, Lt] onto
[
L′, ·∪,∩] is proved.

That |== coincides with the relation defined in Definition 4.1.1 follows from (4.1) and (4.25)
by assumption 5 of Definition 4.1.3. 2

Remarks
From the proof of Theorem 4.1.3, it is obvious that the defining properties of a fuzzy filter-based
logic have been ‘translated’ into logical notation. It is nevertheless interesting to note which
‘logical’ form these properties take and how natural they appear.

Of course it can be argued that some of the items of Definition 4.1.3 could be dispensed
with, from a logical point of view. It would be interesting to study what exactly the logical
consequences of leaving out one or the other of the assumptions from Definition 4.1.3 would be.
For the time being, however, all the defining properties are exploited and the resulting logical
systems are characterised.

The theorems to be proved in the remainder of this chapter and the examples of logics
of graded truth and graded trust assessment in the following chapter shall justify this pro-
ceeding by demonstrating that logics of graded truth and graded trust assessment possess all
the properties one would expect from a logic capable of representing graded truth and graded
trust assessment and furthermore illustrating that a large variety of well-known valuable logical
systems fall into this class.

Next, a discussion of the defining properties of logics of graded truth and graded trust
assessment is given from an intuitive point of view.

71

4 Models and Semantic Consequence

� Items 1, 2, and 3 of Definition 4.1.3 are trivial assumptions and appear identically in
Definition 4.1.2.

� Item 4 basically means that |== is a graded model relation, i. e. for every valuation
Val ∈ S and every labelled formula x, there exists a degree d ∈ D to which Val models x.

The only thing that should be noted is the fact that |== really is a mapping from
S × LFrm into D, in contrast with for instance [35], where the graded consequence
relation has a certain monotonicity property, meaning that if Val d|== x and d′ Dv d, then
Val d′|== x.

To explain the philosophy behind this approach, consider the case that d = 0. For the
approach taken here, Val 0|== x means that Val is not a model of x at all, i. e. the labelled
formula x is not satisfied by the valuation Val. If |== was monotone, Val 0|== x would hold
for all Val and x, in particular, if Val 1|== x, then it would still be the case that Val 0|== x,
i. e. x would at the same time be completely satisfied by Val and not satisfied by Val. But
this would make this system incompatible with the classical case.

� Item 5 states that if two formulae are indistinguishable by their truth values, then
neither can they be distinguished by their validity degrees, for any label. This means a
certain extensionality property of the model relation: it only depends on the truth value
of a formula under a valuation (and the label, of course).

� Item 6 means that if two labels are indistinguishable by logical means, then they should
be equal.

While it is obvious where this claim is needed in the proof of Theorem 4.1.3 to establish
the injectivity of ι, it is also justified from a logical point of view. There is no more basic
notion in the logical system than the model relation, and as labels are for logical purposes
only, different labels should be distinguishable by means of |==.

� Item 7 means that a formula which is absolutely true under a valuation, should also
be absolutely valid, regardless of the label. This condition already makes clear that a
label must always be a positive constraint on the validity of a formula; it is not possible
to express by a label that a formula must be false (to achieve this, a label must be placed
on the negation of the formula, provided a suitable negation operator is contained in the
logic).

� Item 8 is mainly needed for technical purposes (it corresponds to item 1 of Definition 2.3.1).
It can be interpreted as demanding a minimal level of expressive power from the label
lattice, namely that a basic set of simple constraints (for every t and d, there must be a
label `t

d such that, whenever x takes a truth value greater or equal to t, then
[
x, `t

d

]
is

d-valid, taking into account of course that if x is absolutely true then
[
x, `t

d

]
has to be

absolutely valid) can be expressed.

� Item 9 claims a compatibility between the meet of truth values and the meet of validity
degrees wrt the graded model relation. In particular, from this property the following
monotonicity property of |== follows:

For s, t ∈ T , ` ∈ L, and c, d ∈ D such that

Val s c|== [xs, `] and Val t d|== [xt, `] ,

if s Tv t then c Dv d, i. e. if a formula gets more true, the corresponding labelled
formula has to get more valid.

72

4.1 The Model Relation

This kind of monotonicity is important for uncertainty modelling, because if one is un-
certain about the validity of a formula, then of course ones belief in the validity of the
formula should increase if the formula gets more true.

� Item 10 claims a compatibility between the join of labels and the meet of validity
degrees wrt. the graded model relation. In particular, from this property the following
comonotonicity property of |== follows:

For t ∈ T , `, `′ ∈ L, and c, d ∈ D such that

Val t c|==
[
xt, `

′] and Val t d|== [xt, `] ,

if ` Lv `′ then c Dv d, i. e. if the same formula is endowed with a weaker label,
the corresponding labelled formula has to get more valid.

Again, this property matches the intuition for uncertainty modelling. By the explanations
earlier in this chapter, labels are to be ordered by strength of the associated constraint
on the validity of the labelled formula.

So it is natural to assume that the same formula, endowed with a stronger label, will lose
validity.

� Item 11 is again of a technical nature, stating that (and in which way) the validity
distribution created by a compound label `′ Lu ` is completely determined by the validity
distributions created by the labels `′ and `.

Summing up, items 1, 2, 3, and 4 provide the basis for the further definitions, without really
contributing to the logical properties of the model relation.

Items 5, 6, 8, and 11 provide technical properties of labels which are needed to establish
the isomorphism with a lattice of fuzzy filters.

Items 7, 9, and 10, finally state important logical properties which link the notions of truth,
validity and label, and make precise the intended meaning of these concepts in uncertainty
modelling.

It would of course be desirable to have more ‘logical’ explanations for items 6, 8, and 11,
but this is a subject for future research. •

Observations 4.1.4 (Special cases of logics of graded truth and graded trust assessment)
The logical characterisation of fuzzy filter-based logics is illustrated further by looking at some
special cases.

1. In the case that T is a chain, item 9 of Definition 4.1.3 is equivalent with the following
monotonicity condition:

9∗ for s, t ∈ T , ` ∈ L, and c, d ∈ D such that

Val s c|== [xs, `] and Val t d|== [xt, `] ,

it holds that

if s Tv t , then c Dv d.(4.35)

Furthermore, item 11 is equivalent with

73

4 Models and Semantic Consequence

11∗ for t ∈ T , `, `′ ∈ L, and c, d ∈ D such that

Val t c|==
[
xt, `

′] and Val t d|== [xt, `] ,

it holds that

Val t cDtd|==
[
xt, `

′
Lu `
]
,(4.36)

By Observation 4.1.2 and Theorem 4.1.3, in the case that T is a chain, thus the class of
all fuzzy filter-based logics is completely characterised by the axioms 1, 2, 3, 4, 5, 6, 7, 8,
9∗, 10, and 11∗.

2. In the case that L is a chain (which implies by Proposition 2.3.6 that T is a chain and
D = B or T = B and D is a chain), item 10 of Definition 4.1.3 is equivalent with the
following monotonicity condition:

10∗ for t ∈ T , `, `′ ∈ L, and c, d ∈ D such that

Val t c|==
[
xt, `

′] and Val t d|== [xt, `] ,

it holds that

if ` Lv `′ , then c Dv d.(4.37)

Furthermore, item 11∗ is also equivalent with 10∗, thus in this case, the class of all fuzzy
filter-based logics is completely characterised by the axioms 1, 2, 3, 4, 5, 6, 7, 8, 9∗, 10∗.

This means that the axioms reduce to a couple of technical trivialities (axioms 1–8) and
two simple monotonicity conditions (axioms 9∗ and 10∗) — a very simple and intuitively
pleasing axiom system which nonetheless characterises a lot of well-known logics (see
chapter 5). •

Proof
By applying (1.4) and (1.13) to Definition 4.1.3, and applying Observation 4.1.2 and Theo-
rem 4.1.3. 2

Next, the semantic theory of logics of graded truth and graded trust assessment is developed
further.

Definition 4.1.4 (Model relation for L-fuzzy sets of formulae)
The relation |== from Definition 4.1.1 is extended to L-fuzzy sets of formulae as follows. Given
an L-fuzzy set X : Frm → L and a valuation Val ∈ S,

Val d|== X =def d = D
l{

d′ x ∈ Frm and Val d′|==
[
x,X (x)

]}
(4.38)

Remarks
1. Because by Proposition 4.1.1.1, Val 1|==

[
x,X (x)

]
whenever X (x) = 0, equation (4.38) is

equivalent with

Val d|== X =def d = D
l{

d′ x ∈ Frm and X (x) 6= 0 and Val d′|==
[
x,X (x)

]}
.(4.39)

This is important when X is to be characterised by a (possibly finite) knowledge base
consisting of a set X =def {[x1, `1] , [x2, `2] , . . .} of labelled formulae, such that xi 6= xj

for i 6= j. X can then be identified with an L-fuzzy set X by setting X (xi) =def `i for
every i and X (x) =def 0 for every x ∈ Frm which does not appear as xi for any i. The
calculation of Val d|== X can then be reduced to the calculation of Val d′|== [xi, `i], ignoring
those x ∈ Frm which do not appear as xi for any i.

74

4.2 Some Logical Concepts Based on the Model Relation

2. The formulation “the relation |== is extended to L-fuzzy sets of formulae” has to be
justified by proving that the model relations defined in Definition 4.1.1 and Definition 4.1.4
coincide on labelled formulae.

But this follows immediately from the previous item, because [x, `] is just the D-fuzzy set
of formulae associated with {[x, `]}.

3. Proposition 4.1.1.2 means that for all Val ∈ S,

Val 1|== ///©.(4.40)

(Compare (1.22).) •

The primary idea behind the above definition of |== is to provide a basis for a ‘sensible’
definition of semantic entailment.

The second goal in this definition is to be general enough to allow for interesting interpreta-
tions of labels which endow the resulting logic with sufficient expressive power to be suitable
for modelling graded truth assessment and graded trust assessment in knowledge representation.
The flexibility of this approach is illustrated in chapter 5. In particular, section 5.5 contains
examples and a discussion of special labels and their logical meaning.

4.2 Some Logical Concepts Based on the Model Relation

Before defining and studying the semantic consequence operator in section 4.3, in this section
some simpler semantic concepts based on the graded model relation like model fuzzy sets,
the properties validity and consistency for labelled formulae, and the semantic equivalence
relation are defined and studied.

First of all, for every L-fuzzy set of formulae, its D-fuzzy set of models can be defined.

Definition 4.2.1 (Model fuzzy set of a fuzzy set of formulae)
For X ∈ LFrm, define the D-fuzzy set Mod(X) ∈ DS of models of X for Val ∈ S and d ∈ D
by

Mod(X)(Val) = d =def Val d|== X .(4.41)

(This is possible because d ∈ D such that Val d|== X is uniquely defined.)

Proposition 4.2.1 (Compatibility of model fuzzy sets with operations on fuzzy sets)
Let X ,Y ∈ LFrm. Then

Mod (X) ∩ Mod (Y) = Mod (X ∪ Y) ,(4.42)
if X j Y , then Mod(Y) j Mod(X).(4.43)

Mod (X) ∪ Mod (Y) j Mod (X ∩ Y) ,(4.44)

Proof
ad (4.42). Let Val ∈ S. Then(

Mod (X) ∩ Mod (Y)
)

(Val)

= D
d{

d′ ∃x ∈ Frm : Val d′|==
[
x,X (x)

]}
Du D

d{
d′ ∃y ∈ Frm : Val d′|==

[
y,Y(y)

]} By (4.41), (4.38), (1.17)

75

4 Models and Semantic Consequence

= D
l

{
d′ ∃x ∈ Frm : Val d′|==

[
x,X (x)

]}
∪
{
d′ ∃y ∈ Frm : Val d′|==

[
y,Y(y)

]}


= D
l{

d Du d′ ∃x ∈ Frm : Val d|==
[
x,X (x)

]
and Val d′|==

[
x,Y(x)

]}
= D

l{
d ∃x ∈ Frm : Val d|==

[
x,X (x) Lt Y(x)

]}
By (4.5)

= D
l{

d ∃x ∈ Frm : Val d|==
[
x, (X ∪ Y) (x)

]}
=
(
Mod (X ∪ Y)

)
(Val)

ad (4.43). If X j Y, then X ∪ Y = Y, thus (4.42) is just the definition of

Mod(Y) j Mod(X)

in the lattice of D-fuzzy sets on S (compare (1.4)).

ad (4.44). X ∩ Y j X and X ∩ Y j Y hold trivially, hence by (4.43),

Mod (X) j Mod (X ∩ Y)

and

Mod (Y) j Mod (X ∩ Y) ,

from which (4.44) follows immediately. 2

Proposition 4.2.2 (Compatibility of model fuzzy sets with infinitary join)
Let X j LFrm. Then ⋂{

Mod(X) X ∈ X
}

= Mod
(⋃

X
)

.(4.45)

Proof
The result is proved analogously to (4.42). Let Val ∈ S. Then(⋂{

Mod(X) X ∈ X
})

(Val)

= D
l{

D
l{

d′ ∃x ∈ Frm : Val d′|==
[
x,X (x)

]} X ∈ X

}
= D

l⋃{{
d′ ∃x ∈ Frm : Val d′|==

[
x,X (x)

]} X ∈ X

}

= D
l
D

l
C

∃x ∈ Frm :
C =

{
d d ∈ D and there exists X ∈ X such that Val d|==

[
x,X (x)

]}


= D
l
{

d ∃x ∈ Frm : Val d|==
[
x,
(

L
⊔{X (x) X ∈ X

)}]}
By (4.6)

= D
l
{

d ∃x ∈ Frm : Val d|==
[
x,
(⋃

X
)

(x)
]}

=
(

Mod
(⋃

X
))

(Val) 2

76

4.2 Some Logical Concepts Based on the Model Relation

Remark
Note that from the observation above, it follows that the set of all model fuzzy sets for an
arbitrary fuzzy filter-based logic again forms a complete lattice, the infimum of which coincides
with the canonical one on the set of all D-fuzzy sets on S. •

Observation 4.2.3 (Monotonicity of Mod wrt truth values)
1. Let x, y ∈ Frm. If for every Val ∈ S,

Val(x) Tv Val(y)(4.46)

holds, then for every ` ∈ L, Mod
(
[x, `]

)
j Mod

(
[y, `]

)
.

2. If the logic constituted by Frm, T and S contains a binary operator ∨ interpreted by Tt,
then for all x, y ∈ Frm and all ` ∈ L,

Mod
(
[x, `]

)
j Mod

(
[x ∨ y, `]

)
and Mod

(
[y, `]

)
j Mod

(
[x ∨ y, `]

)
.(4.47) •

Proof
ad 1. Let x, y be given as required. By definition of Mod, it is to be proved that for every

` ∈ L, every Val ∈ S, and all d, d′ ∈ D,

if Val d|== [x, `] and Val d|== [y, `] , then d Dv d′,

which follows from Proposition 4.1.1.9.

ad 2. Follows from the previous item by the fact that for every Val ∈ S,

Val(x) Tv Val(x) Tt Val(y) (by the fact that T is a lattice)
= Val(x∨ y). (by definition)

Analogously for Val(y) Tv Val(x ∨ y). 2

An interesting property of a fuzzy set of formulae is the degree to which it must be valid
(which should be distinguished from the inherent truth taut which is a truth value defined for
a formula; see Definition 3.3.4), and the degree to which it can be valid.

Definition 4.2.2 (Validity and consistency index)
Let X ∈ LFrm.

1. Define the validity index (or inherent validity) of X ,

valid(X) =def D
l{

Mod(X)(Val) Val ∈ S
}

.(4.48)

If valid(X) = 1, X is said to be valid. The set of all valid L-fuzzy sets of formulae is
denoted Valid.

2. Define the consistency index of X ,

cst(X) =def D
⊔{

Mod(X)(Val) Val ∈ S
}

.(4.49)

If cst(X) = 1, X is said to be consistent. X is said to be strictly consistent iff there
exists Val ∈ S such that Val 1|== X . X is said to be inconsistent iff cst(X) = 0. The
set of all inconsistent L-fuzzy sets of formulae is denoted Incons.

77

4 Models and Semantic Consequence

Remark
The definition of cst above corresponds to the definition of the consistency degree Cons
in [19, section 3.3]. •

Observations 4.2.4 (Properties of valid and cst)
1. ///© ∈ Valid.

2. For [x, `] ∈ LFrm,

ι(`)(taut(x)) Dv valid([x, `]).

3. If x ∈ Frm is a tautology, then for every ` ∈ L, [x, `] is valid.

4. For every x ∈ Frm, [x, 0] is valid.

5. For x ∈ Frm,

ι(1)(taut(x)) = valid([x, 1]).

6. If [x, 1] ∈ LFrm is valid, then x is a tautology.

7. For every X ∈ LFrm, valid(X) Dv cst(X).

8. If X is strictly consistent, then X is consistent.

9. If [x, 1] ∈ LFrm is consistent, then [x, 1] is strictly consistent.

10. For [x, `] ∈ LFrm, if there exists Val ∈ S such that Val(x) = 1, then [x, `] is strictly
consistent.

11. For x ∈ Frm, if [x, 1] is consistent, then there exists Val ∈ S such that Val(x) = 1. •

Proof
ad 1. Trivial because by (4.40), Mod(///©)(Val) = 1 for all Val ∈ S.

ad 2. It is sufficient to prove that for every Val ∈ S and d ∈ D such that Val d|== [x, `],

ι(`)(taut(x)) Dv d.

By the definition of taut,

taut(x) Tv Val(x),

thus, because ι(`) is a D-fuzzy filter of T,

ι(`)(taut(x)) Dv ι(`)(Val(x)).

But by the definition of |==,

d = ι(`)(Val(x)),

so the proof of this item is complete.

Please note that the reverse direction (i. e. valid([x, `]) Dv ι(`)(taut(x))) does not hold, in
general. To establish this inequation, some sort of continuity of the mapping ι(`) would
be needed, which cannot even be formulated so far. But in item 5, a weak form of the
reverse inequation is proved for the special case ` = 1.

78

4.2 Some Logical Concepts Based on the Model Relation

ad 3. Follows immediately from the previous item, because ι(`)(1) = 1 by the definition of a
fuzzy filter.

ad 4. Follows immediately from Proposition 4.1.1, item 2.

ad 5. Taking into account item 2, it remains to prove

valid([x, 1]) Dv ι(1)(taut(x)),(4.50)

where

valid([x, 1]) = D
l{

d Val ∈ S and Val d|== [x, 1]
}

= D
l{

ι(1)(Val(x)) Val ∈ S
}

.

By an analogous argumentation as in the proof of item 2 of Proposition 4.1.1, it follows
that ι(1) is the zero element 0 of the lattice

[
D-Fl (T) ,∩, ·∪]. By the characterisation of

this mapping in item 1 of Observation 2.2.5, it follows that for every t ∈ T ,

0(t) ∈ {0, 1}(4.51)

and furthermore

0(t) = 1 iff t = 1.(4.52)

Hence for (4.50), it is sufficient to show that

if ι(1)(taut(x)) = 0 , then 0 ∈ {ι(1)(Val(x)) Val ∈ S
}

.(4.53)

If ι(1)(taut(x)) = 0, then taut(x) 6= 1, i. e. there exists Val ∈ S such that Val(x) 6= 1.
But in this case ι(1)(Val(x)) = 0, which establishes the claim.

ad 6. Follows immediately from the contraposition of (4.53) and from (4.52).

ad 7 and 8. Trivial by the definition and the fact that D is a complete lattice.

ad 9. Follows immediately from the fact that for every Val ∈ S, Mod
(
[x, 1]

)
(Val) ∈ {0, 1}

(compare (4.51)).

ad 10. Follows immediately from the definition by Proposition 4.1.1.3.

ad 11. Is proved analogously to item 5. 2

Next, the relation of semantic equivalence is defined for labelled formulae resp. L-fuzzy sets
of formulae.

Definition 4.2.3 (Semantic equivalence)
1. X ,Y ∈ LFrm are said to be semantically equivalent (X ≡ Y)

=def Mod(X) = Mod(Y).

(The overloading of ≡ to denote semantic equivalence both for formulae and L-fuzzy sets
of formulae should pose no problems because it will always be clear from the context

which interpretation is meant.)

2. X ,Y ∈ LFrm are said to be consistency-equivalent (X ∼= Y)
=def cst(X) = cst(Y).

79

4 Models and Semantic Consequence

Observations 4.2.5 (Properties of ≡)
1. Both ≡ and ∼= are equivalence relations on LFrm.

2. X ∈ Valid iff X ≡ ///©.

If X ∈ Incons, then Y ∈ Incons iff X ≡ Y.

This means that Valid, Incons (if non-empty) are equivalence classes wrt ≡.

3. For x, y ∈ Frm, if x ≡ y, then for every ` ∈ L,

[x, `] ≡ [y, `] ,(4.54)
[x, `] ∼= [y, `] .(4.55)

4. Let X ,Y,Z ∈ LFrm. If X ≡ Y, then X ∪ Z ≡ Y ∪ Z .

5. Let X, Y j LFrm. If

for every X ∈ X there exists Y ∈ Y such that X ≡ Y
and for every Y ∈ Y there exists X ∈ X such that X ≡ Y,

(4.56)

then
⋃

X ≡ ⋃Y. •

Proof
ad 1. Obvious by the definitions.

ad 2. Trivial because X ∈ Valid iff Mod(X)(Val) = 1 for all Val ∈ S (compare Observa-
tion 4.2.4.1) and X ∈ Incons iff Mod(X)(Val) = 0 for all Val ∈ S.

ad 3. Follows immediately from definition (4.1).

ad 4. Obvious by Proposition 4.2.1.

ad 5. Let X, Y be given as assumed. It is to be proved that

Mod
(⋃

X
)

= Mod
(⋃

Y
)

.

By (4.45), it is sufficient to show that⋂{
Mod(X) X ∈ X

}
=
⋂{

Mod(Y) Y ∈ Y
}

.

It suffices to prove {
Mod(X) X ∈ X

}
=
{

Mod(Y) Y ∈ Y
}

.

ad“j”. Let X ∈ X. It is sufficient to show that Mod(X) ∈ {
Mod(Y) Y ∈ Y

}
. By

assumption (4.56), there exists Y ∈ Y such that X ≡ Y, i. e. Mod(X) = Mod(Y),
which establishes the claim.

ad“k”. Is proved analogously.

This concludes the proof. 2

The following theorems are very important because they allow to transfer results about
semantic equivalence of formulae (from the theory of normal forms, for instance) immediately
to labelled formulae by simply replacing semantically equivalent formulae in a fuzzy set. To
formulate the results more elegantly, an auxiliary definition is introduced.

80

4.2 Some Logical Concepts Based on the Model Relation

Definition 4.2.4 (Modifying fuzzy sets by crisp sets)
Let X ∈ LFrm and X j Frm be given.

1. Denote by X \X the fuzzy set such that for all x ∈ Frm

(X \ X
)

(x) =def

{
0, if x ∈ X

X (x), if x /∈ X
(4.57)

2. X ∩ X denotes the fuzzy set X \ (Frm \ X
)
, i. e. for all x ∈ Frm,

(X ∩ X) (x) =def

{
0, if x /∈ X

X (x), if x ∈ X
(4.58)

Theorem 4.2.6 (Replacement)
1. Let X ∈ LFrm and x, y ∈ Frm with x ≡ y. Then

X ≡ X ∪ [x,X (y)
]
.(4.59)

≡ (X \ {y}) ∪ [x,X (y)
]
.(4.60)

2. The result can be extended a little, to the case where one formula is semantically equiv-
alent with a finite set of formulae.

Let X ∈ LFrm, a formula y ∈ Frm and a finite set Y = {y1, . . . , yn} j Frm, for n ∈ N, be

given, such that {y} ≡ Y .

Furthermore, let

Y =def

[
y1,X (y)

]∪ · · · ∪ [yn,X (y)
]

Then

X ≡ X ∪ Y.(4.61)
≡ (X \ {y}) ∪ Y.(4.62)

Proof
ad (4.59). Let Val ∈ S and d′ ∈ D be such that

Val d′|==
[
y,X (y)

]
.(4.63)

It is obvious by x ≡ y and definition (4.1) that also

Val d′|==
[
x,X (y)

]
.

By (4.42),

Mod
(
X ∪ [x,X (y)

])
(Val) =

(
Mod(X) ∩ Mod

([
x,X (y)

]))
(Val)

= Mod(X)(Val) Du d′

= D
l{

d z ∈ Frm and Val d|==
[
z,X (z)

]}
Du d′.

But d′ ∈
{
d z ∈ Frm and Val d|==

[
z,X (z)

]}
by (4.63), hence

Mod(X)(Val) = Mod(X)(Val) Du d′ = Mod
(
X ∪ [x,X (y)

])
(Val).

Thus (4.59) is proved.

81

4 Models and Semantic Consequence

ad (4.60). Follows exactly like (4.59), taking into account that

Mod
(X \ {y}) (Val) Du d′ = Mod(X)(Val).

ad (4.61). The proof of (4.59) is adapted to this case. Let Val ∈ S and d′ ∈ D be such that

Val d′|== Y.

Furthermore, let d1, . . . , dn be such that

Val d1
|==

[
y1,X (y)

]
,

...
Val dn

|==
[
yn,X (y)

]
.

From (4.38) it follows that d′ = d1 Du . . . Du dn. Furthermore, {y} ≡ Y means that
Val(y) = Val(y1) Tu . . . Tu Val(yn). Thus a simple induction using (4.4) yields

Val d′|==
[
y,X (y)

]
.(4.64)

By (4.42),

Mod (X ∪ Y) (Val) =
(
Mod(X) ∩ Mod (Y)

)
(Val)

= Mod(X)(Val) Du d′

= D
l{

d z ∈ Frm and Val d|==
[
z,X (z)

]}
Du d′.

But d′ ∈
{
d z ∈ Frm and Val d|==

[
z,X (z)

]}
by (4.64), hence

Mod(X)(Val) = Mod(X)(Val) Du d′ = Mod (X ∪ Y) (Val).

Thus (4.61) is proved.

ad (4.62). Follows exactly like (4.61), taking into account that

Mod
(X \ {y}) (Val) Du d′ = Mod(X)(Val). 2

From (4.62), an interesting corollary is obtained which allows to dissolve conjunctive formulae
in a logic where conjunction is interpreted by the lattice meet.

Corollary 4.2.7 (Dissolving conjunctions)
If the underlying logic constituted by Frm, T and S contains a binary operator ∧ interpreted
by Tu, then for every X : Frm → L and all x, y ∈ Frm,

X ≡ (X \ {x ∧ y}) ∪ [x,X (x∧ y)
] ∪ [y,X (x∧ y)

]
.

Proof
By (4.62), it suffices to prove {x ∧ y} ≡ {x, y}. This follows by definition. 2

Next, more ‘substantial’ replacements are considered.

82

4.2 Some Logical Concepts Based on the Model Relation

Theorem 4.2.8 (Transforming fuzzy sets of formulae into normal form)
Let X ∈ LFrm.

1. Let x ∈ Frm be given. The labels of all elements from x’s equivalence class [x] (see
Definition 3.3.2) can be made equal, as follows.

Define

`x =def L
⊔{X (y) y ∈ [x]

}
,(4.65)

Xx =def

⋃{
[y, `x] y ∈ [x]

}
.(4.66)

Then the following holds:

X ≡ X ∪ Xx(4.67)
≡ (X \ [x]

) ∪ Xx(4.68)

2. X can even be factorised this way (using the definitions for `x and Xx given above):

X ≡
⋃

{Xx x ∈ suppX}(4.69)

3. If N j Frm is a semantic covering (see Definition 3.3.3.1) of suppX , then

X ≡
⋃{

[x, `x] x ∈ N
}

(4.70)

4. If T is a semantic-preserving syntax transformation operator (see Defini-
tion 3.3.3.2) wrt suppX , then

X ≡
⋃{⋃{

[y, `x] y ∈ T (x)
}

x ∈ suppX
}

(4.71)

Proof
ad (4.67). It is sufficient to prove

Xx ≡ X ∩ [x] ,(4.72)

because obviously, X = X ∪ (X ∩ [x]
)
, hence (4.67) follows from Observation 4.2.5.4.

For establishing (4.72), by Definition 4.2.3 and (4.41) it is sufficient to prove that for every
Val ∈ S and d ∈ D,

Val d|== Xx iff Val d|== X ∩ [x] ,(4.73)

which, by (4.38), is equivalent with

(4.74) D
l{

d′ ∃y ∈ Frm : Val d′|==
[
y,Xx(y)

]}
= D

l{
d′ ∃y ∈ Frm : Val d′|==

[
y,
(X ∩ [x]

)
(y)
]}

By definition, Xx(y) =
(X ∩ [x]

)
(y) = 0 for every y ∈ Frm such that y /∈ [x]. Further-

more, for every y ∈ [x], Xx(y) = `x, so defining d′′ such that Val d′′|== [y, `x], it is sufficient
to prove

d′′ = D
l{

d′ y ∈ [x] and Val d′|==
[
y,X (y)

]}
(4.75)

This equality follows immediately from Proposition 4.1.1.7 and the definition (4.65) of `x.

83

4 Models and Semantic Consequence

ad (4.68). Is proved exactly as (4.67) after observing that X =
(X \ [x]

) ∪ (X ∩ [x]
)
.

ad (4.69). First of all, observe that

X =
⋃{X ∩ [x] x ∈ suppX} .(4.76)

That X ∩ [x] ≡ Xx for every x ∈ suppX has been established in the proof of equation
(4.67) (compare (4.72)).

Hence, for
{X ∩ [x] x ∈ suppX} and {Xx x ∈ suppX}, assumption (4.56) of Observa-

tion 4.2.5.5 is fulfilled. Thus,⋃{X ∩ [x] x ∈ suppX} ≡
⋃

{Xx x ∈ suppX}

follows from Observation 4.2.5.5, establishing the result.

ad (4.70). By the definition of semantic covering, N contains at least one representative from
each equivalence class in (suppX)≡. It shall be established that for every x ∈ Frm,

[x, `x] ≡ Xx.(4.77)

This means that assumption (4.56) of Observation 4.2.5.5 is fulfilled for
{

[x, `x] x ∈ N
}

and {Xx x ∈ suppX}, hence the claim follows from (4.69) and Observation 4.2.5.5.

For establishing (4.77), it is sufficient to prove

Mod
(
[x, `x]

)
= Mod (Xx) ,

i. e. for every Val ∈ S and d ∈ D,

Val d|== [x, `x] iff d = D
l{

d′ ∃y ∈ Frm : Val d′|==
[
y,Xx(y)

]}
.

Let d ∈ D be given such that Val d|== [x, `x]. The equality is proved in two steps.

1. d Dv D
d{

d′ ∃y ∈ Frm : Val d′|==
[
y,Xx(y)

]}
.

It is sufficient to prove that for every y ∈ Frm and d′ ∈ D such that
Val d′|==

[
y,Xx(y)

]
, d Dv d′. Distinguish two cases.

Case 1. y /∈ [x].
In this case, Xx(y) = 0 by the definition (4.66) of Xx. From (4.2), it follows that
d′ = 1, which implies d Dv d′.

Case 2. y ∈ [x], i. e. y ≡ x.
In this case, Xx(y) = `x by the definition (4.66) of Xx, hence [x, `x] ≡ [y,Xx(y)

]
by (4.54). It follows that d′ = d, which implies d Dv d′.

2. D
d{

d′ ∃y ∈ Frm : Val d′|==
[
y,Xx(y)

]}
Dv d.

It is sufficient to prove d ∈
{
d′ ∃y ∈ Frm : Val d′|==

[
y,Xx(y)

]}
, which follows imme-

diately from the fact that x ∈ [x] and the definition (4.66) of Xx.

This concludes the proof of equation (4.70).

84

4.2 Some Logical Concepts Based on the Model Relation

ad (4.71). Obviously, by (4.69) and (4.77),

X ≡
⋃{

[x, `x] x ∈ suppX} .(4.78)

Thus, by Observation 4.2.5.5 it is sufficient to prove

[x, `x] ≡
⋃{

[y, `x] y ∈ T (x)
}

,(4.79)

which follows immediately from Theorem 4.2.6.2, taking into account that the finiteness
of T (x) and x ≡ T (x) follow from the definition of T . 2

Observations 4.2.9 (Replacements and normal forms)
1. In fact, (4.59) is a much weakened version of (4.67).

2. With respect to (4.67) and (4.68), it is easily observed that for every y ∈ [x], X (y) Lv `x,
thus even X ∪ Xx =

(X \ [x]
) ∪ Xx.

3. Observe that the definitions of `x and Xx are independent from the representative x of
the equivalence class [x], so it would be justified to denote `x by `[x] and Xx by X[x].

With respect to (4.69), it is easily observed that

{Xx x ∈ Frm} =
{
X[x] [x] ∈ Frm≡

}
(4.80)

4. It follows from (4.70) that it is sufficient to select one representative x from each equiv-
alence class [x] ∈ Frm≡. N would then be the set of all these representatives, preferably
in some normal form. X can be compressed by attaching the label `x to every x ∈ N and
0 to every formula not in N .

This can mean a drastic reduction in the size of X , i. e. the cardinality of suppX . •
Theorem 4.2.6, Corollary 4.2.7, and Theorem 4.2.8 are very convenient for all kinds of seman-

tically equivalent transformations and manipulations on an L-fuzzy set of formulae. The result
of Theorem 4.2.8.3 in particular allows an L-fuzzy set of formulae to be transformed into some
kind of normal form.

As an application of these results, it is demonstrated that an L-fuzzy set of formulae from a
propositional logic based on the lattice connectives (compare Example 3.2.3) can be transformed
into clausal form.

Example 4.2.1 (Conjunctive normal form and clausal form)
For the extent of this example, fix a set PV of propositional variables and Frm =def PFrmS (see
Example 3.1.3).

For the interpretation of the logical operators, let ϕ∧ =def Tu and ϕ∨ =def Tt as described in
Example 3.2.3.

Fix T to be a De Morgan algebra wrt. ϕ¬. This means that T is a lattice which is
distributive, i. e. for all t1, t2, t3 ∈ T ,

t1 Tu (t2 Tt t3) ≡ (t1 Tu t2) Tt (t1 Tu t3) ,(4.81)
t1 Tt (t2 Tu t3) ≡ (t1 Tt t2) Tu (t1 Tt t3) ,(4.82)

and furthermore, De Morgan’s laws hold for all t1, t2 ∈ T :

ϕ¬ (t1 Tt t2) = ϕ¬(t1) Tu ϕ¬(t2),(4.83)
ϕ¬ (t1 Tu t2) = ϕ¬(t1) Tt ϕ¬(t2).(4.84)

In addition, assume that ϕ¬ is involutive, i. e. for all t ∈ T ,

ϕ¬
(
ϕ¬ (t)

)
= t.(4.85)

85

4 Models and Semantic Consequence

Remark
Note that from (4.83) and (4.85) it follows that ϕ¬ is an order-reversing bijection as demanded
in Example 3.2.3.

On the other hand, if ϕ¬ is an order-reversing bijection, it fulfils (4.83) and (4.84), but not
necessarily (4.85). •

Assume ϕ→ to be the s-implication of Tt wrt. ϕ¬, i. e. for s, t ∈ T :

ϕ→(s, t) =def ϕ¬(s) Tt t.(4.86)

Let S be the semantics given by (3.3) for this interpretation of the logical operators.
D may be chosen arbitrarily; let L, |== be chosen such that

[
Frm, T, S, D,L, |==

]
is a logic

of graded truth and graded trust assessment.
To simplify notation in the following, some notational conventions are introduced.
Define the set Lit of all literals to be the set of all propositional variables and negations of

propositional variables:

Lit =def PV ∪ {¬p p ∈ PV} .(4.87)

For later considerations concerning refutation, the complement of a literal l ∈ Lit (denoted
l) is defined by

l =def

{
¬l if l ∈ PV
p if l = ¬p and p ∈ PV

(4.88)

Because of the associativity of the functions ϕ∧, ϕ∨, parentheses are left out when denoting
multiple conjunctions or disjunctions. That is, given n ∈ N, n = 1 and x1, . . . , xn ∈ PFrmS,

write (x1 ∧ x2 ∧ · · · ∧ xn) or
n∧

i=1

xi instead of
((

. . . (x1 ∧ x2) ∧ . . .
) ∧ xn

)
(4.89)

write (x1 ∨ x2 ∨ · · · ∨ xn) or
n∨

i=1

xi instead of
((

. . . (x1 ∨ x2) ∨ . . .
) ∨ xn

)
(4.90)

Definition 4.2.5 (Clauses, conjunctive normal form)
Let x ∈ Frm.

1. x is said to be a clause
=def x is a disjunction of literals, i. e. there exists n ∈ N, n = 1 and there exist literals

l1, . . . , ln ∈ Lit such that

x =
n∨

i=1

li.

The set of all clauses in Frm is denoted by Cls.

2. x is said to be in conjunctive normal form
=def x is a conjunction of clauses, i. e. there exists n ∈ N, n = 1 and there exist clauses

c1, . . . , cn ∈ Cls such that

x =
n∧

i=1

ci.

The set of all formulae in Frm which are in conjunctive normal form is denoted by Cnf.

86

4.2 Some Logical Concepts Based on the Model Relation

Remark
As ∨ is commutative and idempotent (i. e. (x∨x) ≡ x), it is convenient (see especially section
5.4) to identify a clause with the set of all literals occurring in it.

Consequently, in the sequel a clause
n∨

i=1

li is identified with the set {l1, . . . , ln} ,

with the obvious extension of valuations from S to sets of literals. •
Proposition 4.2.10 (Transforming into clausal form)

1. Let x ∈ Frm. Then there exists xCnf ∈ Cnf such that x ≡ xCnf .

2. Cnf is a semantic covering of Frm.

3. Given x ∈ Frm, let nx ∈ N and cx,1, . . . , cx,nx ∈ Cls such that

xCnf =
nx∧
i=1

cx,i.

Then defining TCls : Frm → PFrm by

TCls(x) =def

{
cx,1, . . . , cx,nx

}
,

TCls is a semantic-preserving syntax transformation operator wrt Frm.

4. For every X ∈ LFrm, there exists XCnf ∈ LCnf such that X ≡ XCnf .

5. For every X ∈ LFrm, there exists XCls ∈ LCls such that X ≡ XCls.

Proof
ad 1. Straightforward induction on the structure of x, using the following equivalences implied

by (4.81)–(4.86) (for x1, x2, x3 ∈ Frm)

(x1 → x2) ≡ (¬x1 ∨ x2) (elimination of →)(4.91) (
x1 ∧ (x2 ∨ x3)

) ≡ ((x1 ∧ x2) ∨ (x1 ∧ x3)
)
,(4.92) (

x1 ∨ (x2 ∧ x3)
) ≡ ((x1 ∨ x2) ∧ (x1 ∨ x3)

)
, (distributive laws)(4.93)

¬ (x1 ∨ x2) ≡ (¬x1 ∧ ¬x2)(4.94)
¬ (x1 ∧ x2) ≡ (¬x1 ∨ ¬x2) (De Morgan’s laws)(4.95)

¬¬x1 ≡ x1 (involution)(4.96)

ad 2. Obvious by the previous item and the definition of semantic covering.

ad 3. Follows from the previous item and the fact that by definition,

{c1, . . . , cn} ≡


n∧
i=1

ci

 .

ad 4. Follows from item 2 and Theorem 4.2.8.3.

ad 5. Follows from item 3 and Theorem 4.2.8.4. 2

This concludes the example. It has been demonstrated that a normal form which exists for the
underlying many-valued logic can be transferred to the corresponding labelled logic. Observe
that this result can be reproduced for (almost) arbitrary normal form results on the underlying
logic by means of the strong results in Theorem 4.2.8. More general results will be presented in
section 6.2.1.2. •

87

4 Models and Semantic Consequence

4.3 Semantic Consequences

In this section, a semantic consequence relation (or semantic entailment relation)
|−|− is defined, with the intention is that this relation allows to determine whether a labelled
formula follows from an L-fuzzy set of formulae. Furthermore, an L-fuzzy set Cons(X) of
consequences of an L-fuzzy set X of formulae is defined. In this fuzzy set, every formula
assumes the supremum of all labels with which it is a semantic consequence of X . Taking
into account that labels are ordered by strength, this means that the label of a formula x in
Cons(X) allows to estimate the greatest strength with which x is a consequence of X . Cons is a
fuzzy logical operator on Frm. In the remainder of this section, properties and applications
of semantic consequence are studied.

4.3.1 Basic Definitions and Properties

Definition 4.3.1 (Semantic consequence)
Let an L-fuzzy set X : Frm → L be given.

1. Given an L-labelled formula x, it is said that X entails x,

X |−|− x =def Mod(X) j Mod(x).(4.97)

2. The L-fuzzy set of consequences of X is defined by

Cons(X) =def

⋃{
x x ∈ LFrm and X |−|− x

}
.(4.98)

From this definition and the properties of Mod established in section 4.2, some properties
of |−|− and Cons can be derived.

Propositions 4.3.1 (Properties of |−|− and Cons)
Let X ,Y : Frm → L, x, y ∈ Frm and `, `′ ∈ L.

1. If X |−|− [x, `] and [x, `] |−|− [y, `′
]
, then X |−|− [y, `′

]
.

2. If x ≡ y, then

∀` ∈ L : X |−|− [x, `] iff X |−|− [y, `] ,(4.99)
Cons(X)(x) = Cons(X)(y).(4.100)

3. X ≡ Cons(X).

4. X ≡ Y if and only if Cons(X) = Cons(Y).

5. If X j Y and X |−|− [x, `], then Y |−|− [x, `].

6. If `′ Lv ` and X |−|− [x, `], then X |−|− [x, `′
]
.

7. If for every Val ∈ S,

Val(x) Tv Val(y)(4.101)

holds, then

7.1. if X |−|− [x, `], then X |−|− [y, `];
7.2. Cons(X)(x) Lv Cons(X)(y).

8. X |−|− [x, Cons(X)(x)
]
.

9. X |−|− [x, `] iff ` Lv Cons(X)(x).

88

4.3 Semantic Consequences

Proof
ad 1. Immediate by the definition of |−|− and the fact that j is transitive.

ad (4.99). Follows immediately from the definition of |−|− by applying (4.54).

ad (4.100). Follows from the previous item by definition of Cons.

ad 3. It is to be proved that

Mod(X) = Mod
(
Cons(X)

)
.(4.102)

By definition,

Mod
(
Cons(X)

)
= Mod

(⋃{
x x ∈ LFrm and X |−|− x

})
,

hence, by (4.45), for establishing (4.102) it is sufficient to prove

Mod(X) =
⋂{

Mod(x) x ∈ LFrm and X |−|− x
}

,

i. e., by definition of |−|−,

Mod(X) =
⋂{

Mod(x) x ∈ LFrm and Mod(X) j Mod(x)
}

.(4.103)

Let

M =def

{
Mod(x) x ∈ LFrm and Mod(X) j Mod(x)

}
(4.104)

(4.103) is proved in two steps.

(i) Mod(X) j
⋂

M .
Follows immediately from the fact that by definition of M , Mod(X) j Mod(x) holds
for every x ∈ LFrm such that Mod(x) ∈ M .

(ii)
⋂

M j Mod(X).
Start out with the (trivial) observation that

X =
⋃{[

x,X (x)
]

x ∈ Frm
}

,

hence, by (4.45),

Mod(X) =
⋂{

Mod
([

x,X (x)
])

x ∈ Frm
}

.

It is thus sufficient to prove⋂
M j

⋂{
Mod

([
x,X (x)

])
x ∈ Frm

}
,

which follows if for every x ∈ Frm,

Mod
([

x,X (x)
]) ∈ M .(4.105)

For this, it is by definition (4.104) of M sufficient to prove that

Mod(X) j Mod
([

x,X (x)
])

,(4.106)

which follows by (4.43) from the fact that
[
x,X (x)

]
j X .

89

4 Models and Semantic Consequence

This concludes the proof of this item.

ad 4. For the “if” direction, assume Cons(X) = Cons(Y). From the previous item, it follows
that

X ≡ Cons(X) = Cons(Y) ≡ Y.

The “only if” direction follows by applying the definition of ≡ to (4.98) via (4.97).

ad 5. Assume

X j Y(4.107)

and

X |−|− [x, `](4.108)

hold.

To prove Y |−|− [x, `] means to establish

Mod(Y) j Mod
(
[x, `]

)
.(4.109)

(4.108) means by definition

Mod(X) j Mod
(
[x, `]

)
.(4.110)

From (4.107) and (4.43) it follows that Mod(Y) j Mod(X), hence (4.109) follows imme-
diately.

ad 6. From `′ Lv `, it follows that [x, `] j
[
x, `′

]
, hence this item can be proved analogously to

the previous one.

ad 7.1. From assumption (4.101), it follows by Observation 4.2.3.1 that

Mod
(
[x, `]

)
j Mod

(
[y, `]

)
and X |−|− [x, `] means Mod(X) j Mod

(
[x, `]

)
, hence Mod(X) j Mod

(
[y, `]

)
and thus

X |−|− [y, `] follows immediately.

ad 7.2. From the previous item, it follows that{
[x, `] ` ∈ L and X |−|− [x, `]

}
j
{

[y, `] ` ∈ L and X |−|− [y, `]
}

,

from which Cons(X)(x) Lv Cons(X)(y) follows immediately by (4.98).

ad 8. It is to be proved that

Mod(X) j Mod
([

x, Cons(X)(x)
])

.

By item 3, Mod(X) = Mod
(
Cons(X)

)
, hence it is sufficient to prove

Mod
(
Cons(X)

)
j Mod

([
x, Cons(X)(x)

])
,

which follows by (4.43) from the fact that
[
x, Cons(X)(x)

]
j Cons(X).

90

4.3 Semantic Consequences

ad 9. Two implications are proved separately:

(i) If X |−|− [x, `], then ` Lv Cons(X)(x).

From X |−|− [x, `] it follows that ` ∈
{
`′′ `′′ ∈ L and X |−|− [x, `′′

]}
, and thus trivially

` Lv L
⊔{

`′′ `′′ ∈ L and X |−|− [x, `′′
]}

= Cons(X)(x).

(ii) If ` Lv Cons(X)(x), then X |−|− [x, `].
Follows immediately from item 6, taking into account that X |−|− [x, Cons(X)(x)

]
by

item 8. 2

To justify the above definitions of semantic consequence, it is proved that Cons has the
important property of being a fuzzy closure operator on Frm.

Theorem 4.3.2 (Cons is a fuzzy closure operator on Frm)
Cons is an L-fuzzy closure operator on Frm, i. e. for all X ,Y : Frm → L,

1. Cons is embedding:

X j Cons(X)

2. Cons is closed:

Cons(Cons(X)) j Cons(X)

3. Cons is monotone:

If X j Y , then Cons(X) j Cons(Y)

Proof
ad 1. It suffices to show that for every x ∈ Frm,

X (x) Lv Cons(X)(x).

By Proposition 4.3.1.9, it suffices to show that

X |−|− [x,X (x)
]
.

By definition, this means that

Mod(X) j Mod
([

x,X (x)
])

,

which follows immediately from (4.43) by the fact that
[
x,X (x)

]
j X .

ad 2. Follows immediately from Proposition 4.3.1.4 and the fact that X ≡ Cons(X) by Propo-
sition 4.3.1.3.

ad 3. Let X ,Y : Frm → L such that X j Y. For establishing Cons(X) j Cons(Y), i. e.⋃{
x x ∈ LFrm and X |−|− x

}
j
⋃{

y y ∈ LFrm and Y |−|− y
}

,

it is sufficient to prove that for every x ∈ LFrm such that X |−|− x, it holds that Y |−|− x.

But this follows from Proposition 4.3.1.6. 2

There is another characterisation of Cons which is analogous to Pavelka’s [85] definition of
Cons (definition (4.98) is analogous to Pavelka’s observation 5).

91

4 Models and Semantic Consequence

Theorem 4.3.3 (Alternative definition of Cons)
For every L-fuzzy set X : Frm → L and every x ∈ Frm,

Cons(X)(x) = L
l
{

ι−1

(
Mod(X)(Val)

Val(x)
)

Val ∈ S

}
(4.111)

Proof
Let L′ =

[
L′, ·∪,∩] be the sublattice of the dual lattice

[
D-Fl (T) , ·∪,∩] of the complete lattice[

D-Fl (T) ,∩, ·∪] such that ι is an isomorphism between L and L′ (see Definition 2.3.1 and
Theorem 2.2.1).

First of all, observe that

L
l
{

ι−1

(
Mod(X)(Val)

Val(x)
)

Val ∈ S

}
∈ L

because by item 1 of Definition 2.3.1, for all d ∈ D and t ∈ T , d
t ∈ L′, and because of the

completeness of L.
The claimed equation is proved in two steps.

1. Cons(X)(x) Lv L
d
{

ι−1

(
Mod(X)(Val)

Val(x)
)

Val ∈ S

}
.

By the definition of Cons, it is to be proved that

L
⊔{

` ` ∈ L and X |−|− [x, `]
}

Lv L
l
{

ι−1

(
Mod(X)(Val)

Val(x)
)

Val ∈ S

}
.

It suffices to show that for every ` ∈ L such that X |−|− [x, `] and every Val ∈ S,

` Lv ι−1

(
Mod(X)(Val)

Val(x)
)

.

Because ι is an isomorphism onto L′, this claim is equivalent with

Mod(X)(Val)
Val(x) j ι(`).

(The order is reversed because L′ is a sublattice of the dual of D-Fl (T).)

By Lemma 2.1.8, this is equivalent with

Mod(X)(Val) Dv ι(`)(Val(x)).(4.112)

Now, let

d =def ι(`)(Val(x)).

By (4.1), this means

Val d|== [x, `] ,

thus from X |−|− [x, `] and Definition 4.3.1.1 it follows that

Mod(X)(Val) Dv d,

which proves (4.112).

92

4.3 Semantic Consequences

2. L
d
{

ι−1

(
Mod(X)(Val)

Val(x)
)

Val ∈ S

}
Lv Cons(X)(x).

By the definition of Cons, it is to be proved that

(4.113) L
l
{

ι−1

(
Mod(X)(Val)

Val(x)
)

Val ∈ S

}
Lv L
⊔{

` ` ∈ L and X |−|− [x, `]
}

.

Let

`′ =def L
l
{

ι−1

(
Mod(X)(Val)

Val(x)
)

Val ∈ S

}
(4.114)

It follows that for every Val ∈ S,

`′ Lv ι−1

(
Mod(X)(Val)

Val(x)
)

and because ι is an isomorphism onto L′, it follows that

Mod(X)(Val)
Val(x) j ι(`′).

By Lemma 2.1.8, this is equivalent with

Mod(X)(Val) Dv ι(`′)(Val(x)).

Now, let

d′ =def ι(`′)(Val(x)).

By (4.1), this means Val d′|==
[
x, `′

]
, hence Mod(X)(Val) Dv Mod

([
x, `′

])
(Val).

As the above holds for every Val ∈ S, Definition 4.3.1.1 yields

X |−|− [x, `′
]
,

thus

`′ ∈ {` ` ∈ L and X |−|− [x, `]
}

,

and it follows

`′ Lv L
⊔{

` ` ∈ L and X |−|− [x, `]
}

,

which yields (4.113) by (4.114). 2

In both characterisations of Cons, i. e. (4.98) (via (4.97)) and (4.111), the value of Cons(X) is
completely determined by the model fuzzy set Mod(X) of X . By an analogous definition, of
course every D-fuzzy set on S (not only Mod(X)) induces an L-fuzzy set on Frm. Prompted
by this observation, semantic consequences of a D-fuzzy set S on S are defined, a more general
definition than that of semantic consequences of a fuzzy set of formulae.

93

4 Models and Semantic Consequence

Definition 4.3.2 (Semantic consequences of a fuzzy set of valuations)
Let a D-fuzzy set S : S → D be given.

1. Given an L-labelled formula x, it is said that S entails x,

S |−|− x =def S j Mod(x).(4.115)

2. The L-fuzzy set of consequences of S is defined by

Cons(S) =def

⋃{
x x ∈ LFrm and S |−|− x

}
.(4.116)

Remarks
1. Of course, by the above definition, for X : Frm → L and x ∈ LFrm,

X |−|− x iff Mod(X) |−|− x(4.117)

and

Cons(X) = Cons(Mod(X))(4.118)

holds.

(4.117) corresponds to Corollary 3.2.3 in [19].

2. As in Proposition 4.3.1,

If S |−|− [x, `] and [x, `] |−|− [y, `′
]

, then S |−|− [y, `′
]

.(4.119)
If `′ Lv ` and S |−|− [x, `] , then S |−|− [x, `′

]
.(4.120)

S |−|− [x, Cons(S)(x)
]
.(4.121)

S |−|− [x, `] iff ` Lv Cons(S)(x).(4.122)

3. The proof of Theorem 4.3.3 can easily be adapted to establish

Cons(S)(x) = L
l
{

ι−1

(
S(Val)

Val(x)
)

Val ∈ S

}
.(4.123) •

4.3.2 Characterising Validity and Inconsistency using Cons

Some more properties of Cons are studied in the following; in particular, differences and simi-
larities with the classical semantic consequence operator are pointed out.

First of all, it is demonstrated how to use the semantic consequence operator to characterise
certain properties of a (labelled) formula.

Propositions 4.3.4 (Characterising validity and inconsistency using Cons)
1. For a labelled formula x ∈ LFrm, the following statements are equivalent:

(i) x ∈ Valid (see Definition 4.2.2)

(ii) for every S ∈ DS, S |−|− x (see (4.123))

(iii) for every X ∈ LFrm, X |−|− x

(iv) ///© |−|− x

94

4.3 Semantic Consequences

2. For a formula x ∈ Frm, the following statements are equivalent:

(i) x is a tautology (see Definition 3.3.4)

(ii) for all S ∈ DS: Cons(S)(x) = 1 (see (4.123))

(iii) for all X ∈ LFrm: Cons(X)(x) = 1

3. If x ∈ LFrm is inconsistent (see Definition 4.2.2), then X |−|− x if and only if X ∈ Incons.

4. If Incons 6= ∅, then for every X ∈ LFrm, the following statements are equivalent:

(i) X ∈ Incons (see Definition 4.2.2)

(ii) for every x ∈ LFrm, X |−|− x

(iii) for all x ∈ Frm, Cons(X)(x) = 1

If Incons = ∅, then for every X ∈ LFrm, 4.ii and 4.iii are equivalent, but 4.i does not
follow from 4.ii, in general.

Proof
ad 1. The following implications are proved:

1.i ⇒ 1.ii. Assume that x ∈ Valid, i. e.

D
l{

Mod(x)(Val) Val ∈ S
}

= 1.

This means that for every Val ∈ S, Mod(x)(Val) = 1. By (4.115), it is to be proved
that S j Mod(x), which holds trivially.

1.ii ⇒ 1.iii. Trivial by (4.117).

1.iii ⇒ 1.iv. As ///© ∈ LFrm, this is also trivial.

1.iv ⇒ 1.i. Assume ///© |−|− x.
Let Val ∈ S. By (4.40),

Mod(///©)(Val) = 1,

so ///© |−|− x implies by (4.97) that Mod(x)(Val) = 1 holds for all Val ∈ S, which yields
the absolute validity of x by (4.48).

ad 2. The following implications are proved:

2.i ⇒ 2.ii. From the fact that x is a tautology, it follows by Observation 4.2.4.3 that [x, `]
is valid for every ` ∈ L.
By item 1.ii, this means S |−|− [x, `] for every ` ∈ L. By (4.98), hence

Cons(S)(x) = L
⊔

{` ` ∈ L} = 1.

2.ii ⇒ 2.iii. As Cons(X) is induced by Mod(X) according to (4.111), this is obvious.

2.iii ⇒ 2.i. In particular, Cons(///©)(x) = 1 is obtained. From Proposition 4.3.1.8, it follows
that ///© |−|− [x, 1].
By item 1.iv, this means that [x, 1] is valid, from which it follows by Observa-
tion 4.2.4.6 that x is a tautology.

95

4 Models and Semantic Consequence

ad 3. Let x ∈ Incons, i. e. Mod(x)(Val) = 0 for all Val ∈ S.

Obviously, Mod(X) j Mod(x) (and hence X |−|− x) is equivalent with Mod(X)(Val) = 0
for all Val ∈ S (and hence X ∈ Incons).

ad 4. The following implications are proved:

4.i ⇒ 4.ii. If X ∈ Incons, then Mod(X)(Val) = 0 for all Val ∈ S, from which
Mod(X) j Mod(x) and hence X |−|− x follows trivially for all x ∈ LFrm.

4.ii ⇒ 4.iii. Follows immediately by (4.98).

4.iii ⇒ 4.ii. Follows from Proposition 4.3.1.9.

4.ii ⇒ 4.i. Assume that for every x ∈ LFrm, X |−|− x. By assumption, Incons 6= ∅, so
there exists XIncons ∈ Incons, which means Mod (XIncons) (Val) = 0 for all Val ∈ S.

Obviously, XIncons =
⋃{[

x,XIncons(x)
]

x ∈ Frm
}

. From Proposition 4.2.2, it follows
that ⋂{

Mod
([

x,XIncons(x)
])

x ∈ Frm
}

= Mod (XIncons) .

On the other hand, it holds by assumption that for every x ∈ Frm,
X |−|− [x,XIncons(x)

]
, hence Mod(X) j Mod

([
x,XIncons(x)

])
, from which it follows

that

Mod(X) j
⋂{

Mod
([

x,XIncons(x)
])

x ∈ Frm
}

= Mod (XIncons) ,

from which X ∈ Incons follows by the fact that XIncons ∈ Incons by assumption.

From the above proofs, it is clear that the equivalence 4.ii ⇔ 4.iii (and in fact the impli-
cation 4.i ⇒ 4.ii) does not depend on the assumption Incons 6= ∅.

On the other hand, if Incons = ∅, it is easy to see that the implication 4.ii ⇒ 4.i does
not hold, in general. 2

4.3.3 Inconsistency and Refutation

Definition 4.3.3 (Inconsistency distribution)
For this definition, assume that Frm contains a formula ⊥ such that for all Val ∈ S, Val(⊥) = 0.

Let X ∈ LFrm. The inconsistency distribution of X is defined by

inc(X) =def Cons(X)(⊥).(4.124)

Remarks
1. The definition (4.124) of inc corresponds to the result of Proposition 3.3.2 in [19] about

the inconsistency degree Incons. The definition given in [19] for Incons corresponds
to equation (5.100) of this dissertation which makes sense only in the special case of
possibilistic logic as presented in [19].

2. The meaning of the preceding definition is clear: X is inconsistent to the extent in which
an insatisfiable formula (compare Definition 3.3.4.2) follows from X . This definition has
to be compared with the definition (4.49) of the consistency degree cst.

96

4.3 Semantic Consequences

First of all, the value of cst is a degree of validity from D, while the value of inc
is a label from L. As labels are implicitly D-fuzzy filters of T, inc has been named
inconsistency distribution.

Secondly, it has to be expected that inc is somehow complementary to cst.

The exact nature of the fuzzy filter characterised by inc(X) and the relationship between
inc and cst is made precise by the following observation. •

Proposition 4.3.5 (Properties of inc)
For every X ∈ LFrm,

inc(X) = ι−1
(

cst(X)0
)

(4.125)

= `0
cst(X) for a logic of graded truth and graded trust assessment.(4.126)

Incons =
{
X X ∈ LFrm and inc(X) = 1

}
.(4.127)

X |−|− [x, inc(X)
]

for all x ∈ Frm.(4.128)

Proof
ad (4.125), (4.126). Let X ∈ LFrm.

inc(X) = Cons(X)(⊥) (by (4.124))

= L
l{

ι−1
(

Mod(X)(Val)0
)

Val ∈ S

}
(by (4.111) and the definition of ⊥)

= ι−1


(

D
⊔

Val∈S
Mod(X)(Val)

)
0

 (by (2.32))

= ι−1
(

cst(X)0
)

(by (4.49))

= `0
cst(X) (by Theorem 4.1.3)

ad (4.127). Follows immediately from the previous item and the fact that ι−1
(

00
)

= `0
0 is the

unit element of L.

ad (4.128). By definition (4.97), X |−|− [x, inc(X)
]

iff

Mod(X) j Mod
([

x, inc(X)
])

,

which means that for every Val ∈ S,

Mod(X)(Val) Dv Mod
([

x, inc(X)
])

(Val),

which means by definition (4.41) of Mod and definition (4.1) of |== that for all Val ∈ S,

Mod(X)(Val) Dv ι
(
inc(X)

)(
Val(x)

)
,

which is by (4.125) equivalent with

Mod(X)(Val) Dv cst(X)0
(
Val(x)

)
.

97

4 Models and Semantic Consequence

In the case Val(x) = 1, it follows by definition (2.1) that cst(X)0
(
Val(x)

)
= 1, in which

case the inequation holds trivially. Otherwise, cst(X)0
(
Val(x)

)
= cst(X), and

Mod(X)(Val) Dv cst(X)

holds by the definition (4.49) of cst. 2

Remarks
Proposition 4.3.5 clarifies the nature of inc:

1. inc is not really a distribution, it is uniquely determined by the value of cst.

2. The complementation between inc and cst is effected indirectly by the fact that ι

implicitly contains a dualisation.

3. Still, the relationship between inc and cst is not completely trivial because of the influence
of ι. This will be illustrated by examples in chapter 5.

