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Abstract

In a recent paper Dette, Neumeyer and Pilz (2005) proposed a new nonparametric estimate
of a monotone regression function. This method is based on a non-decreasing rearrangement
of an arbitrary unconstrained nonparametric estimator. Under the assumption of a twice
continuously differentiable regression function the estimate is first order asymptotic equivalent
to the unconstrained estimate and other type of monotone estimates. In this note we provide
a more refined asymptotic analysis of the monotone regression estimate. It is shown that
in the case of a non-decreasing regression function the new method produces an estimate
with nearly the same Lp-norm as the given function for any p ≥ 1. Moreover, in the case,
where the regression function is increasing but only once continuously differentiable we prove
asymptotic normality of an appropriately standardized version of the estimate, where the
asymptotic variance is of order n−2/3−ε, the bias is of order n−1/3+ε and ε > 0 is arbitrarily
small. Therefore the rate of convergence of the new estimate is arbitrarily close to the rate of
the estimate obtained from monotone least squares estimation, but the asymptotic distribution
of the new estimate is substantially simpler.

AMS Subject Classification: 62G05, 62G20
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Nadaraya-Watson estimate

1 Introduction

One of the most important problems in applied statistics is the estimation of relationships among

observable variables. In many cases a specific parametric form of a regression model cannot be
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postulated and nonparametric estimation methods have become increasingly popular in recent

years. However, in many cases monotone estimates of the regression function are required, because

physical considerations suggest that the response is a monotone function of the explanatory variable.

Typical examples appear in economics where monotonicity applies to production, profit and cost

function [see e.g. Matzkin (1994), Äıt-Sahalia and Duarte (2003) among others] or in medicine

where the probability of contracting a certain disease depends monotonically on certain factors.

Since the early work of Brunk (1955) numerous authors have proposed monotone estimates of the

regression function [see e.g. Cheng and Lin (1981), Wright (1982), Mukerjee (1988), Mammen

(1991) and Friedman and Tibshirani (1984), Ramsay (1988), Kelly and Rice (1990), Mammen and

Thomas-Agnan (1999), Mammen, Marron, Turlach and Wand (2001) and Hall and Huang (2001)

among many others]. We refer the interested reader to the nice reviews of the literature by Delecroix

and Thomas-Agnan (2000) and Gijbels (2003).

In a recent paper Dette, Neumeyer and Pilz (2005) introduced an alternative monotone estimate of

the regression function, which is based on a non-decreasing rearrangement of the Nadaray-Watson

estimate. This method is called density-regression estimate, because it is based on the combination

of a density and regression estimator. In a first step an estimate of the inverse of the monotone

regression function is constructed using a density estimator, while the final estimate is obtained by

an inversion of the function obtained from the first step. If the regression function is twice con-

tinuously differentiable asymptotic normality of an appropriately standardized estimate with rate

n−2/5 can be proved, where n denotes the sample size. If the bandwidths are chosen appropriately

it is also shown that the new estimate is first order asymptotic equivalent to a smoothed version of

a monotone least squares estimate as considered by Mukerjee (1988) or Mammen (1991).

The present paper has two purposes. On the one hand we provide further insight in the statistical

properties of the estimate of Dette, Neumeyer and Pilz (2005). In particular we show that the isotone

estimate is an approximation of the unconstrained estimate in the sense that both estimates have

the same Lp-norm for all p ≥ 1 (the result is in fact slightly stronger - see Theorem 2.1). On the

other hand we investigate the properties of this estimate in the case where the regression function

is only once continuously differentiable. Moreover, we derive the asymptotic distribution of the

density-regression estimate under this assumption and show that it differs from the asymptotic

distribution of the monotone least squares estimate. For this estimate Brunk (1955) showed that

an appropriately normalized version converges weakly with rate n−1/3 to a random variable, which

is defined as the slope at the point 0 of the greatest convex minorant of the process W (t) + t2,

where W is a two sided Wiener-Levy process [see also Robertson, Wright and Dykstra (1989),

Theorem 9.2.4]. If additional smoothness is added, the estimate is again asymptotically normal

distributed with rate n−2/5 [see e.g. Mammen (1991)]. By an appropriate choice of the smoothing

parameters in the estimate of Dette, Neumeyer and Pilz (2005) we show in the present paper that

in the case of a once continuously differentiable regression function the density-regression estimate

is still asymptotically normal distributed, where the variance is of order n−2/3−ε, the bias is of

order n−1/3+ε and ε > 0 is arbitrarily small. In other words, this estimate has nearly the same

asymptotic mean squared error and variance as the least squares isotone regression estimate but is

still asymptotically normal distributed. The larger rate of the mean squared error can be considered

as a price, which has to be paid to preserve asymptotic normality of the isotone estimate.
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The paper is organized as follows. In Section 2 we briefly review the estimate of Dette, Neumeyer

and Pilz (2005) and it is proved that this estimate has the same Lp-norm as the unconstrained

preliminary estimate. In other words, if the “true” regression estimate is not isotone, the density

regression estimate of Dette, Neumeyer and Pilz (2005) converges to an isotone function with the

same Lp-norm as the “true” function (for all p ≥ 1). Section 3 contains our asymptotic main results

and we establish asymptotic normality of the density-regression estimate in the case of a once

continuously differentiable regression function. We also establish uniform almost sure consistency

of the estimate in this case, which extends the results of Dette, Neumeyer and Pilz (2005) in a

further direction.

