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Abstract

Sometimes one may be confronted with classification problems where classes are
constituted of several subclasses that possess different distributions and therefore
destroy accurate models of the entire classes as one similar group. An issue is
modelling vialocal models of several subclasses.

In this paper, amethod is presented of how to handle such classification problems
where the subclasses are furthermore characterized by different subsets of the
variables. Situations are outlined and tested where such local models in different
variable subspaces dramatically improve the classification error.

1 Introduction

In order to minimize the misclassification error in a C'—class classification prob-
lem one aims at searching for a classification rule

¢ = arg cgl,&}i{op(dx) (1)
that maximizes the conditional posterior probability given the observation z. It
may be the case that a class ¢ is composed of several ”subclasses’ with differ-
ent distributions. For an accurate estimation of P(c|x) these subclasses have to
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be modelled separately by local models. During this paper, we assume all the
subclass-memberships in the training data to be known, whereas these member-
shipsin the test data - of course - are not known (else the class of the observation
would also be given!). If the subclasses are not known in advance clustering meth-
ods can be used to investigate if the data of some class is composed from several
subgroups of data.

Wecdl k = {1, ..., K} theindex of all subclasses. Thereisexisting a(surjective)
relationship f : {1,...,K} — {1,...,C}. Given the posterior probabilities
of the membership of any of the subclasses P(k|x), the classification rule for any
classcisgiven by

¢ =arg max 3" Iiy(f(K)) * P(kla) 2)
k

Moreover, the subclasses may be characterized by different variables in the data.
If size of training set is not very large, a variable selection may particularly be
useful to model only such variablesthat are relevant to the classification problem.

Examplel

Imagine the case of two classes A and B each consisting of two subclasses A; and
B;, i = 1,2. Let now the distribution of the subclassesin variable X f(X|A;) =
f(X|B;), i = 1,2. Figure 1 shows this example for subclasses being normally
distributed with unit variance but differing means ;. In such case subclasses A;
and B, can be discriminated, as can be subclasses A, and B;. For discrimination
of the subclasses A; and B; aswell as A, and B, thisvariable contributes no infor-
mation and should therefore preferably be omitted. Thisreflection is summarized
in the matrix of table 1.

Subclass | A, B; B

Ay (+) - +
A2 + =
By (+)

Table 1. +/— indicateswhether variable X in example 1 servesfor discrimination
of two subclasses or not. Parentheses indicate the same (classc = A or B). Only
half of the subclass-pairs can be discriminated in this variable.
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Figure 1: Example of a”2 classes with 2 subclasses each” problem as introduced
in example 1. Only half of the subclasses can be separated by differing distribu-
tionsin this variable.

If any preceeding variable selection in local modelling is desired, thisusually has
to be performed globally, since comparing local models in different variable sub-
setsisadifficult task. Thisproblem isoutlined in Szepannek et al. (2006).
Szepannek and Weihs (2006) proposed a method of pairwise variable selection
[PVS]. By this method, the simulated misclassification test-error in the well-
known Waveform data set (see Breiman et al., 1984) for Linear Discriminant
Analysis (which works quite well on this task) has been reduced from 20.02%
to 16.96% (being bounded by 14.9% Bayes error from below). A K-class prob-
lem is splitted into K (K — 1)/2 two-class-problems. For any of these class pairs
a classification rule is built after some variable selection procedure. The result
consists of K (K — 1)/2 classification modelsin a”locally maximally reduced”
variable space.

Such classification of an observation leads to K (K — 1)/2 pairwise decisions,
returning the same number of pair wise posterior probabilities.

Theremaining question consistsin building a classification rule from these
K(K —1)/2 pair wise classifiers.



To solve this task a Pairwise Coupling algorithm can be used. It is described in
Section 2. If we perform such classification for the subclass-modelsk =1, ..., K
the desired classification can then be obtai ned by aggregating the subclass-posterior
probabilities as in equation 2. This procedure can be performed principally for
any classification method returning posterior probabilities in combination with
any meaningful method of variable selection.

The following pseudo-code summarizes the steps of the suggested proceeding:

Build.classification.model (data [ containing the subclass.labelg], f,
classification.method, variable.sel ection.method)

#H# f isthe function as described above |abelling the subclasses to the classes.
1. For each pair of two subclasses do
2. () Removetemporarily all observationsthat do not belong to one of both

subclasses from data: return newdata.

(b) Perform variable.selection.method on newdata:
return subspace.of.subclass-pair.

(c) Perform classification.method on newdata only considering
subspace.of.subclass-pair: return model.of.subclass-pair.

(d) Return subspace.of.subclass-pair and model.of.subclass-pair for this
pair of two subclasses.