4. Because of Proposition 4.3.5, in the following (4.125) (resp. (4.126)) will be used as the
definition of inc even in logics where no appropriate formula ⊥ exists. •

Propositions 4.3.6 (inc without ⊥)
For the following observations, assume inc to be defined by (4.125) (resp. (4.126)), hence the
existence of a formula ⊥ as required by Definition 4.3.3 is not necessary.

1. Observations (4.127) and (4.128) hold even in the case that inc is defined by (4.125) (resp.
(4.126)).

2. For every X ∈ LFrm,

inc(X) Lv L
l{

Cons(X)(x) x ∈ Frm
}

.

3. If for every Val ∈ S, there exists x ∈ Frm such that Val(x) = 0, then for every X ∈ LFrm,

inc(X) = L
l{

Cons(X)(x) x ∈ Frm
}

.

Proof
ad 1. It suffices to note that in the proofs of (4.127) and (4.128), only (4.125) has been used.

ad 2. It is sufficient to prove that for every x ∈ Frm,

inc(X) Lv Cons(X)(x),

i. e. by (4.111)

Lv L
l
{

ι−1

(
Mod(X)(Val)

Val(x)
)

Val ∈ S

}
,

which means it is sufficient to prove that for every x ∈ Frm and every Val ∈ S,

inc(X) Lv ι−1

(
Mod(X)(Val)

Val(x)
)

,

98

4.3 Semantic Consequences

which means by (4.125) that for every x ∈ Frm and every Val ∈ S,

Mod(X)(Val)
Val(x) j cst(X)0 .

For establishing this inequation, by the definition (4.49) of cst and the definition (2.1) of
fuzzy principal filters it is sufficient to prove that for every Val ∈ S,

Mod(X)(Val) Dv D
⊔{

Mod(X)(Val) Val ∈ S
}

,

which holds trivially.

ad 3. Taking into account the previous item, it is sufficient to prove that

L
l{

Cons(X)(x) x ∈ Frm
}

Lv inc(X),

i. e. by (4.111),

L
l
 L

l
{

ι−1

(
Mod(X)(Val)

Val(x)
)

Val ∈ S

}
x ∈ Frm

 Lv inc(X),

which is equivalent with

L
l
 L

l
{

ι−1

(
Mod(X)(Val)

Val(x)
)

x ∈ Frm

}
Val ∈ S

 Lv inc(X).(4.129)

Obviously, for every x ∈ Frm, ι−1
(

Mod(X)(Val)0
)

Lv ι−1

(
Mod(X)(Val)

Val(x)
)

, hence by

the assumption that for every Val ∈ S, there exists x ∈ Frm such that Val(x) = 0, (4.129)
is equivalent with

L
l{

ι−1
(

Mod(X)(Val)0
)

Val ∈ S

}
Lv inc(X).(4.130)

Now, L is not necessarily isomorphic with a complete sublattice of
[
D-Fl (T) , ·∪,∩] (see the

first remark following Definition 2.3.1), but from the fact that ι is a lattice isomorphism,
in any case it follows that

·⋃{
Mod(X)(Val)0 Val ∈ S

}
j ι

(
L
l{

ι−1
(

Mod(X)(Val)0
)

Val ∈ S

})
,

hence for establishing (4.130) it is sufficient to prove that

ι(inc(X)) j ·⋃{
Mod(X)(Val)0 Val ∈ S

}
,

which means by (4.125) and (2.32) that

cst(X)0 j

(
D
⊔

Val∈S
Mod(X)(Val)

)
0 ,

which holds by definition (4.49) of cst. 2

99

4 Models and Semantic Consequence

Remark
Proposition 4.3.6.2 is a fuzzification of the classical statement ”if a set of formulae is inconsistent,
then it entails every formula“.

For replacing implication with equivalence in the above statement (Proposition 4.3.6.3), an
additional assumption is necessary about the semantics of the underlying logic.

This assumption is weaker than assuming the existence of ⊥, and is trivially fulfilled in
classical two-valued logic, but does not hold in some many-valued logics (for instance, it does
not hold in Lee’s fuzzy logic; confirm Example 3.2.4.2).

In logics where the assumption of Proposition 4.3.6.3 does not hold, inc (as de-
fined by (4.125)) represents a genuinely stronger concept than the one represented by
L
d {

Cons(X)(x) x ∈ Frm
}

. •

To illustrate uses of the inconsistency distribution further, some general observations re-
garding refutation systems are made in the following.

Definition 4.3.4 (Refutation)
Assume to be given two unary mappings νD : D → D, νT : T → T with the following properties,
for c, d ∈ D and s, t ∈ T :

s Tv t iff νT(t) Tv νT(s) c Dv d iff νD(d) Dv νD(c) (order reversion)(4.131)
νT(νT(t)) = t νD(νD(d)) = d (involution)(4.132)

and assume further that Frm contains a unary operator symbol ¬ interpreted by νT.

Let X ∈ LFrm and [x, `] ∈ LFrm be given. ` is said to admit refutation
=def the mapping F` : T → D defined for t ∈ T by

F`(t) =def

1 if t = 1

νD

(
ι(`)

(
νT(t)

))
if t 6= 1

(4.133)

is in rg ι.

If ` admits refutation, then ι−1 (F`) is denoted by ˜̀.
If ` admits refutation, then X |−|− [x, `] is said to be characterised by refutation

=def X |−|− [x, `] iff ` Lv inc
(
X ∪

[
¬x, ˜̀]).

Remarks
1. The concept of refutation allows to reduce the task of finding a label ` such that X |−|− [x, `]

to the task of finding inc
(
X ∪

[
¬x, ˜̀]).

This is especially important for automated theorem proving, as all classical methods
of automated theorem proving which allow at least some degree of efficiency (most of
them stemming from tableau- or resolution-based methods) are based on refutation
systems. That is, the method itself only allows to automatically find whether a set of
formulae is (classically) inconsistent.

It can be expected that the methods themselves can be adapted to labelled formulae (using
labelled deductive systems, compare [38]) for finding the inconsistency distribution
of a fuzzy set of formulae, but to characterise entailment this way, the refutation system
sketched above has to be applied.

100

4.3 Semantic Consequences

2. Note that from (4.132) it follows that νD, νT are bijections on D, T , respectively.

The mere existence of order-reversing bijections on D, T, respectively, is an effective re-
striction of the validity degree lattices D and truth value lattices T for which the concept
of refutation defined above is applicable.

A further restriction is effected by the necessity of a label ` to admit refutation before
the concept that X |−|− [x, `] is characterised by refutation can even be formulated.

The following theorem sheds some light on the range of labels which admit refutation. •

Theorem 4.3.7 (Label lattices admitting refutation)
1. If T is a chain and rg ι = D-Fl (T), then every ` ∈ L admits refutation.

2. If every ` ∈ L admits refutation, then T is a chain.

Proof
ad 1. Assume both premises are fulfilled.

It is sufficient to prove that for every F ∈ D-Fl (T), the mapping G : T → D defined for
t ∈ T by

G(t) =def

1 if t = 1

νD

(
F (νT(t)

))
if t 6= 1

(4.134)

is in D-Fl (T).

This is established by verifying the claims from Corollary 2.1.7. G(1) = 1 is assured by
the definition of G. It remains to prove that for all s, t ∈ T ,

G(s) Du G(t) = G (s Tu t) .

First, consider the case that s = 1 or t = 1, wlg s = 1. By definition of G, it follows that

G(s) Du G(t) = G(1) Du G(t) = 1 Du G(t) = G(t) = G (1 Tu t) = G (s Tu t) .

Now, assume s 6= 1 and t 6= 1. It follows that s Tu t 6= 1 and

G (s Tu t) = νD

(
F (νT(s Tu t)

))
(by definition of G)

= νD

(
F (νT(s) Tt νT(t)

))
(by definition of νT)

= νD

(
F (νT(s)

)
DtF (νT(t)

))
(by (2.4), because T is a chain)

= νD

(
F (νT(s)

))
Du νD

(
F (νT(t)

))
(by definition of νD)

= G(s) Du G(t) (by definition of G)

ad 2. For proving this claim by contraposition, assume that T is not a chain and establish that
there exists ` ∈ L which does not admit refutation.

If T is not a chain, then there are s, t ∈ T such that neither s Tv t nor t Tv s. Consequently,
{s, t, s Tu t, s Tt t} forms a 4-element sublattice of T as sketched in Figure 4.1.

Consider ` =def `sTtt
1 = ι−1

(
1
s Tt t

)
(compare Observation 4.1.2). By Definition 2.3.1.1,

` ∈ L. It is to be proved that ` does not admit refutation.

101

4 Models and Semantic Consequence

s t

s Tu t

s Tt t

Figure 4.1: The smallest non-chain

By definition of `,

ι(`)(s) = 0, ι(`)(t) = 0,(4.135)
ι(`)(s Tu t) = 0, ι(`)(s Tt t) = 1.

From the fact that νT is an order-reversing bijection, it follows that

νT (s Tu t) = νT (s) Tt νT (t) , νT (s Tt t) = νT (s) Tu νT (t) ,

hence by the definition of F`,

F`

(
ν−1
T (s) Tu ν−1

T (t)
)

= νD

(
ι(`)

(
νT

(
ν−1
T (s) Tu ν−1

T (t)
)))

= νD

(
ι(`)

(
νT

(
ν−1
T (s)

)
Tt νT

(
ν−1
T (t)

)))
= νD

(
ι(`) (s Tt t)

)
= νD (1)
= 0.(4.136)

(note that obviously, s 6= 0 and t 6= 0, so ν−1
T (s) Tu ν−1

T (t) 6= 1)

From (4.135) it follows immediately that

F`

(
ν−1
T (s)

)
= 1 F`

(
ν−1
T (t)

)
= 1,

thus F`

(
ν−1
T (s)

)
Du F`

(
ν−1
T (t)

)
= 1, which in combination with (4.136) establishes by

Corollary 2.1.7 that F` is not in D-Fl (T). Obviously, this means F` is not in rg ι, hence `
does not admit refutation.

This completes the proof of this item. 2

Remark
The question what the fact that every ` ∈ L admits refutation implies for rg ι (which could
lead to the reverse implication of Theorem 4.3.7.1) is left open.

It leads to the study of sublattices of
[
D-Fl (T) , ·∪,∩] which contain D-PFl (T) and are

closed wrt the operation defined by equation (4.134). This subject, which is of great importance
for the study of automated reasoning in fuzzy filter-based logics, is left for future investigations.

The following proposition gives some first results in this direction, concerning principal
fuzzy filters. •

102

4.3 Semantic Consequences

Proposition 4.3.8 (Principal fuzzy filters admitting refutation)
1. Given t ∈ T and d ∈ D,

F`t
d
(s) =


1, if s = 1 or not s Tv νT(t)
νD(d), if s 6= 0 and s 6= 1 and s Tv νT(t)
0, if s = 0

(4.137)

2. Given t ∈ T and d ∈ D, if `t
d admits refutation, then

F ˜̀t
d

(s) =


1, if s = 1
d, if s 6= 1 and s 6= 0 and t Tv s

0, if s = 0 or not t Tv s

(4.138)

3. Given t ∈ T and d ∈ D, if `t
d and ˜̀td admit refutation, then F ˜̀̃t

d

= F`t
d
.

4. That for all t ∈ T , d ∈ D, F`t
d
∈ D-PFl (T) holds if and only if

(i) T contains at most three elements or

(ii) D is two-valued and for every t ∈ T with t 6= 1, there exists t′ ∈ T such that for

every s ∈ T , it holds that t′ Tv s iff not s Tv t.

5. If for every t ∈ T with t 6= 1, there exists t′ ∈ T such that for every s ∈ T , it holds that
t′ Tv s iff not s Tv t, then for all t ∈ T , d ∈ D, F`t

d
∈ P(D, T).

6.
[
D-PFl (T) , ·∪,∩] is a minimal sublattice of

[
D-Fl (T) , ·∪,∩] which contains D-PFl (T)

and is closed wrt the operation defined by equation (4.134) if and only if

(i) T is two-valued or

(ii) D is two-valued and for every t ∈ T with t 6= 1 there exists t′ ∈ T such that for every
s ∈ T , it holds that t′ Tv s iff not s Tv t.

Proof
ad 1–3. Follow immediately from the definitions.

ad 4. Both implications are proved separately.

“if”. It is to be proved that in each of the cases 4.i and 4.ii, for all t ∈ T and d ∈ D, it
holds that F`t

d
∈ D-PFl (T). Let t ∈ T , d ∈ D be given. Both cases are considered

separately.

ad 4.i. Wlg assume that T = {0, τ, 1} such that τ 6= 0 and τ 6= 1.
Distinguish two cases:
1. t = 0 or t = τ .

As νT is a bijection, obviously νT(τ) = τ . Hence, it follows from (4.137) that
for all s ∈ T ,

F`t
d
(s) =


1, if s = 1
νD(d), if s = τ

0, if s = 0

i. e. F`t
d

= νD(d)τ ∈ D-PFl (T).

103

4 Models and Semantic Consequence

2. t = 1.
It follows from (4.137) that for all s ∈ T ,

F`1d
(s) =

{
1, if s ∈ {τ, 1}
0, if s = 0

i. e. F`1d
= 1τ ∈ D-PFl (T).

ad 4.ii. Assume that D is two-valued and for every t ∈ T with t 6= 1 there exists
t′ ∈ T such that for every s ∈ T , t′ Tv s iff not s Tv t.
Distinguish two cases:
1. d = 0.

It follows from (4.137) that for all s ∈ T ,

F`t
0
(s) =

{
1, if s 6= 0
0, if s = 0

Applying the assumption to 0 yields

F`t
0
(s) =

{
1, if 0′ Tv s

0, if not 0′ Tv s

i. e. F`t
0

= 10′ .
2. d = 1.

It follows from (4.137) that for all s ∈ T ,

F`t
1
(s) =

{
1, if s = 1 or not s Tv νT(t)
0, if s 6= 1 and s Tv νT(t)

In the case νT(t) = 1, obviously F`t
0

= 0 ∈ D-PFl (T). Otherwise, the
assumption of this item can be applied to νT(t), yielding

F`t
0
(s) =

{
1, if s = 1 or νT(t)′ Tv s

0, if not νT(t)′ Tv s

i. e. F`t
0

=
1
νT(t)′ .

“only if”. The contraposition is proved.
Assume that T contains at least four elements and either D contains at least three
elements or there exists t ∈ T with t 6= 1 such that there is no t′ ∈ T with the
property that for every s ∈ T , it holds that t′ Tv s iff not s Tv t.
It is to be proved that there exist t ∈ T and d ∈ D such that F`t

d
/∈ D-PFl (T).

In Theorem 4.3.7.2 it has been proved that if T is not a chain, then there exist t ∈ T

and d ∈ D such that F`t
d

/∈ D-PFl (T). Hence, in the following, wlg it is assumed
that T is a chain of at least four elements.
Two cases are distinguished:

1. D contains at least three elements.
As T is assumed to be a chain with at least four elements, obviously there
exist τ, τ ′ ∈ T such that τ 6= 0 and τ 6= τ ′ and τ Tv τ ′ and τ ′ 6= 1. Let
S =def {s not s Tv τ}. Note that {τ ′, 1} j S.

104

4.3 Semantic Consequences

As D is assumed to contain at least three elements there exists δ ∈ D with δ 6= 0
and δ 6= 1.
Consider t =def ν−1

T (τ) and d =def δ. It follows from (4.137) that for all s ∈ T ,

F
`
ν−1
T

(τ)

δ

(s) =


1, if s ∈ S

νD(δ), if s 6= 0 and s /∈ S

0, if s = 0

As S contains more than two elements and F
`
ν−1
T

(τ)

δ

(τ) = νD(δ) /∈ {0, 1}, F
`
ν−1
T

(τ)

δ

is clearly not in D-PFl (T) (compare (2.1)).
2. There exists t ∈ T with t 6= 1 such that there is no t′ ∈ T with the property

that for every s ∈ T , it holds that t′ Tv s iff not s Tv t.
Let t′′ =def ν−1

T (t). By (4.137), for all s ∈ T (considering t 6= 1),

F
`t′′
1

(s) =

{
1, if not s Tv t

0, if s Tv t
(4.139)

That F`t′′
1

/∈ D-PFl (T) is proved by contradiction. The assumption
F

`t′′
1

∈ D-PFl (T) leads to a contradiction with the assumption of this item.

Obviously, F`t′′
1

∈ D-PFl (T) iff there exists t′ ∈ T such that F`t′′
1

=
1
t′ (note

that by t 6= 1, t′′ 6= 0). By (2.1), 1
t′ is defined as

1
t′ (s) =

{
1, if t′ Tv s

0, if not t′ Tv s
(4.140)

But comparing (4.139) and (4.140), the existence of t′ ∈ T such that F
`t′′
1

=
1
t′

leads to a contradiction with the assumption that there exists no t′ ∈ T with
the property that for every s ∈ T , it holds that t′ Tv s iff not s Tv t.
This contradiction completes the proof of this item.

Combining both cases establishes the claim of this item.

ad 5. Assume that for every t ∈ T with t 6= 1 there exists t′ ∈ T such that for every s ∈ T ,
t′ Tv s iff not s Tv t. It is to be proved that for all t ∈ T and d ∈ D, it holds that
F`t

d
∈ P(D, T). Let t ∈ T , d ∈ D be given.

Applying the assumption to t and 0, by (4.137) obviously

F`t
d

= νD(d)0′ ·∪ 1
t′ ∈ P(D, T).

ad 6. Both implications are proved separately.

“if”. That in both cases, D-PFl (T) is closed wrt the operation defined by equation (4.134)
follows immediately from item 4.
It remains to be proved that

[
D-PFl (T) , ·∪,∩] is a sublattice of

[
D-Fl (T) , ·∪,∩]

(from which the minimality follows by the requirement to contain D-PFl (T)).
That in each of the cases 6.i and 6.ii,

[
D-PFl (T) , ·∪,∩] is a sublattice of[

D-Fl (T) , ·∪,∩], follows from Proposition 2.3.2 and Proposition 2.3.4.
“only if”. The contraposition follows immediately from the respective direction of item

4, taking into account the trivial observation that if neither T not D is two-
valued, then D-PFl (T) 6= P(D, T), hence

[
D-PFl (T) , ·∪,∩] is not a sublattice of[

D-Fl (T) , ·∪,∩]. 2

105

4 Models and Semantic Consequence

Remarks
1. Note that F ˜̀t

d

and d
t differ only in the additional condition s = 0 for the case F ˜̀t

d

(s) = 0.

2. Item 6 gives a first result concerning a minimal label lattice all labels of which admit
refutation, under severe assumptions about the lattices of truth values and degrees of
validity, respectively.

It is left open how this result can be extended.

Considering items 1–3 of the above observation, it is clear that if every `t
d admits refutation

and every ˜̀t
d admits refutation, then the set of all fuzzy filters represented by `t

d,
˜̀t
d,
˜̀̃t
d

is a minimal subset of D-Fl (T) containing D-PFl (T) which is closed wrt the operation
defined by equation (4.134).

Unfortunately, this still leaves open the question of a minimal sublattice of D-Fl (T) which
contains D-PFl (T) and is closed wrt the operation defined by equation (4.134) because
there is no straightforward way of equipping this set with a (complete) lattice structure
compatible with that of D-Fl (T).

Another open question in this context is under which conditions P(D, T) is closed wrt
the operation defined by equation (4.134) when D-PFl (T) 6= P(D, T) (in which case
obviously

[
P(D, T), ·∪,∩] is a minimal label lattice all labels of which admit refutation).

3. For proving the reverse implication of item 5, it would be necessary to show that the
counterexample constructed in the proof of the “only if” direction of item 4 can not be in
P(D, T). While this seems obvious, for a proof more information about the structure of
P(D, T) is needed than has been provided so far. •

Next, it is investigated under which conditions semantic entailment is characterised by
refutation.

For simplifying the following proofs, the conditions involved are expanded in the next lemma.

Lemma 4.3.9 (Expanding the definitions of X |−|− [x, `] and ` Lv inc
(

X ∪
[
¬x, ˜̀]))

Given X ∈ LFrm and [x, `] ∈ LFrm,

1. X |−|− [x, `] iff for all Val ∈ S,

Mod (X) (Val) Dv ι(`)
(
Val(x)

)
.

2. If ` admits refutation, then ` Lv inc
(
X ∪

[
¬x, ˜̀]) iff for all Val ∈ S,

Mod (X) (Val) DuF`

(
Val(¬x)

)
Dv ι(`)(0).

Proof
ad 1. By definition (4.97), X |−|− [x, `] means

Mod(X) j Mod
(
[x, `]

)
,

i. e. for all Val ∈ S,

Mod(X)(Val) Dv Mod
(
[x, `]

)
(Val),

106

4.3 Semantic Consequences

which means by definition (4.41) of Mod and definition (4.1) of |== that for all Val ∈ S,

Mod (X) (Val) Dv ι(`)
(
Val(x)

)
,

which had to be established.

ad 2. ` Lv inc
(
X ∪

[
¬x, ˜̀]) means by (4.125) that

 cst

(
X∪

[
¬x,˜̀])

0

 j ι(`),

which means by (2.1) that for every t ∈ T with t 6= 1,

cst
(
X ∪

[
¬x, ˜̀]) Dv ι(`)(t).(4.141)

Now, by Proposition 2.1.6.2a, for every t ∈ T , ι(`)(0) Dv ι(`)(t), hence (4.141) is equivalent
with

cst
(
X ∪

[
¬x, ˜̀]) Dv ι(`)(0),

which means by Definition 4.2.2.2 that for every Val ∈ S,

Mod
(
X ∪

[
¬x, ˜̀]) (Val) Dv ι(`)(0).(4.142)

By (4.42),

Mod
(
X ∪

[
¬x, ˜̀]) (Val) = Mod (X) (Val) Du Mod

([
¬x, ˜̀]) (Val),

which means by definition (4.41) of Mod and definition (4.1) of |==

= Mod (X) (Val) Du ι
(˜̀) (Val(¬x)

)
and by definition of ˜̀,

= Mod (X) (Val) DuF`

(
Val(¬x)

)
,

which, combined with (4.142), establishes the claim of this item. 2

Theorem 4.3.10 (From entailment to refutation)
Let ` ∈ L be given such that ` admits refutation.

Then the statement

For all X ∈ LFrm and x ∈ Frm, if X |−|− [x, `], then ` Lv inc
(
X ∪

[
¬x, ˜̀])(4.143)

holds if and only if for all t ∈ T ,

ι(`)(t) Du νD

(
ι(`)(t)

)
Dv ι(`)(0).(4.144)

107

4 Models and Semantic Consequence

Proof
Let ` ∈ L be given such that ` admits refutation. Both directions of the claimed equivalence
are proved separately.

“if”. Assume that (4.144) holds. For proving (4.143), let X ∈ LFrm and x ∈ Frm be given. It

is proved that under the assumption X |−|− [x, `], it holds that ` Lv inc
(
X ∪

[
¬x, ˜̀]).

By Lemma 4.3.9.2, it is sufficient to prove that for every Val ∈ S,

Mod (X) (Val) DuF`

(
Val(¬x)

)
Dv ι(`)(0).

From the assumption X |−|− [x, `], by Lemma 4.3.9.1 it is sufficient to prove that for every
Val ∈ S,

ι(`)
(
Val(x)

)
Du F`

(
Val(¬x)

)
Dv ι(`)(0).(4.145)

By (4.133), two cases are distinguished.

1. Val(¬x) = 1.
In this case,

F`

(
Val(¬x)

)
= 1

hence by (4.145), it is sufficient to prove

ι(`)
(
Val(x)

)
Dv ι(`)(0).

From Val(¬x) = 1, it follows by the fact that ¬ is interpreted by νT and νT is an
order-reversing bijection that Val(x) = 0, which establishes the claim.

2. Val(¬x) 6= 1.
In this case,

F`

(
Val(¬x)

)
= νD

(
ι(`)

(
νT

(
Val(¬x)

)))
= νD

(
ι(`)

(
Val(x)

))
as ¬ is interpreted by νT and νT is involutive, hence by (4.145), it is to be proved
that

ι(`)
(
Val(x)

)
Du νD

(
ι(`)

(
Val(x)

))
Dv ι(`)(0),

which holds by assumption (4.144).

“only if”. Property (3.2) is needed for proving this item.

The contraposition of the “only if” direction is proved, i. e. it is proved that from the
assumption that (4.144) does not hold, it follows that (4.143) does not hold.

For disproving (4.143), it is established that there exist X ∈ LFrm and x ∈ Frm such that

X |−|− [x, `], but ` Lv inc
(
X ∪

[
¬x, ˜̀]) does not hold.

108

4.3 Semantic Consequences

From the assumption that (4.144) does not hold, it follows that there exists t ∈ T such
that

ι(`)(t) Du νD

(
ι(`)(t)

)
Dv ι(`)(0).(4.146)

does not hold.

By assumption (3.2), there exist xt ∈ Frm and Val t ∈ S such that Val t(xt) = t. Consider
x =def xt and X =def [xt, `].

Obviously, X |−|− [x, `]. For disproving ` Lv inc
(
X ∪

[
¬x, ˜̀]), by Lemma 4.3.9.2 it is

sufficient to show that there exists Val ∈ S such that

Mod (X) (Val) DuF`

(
Val(¬x)

)
Dv ι(`)(0)

does not hold. Choose Val =def Val t, i. e. it is to be proved that

Mod
(
[xt, `]

)
(Val t) DuF`

(
Val t (¬xt)

)
Dv ι(`)(0)(4.147)

does not hold.

By definition (4.41) of Mod and definition (4.1) of |==,

Mod
(
[xt, `]

)
(Val t) = ι(`)(t).(4.148)

Furthermore, clearly t 6= 0, because otherwise, a contradiction to the assumption that
(4.146) does not hold would occur. Hence,

F`

(
Val t (¬xt)

)
= νD

(
ι(`)

(
νT

(
Val t (¬xt)

)))
= νD

(
ι(`)

(
Val t (xt)

))
as ¬ is interpreted by νT and νT is involutive

= νD

(
ι(`) (t)

)
.(4.149)

That (4.147) does not hold now follows immediately from (4.146) by inserting (4.148) and
(4.149) into (4.147). 2

The following observations illustrate the criterion (4.144) by exhibiting some cases when it
holds. First, some cases which assure (4.144) independently of the lattices D, T.

Observation 4.3.11 (Criteria for going from entailment to refutation)
1. (4.144) holds for all ` ∈ L such that for every t ∈ T ,

ι(`)(t) = ι(`)(0) or νD

(
ι(`)(0)

)
Dv ι(`)(t).

2. (4.144) holds for all ` ∈ L such that

νD

(
ι(`)(0)

)
Dv ι(`)(0).

3. If νD has a fixed point e ∈ D (i. e. νD(e) = e), then (4.144) holds for all ` ∈ L such that
e Dv ι(`)(0). •

109

4 Models and Semantic Consequence

Proof
ad 1. Let t ∈ T . If ι(`)(t) = ι(`)(0), then (4.144) follows immediately.

If νD

(
ι(`)(0)

)
Dv ι(`)(t), then νD

(
ι(`)(t)

)
Dv ι(`)(0) follows by the fact that νD is order-

reversing and involutive, and from this (4.144) follows immediately.

ad 2. Let t ∈ T . By Proposition 2.1.6.2a, ι(`)(0) Dv ι(`)(t). From this, νD

(
ι(`)(0)

)
Dv ι(`)(t)

follows by assumption, hence the claim follows from the previous item.

ad 3. Follows immediately from the previous item because obviously, if e Dv ι(`)(0), then
νD

(
ι(`)(0)

)
Dv ι(`)(0). 2

Remarks
1. In Observation 4.3.11.1, the requirement ι(`)(t) = ι(`)(0) is equivalent with

ι(`)(t) Dv ι(`)(0), as ι(`)(0) Dv ι(`)(t) follows from Proposition 2.1.6.2a.

If ι(`)(0) Dv νD

(
ι(`)(0)

)
, it is easily proved that in the case ι(`)(0) Dv ι(`)(t) Dv νD

(
ι(`)(0)

)
,

(4.144) does not hold, hence in this case, the range of validity degrees between ι(`)(0)
and νD

(
ι(`)(0)

)
is taboo for labels for which entailment should imply refutation.

2. Observation 4.3.11.2 requires labels to have a high level of uncertainty. Even the truth
value 0 (standing for“absolutely false”) needs to be assigned a validity degree high enough
to allow νD

(
ι(`)(0)

)
Dv ι(`)(0).

Observation 4.3.11.1 allows these and additionally labels which express “uncertainty about
truth”.

In this class of labels, which contains `t
1 for all t ∈ T , every truth value has to be assigned

a validity degree which is either very “low” (equal to ι(`)(0)) or very “high” (allowing
ι(`)(0) Dt νD

(
ι(`)(0)

)
Dv ι(`)(t)), hence such labels are useful mainly for characterising a

set of ‘designated truth values’ (being assigned a “high” validity degree), between which
little variation of the assigned validity degree is possible. Non-designated truth values are
all assigned validity degree ι(`)(0). •

The next proposition clarifies under which circumstances (4.144) holds for all labels.

Proposition 4.3.12 (When do all labels allow to go from entailment to refutation?)
(4.144) holds for all ` ∈ L if and only if

(i) D is a complementary lattice a complementation of which is represented by νD or

(ii) T is two-valued.

Proof
Both implications are proved separately.

“if”. For both conditions (i) and (ii), it is proved separately that for all ` ∈ L, (4.144) holds.
Let ` ∈ L be given.

ad (i). If νD represents a complement in D, then for all t ∈ T ,

ι(`)(t) Du νD

(
ι(`)(t)

)
= 0,

from which (4.144) follows immediately.

ad (ii). Let t ∈ T . As T is assumed to be two-valued, it is sufficient to distinguish two
cases:

110

4.3 Semantic Consequences

1. t = 0.

ι(`)(0) Du νD

(
ι(`)(0)

)
Dv ι(`)(0)

holds trivially, establishing (4.144) in this case.
2. t = 1.

From Definition 2.1.1.3, it follows that ι(`)(t) = 1, from which it follows that
νD

(
ι(`)(t)

)
= 0, hence

ι(`)(t) Du νD

(
ι(`)(t)

)
= 0 Dv ι(`)(0),

establishing (4.144) in this case.

“only if”. For proving the contraposition, it is proved that under the assumption that (i) and
(ii) do not hold, there exists ` ∈ L such that (4.144) does not hold.

Assume T contains an element τ such that τ 6= 0 and τ 6= 1. Assume furthermore that
νD does not represent a complement in D. This means there exists d ∈ D such that

d Du νD(d) 6= 0.

It is sufficient to present a label ` for which (4.144) does not hold.

Consider `τ
d = ι

(
dτ
)

. From the fact that τ 6= 0, it follows by definition (2.1) that

ι
(
`τ
d

)
(0) = 0. From the fact that τ 6= 1, it follows by definition (2.1) that ι

(
`τ
d

)
(τ) = d.

Hence

ι
(
`τ
d

)
(τ) Du νD

(
ι
(
`τ
d

)
(τ)
)

= d Du νD(d) 6= 0,

from which it follows immediately that (4.144) does not hold. 2

Theorem 4.3.13 (From refutation to entailment)
Let ` ∈ L be given such that ` admits refutation.

Then the statement

For all X ∈ LFrm and x ∈ Frm, if ` Lv inc
(
X ∪

[
¬x, ˜̀]), then X |−|− [x, `](4.150)

holds if and only if for all t ∈ T \ {0} and all d ∈ D,

if d Du νD

(
ι(`)(t)

)
Dv ι(`)(0) , then d Dv ι(`)(t).(4.151)

Proof
Let ` ∈ L be given such that ` admits refutation. Both directions of the claimed equivalence
are proved separately.

“if”. Assume that (4.151) holds. For proving (4.150), let X ∈ LFrm and x ∈ Frm be given. It

is proved that under the assumption ` Lv inc
(
X ∪

[
¬x, ˜̀]), it holds that X |−|− [x, `].

By Lemma 4.3.9.2, ` Lv inc
(
X ∪

[
¬x, ˜̀]) means that for every Val ∈ S,

Mod (X) (Val) Du F`

(
Val(¬x)

)
Dv ι(`)(0).(4.152)

111

4 Models and Semantic Consequence

It is to be proved that X |−|− [x, `], which means by Lemma 4.3.9.1 that for all Val ∈ S,

Mod (X) (Val) Dv ι(`)
(
Val(x)

)
.

By (4.133), two cases are distinguished.

1. Val(¬x) = 1.
In this case,

F`

(
Val(¬x)

)
= 1,

hence by (4.152),

Mod (X) (Val) Dv ι(`)(0)
Dv ι(`)

(
Val(x)

)
, (by Proposition 2.1.6.2a)

which had to be proved.

2. Val(¬x) 6= 1.
In this case,

F`

(
Val(¬x)

)
= νD

(
ι(`)

(
νT

(
Val(¬x)

)))
= νD

(
ι(`)

(
Val(x)

))
as ¬ is interpreted by νT and νT is involutive, hence by (4.152),

Mod (X) (Val) Du νD

(
ι(`)

(
Val(x)

))
Dv ι(`)(0).

As Val(x) 6= 0 by the assumption of this case and the fact that ¬ is interpreted by
νT and νT is order-reversing, (4.152) can be applied to yield

Mod (X) (Val) Dv ι(`)
(
Val(x)

)
,

which had to be proved.

“only if”. Property (3.2) is needed for proving this item.

The contraposition of the “only if” direction is proved, i. e. it is proved that from the
assumption that (4.151) does not hold, it follows that (4.150) does not hold.

For disproving (4.150), it is established that there exist X ∈ LFrm and x ∈ Frm such that

` Lv inc
(
X ∪

[
¬x, ˜̀]), but X |−|− [x, `] does not hold.

From the assumption that (4.151) does not hold, it follows that there exist t ∈ T \ {0}
and d ∈ D such that

d Du νD

(
ι(`)(t)

)
Dv ι(`)(0)(4.153)

holds and

d Dv ι(`)(t)(4.154)

112

4.3 Semantic Consequences

does not hold.

By assumption (3.2), there exist xt ∈ Frm and Val t ∈ S such that Val t(xt) = t. Consider
x =def xt and X =def

[
xt, `

t
d

]
.

First, it is proved that ` Lv inc
([

xt, `
t
d

] ∪ [¬xt, ˜̀]). By Lemma 4.3.9.2 it is sufficient to

show that for all Val ∈ S,

Mod
([

xt, `
t
d

])
(Val) DuF`

(
Val(¬xt)

)
Dv ι(`)(0).(4.155)

Let Val ∈ S. By definition (4.41) of Mod and definition (4.1) of |==,

Mod
([

xt, `
t
d

])
(Val) = ι

(
`t
d

) (
Val(xt)

)
= d

t
(
Val(xt)

)
.

By (2.1), for establishing (4.155), three cases are distinguished:

1. Val(xt) = 1.
In this case, Val(¬xt) = 0, hence by (4.133),

F`

(
Val(¬xt)

)
= νD

(
ι(`)

(
νT

(
Val(¬xt)

)))
,

and as ¬ is interpreted by νT and νT is involutive,

= νD

(
ι(`)

(
Val(xt)

))
,

= νD

(
ι(`) (1)

)
= νD (1)
= 0,

from which (4.155) follows immediately.
2. Val(xt) 6= 1 and t Tv Val(xt).

In this case,

Mod
([

xt, `
t
d

])
(Val) = d

t
(
Val(xt)

)
= d.(4.156)

Furthermore, as t 6= 0 by assumption, from t Tv Val(xt) it follows immediately that
Val(xt) 6= 0, hence Val(¬xt) 6= 1 and from (4.133),

F`

(
Val(¬xt)

)
= νD

(
ι(`)

(
Val(xt)

))
(4.157)

follows as in the previous item.
Finally, from

t Tv Val(xt)

it follows by Proposition 2.1.6.2a that

ι(`) (t) Dv ι(`)
(
Val(xt)

)
,

from which it follows by the fact that νD is order-reversing that

νD

(
ι(`)

(
Val(xt)

))
Dv νD

(
ι(`) (t)

)
,(4.158)

hence (4.155) follows by combining (4.153) with (4.156), (4.157) and (4.158).

113

4 Models and Semantic Consequence

3. not t Tv Val(xt).

In this case, Mod
([

xt, `
t
d

])
(Val) = d

t
(
Val(xt)

)
= 0, form which (4.155) follows

trivially.

Next, it is proved that
[
xt, `

t
d

] |−|− [xt, `] does not hold. By Lemma 4.3.9.1, it is sufficient
to prove that there exists Val ∈ S such that

Mod
([

xt, `
t
d

])
(Val) Dv ι(`)

(
Val(xt)

)
does not hold. Choose Val =def Val t, i. e. it is to be proved that

d
t
(
Val t(xt)

)
Dv ι(`)(t)(4.159)

does not hold.

By assumption (3.2), Val t(xt) = t. Furthermore, obviously t 6= 1, because otherwise
ι(`)(t) = 1 and a contradiction to the assumption that (4.154) does not hold would occur.
By (2.1), d

t
(
Val t(xt)

)
= d

t (t) = d, from which the fact that (4.159) does not hold
follows immediately by assumption (4.154). 2

The following propositions illustrate criterion (4.151). First, some necessary and some
sufficient conditions for (4.151) to hold for a single label.

Proposition 4.3.14 (Criteria for going from refutation to entailment)
1. Given ` ∈ L, (4.151) holds for ` only if for all t ∈ T \ {0}, it holds that

if νD

(
ι(`)(0)

)
Dv ι(`)(t) , then ι(`)(t) = 1.

2. (4.151) holds for all ` ∈ L such that for all t ∈ T \ {0},

ι(`)(t) ∈ {0, 1} .

3. If D is a chain, then (4.151) holds for ` ∈ L if and only if for all t ∈ T \ {0},

ι(`)(t) Dv νD

(
ι(`)(0)

)
or ι(`)(t) = 1.

Proof
ad 1. For proving the contraposition, assume that there exists t ∈ T \ {0} such that

νD

(
ι(`)(0)

)
Dv ι(`)(t) but ι(`)(t) 6= 1.

Then defining d =def 1, d Du νD

(
ι(`)(t)

)
Dv ι(`)(0) holds, but d Dv ι(`)(t) does not hold, as

ι(`)(t) 6= 1 by assumption. Hence, (4.151) is disproved and the contraposition is proved.

ad 2. Let ` ∈ L and t ∈ T \ {0} be given. Two cases have to be distinguished.

1. ι(`)(t) = 1.
In this case, d Dv ι(`)(t) and hence (4.151) holds trivially.

2. ι(`)(t) = 0.
In this case, νD

(
ι(`)(t)

)
= 1, hence d Du νD

(
ι(`)(t)

)
Dv ι(`)(0) means d Dv ι(`)(0).

ι(`)(0) Dv ι(`)(t) follows from Proposition 2.1.6.2a, hence d Dv ι(`)(t) and thus (4.151)
follows by the transitivity of Dv.

114

4.3 Semantic Consequences

ad 3. Assume that D is a chain. Let ` ∈ L.

Both implications are proved separately.

“if”. Let t ∈ T \ {0} be given. Two cases have to be distinguished.

1. ι(`)(t) = 1.
In this case, d Dv ι(`)(t) and hence (4.151) holds trivially.

2. ι(`)(t) Dv νD

(
ι(`)(0)

)
.

This means ι(`)(0) Dv νD

(
ι(`)(t)

)
, and as D is assumed to be a chain,

d Du νD

(
ι(`)(t)

)
Dv ι(`)(0) implies d Dv ι(`)(0). ι(`)(0) Dv ι(`)(t) follows from

Proposition 2.1.6.2a, hence d Dv ι(`)(t) and thus (4.151) follows by the transitiv-
ity of Dv.

“only if”. For proving the contraposition, assume there exists t ∈ T \{0} such that neither
ι(`)(t) Dv νD

(
ι(`)(0)

)
nor ι(`)(t) = 1 hold.

As D is assumed to be a chain, if ι(`)(t) Dv νD

(
ι(`)(0)

)
does not hold then

νD

(
ι(`)(0)

)
Dv ι(`)(t) holds, hence it follows from item 1 (by the fact that ι(`)(t) 6= 1)

that (4.151) does not hold, proving the contraposition. 2

Remarks
1. Proposition 4.3.14.1 requires a certain level of uncertainty: if ι(`)(t) is high enough to be

above νD

(
ι(`)(0)

)
, then it has to be equal to 1.

2. The ”if” part of condition 3 of Proposition 4.3.14 is a relaxation of condition 2 for the
special case that D is a chain (relaxing the condition ι(`)(t) = 0 to ι(`)(t) Dv νD

(
ι(`)(0)

)
).

The sufficient condition 2 cannot easily be made more general for arbitrary lattices, be-
cause if neither ι(`)(t) nor νD

(
ι(`)(t)

)
is equal to 1, (if D is not a chain) it is possible

that there exists d ∈ D such that d Du νD

(
ι(`)(t)

)
Dv ι(`)(0), but d is not comparable with

ι(`)(t).

Note, however, that ι(`)(0) is not restricted by this condition. •

The next proposition clarifies under which circumstances (4.151) holds for all labels.

Proposition 4.3.15 (When do all labels allow to go from refutation to entailment?)
1. If

(i) D is a Boolean algebra the complement of which is represented by νD or

(ii) T is two-valued,

then (4.151) holds for all ` ∈ L.

2. If (4.151) holds for all ` ∈ L, then

(i) D is a complementary lattice the complement of which is uniquely defined and

represented by νD or

(ii) T is two-valued.

Proof
ad 1. For both conditions 1.i and 1.ii, it is proved separately that for all ` ∈ L, (4.151) holds.

Let ` ∈ L be given.

115

4 Models and Semantic Consequence

ad 1.i. Let t ∈ T and d ∈ D be given such that

d Du νD

(
ι(`)(t)

)
Dv ι(`)(0)
Dv ι(`) (t) . (by Proposition 2.1.6.2a)

This means by (1.4) that

d Du νD

(
ι(`)(t)

)
Du ι(`)(t) = d Du νD

(
ι(`)(t)

)
from which it follows by the assumption that νD represents the complement in D,
that

d Du νD

(
ι(`)(t)

)
= 0(4.160)

from which it follows by the fact that D is a Boolean algebra that

d Dv ι(`)(t),(4.161)

which had to be proved.

ad 1.i. As T is assumed to be two-valued and (4.151) is required to hold only for
t ∈ T \ {0}, it is sufficient to prove (4.151) for t = 1. But by Definition 2.1.1.3,
ι(`)(1) = 1, hence

d Dv ι(`)(1)

holds unconditionally for all d ∈ D.

ad 2. For proving the contraposition, it is proved that under the assumption that 2.i and 2.ii
do not hold, (4.151) does not hold.

Assume T contains an element τ such that τ 6= 0 and τ 6= 1. Assume furthermore
that D is not a complementary lattice the complement of which is uniquely defined and
represented by νD.

The negation of the claim for D leads to two cases, in each of which it has to be proved
that there exists ` ∈ L such that (4.151) does not hold.

1. νD does not represent a complement in D.
This means there exists δ ∈ D such that

δ Du νD(δ) 6= 0. (1)(4.162)

It is sufficient to present a label ` for which (4.151) does not hold.
Consider

` =def `0
δ Lu `τ

δDtνD(δ).

From the fact that τ 6= 0, it follows by definition (2.1) that

ι (`) (0) = ι
(
`0
δ

)
(0) = δ0 (0) = δ.(4.163)

1Note that the case that there exists δ ∈ D such that δ Dt νD(δ) 6= 1 is equivalent with (4.162) by the fact that
νD is order-reversing and involutive (just apply νD to both sides of (4.162)).

116

4.3 Semantic Consequences

Furthermore, τ 6= 1 and from the fact that δ Dv δ Dt νD(δ), it follows by definition
(2.1) and Observation 2.2.3 that

ι (`) (τ) = ι
(
`τ
δDtνD(δ)

)
(τ) = δDtνD(δ)τ (τ) = δ Dt νD(δ).(4.164)

Let d =def 1 and t =def τ in (4.151). From (4.163) and (4.164), it follows that

d Du νD

(
ι(`)(t)

)
= 1 Du νD

(
δ Dt νD(δ)

)
= δ Du νD(δ)
Dv δ = ι(`)(0).

On the other hand, from (4.162) it follows that

ι (`) (τ) = δ Dt νD(δ)
= νD

(
δ Du νD(δ)

)
6= 1,

from which it follows immediately that

d Dv ι (`) (τ),

which is equivalent with

1 Dv νD

(
δ Du νD(δ)

)
,

does not hold. Consequently, (4.151) does not hold.

2. Complements in D are not unique.
By the previous item, it can be assumed that νD represents a complement in D.
The assumption that complements are not unique in D means there exist c, d ∈ D
such that

c Du d = 0 and c Dt d = 1 and d 6= νD(c).(4.165)

Wlg assume that not d Dv νD(c) (otherwise, just define c′ =def νD(c) and
d′ =def νD(d); from the fact that νD represents a complement in D, it fol-
lows that (4.165) still holds for c′, d′ and if d Dv νD(c), then c Dv νD(d), hence
d′ = νD(d) Dv c = νD(c′) does not hold because otherwise, d′ = νD(c′)).
Consider the label ` =def `τ

νD(c). It follows that

d Du νD

(
ι(`)(τ)

)
= d Du c (as τ 6= 1 and νD is involutive)
= 0 (by (4.165))
Dv ι(`)(0).

On the other hand, ι(`)(τ) = νD(c), and d Dv νD(c) does not hold by assumption,
hence (4.151) is disproved in this case. 2

117

4 Models and Semantic Consequence

Remark
Note that the requirements 1.i and 2.i from Proposition 4.3.15 are equivalent in the case that
D is atomic.

Otherwise, requirement 1.i is genuinely stronger than 2.i because complements are unique
in every Boolean algebra while there exist (non-atomic) non-distributive lattices with unique
complements which are thus not Boolean algebras.

It seems that 2.i is too weak for proving Proposition 4.3.15.1 (as distributivity is needed for
going from (4.160) to (4.161)).

On the other hand, 1.i seems too strong for proving Proposition 4.3.15.2 because distribu-
tivity doesn’t seem to follow from (4.151).

Whether there is a condition between 1.i and 2.i which provides a necessary and sufficient
condition for (4.151) is left open for future investigations. •

Corollary 4.3.16
If (4.151) holds for all ` ∈ L, then (4.144) holds for all ` ∈ L.

Proof
Follows by combining Proposition 4.3.15 with Proposition 4.3.12. 2

The following series of corollaries combines the results of Theorem 4.3.10, Observation 4.3.11,
Proposition 4.3.12, Theorem 4.3.13, Proposition 4.3.14, Proposition 4.3.15, giving criteria for
X |−|− [x, `] to be characterised by refutation.

Corollary 4.3.17 (Characterising entailment by refutation)
Let ` ∈ L be given such that ` admits refutation.

Then for all X ∈ LFrm and x ∈ Frm, X |−|− [x, `] is characterised by refutation if and
only if

(i) ι(`)(t) Du νD

(
ι(`)(t)

)
Dv ι(`)(0)

(ii) and for all t ∈ T \ {0} and all d ∈ D, if d Du νD

(
ι(`)(t)

)
Dv ι(`)(0) , then d Dv ι(`)(t).

Corollary 4.3.18 (Criteria for characterising entailment by refutation)
Let ` ∈ L be given such that ` admits refutation.

Then for all X ∈ LFrm and x ∈ Frm, X |−|− [x, `] is characterised by refutation in each

of the following cases:

1. for all t ∈ T \ {0}, ι(`)(t) = 1;

2. ι(`)(0) = 0 and for all t ∈ T \ {0}, ι(`)(t) ∈ {0, 1};

3. D is a chain and ι(`)(0) Dv νD

(
ι(`)(0)

)
and for all t ∈ T\{0}, ι(`)(t) ∈

{
ι(`)(0), νD

(
ι(`)(0)

)
, 1
}
.

Proof
Item 1 follows by combining Observation 4.3.11.1 with Proposition 4.3.14.2.

Item 2 also follows by combining Observation 4.3.11.1 with Proposition 4.3.14.2, taking into
account that ι(`)(0) Dv ι(`)(t) for every fuzzy filter, hence the case ι(`)(t) = 0 is possible only if
ι(`)(0) = 0.

Item 3 follows by combining Observation 4.3.11.1 with Proposition 4.3.14.3.
Note that all other combinations of items of Observation 4.3.11 and Proposition 4.3.14 are

either meaningless or reduce to one of the above cases. 2

118

4.3 Semantic Consequences

Corollary 4.3.19 (When do all labels allow to characterise entailment by refutation?)
1. X |−|− [x, `] is characterised by refutation for all ` ∈ L which admit refutation, all X ∈ LFrm

and all x ∈ Frm if

(i) D is a Boolean algebra the complement of which is represented by νD or

(ii) T is two-valued.

2. If all ` ∈ L admit refutation2, then if for all X ∈ LFrm and all x ∈ Frm, it holds that

if ` Lv inc
(
X ∪

[
¬x, ˜̀]), then X |−|− [x, `],

then for all X ∈ LFrm and all x ∈ Frm, it holds that

if X |−|− [x, `], then ` Lv inc
(
X ∪

[
¬x, ˜̀]).

3. If all ` ∈ L admit refutation, then X |−|− [x, `] is characterised by refutation for all ` ∈ L,

all X ∈ LFrm and all x ∈ Frm only if

(i) D is a complementary lattice the complement of which is uniquely defined and

represented by νD or

(ii) T is two-valued.

Proof
ad 1. By combining the “if” directions of Proposition 4.3.12 and Proposition 4.3.15.

ad 2. If all labels admit refutation, then the premise of this item implies by Theorem 4.3.13 that
(4.151) holds for all ` ∈ L. By Proposition 4.3.15 this means that one of the conditions 2.i
or 2.ii of Proposition 4.3.15 holds. This in turn means by Proposition 4.3.12 that (4.144)
holds for all ` ∈ L, which implies the conclusion of this item by Theorem 4.3.10.

ad 3. By combining the “only if” directions of Proposition 4.3.12 and Proposition 4.3.15. 2

This summary closes subsection 4.3.3. Unfortunately, some of the results, especially the
compound results in Corollary 4.3.19, are quite discouraging. It seems that for an effective
refutation system to exist, strong conditions have to be placed on the lattices T and D.

Note, however, that by Theorem 4.3.13, whenever (4.151) and ` Lv inc
(
X ∪

[
¬x, ˜̀])

are fulfilled (for given `,X , x such that ` admits refutation), then by Proposition 4.3.1.9,
` Lv Cons(X)(x). Hence, it is possible to approximate Cons(X)(x) (from below) even if
not all labels admit refutation or allow X |−|− [x, `] to be characterised by refutation.

The subject of estimating the error made by approximating Cons(X)(x) using only labels
which admit refutation and for which (4.151) holds, is left for future investigations.

4.3.4 Compatibility wrt Logical Operator Symbols; Normal Forms

Next, some properties of the semantic consequence operator are studied which are important
for normal form generation.

2A condition under which all labels admit refutation is given in Theorem 4.3.7.

119

4 Models and Semantic Consequence

Proposition 4.3.20 (Compatibility of Cons wrt lattice connectives)
1. If the logic constituted by Frm, T and S contains a binary operator ∧ interpreted by Tu,

then for every S : S → D and all x, y ∈ Frm,

for every ` ∈ L : S |−|− [x ∧ y, `] iff S |−|− [x, `] and S |−|− [y, `] ,(4.166)
Cons(S)(x∧ y) = Cons(S)(x) Lu Cons(S)(y).(4.167)

2. If the logic constituted by Frm, T and S contains a binary operator ∨ interpreted by Tt,
then for every S : S → D and all x, y ∈ Frm,

for every ` ∈ L : if S |−|− [x, `] or S |−|− [y, `] , then S |−|− [x ∨ y, `] ,(4.168)
Cons(S)(x) Lt Cons(S)(y) Lv Cons(S)(x∨ y).(4.169)

Proof
ad (4.166). Let S : S → D, x, y ∈ Frm, and ` ∈ L be given. By definition (4.115) of |−|−, (4.166)

is equivalent with

S j Mod
(
[x ∧ y, `]

)
iff S j Mod

(
[x, `]

)
and S j Mod

(
[y, `]

)
,

which, by Corollary 4.2.7 and (4.42), is equivalent with

S j Mod
(
[x, `]

) ∩ Mod
(
[y, `]

)
iff S j Mod

(
[x, `]

)
and S j Mod

(
[y, `]

)
,

which holds trivially.

ad (4.167). The result is proved in two steps:

1. Cons(S)(x∧ y) Lv Cons(S)(x) Lu Cons(S)(y).
It is sufficient to prove

Cons(S)(x∧ y) Lv Cons(S)(x) and Cons(S)(x∧ y) Lv Cons(S)(y).

It suffices to prove

Cons(S)(x∧ y) Lv Cons(S)(x),(4.170)

Cons(S)(x∧ y) Lv Cons(S)(y) follows by symmetry.
By definition (4.116) of Cons, (4.170) means

L
⊔{

` ` ∈ L and S |−|− [x ∧ y, `]
}

Lv L
⊔{

` ` ∈ L and S |−|− [x, `]
}

,

which follows immediately from (4.166) which implies{
` ` ∈ L and S |−|− [x ∧ y, `]

}
j
{
` ` ∈ L and S |−|− [x, `]

}
.

2. Cons(S)(x) Lu Cons(S)(y) Lv Cons(S)(x∧ y).
By (4.122), this is equivalent with

S |−|− [x ∧ y, Cons(S)(x) Lu Cons(S)(y)
]
.

By (4.166), it is sufficient to prove that

S |−|− [x, Cons(S)(x) Lu Cons(S)(y)
]

and S |−|− [y, Cons(S)(x) Lu Cons(S)(y)
]
.

120

4.3 Semantic Consequences

From (4.121), it follows that

S |−|− [x, Cons(S)(x)
]
,

so S |−|− [
x, Cons(S)(x) Lu Cons(S)(y)

]
follows from (4.120) by the fact that

Cons(S)(x) Lu Cons(S)(y) Lv Cons(S)(x).
S |−|− [y, Cons(S)(x) Lu Cons(S)(y)

]
is proved analogously.

This concludes the proof of this item.

ad (4.168). Let S : S → D, x, y ∈ Frm, and ` ∈ L be given. The claim of this item follows
from (4.119) because [x, `] |−|− [x ∨ y, `] by Observation 4.2.3.2.

ad (4.169). Let S : S → D and x, y ∈ Frm be given. Expanding the definition of Cons, it is
sufficient to prove

(4.171) L
⊔{

` ` ∈ L and S |−|− [x, `]
}

Lt L
⊔{

` ` ∈ L and S |−|− [y, `]
}

Lv L
⊔{

` ` ∈ L and S |−|− [x ∨ y, `]
}

.

But obviously,

L
⊔{

` ` ∈ L and S |−|− [x, `]
}

Lt L
⊔{

` ` ∈ L and S |−|− [y, `]
}

= L
⊔{

` ` ∈ L and
(S |−|− [x, `] or S |−|− [y, `]

)}
.

From (4.168), it follows that{
` ` ∈ L and

(S |−|− [x, `] or S |−|− [y, `]
)}

j
{
` ` ∈ L and S |−|− [x ∨ y, `]

}
,

from which (4.171) follows immediately. 2

The following Corollary is easily established using (4.118).

Corollary 4.3.21 (Compatibility of Cons wrt lattice connectives)
1. If the logic constituted by Frm, T and S contains a binary operator symbol ∧ interpreted

by Tu, then for every X : Frm → L and all x, y ∈ Frm,

for every ` ∈ L : X |−|− [x ∧ y, `] iff X |−|− [x, `] and X |−|− [y, `] ,(4.172)
Cons(X)(x∧ y) = Cons(X)(x) Lu Cons(X)(y).(4.173)

2. If the logic constituted by Frm, T and S contains a binary operator symbol ∨ interpreted

by Tt, then for every X : Frm → L and all x, y ∈ Frm,

for every ` ∈ L : if X |−|− [x, `] or X |−|− [y, `] , then X |−|− [x ∨ y, `] ,(4.174)
Cons(X)(x) Lt Cons(X)(y) Lv Cons(X)(x∨ y).(4.175)

By Proposition 4.3.1.4, the results of the replacement theorems Theorem 4.2.6 and Theo-
rem 4.2.8 are transferred to Cons.

121

4 Models and Semantic Consequence

Corollary 4.3.22 (to Theorem 4.2.6 and Theorem 4.2.8)
Let X ∈ LFrm.

1. Let x, y ∈ Frm with x ≡ y. Then

Cons(X) = Cons
((X \ {y}) ∪ [x,X (y)

])
.(4.176)

2. Let a formula y ∈ Frm and a finite set Y = {y1, . . . , yn} j Frm, for n ∈ N, be given, such
that {y} ≡ Y .

Then

Cons(X) = Cons
((X \ {y}) ∪ [y1,X (y)

]∪ · · · ∪ [yn,X (y)
])

.(4.177)

3. If the logic constituted by Frm, T and S contains a binary operator symbol ∧ interpreted
by Tu, then for all x, y ∈ Frm,

Cons(X) = Cons
((X \ {x ∧ y}) ∪ [x,X (x∧ y)

]∪ [y,X (x∧ y)
])

.(4.178)

4. If N j Frm is a semantic covering of suppX , then

Cons(X) = Cons
(⋃{

[x, `x] x ∈ N
})

.(4.179)

(Where `x is defined by (4.65).)

5. If T is a semantic-preserving syntax transformation operator (see Defini-
tion 3.3.3.2) wrt suppX , then

Cons(X) = Cons
(⋃{⋃{

[y, `x] y ∈ T (x)
}

x ∈ suppX
})

.(4.180)

Similarly, Example 4.2.1 can be extended to Cons:

Example 4.3.1 (Semantic consequence and clausal form)
Let a logic of graded truth and graded trust assessment

[
Frm, T, S, D, L, |==

]
be given

exactly as in Example 4.2.1.
Furthermore, let X ∈ LFrm and [x, `] ∈ LFrm be given.
By Proposition 4.2.10, there exist XCls ∈ LCls such that X ≡ XCls and xCnf ∈ Cnf such that

x ≡ xCnf .
Let n ∈ N and c1, . . . , cn ∈ Cls be such that

xCnf =
n∧

i=1

ci.

By Proposition 4.3.1.4,

X |−|− [x, `] iff XCls |−|− [x, `] .

By (4.172),

X |−|− [x, `] iff for every i ∈ {1, . . . , n} : X |−|− [ci, `] ,

122

4.3 Semantic Consequences

hence

X |−|− [x, `] iff for every i ∈ {1, . . . , n} : XCls |−|− [ci, `] .

This example demonstrates that for lattice-based logics of graded truth and graded trust
assessment, it is sufficient to consider clauses when studying semantic consequences.

In chapter 5, it is demonstrated how this facilitates the comparison of such logics as well as
the construction of resolution-based automated deduction systems.

Obviously, the case that the underlying many-valued logic contains only the lattice connec-
tives of T (and an appropriate negation) is the simplest possible case, and it is not surprising
that as soon as an underlying many-valued logic with more expressive power is chosen, the
simple clausal form construction presented in this example is no longer suitable. In chapter
6.2.1, a more sophisticated clause-based normal form is presented which is suitable for a wider
range of logics of graded truth and graded trust assessment. •

123

4 Models and Semantic Consequence

124

5 On the Expressive Power of Fuzzy
Filter-Based Logics

To justify the definitions so far, in this chapter the range of logical systems which can be
represented in the form of fuzzy filter-based logics is investigated.

Some examples of well-known logics for the representation of graded truth and graded trust
assessment are given and it is demonstrated in how far they can be represented in the form of
fuzzy filter-based logics. In particular, similarities and differences between the respective logical
systems and their interrelationships are pointed out. This type of investigation is often difficult
to carry out for logics which have been developed by different people for different purposes,
because of differences in terminology and presentation. It is demonstrated how this comparison
is facilitated by first casting these different logics in the common framework of fuzzy filter-based
logics. Parts of this chapter have been published by the author in [73]

At this point, the reader is encouraged to step back and reread the motivations in section
1.1. Hopefully, the reader will be able to make connections between the general concepts which
are introduced in section 1.1 from an intuitive point of view, and the concrete mathematical
interpretations of these concepts provided in chapters 2–4.

As a reminder, the classification of logics from page 4 is repeated in the following, augmented
by the concepts from chapters 2–4 which take the place of the intuitive concepts from section
1.1.

Logics of graded truth assessment: In this class, all logics are collected for which, when pre-
sented as a fuzzy filter-based logic, the lattice D of degrees of validity (or trust) is the
two-valued lattice B. In this case, it is not possible to express graded trust in a label, and
thus such logics are suited mainly for the expression of knowledge pertaining to graded
truth assessment.

This class of logics is studied in section 5.2. In how far uncertainty can be expressed in
these logics is investigated in section 5.4.

Logics of graded trust assessment: In this class, all logics are collected for which, when pre-
sented as a fuzzy filter-based logic, the lattice T of truth values is the two-valued
lattice B. In this case, it is not possible to express graded truth in a label, and thus such
logics are suited mainly for the expression of uncertainty with respect to graded trust
assessment.

This class of logics is studied in section 5.3. A comparison between logics of graded trust
assessment and logics of graded truth assessment is given in section 5.4.

Logics of graded truth and graded trust assessment: In this class, all logics are collected for
which, when presented as a fuzzy filter-based logic, neither the lattice T of truth values
nor the lattice D of degrees of validity is the two-valued lattice B. In this case, a label
can express graded truth assessment as well as graded trust assessment, yielding a logic
of very high expressive power.