2 Monotone smoothing by inversion

Consider the nonparametric regression model

Yi = m(Xi) + σ(Xi)εi, i = 1, . . . , n,(2.1)

where {(Xi, Yi)}n
i=1 is a bivariate sample of i.i.d. observations such that the random variables Xi

are located in the interval [0, 1] and have a continuous density f. The random variables εi are

also assumed as i.i.d. with zero mean, finite variance and existing fourth moment. The regression

function m is assumed to be strictly monotone and further assumptions which are required for our

main asymptotic statements will be presented in the following section (these are not needed for the

definition of the monotone estimate). For the sake of transparency we will restrict ourselves to the

problem of estimating a strictly increasing regression function, but the antitone case can be treated

exactly in the same way. Following Dette, Neumeyer and Pilz (2005) we consider a transformation

of the regression function defined by

m−1
I (t) =

1

hd

∫ 1

0

∫ t

−∞
Kd

(
m (v) − u

hd

)
dudv,(2.2)

where Kd is a given density and hd denotes a bandwidth converging to 0 with increasing sample

size. If hd → 0 it is easy to see that m−1
I can be approximated as m−1

I (t) = m̃−1
I (t) + o(1), where

m̃−1
I (t) =

∫ 1

0

I{m(x) ≤ t}dx,(2.3)

and the precise order of the error of this approximation depends on the smoothness of the regression

function m. Note that m−1
I and m̃−1

I are isotone even if m is not isotone. Therefore we can calculate

the inverse of these functions, which will be denoted by mI and m̃I throughout this paper. The

function m̃I is called a nondecreasing rearrangement of the function m [see e.g. Ryff (1965, 1970)

or Bennett and Sharpley (1988) among others]. Our first result shows that this function is an

approximation to the function m in the sense that it has the same Lp-norm on the interval [0, 1].

Theorem 2.1. Let

m̃I(x) = inf{u | m̃−1
I (u) ≥ x}
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denote the inverse of the function m̃−1
I defined by (2.3), then we have for all 0 < p < ∞

(∫ 1

0

|m(x)|pdx
)1/p

=
(∫ 1

0

|m̃I(x)|pdx
)1/p

.

Proof. Consider a step function of the form

m(x) =

n∑
j=1

ajIEj
(x),(2.4)

where −∞ < a1 < . . . < an < ∞ and E1, E2, . . . , En ⊂ R are pairwise disjoint sets with finite

Lebesgue measure such that [0, 1] = ∪n
j=1Ej . Observing the definition (2.3) it is easy to see that

m̃−1
I (t) =

n∑
j=1

mjI[aj ,aj+1)(t),(2.5)

where mj =
∑j

i=1 λ(Ei) (j ≥ 1), m0 = 0, and λ denotes the Lebesgue measure. This implies for

the inverse of the function m̃−1
I

m̃I(x) = inf{u | m̃−1
I (u) ≥ x} =

n∑
j=1

ajI(mj−1,mj ](x).(2.6)

Consequently, we obtain

∫ 1

0

|m(x)|pdx =
n∑

j=1

|aj|pλ(Ej) =
n∑

j=1

|aj|p(mj − mj−1) =

∫ 1

0

|mI(x)|pdx

which proves the assertion of Theorem 2.1 for step functions. The general statement now follows

from the fact that for any decreasing sequence of functions (m(n))n∈N with limit m, the corresponding

sequence (m
(n)
I )n∈N is a decreasing sequence with limit m̃I , i.e.

m(n) ↘ m ⇒ m̃
(n)
I ↘ m̃I .(2.7)

For a proof of the property (2.7) assume m(n) ↘ m, define the sets

En = {x ∈ [0, 1] | m(n)(x) ≤ t}, E = {x ∈ [0, 1] | m(x) ≤ t},

then (En)n∈N defines an increasing sequence of events with limit

E = lim
n→∞

En.

Consequently, we obtain

(m̃
(n)
I )−1(t) =

∫ 1

0

I{m(n)(x) ≤ t}dx = λ(En) ↗ λ(E) = m̃−1
I (t).
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But this implies

m̃
(n)
I (x) = inf{u | (m̃

(n)
I )−1(u) ≥ x} ↘ inf{u | m̃−1

I (u) ≥ x} = m̃I(x),

which proves (2.7) and completes the proof of Theorem 2.1.

�

Example 2.2. In order to fix ideas we consider the regression function

m(x) = 3(2x − 1)2 x ∈ [0, 1],(2.8)

which is obviously neither decreasing nor increasing. In this case we have

m̃−1
I (t) =

√
t

3
; t ∈ [0, 3],

which gives m̃I(x) = 3x2 as non-decreasing rearrangement of the function m. Note that the functions

m̃I and m have for all p > 0 the same Lp-norm on the interval [0, 1].