3. Return the whole model consisting of: f and for all pairs of subclassesthe
subspace.of.subclass-pair and model.of.subclass-pair.



Predict.class (new.object, subspaces.of.subclass-pairs, model s.of .subclass-pairs,f)

=

. For each pair of subclasses do

N

(@) Calculatethe class pair wise posterior probabilities for new object as-
suming the object being of in one of the actually considered two sub-
classes according to model.of.subclass-pair on subspace.of.subclass-
pair.

(b) Return the subclass.pair.posterior.probabilities.

3. Usethe Pairwise coupling agorithm to calculate the posterior probabilities
for all K subclasses from the set of all estimated pairs of conditional
subclass.pair.posterior.probabilities, return: subclass.posterior.probabilities.

4. Calculate the class.posterior.probabilities using the class-labelling function
f according to equation 2.

5. Return the predicted class ¢ with maximal class.posterior.probability.

The following section describes a solution to the question of gaining the vector
of subclass-posterior probabilities form the pair wise classifications built on the
different selected variable subsets. Section 3 briefly describes some variable se-
lection methodsthat are used in the studiesin this paper. In Section 4, asimulation
study is performed that shows possible benefit of such local variable reduction. In
Section 5, the method is applied to some real-world data.



2 Pairwise Coupling

2.1 Definitions

We now tackle the problem of finding posterior probabilities of a K'-(sub)class
classification problem given the posterior probabilities for all K(K — 1)/2 pair
wise comparisons. Let us start with some definitions.

Let p(x) = p = (p1,- .., px) be the vector of (unknown) posterior probabilities.
p depends on the specific realization x. For simplicity in notation we will omit .
Assume the "true” conditional probabilities of a pair wise classification problem
to be given by

R bi
Wi = Pr(itUj) = )]
= Prilivg) = 2

Let r;; denote the estimated posterior probabilities of the two-class problems. The
aimis now to find the vector of probabilities p; for agiven set of valuesr;;.

Example 2:

Givenp = (0.7,0.2,0.1). The ;; can be calculated according to equation 3 and
can be presented in a matrix:

. T/9 7/8
{mi} = ( 2/9 . 2/3 ) (4)
1/8 1/3 .

Example 3:

The inverse problem does not necessarily have a proper solution, since there are
only K — 1 free parametersbut £ (K — 1)/2 constraints. Consider

.09 04
06 03 .

where the row ¢ containsthe estimated conditional pairwise posterior probabilities
r;; for classi. From Machine Learning, majority voting (" Which class wins most
comparisons ?’) isawell known approach to solve such problems. But here, it
will not lead to a result since any class wins exactly one comparison. Intuitively,
class 1 may be preferable since it dominates the comparisons the most clearly.
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2.2 Algorithm

In this section we present the Pairwise Coupling algorithm of Hastie and Tibshi-
rani (1998) to find p for agiven set of r;;. They transform the problem into an it-
erative optimization problem by introducing a criterion to measure the fit between
the observed r;; and the /1;;, calculated from apossible solution p. To measure the
fit they define the weighted Kullback-Leibler distance:

g 1— 7.
I(p) = Znii (Tij * log (T”) + (1 —1y) x log ( i )) (6)
flij L — fug

i<j

n;; 1Sthe number of objectsthat fall into one of the classes ¢ or ;.

The best solution p of posterior probabilitiesis found as in Iterative Proportional
Scaling (IPS) (for details on the IPS-method see e.g. Bishop, Fienberg and Hol-
land, 1975). The algorithm consists of the following three steps:

1. Start with any p and calculate al ;.
2. Repeat until convergence: = (1,2,...,K,1,...):

Dot Mg Tij

_ (7)
2z Mgl

pi = Dpi %

renormalize p and calculate the new /i;;

3. Finally scale the solution to p « Zéﬁ-

M otivation of the algorithm:

Hastie and Tibshirani (1998), show that I(p) increases at each step. For thisrea-
son, since it is bounded above by O, if there exists a proper solution p providing
fti; = ri; Vi # 7, itwill befound.

Evenif thechoice of I(p) as optimization criterion israther heuristic, it can be mo-
tivated in the following way: consider arandom variable n;;r;;, being the number
of observations of class: among then;; observationsof class: and j. Thisrandom
variable can be considered to be binomialy distributed n;;r;; ~ B(n;;, p;;) with
"true” (unknown) parameter ;.;;. Since the same (training) datais used for all pair
wise estimates r;;, the r;; are not independent, but if they were, [(p) of equation 6
would be equivalent to the log-likelihood of this model (see Bradley and Terry,



1952). Then, maximizing /(p) would correspond to maximum-likelihood estima-
tion for yu;;.