125

5 On the Expressive Power of Fuzzy Filter-Based Logics

As this is the most complex case which can be represented by fuzzy filter-based logics,
in fact chapter 4 provides a detailed survey of the properties of logics from this class.
Specific examples and a discussion of the expressive power of such logics are given in
section 5.5.

Apart from discussing and comparing specific examples of fuzzy filter-based logics, there
are further aspects in connection with the expressive power of fuzzy filter-based logics worth
mentioning.

In section 5.6, the issue of compositionality is addressed which has been discussed at
length in the literature on uncertainty logics (see for instance [26, 27]). The unifying frame-
work of fuzzy filter-based logics makes it possible to define and discuss this matter much
more precisely than usual.

A comparison of fuzzy filter-based logics with other logical paradigms of similar expressive
power is provided in section 5.7.

5.1 Degrees of Truth vs. Degrees of Validity

Before the different logical systems are investigated, a more explicit version of sections 1.1.1
and 1.1.2 is presented. Most of the contents of these sections is repeated here, augmented
with details on the concrete representation of the concepts within the framework of fuzzy
filter-based logics.

These concepts were already used — in the form of the lattices T and D — in the two pre-
ceding chapters, and it should have become clear that values from these lattices were employed
for very different purposes. The following should make clear that the meanings of the values
from these lattices are completely different, as well.

5.1.1 Truth Values

1. A truth value is induced in a formula by an interpretation of the symbols from the
logical language. In the presentation in chapter 3, this fact has been obscured a little by
not fixing what exactly the logical language is. This led to the definition of semantics
as a set of truth value assignments for formulae. However, it has to be kept in mind that
a valuation function Val from the given semantics always reflects an interpretation of
the logical formulae.

It is obvious that the concept of a “truth value of a formula”does not make sense without
a corresponding interpretation, so “truth” is not a property of a formula in itself, but only
of a formula together with an interpretation.

2. It is not a custom in logic to make interpretations ‘available’. Instead, when defining
higher level concepts like validity, semantic equivalence or semantic consequence
(compare definitions 4.2.2, 4.2.3, and 4.3.1), interpretations are usually ‘quantified over’:
The definitions are obtained by quantifying over all interpretations (in this case: all
valuation functions from S) and processing the resulting set of truth values, without
regard as to which interpretation induced which truth value.

3. From the two previous items, a striking fact can be concluded: Truth values, though one of
the most basic concepts of many-valued logics, are for internal use only, not on the ‘user
level’. The person defining and using systems of many-valued logics is not concerned with
interpretations or truth values, but only with validity, semantic equivalence or semantic
consequence of formulae.

126

5.2 Logics of Graded Truth Assessment

In fact, when looking at publications concerned only with many-valued logics (for instance
[5, 8, 78, 100]), it may be observed that truth values play almost no role at all (unless
constants for truth values are present in the logical language).

4. To summarise: A truth value is a property of a formula together with an interpre-
tation; it is not available to the ‘user’ of a logical system, but is quantified over when
defining user-level concepts like validity, semantic equivalence or semantic conse-
quence.

5.1.2 Degrees of Validity

1. Degrees of validity are properties of labelled formulae. The degree of validity of a
labelled formula under an interpretation (degree of satisfaction of the labelled formula by
the interpretation) can only be determined by considering the truth value of the formula
under the interpretation and the label.

The label expresses the trust in the validity of the statement represented by the formula.
If the formula is completely true, it should be considered completely valid. But if it is not
completely true, it might still be considered somewhat valid (if the statement represented
by the formula cannot be trusted to be always completely true).

The validity of a labelled formula is then calculated by quantifying over the degrees of
satisfaction by all possible interpretations.

2. As the degree of validity of a labelled formula depends essentially on the label, the ‘user’,
i. e. the person using the logical system has a strong influence on the resulting validity
degree. If they select a very strong label, the formula will be valid only if it is almost
completely true under all interpretations. If they select a very weak label, the formula
might attain a high degree of validity even if it has a very low truth value under certain
interpretations.

3. Degrees of truth are, from an algebraic point of view, obviously truth-theoretic in
nature, and thus will obey algebraic laws of e. g. MV-algebras, residuated or boolean
lattices. In this thesis, the generic form of a complete lattice has been selected as the
most general superstructure of all the possible truth-theoretic algebras.

In contrast with this, degrees of validity seem to be basically measure-theoretic in
nature. By choosing (again) a complete lattice as the algebraic structure for D, this
dissertation is committed to possibility measures (see [12, 13]). This is not the only
choice, however. By choosing D to be a Hausdorff space with an appropriate definition
of integral, it would pose no principal problem to consider degrees of validity as probability
degrees, as it has already been investigated for two-valued logics in the field of probabilistic
logics [37, 77]. The adaption of the definitions and results from this dissertation to the
case of probabilistic validity measures is an interesting subject for future investigations.

5.2 Logics of Graded Truth Assessment

In this section, logical systems are discussed which are obtained as fuzzy filter-based logics
by setting D =def B. The most well-known examples correspond to the case presented in
Corollary 2.3.3.2, but there are also examples of logics corresponding to the case presented in
Corollary 2.3.3.3.

127

5 On the Expressive Power of Fuzzy Filter-Based Logics

If D = B, degrees of validity may be neglected altogether. In this case a binary relation
|= is defined for Val ∈ S and [x, `] ∈ LFrm by

Val |= [x, `] =def Val 1|== [x, `](5.1)

and analogously for L-fuzzy sets of formulae. The case that not Val |= [x, `] (i. e. Val 0|== [x, `])
is written Val 6|= [x, `].

Examining Definition 4.1.3, a definition for logic of graded truth assessment can be
given in the special case that D = B, taking into account the definition (5.1) of |=.

Definition 5.2.1 (Logic of graded truth assessment)
(In the following definition, excessive use is made of assumption (3.2), especially of the valuation

Val t and the formula xt with Val t(xt) = t, for t ∈ T .)
A tuple Λ =def

[
Frm, T, S, L, |=] is said to be a logic of graded truth assessment

� with logical language Frm,

� with truth value lattice T,

� with semantics S,

� with label lattice L,

� and with model relation |=,

=def 1. Frm is a nonempty set,

2. T = [T, Tu, Tt] and L = [L, Lu, Lt] are complete lattices with at least two elements each,

with induced partial orders Tv, Lv, respectively

3. S j T Frm,

4. |= is a binary relation between S and LFrm,

5. if x, y ∈ Frm and Val, Val ′ ∈ S such that Val(x) = Val ′(y), then for all ` ∈ L,

Val |= [x, `] iff Val ′ |= [y, `] ,(5.2)

6. if `, `′ ∈ L such that `′ 6= `, then there exists t ∈ T such that

Val t |=
[
xt, `

′] and Val t 6|= [xt, `] or Val t 6|=
[
xt, `

′] and Val t |= [xt, `] ,(5.3)

7. for all ` ∈ L,

Val 1 |= [x1, `] ,(5.4)

8. for every t ∈ T , there exists `t ∈ L such that for t′ ∈ T ,

Val t′ |=
[
xt′ , `

t
]

iff t Tv t′,(5.5)

9. for s, t ∈ T and ` ∈ L,

Val s |= [xs, `] and Val t |= [xt, `] iff Val sTut |= [xsTut, `] ,(5.6)

10. for t ∈ T and `, `′ ∈ L,

Val t |=
[
xt, `

′] and Val t |= [xt, `] iff Val t |=
[
xt, `

′
Lt `
]
,(5.7)

11. for t ∈ T and `, `′ ∈ L,

Val t |= [
xt, `

′
Lu `
]

iff there exist t1, t2 ∈ T such that Val t1 |= [
xt1, `

′] and
Val t2 |= [xt2, `

]
and t1 Tu t2 Tv t.

128

5.2 Logics of Graded Truth Assessment

Remark
The remarks on pages 71–73 accompanying Definition 4.1.3 hold in a more special form (disre-
garding D) also for logics of graded truth assessment. •

Observations 5.2.1 (Logics of graded truth assessment vs. fuzzy filter-based logics)
1. [Frm, T, S, B, L, |==] is a logic of graded truth and graded trust assessment if and

only if [Frm, T, S, L, |=] is a logic of graded truth assessment (where |= is defined by
(5.1)) and (see Definition 4.1.3.8 and Definition 5.2.1.8) `t = `t

1.

2. [Frm, T, S, B, L, ι] is a fuzzy filter-based logic with induced model relation |== if and
only if [Frm, T, S, L, |=] is a logic of graded truth assessment (where |= is defined by
(5.1)) and (see Definition 5.2.1.8) ι

(
`t
)

= 1
t .

3. In the case that T is a chain, by Proposition 2.3.6 L is also a chain, and thus Observa-
tion 4.1.4 can be employed to simplify the axioms.

Item 9 of Definition 5.2.1 is then equivalent with the following monotonicity condition:

9∗ for s, t ∈ T and ` ∈ L,

if Val s |= [xs, `] and s Tv t , then Val t |= [xt, `] .(5.8)

Furthermore, each one of items 10 and 11 is equivalent with

10∗ for t ∈ T and `, `′ ∈ L,

if Val t |=
[
xt, `

′] and `′ Lv ` , then Val t |= [xt, `] .(5.9)

Hence, the class of all fuzzy filter-based logics for a chain T and D = B is completely
characterised by the axioms 1, 2, 3, 4, 5, 6, 7, 8, 9∗, 10∗.

The examples which are discussed in the remainder of this section shall demonstrate that
this simple axiom system characterises an interesting class of logics. •

Proof
ad 1. It is sufficient to observe that the axioms of Definition 5.2.1 are special cases of those

given in Definition 4.1.3, taking into account that D = B and the definition (5.1) of |=.

ad 2. Follows from the previous item by applying Observation 4.1.2 and Theorem 4.1.3, taking
into account that B is completely distributive wrt. its least upper bound.

ad 3. The proof is analogous to that for Observation 4.1.4. 2

Corollary 5.2.2 (Admissible label lattices for logics of graded truth assessment)
Given sets Frm, T, S, L, the three following statements are equivalent:

(i) there exists |== such that
[
Frm, T, S, B, L, |==

]
is a logic of graded truth and graded

trust assessment

(ii) there exists |= such that [Frm, T, S, L, |=] is a logic of graded truth assessment

(iii) Frm, T, S, L fulfil the axioms 1 to 3 of Definition 4.1.3 and there exists a lattice L′ iso-
morphic with L such that

[
PFl(T), ·∪,∩] b L′ b

[
Fl(T), ·∪,∩].

129

5 On the Expressive Power of Fuzzy Filter-Based Logics

Proof
The equivalence of items (i) and (ii) follows from Observation 5.2.1.1.

The equivalence of items (i) and (iii) follows from Proposition 2.3.2 (taking into account
Observation 5.2.1.2). 2

In the light of Corollary 5.2.2, it can safely be assumed that[
PFl(T), ·∪,∩] b L b

[
Fl(T), ·∪,∩] ,

i. e. L is a sublattice (containing all principal filters) of the lattice F (T) defined in Exam-
ple 2.3.1.2.

Furthermore, wlg let ι be the isomorphism defined in (2.36). Consequently, in this section,
` is identified with the filter for which ι(`) is the characteristic function. For |=, this means

Val |= [x, `] iff ι(`)(Val(x)) = 1 (by (5.1))
iff Val(x) ∈ `. (by (2.36))(5.10)

Remarks
1. The identification of labels with filters means that, as F (T) is the dual lattice of the

lattice of all filters of T, the induced partial order Lv of L is the superset relation k, the
join Lt is the set intersection ∩ and the meet Lu is the set union ∪.

This corresponds to the understanding that L is ordered by strength (a smaller set poses
a stronger constraint).

Moreover, since all labels are filters, the label ` of the labelled formula [x, `] essentially
specifies a range of truth values x may assume such that [x, `] is still considered valid.
Every filter specifies some sort of interval of truth values which is closed above with 1.
If T is a chain or ` is a principal filter (see section 5.2.1), this is strictly true.

So the difference to classical many-valued logic (where a formula x is said to be valid iff the
truth value of x is 1) is that some uncertainty wrt. the truth of x is allowed, expressed
by allowing a larger range of truth values to be assumed by x without challenging the
validity of x. In particular, in a labelled formula this uncertainty can be expressed local
to the formula, by adapting the label of each formula to the exact uncertainty one wishes
to express about its truth value.

The notion of validity, however, is still two-valued, so uncertainty cannot be expressed
by giving a degree of validity to be associated with a labelled formula [x, `], depending
on the truth value x assumes. [x, `] has to be considered valid or not valid at all.

The issue of many-valued validity is tackled in section 5.3 and ultimately in section 5.5.

2. Note that wrt. the level scheme described in section 3.4, logics of graded truth assessment
are located on level 4.

In particular, classical many-valued logics from level 1 can be reduced to the respective
logic of graded truth assessment by choosing all labels equal to {1} (which is a principal
filter of T and thus guaranteed to be in L).

A many-valued logic from level 2 (i. e. using a set D j T of designated truth values)
can be reduced to a corresponding logic of graded truth assessment iff D ∈ L, i. e. D is a
filter of T included in L. The reduction is then done by choosing all labels equal to D. •

130

5.2 Logics of Graded Truth Assessment

The extension (4.38) of the model relation to fuzzy sets of formulae can be considered to be a
binary relation analogously to (5.1), yielding

Val |= X iff ∀x ∈ Frm : Val |= [x,X (x)
]

iff ∀x ∈ Frm : Val(x) ∈ X (x).(5.11)

As defined in equation (4.41), an L-fuzzy set X on Frm induces on S a B-fuzzy set Mod(X)
of models of X . By the two-valuedness of B, Mod(X) can be identified with a (classical) set,
given by

Mod(X) =
{

Val Val ∈ S and Val |= X}(5.12)
=
{

Val Val ∈ S and ∀x ∈ Frm : Val(x) ∈ X (x)
}

.(5.13)

The set Valid of all valid L-fuzzy sets of formulae is

Valid =
{
X X ∈ LFrm and ∀Val ∈ S : Val |= X

}
,(5.14)

the set Incons of all inconsistent L-fuzzy sets of formulae is

Incons =
{
X X ∈ LFrm and ∀Val ∈ S : Val 6|= X

}
.(5.15)

Remark
Note that by the two-valuedness of B, the validity index valid and the consistency index
cst add no further information; they just indicate which L-fuzzy sets of formulae are contained
in Valid, Incons, respectively. For instance, for X ∈ LFrm,

cst(X) =

{
0, if X ∈ Incons
1, if X /∈ Incons

(5.16)

Furthermore, the inconsistency distribution inc also just characterises Incons because
by (4.125), for every X ∈ LFrm,

inc(X) = ι−1
(

cst(X)0
)

=

ι−1
(

00
)

, if X ∈ Incons

ι−1
(

10
)

, if X /∈ Incons
(by (5.16))

=

{
`1, if X ∈ Incons
`0, if X /∈ Incons

(by Observation 5.2.1.2 and Observation 2.2.6)

=

{
1, if X ∈ Incons
0, if X /∈ Incons

(5.17)

By (4.124), this means that from every X ∈ LFrm, ⊥ either follows completely (which means
X ∈ Incons) or not at all (which means X /∈ Incons). •

For the semantic consequence relation, (5.13) implies

X |−|− x iff Mod(X) j Mod(x) (by Definition 4.3.1)(5.18)
iff for all Val ∈ S, if Val |= X then Val |= x. (by (5.12))(5.19)

131

5 On the Expressive Power of Fuzzy Filter-Based Logics

Cons(X) =
⋃{

x x ∈ LFrm and X |−|− x
}

(5.20)

Cons(X)(x) = ·⋃{
Val(x) Val |= X

}
. (by Theorem 4.3.3)(5.21)

Note that although elements of L have been identified with sets of truth values, the greatest
lower bound ·⋃ of L does not need to coincide with the set-theoretical least upper bound. L

is regarded as a sublattice of the (dual) lattice of all filters of T, but although L must be
complete, it is possible that L is not a complete sublattice of the (dual) lattice of all filters
of T.

Concerning refutation, applying Corollary 4.3.19 in this case yields the following Observa-
tion.

Observation 5.2.3 (Refutation system for logics of graded truth assessment)
Let the mapping νD : {0, 1} → {0, 1} from Definition 4.3.4 be given by the negation operator
ϕ¬ defined in (3.9). Let a mapping νT : T → T be given as specified in (4.131),(4.132) and
assume that Frm contains a unary operator symbol ¬ interpreted by νT.

Then for all X ∈ LFrm and [x, `] ∈ LFrm such that ` admits refutation, X |−|− [x, `] is
characterised by refutation, i. e.

X |−|− [x, `] iff ` = 0 or X ∪
[
¬x, ˜̀] ∈ Incons.(5.22)

Considering ˜̀ to be a set of truth values leads to the equation

˜̀=
{
νT(t) t ∈ T and t /∈ `

}
.(5.23) •

Proof
Taking into account Corollary 4.3.19, it is sufficient to observe that ϕ¬ is the (unique) comple-
mentation on the Boolean algebra B.

The definition (5.22) of being characterised by refutation (in a logic of graded truth assess-
ment) is derived from Definition 4.3.4 by expanding the characterisation (5.17) of inc.

Equation (5.23) follows by simply expanding the definition of νD in (4.133). 2

Remark
Some observations concerning the set of all labels which admit refutation are given in the next
two subsections, where special label lattices are considered. •

In Corollary 5.2.2, the range of possible label lattices for logics of graded truth assessment
has been specified, in particular, L has to lie (up to isomorphism) between the (dual) lattice
of all principal filters of T and the (dual) lattice of all filters of T. In the following two
subsections, the two extreme cases L =

[
PFl(T), ·∪,∩] and L =

[
Fl(T), ·∪,∩] are investigated.

5.2.1 Using Truth Values as Labels

In this subsection, logics of graded truth assessment are studied for which L is isomorphic with
the (dual) lattice

[
PFl(T), ·∪,∩] of all principal filters of T (compare Corollary 5.2.2). As[

PFl(T), ·∪,∩] is isomorphic with T by Observation 1.3.1.6, it can safely be assumed that L = T

(compare Corollary 2.3.3.2).

132

5.2 Logics of Graded Truth Assessment

Observation 5.2.4 (Logics of graded truth assessment using principal filters as labels)
Given sets Frm, S and lattices T, L, the following statements are equivalent:

(i) there exists |= such that [Frm, T, S, L, |=] is a logic of graded truth assessment and
L =

{
`t t ∈ T

}
(compare Definition 5.2.1.8)

(ii) there exists |= such that [Frm, T, S, L, |=] is a logic of graded truth assessment and
additionally fulfils the following axiom:

8′ for every ` ∈ L, there exists t` ∈ T such that for t′ ∈ T ,

Val t′ |= [xt′ , `] iff t` Tv t′,

(iii) Frm, T, S, L fulfil the axioms 1 to 3 of Definition 4.1.3 and L is isomorphic with[
PFl(T), ·∪,∩].

(iv) Frm, T, S, L fulfil the axioms 1 to 3 of Definition 4.1.3 and L is isomorphic with T. •

Proof
The equivalence of (i) with (ii) is obvious.

The equivalence of (i) with (iii) follows from Corollary 5.2.2.(iii) and Observation 5.2.1.2.
The equivalence of (iii) with (iv) follows from Observation 1.3.1.6. 2

Choosing L = T leads to a logic where formulae are labelled by truth values, an approach
well-known in theory and applications of fuzzy logic. It seems to have originated in research
on standard expert systems, where the need for a possibility to deal with uncertain knowledge
was felt, but where corresponding reasoning mechanisms were mostly implemented in an ad
hoc manner (see, for instance, E. Y. Shapiro [90]).

Jan Pavelka gave a systematic study of fuzzy model-theoretic concepts based on this idea
and issues of their axiomatisation in  [85–87]. His ideas were taken up and investigated by
several researchers (see for instance works by V. Novák and others [79–82,84], by J. L. Castro

and E. Trillas [6], by E. Turunen [98, 99], by G. Gerla [41]).
The author of the presented dissertation has investigated this approach from the perspective

of automated reasoning [66, 67, 72].
The class of logics presented in this subsection corresponds to level 3 in the scheme described

in section 3.4.
It is interesting to study the meaning of the model relation in this special case.
Let [x, t] ∈ LFrm be given. By the identification of

[
PFl(T), ·∪,∩] with T (wlg it is assumed

that t ∈ T is associated with `t = t and vice versa) made in the introduction of this subsection,
combining definition (5.10) with the definition (1.15) of the principal filter t yields

Val |= [x, t] iff Val(x) ∈ t (by (5.10))
iff t Tv Val(x). (by (1.15))(5.24)

Analogously, for X : Frm → T ,

Val |= X iff ∀x ∈ Frm : X (x) Tv Val(x). (combining (5.24) with (5.11))

133

5 On the Expressive Power of Fuzzy Filter-Based Logics

Remark
This model relation coincides with the one which can be derived from the work of J. Pavelka

[85], so Pavelka-style logics have been obtained as a special case of fuzzy filter-based logics in
the case L = T. •

The equations (5.13), (5.19) and (5.20) for Mod, |−|− and Cons do not need to be adapted
in this special case, but in (5.21), the nature of the infimum can now be specified:

Cons(X)(x) = T
l{

Val(x) Val ∈ S and Val |= X} ,(5.25)

where T
d

is the infimum in the lattice of truth values.

Remark
This equation is identical with definition (3) of semantic consequence in [85]. •

Concerning refutation, applying Proposition 4.3.8 in this case yields the following Obser-
vation.

Observation 5.2.5 (When do truth values admit refutation?)
Let the mapping νD : {0, 1} → {0, 1} from Definition 4.3.4 be given by the negation operator
ϕ¬ defined in (3.9). Let a mapping νT : T → T be given as specified in (4.131),(4.132).

Then all ` ∈ L admit refutation if and only if

for every t ∈ T with t 6= 1, there exists t′ ∈ T such that for every s ∈ T , it holds
that t′ Tv s iff not s Tv t. •

Proof
Follows immediately from Proposition 4.3.8.4, taking into account that D = B and L is isomor-
phic with

[
PFl(T), ·∪,∩]. 2

Remark
Note that the condition of Observation 5.2.5 is fulfilled if T is a finite chain. •

In the following two subsections, two special cases of logics of graded truth assessment for
which L = T are discussed.

5.2.1.1 Pavelka-Style Lattice-Based Propositional Logic

In the beginning of the first part of his series on fuzzy logic [85–87], J. Pavelka allows arbitrary
sets of formulae and arbitrary semantics. It has been proved above that the whole range of
logics allowed by Pavelka’s scheme of definition is identical (up to isomorphism) with logics
of graded truth assessment for which L = T.

In the remainder of his series on fuzzy logic [85–87], J. Pavelka studies mainly the spe-
cial case where the underlying many-valued logic is Lukasiewiczs infinitely many-valued
propositional logic. In this subsection (and the next one), another, simpler underlying many-
valued logic shall be studied: lattice-based propositional logic.

Let the set of formulae be given by Frm =def PFrmS, i. e. classical propositional syntax
(see Example 3.1.3). Furthermore, let the semantics be based on the lattice connectives, i. e. ∧
and ∨ are interpreted by the lattice connectives Tu and Tt of T, respectively, and the negation
connective ¬ is interpreted by a bijective unary function ϕ¬ : T → T which is order-reversing
(see Example 3.2.3). Let ϕ→ be the s-implication of Tt wrt. ϕ¬ (see (3.7)).

In subsection 5.2.1.2, T and ϕ¬ are interpreted by a concrete lattice and a concrete negation
function, respectively.

134

5.2 Logics of Graded Truth Assessment

5.2.1.2 Lee’s Fuzzy Logic with Truth Value-Labelled Formulae

In this subsection, the case discussed in the previous subsection is made even more concrete.
Let Frm =def PFrmS (as above) and furthermore, T =def F =

[〈0, 1〉 , min, max
]

and choose the
semantics SP

F (see Example 3.2.4.2) of Lee’s fuzzy logic.
The underlying many-valued logic is in fact one of the first logical systems ever to be called

fuzzy logic. It was introduced by R. C. T. Lee and C. L. Chang in  [63, 64].
The labelled version (with truth values as labels) was studied by G. Escalada-Imaz and

F. Manyà in [33] and forms a special case of R. Hähnles regular logics [46, 47].
The model and semantic entailment relation and semantic consequence operator defined

in (5.24), (5.19), and (5.20), respectively, are denoted by L|=, L|−|−−, ConsL in this case and the
resulting logic of graded truth assessment is denoted by

ΛL =def

[
PFrmS, F, SP

F, F, L|=
]

.(5.26)

For convenience (in particular with respect to the comparison in section 5.4), definitions for
the basic logical concepts (see equations (5.19), (5.20), (5.24), (5.25)) are repeated here for this
special case.

For x ∈ PFrmS, Val ∈ SP
F, and t ∈ 〈0, 1〉,

Val L|= [x, t] iff t 5 Val(x).(5.27)

For X ∈ 〈0, 1〉PFrmS ,

Val L|= X iff ∀x ∈ PFrmS : X (x) 5 Val(x).(5.28)

For [x, t] ∈ LFrm,

X L|−|−− [x, t] iff ∀Val ∈ SP
F, if Val L|= X , then Val L|= [x, t] .(5.29)

ConsL(X)(x) = sup
{
t t ∈ 〈0, 1〉 and X L|−|−− [x, t]

}
(5.30)

= inf
{

Val(x) Val ∈ SP
F and Val L|= X

}
.

In subsequent investigations (see section 5.4), the following trivial observation will be useful.

Observation 5.2.6 (Clausal form in Lee’s fuzzy logic with truth value-labelled formulae)
ΛL is a lattice logic as defined in Example 3.2.3, and furthermore, F is a De Morgan algebra
wrt. the negation operator ϕ¬ defined in (3.10). Hence, all conditions given in Example 4.2.1
for the applicability of conjunctive normal form are fulfilled.

By Proposition 4.2.10 and Example 4.3.1, it can safely be assumed that all formulae of ΛL

are clauses. •
For the simplified logical language Cls, the sets Taut of all tautologies wrt. SP

F (denoted
TautF) and the sets Valid, Incons of all valid and inconsistent F-fuzzy sets of clauses wrt. ΛL

(denoted ValidL, InconsL) can be given explicitly.

Observation 5.2.7 (Tautologies, validity, and inconsistency in Lee’s fuzzy logic)

TautF = ///©.(5.31)

ValidL =

{
X X ∈ 〈0, 1〉Cls and ∀c ∈ Cls :

if X (c) > 0 , then X (c) 5 1
2 and ∃p ∈ PV : {p,¬p} j c

}
.(5.32)

InconsL =
{
X X ∈ 〈0, 1〉Cls and ∀Val ∈ SP

F : Val 6|= X
}

.(5.33) •

135

5 On the Expressive Power of Fuzzy Filter-Based Logics

Proof
ad (5.31). Trivial by Definition 3.3.4 and the fact that for every c ∈ Cls,

∃Val ∈ SP
F : Val(c) 5 1

2
.(5.34)

ad (5.32). Start from (5.14):

ValidL =
{
X X ∈ 〈0, 1〉Cls and ∀Val ∈ SP

F : Val L|= X
}

=
{
X X ∈ 〈0, 1〉Cls and ∀Val ∈ SP

F, c ∈ Cls : X (c) 5 Val(c)
}

(by (5.28))(5.35)

Let X ∈ 〈0, 1〉Cls and c ∈ Cls such that X (c) > 0 (the case X (c) = 0 is trivial). For
establishing that the sets given in (5.32) and (5.35) are equal, it is sufficient to prove that

∀Val ∈ SP
F : X (c) 5 Val(c) iff X (c) 5 1

2
and ∃p ∈ PV : {p,¬p} j c.(5.36)

For proving this, the following trivial observations wrt SP
F are employed which hold for

every c ∈ Cls:

if ∃p ∈ PV : {p,¬p} j c , then ∀Val ∈ SP
F : Val(c) = 1

2
(5.37)

if @p ∈ PV : {p,¬p} j c , then ∃Val ∈ SP
F : Val(c) = 0(5.38)

The “if” direction of (5.36) now follows from (5.34) and (5.38) (taking into account that
X (c) > 0) while the “only if” direction of (5.36) follows from (5.37).

ad (5.33). Is identical with (5.15). 2

Concerning refutation, the following Observation gives a quite negative result for Lee’s
fuzzy logic with truth value-labelled formulae.

Observation 5.2.8 (Labels from (0, 1〉 don’t admit refutation)
Let the mapping νD : {0, 1} → {0, 1} from Definition 4.3.4 be given by the negation operator
ϕ¬ defined in (3.9). Let a mapping νT : 〈0, 1〉 → 〈0, 1〉 be given as specified in (4.131),(4.132).

Then t ∈ 〈0, 1〉 admits refutation if and only if t = 0. •

Proof
It is easily derived from the proof of the “only if” direction of Proposition 4.3.8.4, case 2 on
page 105 that in the special case of Lee’s fuzzy logic with truth value-labelled formulae, the
following holds for every t ∈ 〈0, 1〉 with t 6= 1:

if there is no t′ ∈ T with the property that
for every s ∈ T , it holds that t′ 5 s iff not s 5 t,
then ν−1

T (t) does not admit refutation.

Obviously, no t ∈ 〈0, 1) has the property that there exists t′ ∈ T such that for every s ∈ T ,
it holds that t′ 5 s iff not s Tv t.

As ν−1
T (1) = 0, this implies that no t ∈ (0, 1〉 admits refutation.

An easy calculation yields F0 = 11 (compare (4.133)), hence 0 admits refutation and 0̃ = 1.
This concludes the proof. 2

136

5.3 Logics of Graded Trust Assessment

5.2.2 Using Sets of Truth Values as Labels

In this subsection, logics of graded truth assessment are studied for which L is isomorphic with
the (dual) lattice

[
Fl(T), ·∪,∩] of all filters of T (compare Corollary 5.2.2). Wlg, let L = F (T)

(see Example 2.3.1.2). This type of logic is very similar to Hähnle’s regular logics [47].
In recent years, the technique of using set-labelled formulae has been emerging as a theoret-

ical tool for automated deduction in many-valued logics. Recent references (where truth-value
sets are used as signs in reasoning systems for finitely many-valued logics) are R. Hähnle’s
book [46] and [74] by J. J. Lu, N. V. Murray, and E. Rosenthal.

For continuously many-valued logics, the set of all sets of truth values is too ‘large’ to
be manageable as a class of labels for formulae.

In [68, 72], however, it has been demonstrated how F (T) can be used as a label class for
a resolution-based automated reasoning system for a labelled extension to Lukasiewicz’s
continuously many-valued propositional logic, with the model relation (5.10).

Logics of graded truth assessment where L = F (T) have the advantage (over Pavelka’s
logic) that the range of labels admitting refutation and hence the range of labelled formulae for
which entailment can be characterised by refutation is much larger, and hence they are better
suited for resolution-based reasoning.

Applying Theorem 4.3.7 in this case yields the following Observation.

Observation 5.2.9 (When do filters admit refutation?)
Let the mapping νD : {0, 1} → {0, 1} from Definition 4.3.4 be given by the negation operator
ϕ¬ defined in (3.9). Let a mapping νT : T → T be given as specified in (4.131),(4.132).

Then all ` ∈ L admit refutation if and only if T is a chain. •

Remark
Note that the condition from Observation 5.2.9 is strictly weaker than that from Observa-
tion 5.2.5, in fact much weaker. For instance, it allows to choose T = F (as exploited in [68,72]),
while the condition from Observation 5.2.5 does not (compare Observation 5.2.8). •

Combining the above result with Observation 5.2.3 yields the following Corollary.

Corollary 5.2.10 (Refutation in logics of graded truth assessment with filters as labels)
Assume that T is a chain.

Let the mapping νD : {0, 1} → {0, 1} from Definition 4.3.4 be given by the negation
operator ϕ¬ defined in (3.9). Let a mapping νT : T → T be given as specified in (4.131),(4.132)
and assume that Frm contains a unary operator symbol ¬ interpreted by νT.

Then for all X ∈ LFrm and [x, `] ∈ LFrm, ` admits refutation and X |−|− [x, `] is charac-

terised by refutation.

5.3 Logics of Graded Trust Assessment

In this section, logical systems are discussed which are obtained in the form of fuzzy filter-
based logics by setting T =def B. These logical systems correspond to the case presented in
Proposition 2.3.4.

Examining Definition 4.1.3 and Observation 4.1.4, a definition for a logic of graded trust
assessment can be given in the special case that T = B.

137

5 On the Expressive Power of Fuzzy Filter-Based Logics

Definition 5.3.1 (Logic of graded trust assessment)
A tuple Λ =def

[
Frm, S, D, L, |==

]
shall be called a logic of graded trust assessment

� with logical language Frm,

� with semantics S,

� with validity degree lattice D,

� with label lattice L,

� and with model relation |==,

=def 1. Frm is a nonempty set,

2. D = [D, Du, Dt] and L = [L, Lu, Lt] are complete lattices with at least two elements each,
with induced partial orders Dv, Lv, respectively

3. S j {0, 1}Frm,

4. |== is a ternary relation on S × LFrm × D such that for every Val ∈ S, x ∈ Frm,
and ` ∈ L there exists a unique d ∈ D such that Val d|== [x, `],

5. if x, y ∈ Frm and Val, Val ′ ∈ S such that Val(x) = Val ′(y), then for all ` ∈ L and
d ∈ D,

Val d|== [x, `] iff Val ′ d|== [y, `] ,(5.39)

6. if `, `′ ∈ L such that ` 6= `′, then for d, d′ ∈ D,

if Val 0 d|== [x0, `] and Val 0 d′|==
[
x0, `

′] , then d 6= d′,(5.40)

7. for all ` ∈ L,

Val 1 1|== [x1, `] ,(5.41)

8. for every d ∈ D, there exists `d ∈ L such that

Val 0 d|== [x0, `d](5.42)

10. for `, `′ ∈ L, and c, d ∈ D such that

Val 0 c|==
[
x0, `

′]
and Val 0 d|== [x0, `] ,

it holds that

Val 0 cDud|==
[
x0, `

′
Lt `
]
,(5.43)

11. for `, `′ ∈ L, and c, d ∈ D such that

Val 0 c|==
[
x0, `

′]
and Val 0 d|== [x0, `] ,

it holds that

Val 0 cDtd|==
[
x0, `

′
Lu `
]
.(5.44)

138

5.3 Logics of Graded Trust Assessment

Remark
The remarks on pages 71–73 accompanying Definition 4.1.3 hold in a more special form (disre-
garding T) also for logics of graded trust assessment. •

Observations 5.3.1 (Logics of graded trust assessment vs. fuzzy filter-based logics)
1. In a logic of graded trust assessment [Frm, S, D, L, |==] (where L = [L, Lu, Lt]), it holds

that L = {`d d ∈ D} (compare Definition 5.3.1.8).

2. [Frm, B, S, D,L, |==] is a logic of graded truth and graded trust assessment if and
only if [Frm, S, D, L, |==] is a logic of graded trust assessment and (see Definition 4.1.3.8
and Definition 5.3.1.8) `d = `0

d.

3. [Frm, B, S, D,L, ι] is a fuzzy filter-based logic with induced model relation |== if and
only if [Frm, T, S, L, |==] is a logic of graded trust assessment and (see Definition 5.3.1.8)
ι (`d) = d0 .

4. D is a chain iff L is a chain, and in this case axioms 10 and 11 can be replaced by the
following monotonicity condition:

10∗ for `, `′ ∈ L and c, d ∈ D such that

Val 0 c|==
[
x0, `

′]
and Val 0 d|== [x0, `] ,

it holds that

if ` Lv `′ , then c Dv d.(5.45)

Hence, the class of all fuzzy filter-based logics for which T = B and L is a chain, is
completely characterised by axioms 1, 2, 3, 4, 5, 6, 7, 8, and 10∗. •

Proof
ad 1. Follows immediately from items 6 and 8 of Definition 5.3.1.

ad 2. It is sufficient to observe that the axioms given in Definition 5.3.1 are equivalent to those
given in Definition 4.1.3 in the case T = B.

As B is a chain, the axioms from Observation 4.1.4.1 can be used. The most significant
change from the general case is that T has only two values, and as Val 1|== [x, `] is fixed for
all ` and all Val, x such that Val(x) = 1 by axioms 7 and 5, it is sufficient to consider Val 0

in all the places where Val t features in Definition 4.1.3 and Observation 4.1.4.1. Axiom 9∗

is redundant for exactly this reason.

Establishing that the axioms given in Definition 5.3.1 are indeed equivalent to those given
in Definition 4.1.3 and Observation 4.1.4.1 in the case T = B is as simple as examining
the axioms in turn and discussing the (two) possible cases t = 0 and t = 1.

ad 3. Follows form the previous item by applying Observation 4.1.2 and Theorem 4.1.3, taking
into account that B is a chain.

ad 4. That D is a chain iff L is a chain follows from the previous item and Proposition 2.3.6.

The rest follows from item 2 and Observation 4.1.4.2. 2

139

5 On the Expressive Power of Fuzzy Filter-Based Logics

Corollary 5.3.2 (Admissible label lattices for logics of graded trust assessment)
Given sets Frm, S, D, L,

(i) there exists |== such that [Frm, B, S, D, L, |==] is a logic of graded truth and graded

trust assessment

(ii) iff there exists |== such that [Frm, S, D, L, |==] is a logic of graded trust assessment

(iii) iff Frm, S, D, L fulfil the axioms 1 to 3 of Definition 4.1.3 and L is isomorphic with D(D).

Proof
The equivalence of items (i) and (ii) follows from Observation 5.3.1.1.

The equivalence of items (i) and (iii) follows from Proposition 2.3.4.
As a matter of fact, it is easy to see how the axioms in Definition 5.3.1 force L to be

isomorphic with D(D). The existence and all the characterising features of an isomorphism
between the two lattices (injectivity, surjectivity, and the lattice homomorphism conditions)
are coded in the axioms (compare Observation 5.3.1.1 which essentially means that there is a
bijection between D and L). 2

It is interesting to discuss the meaning of the model and semantic consequence relation in the
special case of a logic of graded trust assessment. To this end, L is identified with the set
{`d d ∈ D} (compare Observation 5.3.1.1 and Definition 5.3.1.8).

Because in the following, some semantic concepts of logics of graded trust assessment are
reduced to semantic concepts of two-valued logic, some semantic concepts of classical two-valued
logic are defined.

Definition 5.3.2 (Semantic concepts of two-valued logic)
Let Val ∈ S.

Val is said to be a model of x ∈ Frm classically (denoted Val |= x) =def Val(x) = 1.
The case that not Val |= x is denoted by Val 6|= x.

For X j Frm, Val |= X =def for all x ∈ X , Val |= x.
Define the classical entailment of x ∈ Frm by X j Frm (denoted X |−|− x)

=def for every Val ∈ S, if Val |= X , then Val |= x.

Finally, X j Frm is said to be (classically) satisfiable
=def there exists Val ∈ S such that Val |= X .

The set of all satisfiable X j Frm is denoted Sat.

Axiom 7 of Definition 5.3.1 yields that for all x ∈ Frm and d ∈ D,

if Val |= x , then Val 1|== [x, `d] .

This means that `d is only significant if Val 6|= x. Indeed, if Val d′|== [x, `d], then

d′ =

{
1, if Val |= x

d, if Val 6|= x
(By axioms 7 and 8)(5.46)

The degree d ∈ D to which a valuation Val is a model of an L-fuzzy set X on Frm (written
Val d|== X) is defined in equation (4.38) to be

d = D
l{

d′ ∃x ∈ Frm : Val d′|==
[
x,X (x)

]}
.

140

5.3 Logics of Graded Trust Assessment

By equation (5.46), this is equivalent with

d = D
l{

d′ ∃x ∈ Frm : Val 6|= x and X (x) = `d′
}

.(5.47)

As defined in equation (4.41), an L-fuzzy set X on Frm induces on S a D-fuzzy set Mod(X)
of models of X by

Mod(X)(Val) = D
l{

d ∃x ∈ Frm : Val 6|= x and X (x) = `d

}
.(5.48)

This definition of Mod corresponds to the possibility distribution πX defined in [19,
Proposition 3.2.2]. See also the discussion concerning fuzzy sets of models in [19, section 3.4].

For X ∈ LFrm, the validity index valid(X), consistency index cst(X), and inconsis-
tency distribution inc are given as

valid(X) = D
l{

D
l{

d ∃x ∈ Frm : Val 6|= x and X (x) = `d

}
Val ∈ S

}
(5.49)

cst(X) = D
⊔{

D
l{

d ∃x ∈ Frm : Val 6|= x and X (x) = `d

}
Val ∈ S

}
(5.50)

inc(X) = L
l{

L
⊔{X (x) ∃x ∈ Frm : Val 6|= x

}
Val ∈ S

}
(5.51)

(5.49) and (5.50) are obtained by just inserting (5.48) into (4.48) and (4.49), respectively.
(5.51) is easily established using (4.126), Observation 2.2.14 and Observation 5.3.1.3, but

(assuming an appropriate formula ⊥ exists in Frm) it also follows immediately from (4.124)
using the definition (5.57) of Cons for logics of graded trust assessment and the fact that
Val 6|= ⊥ for all Val ∈ S by assumption.

Proposition 5.3.9 contains some more characterisations (depending on observations about
Cons) of valid, cst, inc and also the sets Valid, Incons of all valid and all inconsistent L-fuzzy
sets of formulae.

Next, the semantic consequence relation is studied in this special case. Having al-
ready analysed the meaning of the model relation, it is convenient to start with the semantic
consequence relation for D-fuzzy sets of valuations (see Definition 4.3.2). Let S : S → D be
given.

For [x, `d] ∈ LFrm, Definition 4.3.2.1 yields

S |−|− [x, `d] iff For every Val ∈ S and all d′ ∈ D, if Val
d′
|== [x, `d], then S(Val) Dv d′.

By (5.46), this is equivalent with

S |−|− [x, `d] iff For every Val ∈ S, if Val 6|= x, then S(Val) Dv d.(5.52)

The L-fuzzy set of semantic consequences of a D-fuzzy set S : S → D of valuations is given
by equation (4.123) to be, for x ∈ Frm,

Cons(S)(x) = L
l
{

ι−1

(
S(Val)

Val(x)
)

Val ∈ S

}
.(5.53)

Let Val ∈ S and x ∈ Frm be given. If Val(x) = 0, then by Observation 5.3.1.3,

ι−1

(
S(Val)

Val(x)
)

= `S(Val).

141

5 On the Expressive Power of Fuzzy Filter-Based Logics

If Val(x) = 1, then by Observation 2.2.6,
S(Val)

Val(x) = 00 , so

ι−1

(
S(Val)

Val(x)
)

= `0.

By the fact that L is isomorphic with D(D), obviously `0 is the unit element of L, hence
equation (5.53) is equivalent with

Cons(S)(x) = L
l{

`S(Val) Val ∈ S and Val 6|= x
}

.(5.54)

Next, consider semantic consequences of an L-fuzzy set X of formulae.
(5.52), together with (4.117) yields

X |−|− [x, `d]
⇔ For every Val ∈ S, if Val 6|= x, then Mod(X)(Val) Dv d.
⇔ For every Val ∈ S,

if Val 6|= x, then D
d{

d′ ∃y ∈ Frm : Val 6|= y and X (y) = `d′
}

Dv d.
(by (5.48))

By (4.98),

Cons(X)(x)
= L
⊔{

`d d ∈ D and X |−|− [x, `d]
}

= L
⊔{

`d
d ∈ D and for every Val ∈ S,
if Val 6|= x, then D

d {
d′ ∃y ∈ Frm : Val 6|= y and X (y) = `d′

}
Dv d.

}
(5.55)

By (5.54), considering (4.118) and (5.48),

Cons(X)(x)

= L
l{

`Mod(X)(Val) Val ∈ S and Val 6|= x
}

= L
l{

`
D
d{d′ ∃y∈Frm:Val6|=y and X (y)=`d′} Val ∈ S and Val 6|= x

}
.(5.56)

Taking into account Observation 5.3.1.3 and Observation 2.2.14, it follows

= L
l{

L
⊔{X (y) ∃y ∈ Frm : Val 6|= y

}
Val ∈ S and Val 6|= x

}
.(5.57)

Remark
It is trivial that (5.55) and (5.57) are equal in this case. As L is isomorphic with D(D),{

`d
d ∈ D and for every Val ∈ S,
if Val 6|= x, then D

d{
d′ ∃y ∈ Frm : Val 6|= y and X (y) = `d′

}
Dv d.

}

is simply the set of all lower bounds of{
L
⊔{X (y) ∃y ∈ Frm : Val 6|= y

}
Val ∈ S and Val 6|= x

}
,(5.58)

so (5.55) implements the definition of greatest lower bound of (5.58). •

142

5.3 Logics of Graded Trust Assessment

Theorem 5.3.3 (Characterising semantic consequence by two-valued entailment)
Let X ∈ LFrm and x ∈ Frm be fixed.

For Val ∈ S, define

DVal =def

{
d There exists y ∈ Frm such that Val 6|= y and `d Lv X (y)

}
.(5.59)

Furthermore, let

∆ =def

{
DVal Val ∈ S and Val 6|= x

}
.(5.60)

Then

D
l⋂

∆ = D
⊔

DVal∈∆

D
l

DVal,(5.61)

if and only if

Cons(X)(x) = L
⊔{

`d d ∈ D and CUT`d
(X) |−|− x

}
.(5.62)

Proof
The definition of CUT`d

(X) |−|− x can be expanded by using Definition 5.3.2 and (1.23), yielding

CUT`d
(X) |−|− x ⇔ For all Val ∈ S,

if for all y ∈ Frm such that `d Lv X (y), Val |= y holds,
then Val |= x.

and by contraposition

CUT`d
(X) |−|− x ⇔ For all Val ∈ S, if Val 6|= x,

then there exists y ∈ Frm such that `d Lv X (y) and Val 6|= y.

⇔ d ∈
⋂

∆(5.63)

Cons(X)(x) is expanded using equation (5.56).
First of all, observe that

D
l{

d′ ∃y ∈ Frm : Val 6|= y and X (y) = `d′
}

= D
l

DVal.(5.64)

Obviously,
{
d′ ∃y ∈ Frm : Val 6|= y and X (y) = `d′

}
j DVal, but furthermore, because L is iso-

morphic with D(D), for every d ∈ DVal, there exists d′ ∈ {d′ ∃y ∈ Frm : Val 6|= y and X (y) = `d′
}

such that d′ Dv d. Hence, the additional elements in DVal do not influence the value of the
infimum.

From (5.64) and the definition of ∆ it follows that

Cons(X)(x) = L
l

DVal∈∆

`D
d

DVal
.(5.65)

Hence by inserting (5.63) and (5.65) into (5.62), considering that L is isomorphic with
D(D), it follows that (5.61) and (5.62) are indeed equivalent. 2

143

5 On the Expressive Power of Fuzzy Filter-Based Logics

Corollary 5.3.4 (Semantic consequence in logics of graded trust is a matter of threshold)
Let X ∈ LFrm and x ∈ Frm and d ∈ D be fixed.

Define ∆ as in (5.60) and assume that (5.61) holds.

Then

1. X |−|− [x, `d] iff `d Lv L
⊔{

`d d ∈ D and CUT`d
(X) |−|− x

}
;

2. if rgX is finite, then

X |−|− [x, `d] iff CUT`d
(X) |−|− x.(5.66)

Proof
ad 1. Follows from (5.62) and Proposition 4.3.1.9.

ad 2. From the assumption it follows that
{

CUT`d
(X) d ∈ D

}
is finite, hence

`d Lv L
⊔{

`d d ∈ D and CUT`d
(X) |−|− x

}
(5.67)

is equivalent with the existence of d′ ∈ D such that CUT`d′ (X) |−|− x and

`d Lv `d′ ,(5.68)

and as from CUT`d′ (X) |−|− x and `d Lv `d′ it follows that CUT`d
(X) |−|− x, (5.67) is

equivalent with

`d ∈ {`d d ∈ D and CUT`d
(X) |−|− x

}
(5.69)

which is equivalent with

CUT`d
(X) |−|− x.(5.70) 2

Remarks
(5.66) corresponds to the result of [19, Proposition 3.5.6].

Note that the assumption of Corollary 5.3.4.2 is fulfilled if X is finite.
The importance of Theorem 5.3.3 and Corollary 5.3.4 cannot be overestimated, as (5.62)

(compare in particular (5.66)) is fundamental in two respects:

1. When (5.62) holds, it allows to reduce considerations with respect to semantic consequence
in logics of graded trust assessment (especially, for instance, concerning deduction) to
considerations with respect to semantic consequence in classical logic.

2. (5.62) (and especially (5.66)) demonstrates that semantic consequence in logics of graded
trust assessment is, by nature, a matter of threshold. To put it simply, if one wishes to
ascertain that a statement x follows from X with a certain degree of trust, it is sufficient
to use the label associated with this degree of trust as a threshold such that x follows
classically from all evidence in X which is trusted at least to this threshold.

Statements which belong to X to a degree below this threshold (i. e. are not sufficiently
trustworthy) may not be considered when trying to establish x.

144

5.3 Logics of Graded Trust Assessment

The above reasoning shows that labels in logics of graded trust assessment indeed express
uncertainty about the knowledge of the formulae in X . The more certain one is about some
statement x, the higher the label of x in X , and the higher are the thresholds at which x will
still be considered when reasoning from the knowledge in X . If some piece x of knowledge is
completely certain, its label is 1 and hence x will be considered in every inference drawn from
the knowledge represented by X , regardless of the threshold. •

For being able to fully profit from (5.62) whenever it holds, next some criteria for (5.61) to
hold are given.

Definition 5.3.3 (Infinite distributive law)
Let D = [D, Du, Dt] be a complete lattice and ∆ j PD a set of subsets of D.

Furthermore, let Φ∆ be the set of all choice functions for ∆, i. e. the set of all mappings
ϕ : ∆ → ⋃

∆ such that for every D′ ∈ ∆, ϕ(D′) ∈ D′.
Then the infinite distributive law wrt. ∆ holds in D

=def

D
⊔

D′∈∆

D
l

D′ = D
l

ϕ∈Φ∆

D
⊔

D′∈∆

ϕ(D′).(5.71)

The infinite distributive law holds in D (compare [57])

=def (5.71) holds for every set ∆ j PD.

(Note that of course there exists a dual law to (5.71), which is not considered here.)

Lemma 5.3.5 (Connection between infinite distributive law and semantic entailment)
For every set ∆ j PD of ascending subsets of D (where ascending means that for every
D′ ∈ ∆ and d ∈ D′, if d′ ∈ D such that d Dv d′, then d′ ∈ D′),

D
⊔

D′∈∆

D
l

D′ = D
l

ϕ∈Φ∆

D
⊔

D′∈∆

ϕ(D′)

is equivalent with

D
⊔

D′∈∆

D
l

D′ = D
l⋂

∆.

Proof
It suffices to prove that

D
l

ϕ∈Φ∆

D
⊔

D′∈∆

ϕ(D′) = D
l⋂

∆

holds in this case. It is sufficient to prove D
⊔

D′∈∆

ϕ(D′) ϕ ∈ Φ∆

 =
⋂

∆,

which is carried out in two steps:

145

5 On the Expressive Power of Fuzzy Filter-Based Logics

1.

{
D
⊔

D′∈∆

ϕ(D′) ϕ ∈ Φ∆

}
j
⋂

∆.

Let ϕ ∈ Φ∆. Then for every D′ ∈ ∆,

ϕ(D′) Dv D
⊔

D′∈∆

ϕ(D′),

and from the fact that ϕ(D′) ∈ D′ and D′ is ascending, it follows that for every D′ ∈ ∆,

D
⊔

D′∈∆

ϕ(D′) ∈ D′.

It follows immediately that

D
⊔

D′∈∆

ϕ(D′) ∈
⋂

∆.

2.
⋂

∆ j
{

D
⊔

D′∈∆

ϕ(D′) ϕ ∈ Φ∆

}
.

Let d ∈ ⋂∆. There exists a choice function ϕ : ∆ → ⋃
∆ such that for every D′ ∈ ∆,

ϕ(D′) = d. Obviously, D
⊔

D′∈∆

ϕ(D′) = d, hence

d ∈
 D
⊔

D′∈∆

ϕ(D′) ϕ ∈ Φ∆

 .

2

Next, some criteria are exhibited under which equation (5.62) holds.

Corollary 5.3.6 (Criteria for semantic entailment to be characterised by threshold I)
Let X ∈ LFrm and x ∈ Frm be fixed, and let ∆ be given by (5.60).

(5.62) holds in each of the following cases:

1. The infinite distributive law wrt. ∆ holds in D. (This is even equivalent with the
validity of (5.62).)

2. D is a chain on
⋃

∆.

3. The complete sublattice of D generated by
⋃

∆ is an atomic boolean algebra.

4. The complete sublattice of D generated by
⋃

∆ is a boolean algebra isomorphic with

a power set lattice.

5. ∆ is finite and the complete sublattice of D generated by
⋃

∆ is completely distribu-
tive wrt. D

d
.

6. rgX is finite and the complete sublattice of D generated by
⋃

∆ is completely dis-
tributive wrt. D

d
.

7. X is finite and the complete sublattice of D generated by
⋃

∆ is completely distribu-
tive wrt. D

d
.

8.
⋃

∆ is finite and the complete sublattice of D generated by
⋃

∆ is distributive.

146

5.3 Logics of Graded Trust Assessment

Proof
ad 1. Follows from Lemma 5.3.5 and the fact that every DVal ∈ ∆ is an ascending set.

ad 2. Obviously, the infinite distributive law wrt. ∆ holds in D in this case.

ad 3. Let D′ be the complete sublattice of D generated by
⋃

∆. That D′ exists is trivial by the
completeness of D. It is a theorem of lattice theory (see [57, Satz 24.3]) that the infinite
distributive law wrt. ∆ holds in D′ when D′ is an atomic boolean algebra. Obviously it
then also holds (wrt. ∆) in D.

ad 4. Same as the previous item.

ad 5. The infinite distributive law wrt. ∆ is equivalent with the complete distributivity of the
sublattice of D generated by

⋃
∆ wrt. D

d
in this case.

ad 6. Obviously, if the range of X is finite then ∆ is also finite, so this item follows from the
previous one.

ad 7. Follows from the previous item.

ad 8. In the case that
⋃

∆ is finite, the complete sublattice of D generated by
⋃

∆ is also
finite, hence the infinite distributive law wrt. ∆ is equivalent with the distributivity of
the complete sublattice of D generated by

⋃
∆. 2

Corollary 5.3.7 (Criteria for semantic entailment to be characterised by threshold II)
(5.62) holds for every finite X ∈ LFrm and x ∈ Frm if D is completely distributive wrt. D

d
.

Proof
Follows immediately from Corollary 5.3.6.7. 2

Corollary 5.3.8 (Criteria for semantic entailment to be characterised by threshold III)
(5.62) holds for every X ∈ LFrm and x ∈ Frm in each of the following cases:

1. The infinite distributive law holds in D.

2. D is a chain.

3. D is an atomic boolean algebra.

4. D is a boolean algebra isomorphic with a power set lattice.

5. D is finite and distributive.

Proof
Follows immediately from the corresponding items of Corollary 5.3.6. 2

Remark
Corollary 5.3.8 should make it clear that there are a lot of ‘plausible’ instances of D for which
the equations from Theorem 5.3.3 and Corollary 5.3.4 hold.

So, in accordance with the remark on page 144, it is henceforth assumed that semantic
consequence in logics of graded trust assessment is mainly a matter of threshold. •

147

5 On the Expressive Power of Fuzzy Filter-Based Logics

Propositions 5.3.9 (Characterising validity and consistency by cuts)
In a logic of graded trust assessment, the following hold:

1. For all X ∈ LFrm,

valid(X) = D
l{

d CUT`d
(X) " Taut

}
.(5.72)

2. Let X ∈ LFrm. For Val ∈ S, define DVal as in (5.59). Let

∆ =def {DVal Val ∈ S} .(5.73)

Then (5.61) holds (for this definition of ∆) if and only if

cst(X) = D
l {

d CUT`d
(X) /∈ Sat

}
.(5.74)

3. Let X ∈ LFrm.

(5.61) holds for ∆ as defined in (5.73) if and only if

inc(X) = L
⊔{

`d d ∈ D and CUT`d
(X) /∈ Sat

}
.(5.75)

4. The sets of all valid and all inconsistent L-fuzzy sets of formulae are given by

Valid =
{
X X ∈ LFrm and suppX j Taut

}
(5.76)

Incons =

{
X X ∈ LFrm and ∀Val ∈ S :

D
d{

d ∃x ∈ Frm : Val 6|= x and X (x) = `d

}
= 0

}
.(5.77)

Under the condition given in item 2,

Incons =
{
X X ∈ LFrm and D

l{
d CUT`d

(X) /∈ Sat
}

= 0
}

(5.78)

Proof
ad 1. Let X ∈ LFrm. Combining both occurrences of D

d
in (5.49) yields

valid(X) = D
l{

d ∃Val ∈ S, x ∈ Frm : Val 6|= x and X (x) = `d

}
Obviously, the value of the greatest lower bound does not change when X (x) = `d is
replaced by `d Lv X (x) (remember that L is isomorphic with the dual of D), so

= D
l{

d ∃Val ∈ S, x ∈ Frm : Val 6|= x and `d Lv X (x)
}

.

Considering the definition (3.16) of Taut, it follows that

∃Val ∈ S, x ∈ Frm : Val 6|= x and `d Lv X (x) iff CUT`d
(X) " Taut,

establishing the claim.

148

5.3 Logics of Graded Trust Assessment

ad 2. Let X ∈ LFrm and let ∆ be defined by (5.73). The proof that (5.61) holds iff (5.74) holds
is analogous to that of Theorem 5.3.3, but much simpler.

It is sufficient to observe that

d ∈
⋂

∆ iff ∀Val ∈ S : d ∈ DVal by (5.73)

iff ∀Val ∈ S ∃y ∈ Frm : `d Lv X (y) and Val 6|= y by (5.59)
iff ∀Val ∈ S ∃y ∈ CUT`d

: Val 6|= y by (1.23)
iff CUT`d

/∈ Sat by Definition 3.3.4.2

and by definition (5.50),

cst(X) = D
⊔{

D
l {

d ∃x ∈ Frm : Val 6|= x and X (x) = `d

}
Val ∈ S

}
,

where X (x) = `d can be replaced by `d Lv X (x) without changing the value of the (inner)
greatest lower bound, yielding

= D
⊔{

D
l {

d ∃x ∈ Frm : Val 6|= x and `d Lv X (x)
}

Val ∈ S
}

= D
⊔{

D
l

DVal Val ∈ S
}

by (5.59)

= D
⊔

DVal∈∆

D
l

DVal. by (5.73)

ad 3. Follows from (5.74) and (4.126), taking into account that L is isomorphic with D(D).

ad (5.76). From the definition of Valid in Definition 4.2.2.1 and item 1, it follows that

X ∈ Valid iff valid(X) = 1 iff
{
d CUT`d

(X) " Taut
}

j {1}.

It follows that

X ∈ Valid iff for every `d ∈ L with `d 6= `1, CUT`d
(X) j Taut.(5.79)

But `1 is the zero element of L by the fact that L is isomorphic with D(D), hence

X ∈ Valid iff suppX j Taut

follows from (5.79) by (1.24).

ad (5.77). Follows immediately from the definition of Incons.

ad (5.78). Follows by combining Definition 4.2.2.2 with (5.74). 2

Remark
1. The conditions for the validity of (5.62) exhibited in Corollaries 5.3.6–5.3.8 also guaran-

tee the validity of the characterisations in items 2 and 3 and equation (5.78) of Proposi-
tion 5.3.9.

2. If for X ∈ LFrm, rgX is finite, then by a proof analogous to that of Corollary 5.3.4.2,

CUTinc(X)(X) /∈ Sat.

Note that rgX is finite if X is finite.

149

5 On the Expressive Power of Fuzzy Filter-Based Logics

3. Under the conditions for (5.78), obviously{
X X ∈ LFrm and CUT`0(X) /∈ Sat

}
j Incons.

The equation

Incons =
{
X X ∈ LFrm and CUT`0(X) /∈ Sat

}
(5.80)

holds if and only if for all X ∈ LFrm,

D
l{

d CUT`d
(X) /∈ Sat

}
= 0 ⇐⇒ 0 ∈ {d CUT`d

(X) /∈ Sat
}

.

It should be clear that this will hold only under very special circumstances, for instance
if D is an atomic chain or an atomic Boolean algebra.

With a proof analogous to that of Corollary 5.3.4.2 it can be established that if for
X ∈ LFrm, rgX is finite, it holds that

X ∈ Incons iff CUT`0(X) /∈ Sat. •
Concerning refutation, applying Theorem 4.3.7 and Corollary 4.3.19 in this case yields the

following encouraging Observation.

Observation 5.3.10 (Refutation system for logics of graded trust assessment)
Let the mapping νT : {0, 1} → {0, 1} from Definition 4.3.4 be given by the negation operator
ϕ¬ defined in (3.9) and assume that Frm contains a unary operator symbol ¬ interpreted by
νT. Let a mapping νD : D → D be given as specified in (4.131),(4.132).

Then for all X ∈ LFrm and [x, `] ∈ LFrm, ` admits refutation and X |−|− [x, `] is charac-
terised by refutation, i. e.