Because the regression function in (2.1) is unknown, we replace it by a nonparametric estimate m̂.

In principle any estimate could be used here, but for the sake of simplicity we restrict ourselves to

the Nadaraya-Watson estimate

m̂(x) =

∑n
i=1 Kr

(
Xi−x

hr

)
Yi∑n

i=1 Kr

(
Xi−x

hr

) ,(2.9)

where Kr is a further kernel and hr a second bandwidth. The estimate of m−1
I is then obtained as

m̂−1
I (t) =

1

hd

∫ 1

0

∫ t

−∞
Kd

(
m̂ (v) − u

hd

)
dudv,(2.10)

and the isotone estimate of the regression function is finally defined as the inverse of the function

m̂−1
I and denoted by m̂I . Note that Dette, Neumeyer and Pilz (2005) replaced the integral with

respect to dv in (2.10) by a discrete approximation of the Riemann integral, but in this paper we

will work with the representation (2.10) for the sake of simplicity. It is easy to see that all results

presented in this paper remain true, if the integral with respect to dv is replaced by its discrete

approximation as considered in Dette, Neumeyer and Pilz (2005).

It is also worthwhile to mention that the derivative of the expression (2.2) with respect to the

variable t corresponds to the expectation of a kernel density estimate of an i.i.d. sample of the

random variable m(U), where U denotes a random variable with a uniform distribution on the

interval [0, 1]. This justifies our notation Kd and hd in (2.2), where the index d corresponds to the

phrase density. Similary, the index r in (2.9) reveals the fact that m̂ is an estimate of the regression

function. For this reason we will also call m̂I density-regression estimate in the following discussion.
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We assume that the kernels Kd and Kr are symmetric with compact support, say [−1, 1], existing

second moment and that the corresponding bandwidths hd, hr converge to 0 with increasing sample

size n. We also assume that Kd is twice continuously differentiable on its support and that the

kernel Kr has been appropriately modified in order to address for boundary effects [see Müller

(1985)]. If m and f are twice continuously differentiable, Dette, Neumeyer and Pilz (2005) proved

the asymptotic normality of the density-regression estimate and we mention their result here for

the sake of completeness.

Theorem 2.3. [Dette, Neumeyer, Pilz (2005)] Assume that m, f ∈ C2([0, 1]), σ2 ∈ C([0, 1]), and

that log h−1
r /(nhrh

3
d) = o(1), hd, hr → 0 as n → ∞.

(a) If limn→∞ hr

hd
= c ∈ [0,∞) exists, then we have for every t ∈ (0, 1) with m′(t) > 0

√
nhd

(
m̂I(t) − m(t) − κ2(Kd)h

2
d

m′′(t)
(m′(t))2

− κ2(Kr)h
2
r

(m′′f + 2m′f ′

f

)
(t)

) D⇒ N (0, s2(t)),

where κ2(Kr) = 1
2

∫ 1

−1
u2Kr(u)du and the asymptotic variance is given by

s2(t) =
σ2(t)m′(t)

f(t)

∫ ∫ ∫
Kd(w + cm′(t)(v − u))Kd(w)Kr(u)Kr(v)dwdudv.(2.11)

(b) If limn→∞ hr

hd
= ∞ it follows for every t ∈ (0, 1) with m′(t) > 0

√
nhr

(
m̂I(t) − m(t) − κ2(Kd)h

2
d

m′′(t)
(m′(t))2

− κ2(Kr)h
2
r

(m′′f + 2m′f ′

f

)
(t)

) D⇒ N (0, s̃2(t)),

where the asymptotic variance is given by

s̃2(t) =
σ2(t)

f(t)

∫
K2

r (u)du.(2.12)

Note that in the second case, i.e. hd = o(hr) the isotone estimate is first order asymptotic equivalent

to the Nadaraya-Watson estimate, but this is not the case if the bandwidths hd and hr are of the

same order. In the following section we will investigate the asymptotic behaviour of the density-

regression estimate m̂I in the case where m, f ∈ C1([0, 1]).

3 A refined asymptotic analysis

Note that Dette, Neumeyer and Pilz (2005) assumed (among other technical assumptions) that

m ∈ C2([0, 1]) and showed asymptotic normality of the random variable(
m̂−1

I (t) − E
[
m̂−1

I (t)
])

.(3.1)
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This result is then used to establish the asymptotic normality of (m̂I (t) − E [m̂I (t)]) [for the precise

statement see Theorem 2.3]. In the following we will demonstrate that in the case of a once

continuously differentiable regression function a standardization of order
√

nhd is required and that

the condition

lim
hd→0,hr→0

hd

hr
= ∞(3.2)

is sufficient (among other technical assumptions) to obtain asymptotic normality of the statistic√
nhd

(
m̂−1

I (t) − E
[
m̂−1

I (t)
])

.(3.3)

We will then use this result and a result on the uniform convergence of the estimates m̂−1
I and (m̂−1

I )′

to obtain asymptotic normality of the monotone estimate m̂I . The derivation of our asymptotic

results requires a substantially more refined analysis as given in Dette, Neumeyer and Pilz (2005).