X |−|− [x, `] iff ` Lv inc
(X ∪ [¬x, 1]

)
.(5.81) •

Proof
T is two-valued and thus obviously a chain, so the fact that every ` admits refutation and
X |−|− [x, `] is characterised by refutation follows by simply applying Theorem 4.3.7 and Corol-
lary 4.3.19.

For justifying equation (5.81), it is sufficient to observe that in equation (4.137), due to the
two-valuedness of T, only the cases s = 1 and s = 0 occur. Taking into account items 1 and
3 of Observation 5.3.1, it is clear that F` is the principal fuzzy filter 00 for every ` ∈ L, hence˜̀= `0 by Observation 5.3.1.4, which is the unit element of L. 2

Observation 5.3.10 means that refutation is applicable without restriction in all logics of
graded trust assessment, the only condition being the existence of a suitable order-reversing
involution νD on D.

5.3.1 Possibilistic Logic

Possibilistic logic is by far the most well-known representative of logics of graded trust assess-
ment, and it is in fact the only logical system so far where the difference between graded truth
and graded trust is made explicit and forms an integral part of the definition of logical concepts.

Possibilistic logic is studied in great detail by D. Dubois, J. Lang and H. Prade [19] (see
also Gert de Cooman [13] and G. Gerla [41, chapter 6]).

150

5.3 Logics of Graded Trust Assessment

In the following subsection, it is demonstrated how the most simple case of possibilistic logic
(possibilistic logic with necessity-valued formulae; see [19]) can be derived as a special case of
a logic of graded trust assessment.

Possibilistic logic with necessity-valued and possibility-valued formulae has more expres-
sive power (compare [19, section 4.1]). Its study and comparison with logics of graded trust
assessment is left for future research.

Note that in [19, section 4.3], even possibilistic logic with ‘necessity degrees’ taken from an
arbitrary complete and distributive lattice is mentioned, which is almost equivalent with the
concept of logics of graded trust assessment. It seems, however, that no detailed study of this
type of logic from the perspective of mathematical logic has taken place yet.

5.3.1.1 Possibilistic Logic with Necessity-Valued Formulae

For the special case (the most intensively studied one) that all formulae of possibilistic logic
are valuated with a necessity degree, let D =def F =

[〈0, 1〉 , min, max
]
.

Furthermore, define the set of formulae to be given by Frm =def PFrmS, i. e. classical
propositional syntax (see Example 3.1.3) and the semantics to be given by SP

B (see Exam-
ple 3.2.4.1).

By Corollary 5.3.2.(iii), to obtain a logic of graded trust assessment accord-
ing to Definition 5.3.1, the label lattice L has to be isomorphic with the dual lattice
D(F) =

[〈0, 1〉 , max, min
]

of F. For compatibility with the original definition of possibilis-
tic logic with necessity-valued formulae [19], let L =def F and choose the isomorphism

ι(r) =def 1 − r r ∈ 〈0, 1〉(5.82)

between L and D(F), i. e. `d from Definition 5.3.1.8 is 1 − d for all d ∈ 〈0, 1〉. Note that the
greatest lower bound L

d
of the label lattice F is the infimum inf of the complete lattice of all

real numbers and the least upper bound L
⊔

of the label lattice F is the supremum sup.
The model relation and model fuzzy set, the semantic entailment relation, and the semantic

consequence operator defined in (5.46), (5.48), (5.55), and (5.57), respectively, are denoted by
P|==, ModP, P|−|−−, ConsP in this case and the resulting logic of graded trust assessment is denoted

by

ΛP =def

[
PFrmS, S

P
B, F, F, P|==

]
.(5.83)

According to [19],“a necessity-valued formula is a pair (ϕ α) where ϕ is a classical first-order,
closed formula and α ∈ (0, 1〉 is a positive number.”

In this section, syntax is restricted to propositional logic, but otherwise, a “necessity-valued
formula” is identical with a labelled formula of the logic of graded trust assessment ΛP.

For convenience (in particular with respect to the comparison in section 5.4), definitions for
the basic logical concepts (see equations (5.46)–(5.62)) are repeated here for this special case.

For x ∈ PFrmS, Val ∈ SP
B, and d, d′ ∈ 〈0, 1〉,

Val P
d′|== [x, d] iff d′ =

{
1, if Val |= x

1 − d, if Val 6|= x
(5.84)

For X ∈ 〈0, 1〉PFrmS ,

Val P
d|== X iff d = inf

{
1 −X (x) x ∈ Frm and Val 6|= x

}
,(5.85)

ModP(X)(Val) = inf
{

1 −X (x) x ∈ Frm and Val 6|= x
}

.
(5.86)

151

5 On the Expressive Power of Fuzzy Filter-Based Logics

This definition of ModP corresponds to the possibility distribution πX defined in [19, Propo-
sition 3.2.2].
For [x, d] ∈ LFrm and S : SP

B → 〈0, 1〉,

S P|−|−− [x, d] iff for every Val ∈ SP
B, if Val 6|= x, then S(Val) 5 1 − d,

ConsP(S)(x) = inf
{

1 − S(Val) Val ∈ SP
B and Val 6|= x

}
.(5.87)

For X ∈ 〈0, 1〉PFrmS and [x, d] ∈ LFrm,

X P|−|−− [x, d] iff For every Val ∈ SP
B,

if Val 6|= x, then d 5 sup
{X (y) y ∈ PFrmS and Val 6|= y

}
.

(5.88)

As F is a chain, Corollary 5.3.8.2 and hence Corollary 5.3.4.1 can be applied, yielding

iff d 5 sup
{
d d ∈ 〈0, 1〉 and CUTd(X) |−|− x

}
.(5.89)

ConsP(X)(x) = inf
{

sup
{X (y) y ∈ PFrmS and Val 6|= y

}
Val ∈ SP

B and Val 6|= x
}

.

As above, Theorem 5.3.3 can be applied, yielding

= sup
{
d d ∈ 〈0, 1〉 and CUTd(X) |−|− x

}
.(5.90)

In possibilistic logic [19], “possibility distributions” on the set SP
B of all Boolean valuation

functions are studied. These correspond to the F-fuzzy sets S : SP
B → 〈0, 1〉 studied here.

In [19, section 3.2], a necessity measure on the set of all formulae is induced by a possibility
distribution S : SP

B → 〈0, 1〉 for x ∈ PFrmS by

N (x) =def inf
{

1 − S(Val) Val ∈ SP
B and Val 6|= x

}
.(5.91)

Observe that (5.91) is identical with (5.87), yielding that the necessity measure N is just
Cons(S):

N = Cons(S).(5.92)

[19] reports for N the following properties, for x, y ∈ PFrmS:

if Val |= x for every Val ∈ SP
B , then N (x) = 1(5.93)

N (x∧ y) = min(N (x), N (y))(5.94)
N (x∨ y) = max(N (x), N (y))(5.95)

It is not surprising that the same properties have been established for Cons(S), in a more
general form, in Proposition 4.3.4 and Proposition 4.3.20.

In [19], a “possibility distribution”S : SP
B → 〈0, 1〉 is said to satisfy a labelled formula [x, d]

iff N (x) = d, where N is induced by S. In the context of logics of graded trust assessment, it
can be said that this is really a notion of semantic consequence, in the sense that

d 5 N (x)
⇔ d 5 Cons(S)(x) (by (5.92))
⇔ S |−|− [x, d] (by (4.122))

152

5.3 Logics of Graded Trust Assessment

Furthermore, in [19], a labelled formula [x, d] is said to be a logical consequence of a set of
labelled formulae (here denoted as a fuzzy set X ∈ 〈0, 1〉PFrmS) iff

for every S ∈ 〈0, 1〉SP
B : if S |−|− X , then S |−|− [x, d] .

By [19, Proposition 3.2.2], this is equivalent with X |−|− [x, d] because of the fact that the
possibility distribution πX mentioned there is equal with Mod(X).

In subsequent investigations (see section 5.4), the following trivial observation will be useful.

Observation 5.3.11 (Clausal form in possibilistic logic with necessity-valued formulae)
ΛP is a lattice logic as defined in Example 3.2.3, and furthermore, B is a De Morgan algebra
wrt. the negation operator ϕ¬ defined in (3.9). Hence, all conditions given in Example 4.2.1 for
the applicability of conjunctive normal form are fulfilled.

By Proposition 4.2.10 and Example 4.3.1, it can safely be assumed that all formulae of ΛP

are clauses. •
For the simplified logical language Cls, the set Taut of all tautologies wrt. SP

B (denoted
TautB) can be given explicitly.

Observation 5.3.12 (Tautologies in two-valued propositional logic)

TautB =
{
c ∃p ∈ PV : {p,¬p} j c

}
.(5.96) •

Proof
Trivial. 2

The set of all satisfiable sets of clauses is denoted SatB (but setting Frm = Cls does not allow
a simpler definition than that given in Definition 5.3.2).

As F is a chain, Proposition 5.3.9 yields the following characterisations of the validity
index valid (denoted validP(X)), consistency index cst (denoted cstP(X)), inconsistency
distribution inc (denoted incP(X); note that by the fact that L = F, inc is really also an
index) and the sets Valid, Incons of all valid and inconsistent F-fuzzy sets of clauses wrt. ΛP

(denoted ValidP, InconsP).

Observation 5.3.13 (Validity, consistency, and inconsistency in possibilistic logic)
For all X ∈ 〈0, 1〉Cls,

validP(X) = inf
{
d CUT1−d(X) " TautB

}
.(5.97)

cstP(X) = inf
{
d CUT1−d(X) /∈ SatB

}
.(5.98)

incP(X) = sup
{
d CUTd(X) /∈ SatB

}
.(5.99)

= 1 − cstP(X)(5.100)

and furthermore

ValidP =
{
X X ∈ 〈0, 1〉Cls and suppX j TautB

}
.(5.101)

InconsP =
{
X X ∈ 〈0, 1〉Cls and sup

{
d CUTd(X) /∈ SatB

}
= 1
}

.(5.102) •

Proof
All equations are obtained immediately from Proposition 5.3.9. 2

153

5 On the Expressive Power of Fuzzy Filter-Based Logics

Remark
Equation (5.99) corresponds to the result of Proposition 3.5.2 in [19].

Equation (5.100) is the definition of the inconsistency degree Incons in [19, section 3.3].
•

Concerning refutation, the following Observation holds in the special case of possibilistic
logic with necessity-valued formulae.

Observation 5.3.14 (Refutation system for possibilistic logic with necessity-valued formulae)
Let the mapping νT : {0, 1} → {0, 1} from Definition 4.3.4 be given by the negation operator
ϕ¬ defined in (3.9) and assume that Frm contains a unary operator symbol ¬ interpreted by
νT. Let a mapping νD : 〈0, 1〉 → 〈0, 1〉 be given as specified in (4.131),(4.132).

Let X ∈ LCls and [c, d] ∈ LFrm such that c = {l1, . . . , ln} for n ∈ N, n = 1 and
l1, . . . , ln ∈ Lit.

Then d admits refutation and X |−|− [c, d] is characterised by refutation, i. e.

X |−|− [c, d] iff d 5 inc
(
X ∪

[
l1, 1

]
∪ . . . ∪

[
ln, 1

])
.(5.103) •

Proof
Follows from Observation 5.3.10 and Corollary 4.3.22.3, taking into account the definition (4.124)
of inc (note that ⊥ exists in two-valued propositional logic) and the fact that by equation (4.83)
(which holds in two-valued propositional logic),

¬c ≡ l1 ∧ · · · ∧ ln. 2

Remark
Observation 5.3.14 corresponds to Proposition 3.5.5 in [19]. •

5.4 Comparison between logics of graded truth assessment and
logics of graded trust assessment

In the two previous sections, two aspects of logical systems have been studied which can be made
many-valued, namely truth and validity. While the role of these concepts in the definition of
logical systems is very different, it has been made sure that the general principles along which
logics of graded truth assessment (in which truth is many-valued and validity is two-
valued) and logics of graded trust assessment (in which truth is two-valued and validity is
many-valued) are defined are equal.

This general definition principle now allows for a comparison of both types of logics. In
section 1.1, it has been argued that the two notions of truth and validity are orthogonal.

And indeed, the situation described in the preceding two sections can be visualised as in
Figure 5.1.

Visualising the lattice of truth values as one axis (i. e. assuming T is a chain), labels in
a logic of graded truth assessment represent ranges of admissible truth values on this axis
while labels in a logic of graded trust assessment represent thresholds on an axis of degrees
of validity which is orthogonal to the truth value axis and in fact stratifies any fuzzy set of
formulae into layers according to the thresholds expressed by the labels.

This concept of visualising labels in a coordinate system spanned by the two orthogonal
axes truth and validity is elaborated further in section 5.5 where logics are studied in which

154

5.4 Comparison between graded truth assessment and graded trust assessment

0 1
0

1

D

T

Range expressed by
a label in a logic of
graded truth
assessment︷ ︸︸ ︷

Threshold expressed by
a label in a logic of
graded trust assessment

Figure 5.1: Dimensions of many-valuedness.

both truth and validity are many-valued. There, a couple of examples for ‘two-dimensional’
labels and their intuitive meaning are given.

In this section, a comparison is given between two particular logical systems, one a logic of
graded truth assessment and the other a logic of graded trust assessment.

5.4.1 Definitions of the Logics to be Compared

For this comparison, one particular representative of each class is selected, namely possibilistic
logic with necessity-labelled formulae (see section 5.3.1.1) and Lee’s fuzzy logic with
truth values as labels (see section 5.2.1.2). The relationships between these representatives
are studied in the following.

In both examples, the logical language is given by Frm =def PFrmS, i. e. classical propo-
sitional syntax (see Example 3.1.3). For the subsequent considerations, formulae are assumed
to be in clausal form, so the additional syntactic concepts like literal and clause defined in
Example 4.2.1 are used freely in the sequel.

For this section, fix L =def F =
[〈0, 1〉 , min, max

]
, i. e. the lattice of labels is fixed to be the

unit interval together with the usual minimum and maximum of real numbers.
Lee’s fuzzy logic with truth values as labels is defined to be

ΛL =def

[
PFrmS, F, SP

F, F, L|=
]

in section 5.2.1.2. Validity is two-valued, as this is a logic of graded truth assessment.
Possibilistic logic with necessity-labelled formulae is defined to be

ΛP =def

[
PFrmS, SP

B, F, F, P|==
]

in section 5.3.1.1. Truth is two-valued, as this is a logic of graded trust assessment.
The comparison of the two logics given above should be based on the most basic logical

concept, the semantic consequence operators ConsL, ConsP defined by them, which both
operate on the same set 〈0, 1〉PFrmS of F-fuzzy sets of propositional formulae. Both operators
are meant to model semantic consequence in special logics of propositional formulae labelled
by numbers from the unit interval, both are closure operators by Theorem 4.3.2, and both
are defined using only the lattice structure of 〈0, 1〉, i. e. using 5, min, max.

155

5 On the Expressive Power of Fuzzy Filter-Based Logics

It is now obviously tempting to compare the logical systems characterised by these operators,
in particular because in both systems, labels have almost identical semantics from the intuitive
point of view: The higher the label, the more trust is placed in the truth resp. validity of
the labelled formula. Both systems differ only in the ‘implementation’ of this intuitive notion,
and both have shown their merits in applications. Still, it has so far not been attempted to
characterise exactly the relationship between these two logics.

Comparing both logics is done by comparing some selected characteristics of these logics.
Most of the results of this section have been published by the author in [73]; some prelimi-
nary results can be found in [20, 21] (coauthored between Didier Dubois

1, the author of this
dissertation, and Henri Prade

1).
In the following, the similarities and differences between the entailment relations L|−|−−, P|−|−−

and consequence operators ConsL, ConsP are studied.
As both logics considered here allow formulae to be represented in clausal form (see

Observation 5.2.6, Observation 5.3.11), in the following formulae are assumed to be clauses,
i. e. non-empty, finite sets of literals (see Definition 4.2.5 and the remark following it); as a
reminder the denotation ClsS is used instead of PFrmS in the sequel, defined by

ClsS =def

{
c c j LitS and c 6= ∅ and c is finite

}
,(5.104)

where LitS =def PV ∪ {¬p p ∈ PV} like in (4.87). The set LClsS of all labelled clauses is
defined accordingly.

The comparison between the two logics is now carried out in a series of propositions.

5.4.2 Compactness

The first result established concerns a further similarity between both entailment operators.
For this, an auxiliary definition is needed.

Definition 5.4.1 (Compactness)
An entailment relation |−|− is said to be compact iff for every X ∈ 〈0, 1〉ClsS and every
[c, r] ∈ LClsS such that X |−|− [c, r], there exists a finite Xfin j X such that Xfin |−|− [c, r].

As compactness is trivial if ClsS is finite, for this subsection assume that PV is infinite.

Theorem 5.4.1 (Compactness)
1. Neither L|−|−− nor P|−|−− is compact.

2. L|−|−−, P|−|−− are however weakly compact in the following sense: For every X ∈ 〈0, 1〉ClsS

and every [c, r] ∈ LClsS such that X |−|− [c, r] and rgX is finite, there exists a finite
Xfin j X such that Xfin |−|− [c, r].

Proof
ad 1. A counterexample is constructed which works for both entailment relations. Let (rn)n∈N

be a sequence of real numbers from the half-open real interval 〈0, 1) such that sup
n∈N

rn = 1.

Furthermore, let pairwise different propositional variables p, p1, p2, . . . ∈ PV be given.
Define

X =def

[{¬p1} , 1
]∪ [{¬p2} , 1

]∪ · · · ∪ [{p, p1} , r1

] ∪ [{p, p2} , r2

] ∪ · · ·
1Institut de Recherche en Informatique de Toulouse (I.R.I.T) — C.N.R.S, Université Paul Sabatier, 118 route

de Narbonne, 31062 Toulouse Cedex, France.

156

5.4 Comparison between graded truth assessment and graded trust assessment

By expanding the definitions of L|−|−−, P|−|−−, it is proved that

X L|−|−−
[{p}, 1

]
,

X P|−|−−
[{p}, 1

]
.

ad
L

|−|−−. By (5.29), (5.27), and (5.28),

X L|−|−−
[{p}, 1

]
iff ∀Val ∈ SP

F, if ∀x ∈ PFrmS : X (x) 5 Val(x) , then Val(p) = 1.

Let Val ∈ SP
F be given such that ∀x ∈ PFrmS : X (x) 5 Val(x). This means by the

definition of X that

Val (¬p1) = 1,
Val (¬p2) = 1,

...
Val (p ∨ p1) = r1,
Val (p ∨ p2) = r2,

...

Considering that Val ∈ SP
F, this means that there exists an assignment A ∈ 〈0, 1〉PV

such that

A(p1) = 0,
A(p2) = 0,

...
max

(A(p),A(p1)
)

= A(p) = r1,
max

(A(p),A(p2)
)

= A(p) = r2,
...

and from the fact that sup
n∈N

rn = 1, it follows that A(p) = 1 and hence Val(p) = 1,

establishing X L|−|−−
[{p}, 1

]
.

ad
P

|−|−−. By (5.89),

X P|−|−−
[{p}, 1

]
iff sup

{
d d ∈ 〈0, 1〉 and CUTd(X) |−|− p

}
= 1.

By the fact that sup
n∈N

rn = 1, it is sufficient to prove that for every n ∈ N,

CUTrn(X) |−|− p.
By the definition of X , {¬pn, p∨pn} j CUTrn(X), hence CUTrn(X) |−|− p by the fact
that |−|− here stands for the classical entailment of two-valued propositional logic.

That there exists no finite Xfin j X such that any one of Xfin L|−|−−
[{p}, 1

]
or

Xfin P|−|−−
[{p}, 1

]
holds is trivial by the reasoning above.

ad 2. Let X ∈ 〈0, 1〉ClsS and [c, r] ∈ LClsS be given such that rgX is finite, i. e. only finitely
many different real numbers occur in X as labels.

157

5 On the Expressive Power of Fuzzy Filter-Based Logics

ad
L

|−|−−. Assume X L|−|−− [c, r]. It will be established that there exists a finite Xfin j X
such that Xfin L|−|−− [c, r].
Let c = {`1, . . . , `n}, for `1, . . . , `n ∈ Lit. By the assumption X L|−|−− [c, r] and the
refutation system established in Theorem 5.4.8.1, there exists r′ > 1 − r such that
X ∪

[
`1, r

′
]
∪ · · · ∪

[
`n, r′

]
∈ InconsL.

Hence, again by Theorem 5.4.8.1, it is sufficient to prove that there exists a finite
Xfin j X such that Xfin ∪

[
`1, r

′
]
∪ · · · ∪

[
`n, r′

]
has no model.

This result follows immediately from the next proposition, which is an adapted
form of an analogous result proved by S. Gottwald in [44, Theorem 6.7]. For
convenience, the reasoning is sketched here, with notation adapted to that used
here.

Proposition 5.4.2 (Compactness wrt models in Lee’s fuzzy logic)
Given X ∈ 〈0, 1〉ClsS , if every finite Xfin j X has a model, then X has a model (wrt
L|=).

For proving Proposition 5.4.2, consider the metric spaces
[〈0, 1〉 , d] and

[
〈0, 1〉PV , ρ

]
where d is the usual metric of the real line and ρ is the usual uniform metric, defined
for A,B ∈ 〈0, 1〉PV by

ρ(A,B) =def Sup
{
d
(A(p),B(p)

)
p ∈ PV

}
.

Then the metric spaces
[〈0, 1〉 , d] and

[
〈0, 1〉PV , ρ

]
are compact.

Lemma 5.4.3 ([44, Lemma 6.5])

For every c ∈ ClsS the function Val ·(c) is a continuous one from
[
〈0, 1〉PV , ρ

]
into[〈0, 1〉 , d].

Proof
Follows immediately from the continuity of max and 1 − x. 2

Lemma 5.4.4 (analogous with [44, Lemma 6.6])
For every [c, r] ∈ LClsS, the set

M[c,r] =def

{
A A ∈ 〈0, 1〉PV and Val A L|= [c, r]

}
is a closed subset of

[
〈0, 1〉PV , ρ

]
.

Proof
In analogy with the proof of [44, Lemma 6.6], it is sufficient to prove that the set

〈0, 1〉PV \M[c,r] =
{
A A ∈ 〈0, 1〉PV and Val A(c) < r

}
is an open subset of

[
〈0, 1〉PV , ρ

]
.

The straightforward proof is carried out exactly as the proof of [44, Lemma 6.6] (see
there or [68, Lemma 4.2.2]). 2

158

5.4 Comparison between graded truth assessment and graded trust assessment

Proof (of Proposition 5.4.2)
Compare the proof of [44, Theorem 6.7].
Let X ∈ 〈0, 1〉ClsS be given such that every finite Xfin j X has a model.
It follows that every finite intersection of sets from{

M[c,X (c)] c ∈ ClsS

}
is nonempty.

Hence by the compactness of
[
〈0, 1〉PV , ρ

]
,

⋂{
M[c,X (c)] c ∈ ClsS

}

is also nonempty. But obviously, every A ∈ ⋂{M[c,X (c)] c ∈ ClsS

}
induces a model

Val A of X . 2

ad
P

|−|−−. Assume X P|−|−− [c, r]. It will be established that there exists a finite Xfin j X
such that Xfin P|−|−− [c, r].
By the assumption that rgX is finite, it follows from (5.89) (compare (5.66)) that
X P|−|−− [c, r] is equivalent with

CUTr(X) |−|− c.

As the classical entailment relation in two-valued propositional logic is compact it
follows that there exists a finite Xfin j CUTr(X) such that Xfin |−|− c.
That there exists a finite Xfin j X such that CUTr(Xfin) = Xfin and hence
Xfin P|−|−− [c, r] is obvious. 2

To make the further comparison more feasible, in the remainder of this section it shall be
implicitly assumed that the condition for weak compactness (i. e. that rgX is finite) is
fulfilled; it shall be pointed out where it is indispensable.

5.4.3 Validity Indices and Valid F-Fuzzy Sets of Clauses

The first significant difference between the logics of graded truth assessment and graded trust
assessment being compared in this section is that in Lee’s labelled fuzzy logic, the validity
index valid is two-valued while in possibilistic logic with necessity-labelled formulae, valid takes
values from 〈0, 1〉, hence it can be expected that in possibilistic logic with necessity-labelled
formulae, a finer characterisation of the concept of validity is possible.

Before concentrating on graded validity, it is interesting to compare valid formulae in both
logics. In sections 5.2.1.2 and 5.3.1.1, the following characterisations of the sets ValidL, ValidP

of all valid F-fuzzy sets of clauses wrt. ΛL, ΛP, respectively, were given:

ValidL =

{
X X ∈ 〈0, 1〉ClsS and suppX j TautB

and ∀c ∈ ClsS : X (c) 5 1
2

}
, (by (5.32) and (5.96))

ValidP =
{
X X ∈ 〈0, 1〉ClsS and suppX j TautB

}
, (by (5.101))

i. e. ValidL is a proper subset of ValidP.

159

5 On the Expressive Power of Fuzzy Filter-Based Logics

While any fuzzy set of tautologies of two-valued propositional logic is valid in necessity-
labelled possibilistic logic, a fuzzy set of classical tautologies is valid in Lee’s labelled fuzzy
logic if and only if none of the tautologies is labelled with a value above 1

2 .
With respect to semantic entailment, valid fuzzy sets of formulae are not very significant:

From Proposition 4.3.1.4 and Observation 4.2.5.2 it follows that

X ∈ Valid iff Cons(X) = Cons(///©),

hence wrt. semantic consequence, an valid fuzzy set of formulae carries no more information
than the empty fuzzy set of formulae. Furthermore, by Proposition 4.3.4.1 a labelled formula is
valid iff it is entailed by all fuzzy sets of formulae, hence entailment of an valid labelled formula
does not allow to distinguish between fuzzy sets of formulae.

From the above reasoning, it can be concluded that in Lee’s labelled fuzzy logic, there are
more fuzzy sets of clauses which are significant for semantic consequence: If X ∈ ValidP\ValidL,
then ConsL(X) = ConsL(///©) does not hold any more, and if X is a labelled clause x, then x is
not entailed by all fuzzy sets of clauses.

Next, consider the validity index valid. In possibilistic logic with necessity-labelled for-
mulae, it is possible to consider fuzzy sets of formulae which are not valid, and determine
their validity index with an uncountably infinite number of degrees. In Observation 5.3.13, the
following characterisation was given:

validP(X) = inf
{
d CUT1−d(X) " TautB

}
.

By definition, ValidP is the set of all X for which validP(X) = 1, so validP allows to study fuzzy
sets of formulae which are less than valid. It is possible to define a set of fuzzy sets of clauses
which are at least d-valid, given d ∈ 〈0, 1〉:

Validd
P =def

{
X X ∈ 〈0, 1〉ClsS and validP(X) = d

}
.

Observations 5.4.5 (Properties of Validd
P)

1. Valid1
P = ValidP, Valid0

P = 〈0, 1〉ClsS .

2. If d = d′, then Validd
P j Validd′

P .

3. Validd
P =

{
X X ∈ 〈0, 1〉ClsS and ∀d′ > 1 − d : CUTd′(X) j TautB

}
.

4. For all d ∈ 〈0, 1〉, ValidL is a proper subset of Validd
P. •

Proof
Obvious from the definitions. 2

As a conclusion to this subsection, it can be stated that

� in Lee’s labelled fuzzy logic, only the distinction between valid and not valid fuzzy sets
of formulae can be made;

� in possibilistic logic with necessity-labelled formulae, there is a hierarchy of sets of fuzzy
sets of formulae which are at least d-valid (indexed by 〈0, 1〉, ordered by the superset
relation);

160

5.4 Comparison between graded truth assessment and graded trust assessment

� every formula which is valid in Lee’s labelled fuzzy logic is valid in possibilistic logic
with necessity-labelled formulae (and of course at least d-valid in possibilistic logic with
necessity-labelled formulae to any degree d), so on the whole, validity in possibilistic logic
with necessity-labelled formulae is a weaker concept that in Lee’s labelled fuzzy logic;

� in both logics considered here, the concept of validity naturally reduces to validity in
classical two-valued logic (denoted tautology here).

5.4.4 Inconsistency

Concerning inconsistency, the situation is similar as with validity. In Lee’s labelled fuzzy logic,
the consistency index cst is two-valued while in possibilistic logic with necessity-labelled
formulae, cst takes values from 〈0, 1〉, hence it can be expected that in possibilistic logic with
necessity-labelled formulae, a finer characterisation of the concept of (in)consistency is possible.

Before concentrating on graded inconsistency, it is interesting to compare inconsistent for-
mulae in both logics. In sections 5.2.1.2 and 5.3.1.1, the following characterisations of the sets
InconsL, InconsP of all inconsistent F-fuzzy sets of clauses wrt. ΛL, ΛP, respectively, were
given:

InconsL =
{
X X ∈ 〈0, 1〉ClsS and ∀Val ∈ SP

F : Val 6|= X
}

, (by (5.33))

InconsP =
{
X X ∈ 〈0, 1〉ClsS and sup

{
d CUTd(X) /∈ SatB

}
= 1
}

. (by (5.102))

It can be observed that in contrast with absolute validity, a natural reduction of absolute
inconsistency to two-valued logic exists only in possibilistic logic with necessity-labelled for-
mulae, while in Lee’s labelled fuzzy logic, absolute inconsistency appears to depend on the
many-valued interpretation of logical formulae. This is supported by the fact that by the refu-
tation systems given in subsection 5.4.5, entailment in Lee’s labelled fuzzy logic is completely
characterised by absolute inconsistency.

By Proposition 4.3.4.4, a fuzzy set of formulae is inconsistent if and only if entailment from it
is trivial (in the sense that every labelled formula is entailed). In this sense, the inconsistency
degree incP can be considered to be a way of dealing gracefully with inconsistencies, in the
sense that meaningful consequences can be drawn from a fuzzy set X of formulae even if some
inconsistency is present in X , as long as it is not inconsistent (i. e. 0 < incP(X) < 1). In Lee’s
labelled fuzzy logic, this is impossible because inconsistency is two-valued: either a fuzzy set of
formulae is inconsistent, trivialising semantic consequences from it, or it is not inconsistent at
all.

The treatment of inconsistency in possibilistic logic with necessity-labelled formulae and
Lee’s labelled fuzzy logic, respectively, is illustrated further in the following, employing the
inconsistency degree incP from possibilistic logic with necessity-labelled formulae. In Observa-
tion 5.3.13, the following characterisation was given:

incP(X) = sup
{
d CUTd(X) /∈ SatB

}
.(5.105)

Proposition 5.4.6 (incP vs. InconsL)
1. If incP(X) > 1

2 , then X ∈ InconsL.

2. If X ∈ InconsL, then incP(X) > 0.

161

5 On the Expressive Power of Fuzzy Filter-Based Logics

Proof
ad 1. For the proof by contradiction, assume that incP(X) > 1

2 and furthermore, X ∈ InconsL

does not hold, i. e. there is A : PV → 〈0, 1〉 such that Val A L|= X in the sense of
Example 3.2.4.2 and section 5.2.1.2.

Now, by the assumption incP(X) > 1
2 , there is a real number r > 1

2 such that CUTr(X)
is classically inconsistent. For every c ∈ CUTr(X), it holds by definition that X (c) > 1

2 .
Let X ′ be the union of all these

[
c,X (c)

]
. Obviously, if Val A L|= X , then Val A L|= X ′.

Recalling that ClsS is assumed to consist of sets of literals, it is clear that for each
c ∈ CUTr(X) there exists a literal lc ∈ c such that Val A(lc) > 1

2 (otherwise Val A L|= X ′

would not hold).

Fix A′ : PV → {0, 1} by

A′(l) =def 1 for every l ∈ Lit such that Val A(l) >
1
2

and choosing arbitrary (matching) values for all literals not fixed by this. This always
effectively determines some A′ : PV → {0, 1} because a literal and its complement cannot
simultaneously have a value exceeding 1

2 under A.

The claim that A′ |= CUTr(X) classically is trivial because for every c ∈ CUTr(X), lc ∈ c
(existing by the argument above) is made true by A′.

Thus, a contradiction has been derived from the assumption X /∈ InconsL, establishing
the claim of the proposition.

ad 2. For the proof by contraposition, assume that incP(X) = 0 and establish that there exists
A : PV → 〈0, 1〉 such that Val A L|= X .

By (5.105), from incP(X) = 0 it follows that suppX ∈ SatB, hence there exists
A : PV → {0, 1} such that Val A |= suppX in the sense of Example 3.2.4.1 and sec-
tion 5.3.1.1.

Obviously, A can be considered to be a mapping from PV to 〈0, 1〉. Establish that
Val A L|= X in the sense of Example 3.2.4.2 and section 5.2.1.2. From the definitions in
Example 3.2.4.2 and the assumption Val A |= suppX , it follows that Val A(c) = 1 for every
c ∈ suppX . This means that Val A(c) = X (c) for all c ∈ ClsS, from which Val A L|= X
follows immediately, establishing the claim. 2

By (5.100), InconsP is the set of all X for which incP(X) = 1, so incP allows to study fuzzy
sets of formulae which are less than inconsistent. It is possible to define a set of formulae which
are at least d-inconsistent, given d ∈ 〈0, 1〉:

Inconsd
P =def

{
X X ∈ 〈0, 1〉ClsS and incP(X) = d

}
.

Observations 5.4.7 (Properties of Inconsd
P)

1. Incons1
P = InconsP, Incons0

P = 〈0, 1〉ClsS .

2. If d = d′, then Inconsd
P j Inconsd′

P .

3. Inconsd
P =

{
X X ∈ 〈0, 1〉ClsS and ∀d′ > d : CUTd′(X) ∈ SatB

}
.

4.
⋃

d> 1
2

Inconsd
P j InconsL j

⋃
d>0

Inconsd
P.

5. InconsP is a proper subset of InconsL. •

162

5.4 Comparison between graded truth assessment and graded trust assessment

Proof
Obvious from the definitions and Proposition 5.4.6. Item 5 follows from the fact that the
monotonicity claimed in item 2 is strict really. 2

Observation 5.4.7.4 justifies the claim that the variant of possibilistic logic studied here
handles inconsistencies better in some sense, because for all fuzzy sets X from

⋃
1>d> 1

2
Inconsd

P,

X P|−|−− [c, r] is still meaningful for r > incP(X) (compare (4.128)), while X L|−|−− [c, r] holds
trivially for all [c, r] ∈ LClsS.

The case incP(X) 5 1
2 is illustrated by two simple examples. Let p ∈ PV and

X =def [p, 0.4]∪ [¬p, 0.5] ,
Y =def [p, 0.4]∪ [¬p, 0.7] .

(here, the clause notation has been simplified by leaving out the set braces for singleton clauses.)
Obviously, incP(X) = incP(Y) = 0.4, but X /∈ InconsL while Y ∈ InconsL. The maximal

labels with which labelled clauses are entailed by X ,Y in both systems are given as follows:

X P|−|−− [p, 0.4] X L|−|−− [p, 0.4]

X P|−|−− [¬p, 0.5] X L|−|−− [¬p, 0.5]

Y P|−|−− [p, 0.4] Y L|−|−− [p, 1]

Y P|−|−− [¬p, 0.7] Y L|−|−− [¬p, 1]

To these, of course all sorts of trivial entailments have to be added, like X P|−|−− [c, 0.4] and
Y P|−|−− [c, 0.4] and Y L|−|−− [c, 1] for all c ∈ ClsS because of the inconsistencies, and the valid
labelled clauses.

Because of inconsistencies, the entailments X P|−|−− [p, 0.4], Y P|−|−− [p, 0.4], Y L|−|−− [p, 1],
Y L|−|−− [¬p, 1] have to be considered trivial, so from these simple examples, it can not easily be
decided which system handles inconsistencies better if incP(X) 5 0.5.

As a conclusion to this subsection, it can be stated that

� in Lee’s labelled fuzzy logic, only the distinction between inconsistent and not inconsis-
tent fuzzy sets of formulae can be made;

� in possibilistic logic with necessity-labelled formulae, there is a hierarchy of sets Inconsd
P

of formulae which are at least d-inconsistent (indexed by 〈0, 1〉, ordered by the superset
relation);

� the set of formulae which are inconsistent in Lee’s labelled fuzzy logic is ‘completely
covered’ by the hierarchy of sets of d-inconsistent formulae of possibilistic logic, in the
sense that InconsP is a proper subset of InconsL and InconsL is a subset of

⋃
d>0 Inconsd

P;

� in possibilistic logic with necessity-labelled formulae, the concept of inconsistency natu-
rally reduces to inconsistency in classical two-valued logic (denoted insatisfiability here),
while inconsistency in Lee’s labelled fuzzy logic depends on the many-valued interpreta-
tion of logical formulae.

5.4.5 Refutation

Refutation means a characterisation of entailment by inconsistency, effected by adding the
‘negation’ of the labelled clause to be entailed to the set of labelled clauses to be entailed from,
to achieve inconsistency.

163

5 On the Expressive Power of Fuzzy Filter-Based Logics

The concept of refutation has been studied, from a general point of view, in section 4.3.3.
It is obvious that a system like Lee’s labelled logic, where the model relation is compact

(see [44, 68]), does not admit a general refutation system because this would contradict the
non-compactness of entailment.

Furthermore, Observation 5.2.8 states that the refutation system established in section 4.3.3
is not applicable here because the labels used in Lee’s labelled logic do not admit refutation
(in the sense of Definition 4.3.4), in general, i. e. the label set has too little expressive power. In
the ‘weakly compact case’, where it is assumed that only finitely many different labels occur,
there is a refutation system though, which is based on a different method of calculating the
labels for the labelled clauses to be added.

In the case of necessity-labelled possibilistic logic, Observation 5.3.14 gives a complete refu-
tation system.

The results are summarised in the following Theorem.

Theorem 5.4.8 (Refutation)
Let X ∈ 〈0, 1〉ClsS and [c, r] ∈ LClsS with c = {l1, . . . , ln}.

1. Assume that rgX is finite and r > 0. Then there exists r′ ∈ 〈0, 1〉 with r′ > 1 − r such

that X L|−|−− [c, r] if and only if X ∪
[
l1, r

′
]
∪ · · · ∪

[
ln, r′

]
∈ InconsL.

2. X P|−|−− [c, r] if and only if incP

(
X ∪

[
l1, 1

]
∪ · · · ∪

[
ln, 1

])
= r.

Proof
ad 1. X L|−|−− [c, r] is equivalent with Val(c) = r for every Val ∈ SP

F such that Val L|= X .
Val(c) = r in turn is equivalent with Val(¬c) 5 1 − r. Considering the semantics SP

F

defined in Example 3.2.4.2, it is immediately observed that

(5.106) X L|−|−− [c, r] iff for all Val ∈ SP
F such that Val L|= X ,

Val
(
l1

)
5 1 − r or . . . or Val

(
ln

)
5 1 − r.

Furthermore, for every r′ ∈ 〈0, 1〉 it holds that

(5.107) X ∪
[
l1, r

′
]
∪ · · · ∪

[
ln, r′

]
∈ InconsL iff for all Val ∈ SP

F such that Val L|= X ,

Val
(
l1

)
< r′ or . . . or Val

(
ln

)
< r′.

Combining (5.106) with (5.107) yields that it is sufficient to prove that there exists
r′ > 1 − r such that

for all Val ∈ SP
F such that Val L|= X , Val

(
l1

)
5 1 − r or . . . or Val

(
ln

)
5 1 − r

if and only if

for all Val ∈ SP
F such that Val L|= X , Val

(
l1

)
< r′ or . . . or Val

(
ln

)
< r′.

Eliminating negation and complementation for ease of notation, it is sufficient to prove
the following:

164

5.4 Comparison between graded truth assessment and graded trust assessment

Given X ∈ 〈0, 1〉ClsS such that rgX is finite, l1, . . . , ln ∈ Lit and r < 1, there exists r′ > r
such that

for all Val ∈ SP
F such that Val L|= X , Val (l1) 5 r or . . . or Val (ln) 5 r(5.108)

if and only if

for all Val ∈ SP
F such that Val L|= X , Val (l1) < r′ or . . . or Val (ln) < r′.

Define

r′ =def inf {s 1 − s ∈ rgX and s > r} .(5.109)

As rgX is finite, the infimum is reached and thus r′ > r (note that this even holds if the
set is empty, as the infimum of the empty set wrt. the real unit interval yields r′ = 1, and
r < 1 by assumption).

It remains to prove the equivalence (5.108) for this r′.

The “only if” direction obviously holds for every r′ > r. It remains to prove the “if”
direction.

Assume that

for all Val ∈ SP
F such that Val L|= X , Val (l1) < r′ or . . . or Val (ln) < r′.(5.110)

Let Val ∈ SP
F be given such that Val L|= X . It remains to prove

Val (l1) 5 r or . . . or Val (ln) 5 r.(5.111)

This holds always if {l1, . . . , ln} contains two complementary literals and r = 1
2 , so it is

assumed in the following that this case doesn’t occur.

From (5.110), it follows that

Val (l1) < r′ or . . . or Val (ln) < r′.

For simplicity, for the remainder of this proof it is assumed that Val (l1) < r′ and for all
k > 1, Val (lk) = r′.

Extending the proof to the general case that an arbitrary non-empty selection from
l1, . . . , ln assumes a value strictly below r′ is straightforward and involves only some
organisational overhead. It is neglected here as it provides no further insights.

Under the assumption made above, it is sufficient to prove

Val (l1) 5 r.(5.112)

This is achieved with a proof by contradiction, i. e. the assumption Val (l1) > r is led to
a contradiction, establishing (5.112).

As Val (l1) < r′ holds by assumption, it remains to derive a contradiction from the
assumption

r < Val(l1) < r′.(5.113)

165

5 On the Expressive Power of Fuzzy Filter-Based Logics

By the definition of the semantics SP
F (compare Examples 3.2.1–3.2.4), there exists an

assignment A : PV → 〈0, 1〉 such that Val = Val A. Wlg. assume that

l1 = p for p ∈ PV.(5.114)

Consider the assignment A′ : PV → 〈0, 1〉 defined for all q ∈ PV by

A′(q) =def

{
r′, if q = p

A(q), if q 6= p.
(5.115)

For completing the proof, two cases are distinguished.

Case 1. None of l2, . . . , ln is the complementary literal to l1.
In this case, by the fact that only the value of p has been changed and the assumption
that for all k > 1, Val A (lk) = r′, it follows that for all k = 1, Val A′ (lk) = r′, hence
by (5.110), Val A′ 6|= X .
By definition, this means there exists c ∈ Cls such that

Val A′(c) < X (c).(5.116)

Furthermore,

Val A(c) = X (c)(5.117)

by the assumption Val A |= X .
From the preconditions
(i) A and A′ differ only in the assignment of p, (by (5.115))
(ii) A(p) < A′(p), (by (5.113), (5.114), (5.115))

(iii) Val A′(c) < Val A(c), (by (5.116), (5.117))
the following conclusions can be drawn:

¬p ∈ c (by (ii) and (iii))(5.118)
Val A(c) = A(¬p) (by (i), (5.118), and (iii))(5.119)
Val A′(c) = A′(¬p) (by (5.118) and the semantics of clauses)(5.120)

X (c) > 1 − r′. (by (5.116), (5.120), and (5.115))(5.121)
X (c) < 1 − r. (by (5.113), (5.114), (5.119), (5.117))(5.122)

The inequation (5.122) means that 1 − X (c) ∈ {s 1 − s ∈ rgX and s > r}, hence
by (5.109),

r′ 5 1 −X (c),

a contradiction to (5.121).
This contradiction concludes the proof of (5.112) in this case.

Case 2. There exists k ∈ {2, . . . , n} such that lk = l1.
This case is slightly more complicated than the previous one because
Val A(lk) 6= Val A′(lk), so for achieving the requirement Val A′ 6|= X of the pre-
vious case, some additional measures have to be taken. In particular, it has to be
made sure that ValA′ (lk) = r′ holds even though lk = l1.
In this case, by the assumption on page 165 (below (5.111)), r < 1

2 .
It is easily verified that by choosing r′ =def

1
2 in case (5.109) yields a value above

1
2 , the proof for the previous case can be used otherwise unchanged. In particular,

obviously r < r′ and if Val A′ (l1) = r′ = 1
2 , then Val A′ (lk) = Val A′

(
l1

)
= 1

2 = r′.

166

5.4 Comparison between graded truth assessment and graded trust assessment

This concludes the proof of item 1.

ad 2. Is identical with Observation 5.3.14. 2

5.4.6 Concluding Remarks

As a conclusion to this section, the relation between L|−|−− and P|−|−− is illustrated further by two
additional results.

The following proposition demonstrates that in the most simple case, i. e. where only finitely
many singleton clauses occur in X , L|−|−− and P|−|−− are equal and can easily be determined.

Proposition 5.4.9 (Comparison of
L

|−|−− and
P

|−|−− wrt fuzzy sets of literals)
Let n ∈ N, n = 1 and X =def [l1, r1] ∪ · · · ∪ [ln, rn] for li ∈ Lit and ri ∈ 〈0, 1〉 (i ∈ {1, . . . , n});
let [c, r] ∈ LClsS. Assume incP(X) = 0 and validP

(
[c, r]

)
= 0.

Then the following statements are equivalent:

(i) X L|−|−− [c, r],

(ii) X P|−|−− [c, r],

(iii) c ∩ {l1, . . . , ln} 6= ∅ and r 5 max
{
ri i ∈ {1, . . . , n} and li ∈ c

}
.

Proof
From incP(X) = 0 holds if and only if there are no two complementary literals in {l1, . . . , ln}.
validP

(
[c, r]

)
= 0 holds if and only if there are no two complementary literals in c.

The equivalence of X L|−|−− [c, r] and X P|−|−− [c, r] with the explicit term is checked separately.

ad (i)⇔(iii). X L|−|−− [c, r] means that for every Val ∈ SP
F such that Val L|= X , Val(c) = r.

Val L|= X means that for every i ∈ {1, . . . , n}, Val(li) = ri.

Val(c) = r means that there exists l ∈ c such that Val(l) = r.

Hence, X L|−|−− [c, r] is equivalent with

for every Val ∈ SP
F such that for every i ∈ {1, . . . , n}, Val(li) = ri,

there exists l ∈ c such that Val(l) = r.

Because of the structure of SP
F (see Example 3.2.4.2), this statement is equivalent with

for every Val ∈ SP
F such that for every i ∈ {1, . . . , n}, Val(li) = ri,

there exists l ∈ c ∩ {l1, . . . , ln} such that Val(l) = r,

which in turn is equivalent with

for every Val ∈ SP
F such that for every i ∈ {1, . . . , n}, Val(li) = ri,

there exists i ∈ {1, . . . , n} such that li ∈ c and Val(li) = r,

which obviously is equivalent with the statement (iii).

ad (ii)⇔(iii). As rgX is finite, X P|−|−− [c, r] is equivalent with

CUTr(X) |−|− c,

167

5 On the Expressive Power of Fuzzy Filter-Based Logics

which, by definition of |−|− in two-valued propositional logic, is equivalent with

CUTr(X) ∩ c 6= ∅.(5.123)

CUTr(X) is
{
li i ∈ {1, . . . , n} and r 5 ri

}
, hence (5.123) is equivalent with

there exists i ∈ {1, . . . , n} such that li ∈ c and r 5 ri,

which obviously is equivalent with the statement (iii). 2

The following example illustrates that even for very simple cases (which do not meet the
requirements of the previous proposition), L|−|−− and P|−|−− are different.

Example 5.4.1 Let X =def

[{p, q} , 0.7
]∪ [¬p, 0.4].

Then

X L|−|−− [q, 0.7] ,

X P|−|−− [q, 0.4] . •

This concludes the comparison of L|−|−− and P|−|−−. The purpose of this section is to shed some
light on differences and similarities between logics of graded truth assessment and logics of
graded trust assessment.

It should have become clear that even the simple examples of such logics selected in this
section, which were as a matter of fact selected to achieve maximal similarity between the
logics, clearly show significantly different characteristics, justifying the claim that truth and
validity are orthogonal dimensions of many-valuedness in logics.

The differences are certain to become much more significant as soon as in the case of many-
valued truth, a more complicated algebraic structure is induced on the lattice of truth values
by the logical operators than just the lattice structure itself (an MV-algebra, for instance).

The comparison of logics of graded truth assessment and logics of graded trust assessment
is a matter of ongoing investigation and cooperation with the Institut de Recherche en Infor-
matique de Toulouse (I.R.I.T). Most of the results of this section have been published by the
author in [73]; some preliminary results can be found in [20, 21] (coauthored between Didier

Dubois
2, the author of this dissertation, and Henri Prade

2); further joint publications are
forthcoming.

5.5 Logics of Graded Truth and Graded Trust Assessment

As a matter of fact, a systematic study of the foundations of fuzzy filter-based logics for which
neither the lattice T of truth values nor the lattice D of degrees of validity is the two-valued
lattice B has been given in chapter 4.

As the theoretical investigations there might seem abstract and sometimes overly general,
in this section some aspects are cast in a more concrete form. The expressive power of logics
of graded truth and graded trust assessment is illustrated by a series of examples.

2Institut de Recherche en Informatique de Toulouse (I.R.I.T) — C.N.R.S, Université Paul Sabatier, 118 route
de Narbonne, 31062 Toulouse Cedex, France.

168

5.5 Logics of Graded Truth and Graded Trust Assessment

5.5.1 Examples of Labels

Here, some examples of labels are given. Their meaning and usefulness for the modelling of
uncertain knowledge is explained.

For this subsection, both the lattice T of truth values and the lattice D of degrees of validity
are assumed to be chains. This restriction is valuable for illustration purposes: it makes it
possible to draw labels like function graphs along two linear axes.

Note that fuzzy filter-based logics for which T is a chain have been called simple logics of
graded truth and graded trust assessment in [73]; these logics are characterised by a very conve-
nient and intuitively pleasing set of axioms (Axioms 1, 2, 3, 4, 5, 6, 7, 8, 10 from Definition 4.1.3
and axioms 9∗, 11∗ from Observation 4.1.4).

For the extent of this subsection, every label is identified with the D-fuzzy filter on T

associated with it by the isomorphism ι. Hence, labels are considered to be monotone mappings
from T into D (mapping 1 to 1), so it is justified to visualise them in the form of a diagram,
using T and D as x and y axes in a coordinate system (see Figure 5.1).

5.5.1.1 ‘Simple’ Labels

In Figure 5.2, some simple labels are sketched. Their meaning is discussed in the following.
Note that it is assumed that T and D have ‘enough’ elements to make the labels which are
illustrated effectively definable. The diagrams are drawn under the assumption that T and D
contain a continuity of elements, but it should be easy to adapt the issues discussed below to
a ‘smaller’ number of elements (larger than 2). In the following, several classes of labels are
distinguished, as visualised in Figure 5.2.

Note that most of the simple labels discussed below are necessarily elements of L, because
they correspond to principal D-fuzzy filters of T. It is noted below for which examples this is
not the case.

Unknown. The weakest label, denoted by `U, stands for total lack of knowledge. It is
defined by

`U(t) =def 1. (t ∈ T)

It is the zero element of the label lattice L (which is assumed to be ordered by the superset
relation of fuzzy sets). Obviously, by definition, for every Val ∈ S and x ∈ Frm,

Val 1|==
[
x, `U

]
.

This means that Unknown does not restrict the possible validity of a formula at all: lacking
any knowledge of constraints on the validity of x, it has to be assumed to be equally completely
valid, regardless of its truth value.

Note that for a fuzzy set X of formulae, `U, the zero element of L, is the membership value
assumed by all formulae which are “not in X”.

Absolutely True. The strongest label, denoted by `AT, stands for complete knowledge of
total truth. It is defined by

`AT(t) =def

{
1, if t = 1
0, if t 6= 1

(t ∈ T)

169

5 On the Expressive Power of Fuzzy Filter-Based Logics

0 1
0

1
D

T

`U

The weakest label:
Unknown

0 1
0

1
D

T

`AT

The strongest label:
Absolutely True

0 1
0

1
D

T

`=t

t

True at least to t

0 1
0

1
D

T

`>t

t

True to more than t

0 1
0

1
D

T

`d

d

Doubted to degree d

0 1
0

1
D

Tt

`t
d

d

Principal label

Figure 5.2: Some simple labels.

170

5.5 Logics of Graded Truth and Graded Trust Assessment

It is the unit element of the label lattice L (which consists only of fuzzy sets assuming
the value 1 for the truth value 1). By definition, for every Val ∈ S and x ∈ Frm,

Val 1|==
[
x, `AT

]
if Val(x) = 1

and Val 0|==
[
x, `AT

]
if Val(x) 6= 1

This means that Absolutely True forces the formula x to be completely true if it is to be
considered valid at all.

Remark

Let PFrm =def

{
X X ∈ LFrm and rgX j

{
`U, `AT

}}
. Obviously, the mapping

f : PFrm → PFrm which is defined for X ∈ PFrm by

f(X) =def

{
x x ∈ Frm and X (x) = `AT

}
is a bijection between PFrm and PFrm.

Let |= denote the classical model relation of many-valued logic wrt. Frm and S, i. e. for
Val ∈ S and X ∈ PFrm,

Val |= X =def ∀x ∈ X : Val(x) = 1.

Then for every Val ∈ S and X ∈ PFrm,

Val |= X iff Val 1|== f−1(X),

i. e. classical many-valued logic (denoted level 1 in section 3.4.1) can be embedded into the
framework of fuzzy filter-based logic by appropriately restricting the range of admissible labels.

•

True at least to t. A class of labels representing truth values is defined as follows. For
each t ∈ T , the label True at least to t is denoted by `=t. It is defined by

`=t

(
t′
)

=def

{
1, if t Tv t′

0, if not t Tv t′
(t′ ∈ T)

By definition, for every Val ∈ S and x ∈ Frm,

Val 1|==
[
x, `=t

]
if t Tv Val(x)

and Val 0|==
[
x, `=t

]
if not t Tv Val(x)

This means that the label `=t forces the formula x to be true at least to the truth value t if it
is to be considered valid at all.

The labels Unknown and Absolutely True are obtained as special cases: `U = `=0 and
`AT = `=1.

Remark

Let PFrm =def

{
X X ∈ LFrm and rgX j

{
`=t t ∈ T

}}
. The mapping f : T Frm → PFrm

which is defined for X ∈ T Frm and x ∈ Frm by

f(X)(x) =def `=X (x)

171

5 On the Expressive Power of Fuzzy Filter-Based Logics

is a bijection between T Frm and PFrm.
Let |= denote the model relation for the logic

[
Frm, T, S, T, |=] of graded truth assessment

where truth values are used as labels (compare section 5.2.1), i. e. for Val ∈ S and X ∈ T Frm,

Val |= X =def ∀x ∈ Frm : X (x) Tv Val(x).

Then for every Val ∈ S and X ∈ T Frm,

Val |= X iff Val 1|== f(X),(5.124)

i. e. logics of graded truth assessment with truth value-labelled formulae (and hence Pavelka’s
logic) can be embedded into the framework of fuzzy filter-based logic by appropriately restricting
the range of admissible labels.

Note that if L contains labels of the form `>t (see below), then it might happen that
rg Cons(X) j

{
`=t t ∈ T

}
does not hold even though rgX j

{
`=t t ∈ T

}
holds, because the

definition of Cons involves an infinitary operation on L. •

True to more than t. Another class of labels based on truth values is defined as follows.
For each t ∈ T \ {1}, the label True to more than t is denoted by `>t. It is defined by

`>t(t′) =def

{
1, if t Tv t′ and t 6= t′

0, if t = t′ or not t Tv t′
(t′ ∈ T)

Remarks
1. Depending on the nature of T, it may be that

{
`>t t ∈ T \ {1}} j

{
`=t t ∈ T

}
, for

instance if T is finite, because all filters are principal filters in this case.

2. While all labels of the form `=t have to be in L because they correspond to principal
D-fuzzy filters of T, this is not the case for labels of the form `>t, which may be left out
(in case there exist `>t which are not equal to `=t′ for some t′ ∈ T). •

By definition, for every Val ∈ S, x ∈ Frm, and t ∈ T \ {1}, if `>t ∈ L, then

Val 1|== [x, `>t] if t Tv Val(x) and t 6= Val(x)
and Val 0|== [x, `>t] if t = Val(x) or not t Tv Val(x)

This means that the label `>t forces the formula x to be more true than the truth value t if it
is to be considered valid at all.

Remarks
Assume

{
`>t t ∈ T \ {1}} j L.

1. Let PFrm =def

{
X X ∈ LFrm and rgX j

{
`=t t ∈ T

}
∪ {`>t t ∈ T \ {1}}}. Define

f : PFrm → (P(T))Frm as follows, for X ∈ PFrm and x ∈ Frm:

f(X)(x) =def CUT1(X (x)).

Lemma 5.5.1
f is a bijection between PFrm and Fl(T)Frm.

172

5.5 Logics of Graded Truth and Graded Trust Assessment

Proof
Only Fl(T) =

⋃
X∈PFrm

rg f(X) is proved; the rest is trivial.

For X ∈ PFrm, by Proposition 2.1.1, rg f(X) j Fl(T).

It remains to establish that for every F ∈ Fl(T), there exists t ∈ T such that
F = CUT1

(
`=t

)
or t ∈ T \ {1} such that F = CUT1 (`>t).

Consider T
⊔

F . As T is a chain, it holds that

F =

{{
t t ∈ T and T

⊔
F Tv t

}
, if T

⊔
F ∈ F{

t t ∈ T and T
⊔

F Tv t and t 6= T
⊔

F
}

, if T
⊔

F /∈ F

and in the latter case, obviously T
⊔

F 6= 1.

But {
t t ∈ T and T

⊔
F Tv t

}
= CUT1

(
`=T
⊔

F

)
and

{
t t ∈ T and T

⊔
F Tv t and t 6= T

⊔
F
}

= CUT1

(
`>T
⊔

F

)
,

concluding the proof. 2

Let |= denote the model relation for the logic
[
Frm, T, S, Fl(T), |=] of graded truth as-

sessment where filters are used as labels (compare section 5.2.2), i. e. for Val ∈ S and
X ∈ Fl(T)Frm,

Val |= X =def ∀x ∈ Frm : Val(x) ∈ X (x).

Then for every Val ∈ S and X ∈ PFrm,

Val 1|== X iff Val |= f(X),

i. e. logics of graded truth assessment with filter-labelled formulae can be embedded into
the framework of fuzzy filter-based logic by appropriately restricting the range of admis-
sible labels.

2. Note that if X ∈ PFrm, then Cons(X) ∈ PFrm.

3. Let a mapping νD : D → D and a mapping νT : T → T be given as specified in
(4.131),(4.132) and assume that Frm contains a unary operator symbol ¬ interpreted by
νT.

Then for all X ∈ PFrm and [x, `] ∈ Frm ×
{
`=t t ∈ T

}
∪ {`>t t ∈ T \ {1}}, ` admits

refutation and X |−|− [x, `] is characterised by refutation.

This result follows immediately from the two previous items by Corollary 5.2.10 and the
fact that νD has to coincide with ϕ¬ defined in (3.9) on the set {0, 1}. •

Doubted to degree d. Analogously as for truth values, a class of labels representing de-
grees of validity is defined. For each d ∈ D, the label Doubted to degree d is denoted by
`d. It is defined by

`d(t) =def

{
1, if t = 1
d, if t 6= 1

(t ∈ T)

173

5 On the Expressive Power of Fuzzy Filter-Based Logics

By definition, for every Val ∈ S and x ∈ Frm,

Val 1|== [x, `d] if Val(x) = 1
and Val d|== [x, `d] if Val(x) 6= 1

This means that only “full truth” is assumed to lead to full validity. All other truth values,
however, instead of considering them to lead to non-validity (as in classical many-valued logic),
are given the ‘benefit of the doubt’, i. e. because the knowledge of x is not fully trusted, a
certain degree of validity is assigned even if x is not completely true.

The weakest and strongest labels are obtained as special cases: `U = `1 (doubted to degree
1) and `AT = `0 (completely known).

Remark
It is easy to ‘embed’ logics of graded truth assessment into logics of graded truth and graded trust
assessment. As demonstrated above, all that is necessary is to ‘emulate’ the two-valuedness of
D by appropriately restricting the set of admissible labels.

The situation is more difficult for logics of graded trust assessment because there is no
straightforward way of ‘emulating’ the two-valuedness of T just by choosing the right set of
admissible labels. In particular, it is impossible to formulate a statement of equivalence like
(5.124) if the valuations on both sides of the biimplication have to be taken from different
semantics. •

Principal labels. The last class of ‘simple’ labels considered here has the most expressive
power. They are called “primitive” or “principal” labels because they correspond to D-fuzzy
principal filters on T. Each of these labels depends on a truth value t and a degree of validity
d, is denoted by `t

d and defined by

`t
d(t′) =def


1, if t′ = 1
d, if t′ 6= 1 and t Tv t′

0, if not t Tv t′
(t′ ∈ T)

(Compare (2.1) and (4.21).)
By definition, for every Val ∈ S and x ∈ Frm,

Val 1|==
[
x, `t

d

]
if Val(x) = 1

and Val d|==
[
x, `t

d

]
if Val(x) 6= 1 and t Tv Val(x)

and Val 0|==
[
x, `t

d

]
if not t Tv Val(x)

This means that only “full truth” is assumed to lead to full validity. The range of truth values
above t is given the ‘benefit of the doubt’ and assigned the validity degree d. Truth values
below t lead to total non-validity.

The labels from the classes `=t and `d are obtained as special cases: `=t = `t
1 and `d = `0

d.
Note that the class of principal labels forms a base of L, i. e. every label can be represented

as an (infinitary) intersection3 of principal labels (compare [39, Corollary 4.2]).

Furthermore, `t
d = `d Lt `=t, so

{
`=t t ∈ T

}
∪ {`d d ∈ D} forms a subbase of L.

174

5.5 Logics of Graded Truth and Graded Trust Assessment

0 1
0

1
D

T

`d Lu `=t

d

t 0 1
0

1
D

T

`t
d

Lu `d′ Lu `=t′

d′

d

t t′

Figure 5.3: Composition of simple labels.

Composite Labels. Definition 2.3.1.1 guarantees that every principal label is contained in L,
which extends immediately to those classes of labels from Figure 5.2 which are special cases of
principal labels, i. e. `U, `AT, `=t, `d. The only class which is not guaranteed to be covered by L

is
{
`>t t ∈ T \ {1}} (see above for a discussion).
In fact, Definition 2.3.1.1 guarantees the existence of a lot more labels, namely all labels

corresponding to elements of P(D, T). By Proposition 2.2.15, these are all labels stemming from
finitely many superpositions of union and intersection of principal labels. Two examples of
such composite labels are illustrated in Figure 5.3.

5.5.1.2 Labels Based on True

The considerations in this subsection require T = D. This makes it possible to meaningfully
use the identity mapping id from T into D as a label (of course, this would also be possible if
T b D). Some labels of this type are sketched in Figure 5.4. Their meaning is discussed in the
following.

True. The label denoted by `T stands for an exact correspondence between a formula’s truth
value and validity degree. It is defined to be the identity mapping from T into D, i. e.

`T(t) =def t. (t ∈ T)

By definition, for every Val ∈ S and x ∈ Frm,

Val
Val(x)
|===

[
x, `T

]
.

This means that the label True does not really represent an assessment of the validity of a
formula, depending on its truth value. It simply translates the truth value directly into the
validity degree.

This type of label appears in the works of L. A. Zadeh (see [105], for instance) under
the name “formulae of Type IV” (truth qualifications). See also J. F. Baldwin’s truth value
restrictions [2].

3Remember the intersection of labels corresponds to the union of fuzzy filters.

175

5 On the Expressive Power of Fuzzy Filter-Based Logics

0 1
0

1
D

T

`T

True

0 1
0

1
D

T

`T
d

d

True with doubt d

0 1
0

1
D

T

`T
=t

t

True above t

Figure 5.4: Labels requiring T = D.

Remark
Assume that rgX j {`U, `T}. Then

X |−|−
[
x, `T

]
iff for all Val ∈ S and all y ∈ Frm with X (y) = `T, Val(y) Tv Val(x).

This kind of entailment corresponds to level 1′ in the development of graded trust assessment
mentioned in section 3.4.2. It is interesting because it abstracts completely from the idea from
classical many-valued logic to have a set of designated truth values inducing the model relation.
It has been studied for instance by R. C. T. Lee and C. L. Chang [64]. •

True with doubt d. Another class of labels representing degrees of validity is defined as
follows. For each d ∈ D, the label True with doubt d is denoted by `T

d and derived by taking
the intersection of `T and `d.

A labelled formula
[
x, `T

d

]
means that in general, the validity degree should be derived

immediately from the truth value of x, but the information represented by x is trusted only to
a certain degree d, so the validity degree of the labelled formula should not be allowed to drop

176

5.5 Logics of Graded Truth and Graded Trust Assessment

below d (thus giving x the benefit of the doubt in case x is indeed a misrepresentation of the
actual facts).

For embedding logics of graded trust assessment into logics of graded truth and graded
trust assessment where the underlying logic is many-valued instead of two-valued (compare
section 5.3), labels of type `T

d would probably be the best choice (instead of `d) for representing
“necessity labels” (see [18]). See also section 5.7.1 where it is made plausible that labelled
formulae of possibilistic logic with vague predicates can be embedded into a logic of graded
truth and graded trust assessment by restricting labels exactly to the class of all labels `T

d .

True above t. Another class of labels representing truth values is defined as follows. For
each t ∈ T , the label True above t is denoted by `T

=t and derived by taking the union of `T

and `=t.

A labelled formula
[
x, `T

=t

]
means that in general, the validity degree should be derived

immediately from the truth value of x, but the truth value of x is not allowed to drop below a
certain level for the labelled formula to be assigned any validity at all.

Piecewise linear labels. As a matter of fact, almost every combination of `T with different
instances of `t

d has some useful interpretation. When designing a knowledge representation sys-
tem using the type of logics presented in this dissertation (augmented by automated deduction
in the form of a logic programming language), it would possibly be best to attach to every
formula a pictorial representation of its label, as it is very easy to intuitively grasp the logical
meaning of such a picture.

for instance could denote a label derived from True, allowing a certain degree of
doubt, and for a situation where it is not important to reach the highest possible level
of truth, so full validity is assigned even before full truth is reached.

From a computational complexity point of view, it would probably be best to allow all
piecewise linear labels whose points of non-differentiability (i. e. where the function ‘jumps’ or
changes gradient) are taken from a fixed, finite set. This would also allow labels like .

5.5.1.3 Label Languages

In [105], L. A. Zadeh describes a language with which labels could be expressed. This means
starting from some simple labels (like `t

d and `T), combining these with operators like and
and or (interpreted, for instance, by meet and join in L), and providing modifiers to adjust
the meaning of a label to a certain context (see also [83]). For giving some examples of such
modified labels, assume that T and D are both interpreted by

[〈0, 1〉 , min, max
]
, hence a label

is a monotone function on the unit interval which reaches 1. This means functions like square
or square root can be used for defining modifiers.

Some composite labels which are derived by taking the union or intersection of other labels
have already been presented above. In Figure 5.5 some modifications of the label `T using the
modifiers Very (interpreted by taking the square) and More or Less (interpreted by taking
the square root) are sketched. These modifiers can be iterated, yielding for instance Very

Very True.
It is obvious that Very strengthens a label (by making it smaller) while More or Less

weakens a label (by making it larger).
These modified labels can then again be combined with labels from the family `t

d, for
instance.

177

5 On the Expressive Power of Fuzzy Filter-Based Logics

0 1
0

1
D

T

True

Very Very True

Very True

More or Less True

More or Less

(More or Less True)

Figure 5.5: Modifications of True.

5.5.2 Examples of Inferences

In this section, a small example is given for knowledge modelling with fuzzy filter-based labelled
logics, demonstrating in particular the notion of semantic consequence from a particular L-fuzzy
set of formulae.

The example given here necessarily has to be a toy example, because without first estab-
lishing a correct and complete syntactic derivation system which characterises the semantic
consequence operator, calculating semantic consequences is a tedious task and not feasible for
realistic-sized knowledge bases.

The development of fuzzy filter-based logics has been carried out with resolution-based
automated reasoning in mind, and the labelled formulae employed here are especially well suited
for defining a layered normal form on which a resolution-based automated reasoning system
can be based (compare [72] and section 6.2.1.2). But the full development of an automated
reasoning system is not carried out in this dissertation, so the discussion of ‘realistic’ examples
has to be left for future publications.

Small Natural Numbers
The idea to model the concept small natural number using axioms is based on an ancient
logical paradox called sorites paradox (bald man). Classically, it is formulated like this:

A person with only a very few hairs on their head can be called “bald”. If a single
hair is added to the head of a bald person, they are still bald.

Consequently (by mathematical induction), every person is bald.

A simple way of ‘dissolving’ this paradox is to use a many-valued logic and define a many-
valued concept baldness as above, making sure that the implication is not ‘completely true’.
This reflects the fact that adding a single hair to the head of a bald person indeed makes them
a little ‘less bald’. That the ‘degree of baldness’ decreases while the number of hairs increases
then follows naturally from the number of times the (not completely true) implication has to
be applied.

Using a logic of graded truth for this modelling task has the significant advantage that the
relaxation of the necessary degree of truth for the implication can be expressed immediately by

178

5.5 Logics of Graded Truth and Graded Trust Assessment

the label, while in a non-labelled logic, truth constants and a residuated implication (or even
more complex constructs) have to be employed.

An arithmetic counterpart to this paradox is the axiomatic definition of a small natural
number. Obviously, the number 1 is small to the highest degree, and if 1 is added to a small
number, then it will stay at least somewhat small. But every natural number can be reached
by successively adding up 1, starting at 1, so the ‘degree of smallness’ should decrease when
adding 1 to a small number.

In the following, an axiomatic characterisation for the concept small natural number is
given, using fuzzy filter-based first order predicate logic. Different variants for modelling this
concept are given and their influence on the results is discussed.

For this characterisation, let T = D = F (compare Example 1.3.1.2), so truth values as well
as degrees of validity are taken from the real unit interval, the most commonly used structure
for graded truth and graded trust. For convenience, assume that L = FF (F), the full lattice of
all F-fuzzy filters of F as discussed in Example 2.3.1.3 (compare also Observation 2.3.5). Observe
that FF (F) consists of all monotone unary functions on F mapping 1 to 1, ordered by the fuzzy
superset relation.

Assume the standard syntax of first order predicate logic, i. e.

Frm = FOFrmS = FOFrm (IV, Func, Ar Func, Pred, Ar Pred, ΩS, Ar S)

as defined in Example 3.1.3, for a given (non-empty) set IV of individual variables,
Func =def {1, inc} with Ar Func(1) = 0, Ar Func(inc) = 1 and Pred =def {small} with
Ar Pred(small) = 1.

The interpretation of the logical operator symbols ¬,∧,∨ from ΩS is defined as in Exam-
ple 3.2.4.2, i. e. for s, t ∈ 〈0, 1〉:

ϕ¬(t) = 1 − t,
ϕ∧(s, t) = min(s, t),
ϕ∨(s, t) = max(s, t).

An interpretation of → is not fixed at this point; several variants are discussed in the following.
The semantics employed is (of course) the one of first order predicate logic as defined in

Example 3.2.2. For the extent of this example, let the domain of each interpretation be fixed
to be the set N of all natural numbers (compare remark 2 on page 46 concerning restricted
interpretations), let the interpretation of 1 be fixed to be the natural number 1 and let the
interpretation of inc be fixed to be the successor function of the natural numbers, i. e. for any
admissible interpretation [N, Π, Φ] and n ∈ N, assume that

Φinc(n) = n + 1.

This leaves only the interpretation of small open, which will be characterised axiomatically.
Summarising, for a given (non-empty) set IV and a given function ϕ→ : 〈0, 1〉2 → 〈0, 1〉, the

semantics S j T FOFrmS considered in this subsection is defined (wrt. ΩS, Ar S, Func, Ar Func,
Pred, Ar Pred as mentioned above, see Example 3.1.2) by (3.6), taking into consideration the
restrictions on the set of admissible interpretations described above.

Furthermore, assume for convenience that the isomorphism ι employed in the definition of
the model relation |== (see (4.1)) is identity, i. e. for Val ∈ S, [x, `] ∈ LFrm and d ∈ 〈0, 1〉,

Val d|=== [x, `] iff d = `
(
Val(x)

)
.(5.125)

In the following, iterations of inc will be used frequently. For a more convenient notation,
the following abbreviations for terms are introduced:

2 =def inc(1)

179

5 On the Expressive Power of Fuzzy Filter-Based Logics

3 =def inc
(
inc(1)

)
4 =def inc

(
inc

(
inc(1)

))
5 =def inc

(
inc

(
inc

(
inc(1)

)))
Next, several variants of the axiomatic characterisation of the predicate small in fuzzy

filter-based logic are discussed.

Variant 1. Let ϕ→ =def impG, i. e. the implication connective is interpreted by the r-
implication of min (compare (3.12)).

For the characterisation of small, the L-fuzzy set X1 of formulae is used, where for some
v ∈ IV,

X1

(
small(1)

)
=def `AT,

X1

(
∀v
(
small(v) → small

(
inc(v)

)))
=def `=0.9

and X1 (x) =def 0 for all x ∈ Frm \
{
small(1), ∀v

(
small(v) → small

(
inc(v)

))}
.

This definition means that small(1) is forced by X1 to be absolutely true while it is sufficient
for the implication ∀v

(
small(v) → small

(
inc(v)

))
to be true at least to degree 0.9. It is to be

expected that if small(v) is true to some degree, then this will be carried over to small
(
inc(v)

)
in some sense, though the truth value that small

(
inc(v)

)
necessarily has might be smaller than

that of small(v) if the implication is not completely true.
Note further that both labels employed are two-valued, assuming only the validity degrees

0 and 1 (compare section 5.5.1.1). Hence, any valuation from S can either be a model for X1

to the highest degree or to the degree 0. So this variant of modelling the concept small natural
number is done entirely by graded truth assessment.

Now, what does Cons(X1) look like? As explained above, it would be extremely tedious to
even sketch the full extent of Cons(X1) without a syntactic proof system at hand. Hence, only
few examples are discussed in the following.

Recall the definition of Cons in Definition 4.3.1, for x ∈ Frm:

Cons(X1)(x)
= L
⊔{

` ` ∈ L and X1 |−|− [x, `]
}

(by (4.98))

= L
⊔{

` ` ∈ L and Mod(X1) j Mod
(
[x, `]

)}

= L
⊔


`

` ∈ L and ∀Val ∈ S :

min


`AT

(
Val

(
small(1)

))
,

`=0.9

(
Val

(
∀v
(
small(v) → small

(
inc(v)

))))


5 `
(
Val (x)

)



(by (4.38),
(4.41),
and (5.125))

(5.126)

180

5.5 Logics of Graded Truth and Graded Trust Assessment

and, because `AT and `=0.9 only take the values 0 and 1,

= L
⊔
`

` ∈ L and ∀Val ∈ S :

if Val
(
small(1)

)
= 1 and Val

(
∀v
(
small(v) → small

(
inc(v)

)))
= 0.9,

then `
(
Val (x)

)
= 1



= L
⊔`

` ∈ L and for all interpretations I = [N, Π, Φ] :
if Πsmall(1) = 1 and ∀n ∈ N : ϕ→

(
Πsmall(n), Πsmall (n + 1)

)
= 0.9,

then `
(
Val I (x)

)
= 1

 .

(5.127)

It is a simple observation that in all cases,

Cons(X1)(x) ∈
{
`=t t ∈ 〈0, 1〉

}
∪ {`>t t ∈ 〈0, 1〉 \ {1}} ,

because in the above construction, ` is only restricted by the requirement of being equal to 1
in some places. Hence, by analysing (5.127), it holds that

Cons(X1)(x) =



`=t, if t ∈ 〈0, 1〉 and for every interpretation I = [N, Π, Φ],
Val I (x) = t if and only if
Πsmall(1) = 1 and ∀n ∈ N : ϕ→

(
Πsmall(n), Πsmall (n + 1)

)
= 0.9

`>t, if t ∈ 〈0, 1〉 \ {1} and for every interpretation I = [N, Π, Φ],
Val I (x) > t if and only if
Πsmall(1) = 1 and ∀n ∈ N : ϕ→

(
Πsmall(n), Πsmall (n + 1)

)
= 0.9

(5.128)

This is the most expanded form which can be reached without specifying ϕ→ or x.
In this variant, ϕ→ =def impG has been chosen, given for s, t ∈ 〈0, 1〉 by

impG(s, t) =

{
1, if s 5 t

t, if s > t
(5.129)

Obviously, impG(s, t) = 0.9 holds trivially if the first case occurs. Hence, from (5.128) it is
obtained that

Cons(X1)(x) =



`=t, if t ∈ 〈0, 1〉 and for every interpretation I = [N, Π, Φ],
Val I (x) = t if and only if Πsmall(1) = 1 and
∀n ∈ N : Πsmall(n) 5 Πsmall (n + 1) or Πsmall (n + 1) = 0.9

`>t, if t ∈ 〈0, 1〉 \ {1} and for every interpretation I = [N, Π, Φ],
Val I (x) > t if and only if Πsmall(1) = 1 and
∀n ∈ N : Πsmall(n) 5 Πsmall (n + 1) or Πsmall (n + 1) = 0.9

As Πsmall(1) = 1 in all interpretations under consideration, it is clear that for all n ∈ N,
Πsmall (n + 1) = 0.9 is the weaker constraint than Πsmall(n) 5 Πsmall (n + 1), hence the equa-

181

5 On the Expressive Power of Fuzzy Filter-Based Logics

tion reduces to

Cons(X1)(x) =



`=t, if t ∈ 〈0, 1〉 and for every interpretation I = [N, Π, Φ],
Val I (x) = t if and only if
Πsmall(1) = 1 and ∀n ∈ N : Πsmall (n + 1) = 0.9

`>t, if t ∈ 〈0, 1〉 \ {1} and for every interpretation I = [N, Π, Φ],
Val I (x) > t if and only if
Πsmall(1) = 1 and ∀n ∈ N : Πsmall (n + 1) = 0.9

(5.130)

From this, it follows immediately that

Cons(X1)
(
small (1)

)
= `AT

Cons(X1)
(
small (2)

)
= `=0.9

Cons(X1)
(
small (3)

)
= `=0.9

Cons(X1)
(
small (4)

)
= `=0.9

...

This means that when ϕ→ is interpreted by impG, then X1 does not give a good character-
isation of the concept of small number because every natural number, however high, will be
considered small with at least the truth value 0.9.

Variant 2. Let ϕ→ =def impKD, i. e. the implication connective is interpreted by the s-
implication of max and 1 − x (compare (3.11)). It is given for s, t ∈ 〈0, 1〉 by

impKD(s, t) = max(1 − s, t).(5.131)

For the characterisation of small, the same L-fuzzy set X1 as in the previous variant is
used. This means that the derivation of Cons(X1) is identical to that of the previous variant
until equation (5.128). Applying the definition of ϕ→ in this case, it follows that

Cons(X1)(x) =



`=t, if t ∈ 〈0, 1〉 and for every interpretation I = [N, Π, Φ],
Val I (x) = t if and only if
Πsmall(1) = 1 and ∀n ∈ N : max

(
1 − Πsmall(n), Πsmall (n + 1)

)
= 0.9

`>t, if t ∈ 〈0, 1〉 \ {1} and for every interpretation I = [N, Π, Φ],
Val I (x) > t if and only if
Πsmall(1) = 1 and ∀n ∈ N : max

(
1 − Πsmall(n), Πsmall (n + 1)

)
= 0.9

By a simple inductive argument starting with Πsmall(1) = 1, it is observed that for all
n ∈ N, 1 − Πsmall(n) < 0.9, hence (5.130) holds in this case also, leading to the same result as
in the previous variant.

This leads to the conclusion that impKD also does not yield a good characterisation of the
concept of small number in combination with X1.

Variant 3. For this variant, a new implication function is employed, which can not be defined
by means of the lattice connectives in the way impG and impKD can.

 Lukasiewicz’s implication imp L is given for s, t ∈ 〈0, 1〉 by

imp L(s, t) = min(1, 1 − s + t).(5.132)

182

5.5 Logics of Graded Truth and Graded Trust Assessment

It is a connective of very high expressive power, equipping the truth value lattice with an MV
algebra structure. Let ϕ→ =def imp L. Again, the L-fuzzy set X1 is used.

This means that the derivation of Cons(X1) is again identical to that of variant 1 until
equation (5.128). Applying the definition of ϕ→ in this case, it follows that

Cons(X1)(x) =



`=t, if t ∈ 〈0, 1〉 and for every interpretation I = [N, Π, Φ],
Val I (x) = t if and only if
Πsmall(1) = 1 and ∀n ∈ N : min

(
1, 1 − Πsmall(n) + Πsmall (n + 1)

)
= 0.9

`>t, if t ∈ 〈0, 1〉 \ {1} and for every interpretation I = [N, Π, Φ],
Val I (x) > t if and only if
Πsmall(1) = 1 and ∀n ∈ N : min

(
1, 1 − Πsmall(n) + Πsmall (n + 1)

)
= 0.9

A simple induction on the value of Πsmall(n) for n ∈ N, starting with Πsmall(1) = 1, yields

Cons(X1)
(
small (1)

)
= `AT

Cons(X1)
(
small (2)

)
= `=0.9

Cons(X1)
(
small (3)

)
= `=0.8

Cons(X1)
(
small (4)

)
= `=0.7

Cons(X1)
(
small (5)

)
= `=0.6

...

It is clear that X1 together with the interpretation of ϕ→ by imp L leads to a proper modelling
of the concept of small number. As the numbers increase, the truth value required of small
for them decreases, until it vanishes to 0 for the number 11. There are other implications which
also lead to adequate results, for instance Goguen’s implication, but studying them and
their differences would lead to a study of truth value structures, which is not intended in this
dissertation.

Variant 4. Let ϕ→ =def impG as in variant 1.
For the characterisation of small, this time a ‘specially designed’ label is employed. Let the

label `v0.9 be given as sketched in Figure 5.6. Looking at Figure 5.2, this label is comparable
with `=0.9. It postulates that the truth value of a labelled formula must be above 0.9 for
achieving full validity. But if this constraint is not met, then validity does not drop to 0
immediately, but goes down gradually, expressing some uncertainty about the place where the
correct boundary should be.

The fuzzy set from which inferences are drawn is the L-fuzzy set X2 of formulae, where for
some v ∈ IV,

X2

(
small(1)

)
=def `AT,

X2

(
∀v
(
small(v) → small

(
inc(v)

)))
=def `v0.9

(5.133)

and X2 (x) =def 0 for all x ∈ Frm \
{
small(1), ∀v

(
small(v) → small

(
inc(v)

))}
.

This definition means that small(1) is forced by X2 to be absolutely true while there is
some uncertainty about the truth of the implication ∀v

(
small(v) → small

(
inc(v)

))
. As in

the preceding three variants, it is completely sufficient for the implication to be true at least to
degree 0.9. But even if this constraint is not met, some benefit of the doubt is given because

183

5 On the Expressive Power of Fuzzy Filter-Based Logics

0 1
0

1

`v0.9

0.90.4

Figure 5.6: Special label Approximately truer than 0.9.

it is not known exactly whether a sharp restriction to be above 0.9 adequately represents the
knowledge that with a certain doubt, if a number is small, then its successor is also small.

Again, the result of Cons(X2) is evaluated. The expansion given in variant 1 can be carried
out analogously until equation (5.126), so the considerations on this variant can start at

Cons(X2)(x) = L
⊔


`

` ∈ L and ∀Val ∈ S :

min


`AT

(
Val

(
small(1)

))
,

`v0.9

(
Val

(
∀v
(
small(v) → small

(
inc(v)

))))
 5 `

(
Val (x)

)


= L
⊔`

` ∈ L and ∀Val ∈ S : if Val
(
small(1)

)
= 1,

then `v0.9

(
Val

(
∀v
(
small(v) → small

(
inc(v)

))))
5 `

(
Val (x)

)
(5.134)

Now, assume that for every t ∈ 〈0, 1〉, there exists Val X2,x,t ∈ S such that

(i) Val X2,x,t(x) = t and

(ii) Val X2,x,t

(
small(1)

)
= 1 and

(iii) for all Val ∈ S with Val(x) = t and Val
(
small(1)

)
= 1, it holds that

Val
(
∀v
(
small(v) → small

(
inc(v)

)))
5 Val X2,x,t

(
∀v
(
small(v) → small

(
inc(v)

)))
and

(iv) if t, t′ ∈ 〈0, 1〉 such that t 5 t′, then

Val X2,x,t

(
∀v
(
small(v) → small

(
inc(v)

)))
5 Val X2,x,t′

(
∀v
(
small(v) → small

(
inc(v)

)))
.

It is easily observed that in this case, (5.134) reduces to the following equation, for every
t ∈ 〈0, 1〉:

Cons(X2)(x)(t) = `v0.9

(
Val X2,x,t

(
∀v
(
small(v) → small

(
inc(v)

))))
.(5.135)

184

5.5 Logics of Graded Truth and Graded Trust Assessment

Next, some instances of x are considered.

1. x = small(1).

For this formula, items (i) and (ii) are contradictory, so for t 6= 1, no valuation
Val X2,small(1),t ∈ S fulfilling (i)–(iv) exists. But from the fact that always, Val (x) = 1 in
(5.134), it is obvious that the set in (5.134) is L, the least upper bound of which is `AT,
yielding

Cons(X2)
(
small(1)

)
= `AT.

2. x = small (2).

It is easily established that for every t ∈ 〈0, 1〉 there exists Val X2,small(2),t ∈ S such that

Val X2,small(2),t

(
small(1)

)
= 1

Val X2,small(2),t

(
small (2)

)
= t

Val X2,small(2),t

(
small (3)

)
= t

...

Proving that Val X2,small(2),t as defined here indeed fulfils all conditions (i)–(iv) is simple
and not carried out in detail here.

It remains to evaluate Cons(X2)
(
small (2)

)
using (5.135). Let the interpretation

I = [N, Π, Φ] be such that Val X2,small(2),t = Val I. From the above assumptions about
Val X2,small(2),t, it is clear that

Πsmall(1) = 1
Πsmall(2) = t

Πsmall(3) = t

...

hence by (5.129) (as → is interpreted by impG),

ϕ→
(
Πsmall(1), Πsmall(2)

)
= t

ϕ→
(
Πsmall(2), Πsmall(3)

)
= 1

ϕ→
(
Πsmall(3), Πsmall(4)

)
= 1
...

It follows by (3.4) that

Val X2,small(2),t

(
∀v
(
small(v) → small

(
inc(v)

)))
= t,

thus for every t ∈ 〈0, 1〉,

Cons(X2)
(
small (2)

)
(t) = `v0.9 (t) ,

meaning

Cons(X2)
(
small (2)

)
= `v0.9.

185

5 On the Expressive Power of Fuzzy Filter-Based Logics

3. x = small (3).

In this case, the same reasoning as in the previous item shows that for every t ∈ 〈0, 1〉,
setting Val X2,small(3),t =def Val X2,small(2),t yields exactly the same results, establishing

Cons(X2)
(
small (3)

)
= `v0.9.

In the same manner, it is demonstrated that

Cons(X2)
(
small (4)

)
= Cons(X2)

(
small (5)

)
= . . .

= `v0.9.

As had to be expected, when ϕ→ is interpreted by impG, then a good characterisation of
the concept of small number is impossible even when labels expressing graded uncertainty
are employed. Apparently, the uncertainty of the conclusion of any reasoning, however remote
from the original facts, is the infimum of the uncertainties of all information employed. In this
case, only `AT and `v0.9 are employed and `v0.9 Lv `AT, so the result is always `v0.9.

Variant 5. Let ϕ→ =def impKD as in variant 2.
For the characterisation of small, again the L-fuzzy set X2 of formulae is employed as

defined in (5.133). This means all reasoning from the previous variant can be recycled up until
equation (5.135).

Next, some instances of x are considered.

1. x = small(1).

Exactly the same reasoning as in variant 4 yields

Cons(X2)
(
small(1)

)
= `AT.

2. x = small (2).

In this case, let Val X2,small(2),t ∈ S be such that

Val X2,small(2),t

(
small(1)

)
= 1

Val X2,small(2),t

(
small (2)

)
= t

Val X2,small(2),t

(
small (3)

)
= 1

Val X2,small(2),t

(
small (4)

)
= 1
...

Again, the proof that Val X2,small(2),t as defined here indeed fulfils all conditions (i)–(iv)
is simple and is omitted here.

Let the interpretation I = [N, Π, Φ] be such that ValX2,small(2),t = Val I. From the above
assumptions about Val X2,small(2),t, it is clear that

Πsmall(1) = 1
Πsmall(2) = t

Πsmall(3) = 1
...

186

5.5 Logics of Graded Truth and Graded Trust Assessment

hence by (5.131) (as → is interpreted by impKD),

ϕ→
(
Πsmall(1), Πsmall(2)

)
= t

ϕ→
(
Πsmall(2), Πsmall(3)

)
= 1

ϕ→
(
Πsmall(3), Πsmall(4)

)
= 1
...

As in variant 4, it follows that

Cons(X2)
(
small (2)

)
= `v0.9.

3. x = small (3).

In this case, let Val X2,small(3),t ∈ S be such that

Val X2,small(3),t

(
small(1)

)
= 1

Val X2,small(3),t

(
small (2)

)
= max

(
t,

1
2

)
Val X2,small(3),t

(
small (3)

)
= t

Val X2,small(3),t

(
small (4)

)
= 1

Val X2,small(3),t

(
small (5)

)
= 1

...

The proof that Val X2,small(3),t as defined here indeed fulfils all conditions (i)–(iv) is omit-
ted.

Let the interpretation I = [N, Π, Φ] be such that ValX2,small(3),t = Val I. From the above
assumptions about Val X2,small(3),t, it is clear that

Πsmall(1) = 1

Πsmall(2) = max
(

t,
1
2

)
Πsmall(3) = t

Πsmall(4) = 1
...

hence by (5.131) (as → is interpreted by impKD),

ϕ→
(
Πsmall(1), Πsmall(2)

)
= max

(
t,

1
2

)
ϕ→

(
Πsmall(2), Πsmall(3)

)
= max

(
t,

1
2

)
ϕ→

(
Πsmall(3), Πsmall(4)

)
= 1

...

It follows by (3.4) that

Val X2,small(3),t

(
∀v
(
small(v) → small

(
inc(v)

)))
= max

(
t,

1
2

)
,

187

5 On the Expressive Power of Fuzzy Filter-Based Logics

thus for every t ∈ 〈0, 1〉,

Cons(X2)
(
small (3)

)
(t) = `v0.9

(
max

(
t,

1
2

))
,

meaning

Cons(X2)
(
small (3)

)
= `′v0.9,

where the label `′v0.9 is defined as in Figure 5.7.

0 1
0

1

`′v0.9

0.90.5

0.2

Figure 5.7: Label resulting from inference with Kleene-Dienes implication.

In the same manner, it is demonstrated that no further change occurs in further inferences,
i. e.

Cons(X2)
(
small (4)

)
= Cons(X2)

(
small (5)

)
= . . .

= `′v0.9.

It can be observed that interpreting → by impKD does not allow for an adequate charac-
terisation of the concept of small number, because as numbers get very large, no further
reduction of the label with which they can be derived takes place.

Still, a significant difference to variant 2 can be observed. While variant 2 is essentially
identical to variant 1, the results for variant 5 are quite different from those for variant 4. In
the third inference step, the uncertainty of the derived formula suddenly increases, an effect
which didn’t happen in variant 2.

It seems that below 1
2 , truth values cannot be distinguished from each other, so all of them

get the same degree of trust. The fact that the value 1
2 plays an important role in Lees fuzzy

logic (which is the underlying many-valued logic in this case) has been pointed out already in
section 5.4. Here, it plays the role of the threshold below which all truth values are equally
trusted.

In this special case, the label `v0.9 completely rules out truth values between 0 and 0.4, i. e.
in no model of X2 (to a degree above zero) can for instance small (2) have a truth value strictly
below 0.4. `′v0.9 is a weaker label allowing even a truth value of 0 for small (3) to lead to a
validity degree of 0.2, the same as for the truth value 1

2 , because an inference of three steps
with impKD introduces too much uncertainty to make this distinction.

188

5.5 Logics of Graded Truth and Graded Trust Assessment

This example also shows how fuzzy labels can help overcome deficiencies of the underlying
many-valued logic. If only two-valued labels of the type `=t are used as in variant 2 (which
corresponds to Pavelka-style logics; compare sections 5.2.1.1 and 5.5.1.1), then values of t
below 1

2 lead to meaningless inferences, because small (3) would already be assigned the zero
element `U of the label lattice by Cons. When fuzzy labels like `v0.9 are used, then truth values
below 1

2 are dealt with gracefully by assigning them the same degree of trust as 1
2 , but inference

does not become meaningless as long as the degree of trust assigned to the truth value 1
2 is

below 1.

Variant 6. Let ϕ→ =def imp L as in variant 3.
For the characterisation of small, again the L-fuzzy set X2 of formulae is employed as

defined in (5.133). This means all reasoning from variant 4 can be recycled up until equation
(5.135).

Next, some instances of x are considered. For x = small(1) and x = small (2), exactly the
same reasoning as in variant 4 yields

Cons(X2)
(
small(1)

)
= `AT,

Cons(X2)
(
small (2)

)
= `v0.9.

The results diverge when reasoning ‘farther away’ from the assumptions.

1. x = small (3).

In this case, let Val X2,small(3),t ∈ S be such that

Val X2,small(3),t

(
small(1)

)
= 1

Val X2,small(3),t

(
small (2)

)
=

t + 1
2

Val X2,small(3),t

(
small (3)

)
= t

Val X2,small(3),t

(
small (4)

)
= 1

Val X2,small(3),t

(
small (5)

)
= 1

...

The proof that Val X2,small(3),t as defined here indeed fulfils all conditions (i)–(iv) is omit-
ted.

Let the interpretation I = [N, Π, Φ] be such that ValX2,small(3),t = Val I. From the above
assumptions about Val X2,small(3),t, it is clear that

Πsmall(1) = 1

Πsmall(2) =
t + 1

2
Πsmall(3) = t

Πsmall(4) = 1
...

hence by (5.132) (as → is interpreted by imp L),

ϕ→
(
Πsmall(1), Πsmall(2)

)
=

t + 1
2

189

5 On the Expressive Power of Fuzzy Filter-Based Logics

ϕ→
(
Πsmall(2), Πsmall(3)

)
=

t + 1
2

ϕ→
(
Πsmall(3), Πsmall(4)

)
= 1

...

It follows by (3.4) that

Val X2,small(3),t

(
∀v
(
small(v) → small

(
inc(v)

)))
=

t + 1
2

,

thus for every t ∈ 〈0, 1〉,

Cons(X2)
(
small (3)

)
(t) = `v0.9

(
t + 1

2

)
,

meaning

Cons(X2)
(
small (3)

)
= `v0.8,

where the label `v0.8 is defined as in Figure 5.8.

0 1
0

1

`v0.8

0.8

0.2

Figure 5.8: Label resulting from inference with Lukasiewicz’s implication.

In the same manner, it is demonstrated that the resulting label gets more and more uncertain
in further inferences, i. e.

Cons(X2)
(
small (4)

)
= `v0.7,

Cons(X2)
(
small (5)

)
= `v0.6,

where the labels `v0.7, `v0.6 are defined as in Figure 5.9.
Note furthermore that the first number n (respectively the term representing the corre-

sponding iteration of inc) for which Cons(X2)
(
small (n)

)
yields the zero element `U of L is

11, exactly as in variant 3. But unlike variant 3, the labels yielded by Cons(X2)
(
small (n)

)
for

numbers below 11 get increasingly uncertain.
For comparison, the inference results of variants 4–6 are summarised graphically in Fig-

ure 5.10.

190

5.5 Logics of Graded Truth and Graded Trust Assessment

0 1
0

1

`v0.7

0.7

0.53

0 1
0

1

`v0.6

0.6

0.7

Figure 5.9: Further labels resulting from inference with Lukasiewicz’s implication.

Cons(X2) (x) for x =
ϕ→ small(1) small(2) small(3) small(4) small(5)

impG

impKD

imp L

Figure 5.10: Graphical summary of inference results with ‘fuzzy’ labels.

Remarks
1. As a conclusion, it can be stated that when implication is interpreted by impG, then the

length of a chain of inferences is irrelevant; the conclusion of such a chain will always have
an uncertainty corresponding to the infimum of the uncertainties of all evidence used in
the chain.

When implication is interpreted by impKD, then the situation is similar, but at a cer-
tain ‘distance’ from the original evidence, low truth values become indistinguishable, so
uncertainty raises until all truth values below 1

2 are assigned the same degree of trust.
Considering section 5.5.1.2, this can be interpreted as a certain degree of doubt which is
introduced when reasoning beyond the given evidence.

When implication is interpreted by imp L, then uncertainty is increased along a chain of
inferences, so it can be expected that if an implication is labelled with anything but `AT,

191

5 On the Expressive Power of Fuzzy Filter-Based Logics

then inferences drawn from it will receive labels converging towards `U as the number of
applications of said implication which are necessary to achieve the conclusion increases.

2. Two points should have become clear from this exercise in deriving semantic consequences
directly from the definition. First, there is no big difference to doing the same in classical
mathematical logic (only the quantifiers ∀, ∃ are replaced by inf, sup, respectively, and
different interpretations of ϕ→ have to be considered). Secondly, it is infeasible to do this
for real applications.

3. Using the sound inference rules from section 6.2.1.1, at least part of the results obtained
above can be reconstructed. In Example 6.2.2, it is demonstrated how the same inferences
can be drawn by syntactic derivation. •

5.6 On the Issue of Compositionality

D. Dubois and H. Prade have, on several occasions [23, 26–28], gone to great lengths ex-
plaining why possibilistic logic is not compositional wrt. the necessity measure induced by a
possibility distribution (see equation (5.91) in section 5.3.1.1).

Compositionality here means that given a necessity measure N : Frm → 〈0, 1〉 and a
composite formula x = ω x1 . . . xn ∈ Frm, the value N (x) can not (always) be calculated from
the values N (x1), . . . , N (xn).

While the comprehensive considerations in [28] are very useful in themselves, clarifying
side issues like common misunderstandings about probability logics or belief measures in ex-
pert systems and contemplating ‘almost compositional’ belief measures, it is the firm belief
of this dissertation’s author that the whole issue vaporises in the light of the characterisation
N = Cons(S), where S is the possibility distribution inducing N .

By exposing the necessity measure N to be, by nature, a fuzzy set of semantic consequences,
it is evident that N cannot be ‘compositional’.

To see this, consider the situation in classical two-valued logic. Let X be a set of logical
formulae and Cons(X) the set of semantic consequences in the sense of mathematical logic. It is
well-known that for a conjunction x∧y, it holds that x∧y ∈ Cons(X) if and only if x ∈ Cons(X)
and y ∈ Cons(X), but for other formulae, Cons is not ‘compositional’. For instance, for x ∨ y

it cannot be determined whether x ∈ Cons(X) and/or y ∈ Cons(X) knowing only whether or
not x ∨ y ∈ Cons(X). Also, for ¬x it cannot be determined whether ¬x ∈ Cons(X) knowing
only whether or not x ∈ Cons(X).

The same situation, which is basic knowledge for classical logic, has been established (not
surprisingly) in Proposition 4.3.20 for the semantic consequence operator Cons of fuzzy filter-
based logic, i. e. when ∧,∨ are interpreted by the lattice connectives (which is the case for
possibilistic logic), then Cons(X)(x ∧ y) can be determined from Cons(X)(x) and Cons(X)(y)
while for Cons(x ∨ y), only a lower estimate exists (corresponding to the fact that classically,
x ∈ Cons(X) or y ∈ Cons(X) implies x∨y ∈ Cons(X)). For ¬, obviously the situation depends
on the many-valued interpretation of ¬, and in particular the susceptibility of the logic to
inconsistency (compare section 5.4.4).

After accepting that in possibilistic logic, which is a special case of a logic of graded trust
assessment, the necessity measure induced by a possibility distribution is really a ‘measure of
semantic consequence’, the fact that it is not ‘compositional’ goes without saying.

In fact, exactly this observation lies behind the illustration in [28] for non-compositionality
of two-valued belief measures using an example from the area of rational agents. An agent is
given a set of formulae K called knowledge. The agent is assumed to believe in all formulae from

192

5.7 Other Paradigms for Defining Logics of Graded Truth and Graded Trust Assessment

K and additionally all formulae which follow semantically from K. In [28], a two-valued ‘belief
measure’ N on Frm is introduced which is 1 for a formula x iff x follows from K. Concerning
the belief of an agent in a formula x and/or its negation ¬x, four cases can be distinguished:

1. N (x) = 1 and N (¬x) = 0, i. e. the agent believes in x and rejects ¬x,

2. N (x) = 0 and N (¬x) = 1, i. e. the agent rejects x and believes in ¬x,

3. N (x) = 0 and N (¬x) = 0, interpreted as ignorance,

4. N (x) = 1 and N (¬x) = 1, i. e. the agent inconsistently believes in x and ¬x.

Obviously, all four cases can occur (though the last one only if K is inconsistent, which is
normally prevented). This means N is not compositional wrt. ¬.

This illustration is in fact complementary to the reasoning above. In both cases, ‘belief’ or
‘necessity’ measures are revealed to be ‘measures of semantic consequence’ to justify why they
are not compositional.

To summarise, it is the authors belief that the method in which fuzzy filter-based logics are
defined adhering strictly to the conventions of mathematical logic helps clarifying the issue of
compositionality:

� On the lowest level, there is the underlying many-valued logic where truth values are
given by valuations Val mapping formulae to T , which are (usually) compositional wrt.
logical connectives, according to the principle of extensionality.

� On the next level, there are fuzzy sets of formulae mapping formulae to L which are
completely arbitrary because the labels are chosen by the user.

� On the next level, there are model fuzzy sets Mod mapping labelled formulae to D which
are by nature compositional wrt. the lattice meet (compare Proposition 4.1.1.4 and (4.42))
but not wrt. the other connectives because the labels (being fuzzy filters) guarantee ‘well-
behaviour’ only wrt. the lattice meet.

� On the highest level, there is the fuzzy set of semantic consequences of a fuzzy set of
formulae mapping formulae to L which is compositional only wrt. ∧ if it is interpreted by
the lattice meet. This is the case in classical two-valued logic as well.

It should be clear that the same holds for logics using a different paradigm of uncertainty, for
instance, probability or belief measures, as long as the general form of construction is the same:
an underlying compositional logic, labels expressing an a priori assessment of the uncertainty
of certain formulae, and an ‘uncertainty’ measure which is given by semantic consequence for
labelled formulae.

5.7 Other Paradigms for Defining Logics of Graded Truth and
Graded Trust Assessment

This section is intended to give a brief survey of other logics for combining aspects of vagueness
and uncertainty within a single framework.

In fact, only two variants of possibilistic logic based on many-valued logics are presented
in a little more detail. Possibilistic logic with vague predicates is based on Lees fuzzy logic as
presented in Example 3.2.4.2. Possibilistic logic with fuzzy constants is based on an interesting
variant of many-valued logic where terms are fuzzy and predicates are crisp. The handling of
labels is quite similar in both: Only necessity degrees are given as labels, and the definition

193

5 On the Expressive Power of Fuzzy Filter-Based Logics

of the model relation involves a quantification where the truth value of the formula part of a
labelled formula and the necessity degree of the label part of a labelled formula are combined.
Only the operator used for the combination is different.

The only other alternative presented here is qualitative fuzzy possibilistic logic, which is
mostly skimmed over because the approach is quite different from fuzzy filter-based logic se-
mantically, hence a detailed comparison would take much preparation.

A deeper study and systematic comparison of alternative approaches is left for future re-
search.

5.7.1 Possibilistic Logic with Vague Predicates

Possibilistic logic with vague predicates is a labelled logic where the underlying logic is many-
valued first order logic and the labels are necessity degrees, defined in [19, section 4.5].

Concerning the semantics of labels, possibilistic logic with vague predicates is based on a
slightly different approach than fuzzy filter-based logic, as will be explained in the following.

For this subsection, let Frm = FOFrmS, i. e. employ the language of first order logic4.
Let T = F =

[〈0, 1〉 , min, max
]

and S =def SF
F as defined in Example 3.2.4.2.

Furthermore, let D = L = F. It follows immediately that possibilistic logic with vague
predicates does not fit the definition of a fuzzy filter-based logic. In Observation 4.1.4.2, it is
established that T and D can’t both be many-valued while L is a chain. Consequently, L in
possibilistic logic with vague predicates is ‘too weak’ for it to be a fuzzy filter-based logic.

In the following, the definition of semantic consequence given in [19] is translated to the con-
ceptual framework of this dissertation, as was done in section 5.3.1.1 for standard possibilistic
logic.

Let an F-fuzzy set S : S → 〈0, 1〉 (possibility distribution on S) be given. Then the F-fuzzy
set ConsPLVP(S) of semantic consequences of S is given, for x ∈ Frm, by

ConsPLVP(S)(x) =def inf
{

imp
(S(Val), Val(x)

)
Val ∈ S

}
,(5.136)

where imp is a given implication function.
In [19], the following definition of imp is suggested, for s, t ∈ 〈0, 1〉:

imp(s, t) =def

{
1, if s 5 t

1 − s, if s > t

(This connective is called reciprocal of Gödel implication.)
Expanding imp in (5.136) yields

ConsPLVP(S)(x) =def inf
{

1 − S(Val) Val ∈ S and S(Val) > Val(x)
}

.

By Proposition 4.3.1.9, this leads to the following definition for entailment in possibilistic
logic with vague predicates, for [x, d] ∈ LFrm:

S
PLVP

|−|−−−− [x, d] iff for every Val ∈ S : d 5 imp
(S(Val), Val(x)

)
,

which is, by the definition of imp, equivalent with

iff for every Val ∈ S : S(Val) 5 max
(
1 − d, Val(x)

)
.

4Individual variables, function and predicate symbols can be arbitrary.

194

5.7 Other Paradigms for Defining Logics of Graded Truth and Graded Trust Assessment

This leads to the interesting observation that S
PLVP

|−|−−−− [x, d] holds if and only if
S |−|−

[
x, `T

1−d

]
in the corresponding logic of graded truth and graded trust assessment (see

Figure 5.3 for the definition of the label `T
1−d).

Hence, it can be safely claimed that possibilistic logic with vague predicates can be embed-
ded into logic of graded truth and graded trust assessment by a simple transformation of the
labels, and consequently, possibilistic logic with vague predicates forms a special case of the
logics of graded truth and graded trust assessment studied in this dissertation.

5.7.2 Possibilistic Logic with Fuzzy Constants (PLFC)

Possibilistic Logic with Fuzzy Constants (PLFC) is a labelled logic where the underlying logic
is a special variant of many-valued first order logic and the labels are necessity degrees.

The semantics of labels in PLFC is the same as for possibilistic logic with vague predicates
(see previous subsection), only for a different choice of imp.

PLFC is studied in several publications by Sandra Sandri and others [1, 29].
The syntax and semantics of the underlying many-valued logic of PLFC are defined next.

The logic varies significantly from the first order many-valued logic presented in Example 3.2.2,
so it is interesting to compare them. Afterwards, the semantics of labels in PLFC is defined and
briefly compared with fuzzy filter-based logic. This presentation is based on [1] which covers
less issues than [29] but gives slightly more ‘extractable’ definitions. The notation used in [1]
is adapted to ease comparison with the notation introduced in this dissertation.

5.7.2.1 Syntax

In [1], a many-sorted first order clausal form without function symbols is used. Here, the sorts
are left out because they are not important for the comparison. Hence, the logical language of
PLFC is determined by

1. Non-empty sets IV, IC, FC of individual variables, individual constants, and fuzzy
constants, respectively.

2. A non-empty set Pred of predicate symbols.

3. A mapping Ar Pred : Pred → N giving the arity of each predicate.

4. A unary operator symbol (or connective) ¬ and a binary operator symbol ∧.

Definition 5.7.1 (Formulae of PLFC)
The set PLFCFrm(IV, IC, FC, Pred, Ar Pred) of all well-formed formulae of PLFC with
respect to the sets IV, IC, FC, Pred and the mapping Ar Pred as defined above is the smallest

set such that

1. For each p ∈ Pred and symbols t1, . . . , tAr Pred(p) ∈ IV ∪ IC ∪ FC, the symbol sequences

p t1 . . . tAr Pred(p)

and ¬ p t1 . . . tAr Pred(p)

are contained in PLFCFrm(IV, IC, FC, Pred, Ar Pred).

Formulae of either form are called literals. The set of all literals (for fixed IV, IC, FC,
Pred, Ar Pred) is denoted by Lit.

Formulae of the first type are called atomic formulae.

195

5 On the Expressive Power of Fuzzy Filter-Based Logics

2. For formulae x1, x2 ∈ PLFCFrm(IV, IC, FC, Pred, Ar Pred), the symbol sequence

∨x1x2

is contained in PLFCFrm(IV, IC, FC, Pred, Ar Pred).

Note that every formula which is not a literal is a superposition of disjunctions of literals.

5.7.2.2 Semantics

For defining the semantics of PLFC, first of all, the truth value lattice is fixed to be
T =def F =

[〈0, 1〉 , min, max
]
.

As in Example 3.2.2, the semantics for the language PLFCFrm(IV, IC, FC, Pred, Ar Pred)
is a set of valuation functions induced by interpretations which specify a domain containing
all individuals under consideration and assign relations (on the domain) to predicate symbols,
individuals (from the domain) to individual constants, and fuzzy sets (on the domain) to fuzzy
constants.

Definition 5.7.2 (Interpretations in PLFC)
Given a logical language Frm = PLFCFrm(IV, IC, FC, Pred, Ar Pred) (see Definition 5.7.1 for
a definition of IV, IC, FC, Pred, and Ar Pred), an interpretation for Frm is given by a tuple

I = [U, Π, ΓI, ΓF]

where

1. U is an arbitrary non-empty set called domain or universe.

2. Π : Pred → ⋃ {PUn n ∈ N} such that for every p ∈ Pred, Π(p) ∈ PUn.

3. ΓI : IC → U .

4. ΓF : FC → 〈0, 1〉U .

With every interpretation I = [U, Π, ΓI, ΓF] as specified above, a valuation function Val I is
associated inductively as follows.

Definition 5.7.3 (Valuation of formulae in PLFC)
Let a logical language Frm = PLFCFrm(IV, IC, FC, Pred, Ar Pred) and an interpretation
I = [U, Π, ΓI, ΓF] for Frm be given.

For this definition, assignments σ : IV → Uare used in exactly the same manner as in
Definition 3.2.3. See there for details.

The interpretation of PLFC formulae is defined as follows.

1. Given an assignment σ : IV → U and a Formula x ∈ Frm, the truth value associated
with x by I and σ is denoted by Val(x, I, σ) ∈ T and defined inductively as follows.

1.1. Let p ∈ Pred and t1, . . . , tAr Pred(p) ∈ IV∪IC∪FC such that x = p t1 . . . tAr Pred(p). Wlg

assume that there exist n, m ∈ N such that n 5 m 5 Ar Pred(p) and t1, . . . , tn ∈ IV,
tn+1, . . . , tm ∈ IC, and tm+1, . . . , tAr Pred(p) ∈ FC. Then

Val(x, I, σ) =def

sup

min


ΓF (tm+1) (um+1) ,
...,

ΓF

(
tAr Pred(p)

)(
uAr Pred(p)

)

 σ(t1), . . . , σ(tn),

ΓI(tn+1), . . . , ΓI(tm),
um+1, . . . , uAr Pred(p)

 ∈ Π(p)

 .

196

5.7 Other Paradigms for Defining Logics of Graded Truth and Graded Trust Assessment

1.2. Let p ∈ Pred and t1, . . . , tAr Pred(p) ∈ IV ∪ IC ∪ FC such that x = ¬ p t1 . . . tAr Pred(p).
As above, assume that there exist n, m ∈ N such that n 5 m 5 Ar Pred(p) and

t1, . . . , tn ∈ IV, tn+1, . . . , tm ∈ IC, and tm+1, . . . , tAr Pred(p) ∈ FC. Then

Val(x, I, σ) =def

sup

min


ΓF (tm+1) (um+1) ,
...,

ΓF

(
tAr Pred(p)

)(
uAr Pred(p)

)

 σ(t1), . . . , σ(tn),

ΓI(tn+1), . . . , ΓI(tm),
um+1, . . . , uAr Pred(p)

 /∈ Π(p)

 .

1.3. For x1, x2 ∈ Frm such that x = ∨x1x2,

Val(x, I, σ) =def max
(
Val(x1, I, σ), Val(x2, I, σ)

)
.

2. The valuation function Val I : Frm → T induced by I is now defined as follows. Let
x ∈ Frm be given. Then

Val I(x) =def inf
{

Val (x, I, σ) σ : IV → U
}

(5.137)

Assuming IV, IC, FC, Pred, and Ar Pred to be given, the semantics S for
PLFCFrm(IV, IC, FC, Pred, Ar Pred) is defined to be

S =def

{
Val I I = [U, Π, ΓI, ΓF] as defined in Definition 5.7.2

}
.(5.138)

For the example of PLFC, fulfilling assumption (3.2) is not as trivial as in first order logic,
but considering that Pred and FC are both required to be non-empty, it is easy to observe that
every combination of Frm and S in PLFC fulfils assumption (3.2) (by choosing an interpretation
with a suitable combination of interpretation of some predicate symbol and fuzzy constant
symbol, respectively).

5.7.2.3 Semantics of Labels

The definition of labelled formulae as well as the semantics of labels in PLFC is identical with
possibilistic logic with vague predicates (section 5.7.1) up to equation (5.136).

In PLFC, imp =def impKD (compare (3.11)) is used, yielding, for x ∈ Frm,

ConsPLFC(S)(x) =def inf
{

max
(
1 − S(Val), Val(x)

)
Val ∈ S

}
,(5.139)

leading to the following definition for entailment in PLFC, for [x, d] ∈ LFrm:

S
PLFC

|−|−−−− [x, d] =def for every Val ∈ S : d 5 max
(
1 − S(Val), Val(x)

)
.(5.140)

Let’s try to compare these definitions with fuzzy filter-based logics.
From (4.115), it is clear that entailment by a fuzzy set S : S → D has to be of the form

S |−|− [x, `] =def for every Val ∈ S : S(Val) 5 ι(`)
(
Val(x)

)
,(5.141)

which cannot be equivalent with (5.140), for any value of ι(`).
Rather, the semantics of PLFC is based on a different approach, which could be named

degree of entailment approach. Inspecting (5.139), the formula defining ConsPLFC is a fuzzi-
fication of the classical formula ∀Val ∈ S

(
Val ∈ S → Val |= x

)
, where ∀ is interpreted by

inf and → by Kleene-Dienes implication impKD. The value ConsPLFC(S)(x) can thus be
interpreted as the degree to which

S |−|− x

holds. S
PLFC

|−|−−−− [x, d] is then true by (5.140) iff d is below the degree of S |−|− x.

197

5 On the Expressive Power of Fuzzy Filter-Based Logics

Remarks
1. In [1], the definitions of ConsPLFC and

PLFC
|−|−−−− are relative to a given context fixing some

parts of the interpretation. The context, formally defined in [1], is an explicit form of the
method of fixing described in remark 2 on page 46.

2. In addition to labels which are necessity degrees, in [1] a more complex form of label
called variable weight is discussed, which is essentially a mapping from assignments of
individuals to necessity degrees. The same concept exists for possibilistic logic [19, section
4.2]; it is neglected here because it is not comparable with the notion of label employed
in this dissertation. •

5.7.2.4 Conclusions

Obviously, the previous two subsections leave more questions open that answered. The brief
glimpse given here, however, makes it clear that possibilistic logic with vague predicates as well
as PLFC are very interesting types of logics for the representation of vagueness and possibilistic
uncertainty, which are very much in need of a detailed comparison with each other and with
fuzzy filter-based logics. The most pressing open questions are:

1. What is the significance of imp ? Possibilistic logic with vague predicates and PLFC
merely represent two special cases. It is intriguing to ask in which way the properties of
semantic consequence in ‘fuzzy possibilistic logic’ defined by (5.136) depend on properties
of the implication function (or reciprocal thereof) inserted for imp. This leads to the
subquestions:

� When is the resulting logic a special case of fuzzy filter-based logic (as for possibilistic
logic with vague predicates) ?

� When is the resulting semantic consequence operator a fuzzy closure operator ?

2. What about semantic consequences of fuzzy sets of formulae? In accordance with the
literature, only semantic consequences of fuzzy sets of valuations were studied in the
previous two subsections. In [1], a general definition for X |−|− [x, d] is given by

X |−|− [x, d] iff for every S ∈ 〈0, 1〉S : (S |−|− X) → (S |−|− [x, d]),

which is obviously applicable to both possibilistic logic with vague predicates and PLFC,
but no ‘closed form’ is given.

3. How to express graded truth assessment ? The label lattice of possibilistic logic with
vague predicates and PLFC is ‘weaker’ than that of fuzzy filter-based logic because a label
consists only of a necessity degree. Truth values are handled by combining them with
validity degrees in imp

(S(Val), Val(x)
)
. It has to be asked what exactly the significance

of truth values is in such logics.

Investigation of these aspects, together with comparison of the logics wrt. concrete appli-
cation examples, is left for future research.

5.7.3 Qualitative Fuzzy Possibilistic Logic

In [55, 56], Petr Hájek and several other authors introduce an approach to the combination
of many-valued truth and graded possibility based on modal logic.

That is, Lukasiewicz’s continuously many-valued logic is equipped with modal operators
3 (possibly) and 2 (necessarily) in a straightforward way (compare also H. Thiele [93]).

198

5.7 Other Paradigms for Defining Logics of Graded Truth and Graded Trust Assessment

The truth value yielded by these operators is now interpreted as the degree of possibility and
degree of necessity, respectively, of the formula the operator operates on. Additionally, a binary
modality � is introduced meaning less possible than. Properties of the resulting modal logic
are studied in [55, 56].

Comparisons between several approaches to ‘approximate reasoning’ (most of them involv-
ing modal logic) are given in [50, 51, 55]. See also [52, chapter eight]

Here, this approach is not studied in any more detail, as a detailed comparison between the
modal concepts from [56] and the label-based concepts used in this dissertation would require
a lot of preparation. Just some remarks:

� By making possibility degrees coincide with truth values of certain formulae, the distinc-
tion between graded truth and graded trust, enforcing which was one of the main goals
of this dissertation, is weakened. This approach has advantages and disadvantages.

On the one hand, the possibility of combining formulae containing modal operators freely
with each other via many-valued logical operators creates expressive power not present
in approaches based on labelled formulae.

On the other hand, all advantages of a strict distinction between graded truth and graded
trust are lost, for instance, the possibility to choose completely different algebraic struc-
tures for both. Furthermore, modal logic is much more difficult to handle in automated
deduction. Another open question is how the expressive power stemming from labels
which are arbitrary fuzzy filters is emulated using logical formulae from modal logic.

� In principle, the fuzzy modal logic referred to above fits nicely in the general outlook on
syntax and semantics of the underlying many-valued logic taken in this dissertation, so
one could ‘plug in’ qualitative fuzzy possibilistic logic into fuzzy filter-based logic and
see what happens. This would, however, make the confusion concerning semantics of
values complete and should be left open until the relationship between both approaches
is understood better.

A detailed comparison between the modal fuzzy logic approach and the labelled fuzzy logic
approach to the representation of graded truth assessment and graded trust assessment is left
for future research.

199

5 On the Expressive Power of Fuzzy Filter-Based Logics

200

6 Summary, Conclusions, and Future Work

In this chapter, the results obtained in this dissertation are summarised and possible extensions
and starting points for future work are sketched.

In the next section, the most significant results are grouped by subject and summarised.
Their significance for the corresponding area of research is assessed.

In section 6.2, several possible extensions are described.
The most significant development which has not been achieved in this dissertation is to

establish a correct and complete syntactical derivation system for fuzzy filter-based logics,
an indispensable part of every logic to be used for knowledge representation. Of particular
interest are derivation systems which can be used for automated deduction on a computer.
In section 6.2.1, first steps towards automated deduction systems for fuzzy filter-based logics
are described.

In section 6.2.2, it is described how the lattice D (corresponding to a modelling of uncer-
tainty by possibility measures) can be replaced by algebraic structures supporting the use of
other measure-theoretic concepts (for instance, probability measures or Dempster-Shafer
uncertainty measures) for uncertainty modelling.

Section 6.2.3 gives some hints towards applications of fuzzy filter-based logics in knowledge
representation.

6.1 Summary and Conclusions

In this section, the results achieved in this dissertation are bundled by the area of research they
belong to. Their impact on the respective area is estimated.

6.1.1 Contributions to the Theory of Fuzzy Filters in Lattices

The idea of studying fuzzy filters of a lattice is not new. References to publications ranging
back to the year  are given in the introduction to chapter 2. Some of the results given in
chapter 2 appear in this (or in slightly different) form in the literature. Other results, especially
in section 2.1, are purely technical, obtained by expanding definitions, and do not represent a
significant contribution to the theory of fuzzy filters in lattices.

As a whole, however, chapter 2 represents a significant contribution to the theory of fuzzy
filters in lattices. To the author’s knowledge, it represents the most comprehensive study of
fuzzy filters from a completely general, purely lattice-theoretic point of view. Some particular
aspects are summarised in the following. Selected results from chapter 2 have been reported
by the author in [71].

6.1.1.1 Using Arbitrary Complete Lattices as Domain and Range of Fuzzy Filters

In all publications about fuzzy filters in lattices known to the author, either the lattice L

representing the domain of fuzzy filters (see Definition 2.1.1) or the lattice L′ representing the
range of fuzzy filters are restricted more or less severely.

201

6 Summary, Conclusions, and Future Work

In [103], for instance, L′ is assumed to be the real unit interval F. Furthermore, B. Yuan

and W. Wu do not assume a condition like Definition 2.1.1.3 assuring the non-emptiness of
fuzzy filters. Consequently, the empty fuzzy set is a fuzzy filter in the sense of [103], destroying
the compatibility with the two valued case.

In [32,39], L is assumed to be the lattice
[
L′U ,∩,∪

]
, where L′ is the domain of L′, U is an

arbitrary non-empty set and ∩,∪ are defined on the basis of meet and join as in (1.17), (1.18).
A lot of the definitions and results from the literature can be reproduced for the general case

that L, L′ are arbitrary lattices, but in some cases, special conditions are required to reproduce
the results from the literature. For instance, the definition of fuzzy filter given in [32, 39]
contains the condition F (d̄) Dv d, where d̄ denotes the constant mapping from U to L′ such
that d̄(u) = d for all u ∈ U . Obviously, this condition can not reproduced if L is not a lattice of
L′-fuzzy sets, and furthermore, this condition is genuinely stronger than the condition F (1) = 1
used in Definition 2.1.1.