In particular we require the following basic assumptions

(V1) The random variables {Xi}i=1,...,n are i.i.d. with positive density f : [0, 1] → R
+, such that

f ∈ C1([0, 1]).

(V2) The random variables {εi}i=1,...,n are i.i.d. with E[εi] = 0, E[ε2
i ] = 1 and E[ε4

i ] < ∞. Moreover,

the sequence of the εi is independent of the sequence of the Xi.

(V3) The regression function m : [0, 1] → R is strictly increasing and m ∈ C1([0, 1]).

(V4) The variance function σ : [0, 1] → R
+ is continuous.

(W1) The kernel Kr has compact support given by the interval [−1, 1] and Kr ∈ C1([−1, 1]).

(W2) The kernel Kd is symmetric, twice continuously differentiable, of order 2 and has compact

support given by the interval [−1, 1]. Moreover Kd (1) = Kd (−1) = 0 and K ′′
d is bounded

away from zero.

(W3) The bandwidths hr and hd of the density-regression estimate satisfy hr, hd → 0, nhr, nhd → ∞
as n → ∞, and additionally we assume that the following relations hold

hr = o(hd)

nh
3/(1−3ε)
d = O (1) , for some 0 < ε <

1

12
,

nh3
r = O (1) ,

log h−1
r

nh2
rhd

= o (1)

We begin the asymptotic analysis with a Taylor expansion of the difference m̂−1
I (t) − m−1(t), that

is

m̂−1
I (t) − m−1 (t) = m−1

I (t) − m−1 (t) + Δ(1)
n (t) +

1

2
Δ(2)

n (t) ,(3.4)
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where the quantities m̂−1
I and m−1

I are defined in (2.10) and (2.2) respectively,

Δ(1)
n (t) =

1

h2
d

∫ 1

0

∫ t

−∞
K ′

d

(
m (v) − u

hd

)
du (m̂ (v) − m (v)) dv(3.5)

= − 1

hd

∫ 1

0

Kd

(
m (v) − t

hd

)
(m̂ (v) − m (v)) dv

Δ(2)
n (t) =

1

h3
d

∫ 1

0

∫ t

−∞
K ′′

d

(
ξ (u, v) − u

hd

)
du (m̂ (v) − m (v))2 dv,(3.6)

and |ξ(u, v)−m(v)| ≤ |m̂(v)−m(v)|. We now investigate the three terms in this expansion separately.

Lemma 3.1. If the assumptions (V1)-(V4), (W1)-(W3) are satsified we have for any t with

m′(m−1(t)) > 0 and some λ ∈ [0, 1]

m−1
I (t) − m−1 (t) = hd

∫ 1

−1

uKd (u)
(
m−1

)′
(t + hdλu) du =: bKd

(t)(3.7)

Proof. Using the same arguments as in the proof of Lemma 2.1 in Dette, Neumeyer and Pilz

(2005) yields

Dn (t) = m−1
I (t) − m−1 (t)

= m−1 (t − hd) + hd

∫ 1

−1

(
m−1

)′
(t + hdz)

∫ 1

z

Kd (v) dvdz − m−1 (t) .

Therefore we obtain by integration by parts

Dn (t) = m−1 (t − hd) +

(
m−1 (t + hdz)

∫ 1

z

Kd (v) dv

)∣∣∣∣
1

−1

+

∫ 1

−1

Kd (z) m−1 (t + hdz) dz − m−1 (t)

= hd

∫ 1

−1

zKd (z)
(
m−1

)′
(t + hdλz) dz

for some λ ∈ [0, 1]. �

We now investigate the second term Δ
(1)
n (t) in the decomposition (3.4).

Lemma 3.2. If the assumptions (V1) - (V4), (W1) - (W3) are satisfied then we have for any t

with m′(m−1(t)) > 0

Δ(1)
n (t) + hraKd,Kr(t) = Δ(1.2)

n (t) + op

( 1√
nh

)
,
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where h = hd or h = hr,

Δ(1.2)
n (t) = − 1

nhrhd

n∑
i=1

∫ 1

0

Kd

(
m (v) − t

hd

)
Kr

(
v − Xi

hr

)
σ (Xi) εi

f (v)
dv,(3.8)

and the quantity aKd,Kr(t) is given by

aKd,Kr(t) =

∫ 1

−1

Kd (v)

∫ 1

−1

uKr (u)
m′ (m−1 (t + hdv) + hrμu)

m′ (m−1 (t + hdv))
dudv(3.9)

Proof. We use the decomposition

Δ(1)
n (t) =

(
Δ(1.1)

n (t) + Δ(1.2)
n (t)