In chapter 2, several results from the literature are reproduced for the most general definition
of fuzzy filter, and in other cases, it is pointed out which special properties of L, L′ are needed
to achieve the results (see for instance Theorem 2.2.2 and Observation 2.2.4).

6.1.1.2 ‘Extensional’ Definition of Supremum in the Lattice of Fuzzy Filters

The representation (2.9) of the least upper bound in the lattice of fuzzy filters has to the
author’s knowledge not been mentioned yet in the literature (though it might follow from the
considerations in [39, section 3.2]). It is a straightforward fuzzification of the classical equation
(1.16), though the proof in the fuzzy case is not completely straightforward. The proof presented
in Theorem 2.2.2 requires that L′ is completely distributive wrt. D

⊔
. It is not clear whether this

is a necessary condition in the case that L is an arbitrary lattice (in the case that L is a chain,
it is not necessary; see Observation 2.2.4).

The essential property of the representation (2.9) is its extensionality : The value of F ·∪ G
in a certain point c can be calculated only from the values of F and G in certain other points.
This property is vitally important for the axiomatic characterisation of fuzzy filter-based logics
by logics of graded truth and graded trust assessment in Observation 4.1.2. Without the repre-
sentation (2.9), the validity of axiom 11 from Definition 4.1.3 could not be established, which in
turn is essential for proving the reverse characterisation in Theorem 4.1.3. As the logical axioms
in Definition 4.1.3 can only ‘access’ the ‘values’ of labels at certain truth values, a representation
like (2.8) of the least upper bound in the lattice of fuzzy filters would not allow to formulate
an equivalent logical axiom.

6.1.1.3 Lattices of Principal Fuzzy Filters and their Embedding into the Lattice of Fuzzy
Filters

Principal fuzzy filters in the sense of (2.1) are defined and studied in [39, section 4]. Some of the
results presented in chapter 2 can be found there (for instance, Lemma 2.1.3 and Lemma 2.1.8
from chapter 2 correspond to [39, proposition 4.1])

For the investigations in section 2.3 on the expansion of one lattice by another one, a ‘tool-
box’ of results about lattices of principal fuzzy filters, ways for embedding lattices of principal
fuzzy filters into the corresponding lattice of all fuzzy filters, and isomorphisms between the
lattices L, L′ and lattices of principal fuzzy filters based on these lattices is needed. This tool-box
is provided in chapter 2 (in particular by Theorem 2.2.10, Theorem 2.2.11, Observation 2.2.12,
and Observation 2.2.13), but the corresponding results are not found yet in the literature.

202

6.1 Summary and Conclusions

6.1.1.4 Expanding a Lattice by another Lattice

The concept of expansion (see Definition 2.3.1) is new and specially tailored to provide a
convenient structure for labels in labelled fuzzy logic (compare section 3.4 and Definition 3.5.1).

The concept is based on fuzzy filters for obvious reasons. First, a fuzzy filter provides a
combination of two lattices (in this case, a lattice of truth values and a lattice of degrees of
validity) and has the property of being monotone which is essential for uncertainty modelling
(when a formula gets more true, it gets more valid). Secondly, fuzzy filters possess a complete
lattice structure which is essential for defining certain operations in labelled logics (compare
Definition 4.3.1).

That all principal fuzzy filters are required to be contained in every expansion by Defini-
tion 2.3.1.1 assures embedding properties (see Proposition 2.3.1) and a minimal level of expressive
power required of the label lattice for logical reasons (see for instance Theorem 4.3.3).

The fact that the identity with a sublattice of the dual lattice of all fuzzy filters is required
only up to isomorphism in Definition 2.3.1 is for a more convenient representation of the respec-
tive labelled logics. For instance, in the special case D = B, the result of Corollary 2.3.3 allows
to label formulae with truth values if validity is two-valued (see section 5.2.1).

The results about expansions given in section 2.3 mainly concern some special cases, for
instance when one of the lattices under consideration is two-valued (Proposition 2.3.2, Propo-
sition 2.3.4) or a chain (Proposition 2.3.6). These results immediately lead to corresponding
special cases of labelled logics (see Observation 4.1.4 and sections 5.2 and 5.3).

6.1.2 Separating Degrees of Truth and Degrees of Validity

The idea of treating many-valued truth and many-valued validity as completely separate and
independent concepts with correspondingly independent algebraic structures is to the author’s
knowledge unheard of in literature on many-valued logics (apart from special cases).

It has hopefully been demonstrated in this dissertation that the independence of these
concepts can yield interesting theoretical results and offers rich expressive power with respect
to applications in knowledge representation. In particular, the roles played by these concepts
in logical systems are quite distinct.

In sections 1.1, 3.4, and 5.1, the relationship of and differences between degrees of truth
and degrees of validity and their uses in knowledge modelling under uncertainty are discussed.
Part of this discussion and parts of chapter 5 illustrating the concepts have been published by
the author in [73].

Section 5.6 also demonstrates that degrees of truth and degrees of validity act on different
levels in logical systems: While degrees of truth are located on a lower level and are subject to
truth-theoretic, compositional logical operators, degrees of validity are located on a higher level
and are subject to quantifying operators like semantic consequence where compositionality is
never present (not even in the traditional case of two-valued validity).

6.1.2.1 Identification and Comparison of Special Cases

One of the most encouraging results of the separation of many-valued truth and many-valued
validity is the fact that the most popular systems for modelling vagueness and uncertainty in
logic, namely Pavelka-style logics (also known as fuzzy logic in narrow sense, compare [84])
and possibilistic logic, are obtained as (the simplest possible) special cases of logics of graded
truth and graded trust assessment.

In the special case of two-valued validity, a class of logics of graded truth assessment is
obtained where formulae are labelled by filters of the truth value lattice. This class of logics
is studied in section 5.2. From this class, Pavelka-style logic is the simplest one where only

203

6 Summary, Conclusions, and Future Work

principal filters are admitted as labels (see section 5.2.1). The most expressive logic from this
class is the one where all filters are admitted as labels (see section 5.2.2). It corresponds to
Hähnle’s regular logics [47]. Other choices of label lattices yield logics ‘between’ Pavelka-
style logic and Hähnle’s regular logics.

In the special case of two-valued truth, a class of logics of graded trust assessment is
obtained where formulae are labelled by degrees of validity (but note that the order of the
label lattice is the reverse of the order of the validity degree lattice). This class of logics, which
corresponds to possibilistic logic, is studied in section 5.3. Note that in section 5.3, most results
from [19] could be reproduced even for the general case that D is an arbitrary complete lattice
(in [19], D is assumed to be equal to F).

The relationship between many-valued logic and possibilistic logic has always been of interest
to the logic community, and several attempts to comparing them exist in the literature [14].
The way both are presented here as special cases of a more general concept makes a systematic
comparison particularly easy. This comparison is carried out in section 5.4.

The second big advantage of defining Pavelka-style logic and possibilistic logic as special
cases of the more general concept logic of graded truth and graded trust assessment is that the
two types of knowledge representation which are characteristic for both types of logics can be
combined in one knowledge base, and even mixtures of both types of information in one single
label are possible. In section 5.5.1, it is demonstrated how vagueness and uncertainty can be
represented in different types of labels. Section 5.5.2 contains a small example of knowledge
representation with different types of labels.

6.1.2.2 Using Arbitrary Complete Lattices for Truth Values and Validity Degrees

In most examples of logics for the representation of vagueness or uncertainty, very strong
restrictions are placed on the algebraic structures which are admitted for truth values and
degrees of validity. One of them is usually even two-valued, as explained above, but still the
other one is not an arbitrary complete lattice.

For Pavelka’s logic, in the beginning of [85] indeed T is assumed to be an arbitrary complete
lattice, but soon it is argued that T has to be a chain, and further on T is even restricted to be
the real unit interval F. In [84], T is assumed to be equal to F from the outset.

In possibilistic logic, for the (most intensively studied) necessity-valued case (discussed in
section 5.3.1.1), D is assumed to be equal to F.

The approach of this dissertation to allow arbitrary complete lattices1 for T and D has
several advantages:

1. It can be investigated which are the minimal additional requirements to be placed on
the respective algebraic structures for certain logical properties to hold. Characterisation
results like Observation 4.1.2, Theorem 4.3.7, Proposition 4.3.8, Proposition 4.3.12, Propo-
sition 4.3.15, and Corollary 5.3.6 would not be possible if T and/or D were fixed to be
equal to F.

2. That in chapter 4, most of the basic results of mathematical logic about the model and
semantic entailment relation could be reproduced even in the most general case that
both T and D are arbitrary complete lattices is valuable as an insight into the nature of
mathematical logic itself.

In the classical case of two-valuedness, much more powerful tools are available for carrying
out proofs. For instance, a classical proof by case distinction wrt. the cases true / not

1For several reasons, being a complete lattice is the absolutely minimal requirement for both structures. In
both cases, the existence of a partial order and of a least upper and greatest lower bound for an arbitrary
subset of the respective structure is necessary for being able to define even the most basic logical concepts.

204

6.1 Summary and Conclusions

true or valid / not valid cannot be adapted to the case that values are taken from an
arbitrary lattice. The same holds for proofs which might allow many values, but assume
that all values are comparable, i. e. the case of a chain.

It has turned out that for most basic properties of mathematical logic, the strong as-
sumptions of two-valuedness or comparability are unnecessary, for truth values as well as
for validity degrees. It suffices to assume the notion of ordering provided by a complete
lattice. This insight can be considered to be a (small) contribution to the foundations of
mathematical logic.

3. Obviously, admitting a larger class of algebraic structures for degrees of truth and degrees
of validity offers a wider choice for applications.

It can be argued that for the modelling of vagueness, the lattice of truth values should
be a chain, as it is hard to conceive what it would mean for two truth values not to
be comparable. But on the one hand, the choice of an arbitrary chain leaves the choice
between finitely many-valued logics and infinitely many-valued logics. On the other hand,
logics where the truth values are themselves fuzzy sets [94] provide simple examples for
truth value structures which are not chains.

For the lattice of validity degrees, a lot of scenarios are conceivable where a lattice which
is not a chain is profitable for applications. The simplest example is the Cartesian product
of two chains, for instance to store evidence values [3].

Other occasions for employing lattices which are not chains can arise from knowledge
acquisition.

Assume that a knowledge base stems from two phases of knowledge acquisition, both
with different questionnaires. On the first questionnaire, experts were asked to rate their
trust in the information given on a continuous scale (given, for instance, by a graphical
representation). On the second questionnaire, only five degrees of trust were allowed:

Non-Trustworthy, Rather Non-Trustworthy,

Medium Trustworthy, Rather Trustworthy, Trustworthy,

which are assumed to be linearly ordered. It is decided to equate Non-Trustworthy

to 0 on the continuous scale, Trustworthy to 1, and Medium Trustworthy to 1
2

because an accumulation of choices around 1
2 on the continuous scale bears evidence that

the value 1
2 is recognised as a“distinguished degree of trust”by the experts. Between these

three points, no significant accumulation of choices is observed, so to avoid an arbitrary
identification, it is decided to leave Rather Non-Trustworthy and Rather Trust-

worthy incomparable with the degrees from the continuous scale. This leads to the
lattice of validity degrees sketched in Figure 6.1. There, the dotted line denotes the
continuous scale. This lattice is obviously not distributive (not even modular), so it pro-
vides a good example that there are realistic cases where D is not a chain and not even
distributive.

Note that in the case that T is two-valued, Corollary 5.3.6.1 plays an important role wrt.
this issue. In the above example of D obviously the infinite distributive law does
not hold, hence (by Corollary 5.3.8.1), semantic consequence in the corresponding logic
of graded trust is not reducible to semantic consequence in two-valued logic (equation
(5.62)).

Still, Corollary 5.3.6 lists a lot of cases where D is not a chain and still semantic consequence
is reducible to semantic consequence in two-valued logic.

205

6 Summary, Conclusions, and Future Work

Rather Trustworthy

Medium Trustworthy
1
2

Trustworthy1

Rather Non-Trustworthy

Non-Trustworthy0

Figure 6.1: A validity degree lattice which is not a chain

Some more examples of ‘non-standard’ validity structures and their possible applications
are listed in [19, section 4.3].

6.1.3 Development of Fuzzy Filter-Based Logics

As the concept of fuzzy filter-based logic is introduced in this dissertation, naturally no
prior mention of it exists in the literature. In fact, definitions 4.1.1 and 4.3.1 can be seen to
establish the semantics of a completely new, as yet unknown class of logical systems.

The idea of using fuzzy sets of truth values is mentioned at several places under differ-
ent names (‘truth qualifications’ in L. A. Zadeh’s paper [105]; ‘truth value restrictions’ in
J. F. Baldwin’s [2]). Apart from a few systems where fuzzy sets play the role of truth values
(see for instance H. Thiele [94]; note that by the fact that those fuzzy sets form a lattice
structure, this represents an allowed interpretation of T), there doesn’t seem to exist a study
in the context of mathematical logic yet.

The concept of possibilistic logic with vague predicates is mentioned by Dubois and Prade

[19], but only very few results exist, as for possibilistic logic with fuzzy constants [29]. Other
mentions for instance in [56] are in a completely different setting (fuzzy modal logic).

See section 5.7 for a brief survey of existing approaches to the simultaneous representation
of vagueness and uncertainty in logical systems.

Some early definitions and results on fuzzy filter-based logics, mainly from chapter 4, have
been published by the author in [69, 70].

6.1.3.1 Properties of the Model and Semantic Entailment Relations

Proposition 4.1.1, Proposition 4.2.1, Proposition 4.2.2, Observation 4.2.3, Observation 4.2.4, Obser-
vation 4.2.5, Theorem 4.2.6, Proposition 4.3.1, Theorem 4.3.2, Theorem 4.3.3, Proposition 4.3.4,
Proposition 4.3.5, and Proposition 4.3.6 all establish semantic properties of the basic logical
concepts like model relation, semantic equivalence, semantic entailment, validity, in-
consistency. Sometimes, more general definitions for the concepts had to be chosen because of
the presence of validity degrees, but it is easily checked that in all cases, the canonical definition
was chosen.

These results represent the foundation on which the more advanced concepts like normal
forms or refutation are based. Also, further developments, mainly in the area of syntactic
derivation systems and automated deduction, need to make use of these basic results.

It is very interesting to note that all of these results hold unconditionally in the most
general case where T and D are arbitrary complete lattices — it seems that the complete

206

6.1 Summary and Conclusions

lattice structure as the basis of truth values and validity degrees is sufficient for most basic
semantic properties of mathematical logic, though classically, much more restricted structures
are used (one or both of T and D are two-valued).

6.1.3.2 Axiomatic Characterisation of Logics of Graded Truth and Graded Trust
Assessment

Definition 4.1.2 gives a definition of a labelled logic called fuzzy filter-based logic where the label
lattice is fixed to be an expansion of the truth value lattice by the validity degree lattice. The
graded model relation of this logic is immediately derived from the isomorphism by means
of which T is expanded to L by D.

In contrast with this definition, Definition 4.1.3 defines a labelled logic called logic of graded
truth and graded trust assessment where the label lattice is characterised (apart from the fact
that it is a complete lattice) solely by axioms on the graded model relation.

The latter characterisation is more intuitive because the meaning of the axioms for repre-
senting vagueness and uncertainty can be evaluated.

Observation 4.1.2 and Theorem 4.1.3 state a striking relationship between both definitions:
every logic of graded truth and graded trust assessment is a fuzzy filter-based logic and if the
lattices T and D possess certain properties (which do not represent a very severe restriction),
then every fuzzy filter-based logic is a logic of graded truth and graded trust assessment.

This equivalence means that the algebraic property of the label lattice to be an expansion
of T by D is characterised by certain logical properties of the resulting graded model relation.
Note that the result of Theorem 2.2.2 is vital for this characterisation, hence the requirements
placed in Observation 4.1.2.

In the case D = B, Observation 5.2.1 and Corollary 5.2.2 provide an even stronger character-
isation. Definition 5.2.1 gives a specialised set of axioms which provides necessary and sufficient
conditions for fuzzy filter-based logics in this special case. No restriction has to be placed on T

in this case because B is completely distributive wrt. its least upper bound. Furthermore, the
class of possible label lattices is characterised precisely.

In the case T = B, Observation 5.3.1 and Corollary 5.3.2 provide an equivalent result wrt.
Definition 5.3.1. Furthermore, there is even only one possible label lattice (up to isomorphism)
in this case.

6.1.3.3 Investigation of Normal Forms

Fortunately, the existence of a normal form on the underlying many-valued logic could be
transferred to fuzzy filter-based logics. In Theorem 4.2.8 and Corollary 4.3.22, it is proved that
any normal form on the underlying many-valued logic leads to a corresponding normal form
for the labelled logics studied here.

This means that the well-developed theory of normal forms for many-valued logics can be
applied without changes to fuzzy filter-based logics.

In Example 4.2.1 and Example 4.3.1, this is made concrete by establishing the well-known
clausal form for fuzzy filter-based logics with a lattice-based underlying many-valued logic.

See also section 6.2.1.2 where the more advanced layered normal form which is applicable
to a much larger class of underlying many-valued logics is mentioned.

6.1.3.4 Investigation of Refutation

Refutation, which is discussed in section 4.3.3, is a good example for the effect that a simple
concept of classical logic can become quite complicated when studied in a more general system.

207

6 Summary, Conclusions, and Future Work

In classical two-valued logic, refutation means that to establish that a formula is entailed
by a set of formulae is equivalent with establishing that adding the negation of the formula to
said set of formulae makes it inconsistent.

For classical (non-labelled) many-valued logic, usually a refutation system does not exist,
because the requirement that a formula has to assume the truth value 1 to be considered valid
leads to the dual requirement for the negated formula to assume a truth value which is strictly
above 0, a property which can be formalised only in a minority of all many-valued logics.

The situation is only marginally better for Pavelka-style logics because there is no canon-
ical method of calculating the label of the negated formula to be added. For some particular
underlying many-valued logics, an appropriate label can be calculated under certain precondi-
tions (compare Theorem 5.4.8.1 and [78]), but the method of calculating the label depends on
the algebraic properties of the logical operators of the underlying many-valued logics.

In fuzzy filter-based logics, the situation becomes even more complicated because not only
truth values, but also degrees of validity have to be considered. In particular, it is not sufficient
to ask whether an L-fuzzy set of formulae is inconsistent, because consistency is a matter of
degree (compare Definition 4.2.2.2, Definition 4.3.3, and Proposition 4.3.5).

Still, the expressive power of labels is high enough to provide a canonical refutation system
(Definition 4.3.4). This definition raises two problems:

1. The definition (4.133) not always yields (the ι-image of) a label. This observation leads
to studying which labels admit refutation.

Theorem 4.3.7 and Proposition 4.3.8 give some results in this direction. It is analysed
which properties of T and D assure that labels admit refutation.

Note that from these results, it follows that ‘standard’ Pavelka’s logic (where truth val-
ues are taken from the real unit interval F) does not allow to apply the general refutation
system given in Definition 4.3.4 (Observation 5.2.5 and Observation 5.2.8) while the system
from Definition 4.3.4 is fully applicable in a slight generalisation of Pavelka’s logic where
arbitrary filters are allowed as labels (see section 5.2.2; compare also [72]), as long as the
truth value lattice is an arbitrary chain (Observation 5.2.9 and Corollary 5.2.10).

2. Even if a label admits refutation, then it is not a matter of course that entailment can be
characterised by refutation.

Theorem 4.3.10, Observation 4.3.11, Proposition 4.3.12, Theorem 4.3.13, Proposition 4.3.14,
Proposition 4.3.15, Corollary 4.3.16, Corollary 4.3.17, Corollary 4.3.18, and Corollary 4.3.19
give some results in this direction. It is analysed which properties of T and D assure that
entailment can be characterised by refutation.

Note that the well-known refutation system for possibilistic logic with necessity-valued
formulae (see Observation 5.3.14) is a special case of these results. A slightly less special
version for arbitrary logics of graded trust assessment is given in Observation 5.3.10.

The two items above illustrate one benefit of choosing different and arbitrary complete lat-
tices for T and D: The results of section 4.3.3 provide a direct connection between properties of
the corresponding lattices and properties of the refutation system established in Definition 4.3.4.
As the refutation system from Definition 4.3.4 is a direct generalisation of all known refutation
systems, these results can be regarded as new insights into the nature of refutation itself.

6.2 Extensions and Future Work

After carefully studying this dissertation, the reader will without doubt find that some essential
subjects which have to be part of the thorough study of a new type of logical system have been

208

6.2 Extensions and Future Work

neglected. As summarised in section 6.1, the following have been provided:

1. Algebraic foundations for truth degrees, validity degrees, and their fusion into labels, from
a lattice-theoretic point of view.

2. Foundations for the study of semantics, in particular with respect to the central concepts
of model and semantic consequence, and additional concepts like semantic equivalence and
refutation.

3. Study of special cases and examples to illustrate the new concepts. Comparison of special
cases.

It has hopefully become clear that the idea of differentiating between many-valued truth
and many-valued validity and their possible combination has merit of providing new means for
expressing uncertain and vague knowledge while at the same time possessing precisely defined
semantics and preserving the basic laws of mathematical logic.

The most important subjects which have not been covered in this dissertation but are
indispensable for a full account of a new type of logical system and which are needed for a
reader to fully appreciate the merits of the new system are the following:

4. Further study of the semantics of logics of graded truth and graded trust assess-
ment.

So far, only the basic semantic properties of logics of graded truth and graded trust
assessment have been made precise. In particular, most results given here are capable of
illustrating the relationship between the lattices T, D, and L and conditions to be placed
on these lattices for certain properties to hold, but are largely independent of the syntax
and semantics of the underlying many-valued logic. The examples in section 5.5.2 show
that the underlying many-valued logic has (of course) a significant influence on the results
of labelled inferences.

The relationship between the truth value structure employed by the underlying many-
valued logic (for instance, a BL-algebra or MV-algebra, compare P. Hájek [53]) and the
labelled inference process has to be studied intensively.

Another important interaction between labels and the underlying logic is the use of vari-
able labels as in PLFC (see section 5.7.2). Of course, this is only possible if the underlying
logic is some variant of first order logic.

Furthermore, in this dissertation, only propositional and classical many-valued first order
logic have been studied. Other interesting approaches of incorporating fuzziness or possi-
bilistic quantifiers into the underlying many-valued logic have not been investigated yet.
The literature is rich in examples of such special many-valued logics, for instance logics
with fuzzy constants (see section 5.7.2) or fuzzy modal logics (see section 5.7.3). These
systems have been mentioned only briefly here; the benefits of combining such a special
logic (as an underlying many-valued logic) with the fuzzy filter-based labels employed in
this dissertation should be studied.

Finally, it has been pointed out in several places that validity degrees are basically a
measure-theoretic concept, where in this dissertation, only the case of a possibility measure
has been considered. Other types of measure, for instance, probability, uncertainty or belief
measures, should be considered as an algebraic structure of degrees of validity.

5. Syntactic derivation and automated deduction.

This is by far the most important missing subject in the study of fuzzy filter-based
logics. So far, only semantic properties of the logics under consideration have been

209

6 Summary, Conclusions, and Future Work

investigated. To obtain a tool for knowledge representation, however, there has to be
a means of making inferences by syntactic derivation, and building automated deduction
systems for processing the represented knowledge on a computer, maybe even a specialised
logic programming language.

There have been some general preparations here like the investigation of normal forms
(section 4.2) and refutation (section 4.3.3), but for establishing a sound and complete
syntactic derivation system or an algorithm for automated deduction, of course first of all
the underlying many-valued logic has to be fixed, something which has been avoided as
much as possible in this dissertation.

Results for a special case exist (see [68, 72]), which can hopefully be generalised.

6. Applications.

It has to be investigated what actual applications of the concepts developed here in
knowledge representation and approximate reasoning can be. In particular, the possibility
of combining vague and ill-known evidence stemming from different logical paradigms
(Pavelka-style logics and possibilistic logic, say) is intriguing.

Some of the above-mentioned subjects are discussed further in the remainder of this sec-
tion, presenting possible approaches for solving the problems at hand, but a deeper study and
eventual complete solution of said problems is left for future investigations.

Note that proofs for propositions in this section will be sketched briefly or left out. Some
propositions are to be considered as a ‘proof of concept’; their preconditions were strengthened
to yield a simpler proof. A deeper study, making the results more generally applicable, is left
for future research.

6.2.1 Syntactic Derivation and Automated Deduction

Immediately after defining and justifying the semantics of a new system of logic, the most
important task is to establish a syntactic derivation system, that is, a means of calculating
semantic consequences purely by syntactic manipulations on the language of formulae.

It has hopefully become clear in section 5.5.2 that the calculation of semantic consequences
by expanding the semantic definition of the concept (Definition 4.3.1) does not yield an effective
method of finding all consequences of a given fuzzy set of formulae.

Hence, classically an axiomatisation of a given logic is a recursively enumerable procedure
based on syntactically manipulating formulae, which characterises exactly the language of all
semantic consequences of a given set of formulae.

For the labelled logics discussed in this dissertation, of course the sought procedure has to
manipulate labelled formulae2 to yield the fuzzy set of consequences of a fuzzy set of formulae.

Roughly, a syntactic derivation system consists of two parts:

1. An axiom system, i. e. a designated fuzzy set of formulae (with a recursively enumerable
representation);

2. a (recursively enumerable) set of inference rules, each of which takes a finite number
of premises (in the form of labelled formulae) and allows to derive a conclusion (another
labelled formula).

2In he brief presentation of syntactic derivation in this section, problems arising from the representation of
labels are neglected completely. Obviously, if T and D are sufficiently large, there is a large number of labels
which do not allow for an effective finite representation. On the other hand, all labels used in examples in
this dissertation obviously allow for a finite representation, and it is easy to establish subclasses of labels
which allow for an effective representation and which are not left by a finite number of applications of the
operations on labels discussed here. A thorough investigation of this issue is left for future research.

210

6.2 Extensions and Future Work

The process of syntactically deriving a consequence from a fuzzy set X of formulae then consists
of an iteration of applications of inference rules, such that the premises are

� taken from X or

� taken from the axiom system or

� derived as conclusions in earlier steps of the derivation.

The language of derived labelled formulae is then the set of all labelled formulae which can be
derived in finitely many steps in the manner sketched above.

This informal description will be made more precise in the following subsection.
What happens further with derived formulae depends on the nature of the derivation system.
In Hilbert style derivation or Gentzen style derivation, derived formulae form a

counterpart to semantic consequences, i. e. the goal is to derive exactly those labelled formulae
which follow semantically from the given fuzzy set.

Another class of derivation systems is based on refutation. That is, first the question
whether some labelled formula is a semantic consequence of a fuzzy set of formulae is reduced
to the question of what the degree of consistency of a fuzzy set of formulae is (see section 4.3.3).
Then this degree is determined by syntactic derivation, i. e. the goal is to derive insatisfiable
formulae with labels as large as possible. Derivation systems of this class are, for instance,
based on semantic tableaux and the resolution rule.

After a derivation system has been defined, it remains to establish that it can really char-
acterise semantic consequence. This is done in two steps.

Soundness. It has to be established that the derivation system is not too strong, i. e. nothing
can be derived which is not a semantic consequence. Practically this means to establish
that

1. Every labelled formula in the axiom system is valid, i. e. it is a semantic consequence
of every fuzzy set of formulae (see Proposition 4.3.4.1) and

2. Every inference rule is sound, i. e. it will go from semantic consequences of any X
only to semantic consequences of X .

Completeness. It has to be established that the derivation system is not too weak, i. e. every
semantic consequence can indeed be derived.

This is the hard part, and completeness results are usually very deep theorems.

In the following subsection, some sound inference rules suitable for Hilbert style derivation
are presented. Resolution needs a bit more preparation. First steps towards a resolution-based
system are presented in subsections 6.2.1.2–6.2.1.4.

Completeness results are not given in this section. After some hints at the necessary pro-
ceedings, the matter is left for future research.

6.2.1.1 Labelled Rules of Inference

Let a logic of graded truth and graded trust assessment Λ =
[
Frm, T, S, D, L, |==

]
be

fixed as defined in Definition 4.1.3.
Given n ∈ N, an n-ary labelled inference rule for Λ is a relation3 R on LFrmn+1.
Given labelled formulae [x1, `1] , . . . , [xn, `n], if there exists[

[x1, `1] , . . . , [xn, `n] , [xn+1, `n+1]
] ∈ R,

3It is implicitly assumed that membership in this relation is recursive wrt. a suitable representation of formulae.

211

6 Summary, Conclusions, and Future Work

then [xn+1, `n+1] is said to be a conclusion (or inference result) of R for [x1, `1] , . . . , [xn, `n].
Usually, it is possible to denote a labelled inference rule by a scheme

R :

ξ1 `1
...

ξn `n

ζ RL(`1, . . . , `n)

where ξ1, . . . , ξn, ζ are ‘patterns’ for formulae, specifying for which types of formulae a conclusion
of R exists, and how the formula part of the conclusion is composed from the premises. `1, . . . , `n

are place-holders for labels, and RL is a mapping from Ln into L.
A typical example of an inference rule is modus ponens, which can be defined if Frm

contains a binary operator symbol →:

MP :
A → B `1

A `2

B `1 ∗ `2

The notation above means that for all formulae x, y ∈ Frm, the triple
[
[x → y, `1] , [x, `2] , [y, `1 ∗ `2]

]
is an element of the relation MP. What mapping ∗ is to be employed, depending on the inter-
pretation of →, is clarified later.

Definition 6.2.1 (Syntactic derivation system)
Let a fuzzy set AX ∈ LFrm and a set IR of inference rules be given4. Then a syntactic
derivation operator

AX,IR
|−−−− based on AX and IR is defined recursively as follows.

Let X ∈ LFrm, n ∈ N and [x, `] ∈ LFrm. [x, `] is said to be derivable from X in n steps

(denoted X n
AX,IR
|−−−− [x, `]) if

(i) ` = X (x) or

(ii) ` = AX(x) or

(iii) n > 0 and X n−1
AX,IR
|−−−− [x, `] or

(iv) n > 0 and there exist m ∈ N and x1, . . . , xm ∈ LFrm and R ∈ IR such that

X n−1
AX,IR
|−−−− x1

...

X n−1
AX,IR
|−−−− xm

and
[
x1, . . . , xm, [x, `]

] ∈ R.

Finally, [x, `] is said to be derivable from X (denoted X
AX,IR
|−−−− [x, `]) if there exists n ∈ N

such that X n
AX,IR
|−−−− [x, `].

4Again, it is assumed implicitly that both sets allow for a recursively enumerable representation.

212

6.2 Extensions and Future Work

Definition 6.2.2 (Soundness and completeness)
Let the semantic entailment operator |−|− be defined for the given logic Λ as in (4.97).

1. An inference rule R is said to be sound

=def for every [x1, . . . , xm, y] ∈ R, x1 ∪ . . .∪ xm |−|− y.

2. A syntactic derivation operator
AX,IR
|−−−− (as defined above) is said to be sound

=def for every X ∈ LFrm and x ∈ LFrm, if X
AX,IR
|−−−− x, then X |−|− x.

3. A syntactic derivation operator
AX,IR
|−−−− (as defined above) is said to be complete

=def for every X ∈ LFrm and x ∈ LFrm, if X |−|− x, then X
AX,IR
|−−−− x.

Observation 6.2.1 (Soundness)
A syntactic derivation operator

AX,IR
|−−−− based on an axiom system AX ∈ LFrm and a set IR of

inference rules is sound if and only if

1. for every x ∈ Frm,
[
x, AX(x)

] ∈ Valid and

2. every R ∈ IR is sound. •

Proof
“if”. Let X ∈ LFrm and [x, `] ∈ LFrm be given such that X

AX,IR
|−−−− [x, `]. Let n ∈ N be given

such that X n
AX,IR
|−−−− [x, `].

It is proved by induction on n that X |−|− [x, `].

1. If ` = X (x), then X |−|− [x, `] follows from Theorem 4.3.2.1.

2. If ` = AX(x), then X |−|− [x, `] follows from Proposition 4.3.4.1 by the fact that[
x, AX(x)

] ∈ Valid.

3. The case that n > 0 and X n−1
AX,IR
|−−−− [x, `] is trivial by the induction hypothesis.

4. In the case that n > 0 and there exist m ∈ N and x1, . . . , xm ∈ LFrm and R ∈ IR
such that

X n−1
AX,IR
|−−−− x1

...

X n−1
AX,IR
|−−−− xm

and
[
x1, . . . , xm, [x, `]

] ∈ R, X |−|− [x, `] follows from the soundness of R by the
induction hypothesis and items 2 and 3 of Theorem 4.3.2.

“only if” Assume
AX,IR
|−−−− is sound.

Obviously, for every x ∈ Frm, ///©
AX,IR
|−−−− [

x, AX(x)
]
, so ///© |−|− [

x, AX(x)
]
, from which it

follows by Proposition 4.3.4.1 that
[
x, AX(x)

] ∈ Valid.

Furthermore, for every [x1, . . . , xm, y] ∈ R, x1 ∪ . . . ∪ xm AX,IR
|−−−− y, so x1 ∪ . . . ∪ xm |−|− y

follows by the soundness of
AX,IR
|−−−−. 2

By the observation above, checking whether a derivation operator is sound is as simple as
checking whether

[
x, AX(x)

] ∈ Valid for every x ∈ Frm and checking the soundness of every
individual inference rule.

213

6 Summary, Conclusions, and Future Work

Establishing completeness involves a deep theorem for all but the simplest logics. The issue
of completeness will not be investigated any further in this section; it is left for future research.

Examples of valid axioms and sound inference rules are given in the remainder of this
subsection.

In the introductive chapter of this dissertation, it has been promised that insights and
methods of classical many-valued logic could be applied to fuzzy filter-based logics by the fact
that a many-valued logic in the usual sense forms the basis of fuzzy filter-based logic.

This promise conjures the important problem of how rules of inference which are sound wrt.
the underlying many-valued logic can be ‘lifted’ to the corresponding fuzzy filter-based logic.

To make the ‘lifting’ process as easy as possible, the inference rules for the underlying many-
valued logic under consideration will be so-called many-valued inference rules as introduced
by J. Pavelka [85] and studied, for instance, in [53, 84].

For presenting these many-valued inference rules, let ΛT be the logic of graded truth assess-
ment [Frm, T, S, T, |=] where Frm, T, S are the same as for the given logic Λ and |= is given
by (5.24). In section 5.2.1, it has been demonstrated that this type of logic is equivalent with
Pavelka-type logics and their successors, so the inference rules which are sound for these logics
and described in [53,84,85] are sound for ΛT also (provided the logic consisting of Frm, T, S is
compatible with the systems on which the inference rules are defined).

For defining the lifting procedure, one more tool is needed for extending the operations on
labels taken from T to labels taken from L. The extension principle is well-known from fuzzy
logic for transferring an operation on the domain of fuzzy sets to the fuzzy sets themselves.

For simplicity, assume that L is identical with the dual lattice
[
D-Fl (T) , ·∪,∩] mentioned in

Definition 2.3.1 and the model relation |== of Λ is defined, for Val ∈ S, x ∈ Frm, ` ∈ D-Fl (T),
and d ∈ D, by

Val d|== [x, `] =def d = `
(
Val(x)

)
.

The extension principle is defined for arbitrary D-fuzzy sets on T at first. When it preserves
fuzzy filters is clarified by the next proposition.

Definition 6.2.3 (Extension)

Let n ∈ N and ϕ : T n → T . Then the extension of ϕ to DT is denoted ϕ̂ :
(
DT
)n → DT and

defined for F1, . . . ,Fn ∈ DT and t ∈ T by

ϕ̂ (F1, . . . ,Fn) (t) =def D
⊔{F1(t1) Du . . . Du Fn(tn) t1, . . . , tn ∈ T and ϕ(t1, . . . , tn) Tv t

}
.(6.1)

Proposition 6.2.2 (When does extension preserve filters?)
Let n ∈ N and ϕ : T n → T be given. If D is completely distributive wrt. D

⊔
and ϕ fulfils

the following conditions:

(i) for all s1, . . . , sn, t1, . . . , tn ∈ T , ϕ (s1 Tu t1, . . . , sn Tu tn) = ϕ(s1, . . . , sn) Tu ϕ(t1, . . . , tn);

(ii) ϕ(1, . . . , 1) = 1;

then for all F1, . . . ,Fn ∈ D-Fl (T), it holds that ϕ̂ (F1, . . . ,Fn) ∈ D-Fl (T).

Proof
Let n ∈ N and ϕ : T n → T be given as specified above. Let F1, . . . ,Fn ∈ D-Fl (T).

Note that from condition (i), the monotonicity of ϕ follows.

214

6.2 Extensions and Future Work

For establishing ϕ̂ (F1, . . . ,Fn) ∈ D-Fl (T), the conditions 1 and 3 from Definition 2.1.1 and
condition 2a from Proposition 2.1.6 are checked:

ϕ̂ (F1, . . . ,Fn) (1) = 1(6.2)
ϕ̂ (F1, . . . ,Fn) (s) Du ϕ̂ (F1, . . . ,Fn) (t) Dv ϕ̂ (F1, . . . ,Fn) (s Tu t) (s, t ∈ T)(6.3)

if s Tv t , then ϕ̂ (F1, . . . ,Fn) (s) Dv ϕ̂ (F1, . . . ,Fn) (t) (s, t ∈ T)(6.4)

ad (6.2). Expanding definition (6.1) yields

ϕ̂ (F1, . . . ,Fn) (1) = D
⊔{F1(t1) Du . . . DuFn(tn) t1, . . . , tn ∈ T and ϕ(t1, . . . , tn) Tv 1

}
.

By condition (ii),

F1(1) Du . . . DuFn(1) ∈ {F1(t1) Du . . . DuFn(tn) t1, . . . , tn ∈ T and ϕ(t1, . . . , tn) Tv 1
}

.

From F1, . . . ,Fn ∈ D-Fl (T), it follows that F1(1) = · · · = Fn(1) = 1, hence

F1(1) Du . . . DuFn(1) = 1 Du . . . Du 1 = 1,

hence

D
⊔{F1(t1) Du . . . DuFn(tn) t1, . . . , tn ∈ T and ϕ(t1, . . . , tn) = 1

}
Tv 1.

ad (6.3). Let s, t ∈ T . Expanding definition (6.1) yields

ϕ̂ (F1, . . . ,Fn) (s) Du ϕ̂ (F1, . . . ,Fn) (t)
= D
⊔{F1(s1) Du . . . DuFn(sn) s1, . . . , sn ∈ T and ϕ(s1, . . . , sn) Tv s

}
Du D
⊔{F1(t1) Du . . . Du Fn(tn) t1, . . . , tn ∈ T and ϕ(t1, . . . , tn) Tv t

}
,

from which it follows by the complete distributivity of D wrt. D
⊔

that

= D
⊔{

F1(s1) Du . . . DuFn(sn)
Du F1(t1) Du . . . DuFn(tn)

s1, . . . , sn, t1, . . . , tn ∈ T

and ϕ(s1, . . . , sn) Tv s and ϕ(t1, . . . , tn) Tv t

}
,

from which it follows by the fact that F1, . . . ,Fn ∈ D-Fl (T) that

= D
⊔{

F1(s1 Tu t1) Du . . . DuFn(sn Tu tn)
s1, . . . , sn, t1, . . . , tn ∈ T

and ϕ(s1, . . . , sn) Tv s and ϕ(t1, . . . , tn) Tv t

}
.

As ϕ(s1, . . . , sn) Tuϕ(t1, . . . , tn) Tv s Tut follows from ϕ(s1, . . . , sn) Tv s and ϕ(t1, . . . , tn) Tv t,
it holds that

Tv D
⊔{

F1(s1 Tu t1) Du . . . DuFn(sn Tu tn)
s1, . . . , sn, t1, . . . , tn ∈ T
and ϕ(s1, . . . , sn) Tu ϕ(t1, . . . , tn) Tv s Tu t

}
,

from which it follows by assumption (i) that

= D
⊔{

F1(s1 Tu t1) Du . . . DuFn(sn Tu tn)
s1, . . . , sn, t1, . . . , tn ∈ T

and ϕ(s1 Tu t1, . . . , sn Tu tn) Tv s Tu t

}
.

Now, because si, ti are arbitrary for all i ∈ {1, . . . , n}, obviously each si Tu ti covers all T

in the above quantification. Hence, it is justified to write

= D
⊔{F1(t1) Du . . . DuFn(tn) t1, . . . , tn ∈ T and ϕ(t1, . . . , tn) Tv s Tu t

}
= ϕ̂ (F1, . . . ,Fn) (s Tu t).

215

6 Summary, Conclusions, and Future Work

ad (6.4). Let s, t ∈ T such that s Tv t. Expanding definition (6.1), it is to be proved that

D
⊔{F1(s1) Du . . . DuFn(sn) s1, . . . , sn ∈ T and ϕ(s1, . . . , sn) Tv s

}
Dv D
⊔{F1(t1) Du . . . Du Fn(tn) t1, . . . , tn ∈ T and ϕ(t1, . . . , tn) Tv t

}
.

From s Tv t, it follows immediately that for all s1, . . . , sn ∈ T such that ϕ(s1, . . . , sn) Tv s,
it holds that

F1(s1) Du . . . DuFn(sn) ∈ {F1(t1) Du . . . DuFn(tn) t1, . . . , tn ∈ T and ϕ(t1, . . . , tn) Tv t
}

,

establishing the result. 2

Proposition 6.2.3 (Lifting many-valued inference rules to labelled inference rules)
Assume that D is completely distributive. Let n ∈ N and let

RT :

ξ1 t1
...

ξn tn

ζ ϕ(t1, . . . , tn)

be a sound many-valued inference rule wrt. ΛT, such that ϕ : T n → T has the properties
(i)–(ii) from Proposition 6.2.2.

Then

R :

ξ1 `1
...

ξn `n

ζ ϕ̂(`1, . . . , `n)

is a sound labelled inference rule wrt. Λ.

Proof
From Proposition 6.2.2, it follows that ϕ̂(`1, . . . , `n) is a label, so that R defines a labelled
inference rule at all.

For establishing soundness, it is to be proved that for all x1, . . . , xn, y matching the patterns
ξ1, . . . , ξn, ζ and all `1, . . . , `n ∈ L, it holds that

[x1, `1] ∪ . . .∪ [xn, `n] |−|− [y, ϕ̂(`1, . . . , `n)
]

,

which means by Definition 4.3.1.1 that

Mod
(
[x1, `1] ∪ . . . ∪ [xn, `n]

)
j Mod

([
y, ϕ̂(`1, . . . , `n)

])
,

which means by (4.42) that

Mod
(
[x1, `1]

) ∩ . . .∩ Mod
(
[xn, `n]

)
j Mod

([
y, ϕ̂(`1, . . . , `n)

])
,

216

6.2 Extensions and Future Work

which means by (4.41) and (4.1) and (6.1) that for every Val ∈ S,

`1

(
Val(x1)

)
Du . . . Du `n

(
Val(xn)

)
Dv D
⊔{

`1(t1) Du . . . Du `n(tn)
t1, . . . , tn ∈ T

and ϕ(t1, . . . , tn) Tv Val(y)

}
.

(6.5)

For some arbitrary fixed Val ∈ S, it is now proved that (6.5) holds. The assumption that RT

is sound means that for all t1, . . . , tn ∈ T ,

[x1, t1] ∪ . . . ∪ [xn, tn] |−|− [y, ϕ(t1, . . . , tn)
]

,

which means by the same reasoning as above (taking into account the semantics of labels for
ΛT as defined in section 5.2.1) that for every Val ′ ∈ S,

if t1 Tv Val ′(x1) and . . . and tn Tv Val ′(xn) , then ϕ(t1, . . . , tn) Tv Val ′(y).

As t1, . . . , tn ∈ T as well as Val ′ ∈ S in the above equation are completely arbitrary,
inserting Val for Val ′ and Val(xi) for ti (i ∈ {1, . . . , n}) yields

ϕ(Val(x1), . . . , Val(xn)) Tv Val(y).

From this it immediately follows that

`1

(
Val(x1)

)
Du . . . Du `n

(
Val(xn)

) ∈ {`1(t1) Du . . . Du `n(tn)
t1, . . . , tn ∈ T
and ϕ(t1, . . . , tn) Tv Val(y)

}
,

establishing (6.5). 2

Example 6.2.1 (Some sound many-valued inference rules and their lifted counterparts)
For this example, let Frm = FOFrmS, i. e. employ the language of first order logic5. Let
T =def F =

[〈0, 1〉 , min, max
]
. Let τ : 〈0, 1〉2 → 〈0, 1〉 be a continuous t-norm, i. e. a continu-

ous, commutative, associative, monotone function with neutral element 1 (compare [61]).
Let ϕ→ be the r-implication of τ , i. e. the mapping ϕ→ : 〈0, 1〉2 → 〈0, 1〉 is defined for

s, t ∈ 〈0, 1〉 by

ϕ→(s, t) =def inf
{
r r ∈ 〈0, 1〉 and τ(s, r) 5 t

}
.

Then the modus ponens

MPT :
A → B t1
A t2

B τ(t1, t2)

is sound for ΛT. See [84] for details.
Other inference rules sound for ΛT are generalisation:

GENT :
A t

∀vA t

5Individual variables, function and predicate symbols can be arbitrary.

217

6 Summary, Conclusions, and Future Work

(where v can be replaced by any individual variable) and specialisation:

SPCT :
∀vA t

Av:=T t

(where v can be replaced by any individual variable and T by any term wrt. Frm and Av:=T

denotes the formula obtained by replacing every free6 occurrence of v in A by T).
Both τ and the identical mapping involved in GENT and SPCT fulfil the properties (i)–(ii)

from Proposition 6.2.2, hence if D is completely distributive, then

MP :
A → B `1

A `2

B τ̂(`1, `2)

and

GEN :
A `

∀vA `

and

SPC :
∀vA `

Av:=T `

are sound for Λ. •

Remark
The restriction T = F is not necessary for the soundness of the two rules in the example
above, it just simplifies the presentation. Especially the modus ponens would require much
preparation otherwise (discussion of residuated lattice-ordered monoids, see [61]). Also, τ does
not necessarily have to be a continuous t-norm for MPT to be sound, but establishing the
criteria for the soundness of MPT as well as the properties (i)–(ii) from Proposition 6.2.2 would
be quite tedious. •

Example 6.2.2 (Syntactic derivation) Let Λ be given as specified in section 5.5.2, i. e. let
T = D = F, L = FF (F),

Frm = FOFrmS = FOFrm (IV, Func, Ar Func, Pred, Ar Pred, ΩS, Ar S) ,

for a given (non-empty) set IV of individual variables, Func =def {1, inc} with
Ar Func(1) = 0, Ar Func(inc) = 1 and Pred =def {small} with Ar Pred(small) = 1. Recall
the abbreviations 2, 3, 4, 5 for terms defined on page 180. Let S =def SF

F as defined in
Example 3.2.4.2, with the exception that the interpretation of → is fixed later.

As in section 5.5.2, let the domain of each interpretation be fixed to be the set N of all
natural numbers, let the interpretation of 1 be fixed to be the natural number 1 and let the
interpretation of inc be fixed to be the successor function of the natural numbers.

6The syntactic concept of free variables is not defined formally here. Intuitively, the meaning should be clear.
See for instance [45] for details.

218

6.2 Extensions and Future Work

For the characterisation of small, the fuzzy set from which inferences are drawn is the
L-fuzzy set X2 of formulae employed in variants 4–6 of section 5.5.2, where for some v ∈ IV,

X2

(
small(1)

)
=def `AT,

X2

(
∀v
(
small(v) → small

(
inc(v)

)))
=def `v0.9

where the label `v0.9 is given by Figure 5.6.
Next, it is investigated to which extent the results about Cons(X2) derived in section 5.5.2

by purely semantic means can be reproduced by syntactic derivation.
Let AX =def ///© and IR =def {SPC, MP} (as defined in Example 6.2.1), i. e. for this derivation,

no axioms and only the rules of modus ponens and specialisation are needed.
Note that more often than not, specialisation is not introduced as an inference rule, but as

a logical axiom (compare [53]), like this:

AX (∀vA → Av:=T) =def `AT.

But this only works reliably if ϕ→ is the r-implication of a left-continuous t-norm, which is not
the case for impKD, for instance.

For the first derivation, consider ϕ→ =def impG. As impG is the r-implication of min, let
τ =def min in the definition of MP.

Sorted by the number of steps necessary for the derivation, the following is obtained:

X2
0

AX,IR
|−−−−

[
small(1), `AT

]
(6.6)

X2
0

AX,IR
|−−−−

[
∀v
(
small(v) → small

(
inc(v)

))
, `v0.9

]
(6.7)

X2
1

AX,IR
|−−−−

[(
small(1) → small (2)

)
, `v0.9

]
SPC on (6.7)(6.8)

X2
1

AX,IR
|−−−−

[(
small(2) → small (3)

)
, `v0.9

]
SPC on (6.7)(6.9)

X2
1

AX,IR
|−−−−

[(
small(3) → small (4)

)
, `v0.9

]
SPC on (6.7)(6.10)

X2
2

AX,IR
|−−−−

[
small (2) , `v0.9

]
MP on (6.8) and (6.6)(6.11)

X2
3

AX,IR
|−−−−

[
small (3) , `v0.9

]
MP on (6.9) and (6.11)(6.12)

X2
4

AX,IR
|−−−−

[
small (4) , `v0.9

]
MP on (6.10) and (6.12)(6.13)

It has to be explained how the labels in applications of MP are obtained. Consider (6.11).
When applying MP, by (6.1) the new label is

m̂in
(
`v0.9, `

AT
)

(t) = sup
{

min
(
`v0.9(t1), `AT(t2)

)
t1, t2 ∈ 〈0, 1〉 and min(t1, t2) Tv t

}
.

It is easy to see that the supremum is reached in the point min
(
`v0.9(t), `AT(1)

)
, hence

m̂in
(
`v0.9, `

AT
)

= `v0.9.
For (6.12),

m̂in
(
`v0.9, `v0.9

)
(t) = sup

{
min

(
`v0.9(t1), `v0.9(t2)

)
t1, t2 ∈ 〈0, 1〉 and min(t1, t2) Tv t

}

219

6 Summary, Conclusions, and Future Work

and the supremum is reached in the point min
(
`v0.9(t), `v0.9(t)

)
, hence m̂in

(
`v0.9, `v0.9

)
= `v0.9.

The same goes for (6.13).

For the second derivation, consider ϕ→ =def imp L. imp L is the r-implication of the bold
conjunction etb, which is given for s, t ∈ 〈0, 1〉 by

etb(s, t) = max(0, s + t − 1).

Hence, let τ =def etb in the definition of MP.
Sorted by the number of steps necessary for the derivation, the following is obtained:

X2
0

AX,IR
|−−−−

[
small(1), `AT

]
(6.14)

X2
0

AX,IR
|−−−−

[
∀v
(
small(v) → small

(
inc(v)

))
, `v0.9

]
(6.15)

X2
1

AX,IR
|−−−−

[(
small(1) → small (2)

)
, `v0.9

]
SPC on (6.15)(6.16)

X2
1

AX,IR
|−−−−

[(
small(2) → small (3)

)
, `v0.9

]
SPC on (6.15)(6.17)

X2
1

AX,IR
|−−−−

[(
small(3) → small (4)

)
, `v0.9

]
SPC on (6.15)(6.18)

X2
2

AX,IR
|−−−−

[
small (2) , `v0.9

]
MP on (6.16) and (6.14)(6.19)

X2
3

AX,IR
|−−−−

[
small (3) , `v0.8

]
MP on (6.17) and (6.19)(6.20)

X2
4

AX,IR
|−−−−

[
small (4) , `v0.7

]
MP on (6.18) and (6.20)(6.21)

(where `v0.8 and `v0.7 are given in figures 5.8 and 5.9)
It has to be explained how the labels in applications of MP are obtained. Consider (6.19).

When applying MP, by (6.1) the new label is

êtb

(
`v0.9, `

AT
)

(t) = sup
{

min
(
`v0.9(t1), `AT(t2)

)
t1, t2 ∈ 〈0, 1〉 and etb(t1, t2) Tv t

}
.

It is easy to see that the supremum is reached in the point min
(
`v0.9(t), `AT(1)

)
, hence

êtb

(
`v0.9, `

AT
)

= `v0.9.
For (6.20),

êtb

(
`v0.9, `v0.9

)
(t) = sup

{
min

(
`v0.9(t1), `v0.9(t2)

)
t1, t2 ∈ 〈0, 1〉 and etb(t1, t2) Tv t

}
.

As `v0.9 is monotone, min
(
`v0.9(t1), `v0.9(t2)

)
is highest when t1 = t2. It thus remains to find,

for every t ∈ 〈0, 1〉, the highest t1 such that t = etb(t1, t1) = min(0, 2t1 − 1). ‘Reversing’ this
expression yields

t1 =
t + 1

2
,

hence

êtb

(
`v0.9, `v0.9

)
(t) = `v0.9

(
t + 1

2

)
Tv `v0.8.

220

6.2 Extensions and Future Work

Similar reasoning yields êtb

(
`v0.9, `v0.8

)
= `v0.7 for (6.21).

Next, consider ϕ→ =def impKD. As impKD is not the r-implication of a continuous t-norm,
the statement made above about the soundness of MP does not hold. This case is not considered
any further here. •

Remark
Note that for ϕ→ =def impG and ϕ→ =def imp L, exactly the same results have been derived
syntactically in the above example as those produced by semantic analysis in section 5.5.2.

By the soundness of the employed derivation operator, for every derived labelled formula
x it has been established that X2 |−|− x, for instance X2 |−|−

[
small (4) , `v0.7

]
in the case that

ϕ→ =def imp L.
But by Observation 4.3.1.9, this only means `v0.7 v Cons(X2)

(
small (4)

)
. For establishing

Cons(X2)
(
small (4)

)
Lv `v0.7, the completeness of the derivation operator would have to be

established, which is not the case yet. •

Example 6.2.3 (A complete derivation operator for logics of graded trust assessment)
For this example, let Frm = FOFrmS, i. e. employ the language of first order logic7. Let
T =def B =

[{0, 1} , and, or
]

and S =def SF
B as defined in Example 3.2.4.1. Let D be such that

(5.62) holds (compare Corollary 5.3.8). Let Λ be a logic of graded trust assessment as given by
Corollary 5.3.2. Consequently, assume L = D(D).

In [19, section 3.6], a sound and complete derivation operator for necessity-valued possi-
bilistic logic is given which can be easily adapted to arbitrary logics of graded trust assessment
under the restrictions mentioned above.

Let AX ∈ LFrm be given such that for all x, y, z ∈ Frm, v ∈ IV, and t ∈ Term

AX
(
x → (y → x)

)
= `0

AX
((

x → (y → z)
)→ (

(x → y) → (x → z)
))

= `0

AX
(

(¬x →¬y) → (
(¬x → y) → x

))
= `0

AX
(∀v(x → y) → (x →∀v y)

)
= `0 if v is not free in x

AX (∀v x → xv:=t) = `0
8

and AX(x) = `1 for every formula x ∈ Frm not matching any of the patterns given above.

Remark
Note that according to the notation used in section 5.3, the label `0 is the unit element of L

and `1 is the zero element of L. •
Let IR =def {MP, GEN, WK} where MP, GEN are defined in Example 6.2.1, setting

τ =def and in MP. Note that in the special case T = B, ând reduces to Lu.

Remark
Note that when disregarding the labels, the given axiom system together with the inference
rules MP, GEN constitutes a complete derivation operator for classical two-valued first order
logic. In fact, any other axiom system and set of inference rules which are sound and complete
for two-valued first order logic can be used, provided that in inference rules, labels are combined
with Lu to form the label of the rule’s conclusion. •

7Individual variables, function and predicate symbols can be arbitrary.
8Concerning the notion of a free variable and the notation xv:=t, see the remark following the definition of

SPCT on page 218.

221

6 Summary, Conclusions, and Future Work

WK is the weakening rule

WK :
A `

B `′ for any `′ ∈ L with `′ Lv `

Conjecture 6.2.4 (Completeness)

AX,IR
|−−−− is sound and complete for the logic Λ as defined above if the set of fuzzy sets X ∈ LFrm

considered is restricted to those for which rgX is finite. •

Proof
No formal proof is given here, but the claim should be evident considering the following facts:

1. When disregarding the labels, the given axiom system together with the inference rules
MP, GEN constitutes a complete derivation operator for classical two-valued first order
logic.

2. By Corollary 5.3.4, semantic consequence in this logic of graded trust is a matter of thresh-
old.

For the special case of possibilistic logic with necessity-labelled formulae, completeness of this
derivation operator has been proved in [62].

For understanding the completeness of
AX,IR
|−−−−, it is helpful to visualise the fuzzy set X as a

‘stack’ made up from the family of its cuts. By Corollary 5.3.4.2, it is sufficient to do derivations
exactly as in two-valued logic, only making sure that every derived formula is put on a ‘level’
where all formulae needed for its derivation are present. This is exactly what is achieved by
the MP rule: By giving the formula derived from [x → y, `1] and [x, `2] the label `1 Lu `2, it is
placed on the highest level below both levels of the premises. The weakening rule WK is there
to simulate the property of CUT` of containing all formulae on levels above `.

As an aside note, indeed there can be no sound and complete derivation operator for Λ
without restriction on the admissible fuzzy sets X , by the fact that even in the special case of
possibilistic logic with necessity-labelled formulae, |−|− is not compact (Theorem 5.4.1.1).

If for all X ∈ LFrm, x ∈ LFrm, the relation X |−|− x were equivalent with X
AX,IR
|−−−− x, compact-

ness of |−|− would follow immediately, because
AX,IR
|−−−− is trivially compact. This is established

as follows: X
AX,IR
|−−−− x means that there exists n ∈ N such that X n

AX,IR
|−−−− x. Hence, case (i) of

Definition 6.2.1 is applied less than n times in the derivation of x. By just joining all labelled
formulae stemming from applications of case (i) of Definition 6.2.1, easily a fuzzy set Xfin is
obtained for which it holds that Xfin AX,IR

|−−−− x and hence Xfin |−|− x. 2

Of course, it is intriguing to ask whether every sound and complete Hilbert-style derivation
system for a many-valued logic (see [53] for examples) can be turned into a sound and complete
derivation system for the corresponding fuzzy filter-based logic by using the ‘extended’ version
of inference rules and adding the rule WK. For establishing this result, first a many-valued
equivalent to Corollary 5.3.4 would have to be proved. Carrying out this idea is left for future
investigations.

6.2.1.2 Normal Forms

In Theorem 4.2.8, it has been proved that any normal form existing on formulae of the underlying
many-valued logic can be transferred to the labelled formulae of fuzzy filter-based logics.

222

6.2 Extensions and Future Work

When working towards automated deduction with resolution, then the most interesting
normal forms are conjunctive normal form and clausal form.

The result of Theorem 4.2.8 means that for all logics of graded truth and graded trust
assessment the semantics of which is based purely on the lattice of truth values, all fuzzy sets
of formulae can be equivalently transferred to fuzzy sets of clauses (see Example 4.2.1).

The subclass of fuzzy filter-based logics with lattice-based many-valued semantics covers
some which are interesting and usable for applications, like all variants of Lee’s labelled fuzzy
logic or the whole class of logics of graded trust (compare sections 5.3 and 5.4).

Still, for real applications, logics with more expressive power of the underlying many-valued
logic are desirable. In particular, a fuzzy filter-based Lukasiewicz logic is not contained in
said subclass.

In [72], the author has presented a layered normal form which accommodates a large
subclass of underlying many-valued logics and is suitable for resolution-based inference.

It is applicable to all many-valued logics where all operators can be reduced to a t-norm,
a t-conorm (see [61]) and an involutive negation such that de Morgan’s laws hold. Roughly,
it works by first converting all formulae into negation normal form and then disentangling
nested formulae (which is necessary because a t-norm and t-conorm are distributive iff they
are equal to the lattice connectives) by introducing new propositional constants (which are also
used as labels, avoiding the need for a residuated implication).

The layered normal form is satisfiability-equivalent with the original formula (because
of the new constants), which is preserved by ‘lifting’ to labelled formulae, so layered normal
form should be applicable to all fuzzy filter-based logics provided the underlying many-valued
logic fulfils the necessary criteria.

6.2.1.3 Refutation

The subject of refutation has been studied in detail in section 4.3.3 and discussed for special
cases throughout chapter 5.

For truly employing refutation in resolution-based deduction, it is necessary to identify
exactly the class of labels which admit refutation and allow semantic consequence to be char-
acterised by refutation. It needs to be investigated what expressive power is retained when
restricting labels to this class.

Furthermore, it needs to be clarified whether ‘mock’ refutation systems like the one for Lee’s
fuzzy logic (Theorem 5.4.8.1) can be devised for other logics where refutation is not attainable
by the system described in Definition 4.3.4.

With respect to resolution-based derivation, it has to be pointed out that for refutation,
syntactic derivation reduces to determining the degree of satisfiability of a fuzzy set of
formulae, so a normal form which is (only) satisfiability-equivalent with the original fuzzy set,
and hence layered normal form from the previous subsection, can be applied.