)
(1 + op (1)) ,(3.10)

where Δ
(1.2)
n (t) is defined in (3.8) and

Δ(1.1)
n (t) = − 1

nhrhd

n∑
i=1

∫ 1

0

Kd

(
m (v) − t

hd

)
Kr

(
v − Xi

hr

)
m (Xi) − m (v)

f (v)
dv.(3.11)

For the expectation of Δ
(1.1)
n (t) we obtain for some μ, ν ∈ [0, 1]

E
[
Δ(1.1)

n (t)
]

= − 1

nhrhd

n∑
i=1

E

[∫ 1

0

Kd

(
m (v) − t

hd

)
Kr

(
v − Xi

hr

)
m (Xi) − m (v)

f (v)
dv

]

= − 1

hrhd

∫ 1

0

∫ 1

0

Kd

(
m (v) − t

hd

)
Kr

(
v − y

hr

)
m (y) − m (v)

f (v)
dvf (y)dy

= − 1

hrhd

∫ m−1(t+hd)

m−1(t−hd)

∫ v+hr

v−hr

Kd

(
m (v) − t

hd

)
Kr

(
v − y

hr

)
m (y) − m (v)

f (v)
f (y)dydv

= −hr

∫ 1

−1

∫ 1

−1

Kd (v) yKr (y)
m′ (m−1 (t + hdv) − hrμy)

m′ (m−1 (t + hdv))

×
{

1 + hry
f ′ (m−1 (t + hdv) − hrνy)

f (m−1 (t + hdv))

}
dydv

= −hr

∫ 1

−1

Kd (v)

∫ 1

−1

yKr (y)
m′ (m−1 (t + hdv) − hrμy)

m′ (m−1 (t + hdv))
dydv + o

(
1√
nh

)

= hraKd,Kr(t) + o

(
1√
nh

)
,

where h = hd or h = hr. On the other hand it was shown by Dette, Neumeyer and Pilz (2005) that

for limhd,hr→0 hr/hd = c ∈ [0,∞)

Var(Δ(1.1)(t)) = op

( 1√
nhd

)
= op

( 1√
nhr

)
(3.12)
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(note that the derivation of this statement in this paper only requires a regression function, which

is once continuously differentiable). Finally, the expectation of Δ
(1.2)
n (t) is obviously 0, while the

variance is obtained by a straightforward calculation as

lim
hd,hr→0

Var(
√

nhdΔ
(1.2)
n (t)) =

σ2(m−1(t))

f(m−1(t))m′(m−1(t))

∫ 1

−1

K2
d(v)dv.(3.13)

The assertion of the Lemma is now obvious from (3.10).

�

Our final auxiliary result deals with the term Δ
(2)
n (t) in the decomposition (3.4).

Lemma 3.3. If the assumptions (V1)-(V4), (W1)-(W3) are satsified, we have

Δ(2)
n (t) = Δ(2.1)

n (t) (1 + op (1)) ,

where the random variable Δ
(2.1)
n is defined by

Δ(2.1)
n (t) = − 1

h2
d

∫ 1

0

K ′
d

(
m (v) − t

hd

)
(m̂ (v) − m (v))2 dv

and satsifies √
nhdΔ

(2.1)
n (t) = Op

( 1√
nh2

rhd

+

√
nh4

r

hd

)
.

Proof. Recalling the definition of the term Δ
(2)
n (t) in (3.6) we obtain

Δ(2)
n (t) =

1

h3
d

∫ 1

0

∫ t

−∞
K ′′

d

(m(v) − u

hd

)
(m̂(v) − m(v))2

×
[
1 +

(
K ′′

d

(m(v) − u

hd

))−1(
K ′′

d

(ξ(u, v)− u

hd

)
− K ′′

d

(m(v) − u

hd

))]
dudv

=
1

h2
d

∫ 1

0

∫ ∞

m(v)−t
hd

K ′′
d (u)(m̂(v) − m(v))2

×
[
1 + (K ′′

d (u))−1
(
K ′′

d

(
u +

ξ(m(v) − hdu, v) − m(v)

hd

)
− K ′′

d (u)
)]

dudv,(3.14)

where we used the substitution u → m (v) − hdu in the second step. Using the estimate

sup
u

|m̂ (u) − m (u)| = O
(( log h−1

r

nhr

)1/2)
a.s.

[see Mack and Silverman (1982)] we obtain

1

hd
E
[
sup
u,v

|ξ (m (v) − hdu, v) − m (v)|
]

≤ 1

hd
E
[
sup

v
|m̂ (v) − m (v)|

]
= O

( log h−1
r

nhrh2
d

)1/2

= o (1) ,
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where we use assumption (W3) for the last estimate. By Markov’s inequality it follows that

sup
u,v

|ξ (m (v) − hdu, v)| = op (hd)

and by the continuity of K ′′
d we have∣∣∣K ′′

d

(
u +

ξ (m (v) − hdu, v) − m (v)

hd

)
− K ′′

d (u)
∣∣∣ = op(1)(3.15)

Therefore it follows from (3.14)

|Δ(2)
n (t)| ≤ 1

h2
d

∣∣∣∫ 1

0

∫ ∞

m(v)−t
hd

K ′′
d (u)(m̂(v) − m(v))2dudv

∣∣∣ (1 + op(1))

≤ 1

h2
d

∣∣∣∫ 1

0

K ′
d

(m(v) − t

hd

)
(m̂(v) − m(v))2dv

∣∣∣ (1 + op(1)).

For the expectation of the second factor we have (using the assumption that m ∈ C1([0, 1]))

E
[
|m̂(v) − m(v)|2

]
= O

( 1

nhr
+ h2

r

)
,

which yields

|Δ(2)
n (t)| = Op

( 1

nhrhd
+

h2
r

hd

)
.

Therefore the assertion of Lemma 3.3 follows from assumption (W3). �

We are now in a position to prove the asymptotic normality of the estimate m̂−1
I for the inverse of

the regression function.

Theorem 3.4 If the assumptions (V1)-(V4), (W1)-(W3) are satisfied, then it follows for any

t ∈ (m(0), m(1)) with m′(m−1(t)) > 0√
nhd

(
m̂−1

I (t) − m−1 (t) + hraKd,Kr (t) − hd bKd
(t)

) D−→ N (
0, g2 (t)

)
,

where the constants aKd,Kr and bKd
are given by (3.9) and (3.7), respectively, and

g2 (t) =
σ2 (m−1 (t))

f (m−1 (t))m′ (m−1 (t))

∫ 1

−1

K2
d (y)dy

Proof. Observing the decomposition (3.4), Lemma 3.1, 3.2 and 3.3 we obtain√
nhd

(
m̂−1

I (t) − m−1 (t) + hraKd,Kr (t) − hd bKd
(t)

)
=

√
nhd

(
Δ(1)

n (t) + hraKd,Kr (t)
)
(1 + op (1)) +

√
nhdΔ

(2)
n (t) .

=
√

nhdΔ
(1.2)
n (t) (1 + op (1)) + op(1)

11



By Ljapunoff’s Theorem and (3.13) the remaining term is asymptotically normal with variance

σ2(m−1(t))

f(m−1(t))m′(m−1(t))

∫ 1

−1

K2
d(v)dv,

which proves the assertion of Theorem 3.4.

�

Note that the final monotone estimate of the regression function is obtained by an inversion of the

function m̂−1
I . Dette, Neumeyer and Pilz (2005) investigated the properties of the operator which

maps a strictly increasing function onto a given quantile by a functional delta method assuming

a twice continuously differentiable regression function. In the case where m ∈ C1([0, 1]) only

this argument is not applicable any more and we replace it by using the fact that the estimate

m̂−1
I converges uniformly to m−1 on proper subsets of the interval (m(0), m(1)). This statement is

precisely formulated in the following theorem and of own interest.

Theorem 3.5. Assume that the assumptions (V 1) − (V 4), (W1) − (W3) are satisfied and that

m′(m−1(t)) > 0 for all t ∈ (m(0), m(1)). Let δ > 0 be an arbitrary small positive number, define

J := J (δ) = [m (0) + δ, m (1) − δ] ,

sup
t∈J

∣∣m̂−1
I (t) − m−1 (t)

∣∣ = O

(
log h−1

r

nhr

)1/2

+ o (hd) a.s.

sup
t∈J

∣∣∣(m̂−1
I

)′
(t) − (

m−1
)′

(t)
∣∣∣ = O

(
log h−1

r

nhrh2
d

)1/2

+ o (1) a.s.

Proof. Let s ∈ {0, 1}, then it follows

sup
t∈J

| (m̂−1
I

)(s)
(t) − (

m−1
)(s)

(t) | ≤ T
(s)
1 + T

(s)
2 ,(3.16)

where the quantities T
(s)
1 and T

(s)
2 are defined by

T
(s)
1 := sup

t∈J
| (m̂−1

I

)(s)
(t) − (

m−1
I

)(s)
(t) |,

T
(s)
2 := sup

t∈J
| (m−1

I

)(s)
(t) − (

m−1
)(s)

(t) |.

Observing the decomposition in (3.4) we therefore obtain

T
(s)
1 ≤ Δ(1),(s)

n +
1

2
Δ(2),(s)

n ,

where we used the notation

Δ(k),(s)
n = sup

t∈J

∣∣∣(Δ(k)
n

)(s)
(t)

∣∣∣ , k = 1, 2; s = 0, 1,

12



the upper index (s) means differentiation with respect to the variable t (s times) and Δ
(1)
n (t) and

Δ
(2)
n (t) are defined in (3.5) and (3.6), respectively. Assume that hd is sufficiently small such that

{t + hdv | t ∈ J(δ), |v| ≤ 1} ⊂ [m(0), m(1)],(3.17)

then this term can be estimated as follows

Δ(k),(s)
n ≤ 1

hk+s−1
d

∫ 1

−1

∣∣∣K(k+s−1)
d (v)

∣∣∣ sup
t∈J

∣∣∣(m−1
)′

(t + hdv)
∣∣∣(3.18)

×
(
sup
t∈J

∣∣(m̂ − m) ◦ m−1 (t + hdv)
∣∣)k

dv

≤ 1

hk+s−1
d

sup
z

| (m−1
)′

(z) | sup
z

|m̂ (z) − m (z)|k
∫ 1

−1

|K(k+s−1)
d (v) |dv.