6.2.1.4 Resolution-based Derivation

Resolution in logics of graded trust poses no principal problem, similar to Hilbert-style rea-
soning (compare Example 6.2.3). This class of logics has the additional advantage of being
unproblematic wrt. clausal form and refutation (see the previous two subsections). A com-
plete resolution-based derivation operator for necessity-valued possibilistic logic was presented
in [19, 22, 25].

When the underlying logic is many-valued, things get a little more complicated. A many-
valued logic based on the lattice connectives (like Lees fuzzy logic) has the advantage of admit-
ting the usual clausal form, but is slightly problematic wrt. refutation. Resolution-based deriva-

223

6 Summary, Conclusions, and Future Work

tion for lattice-based many-valued logic has been investigated by several authors [34,63,91]. Be-
cause of the semantic simplicity of these systems, it can be expected that the existing resolution-
based derivation systems can be ‘lifted’ to corresponding fuzzy filter-based logics.

Other many-valued logics pose severe problems for resolution-based derivation, partly be-
cause the operators are neither idempotent nor distributive. See [48] for a survey or the state
of the art.

In [72], the author has presented a resolution-based syntactic derivation operator
for a logic of graded truth based on Lukasiewicz’s logic. There, layered normal form is used
to amend the non-distributivity of the connectives. Lukasiewicz’s logic has the advantage
for resolution-based derivation that the law of excluded middle holds, the residual implication
can be eliminated and both conjunction and disjunction can be represented in a single clause
construct. Hence, it is the only many-valued logic apart from Lee’s logic for which earnest
attempts at resolution-based derivation exist. Other approaches can be found in [60, 78, 101],
but none of them is so universal and so well suited for labelled logic as the one presented by
the author in [72].

After having clarified the issues mentioned in sections 6.2.1.2 and 6.2.1.3 above, the system
developed in [72] needs to be adapted to fuzzy filter-based logic based on Lukasiewicz’s logic.

Next, it should be investigated how the resolution procedure can be adapted to fuzzy filter-
based logics with other underlying many-valued logics.

As soon as a working resolution-based theorem prover, or even logic programming
language for fuzzy filter-based logics exist, applications can truly be attempted.

A knowledge representation system without an automatic inference engine or logic pro-
gramming language is useless.

6.2.1.5 Handling First Order Logic

The biggest problem with using first order many-valued logics for knowledge representation is
that most of the interesting ones are not axiomatiseable (for instance Lukasiewicz’s infinitely
many-valued first order logic; see [89]).

Of course, some axiomatiseable first order many-valued logics exist, for instance Lee’s fuzzy
logic.

Still, in the interest of expressive power, the goal of finding a suitably restricted ver-
sion of Lukasiewicz’s first order logic which allows for (resolution-based) axiomatisation is
paramount.

When working towards this goal, specific problems of first order resolution-based derivation
like Skolemisation and unification have to be solved.

6.2.2 Measure-Theoretic Interpretation of Validity Degrees

In this dissertation, the algebraic structure chosen for validity degrees is that of a complete
lattice, which is the most general one imaginable which allows to talk about ‘higher’ or ‘lower’
validity and allows all the necessary operations to be defined.

In fact, however, when analysing the usage of validity degrees and the most important
concepts dealing with validity degrees, it seems that validity degrees are really measure-theoretic
in nature, unlike truth values which are clearly truth-theoretic in nature.

Considering a complete lattice as a measure-theoretic object leads to the concept of pos-
sibility measure. Once this point of view is attained, it is intriguing to see what happens
when the concept of possibility measure is replaced by another one like probability measure
or belief measure.

224

6.2 Extensions and Future Work

On the one hand, this replacement needs a lot of additional preparation, because a possi-
bility measure is so simple that in this presentation, some important measure-theoretic issues
like dependence or additivity have been neglected. Taking these issues into account would
complicate some definitions considerably.

On the other hand, an abstract scheme for defining logics which combine truth-theoretic with
measure-theoretic concepts could open the unique possibility to obtain a holistic paradigm for
defining measure-based fuzzy logics, with the special cases possibilistic fuzzy logic, probabilistic
fuzzy logic, fuzzy uncertainty logic and others.

6.2.3 Applications

Before applications can be discussed in earnest, the tools for defining a full-fledged knowledge
representation system on the basis of fuzzy filter-based logics have to be created. Besides
a tool for defining knowledge bases, in particular an inference engine and a logic programming
language are needed. The development of a complete resolution-based derivation operator for
fuzzy filter-based logics is thus an important prerequisite for applications.

As soon as the tools are available, applications of knowledge representation using labelled
formulae can be developed. These can be found wherever complex knowledge in the presence
of vagueness and uncertainty has to be handled.

Some areas where this is the case are:

1. Natural language understanding.

2. Expert systems, in particular in complex domains like medicine.

3. Data mining for complex data.

4. Planning in ‘natural’ environments (robotics).

5. ‘Thinking’ agents with very irregular/unreliable communication (distributed via Internet).

6.2.4 Tasks at Hand

In the previous part of this section, several starting points for further research have been
mentioned. Here, the most immediate tasks are listed, roughly in the order they could or
should be approached.

Comparison between logics for uncertainty representation: Throughout chapter 5, well-
known logics able to represent one or the other form of uncertainty have been described
relative to the paradigm of logics of graded truth and graded trust assessment and com-
pared. Section 5.4 gives a detailed comparison between one specific logic of graded truth
assessment and one specific logic of graded trust assessment. In section 5.7, several other
logical systems for uncertainty representation are presented and briefly compared with
logics of graded truth and graded trust assessment.

Still, a lot of work is left to be done in this sector.

Some logical systems have not been described here in any depth at all, for instance
possibilistic logic with possibility and necessity valuations (see [19]) or Zadeh’s fuzzy
logic (see [102]), not to mention logics based on completely different types of uncertainty,
like probabilistic logics or belief logics.

225

6 Summary, Conclusions, and Future Work

All in all, a large variety of logics for dealing with uncertainty has been developed
recently and described in the literature, but without a lot of interaction or competition be-
tween them so far. It seems to be high time for taking stock and doing a deep comparison
of the relative merits of different systems.

Identification of suitable label classes: Subclasses of labels which

� are effectively representable on a computer and

� admit refutation and

� have a precisely defined meaning

have to be identified as a preparation for the development of automated derivation.

Development of complete derivation systems: In section 6.2.1.1, some first approaches at de-
veloping sound and complete syntactic derivation operators for fuzzy filter-based
logics have been presented.

These need to be developed further and led to fruitition with highest priority.

Layered normal form: The layered normal form developed in [72] for Lukasiewicz’s la-
belled logic needs to be generalised and adapted to fuzzy filter-based logics.

Resolution-based derivation. The resolution-based derivation operator developed in [72]
for Lukasiewicz’s filter-labelled logic needs to be generalised and adapted to fuzzy filter-
based logics. Furthermore, it is necessary to adapt the resolution procedure to other than
 Lukasiewicz’s logic.

Logic programming and knowledge representation: The ultimate goal of developing fuzzy
filter-based logic is to create a knowledge representation system capable of representing
vague and uncertain knowledge in the form of labelled formulae.

But a knowledge representation system is incomplete without an inference engine and a
query language or logic programming language for programming dynamic tasks.

As soon as resolution-based derivation works, this should be the basis for developing a
logic programming language on the basis of fuzzy filter-based logic, in which the necessary
tools can be implemented.

226

Lists of Definitions, Theorems and Examples

Definitions

Definition 1.3.1 Lattice . 8
Definition 1.3.2 Filters of a lattice . 9
Definition 2.1.1 Fuzzy filters of a lattice . 15
Definition 2.2.1 Operators for extracting the parameters of a fuzzy principal filter . . . 25
Definition 2.2.2 Alternative join for principal fuzzy filters 26
Definition 2.2.3 Set of all principal fuzzy filters of a lattice element 31
Definition 2.2.4 Sublattice of

[
L′-Fl (L) ,∩, ·∪] generated by L′-PFl (L) 32

Definition 2.3.1 Expansion . 33
Definition 3.1.1 Propositional formula . 40
Definition 3.1.2 Terms and formulae in first order logic 40
Definition 3.2.1 Valuation function in propositional logic 43
Definition 3.2.2 Interpretations in First Order Logic 44
Definition 3.2.3 Valuation of terms and formulae in first order logic 44
Definition 3.3.1 Semantic equivalence of formulae and sets of formulae 49
Definition 3.3.2 Equivalence classes of formulae . 50
Definition 3.3.3 Semantic covering, syntax transformation 50
Definition 3.3.4 Tautology and satisfiability index . 51
Definition 3.5.1 Labelled formula . 57
Definition 4.1.1 Model relation for labelled formulae 59
Definition 4.1.2 Fuzzy filter-based logic . 65
Definition 4.1.3 Logic of graded truth and graded trust assessment 66
Definition 4.1.4 Model relation for L-fuzzy sets of formulae 74
Definition 4.2.1 Model fuzzy set of a fuzzy set of formulae 75
Definition 4.2.2 Validity and consistency index . 77
Definition 4.2.3 Semantic equivalence . 79
Definition 4.2.4 Modifying fuzzy sets by crisp sets . 81
Definition 4.2.5 Clauses, conjunctive normal form . 86
Definition 4.3.1 Semantic consequence . 88
Definition 4.3.2 Semantic consequences of a fuzzy set of valuations 94
Definition 4.3.3 Inconsistency distribution . 96
Definition 4.3.4 Refutation . 100
Definition 5.2.1 Logic of graded truth assessment . 128
Definition 5.3.1 Logic of graded trust assessment . 138
Definition 5.3.2 Semantic concepts of two-valued logic 140
Definition 5.3.3 Infinite distributive law . 145
Definition 5.4.1 Compactness . 156
Definition 5.7.1 Formulae of PLFC . 195
Definition 5.7.2 Interpretations in PLFC . 196
Definition 5.7.3 Valuation of formulae in PLFC . 196

227

Lists of Definitions, Theorems and Examples

Definition 6.2.1 Syntactic derivation system . 212
Definition 6.2.2 Soundness and completeness . 213
Definition 6.2.3 Extension . 214

Theorems and other propositions

Observations 1.3.1 Properties of filters . 10
Observation 1.4.1 Complete lattice of L-fuzzy sets . 12
Observation 1.4.2 Constructing a fuzzy set from its cuts 12
Proposition 2.1.1 Cuts of fuzzy filters are filters . 16
Corollary 2.1.2 Principal fuzzy filters are fuzzy filters 18
Lemma 2.1.3 Monotonicity properties of principal fuzzy filters 18
Observation 2.1.4 Fuzzy filters of a chain . 18
Observation 2.1.5 Fuzzy filters are fuzzy sublattices . 18
Proposition 2.1.6 Equivalent definitions of fuzzy filter 19
Corollary 2.1.7 Short definition of fuzzy filter . 19
Lemma 2.1.8 Degree of membership vs. containment of principal filter in a fuzzy filter 19
Theorem 2.2.1 Complete lattice of fuzzy filters of a lattice 21
Theorem 2.2.2 Alternative definition of join in the lattice of fuzzy filters 22
Observation 2.2.3 ∪ vs. ·∪ . 24
Observation 2.2.4 Join in the lattice of fuzzy filters of a chain 24
Observation 2.2.5 Zero and unit in the lattice of fuzzy filters 24
Observation 2.2.6 Special fuzzy principal filters . 25
Lemma 2.2.7 Conditions for extracting the parameters of fuzzy principal filters 25
Observation 2.2.8 Joining principal fuzzy filters . 26
Theorem 2.2.9 Lattice of principal fuzzy filters . 26
Theorem 2.2.10 ‘Horizontally’ embedding lattices of principal fuzzy filters 29
Theorem 2.2.11 L is isomorphic with D

([
d-PFl (L) ,∩, ·∪]) 31

Observation 2.2.12 ‘Vertically’ embedding lattices of principal fuzzy filters 31
Observation 2.2.13 L′ is isomorphic with

[
L′-PFl (a) ,∩,∪] 31

Observation 2.2.14 ‘Vertically’ embedding lattices of principal fuzzy filters is complete . 32
Proposition 2.2.15 Characterisation of P(L′, L) . 32
Proposition 2.3.1 If L3 is an expansion of L1 by L2, then L1 is embeddable into L3 . . 33
Proposition 2.3.2 Lattices expanded by the two-valued Boolean lattice 34
Corollary 2.3.3 Lattices expanded by the two-valued Boolean lattice 35
Proposition 2.3.4 Expanding the two-valued Boolean lattice 35
Observation 2.3.5 Expanding a lattice by itself . 36
Proposition 2.3.6 Expanding chains . 36
Observation 3.3.1 ≡ is an equivalence relation . 50
Proposition 4.1.1 Properties of the graded model relation 61
Observation 4.1.2 From fuzzy filter-based logics to logics of graded truth and graded trust

assessment . 67
Theorem 4.1.3 From logics of graded truth and graded trust assessment to fuzzy filter-based

logics . 68
Observations 4.1.4 Special cases of logics of graded truth and graded trust assessment 73
Proposition 4.2.1 Compatibility of model fuzzy sets with operations on fuzzy sets . . . 75
Proposition 4.2.2 Compatibility of model fuzzy sets with infinitary join 76
Observation 4.2.3 Monotonicity of Mod wrt truth values 77
Observations 4.2.4 Properties of valid and cst . 78

228

Observations 4.2.5 Properties of ≡ . 80
Theorem 4.2.6 Replacement . 81
Corollary 4.2.7 Dissolving conjunctions . 82
Theorem 4.2.8 Transforming fuzzy sets of formulae into normal form 83
Observations 4.2.9 Replacements and normal forms . 85
Proposition 4.2.10 Transforming into clausal form . 87
Propositions 4.3.1 Properties of |−|− and Cons . 88
Theorem 4.3.2 Cons is a fuzzy closure operator on Frm 91
Theorem 4.3.3 Alternative definition of Cons . 92
Propositions 4.3.4 Characterising validity and inconsistency using Cons 94
Proposition 4.3.5 Properties of inc . 97
Propositions 4.3.6 inc without ⊥ . 98
Theorem 4.3.7 Label lattices admitting refutation . 101
Proposition 4.3.8 Principal fuzzy filters admitting refutation 103

Lemma 4.3.9 Expanding the definitions of X |−|− [x, `] and ` Lv inc
(
X ∪

[
¬x, ˜̀]) 106

Theorem 4.3.10 From entailment to refutation . 107
Observation 4.3.11 Criteria for going from entailment to refutation 109
Proposition 4.3.12 When do all labels allow to go from entailment to refutation? 110
Theorem 4.3.13 From refutation to entailment . 111
Proposition 4.3.14 Criteria for going from refutation to entailment 114
Proposition 4.3.15 When do all labels allow to go from refutation to entailment? 115
Corollary 4.3.16 . 118
Corollary 4.3.17 Characterising entailment by refutation 118
Corollary 4.3.18 Criteria for characterising entailment by refutation 118
Corollary 4.3.19 When do all labels allow to characterise entailment by refutation? . . . 119
Proposition 4.3.20 Compatibility of Cons wrt lattice connectives 120
Corollary 4.3.21 Compatibility of Cons wrt lattice connectives 121
Corollary 4.3.22 to Theorem 4.2.6 and Theorem 4.2.8 . 122
Observations 5.2.1 Logics of graded truth assessment vs. fuzzy filter-based logics . . . 129
Corollary 5.2.2 Admissible label lattices for logics of graded truth assessment 129
Observation 5.2.3 Refutation system for logics of graded truth assessment 132
Observation 5.2.4 Logics of graded truth assessment using principal filters as labels . . 133
Observation 5.2.5 When do truth values admit refutation? 134
Observation 5.2.6 Clausal form in Lee’s fuzzy logic with truth value-labelled formulae 135
Observation 5.2.7 Tautologies, validity, and inconsistency in Lee’s fuzzy logic 135
Observation 5.2.8 Labels from (0, 1〉 don’t admit refutation 136
Observation 5.2.9 When do filters admit refutation? 137
Corollary 5.2.10 Refutation in logics of graded truth assessment with filters as labels . . 137
Observations 5.3.1 Logics of graded trust assessment vs. fuzzy filter-based logics 139
Corollary 5.3.2 Admissible label lattices for logics of graded trust assessment 140
Theorem 5.3.3 Characterising semantic consequence by two-valued entailment 143
Corollary 5.3.4 Semantic consequence in logics of graded trust is a matter of threshold 144
Lemma 5.3.5 Connection between infinite distributive law and semantic entailment . . 145
Corollary 5.3.6 Criteria for semantic entailment to be characterised by threshold I . . . 146
Corollary 5.3.7 Criteria for semantic entailment to be characterised by threshold II . . 147
Corollary 5.3.8 Criteria for semantic entailment to be characterised by threshold III . . 147
Propositions 5.3.9 Characterising validity and consistency by cuts 148
Observation 5.3.10 Refutation system for logics of graded trust assessment 150
Observation 5.3.11 Clausal form in possibilistic logic with necessity-valued formulae . . 153

229

Lists of Definitions, Theorems and Examples

Observation 5.3.12 Tautologies in two-valued propositional logic 153
Observation 5.3.13 Validity, consistency, and inconsistency in possibilistic logic 153
Observation 5.3.14 Refutation system for possibilistic logic with necessity-valued formulae154
Theorem 5.4.1 Compactness . 156
Proposition 5.4.2 Compactness wrt models in Lee’s fuzzy logic 158
Lemma 5.4.3 [44, Lemma 6.5] . 158
Lemma 5.4.4 analogous with [44, Lemma 6.6] . 158
Observations 5.4.5 Properties of Validd

P . 160
Proposition 5.4.6 incP vs. InconsL . 161
Observations 5.4.7 Properties of Inconsd

P . 162
Theorem 5.4.8 Refutation . 164
Proposition 5.4.9 Comparison of L|−|−− and P|−|−− wrt fuzzy sets of literals 167
Lemma 5.5.1 . 172
Observation 6.2.1 Soundness . 213
Proposition 6.2.2 When does extension preserve filters? 214
Proposition 6.2.3 Lifting many-valued inference rules to labelled inference rules 216
Conjecture 6.2.4 Completeness . 222

Examples

Examples 1.3.1 Lattices . 11
Examples 2.1.1 Fuzzy filters . 20
Examples 2.3.1 Lattices for expansions . 34
Example 3.1.1 Propositional logic . 39
Example 3.1.2 First order predicate logic . 40
Example 3.1.3 Classical Logical Operators . 42
Example 3.2.1 Semantics for Propositional Logics . 43
Example 3.2.2 Semantics for First Order Logics . 44
Example 3.2.3 Logical operators based on the lattice connectives 47
Example 3.2.4 Lattice logics on the two-valued lattice and the unit interval 47
Example 4.2.1 Conjunctive normal form and clausal form 85
Example 4.3.1 Semantic consequence and clausal form 122
Example 5.4.1 . 168
Example 6.2.1 Some sound many-valued inference rules and their lifted counterparts . 217
Example 6.2.2 Syntactic derivation . 218
Example 6.2.3 A complete derivation operator for logics of graded trust assessment . . 221

230

Bibliography

[1] Teresa Alsinet, Llúıs Godo, and Sandra Sandri. On the semantics and automated deduc-
tion for PLFC, a logic of possibilistic uncertainty and fuzziness. In Kathryn B. Laskey
and Henri Prade, editors, Proceedings of the 15th Conference on Uncertainty in Artificial
Intelligence (UAI-99), pages 3–12, S.F., Cal., July 30–August 1 1999. Morgan Kaufmann
Publishers.
Cited on pages . 3, 195, 198, 257

[2] J. F. Baldwin. Fuzzy logic and fuzzy reasoning. In E. H. Mamdani and B. R. Gaines,
editors, Fuzzy Reasoning and its Applications, pages 133–148. Academic Press, London,
1981.
Cited on pages .2, 20, 56, 175, 206

[3] James F. Baldwin, Trevor P. Martin, and B. W. Pilsworth. Fril — Fuzzy and Evidential
Reasoning in Artificial Intelligence. Number 1 in Uncertainty Theory in Artificial Intelli-
gence Series. Research Studies Press, Marketed by John Wiley & Sons, Chichester, UK,
1995.
Cited on pages . 205

[4] G. Birkhoff. Lattice Theory. Number 25 in AMS Colloquium Publications. Providence,
R. I., 2nd edition, 1948.
Cited on pages .8

[5] Ludwik Borkowski, editor. Selected works of J. Lukasiewicz. North-Holland, Amster-
dam, 1970.
Cited on pages . 6, 127, 237

[6] J. L. Castro and E. Trillas. Tarski’s fuzzy consequences. In Fuzzy Engineering toward
Human Friendly Systems — Proceedings of the International Fuzzy Engineering Sympo-
sium ’91, volume 1, pages 70–80, Yokohama, Japan, November 13–15, 1991.
Cited on pages . 133

[7] Chen Chung Chang. Algebraic analysis of many valued logics. Transactions of the Amer-
ican Mathematical Society, 88:467–490, 1958.
Cited on pages . 55

[8] Chen Chung Chang. A new proof of the completeness of the Lukasiewicz axioms.
Transactions of the American Mathematical Society, 93:74–80, 1959.
Cited on pages . 6, 127

[9] Roberto Cignoli and Daniele Mundici. An invitation to Chang’s MV algebras. In Manfred
Droste and Rüdiger Göbel, editors, Advances in algebra and model theory: selected surveys
presented at conferences in Essen, 1994 and Dresden, 1995, number 9 in Algebra, logic
and applications. Gordon & Breach, Amsterdam, 1997.
Cited on pages . 49

231

Bibliography

[10] Paul Moritz Cohn. Universal Algebra. Harper’s series in modern mathematics. Harper &
Row, New York, 1965. Republished as [11].
Cited on pages . 33

[11] Paul Moritz Cohn. Universal Algebra, volume 6 of Mathematics and Its Applications.
D. Reidel Publishing Company, Dordrecht, Boston, revised edition, 1981.
Cited on pages . 232

[12] Gert de Cooman. Possibility theory I: The measure- and integral-theoretic groundwork.
International Journal of General Systems, 1995.
Cited on pages . 7, 127

[13] Gert de Cooman. Towards a possibilistic logic. In D. Ruan, editor, Fuzzy Set Theory and
Advanced Mathematical Applications, pages 89–133. Kluwer, Boston, 1995.
Cited on pages . 7, 127, 150

[14] Gert de Cooman. From possibilistic information to Kleene’s strong multi-valued logics.
In Didier Dubois, Erich Peter Klement, and Henri Prade, editors, Fuzzy Sets, Logics and
Reasoning about Knowledge, volume 15 of Applied Logic, pages 315–323. Kluwer Academic
Publishers, 1999.
Cited on pages . 204

[15] Gert de Cooman and Etienne E. Kerre. Order norms on bounded partially ordered sets.
The Journal of Fuzzy Mathematics, 2:281–310, 1994.
Cited on pages . 47

[16] M. A. de Prada Vicente and M. Saralegui Aranguren. Fuzzy filters. Journal of Mathe-
matical Analysis and Applications, 129:560–568, 1988.
Cited on pages . 15

[17] D. Dubois and H. Prade. Similarity-based approximate reasoning. In J. M. Zurada, R. J.
Marks II, and C. J. Robinson, editors, Computational Intelligence Imitating Life, pages
69–80. IEEE Press, New York, 1994.
Cited on pages .2

[18] Didier Dubois, Jérôme Lang, and Henri Prade. Fuzzy sets in approximate reasoning,
Part 2: Logical approaches. Fuzzy Sets and Systems, 40:201–244, 1991. Special Memorial
Volume: 25 years of fuzzy sets.
Cited on pages . 2, 3, 5, 57, 177

[19] Didier Dubois, Jérôme Lang, and Henri Prade. Possibilistic logic. In Dov M. Gabbay, C. J.
Hogger, and J. A. Robinson, editors, Nonmonotonic Reasoning and Uncertain Reasoning,
volume 3 of Handbook of Logic in Artificial Intelligence and Logic Programming, pages
439–513. Claredon Press, Oxford, 1994.
Cited on pages . . . 2, 3, 4, 6, 78, 94, 96, 141, 144, 150, 151, 152, 153, 154, 194, 198, 204,
206, 221, 223, 225

[20] Didier Dubois, Stephan Lehmke, and Henri Prade. A comparative study of logics of
graded uncertainty and logics of graded truth. In Siegfried Gottwald and Erich Peter
Klement, editors, Linz ’97 — Enriched Lattice Structures for Many-Valued and Fuzzy
Logics, pages 10–15, Linz, Austria, February 25 – March 1, 1997.
Cited on pages . 156, 168

232

[21] Didier Dubois, Stephan Lehmke, and Henri Prade. A comparison of particular logics of
graded incomplete truth and graded incomplete knowledge. In Dagstuhl-Seminar 9744
— Multiple-Valued Logic, Schloß Dagstuhl, Germany, October 27–31, 1997.
Cited on pages . 156, 168

[22] Didier Dubois and Henri Prade. Necessity measures and the resolution principle. IEEE
Trans. on Systems, Man and Cybernetics, SMC-17(3):474–478, May/June 1987.
Cited on pages . 223

[23] Didier Dubois and Henri Prade. An introduction to possibilistic and fuzzy logics. In
Ph. Smets, A. Mamdani, D. Dubois, and H. Prade, editors, Non-Standard Logics for
Automated Reasoning, pages 287–326. Academic Press, London, 1988.
Cited on pages . 192

[24] Didier Dubois and Henri Prade. Truth, vagueness and uncertainty. In NAFIPS ’88, San
Francisco, California, June 8–10, 1988.
Cited on pages .2

[25] Didier Dubois and Henri Prade. Resolution principles in possibilistic logic. International
Journal of Approximate Reasoning, 4:1–21, 1990.
Cited on pages . 223

[26] Didier Dubois and Henri Prade. Can we enforce full compositionality in uncertainty
calculi. In 12th AAAI National Conference on AI, pages 149–154, Seattle, Wash., 1994.
Cited on pages . 126, 192

[27] Didier Dubois and Henri Prade. Compositionality issues in multiple-valued and un-
certainty logic. In Dagstuhl-Seminar 9744 — Multiple-Valued Logic, Schloß Dagstuhl,
Germany, October 27–31, 1997.
Cited on pages . 126, 192

[28] Didier Dubois and Henri Prade. Possibility theory, probability theory and multiple-valued
logics: A clarification. Annals of Mathematics for Artificial Intelligence, To appear 2001.
Cited on pages . 2, 192, 193

[29] Didier Dubois, Henri Prade, and Sandra Sandri. Possibilistic logic with fuzzy constants
and fuzzy quantifiers. In F. Arcelli and T. P. Martin, editors, Logic Programming and
Soft Computing, pages 69–90. Wiley, 1998.
Cited on pages . 3, 195, 206, 257

[30] Didier Dubois, Henri Prade, and Philippe Smets. Partial truth is not uncertainty: Fuzzy
logic vs. possibilistic logic. IEEE Expert, 9(4):15–19, August 1994.
Cited on pages .2

[31] Didier Dubois, Henri Prade, and Ronald R. Yager, editors. Readings in Fuzzy Sets for
Intelligent Systems. Morgan Kaufmann, 1993.
Cited on pages . 236

[32] P. Eklund and W. Gähler. Fuzzy filter functors and convergence. In S. E. Rodabaugh
et al., editors, Applications of Category Theory to Fuzzy Subsets, chapter IV, pages 109–
136. Kluwer Academic Publishers, 1992.
Cited on pages .15, 202

233

Bibliography

[33] Gonzalo Escalada-Imaz and Felip Manyà. The satisfiability problem in multiple-valued
horn formulae. In The Twenty-Fourth International Symposium on Multiple-Valued Logic,
pages 250–256, Boston, Massachussets, May 25–27 1994.
Cited on pages . 135

[34] Gonzalo Escalada-Imaz and Felip Manyà. Towards first-order multiple-valued logic pro-
gramming. In EUFIT ’95 — Third European Congress on Intelligent Techniques and Soft
Computing, pages 160–167, Aachen, Germany, August 28–31, 1995.
Cited on pages . 224

[35] Francesco Esteva, Pere Garcia, and Llúıs Godo. Similarity based logical systems. In
Didier Dubois, Erich Peter Klement, and Henri Prade, editors, Proceedings of Linz ’96
— Fuzzy Sets, Logics, and Artificial Intelligence, Linz, Austria, February 20–24, 1996.
Cited on pages . 72

[36] Francesco Esteva, Pere Garcia, and Llúıs Godo. About similarity-based logical systems.
In Didier Dubois, Erich Peter Klement, and Henri Prade, editors, Fuzzy Sets, Logics and
Reasoning about Knowledge, volume 15 of Applied Logic, pages 269–287. Kluwer Academic
Publishers, 1999.
Cited on pages . 55

[37] Ronald Fagin, Joseph Y. Halpern, and Nimrod Megiddo. A logic for reasoning about
probabilities. Information and Computation, 87:78–128, 1990.
Cited on pages . 6, 127

[38] Dov M. Gabbay. Labelled Deductive Systems, Volume 1. Oxford University Press, Oxford,
1996.
Cited on pages . 100

[39] Werner Gähler. The general fuzzy filter approach to fuzzy topology, I. Fuzzy Sets and
Systems, 76:205–224, 1995.
Cited on pages . 15, 18, 19, 174, 202

[40] Werner Gähler. The general fuzzy filter approach to fuzzy topology, II. Fuzzy Sets and
Systems, 76:225–246, 1995.
Cited on pages . 15

[41] Giangiacomo Gerla. Fuzzy Logic — Mathematical Tools for Approximate Reason-
ing. Trends in Logic: Studia Logica Library. Kluwer Academic Publishers, Dor-
drecht/Boston/London, 2001.
Cited on pages . 2, 133, 150

[42] J. A. Goguen. L-fuzzy sets. Journal of Mathematical Analysis and Applications, 18:145–
174, 1967.
Cited on pages . 11

[43] J. A. Goguen. The logic of inexact concepts. Synthese, 3/4:325–373, 1969.
Cited on pages .7

[44] Siegfried Gottwald. Fuzzy propositional logics. Fuzzy Sets and Systems, 3:181–192, 1980.
Cited on pages . 158, 159, 164, 230

[45] Siegfried Gottwald. A Treatise on Many-Valued Logics. Studies in Logic and Computa-
tion. Research Studies Press, Baldock, Hertfordshire, UK, 2001.
Cited on pages . 2, 52, 218

234

[46] Reiner Hähnle. Automated Deduction in Multiple-valued Logics, volume 10 of Interna-
tional Series of Monographs on Computer Science. Oxford Science Publications, 1993.
Cited on pages . 2, 135, 137

[47] Reiner Hähnle. Exploiting data dependencies in many-valued logics. Journal of Applied
Non-Classical Logics, 6(1):49–69, 1996.
Cited on pages . 52, 135, 137, 204

[48] Reiner Hähnle and Gonzalo Escalada-Imaz. Deduction in many-valued logics: a survey.
Mathware & Soft Computing, IV(2):69–97, 1997.
Cited on pages . 224

[49] Petr Hájek. On logics of approximate reasoning. Neural Network Word, 6:733–744, 1993.
Reprinted as [50].
Cited on pages .3

[50] Petr Hájek. On logics of approximate reasoning. In M. Masuch and L. Pólos, editors,
Knowledge Representation and Reasoning Under Uncertainty, pages 17–29. Springer Ver-
lag, Heidelberg, 1994.
Cited on pages . 199, 235

[51] Petr Hájek. On logics of approximate reasoning II. In delle Ricca et al., editors, Proceed-
ings ISSEK Workshop on Mathematical and Statistical Methods in AI, pages 147–156,
Udine, 1994. Springer Verlag 1995.
Cited on pages . 3, 199

[52] Petr Hájek. Basic fuzzy logic and BL-algebras. Soft Computing—A Fusion of Founda-
tions, Methodologies and Applications, 2(3):124–128, September 1998.
Cited on pages . 199

[53] Petr Hájek. Metamathematics of Fuzzy Logic, volume 4 of Trends in Logic: Studia Logica
Library. Kluwer Academic Publishers, Dordrecht, 1998.
Cited on pages .2, 52, 209, 214, 219, 222

[54] Petr Hájek and Dagmar Harmancová. Medical fuzzy expert systems and reasoning about
beliefs. In AIME ’95, Pavia, 1995.
Cited on pages .2

[55] Petr Hájek, Dagmar Harmancová, Francesc Esteva, Pere Garcia, and Llúıs Godo. On
modal logics for qualitative possibility in a fuzzy setting. In Workshop on Uncertainty in
Artificial Intelligence, Seattle, 1994.
Cited on pages . 3, 198, 199

[56] Petr Hájek, Dagmar Harmancová, and Rineke Verbrugge. A qualitative fuzzy possibilistic
logic. International Journal of Approximate Reasoning, 12:1–9, 1995.
Cited on pages .2, 3, 198, 199, 206

[57] Hans Hermes. Einführung in die Verbandstheorie. Number 73 in die Grundlehren der
mathematischen Wissenschaften. Springer, 2. edition, 1966.
Cited on pages . 10, 145, 147

[58] U. Höhle and L. N. Stout. Foundations of fuzzy sets. Fuzzy Sets and Systems, 40(2):257–
296, 1991.
Cited on pages . 45

235

Bibliography

[59] Frank Klawonn. Fuzzy points, fuzzy relations and fuzzy functions. In Vilém Novák and
Irina Perfilieva, editors, Discovering the World with Fuzzy Logic, volume 57 of Studies in
Fuzziness and Soft Computing, pages 431–453. Physica-Verlag, Heidelberg, 2000.
Cited on pages . 45

[60] Frank Klawonn and Rudolf Kruse. A lukasiewicz logic based prolog. Mathware & Soft
Computing, 1:5–29, 1994.
Cited on pages . 224

[61] Erich Peter Klement, Radko Mesiar, and Endre Pap. Triangular Norms, volume 8 of
Trends in Logic. Kluwer, Dordrecht, July 2000.
Cited on pages . 47, 217, 218, 223

[62] Jérôme Lang. Logique possibiliste: aspects formels, déduction automatique, et applica-
tions. Phd thesis, IRIT, Université Paul Sabatier, Toulouse, France, 1991.
Cited on pages . 222

[63] Richard C. T. Lee. Fuzzy logic and the resolution principle. Journal of the ACM,
19(1):109–119, 1972. Reprinted in [31].
Cited on pages . 48, 135, 224

[64] Richard C. T. Lee and Chin-Liang Chang. Some properties of fuzzy logic. Information
and Control, 19(1):417–431, 1971.
Cited on pages . 48, 54, 135, 176

[65] Yoon Jin Lee. Generalized fuzzy filter and limit structure. Fuzzy Sets and Systems,
104:415–422, 1999.
Cited on pages . 15

[66] Stephan Lehmke. On resolution-based derivation in ‘bold’ fuzzy logic with weighted ex-
pressions. Research Report 545, University of Dortmund, Computer Science Department,
Germany, 1994. Available by request from the author.
Cited on pages . 133

[67] Stephan Lehmke. On semantic consequence, refutation and resolution in fuzzy logic
with “bold” connectives. In EUFIT ’94 — Second European Congress on Intelligent
Technologies and Soft Computing, volume 2, pages 802–809, Aachen, Germany, September
20–23, 1994.
Cited on pages . 133

[68] Stephan Lehmke. On resolution-based theorem proving in propositional fuzzy logic with
‘bold’ connectives. Diplomarbeit, University of Dortmund, Department of Computer
Science I, Dortmund, Germany, February 1995. Available by request from the author.
Cited on pages . 52, 137, 158, 164, 210

[69] Stephan Lehmke. Weight structures for approximate reasoning with weighted expressions.
In Proceedings of the Twenty-Sixth International Symposium on Multiple-Valued Logic,
pages 178–183, Santiago de Compostela, Spain, May 29–31, 1996.
Cited on pages .21, 206

[70] Stephan Lehmke. On the semantics of uncertainty logics. In EUFIT ’97 — Fifth Euro-
pean Congress on Intelligent Techniques and Soft Computing, volume 1, pages 137–141,
Aachen, Germany, September 8–11, 1997.
Cited on pages . 206

236

[71] Stephan Lehmke. Some properties of fuzzy ideals on a lattice. In FUZZ-IEEE ’97 — Sixth
IEEE International Conference on Fuzzy Systems, volume II, pages 813–818, Barcelona,
Spain, July 1–5, 1997.
Cited on pages .15, 201

[72] Stephan Lehmke. A resolution-based axiomatisation of ‘bold’ propositional fuzzy logic.
In Didier Dubois, Erich Peter Klement, and Henri Prade, editors, Fuzzy Sets, Logics and
Reasoning about Knowledge, volume 15 of Applied Logic, pages 39–50. Kluwer Academic
Publishers, 1999.
Cited on pages . 52, 133, 137, 178, 208, 210, 223, 224, 226

[73] Stephan Lehmke. Degrees of truth and degrees of validity — two orthogonal dimensions
of representing fuzziness in logical systems. In Vilém Novák and Irina Perfilieva, editors,
Discovering the World with Fuzzy Logic, volume 57 of Studies in Fuzziness and Soft
Computing, pages 192–236. Physica-Verlag, Heidelberg, 2000.
Cited on pages . 125, 156, 168, 169, 203

[74] James J. Lu, Neil V. Murray, and Erik Rosenthal. Signed formulas and annotated logics.
In EUFIT ’93 — First European Congress on Fuzzy and Intelligent Technologies, pages
48–53, Aachen, Germany, September 7–10, 1993.
Cited on pages . 2, 137

[75] Jan Lukasiewicz and Alfred Tarski. Untersuchungen über den aussagenkalkül. Comptes
Rendus Séances Société des Sciences et Lettres Varsovie, 23:30–50, 1930. Nachgedruckt
(engl. Fassung) in [5] und [92].
Cited on pages .55, 237

[76] Jan Lukasiewicz and Alfred Tarski. Investigations into the sentential calculus. In Logic,
Semantics, Metamathematics — Papers from 1923 to 1938 [92]. Also in [5]; original
(german) version is [75].
Cited on pages . 4, 49

[77] Charles G. Morgan. Logic, probability theory, and artificial intelligence — part I: the
probabilistic foundations of logic. Computational Intelligence, 7:94–109, 1991.
Cited on pages . 6, 127

[78] Daniele Mundici and Nicola Olivetti. Resolution and model building in the infinite-valued
calculus of Lukasiewicz. Theoretical Computer Science, 200(1–2):335–366, 28 June
1998.
Cited on pages . 6, 127, 208, 224

[79] Vilém Novák. First-order fuzzy logic. Studia Logica, XLVI:87–107, 1987.
Cited on pages . 133

[80] Vilém Novák. On the syntactico-semantical completeness of first-order fuzzy logic — part
I. Syntax and semantics. Kybernetica, 26(1):47–66, 1990.
Cited on pages . 133

[81] Vilém Novák. On the syntactico-semantical completeness of first-order fuzzy logic — part
II. Main results. Kybernetica, 26(2):134–154, 1990.
Cited on pages . 133

[82] Vilém Novák. Fuzzy logic as a basis of approximate reasoning. In Lotfi A. Zadeh and
Janusz Kacprzyk, editors, Fuzzy Logic for the Management of Uncertainty, chapter 12,

237

Bibliography

pages 247–264. John Wiley & Sons, 1992.
Cited on pages . 133

[83] Vilém Novák and Irina Perfilieva. Evaluating linguistic expressions and functional fuzzy
theories in fuzzy logic. In L. A. Zadeh and J. Kacpryk, editors, Computing with Words
in Systems Analysis. Springer-Verlag, Heidelberg, 1998.
Cited on pages . 177

[84] Vilém Novák, Irina Perfilieva, and Jiř́ı Močkoř. Mathematical Principles of Fuzzy Logic.
The Kluwer international series in engineering and computer science. Kluwer Academic
Publishers, Boston/Dordrecht/London, 1999.
Cited on pages . 2, 6, 133, 203, 204, 214, 217

[85] Jan Pavelka. On fuzzy logic I — Many-valued rules of inference. Zeitschrift für Mathe-
matische Logik und Grundlagen der Mathematik, 25:45–52, 1979.
Cited on pages . 2, 3, 6, 7, 12, 39, 52, 57, 91, 133, 134, 204, 214

[86] Jan Pavelka. On fuzzy logic II — Enriched residuated lattices and semantics of propo-
sitional calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik,
25:119–134, 1979.
Cited on pages . 7, 52, 133, 134

[87] Jan Pavelka. On fuzzy logic III — Semantical completeness of some many-valued propo-
sitional calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik,
25:447–464, 1979.
Cited on pages . 7, 52, 133, 134

[88] Nicholas Rescher. Many-valued Logic. McGraw-Hill, 1969.
Cited on pages .4

[89] Bruno Scarpellini. Die Nichtaxiomatisierbarkeit des unendlichwertigen Prädikatenkalküls
von lukasiewicz. Journal of Symbolic Logic, 27(2):159–170, June 1962.
Cited on pages . 224

[90] Ehud Y. Shapiro. Logic programs with uncertainties: A tool for implementing rule-based
systems. In Alan Bundy, editor, IJCAI-83 — Proceedings of the Eighth International
Joint Conference on Artificial Intelligence, pages 529–532, Karlsruhe, West Germany, 8–
12 August 1983. William Kaufmann.
Cited on pages . 2, 133

[91] Zuliang Shen, Liya Ding, and Masao Mukaidono. Fuzzy resolution principle. In The
Eighteenth International Symposium on Multiple-Valued Logic, pages 210–215, Palma de
Mallorca, Spain, May24–26 1988.
Cited on pages . 224

[92] Alfred Tarski. Logic, Semantics, Metamathematics — Papers from 1923 to 1938. Claren-
don Press, Oxford, 1956.
Cited on pages . 237

[93] Helmut Thiele. On the definition of modal operators in fuzzy logic. In The Twenty-Third
International Symposium on Multiple-Valued Logic, pages 62–67, Sacramento, California,
May 24–27 1993.
Cited on pages . 198

238

[94] Helmut Thiele. On logical systems based on fuzzy logical values. In EUFIT ’95 — Third
European Congress on Intelligent Techniques and Soft Computing, volume 1, pages 28–33,
Aachen, Germany, August 28–31, 1995.
Cited on pages . 7, 205, 206

[95] Helmut Thiele. On the semantics of fuzzy linguistic quantifiers. In Lotfi A. Zadeh and
Janusz Kacprzyk, editors, Computing with Words in System Analysis. Physica-Verlag,
Heidelberg, Germany, 1998.
Cited on pages . 46

[96] Helmut Thiele and Radko Mesiar. On T-quantifiers and S-quantifiers. In Vilém Novák
and Irina Perfilieva, editors, Discovering the World with Fuzzy Logic, volume 57 of Studies
in Fuzziness and Soft Computing, pages 310–326. Physica-Verlag, Heidelberg, 2000.
Cited on pages . 46

[97] Esko Turunen. A mathematical study of fuzzy logic; an algebraic approach. Phd thesis,
Lappeenranta University of Technology, Lappeenranta, Finland, 1994.
Cited on pages . 239

[98] Esko Turunen. Well-defined fuzzy predicate logic. Research Report 48, Lappeenranta
University of Technology, Lappeenranta, Finland, 1994. Reprinted in [97].
Cited on pages . 133

[99] Esko Turunen. Well-defined fuzzy sentential logic. Mathematical Logic Quarterly, 41,
1995. Reprinted in [97].
Cited on pages . 133

[100] Hubert Wagner. Computational complexity of infinite-valued Lukasiewicz logic. Mul-
tiple Valued Logic — An International Journal, 1996.
Cited on pages . 6, 127

[101] Hubert Wagner. A new resolution calculus for the infinite-valued propositional logic of
 Lukasiewicz. Submitted to Journal of Applied Nonclassical Logic, to appear.
Cited on pages . 224

[102] R. R. Yager, S. Ovchinnikov, R. M. Tong, and H. T. Nguyen, editors. Fuzzy Sets and
Applications — Selected Papers by L. A. Zadeh. John Wiley & Sons, 1987.
Cited on pages . 225, 239

[103] Bo Yuan and Wangming Wu. Fuzzy ideals on a distributive lattice. Fuzzy Sets and
Systems, 35:231–240, 1990.
Cited on pages .15, 18, 19, 21, 202

[104] Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965. Reprinted in [102].
Cited on pages . 12

[105] Lotfi A. Zadeh. PRUF — a meaning representation language for natural languages.
International Journal of Man Machine Studies, 10:395–460, 1978. Reprinted in [102].
Cited on pages . 2, 56, 175, 177, 206

[106] Lotfi A. Zadeh. A theory of approximate reasoning. Machine Intelligence, 9:149–194,
1979. Reprinted in [102].
Cited on pages . 5, 57

239

Bibliography

240

Symbols, Notation, and Glossary of Concepts

Words in bold face in the lists of symbols and notations refer to concepts explained in the
glossary.

List of Symbols and Variable Names

Miscellaneous symbols

0 Zero element of a complete lattice [L,u,t] — 0 =def
d

L . page 8

1 Unit element of a complete lattice [L,u,t] — 1 =def
⊔

L . page 8

⊥ Special formula such that for all Val ∈ S, Val(⊥) = 0, wrt a given semantics
S . page 96

∅ Empty Set . page 7

///© Empty L-fuzzy set on a universe U — for every u ∈ U , ///©(u) =def 0 page 12

0 Zero element in the complete lattice
[
L′-Fl (L) ,∩, ·∪] of all L′-fuzzy filters of L —

0(a) = 0, if a 6= 1; 0(a) = 1, if a = 1 (wrt a ∈ L) . page 24

1 Unit element in the complete lattice
[
L′-Fl (L) ,∩, ·∪] of all L′-fuzzy filters of L —

1(a) = 1 for all a ∈ L . page 24

Unary operators

¬ Symbol for logical negation operator . page 42

Binary operators

Du Meet in the complete lattice D = [D, Du, Dt] of degrees of trust or validity . page 53, 59

Dt Join in the complete lattice D = [D, Du, Dt] of degrees of trust or validity . page 53, 59

∩ Set intersection. When applied to fuzzy sets, meet in the complete lattice
[
LU ,∩,∪

]
of all L-fuzzy sets on U — (F ∩ G)(u) =def F (u)u G(u) wrt the complete lattice
L = [L,u,t] . page 12

∪ Set union. When applied to fuzzy sets, join in the complete lattice
[
LU ,∩,∪

]
of all

L-fuzzy sets on U — (F ∪ G)(u) =def F (u)t G(u) wrt the complete lattice
L = [L,u,t] . page 12

∗∪ Join in the lattice of principal fuzzy filters — For P ,P ′ ∈ L′-PFl (L) wrt complete

lattices L = [L,u,t], L′ =
[
L′, f, g

]
, P ∗∪ P ′ =def

(δ(P)gδ(P ′))
α(P) u α(P ′) . . page 26

241

Symbols, Notation, and Glossary of Concepts

·∪ Join in the complete lattice
[
Fl(L),∩, ·∪] of all filters of L —

F ·∪ G =def {c c ∈ L and there are a ∈ F, b ∈ G such that a u b v c}.
Join in the complete lattice

[
L′-Fl (L) ,∩, ·∪] of all L′-fuzzy filters of L —

F ·∪ G =def
⋂{H H ∈ L′-Fl (L) and F ∪ G j H} . page 10, 21

u Lattice meet . page 8

t Lattice join . page 8

→ Symbol for logical implication operator . page 42

∧ Symbol for logical conjunction operator . page 42

∨ Symbol for logical disjunction operator . page 42

Tu Meet in the complete lattice T = [T, Tu, Tt] of truth values . page 43

Tt Join in the complete lattice T = [T, Tu, Tt] of truth values . page 43

Lu Meet in the complete lattice L = [L, Lu, Lt] of labels for logical formulae page 57

Lt Join in the complete lattice L = [L, Lu, Lt] of labels for logical formulae page 57

Equivalence relations

∼= Relation of consistency-equivalence of L-fuzzy sets of formulae, wrt a label lattice L

— for X ,Y ∈ LFrm, X ∼= Y =def cst(X) = cst(Y) . page 79

≡ Relation of semantic equivalence for logical formulae and sets of formulae — for
x, y ∈ Frm, x ≡ y iff for every Val ∈ S, Val(x) = Val(y); for X, Y j Frm,
X ≡ Y iff for every Val ∈ S, T

d
x∈X

Val(x) = T
d

y∈Y

Val(y).

Also used to denote the semantic equivalence of L-fuzzy sets of formulae, wrt a label
lattice L — for X ,Y ∈ LFrm, X ≡ Y =def Mod(X) = Mod(Y) page 49, 79

Partial order relations

Dv Induced partial order of the complete lattice D = [D, Du, Dt] of degrees of trust or
validity . page 59

j Subset relation. When applied to fuzzy sets, induced subset relation of the complete
lattice

[
LU ,∩,∪

]
of all L-fuzzy sets on U —

F j G =def (F (u) v G(u) for every u ∈ U) wrt the complete lattice
L = [L,u,t] . page 12

5 Standard order “less than or equal” of the real numbers . page 20

v Partial order relation induced by a lattice . page 8

b Denotes the relation of being a sublattice . page 9

Tv Induced partial order of the complete lattice T = [T, Tu, Tt] of truth values page 59

Lv Induced partial order (strength) of the complete lattice L = [L, Lu, Lt] of labels for
logical formulae . page 57

242

List of Symbols and Variable Names

Roman letters

c, d, e Denote validity degrees from a complete lattice D . page 61

c Denotes a clause in propositional logic . page 86

DVal Special subset of the set D of degrees of validity in a logic of graded trust — Given
Val ∈ S,
DVal =def

{
d There exists y ∈ Frm such that Val 6|= y and `d Lv X (y)

}
. page 143

D Denotes the set of all degrees of trust or validity.
Also used to denote the set D j T of all designated truth values in many-valued
logic . page 52, 59

d Denotes the usual metric of the real line — d : R×R→ R with
d(r, s) = |r − s| . page 158

F, G, H Denote filters of a lattice . page 9

f Denotes a mapping.
Also used to denote a function symbol in first order predicate logic . . . page 7, 40

h Denotes a lattice homomorphism . page 34

L Denotes the domain of a lattice
Also used to denote the set of all labels . page 8, 57

l Denotes a literal in propositional logic — given a set PV of propositional variables
and a negation symbol ¬, l ∈ PV or there exists p ∈ PV such that l = ¬p page 86

N Denotes a necessity measure on Frm . page 152

n Denotes a natural number from N . page 156

p, q Denote propositional variables . page 42

p Denotes a predicate symbol in first order predicate logic page 41

r, s Denote real numbers from the real unit interval 〈0, 1〉 . page 156

s, t Denote truth values from a complete lattice T . page 43

T Denotes the set of all truth values . page 43

t Denotes a term in first order predicate logic . page 40

U Denotes the universe of a fuzzy set (U is an arbitrary non-empty set).
Also used to denote the domain of an interpretation in first order predicate logic
and PLFC . page 11, 44, 196

u Denotes an element of a universe U . page 11

v, w Denote individual variables of first order predicate logic page 41

X, Y Denote sets of logical formulae . page 49

X≡ Quotient set of the set X of formulae wrt. the relation ≡ of semantic equivalence —
X≡ =def

{
[x] ∩ X x ∈ X

}
. page 50

243

Symbols, Notation, and Glossary of Concepts

x, y, z, x1, x2, . . . Denote logical formulae . page 40

xt A special formula; for every truth value t, it is assumed that there exists a truth
valuation Val t and a formula xt such that Val t (xt) = t (see (3.2)). page 43

xCnf Given x ∈ PFrmS, xCnf ∈ Cnf denotes a formula in conjunctive normal form such that
x ≡ xCnf (which exists by Proposition 4.2.10.1) . page 87

Script letters

` Denotes a label from a label lattice L . page 56

`t Special label corresponding to the principal fuzzy filter 1
t , i. e. `t = `t

1. See
Definition 5.2.1.8 . page 128

`t
d Special label corresponding to the principal fuzzy filter d

t . See
Definition 4.1.3.8 . page 66, 174

`d Special label corresponding to the principal fuzzy filter d0 , i. e. `d = `0
d. See

Definition 5.3.1.8.
Called Doubted to degree d in section 5.5.1 because it represents the degree of
trust d . page 138, 173

`>t Special label called True to more than t. `>t (for t ∈ T \ {1}) corresponds to the

fuzzy filter F defined for t′ ∈ T by F (t′) =def

{
1, if t Tv t′ and t 6= t′

0, if t = t′ or not t Tv t′
. . page 172

`=t Special label called True at least to t. `=t represents the truth value t and is
defined by `=t =def `t

1 . page 171

`AT The strongest label, called Absolutely True. `AT =def `1
1 page 169

`T
d Special label called True with doubt d. `T

d =def `T
Lu `d page 176

`T
=t Special label called True above t. `T

=t =def `T
Lu `=t . page 177

`T Special label called True. `T stands for an exact correspondence between a formula’s
truth value and validity degree and is defined by `T(t) =def t (only applicable if
T = D) . page 175

`U The weakest label, called Unknown. `U =def `1
0 . page 169

T Denotes an operator T : X → PFrm wrt X j Frm . page 50

TCls Denotes a syntax transformation operator TCls : PFrmS → PPFrmS for transforming
into clausal form . page 87

Calligraphic letters (used for fuzzy sets)

A, B Assignments A,B : PV → T of truth values to propositional variables page 43

D Denotes the fuzzy set D : T → D associating with every truth value its degree of
designation, for a given complete lattice T =def [T, Tu, Tt] of truth values and a given
complete lattice D = [D, Du, Dt] of validity degrees . page 54

F , G, H Denote fuzzy sets or fuzzy filters . page 11, 15

244

List of Symbols and Variable Names

F` Fuzzy filter calculated from a label ` for refutation. If F` is in rg ι for the given fuzzy
filter-based logic, ` is said to admit refutation. See Definition 4.3.4 page 100

P Denotes a principal fuzzy filter . page 25

S Denotes a D-fuzzy set on S, for a given complete lattice D of degrees of validity and a
given semantics S . page 93

X , Y, Z Denote L-fuzzy sets of formulae from LFrm . page 74

XCls Given X ∈ LFrm, XCls ∈ LCls denotes an L-fuzzy set of formulae in clausal form such
that X ≡ XCls (which exists by Proposition 4.2.10.5) . page 87

XCnf Given X ∈ LFrm, XCnf ∈ LCnf denotes an L-fuzzy set of formulae in conjunctive normal
form such that X ≡ XCnf (which exists by Proposition 4.2.10.4) page 87

Xfin Denotes a finite L-fuzzy set of formulae, i. e. Xfin : Frm → L such that suppXfin is
finite . page 156

Fraktur letters (used for higher order objects, algebrae and tuples)

B Two-valued Boolean lattice — B =def

[{0, 1} , and, or
]

. page 11

D Lattice D = [D, Du, Dt] (with induced partial order Dv) of degrees of trust or
validity . page 33, 39, 53, 56

F Complete lattice formed by the real unit interval — F =def

[〈0, 1〉 , min, max
]

page 11

I Interpretation [U, Π, Φ] for a first order language
Frm = FOFrm(IV, Func, Ar Func, Pred, Ar Pred, Ω, Ar), where U is an arbitrary
non-empty set, Π : Pred → ⋃ {PUn n ∈ N} such that for every p ∈ Pred,
Π(p) ∈ PUAr Pred(p), and Φ : Func → ⋃{

UUn
n ∈ N

}
such that for every f ∈ Func,

Φ(f) ∈ UUArFunc(f)
.