Using a similar argument as in Mack and Silverman (1982) (in the case where m, f ∈ C1([0, 1])) we

have under the assumption hr = o (log h−1
r /nhr)

1/2

sup
z

|m̂ (z) − m (z)| = O

(
log h−1

r

nhr

)1/2

, a.s.

which yields in (3.18) the estimate

Δ(k),(s)
n = O

( log h−1
r

nhrh
2(k+s−1)/k
d

)k/2

a.s. (k = 1, 2, s = 0, 1)(3.19)

In the case k = 2 we obtain

Δ(2),(s)
n = O

(
log h−1

r

nhrh
1+s
d

)
= O

(
log h−1

r

nhrh2s
d

)1/2

a.s. (s = 0, 1)

by assumption (W3), while for the terms Δ
(1),(s)
n this estimate follows directly from (3.19). This

yields for s = 0, 1

T
(s)
1 = O

(( log h−1
r

nhrh2s
d

)1/2)
a.s. ,(3.20)

and it remains to derive a corresponding estimate for the quantities T
(0)
2 and T

(1)
2 . In the case s = 0

we have by Lemma 3.1 for the term T
(0)
2

T
(0)
2 = hd sup

t∈J
|
∫ 1

−1

uKd(u)(m−1)′(t + hdλu)du|(3.21)

= hd sup
t∈J

|
∫ 1

−1

uKd(u)
{
(m−1)′(t + hdλu) − (m−1)′(t)

}
du|

≤ hd

∫ 1

−1

|u||Kd(u)| sup
t∈J

|(m−1)′(t + hdλu) − (m−1)′(t)|du

= hd

∫ 1

−1

|u||Kd(u)|du · o(1) = o(hd),

13



where we used the fact that
∫ 1

−1
uKd(u)du = 0 and the uniform continuity of the function (m−1)′

on the interval [0, 1]. Finally, the remaining term T
(1)
2 is treated as follows

T
(1)
2 = sup

t∈J

∣∣∣∣ ∂

∂t

(
1

hd

∫ 1

0

∫ t

−∞
Kd

(
m (v) − u

hd

)
dv

)
− (

m−1
)′

(t)

∣∣∣∣
= sup

t∈J

∣∣∣∣ 1

hd

∫ 1

0

Kd

(
m (v) − t

hd

)
dv − (

m−1
)′

(t)

∣∣∣∣
= sup

t∈J

∣∣∣∣
∫ 1

−1

Kd (v)
{(

m−1
)′

(t + hdv) − (
m−1

)′
(t)

}
dv

∣∣∣∣
≤ sup

t∈J

∣∣∣(m−1
)′

(t + hdλv) − (
m−1

)′
(t)

∣∣∣ = o(1)

for some λ ∈ [0, 1], where we again used the uniform continuity of (m−1)′ on the interval [0, 1]. The

assertion of Theorem 3.5 now follows from (3.16), (3.20) and (3.21).

�

Theorem 3.5 will be the main tool for deriving the asymptotic normality of the estimate m̂I . For

the statement of this result we define for any δ > 0, η > 0 the set

I (η) :=
[
m−1 (m (0) + δ) + η, m−1 (m (1) − δ) − η

]
(3.22)

Theorem 3.6. Assume that the assumptions (V1)-(V4), (W1)-(W3), hd/hr → ∞ are satisfied

then it follows for any x ∈ I(η) with m′(x) > 0

√
nhd (m̂I (x) − m (x) − hraKd,Kr (m (x)) m′ (x) + hdbKd

(m (x))m′ (x))
D−→ N (

0, s2 (x)
)

,

where bKd
and aKd,Kr(t) are defined in (3.7) and (3.9), respectively and

s2(x) =
σ2(x)m′(x)

f(x)

∫ 1

−1

K2
d(y)dy.

Proof. Without loss of generality it is assumed that m′(x) > 0 for all x ∈ [0, 1] (otherwise this

assumption is satisfied in a neighbourhood of the point x and an appropriate subinterval has to be

considered). Recall the definition of J(δ), and assume that n is sufficiently large, hd and hr are

sufficiently small such that

{m̂I(x) | x ∈ I(η)} ⊂ J(δ) ,(3.23)

where the set I(η) has been defined in (3.22) (note that the function m̂−1
I converges uniformly to

m−1 on J(δ), by Theorem 3.5). By the mean value theorem we have for any x ∈ I(η)

m̂−1
I (m̂I (x)) − m̂−1

I (m (x)) = (m̂I (x) − m (x))
(
m̂−1

I

)′
(ξm̂I

(x)) ,(3.24)
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where |ξm̂I
(x) − m (x)| ≤ |m̂I (x) − m (x)|. Note that ξm̂I

(x) ∈ J(δ), because it is a convex combi-

nation of m(x) and m̂I(x). By assumption (m−1)′ is bounded from below by some positive constant

in a neighbourhood of the point m(x) and by Theorem 3.5 the same holds true for the estimate

(m̂−1
I )′ if n is sufficiently large. Observing the identity

m̂−1
I (m̂I (x)) = m−1 (m (x)) ,

we obtain from (3.24)

m̂I (x) − m (x) = −m̂−1
I (m (x)) − m−1 (m (x))(

m̂−1
I

)′
(ξm̂I

(x))
.(3.25)

We will finally show that the nominator in this expression converges in probability to (m−1)′(m(x))

= 1/m′(x). The assertion of Theorem 3.6 is then obvious from Theorem 3.4. For this final step we

use the estimate∣∣∣(m̂−1
I

)′
(ξm̂I

(x)) − (
m−1

)′
(m (x))

∣∣∣ ≤
∣∣∣(m̂−1

I

)′
(ξm̂I

(x)) − (
m−1

)′
(ξm̂I

(x))
∣∣∣(3.26)

+
∣∣∣(m−1

)′
(ξm̂I

(x)) − (
m−1

)′
(m (x))

∣∣∣ .
It follows from the proof of Theorem 3.5 that the random variables

T (0) (t) =
∣∣m̂−1

I (t) − m−1 (t)
∣∣

and

T (1) (t) =
∣∣∣(m̂−1

I

)′
(t) − (

m−1
)′

(t)
∣∣∣

converge a.s. to 0 uniformly on the set J(δ). This implies the uniform a.s. convergence of m̂I(x) to

m(x) on I(η) and as a consequence the random variable ξm̂I (x) converges to m(x) a.s. The continuity

of (m−1)′ now implies the a.s. convergence of (m−1)′(ξm̂I(x)) to (m−1)′(m(x)), which shows that the

second term in (3.26) converges to 0. By the previous discussion we have ξm̂I
(x) ∈ J (δ) and the

uniform convergence of T (1)(t) on J(δ) yields for the first term in (3.26)

T (1)(ξm̂I(x)) = o(1) a.s..

In other words the left hand side of (3.26) converges uniformly to 0 which completes the proof of

Theorem 3.6. �

4 Further discussion

Note that the result of Theorem 3.6 requires the condition hr = o(hd), which is used at sev-

eral steps in the proofs of Section 3. We were not able to derive an asymptotic law in the case

limhd,hr→0 hd/hr = c ∈ [0,∞) and m ∈ C1([0, 1]) because a proof of the corresponding statements

requires various contradicting conditions regarding the bandwidths hd and hr.
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In the remaining part of this paper we discuss the case, where the bandwidth hr of the regression

estimate is chosen as

hr = cn−1/3.(4.1)

This case is of particular interest, because the choice corresponds to the optimal rate (with respect

to mean squared error) in nonparametric estimation of a once continuously differentiable regression

function. Moreover, it is known that the appropriately normalized monotone least squares estimate

converges weakly with rate n−1/3 to a random variable which is defined as the slope at the point

0 of the greatest convex minorant of the process W (t) + t2, where W is a two sided Wiener-Levy

process [see Robertson, Wright and Dykstra (1989), Theorem 9.2.4]. In this case the conditions in

(W3) yield for the bandwidth in the density step

hd = n−1/3αn(4.2)

where the sequence αn converges to infinity such that

αn = O(nε) for some 0 < ε <
1

12
(4.3)

log n = o(αn).(4.4)

In this case the statement of Theorem 3.6 simplifies substantially.

Corollary 4.1. Assume that the assumptions of Theorem 3.6 are satisfied and that the bandwidths

hd and hr satisfy (4.1) - (4.4), then it follows for any x with m′(x) > 0

n1/3√αn{m̂I(x) − m(x)} − α1/2
n aKd,Kr(m(x))m′(x) + α3/2

n bKd
(m(x))m′(x)

D−→ N (0, s2(x)),

where the quantities aKd,Kr , bKd
and s2(x) are defined in Theorem 3.6. Moreover, if m′ is Hölder

continuous of order γ and the constant ε in condition (4.3) satisfies ε < 2γ
9+6γ

, then

n1/3α1/2
n (m̂I(x) − m(x))

D−→ N (0, s2(x)).

Note that Corollary 4.1 shows that the variance of the density-regression estimate m̂I is of order

O
( 1

n2/3αn

)
,

while the bias is of order

o
( αn

n1/3

)
.

In particular, if αn = nε and ε > 0 is sufficiently small this gives the order O(n−2/3−ε) for the

variance and o(n−1/3+ε) for the bias. For the isotone least squares estimate the order of the mean

squared error is O(n−2/3). Therefore the slightly larger order of the mean squared error of m̂I
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can be considered as a price which has to be paid to obtain an asymptotically normal distributed

estimate.
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