Also used for interpretations in PLFC (see Definition 5.7.2). page 44, 196

L Denotes a lattice [L,u,t].
Also used for the lattice [L, Lu, Lt] (with induced partial order Lv) of labels for logical
formulae . page 8, 33, 39, 56

S Many-valued semantics for some given set Frm of formulae wrt a given lattice
T =def [T, Tu, Tt] of truth values, defined to be an arbitrary set S j T Frm of valuation
functions Val : Frm → T . page 43

SF
B The semantics of classical Boolean first order predicate logic, where the operator

symbols are interpreted as in Example 3.2.4.1. page 48

SF
F The semantics of Lee’s fuzzy first order logic, where the operator symbols are

interpreted as in Example 3.2.4.2. page 48

SP
B The semantics of classical Boolean propositional logic —

SP
B =def

{
Val A A : PV → {0, 1}}, where the operator symbols are interpreted as in

Example 3.2.4.1. page 48

SP
F The semantics of Lee’s fuzzy propositional logic — SP

F =def

{
Val A A : PV → 〈0, 1〉},

where the operator symbols are interpreted as in Example 3.2.4.2. page 48

245

Symbols, Notation, and Glossary of Concepts

T Lattice T = [T, Tu, Tt] (with induced partial order Tv) of truth values . . page 33, 39, 43

X, Y Denote sets X j LFrm of L-fuzzy sets of formulae . page 76

x, y Denote labelled formulae . page 57

Doublestroke letters

N Set of all natural numbers — N =def {0, 1, . . .} . page 7

R Set of all real numbers . page 7

Greek letters

α A mapping from L′L to L, wrt complete lattices L = [L,u,t], L′ =
[
L′, f, g

]
— for

F ∈ L′L, α(F) =def
d{

b b ∈ L and F (b) 6= 0
}

. α is supposed to yield the parameter
a ∈ L of the principal fuzzy d-filter da , for d ∈ L′ . page 25

∆ Denotes a set of sets of degrees of validity . page 143

δ A mapping from L′L to L′, wrt complete lattices L = [L,u,t], L′ =
[
L′, f, g

]
— for

F ∈ L′L, δ(F) =def
b {F (b) b ∈ L \ {1}}. δ is supposed to yield the parameter d ∈ L′

of the principal fuzzy d-filter da of a ∈ L . page 25

ΓF Denote a mapping which assigns fuzzy sets to fuzzy constant symbols in
PLFC . page 196

ΓI Denote a mapping which assigns individuals to individual constant symbols in
PLFC . page 196

ι Denotes a lattice isomorphism . page 33

Λ Denotes a labelled logic. In this dissertation, a labelled logic is defined by a tuple
containing everything needed for a complete characterisation of the logic. In every
case, this includes a logical language Frm, a semantics S, and a label lattice L.
Most logics also include a truth value lattice T (not in logics of graded trust
assessment) and a validity degree lattice D (not in logics of graded truth assessment).
The following types of logics are defined in this dissertation:
Fuzzy filter-based logics Λ = [Frm, T, S, D,L, ι]. ι is a lattice isomorphism such that T

is expanded to L by D, by means of ι. See Definition 4.1.2.
Logics of graded truth and graded trust assessment Λ =

[
Frm, T, S, D, L, |==

]
. |== is

the (graded) model relation (characterised by axioms). See Definition 4.1.3.
Logics of graded truth assessment Λ =

[
Frm, T, S, L, |=]. |= is the (non-graded) model

relation (characterised by axioms). See Definition 5.2.1.
Logics of graded trust assessment Λ =

[
Frm, S, D, L, |==

]
. |== is the (graded) model

relation (characterised by axioms). See Definition 5.3.1. page 65, 66, 128, 138

ΛL Denotes the labelled logic characterising Lee’s fuzzy logic with truth value-labelled
formulae — ΛL =def

[
PFrmS, F, SP

F, F, L|=
]
. page 135

ΛP Denotes the labelled logic characterizing possibilistic logic with necessity-valued
formulae — ΛP =def

[
PFrmS, SP

B, F, F, P|==
]
. page 151

νD Denotes an order-reversing, involutive mapping on the lattice D of validity degrees. See
Definition 4.3.4 . page 100

246

List of Symbols and Variable Names

νT Denotes an order-reversing, involutive mapping on the lattice T of truth values. See
Definition 4.3.4 . page 100

ν Denotes a complementation on a lattice. page 9

ω Denotes a logical operator symbol . page 40, 41

Ω The set of operator symbols or connectives for logical formulae page 39, 40

ΩS The standard set of logical operator symbols . page 42

Φ∆ For a given set ∆ of sets, Φ∆ denotes the set of all choice functions for ∆, i. e. the set
of all mappings ϕ : ∆ → ⋃

∆ such that for every D ∈ ∆, ϕ(D) ∈ D. page 145

Φ Denotes a set of fuzzy sets.
Also used to denote a mapping which assigns functions to function symbols in first
order predicate logic . page 12, 44

Π Denotes a mapping which assigns fuzzy relations to predicate symbols in first order
predicate logic and PLFC . page 44, 196

ρ Denotes the uniform metric on 〈0, 1〉PV — ρ : 〈0, 1〉PV × 〈0, 1〉PV → R with
ρ(A,B) =def Sup

{
d
(A(p),B(p)

)
p ∈ PV

}
. page 158

σ Denotes an assignment σ : IV → U of elements of the domain to individual variables in
first order predicate logic and PLFC . page 44, 196

ϕω Truth value function ϕω : T Ar(ω) → T associated with operator symbol ω in
propositional logic. page 43

Multiletter names

Ar Func A mapping from Func to N giving the arity of each function in first order
predicate logic . page 40

Ar Pred A mapping from Pred to N giving the arity of each predicate in first order
predicate logic . page 40

Ar A mapping from Ω to N giving the arity of each operator symbol in logical
formulae . page 39, 40

Ar S Defines the arities of the symbols from ΩS . page 42

Cls Denotes the set Cls j PFrmS of all clauses —
Cls =

{∨n
i=1 li n ∈ N, n = 1, l1, . . . , ln ∈ Lit

}
. For convenience, provided the chosen

semantics permits this (compare Example 4.2.1), clauses from Cls are identified with
sets {l1, . . . , ln} of literals . page 86

ClsS Language of all clauses wrt. classical Boolean propositional logic —
ClsS =

{
c c j LitS and c 6= ∅ and c is finite

}
. page 156

Cnf Denotes the set Cnf j PFrmS of all formulae in conjunctive normal form —
Cnf =

{∧n
i=1 ci n ∈N, n = 1, c1, . . . , cn ∈ Cls

}
. page 86

FC The set of fuzzy constants for PLFC . page 195

247

Symbols, Notation, and Glossary of Concepts

FOFrmS The standard language of well-formed formulae of first order predicate logic
— FOFrmS =def FOFrm (IV, Func, Ar Func, Pred, Ar Pred, ΩS, Ar S) page 42

Frm Denotes the set of formulae of the underlying logic of the logic of labelled
formulae . page 39

PFrm Denotes a special set of fuzzy sets of formulae, i. e. PFrm j LFrm page 171

Func The set of function symbols for first order predicate logic page 40

IC The set of individual constants for PLFC . page 195

impG Denotes the binary truth value function on the real unit interval 〈0, 1〉 called Gödel

implication — impG(s, t) =

{
1, if s 5 t

t, if s > t
for s, t ∈ 〈0, 1〉 . page 48

impKD Denotes the binary truth value function on the real unit interval 〈0, 1〉 called
Kleene-Dienes implication — impKD(s, t) = max(1 − s, t) for s, t ∈ 〈0, 1〉 . . page 48

imp L Denotes the binary truth value function on the real unit interval 〈0, 1〉 called
 Lukasiewicz implication — imp L(s, t) = min(1, 1− s + t) for s, t ∈ 〈0, 1〉 page 49

Incons The set of all inconsistent L-fuzzy sets of formulae —
Incons =def

{
X X ∈ LFrm and cst(X) = 0

}
. page 77

InconsL The set of all inconsistent F-fuzzy sets of clauses in Lee’s fuzzy logic with truth
value-labelled formulae —
InconsL =

{
X X ∈ 〈0, 1〉Cls and ∀Val ∈ SP

F : Val 6|= X
}

. page 135

Inconsd
P The set of all F-fuzzy sets of clauses in possibilistic logic with necessity-valued
formulae which are at least d-inconsistent —
Inconsd

P =
{
X X ∈ 〈0, 1〉ClsS and ∀d′ > d : CUTd′(X) ∈ SatB

}
. page 162

InconsP The set of all inconsistent F-fuzzy sets of clauses in possibilistic logic with
necessity-valued formulae —
InconsP =

{
X X ∈ 〈0, 1〉Cls and sup

{
d CUTd(X) /∈ SatB

}
= 1
}

. page 153

IV The set of individual variables for first order predicate logic page 40

LClsS The set of all labelled clauses wrt. ClsS and the label set 〈0, 1〉 page 156

LFrm The set of all labelled formulae, for a given set Frm of formulae and a given label
lattice L . page 57

Lit Set of all literals in propositional logic, wrt a set PV of propositional variables and a
negation symbol ¬ — Lit =def PV ∪ {¬p p ∈ PV} . page 86

LitS Set of all literals wrt. classical Boolean propositional logic —
LitS = PV ∪ {¬p p ∈ PV} . page 156

PFrmS The standard language of well-formed formulae of propositional logic —
PFrmS =def PFrm(PV, ΩS, Ar S) . page 42

Pred The set of predicate symbols for first order predicate logic page 40

248

Notation

PV The set of propositional variables for propositional logic page 39

Sat The set of all satisfiable sets of formulae in two-valued logic —
Sat =def

{
X X j Frm and ∃Val ∈ S such that Val |= X

}
. page 140

SatB The set of all satisfiable sets of clauses in two-valued logic —
SatB =def

{
C C j Cls and ∃Val ∈ SP

B such that Val |= C
}

. page 153

Taut The set of all tautologies — Taut =def

{
x x ∈ Frm and taut(x) = 1

}
. page 51

TautB The set of all tautologies wrt. Cls and SP
B —

TautB =
{
c c ∈ Cls∃p ∈ PV : {p,¬p} j c

}
. page 153

TautF The set of all tautologies wrt. Cls and SP
F — TautF = ///© page 135

Val Truth valuation function Val : Frm → T , wrt a set Frm of formulae and a given
lattice T =def [T, Tu, Tt] of truth values . page 43

Val A Valuation function induced by assignment A in propositional logic. page 43

Val t A special truth valuation function ; for every truth value t, it is assumed that there
exists a truth valuation Val t and a formula xt such that Val t (xt) = t (see
(3.2)). page 43

Val I Valuation function induced by interpretation I in first order predicate logic and
PLFC. page 44, 196

Valid The set of all valid L-fuzzy sets of formulae —
Valid =def

{
X X ∈ LFrm and valid(X) = 1

}
. page 77

ValidL The set of all valid F-fuzzy sets of clauses in Lee’s fuzzy logic with truth
value-labelled formulae —

ValidL =

{
X X ∈ 〈0, 1〉Cls and ∀c ∈ Cls :

if X (c) > 0 , then X (c) 5 1
2 and ∃p ∈ PV : {p,¬p} j c

}
. page 135

Validd
P The set of all F-fuzzy sets of clauses in possibilistic logic with necessity-valued
formulae which are at least d-valid —
Validd

P =
{
X X ∈ 〈0, 1〉ClsS and ∀d′ > 1 − d : CUTd′(X) j TautB

}
. page 160

ValidP The set of all valid F-fuzzy sets of clauses in possibilistic logic with necessity-valued
formulae — ValidP =

{
X X ∈ 〈0, 1〉Cls and suppX j TautB

}
. page 153

Notation

Miscellaneous

D
d

M Greatest lower bound in the complete lattice D = [D, Du, Dt] of validity degrees. page 61

D
⊔

M Least upper bound in the complete lattice D = [D, Du, Dt] of validity degrees. . . page 61⋂
Φ Greatest lower bound in the complete lattice

[
LU ,∩,∪

]
of all L-fuzzy sets on U , wrt

the complete lattice L = [L,u,t], where Φ j LU . page 12

249

Symbols, Notation, and Glossary of Concepts

⋃
Φ Least upper bound in the complete lattice

[
LU ,∩,∪

]
of all L-fuzzy sets on U , wrt

the complete lattice L = [L,u,t], where Φ j LU . page 12

·⋃Φ Least upper bound in the complete lattice
[
L′-Fl (L) ,∩, ·∪] of all L′-fuzzy filters of L

— ·⋃Φ =
⋂{H H ∈ L′-Fl (L) and

⋃
Φ j H}, where Φ j L′-Fl (L). page 22

d
M Greatest lower bound (in some partially ordered set [L,v]) of M j L. page 8⊔
M Least upper bound (in some partially ordered set [L,v]) of M j L. page 8

c
M Greatest lower bound in the complete lattice L′ =

[
L′, f, g

]
, where M j L′. . page 21

b
M Least upper bound in the complete lattice L′ =

[
L′, f, g

]
, where M j L′. . . . page 22∧n

i=1 xi Denotes an iterated conjunction wrt classical propositional syntax —∧n
i=1 xi =

((
. . . (x1 ∧ x2) ∧ . . .

) ∧ xn

)
. page 86∨n

i=1 xi Denotes an iterated disjunction wrt classical propositional syntax —∨n
i=1 xi =

((
. . . (x1 ∨ x2) ∨ . . .

) ∨ xn

)
. page 86

T
d

M Greatest lower bound in the complete lattice T = [T, Tu, Tt] of truth values. page 49

L
⊔

Φ Least upper bound in the complete lattice L = [L, Lu, Lt] of labels. page 61

l Denotes the complement of a literal l ∈ Lit —

l =def

{
¬l if l ∈ PV
p if l = ¬p and p ∈ PV

. page 86

da Principal fuzzy d-filter on a lattice L = [L,u,t] of a ∈ L wrt a lattice L′ =
[
L′, f, g

]
and d ∈ L′ — da (b) = 1, if b = 1; da (b) = d, if b 6= 1 and a v b;
da (b) = 0, if not a v b (wrt b ∈ L). page 16

a Principal filter in a lattice [L,u,t] of a ∈ L — a =def {b b ∈ L and a v b}. . page 9

˜̀ Label calculated from a given label ` for refutation (if ` admits refutation). See
Definition 4.3.4. page 100

Brackets (used for equivalence classes and tuples)

[x] Equivalence class of the formula x wrt. the relation ≡ of semantic equivalence —
[x] =def {y y ∈ Frm and x ≡ y}. page 50

[a, b] Ordered pair of a and b. page 7

[L, v] Partially ordered set with domain L and partial order relation v. page 8

[L, u, t] Lattice with domain L, meet u, and join t. page 8[
L′-Fl (L) , ∩, ·∪] Lattice of all L′-fuzzy filters of L. page 21[
Fl(L), ∩, ·∪] Lattice of all filters of L. page 10[
P(L′, L), ∩, ·∪] Denotes the sublattice of

[
L′-Fl (L) ,∩, ·∪] generated by

L′-PFl (L). page 32

250

Notation

[
PFl(L), ∩, ·∪] Lattice of all principal filters of L. page 10[
L′-PFl (L) , ∩, ∗∪] Lattice of all principal L′-fuzzy filters of L. page 26[
LU, ∩, ∪

]
Complete lattice of all L-fuzzy sets on U , wrt the complete lattice

L = [L,u,t]. page 12[
Frm, S, D, L, |==

]
A logic of graded trust assessment with logical language Frm, semantics

S, validity degree lattice D, and label lattice L. |== is the (graded) model relation
(characterized by axioms). See Definition 5.2.1. page 138

[Frm, T, S, D, L, ι] A fuzzy filter-based logic with logical language Frm, truth value lattice T,
semantics S, validity degree lattice D, and label lattice L. ι is a lattice isomorphism
such that T is expanded to L by D, by means of ι. See Definition 4.1.2. page 65[

Frm, T, S, D,L, |==
]

A logic of graded truth and graded trust assessment with logical
language Frm, truth value lattice T, semantics S, validity degree lattice D, and label
lattice L. |== is the (graded) model relation (characterised by axioms). See
Definition 4.1.3. page 66[

Frm, T, S, L, |=] A logic of graded truth assessment with logical language Frm, truth value
lattice T, semantics S, and label lattice L. |= is the (binary) model relation
(characterized by axioms). See Definition 5.2.1. page 128[〈0, 1〉 , d
]

Metric space of truth values, with d(r, s) = |r − s|. page 158[
〈0, 1〉PV , ρ

]
Metric space of assignments, with

ρ(A,B) =def Sup
{

d
(A(p),B(p)

)
p ∈ PV

}
. page 158

[x, `] Labelled formula consisting of the formula x and the label `. page 52, 57

Parentheses (used for intervals of real numbers)

(r, s) Open Interval of all real numbers t ∈ R with r < t < s. page 7

(r, s〉 Half-Open Interval of all real numbers t ∈ R with r < t 5 s. page 7

〈r, s) Half-Open Interval of all real numbers t ∈ R with r 5 t < s. page 7

〈r, s〉 Closed Interval of all real numbers t ∈ R with r 5 t 5 s. page 7

〈0, 1〉 Real unit interval. page 11

Expressions involving variables

PS Power set of the set S — PS =def

{
S ′ S ′ j S

}
. page 7

F(u) The membership degree of u in the fuzzy set F . page 11

S |−|− x Denotes that the labelled formula x ∈ LFrm is a semantic consequence of the
D-fuzzy set S of valuation functions, for a given set S of valuation functions and
complete lattice D = [D, Du, Dt] of degrees of validity such that S ∈ DS —
S |−|− x iff S j Mod(x). page 94

251

Symbols, Notation, and Glossary of Concepts

S
P

|−|−− [x, d] Denotes that the necessity-labelled formula [x, d] is a semantic consequence
of the F-fuzzy set S of valuations in possibilistic logic with necessity-valued formulae
— S P|−|−− [x, d] iff for every Val ∈ SP

B, if Val 6|= x, then S(Val) 5 1 − d. page 152

X |−|− x Denotes that the labelled formula x is a semantic consequence of the L-fuzzy
set X of formulae, for a given set of formulae Frm and complete lattice L = [L, Lu, Lt]
of labels such that x ∈ LFrm and X ∈ LFrm — X |−|− x iff Mod(X) j Mod(x). page 88

X
L

|−|−− [x, t] Denotes that the truth-value labelled formula [x, t] is a semantic consequence
of the F-fuzzy set X of formulae in Lee’s fuzzy logic with truth value-labelled formulae
— X L|−|−− [x, t] iff ∀Val ∈ SP

F, if Val L|= X , then Val L|= [x, t]. page 135

X
P

|−|−− [x, d] Denotes that the necessity-labelled formula [x, d] is a semantic consequence
of the F-fuzzy set X of formulae in possibilistic logic with necessity-valued formulae —
X P|−|−− [x, d] iff d 5 sup

{
d d ∈ 〈0, 1〉 and CUTd(X) |−|− x

}
. page 152

X ∩ X Given X ∈ LFrm and X j Frm, X ∩ X denotes the L-fuzzy set of formulae derived
from X by ‘intersecting’ it with X — X ∩ X = X \ (Frm \ X

)
. page 81

X \ X Given X ∈ LFrm and X j Frm, X \ X denotes the L-fuzzy set of formulae derived
from X by ‘removing’ all elements of X — for x ∈ Frm,

(X \ X
)

(x) = 0, if x ∈ X ;(X \ X
)

(x) = X (x), if x /∈ X . page 81

D(L) Dual of the lattice L — D
(
[L,u,t]

)
=def [L,t,u]. page 8

F (L) Denotes the dual lattice D
([

Fl(L),∩, ·∪]) =
[
Fl(L), ·∪,∩] of the complete lattice

structure
[
Fl(L),∩, ·∪] for filters of L described in Observation 1.3.1. The induced

partial order of this lattice is the superset relation k. page 34

FF (L) Denotes the dual lattice D
([

L-Fl (L) ,∩, ·∪]) =
[
L-Fl (L) , ·∪,∩] of the complete

lattice structure
[
L-Fl (L) ,∩, ·∪] for L-fuzzy filters of L established in Theorem 2.2.1.

The induced partial order of this lattice is the superset relation k for L-fuzzy
sets. page 34

P(L′, L) Denotes the smallest subset of L′-Fl (L) which contains L′-PFl (L) and is closed
wrt. the lattice operations of

[
L′-Fl (L) ,∩, ·∪] —

P(L′, L) =def
⋂{

Φ L′-PFl (L) j Φ and [Φ,∩, ·∪] b
[
L′-Fl (L) ,∩, ·∪]}. page 32

σv:=u For a given assignment σ : IV → U , an individual variable v ∈ IV and an element
u ∈ U of the domain, σv:=u denotes the assignment given for w ∈ IV by

σv:=u(w) =def

{
u, if w = v

σ(w), if w 6= v.
. page 44

f : S → T Denotes that f is a mapping from the set S into the set T page 7

M[c,r] The set of all satisfying assignments for the labelled clause [c, r] in Lee’s fuzzy logic

with truth values as labels — M[c,r] =
{
A A ∈ 〈0, 1〉PV and Val A L|= [c, r]

}
. page 158

T S Set of all mappings from the set S into the set T — T S =def {f f : S → T}. . . page 7

X |−|− x Denotes that the formula x is a semantic consequence of the set X of formulae,
for a given set of formulae Frm such that x ∈ Frm and X j Frm —
X |−|− x iff ∀Val ∈ S, if Val |= X , then Val |= x. page 140

252

Notation

Y 5 X Denotes that X is a semantic covering of Y — for every y ∈ Y , there exists x ∈ X
such that y ≡ x. page 50

Expressions involving multiletter names

Cons(S) Denotes the L-fuzzy set of consequences of the D-fuzzy set S of valuation
functions, for a given set S of valuation functions and complete lattice D = [D, Du, Dt]
of degrees of validity such that S ∈ DS —
Cons(S) =

⋃{
x x ∈ LFrm and S |−|− x

}
. page 94

Cons(X) Denotes the L-fuzzy set of consequences of the L-fuzzy set X of formulae, for a
given set of formulae Frm and complete lattice L = [L, Lu, Lt] of labels such that
X ∈ LFrm — Cons(X) =

⋃{
x x ∈ LFrm and X |−|− x

}
. page 88

ConsL(X) Denotes the F-fuzzy set of consequences of the F-fuzzy set X of formulae in
Lee’s fuzzy logic with truth value-labelled formulae —
ConsL(X)(x) = sup

{
t t ∈ 〈0, 1〉 and X L|−|−− [x, t]

}
. page 135

ConsP(S) Denotes the F-fuzzy set of consequences of the F-fuzzy set S of valuations in
possibilistic logic with necessity-valued formulae —
ConsP(S)(x) = inf

{
1 − S(Val) Val ∈ SP

B and Val 6|= x
}

. page 152

ConsP(X) Denotes the F-fuzzy set of consequences of the F-fuzzy set X of formulae in
possibilistic logic with necessity-valued formulae —
ConsP(X)(x) = sup

{
d d ∈ 〈0, 1〉 and CUTd(X) |−|− x

}
. page 152

cst(X) Consistency index of the L-fuzzy set X of formulae —
cst(X) =def D

⊔{
Mod(X)(Val) Val ∈ S

}
. page 77

cstP(X) Consistency index of the F-fuzzy set X of clauses in possibilistic logic with
necessity-valued formulae — cstP(X) = inf

{
d CUT1−d(X) /∈ SatB

}
. page 153

CUTa(F) a-cut of the fuzzy set F ∈ LU , for a ∈ L —
CUTa(F) =def

{
u u ∈ U and a v F (u)

}
. page 12

L′-Fl (L) Set of all L′-fuzzy filters of the lattice L. page 15

Fl(L) Set of all filters of the lattice L. page 9

FOFrm(IV, Func, Ar Func, Pred, Ar Pred, Ω, Ar) The language of all well-formed
formulae of first order predicate logic wrt the sets IV, Func, Pred, Ω and the
mappings Ar, Ar Func, Ar Pred . page 40

inc(X) Inconsistency distribution of the L-fuzzy set X of formulae —
inc(X) =def Cons(X)(⊥), where for all Val ∈ S, Val(⊥) = 0. page 96

incP(X) Inconsistency index of the F-fuzzy set X of clauses in possibilistic logic with
necessity-valued formulae — incP(X) = 1 − cstP(X). page 153

Ind(t, I, σ) The individual associated with the term t by the interpretation I of first order
logic and the assignment σ of individuals to individual variables. page 45

Mod(X) The D-fuzzy set Mod(X) ∈ DS of models of X , for X ∈ LFrm — for Val ∈ S and
d ∈ D, Mod(X)(Val) = d =def Val d|== X . page 75

253

Symbols, Notation, and Glossary of Concepts

ModP(X) The F-fuzzy set ModP(X) ∈ 〈0, 1〉SP
B of models of X , for X ∈ 〈0, 1〉PFrmS — for

Val ∈ SP
B and d ∈ 〈0, 1〉,

Mod(X)(Val) = inf
{

1 − X (x) x ∈ Frm and Val 6|= x
}

. page 151

PFl(L) Set of all principal filters of the lattice L. page 9

L′-PFl (L) Set of all principal fuzzy filters of the lattice L. page 16

L′-PFl (a) Set of all principal L′-fuzzy filters of a ∈ L, wrt lattices L = [L,u,t],
L′ =

[
L′, f, g

]
— L′-PFl (a) =def

{
da d ∈ L′

}
. page 31

d-PFl (L) Set of all principal fuzzy d-filters of the lattice L. page 16

PFrm(PV, Ω, Ar) The language of all well-formed propositional formulae wrt the sets PV,
Ω and the mapping Ar. page 40

PLFCFrm(IV, IC, FC, Pred, Ar Pred) The language of all well-formed formulae of
PLFC wrt the sets IV, IC, FC, Pred and the mapping Ar Pred page 195

rg f Denotes the range of the mapping f : S → T , for sets S, T —
rg f =

{
t t ∈ T and ∃s ∈ S : t = f(s)

}
. page 7

sat(x) Satisfiability index of the formula x — sat(x) =def T
⊔{

Val(x) Val ∈ S
}

. page 51

supp F Support of an L-fuzzy set F ∈ LU — suppF =def

{
u u ∈ U and F (u) 6= 0

}
. F is

said to be finite iff suppF is finite. page 13

taut(x) Tautology index (or inherent truth) of the formula x —
taut(x) =def T

d{
Val(x) Val ∈ S

}
. page 51

Term(IV, Func, Ar Func) The language of all well-formed terms in first order predicate
logic wrt the sets IV, Func and the mapping Ar Func . page 40

Val(x, I, σ) The truth value associated with the first order formula (or PLFC formula) x
by the interpretation I of first order logic (or PLFC) and the assignment σ of
individuals to individual variables. page 45, 196

Val |= X Denotes that Val is a model for the L-fuzzy set of formulae X in a logic of graded
truth assessment — Val |= X iff ∀x ∈ Frm : Val |= [x,X (x)

]
. See (5.11). . . page 131

Val |= [x, `] Denotes that Val is a model for the labelled formula [x, `] in a logic of graded
truth assessment, for a given semantics S such that Val ∈ S and a set of L-labelled
formulae LFrm such that [x, `] ∈ LFrm. In logics of graded truth assessment, validity
degrees are neglected, so the model relation is a binary one. See section 3.4.1 for a
motivation and section 5.2 (esp. equation (5.1)) for a formal definition and systematic
study. page 52, 128

Val |= X Denotes that Val is a model for the set X of formulae —
Val |= X iff ∀x ∈ X, Val |= x. See Definition 5.3.2. page 140, 171

Val |= x Denotes that the valuation Val is a model for the formula x, for a given semantics
S such that Val ∈ S and a set of formulae Frm such that x ∈ Frm. Several
definitions for |= are discussed in section 3.4.1. See also Definition 5.3.2. page 51, 140

254

Glossary of Concepts

Val L|= X Denotes that Val is a model for the F-fuzzy set of formulae X in Lee’s fuzzy logic
with truth value-labelled formulae — Val L|= X iff ∀x ∈ PFrmS : X (x) 5 Val(x). See
(5.28). page 135

Val L|= [x, t] Denotes that Val is a model for the labelled formula [x, t] in Lee’s fuzzy logic
with truth value-labelled formulae — Val L|= [x, t] iff t 5 Val(x). See (5.27). page 135

Val P
d′|== [x, d] Denotes that Val is a model for the labelled formula [x, d] to the degree d′,

in possibilistic logic with necessity-valued formulae —

Val P
d′|== [x, d] iff d′ =

{
1, if Val |= x

1 − d, if Val 6|= x
. See (5.27). page 151

Val P
d

|== X Denotes that Val is a model for the F-fuzzy set of formulae X to the degree d, in
possibilistic logic with necessity-valued formulae —
Val P

d|== X iff d = inf
{

1 −X (x) x ∈ Frm and Val 6|= x
}

. See (5.85). page 151

Val
d

|== x Denotes that the valuation Val is a model for the formula x to the degree d, for a
given semantics S such that Val ∈ S, a set of formulae Frm such that x ∈ Frm and
a given complete lattice D = [D, Du, Dt] of validity degrees such that d ∈ D.
Note that in this dissertation, a graded model relation is usually defined on labelled
formulae. Possibilities of defining a graded model relation for non-labelled formulae
are briefly discussed in section 3.4.2 (levels 1′ and 2′). page 54

Val
d

|== X Denotes that Val is a model for the L-fuzzy set X of formulae to the degree d,
for a given semantics S such that Val ∈ S, a set of formulae Frm, a label lattice
L = [L, Lu, Lt] such that X ∈ FrmL and a given complete lattice D = [D, Du, Dt] of
validity degrees such that d ∈ D — Val d|== X holds iff
d = D

d{
d′ x ∈ Frm and Val d′|==

[
x,X (x)

]}
. page 74

Val
d

|== [x, `] Denotes that the valuation Val is a model for the labelled formula [x, `] to
the degree d, for a given semantics S such that Val ∈ S, a set of L-labelled
formulae LFrm such that [x, `] ∈ LFrm and a given complete lattice D = [D, Du, Dt] of
validity degrees such that d ∈ D. When Val d|== [x, `] holds is defined on the basis of
fuzzy filters in Definition 4.1.1 and by logical axioms in Definition 4.1.3. See also
section 3.4.2 for motivating remarks. page 55, 59, 66

Val 6|= [x, `] Denotes that Val is not a model for the labelled formula [x, `] in a logic of
graded truth assessment. Compare (5.1). page 128

Val 6|= x Denotes that Val is not a model for the formula x in a two-valued logic. Compare
Definition 5.3.2. page 140

valid(X) Validity index (or inherent validity) of the L-fuzzy set X of formulae —
valid(X) =def D

d{
Mod(X)(Val) Val ∈ S

}
. page 77

validP(X) Validity index (or inherent validity) of the F-fuzzy set X of clauses in possibilistic
logic with necessity-valued formulae —
validP(X) = inf

{
d CUT1−d(X) " TautB

}
. page 153

Glossary of Concepts

255

Symbols, Notation, and Glossary of Concepts

Expansion Given two lattices L1 = [L1,u,t], L2 = [L2, f, g], an expansion of L1 by L2 is a
lattice isomorphic to a lattice between the L2-fuzzy principal filters of L1 and the
L2-fuzzy filters of L1. That means L3 is an expansion of L1 by L2 iff there exists a
lattice L′

3 isomorphic with L3 such that
[
P(L2, L1), ·∪,∩] b L′

3 b
[
L2-Fl (L1) , ·∪,∩].

See Definition 2.3.1 . page 33

Filters of a lattice For a lattice [L,u,t], filters are defined to be nonempty subsets F of L

such that for all a, b ∈ L, a, b ∈ F iff a u b ∈ F . (See Definition 1.3.2) page 9

First Order Predicate Logic The most common logical language, where formulae may
contain individual variables, function symbols, predicate symbols, and furthermore
logical operator symbols and quantifiers, and where semantics consist of valuations
induced by interpretations which fix a domain for individuals and assign functions on
the domain to function symbols and (many-valued) predicates on the domain to
predicate symbols. See Example 3.1.2 and Example 3.2.2 . page 40

Formulae The formal language of a logic. The structural description of the set of all
formulae is called syntax. In this dissertation, the set Frm of all formulae is assumed
to be given as an arbitrary nonempty set. page 39

Fuzzy filters of a lattice For two lattices L = [L,u,t], L′ =
[
L′, f, g

]
, L′-fuzzy filters of L

are defined to be L′-fuzzy sets F on L such that F (1) = 1 and for all a, b ∈ L,
F (a) f F (b) = F (au b). (See Definition 2.1.1) . page 15

Fuzzy set A mapping F : U → L from a universe U to the set L of degrees of membership,
with respect to a given complete lattice L = [L,u,t]. F is said to be an L-fuzzy set;
for some u ∈ U , the value F (u) is said to be the degree of membership of u in F . (See
section 1.4) . page 11

Labelled Formulae In this dissertation, usually labelled formulae are considered, i. e.
formulae from a given many-valued logic augmented by a label which assesses the
validity of the formula. Consequently, all the significant logical concepts like model
and semantic consequence are formulated wrt L-fuzzy sets of formulae, for a given
complete lattice L of labels. A labelled formula x is a special L-fuzzy set of formulae
the support of which is a one-element set. It is identified with the ordered pair[
x, x(x)

]
, where x is the (single) formula in the support of x. page 57

Lattice A triple [L,u,t] with a non-empty set L (domain) and two binary operations u,t
(meet and join) such that u,t are commutative and associative and fulfil the
absorption laws (see Definition 1.3.1). page 8

Logic An ambiguous term used with many meanings in this dissertation. In the most formal
sense, a logic is an arbitrary nonempty set Frm (called formulae) together with an
arbitrary closure operator Cons (called semantic consequence) on this set. In the
most colloquial sense, a logic is any formal system in which somehow true statements
can be derived from other true statements. A logic is called fuzzy if the truth of
statements or the validity of their derivation are subject to vagueness or uncertainty.
In this dissertation, two notions of logic are distinguished. The underlying logic of all
logical systems considered here is a usual many-valued logic (two-valued in special
cases), but semantic consequence in the underlying logic is not studied. Instead, upon
the underlying logic a labelled logic is defined in which formulae of the underlying logic
are paired with labels. Semantic consequence always refers to labelled formulae. See

256

Glossary of Concepts

also Syntax, Semantics, Formulae, Labelled Formulae, Model, Semantic
Consequence. See chapter 3 . page 39

Model In this dissertation, the model relation is the most basic high level logical concept, on
which the semantic consequence operator is based. Intuitively, a valuation is said to
be a model of a formula (or satisfy a formula) iff the formula is true under this
valuation. In this dissertation, this definition is fuzzified in two ways. First, a formula
can be many-valued, which means there might be a range of truth values for which the
formula is considered to be satisfied by the valuation, and secondly, satisfaction can be
given by degree, so that different truth values lead to different degrees of satisfaction
(or modelness) of the given valuation for the formula. A correspondence between truth
values being attained by the formula and degrees of satisfaction is given by the label of
a labelled formula. As a conclusion, in this thesis, the model relation is a ternary one
between the set S of valuations, the set LFrm of labelled formulae and the set D of
degrees of validity. page 59

PLFC Possibilistic logic with fuzzy constants (PLFC) is a labelled logic where the underlying
logic is a special variant of many-valued first order logic and the labels are necessity
degrees. PLFC is studied in several publications by Sandra Sandri and
others [1, 29]. page 195

Propositional Logic One of the simplest logics, where formulae consist only of propositional
variables and operator symbols, and where semantics consist of valuations induced by
assignments of truth values to propositional variables. See Example 3.1.1 and
Example 3.2.1 . page 39

Semantic Consequence The central semantic concept of any logic. Formally, a closure
operator on the set of all logical formulae. Intuitively, allows to derive true
statements from other true statements. In this dissertation, the semantic consequence
relation is applied to labelled formulae, where the label with which a labelled
formula follows from an L-fuzzy set of formulae is an indicator for the strength (of a
constraint on truth and validity of the formula) with which the formula is a
consequence of the knowledge expressed by the L-fuzzy set of formulae. page 88

Semantics Intuitively, the semantics of a logic have to give meaning to the formulae.
Ultimately, the definition of semantics has to provide a basis for the definition of the
central semantic concept of semantic consequence. In this dissertation, the
semantics are given by explicitly defining a set S of valuation functions Val : Frm → T ,
for a given lattice T =def [T, Tu, Tt] of truth values. See section 3.2 page 43

Syntax The syntax of a logic describes the structure of logical formulae. In this
dissertation, the syntax is given by explicitly defining the set Frm of formulae. See
section 3.1 . page 39

257

Symbols, Notation, and Glossary of Concepts

258

Index

Symbols
0 . see Lattice, Zero element

1 . see Lattice, Unit element

Du see Labelled logics, Validity degrees, Meet

Dt see Labelled logics, Validity degrees, Join
Dv . see Labelled

logics, Validity degrees, Induced partial order

∩ see Fuzzy Sets, complete lattice of ˜, meet

∪ see Fuzzy Sets, complete lattice of ˜, join
da see Lattice, principal fuzzy d-filter

j . see Fuzzy Sets,

complete lattice of ˜, induced partial order

·∪ . see Lat-

tice, Filters, complete lattice of ˜, join, see
Lattice, Fuzzy filters, complete lattice of ˜, join

Λ . see Labelled logic

ΛL see Labelled logic, Lee’s

fuzzy logic with truth value-labelled formulae

ΛP . see Labelled logic, pos-

sibilistic logic with necessity-valued formulae

u . see Lattice, meet

t . see Lattice, join

v see Lattice, Induced partial order relation

Ω see Logical Formulae, Connec-

tives, see Logical Formulae, Operator symbols

ΩS . see Logical for-

mulae, Standard set of logical operator symbols

Tu see Labelled logics, Truth values, Meet
Tt see Labelled logics, Truth values, Join
Tv . see Labelled

logics, Truth values, Induced partial order

Lu see Labelled formulae, Labels, meet
Lt see Labelled formulae, Labels, join
Lv . see La-

belled formulae, Labels, induced partial orderd
M see Partially ordered set, greatest lower bound⊔
M . . see Partially Ordered Set, least upper bound∧n
i=1 xi see Formulae, Iterated conjunction∨n
i=1 xi see Formulae, Iterated disjunction

⊥ . see Formulae, Insatisfiable

∩ . see Set intersection
∼= . . see Labelled Formulae, Consistency-equivalence

∪ . see Set union

[x] . see For-

mulae, Semantic equivalence, Equivalence class

≡ see Formulae, Semantic equivalence,
see Labelled Formulae, Semantic equivalence

F` . see Refutation

[L,u,t] . see Lattice[
Frm, S, D, L, |==

]
. see La-

belled logics, Logics of graded trust assessment

[Frm, T, S, D, L, ι] .
. see Labelled logics, Fuzzy filter-based logics[

Frm, T, S, D, L, |==
]

. see Labelled logics, Log-

ics of graded truth and graded trust assessment[
Frm, T, S, L, |=] . see La-

belled logics, Logics of graded truth assessment[〈0, 1〉 , d] see Metric space, of truth values[
〈0, 1〉PV

, ρ
]

. see Metric space, of assignments

5 . see Real Numbers,

usual order, see Formulae, Semantic covering

[x, `] . see Labelled formula

→ . see Implication

∧ . see Conjunction

∨ . see Disjunction

¬ . see Negation

ν . see Lattice, complementation

νD . see Refutation

νT . see Refutation

ω see Logical formulae, operator symbol

a . see Lattice, principal Filter

[L,v] . see Partially ordered set˜̀ . see Refutation

ρ . see Metric, on 〈0, 1〉PV

b . see Lattice, sublattice

j . see Subset relation

ϕω . see Op-

erator symbol, Associated truth value function

f see First Order Logic, Function symbol

n-fold Cartesian product . 7
(r, s) . see Open Interval

(r, s〉 . see Half-Open Interval

〈r, s) . see Half-Open Interval

〈r, s〉 . see Closed Interval

[a, b] . see Ordered pair

∅ . see Empty Set

///© . see Empty Fuzzy Set

1 . see Lattice, Fuzzy

Filters, complete lattice of ˜, Unit element

∗∪ . . . see Lattice, Principal fuzzy filters, lattices of ˜

259

Index

0 . see Lattice, Fuzzy

Filters, complete lattice of ˜, Zero element

|−|− see Semantic Consequence

Relation, see Semantic consequence relation

L|−|−− . see
Lee’s fuzzy logic with truth value-labelled

formulae, Semantic consequence relation

P|−|−− . see Possibilistic logic with necessity-valued

formulae, Semantic consequence relation

|== see Labelled logics, Model relation

|= see Model Relation, see Model relation
L|= see Lee’s fuzzy logic with

truth value-labelled formulae, Model relation
P|== . see Possibilistic logic

with necessity-valued formulae, Model relation

6|= . see Model relation, negated

A
A see Propositional Logic, Assignment

Absolutely True 169–171, 244
Absorption laws . 8
Admit refutation . 100
ambiguous . 56
Approximately truer than 0.9. viii, 184
Ar . . see Logical Formulae, Operator symbols, Arity

Ar see Formulae, Operator Symbol, Arity

Arity see Formulae, Operator Symbol, Arity

Arity . 39, 40
Ascending . 145
Assignment . 43
Assignments . 44
Associative . 8
Atomic boolean algebra . 146
Atomic formula . 41
Automated Deduction 210–224

Inference Rules see Inference Rules

Normal Forms see Normal Forms

Refutation . 223
Resolution-based Derivation

. see Resolution-based Derivation

B
B see Two-Valued Boolean lattice

B . see Lattice, Boolean

Baldwin . 56
J. Baldwin . 2
J. F. Baldwin . 20, 175, 206
Base . 174
Bold conjunction . 220
Boole 9, 11, 34, 35, 47, 48, 60, 115, 116,

118, 119, 132, 150, 152, 228, 245, 247, 248
Boolean algebra . 9, 115
Boolean Lattice see Lattice, Boolean

C
c . see Labelled

logics, Validity degree, see Formulae, Clause

J. L. Castro . 133
Chain . 9
Chang . 48
C. C. Chang . 55
C. L. Chang . 135, 176
Characterised by refutation 100
Choice functions . 145
Clause . 86
Clauses . see Formulae, Clauses

Closed . 91
Closed interval . 7
Cls . see Formulae, Clauses

Cls . see Formulae, Clauses

ClsS see Propositional logic,

Clauses, see Propositional logic, Literals

Cnf see Formulae, in conjunctive normal form

Cnf see Formulae, in Conjunctive Normal Form

P. M. Cohn . 33
Commutative . 8
Compact . 156
Complement . 86, 110
Complementary . 9
Complementary lattice . 110
Complementation . 9
Complete . 213
Completely distributive . 9
Completeness . 8
Composite labels . 175
Compositional . 192
Compositionality . 192–193
Conjunctive Normal Form

. . see Formulae, in Conjunctive Normal Form

Conjunctive normal form . 86
Connectives . 39, 40
Cons see Fuzzy set of consequences

Consistency Index 77–79, 96–99, 107, 131, 141,
148, 149, 153, 161, 228, 242, 248, 253, 260

Consistency index . 77
Consistency-equivalent . 79
Consistent . 77
ConsL . . . see Lee’s fuzzy logic with truth value-

labelled formulae, Fuzzy set of consequences

ConsL see Possibilistic logic with necessity-

valued formulae, Fuzzy set of consequences

G. de Cooman . 47
Gert de Cooman . 150
cst(X) . . . see Labelled Formulae, Consistency index

cst . see Consistency Index

cstP(X) . see La-

belled Formulae, Consistency index, in pos-

sibilistic logic with necessity-valued formulae

CUTa . see Fuzzy Set, cut

cut . 16
cut . 12

260

D
D . . see Many-valued logic, Designated truth values

D . see Many-

valued logic, Fuzzy designated truth values

D see Labelled logics, Validity degrees

D . see Lattice, Dual

d . see Labelled log-

ics, Validity degree, see Metric, on the real line

D-fuzzy set of models . 75
De Morgan algebra . 85
degree of belief . iii
Degree of membership . 11
Degrees of Trust see Labelled logics, Validity degrees

Degrees of Validity .
. see Labelled logics, Validity degrees

De Morgan’s laws . 85
Dempster . 1, 201
Dempster-Shafer uncertainty measures . . 201
Derivable . 212
Designated Truth Values . 52
Dienes viii, 48, 188, 197, 248
Distributive . 8, 85
Domain . 8, 44, 196
Doubted to degree d 170, 173, 244
d-PFl (L) see Lattice, principal fuzzy filters of

Dual . 8
Dual Lattice . see Lattice, Dual

Dubois . 206
D. Dubois . 2, 5, 150, 192
Didier Dubois . 156, 168

E
e see Labelled logics, Validity degree

P. Eklund . 15
Embedding . 91
Empty Fuzzy Set 12, 57, 75, 78,

80, 94, 95, 135, 160, 213, 219, 241, 249, 259
Empty L-fuzzy set . 12
Empty Set 7, 95, 96, 156, 167, 168, 241, 247, 259
Empty set . 7
entailment

entailment
by a fuzzy set of valuations 94

entailment . 88
Equivalence class . 50
G. Escalada-Imaz . 135
Expansion see Lattice, Expansion

Expansion . 256
Expansion . 33
Extension . 214

F
F . see Real unit interval

F . see Fuzzy set

F see Lattice, Real unit interval

fairly . 56

false . 56
FC . see PLFC, Fuzzy constants

FC see Formulae, Fuzzy Constants

Filter . 9
Filters of a lattice . 256
Finite . 13
First Order Formulae . . . see Formulae, First order

First order formulae . 40
First Order Logic . see Labelled logics, First Order

First Order Predicate Logic 256
First order predicate logic . 40
First order terms . see Formulae, First order, Terms

Fixed point . 109
Fl(L) . see Lattice, Filters of

FOFrm see First Order Logic, Formulae

FOFrm see Formulae, First order

FOFrmS .
see First Order logic, Standad set of formulae

Formulae 43, 57, 61, 62, 74, 76,
84, 88, 91, 92, 94, 131, 133, 151, 254, 255

Clauses 86, 87, 122, 123, 135, 136, 153, 154,
156–166, 244, 245, 247–249, 260, 266, 267

First order 40–42, 44, 45,
179, 194, 217, 218, 221, 245, 248, 253, 261

Individual associated with a term . . 45, 253
Terms 40, 41, 45, 221, 254, 266

Function symbols 40–42, 44,
45, 48, 179, 218, 245, 247, 248, 253, 254, 261

Fuzzy Constants 195–197, 247, 254, 261
in Conjunctive Normal Form

. 86, 87, 122, 244, 245, 247, 260, 267
Individual Constants . . 195–197, 248, 254, 262
Individual Variables 40–

42, 44–46, 48, 179, 180, 183, 195–197,
218, 219, 221, 245, 247, 248, 252–254, 262

Literals . 86, 154, 156,
158, 162, 165, 167, 195, 247, 248, 250, 264

of PLFC 195–197, 254, 265
Operator Symbol

Arity 39–45, 48, 179,
195–197, 218, 245, 247, 248, 253, 254, 260

Predicate symbols . 40–42, 44, 45, 48, 179,
195–197, 218, 245, 247, 248, 253, 254, 265

propositional .
. 40, 42–44, 85, 86, 134, 135, 151–
153, 155–157, 244, 246–248, 254, 255, 265

Propositional variables 39, 40, 42–44,
48, 85, 86, 135, 136, 153, 156–159, 162,
163, 166, 243–245, 247–252, 254, 259, 265

Formulae . 256
Free individual variables . 46
Frm see Labelled logics, formulae

Frm . see Formulae

Func see First Order Logic, Function symbols

Func see Formulae, Function symbols

Function symbols . see Formulae, Function symbols

261

Index

Function symbols . 40
Fuzzy Constants . . . see Formulae, Fuzzy Constants

Fuzzy constants . 195
Fuzzy filter-based logic . 65
Fuzzy Filters . 15–37

Lattices of ˜ . 21–33
non-emptiness condition 19

Fuzzy filters
Complete lattice of ˜

Meet . 21
Fuzzy filters of a lattice . 256
Fuzzy set . 11

membership degree . 11
Universe . 11

Fuzzy set . 256
Fuzzy set intersection . 21
Fuzzy set-labelled formula 55
Fuzzy Sets . 11–13
Fuzzy sets

Complete lattice of ˜ . 12
Join . 12
Meet . 12

G
G . see Fuzzy set

G. Birkhoff . 8
W. Gähler . 15
Generalisation . 217
Generalisation invariant . 46
Gentzen . 211
G. Gerla . 2, 133, 150
Gödel . 48, 194, 248
Goguen . 183
J. A. Goguen . 7, 11
S. Gottwald . 2, 52, 158
Greatest lower bound

in a lattice of fuzzy sets 21
in a power set lattice . 10

Greatest lower bound . 8

H
Hähnle . 137, 204
R. Hähnle . 2, 137
R. Hähnles . 135
P. Hájek . 2, 209
Petr Hájek . 198
Half-open intervals . 7
Hausdorff . 7, 127
Hilbert . 211, 222, 223

I
IC see PLFC, Individual constants

IC see Formulae, Individual Constants

inc(X) . see
Labelled Formulae, Inconsistency distribution

inc see Inconsistency Distribution

Incons see Labelled Formulae, inconsistent

Inconsistency Distribution . . 96–100, 106–109,
111–113, 119, 131, 132, 141, 148–150,
153, 154, 161–164, 167, 229, 230, 253, 262

Inconsistency distribution . 96
Inconsistent . 77
InconsL . see

Labelled Formulae, inconsistent, in Lee’s

fuzzy logic with truth value-labelled formulae

InconsP . see
Labelled Formulae, inconsistent, in pos-

sibilistic logic with necessity-valued formulae

Inconsd
P . see Labelled

Formulae, at least d-inconsistent, in pos-

sibilistic logic with necessity-valued formulae

incP(X) . see Labelled

Formulae, Inconsistency index, in possi-

bilistic logic with necessity-valued formulae

Ind . see Formulae,

First order, Individual associated with a term

Individual Constants .
. see Formulae, Individual Constants

Individual constants 40, 46, 195
Individual Variables .

. see Formulae, Individual Variables

Individual variables . 40
Individuals

Associated with a term see Formulae,

First order, Individual associated with a term

Inference Rules . 211–222
Infinite distributive law . 145
Inherent Truth see Tautology Index

Inherent truth . 51
Inherent Validity see Validity Index

Insatisfiable . 51
Interpretation

Universe . 44, 196
Interpretation . 44, 196
Involutive . 9, 85
IV see First Order Logic, Individual variables

IV see Formulae, Individual Variables

J
Join . see

Fuzzy sets, Complete lattice of ˜, Join, see
Labelled logics, Labels, Join, see Labelled

logics, Truth values, Join, see Labelled log-

ics, Validity degrees, Join, see Lattice, Join

K
E. E. Kerre . 47
Kleene viii, 48, 188, 197, 232, 248

L
L . . . see Lattice, domain, see Labelled logics, labels

L . see Lattice

L . see Labelled logics, Labels

` . see Labelled formula, Label

262

l see Formulae, Literals, Complement

l . see Formulae, Literal

L′-fuzzy filter . 15
L′-fuzzy sublattice . 18
L-fuzzy closure operator . 91
L-fuzzy set . 11
L-fuzzy set of consequences of S 94
L-fuzzy set of consequences of X 88
L-Fuzzy Sets . 11–13
L-labelled formula . 57
Labelled Formulae . see

Labelled logics, Syntax, Labelled Formulae

Clauses 156–158, 163, 164, 167, 248, 264
finite set of ˜ 156–159, 222, 245, 267
Inconsistency distribution 96–119
Refutation . 96–119

Labelled Formulae . 256
Labelled inference rule . 211
Labelled logics . 39–58

Applications . 225
First Order . 224
Labels . 55–58

Join . 73, 130, 177, 242
Meet . 130, 177, 242

Model Relation see Model Relation

Models . see Models

Semantic Consequences
. see Semantic Consequences

Semantic Entailment see Semantic Consequences

Semantics . 43–51
Syntax . 39–43

Clauses see Formulae, Clauses

Conjunctive Normal Form
. . see Formulae, in Conjunctive Normal Form

First Order Formulae
. see Formulae, First order

First order terms .
. see Formulae, First order, Terms

Formulae . see Formulae

Function symbols .
. see Formulae, Function symbols

Fuzzy Constants .
. see Formulae, Fuzzy Constants

Individual Constants
. see Formulae, Individual Constants

Individual Variables .
. see Formulae, Individual Variables

Labelled Formulae 55–58
Literals see Formulae, Literals

of PLFC Formulae . . see Formulae, of PLFC

Operator Symbol .
. see Formulae, Operator Symbol

Predicate symbols .
. see Formulae, Predicate symbols

Propositional Formulae
. see Formulae, propositional

Propositional Variables
. see Formulae, Propositional Variables

Truth values 5–6, 126–127
Join . 242
Meet . 72, 82, 242

Validity degrees . 6–7, 127
as Measures . 224–225
Join . 241
Meet . 73, 241

Labels see Labelled logics, Labels

Labels . 57
J. Lang . 2, 5, 150
`AT . see Absolutely True

Lattice
Boolean 11, 20, 24, 34–37, 47,

53, 58, 74, 125, 127–129, 131, 132, 134,
137, 139, 140, 153, 168, 203, 207, 221, 245

Boolean . 260
Chain . 9
Complementary . 9
Complementation . 9

involutive . 9
order-reversing . 9

Complete . 8
Completely distributive . 9
Distributive . 8
Domain . 8
Dual . 8, 8, 31, 34–37,

140, 142, 143, 149, 151, 221, 228, 252, 261
Expansion . 33–37
Filter . 9, 16
Filters

complete lattices of ˜ 10
Greatest lower bound 10
join . 10
meet . 10
Unit element . 10
Zero element . 10

filters
non-emptiness condition 19

Fuzzy Filter . 15
Fuzzy Filters

Greatest lower bound 21
join . 21
meet . 21
Unit element . 24
Zero element . 24

Fuzzy filters
complete lattices of ˜ 21

Fuzzy sets
meet . 21

Induced partial order . 12
Induced partial order relation 8
Join 8, 12, 202, 242, 250, 256
Meet 8, 12, 202, 242, 250, 256
Principal filter . 16

263

Index

principal Filter . 9
principal fuzzy filter . 16
Principal fuzzy filters

lattices of ˜ . 26
Real unit interval vi, 11, 12, 15,

19, 20, 24, 48, 135, 137, 151–153, 155,
159, 161, 179, 194, 196, 202, 204, 208,
217, 218, 245, 246, 248, 249, 252–255, 261

Sublattice . 9
Unit element .

. . . . 7, 8, 10, 24, 25, 97, 150, 171, 221, 241
Zero element . 7,

8, 10, 24, 25, 62, 149, 169, 189, 221, 241
Lattice . 8, 256
Lattice-based propositional logic 134
Lattices . 7–11

Filters
Fuzzy . see Fuzzy Filters

Fuzzy Filters see Fuzzy Filters

of Fuzzy Filters . . see Fuzzy Filters, Lattices of

Layered normal form . 223
Cls see Labelled Formulae, Clauses

LClsS see Propositional logic, Labelled clauses

`d . see Doubted to degree d

Least upper bound . 8
Lee vi, 48, 100, 135, 136, 155,

158–161, 163, 164, 188, 193, 223, 224,
229, 230, 245, 246, 248, 249, 252, 253, 255

R. C. T. Lee . 135, 176
Y. J. Lee . 15
L′-Fl (L) see Lattice, Fuzzy Filters of

Lit . see Formulae, Literals

Lit . see Formulae, Literals

Literals . see Formulae, Literals

Literals . 86
Logic . 256
Logic of graded trust assessment 138
Logic of graded truth and graded trust assess-

ment . 66
Logic of graded truth assessment 128
Logical formulae . 39
Logics

Labelled see Labelled logics

Logics of graded trust assessment 137–154
Comparison with logics of graded truth as-

sessment . 154–168
Possibilistic Logic 150–154

Necessity-Valued 151–154
Logics of graded truth and graded trust assess-

ment . 168–193
Logics of graded truth assessment 127–137

Lee’s fuzzy logic . 135–136
Comparison with logics of graded trust as-

sessment . 154–168
Lattice-Based . 134
Sets as Labels . 137

Truth values as labels 132–136
L′-PFl (L) see Lattice, principal fuzzy filters of

`t see Logics of graded truth assess-

ment, Labels corresponding to principal filters

`>t see True to more than t

`=t . see True at least to t

`T . see True

`t
d . see Labelled

logics, Labels corresponding to principal filters

`Td . see True with doubt d

`T=t
. see True above t

`U . see Unknown

J. J. Lu . 2, 137
 Lukasiewicz . 48
 Lukasiewicz viii, 49, 60, 134,

137, 182, 190, 191, 198, 223, 224, 226, 248
 Lukasiewicz . 231, 237, 239
J. Lukasiewicz . 55
J. Lukasiewicz . 231

M
Many-valued inference rules 214
F. Manyà . 135
M[c,r] . see Labelled logic,

Lee’s fuzzy logic, set of satisfying assignments

Meet . see Fuzzy fil-

ters, Complete lattice of ˜, Meet, see Fuzzy

sets, Complete lattice of ˜, Meet, see La-

belled logics, Labels, Meet, see Labelled

logics, Truth values, Meet, see Labelled log-

ics, Validity degrees, Meet, see Lattice, Meet

J. Močkoř . 2
Model . 257
Model Relation . 51, 52, 54, 55, 59–87, 92, 93,

97, 107, 109, 113, 122, 128–136, 138–143,
148, 149, 151, 152, 155, 158, 161, 162,
164–167, 169, 171–175, 179, 197, 211,
214, 243, 246, 248, 249, 251–255, 259, 260

model relation . 59
Model relation induced by Λ 66
Models . 59–87
Modus ponens . 212, 217
Monotone . 91
More or Less . 177
More or Less True . 178
De Morgan 85, 87, 135, 153
de Morgan . 223
N. V. Murray . 2, 137

N
N . see Natural Numbers

n . see Natural number

Natural Numbers 7, 32, 39, 40, 42, 44,
46, 81, 86, 87, 122, 154, 156, 157, 167,
179, 181–183, 185–187, 189, 195–197,
211–214, 216, 218, 222, 243, 245–247, 264

264

Natural numbers . 7
Necessity degree . 151
Necessity measure . 152
Negation normal form . 223
Normal Forms . 222–223
V. Novák . 2, 133

O
Open interval . 7
Operator symbols . 39, 40
Order-reversing . 9
Ordered pair . 7
Ordered tuples . 7

P
P(L′, L) . . . see Lattice, Fuzzy filters of, Sublattice

P . see Power Set

p . see First Order Logic,

Predicate symbol, see Propositional variable

Partial order relation . 8
Partially Ordered Set

least upper bound . 8
Partially ordered set

greatest lower bound . 8
Partially ordered set . 8
Pavelka . v, 3, 6, 39, 91,

134, 137, 172, 189, 203, 204, 208, 210, 214
J. Pavelka 2, 3, 7, 12, 52, 57, 134, 214
Jan Pavelka . 133
Pavelka’s Logic see Logics of

graded truth assessment, Truth values as labels

I. Perfilieva . 2
PFl(L) see Lattice, principal Filters of

PFrm see Propositional Logic, Formulae

PFrm see Fuzzy sets of formulae, set of

PFrm see Formulae, propositional

PFrmS . see
Propositional logic, Standad set of formulae

plausibility degree . iii
PLFC . 257
PLFC Formulae see Formulae, of PLFC

PLFCFrm see PLFC, Formulae

PLFCFrm see Formulae, of PLFC

Possibilistic Logic with Fuzzy Constants 195–198
Possibilistic logic with vague predicates . 194–195
possibility degree . iii
Possibility distribution . 153
Power Set . 7,

50, 87, 145, 171, 172, 196, 244, 245, 251, 265
Power set . 7
Power set lattice . 146
Prade . 206
H. Prade . 2, 5, 150, 192
Henri Prade . 156, 168
Pred see First Order Logic, Predicate symbols

Pred see Formulae, Predicate symbols

Predicate symbols see Formulae, Predicate symbols

Predicate symbols . 40
Principal filter . 9
Principal fuzzy d-filter . 16
Principal label . 170
Probability measures . 201
Propositional constants . 40
Propositional Formulae see Formulae, propositional

Propositional formulae . 40
Propositional Logic

Assignment 43, 44, 157–159, 162,
166, 244, 245, 247, 249, 251, 252, 260, 266

Propositional Logic . 257
Propositional logic . 39
Propositional Variables .

. see Formulae, Propositional Variables

Propositional variables . 39
PV . see Propositional Logic, Propositional variables

PV see Formulae, Propositional Variables

Q
q . see Propositional variable

Qualitative Fuzzy Possibilistic Logic 198–199
Quantified formulae . 41
Quotient set . 50

R
R . see Real Numbers

r . see Real number

R-implication . 47
Range . 7
Real Numbers 7, 243, 246, 247, 251, 265
Real numbers . 7
Real unit interval . . . see Lattice, Real unit interval

Real unit interval . 11
Refutation . 100
Refutation systems . 100
Resolution-based Derivation 223–224
rg . see Mapping, Range

E. Rosenthal . 2, 137
Rules of Inference see Inference Rules

S
S . see Labelled log-

ics, Semantics, see Labelled logics, Semantics

S . see Valuations, Fuzzy set of

s . see Labelled logics, truth value, see Real number

S-implication . 47
Sandra Sandri . 195, 257
M. Saralegui Aranguren 15
Sat . see Formulae, Satisfiable

sat(x) see Formulae, Satisfiability index

sat . see Satisfiability Index

SatB . see Clauses, Satisfiable

Satisfiability Index 51, 254, 265
Satisfiability index . 51
Satisfiability-equivalent . 223

265

Index

Semantic Consequence . 257
Semantic Consequence Relation

. 88–123, 131, 132, 134, 137,
140–144, 150, 152–154, 156, 157, 159,
167, 168, 173, 176, 180, 195, 197, 198,
213, 216, 217, 221, 222, 229, 251–253, 260

Semantic Consequences 88–123
Fuzzy Set of ˜ . 88–123

Semantic covering . 50
Semantic Entailment . . see Semantic Consequences

Semantic-preserving syntax transformation op-
erator . 50

Semantically equivalent 49, 79
Semantics see Labelled logics, Semantics

Semantics . 257
Semantics . 43
Set intersection . 10
Set of all mappings . 7
SF

B . see
Classical Boolean first order logic, Semantics

SP
F see Lee’s fuzzy first order logic, Semantics

Shafer . 1, 201
E. Y. Shapiro . 2, 133
Small natural number . 178
Sound . 213
SP

B . see Clas-

sical Boolean propositional logic, Semantics

Specialisation . 218
Specialisation invariance . 46
SP

F . . see Lee’s fuzzy propositional logic, Semantics

Strictly consistent . 77
Subbase . 174
Sublattice . 9
supp . see Fuzzy Set, support

Support . 13
Syntactic derivation operator 212
Syntactic Inference . 210–224
Syntax see Labelled logics, Syntax

Syntax . 257

T
T see Labelled logics, Truth values

T see Labelled logics, Truth values

T . . . see Formulae, Syntax transformation operator

t . see First Order

Logic, Term, see Labelled logics, truth value

T-norm . 217
A. Tarski . 55
Taut see Formulae, Tautologies

taut . see Tautology Index

taut(x) see Formulae, Tautology index

TautB . see Formu-

lae, Tautologies, two-valued propositional logic

TautF . see Formulae, Tautologies, Lee’s fuzzy logic

Tautology . 51
Tautology Index 51, 77–79, 249, 254, 266

Tautology index . 51
TCls . . see Formulae, Transforming into clausal form

Term see First Order Predicate Logic, Terms

Term see Formulae, First order, Terms

Terms . 40
H. Thiele . 7, 198, 206
E. Trillas . 133
True . vi, viii, 175–178, 244
true . 56
True above t . 176, 177, 244
True at least to t 170, 171, 244
True to more than t 170, 172, 244
True with doubt d 176, 244
True with doubt d . 176
not very true . 56
Trust Degrees . see Labelled logics, Validity degrees

Truth valuation functions . 43
Truth Value-Labelled Formulae 52
Truth values see Labelled logics, Truth values

Truth values . 43
E. Turunen . 133
Two-valued Boolean lattice 11

U
U see Fuzzy set, universe, see Interpretation, Universe

Unit element see Lattice, Unit element

Universe . 11
Unknown . 169–171, 244

V
v see First Order Logic, Individual Variable

Val . see Valuation function

Val . see Valuation Function

ValA . see
Valuation function, induced by an assignment

Val I . see Val-

uation function, induced by an interpretation

Valid see Labelled Formulae, valid

valid . see Validity Index

valid(X) see Labelled Formulae, Validity index

Valid . 77
Validity degrees see Labelled logics, Validity degrees

Validity Index 77–79, 131, 141, 148,
149, 153, 159, 160, 167, 228, 249, 255, 266

Validity index . 77
ValidL . . . see Labelled Formulae, valid, in Lee’s

fuzzy logic with truth value-labelled formulae

ValidP see Labelled Formulae, valid, in pos-

sibilistic logic with necessity-valued formulae

validP(X) . see
Labelled Formulae, Validity index, in pos-

sibilistic logic with necessity-valued formulae

Validd
P . see

Labelled Formulae, at least d-valid, in pos-

sibilistic logic with necessity-valued formulae

Valuation Function .
. 43–46, 49, 51, 52, 54–84, 88,

266

92–99, 106–109, 111–114, 126, 128–136,
138–143, 147–149, 151, 152, 157–159,
161, 162, 164–167, 169, 171–176, 179–
187, 189, 190, 193, 194, 196–198, 214,
217, 241–245, 248, 249, 252–255, 257, 266

Very . 177
very . 56
Very True . 178
Very Very True . 177, 178
M. A. de Prada Vicente 15

W
w see First Order Logic, Individual Variable

Weakening rule . 222
Weakly compact . 156
Well-formed formulae of PLFC 195
W. Wu . 15, 18, 19, 202

X
X . see Formulae, Set of ˜

X . see La-

belled Formulae, sets of fuzzy sets of formulae

X see Labelled Formulae, Fuzzy sets of formulae

x . see Logical formula

x . see Labelled formula

X ∩ X see Labelled Formulae, Fuzzy sets of

Formulae, Intersection with a set of formulae

X \ X see Labelled Formulae, Fuzzy

sets of Formulae, Removing a set of formulae

XCls . see Labelled For-

mulae, Fuzzy sets of formulae, in clausal form

XCnf see Labelled Formulae, Fuzzy

sets of formulae, in conjunctive normal form

xCnf see Formulae, in conjunctive normal form

X≡ see Formulae, Semantic equivalence, Quotient set

Xfin see Fuzzy set of formulae, finite

Xfin see Labelled Formulae, finite set of

Y
Y . see Formulae, Set of ˜

Y . see La-

belled Formulae, sets of fuzzy sets of formulae

Y see Labelled Formulae, Fuzzy sets of formulae

y . see Logical formula

y . see Labelled formula

B. Yuan . 15, 18, 19, 202

Z
Z see Labelled Formulae, Fuzzy sets of formulae

z . see Logical formula

Zadeh . 56, 225
L. A. Zadeh 2, 5, 12, 56, 57, 175, 177, 206
Zero element see Lattice, Zero element

267

		2005-02-08T12:27:48+0100
	Universitaetsbibliothek Dortmund - Eldorado