Going back to example 3, we obtain p = (0.47,0.25,0.28), aresult being consis-
tent with the intuition that class 1 may be slightly preferable.

In Wu et a. (2004) several methods for multi-class probability by pairwise cou-
pling algorithms are presented and compared. In the ssmulations of this paper, the
method of Hastie and Tibshirani (1998) is used.

3 Validation of the principle

In this section, the suggested procedure of a subclass pair wise variable selection
combined with Pairwise Coupling [PV S] iscompared to classification using linear
and quadratic Discriminant Analysis [LDA, QDA] with global variable subset
selection.

Variable selection:

The method of variable selection in our implementation is a quite simple one. We
used subclass pair-wise Kolmogorov-Smirnov tests (see Hajek, 1969, pp.62—69)
to check whether the distributions of two subclassesdiffer in avariable or not. For
every subclass pair and every variable, the statistic

is calculated, where the F,, (x) are the empirical distributions of subclass k;,
i =1,2. A variableistaken into a pair wise model if its p value strongly indicates
differing densities. Of course, any other variable selection could be used instead.

Especially one could refer here to the stepclass method (see Weihs et al., 2005)
which is a prediction orientated method of variable selection. Variables are in-
cluded in the model if they improve some predefined measure like e.g. the mis-
classification rate on the cross-validated data set. This method possesses the ad-
vantage that it is adaptive to the specifics of any classification method.



3.1 A first example

Our first exampleis chosen according to the introducing example 1 in Section 1 to
again illustrate the problem. Data are simulated in 3 classes (a 3 subclasses each)
and 8 variables. Subclass & is distributed according to X ~ N (2 % 1.64 % ey, [) if
k<9and X ~ N(0,1),if £ =9. Here e, represents the standard basis vector, O
isthe O vector and I isthe identity matrix.

This means, two subclasses k& # [, k,l < 9 differ in their distributionsin only 2
variables (k and 1). Subclass 9 can be discriminated from any other class k£ only
in variable k. Subclasses &k = 1 to 3 are subclasses of class ¢ = 1. Subclasses
k =4,5and 6 belongto classc = 2, sodo subclassk = 7,8 and 9 to class ¢ = 3.
By construction, no variable can be omitted. For that reason, " global” variable se-
lection will not remove any of the variables, using Linear Discriminant Analysis.

Variable selection isespecially useful if there are few training examplesin the data
for estimating the structure of the classes. If classes consist of several subclasses,
the amount of available data is further reduced since there are more populations
to be fitted with the same amount of data. We therefore computed simulations
with varying (equal) (sub)class sizes in the training data to investigate the effect
of sparse data. In the test data each subclass contains 50 objects. Error rates are
averaged over 50 repetitive simulations of the data set. The results are given in
table 2.

sze LDA QDA PVS(withLDA)

4 0.186 - 0.154
6 0.140 - 0.110
8 0.123 - 0.096
10 0.112 0.416 0.096
15 0.098 0.240 0.087
20 0.095 0.185 0.086
50 0.084 0.105 0.079

Table 2: Averaged error rates of LDA, QDA and PV S at varying subclass sizes



0.18
|

— LDA
- PVS (LDA)

0.12 0.14 0.16
| | |

Mean classification error

0.10
|

0.08
1

10 20 30 40 50

Objects per subclass

Figure 2: Averaged error rates on test datain simulation 3.1.

The QDA classification rules can only be build having enough data. Even at
larger class sizes QDA error rates are till very high. The PV'S approach shows
systematically lower error rates on the test data than LDA with "global” variable
selection, especidly if there are only few observations in the training data. For
larger class sizes the differences of both methodsin the error rates are still present
but seem to vanish.

3.2 Differingvariances

We now extend the situation of thefirst example. Inreal lifeit may be possiblethat
oneis confronted with data where one of the (sub)classesis strongly concentrated
in a specific variable. Of course, this class can be more easily identified by its
realizationsin thisvariable. Using LDA will fail to detect this property by pooling
all classes' covariances.

We modelled this situation with data consisting of 3 classes each consisting of 3
subclasses (as in the previous example) in 9 variables. Subclass & is distributed
following X ~ N(2e, ) with X being the identity except from (o) := 0.1.
An illustration of the phenomenon is given in Figure 3 where the vertical line
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Figure 3: Example of unequal variances and their pooled estimators (by LDA).

in the left plot indicates the wrong "optimal decision’ if wrongly assuming equal
covariances asin the right plot. Intuitively, QDA seems to be more appropriatein
this situation. The results for varying training data sizes are shown in Figure 4.

sSze LDA QDA PVS(with QDA)

10 0.250 0.453 0.177
15 0.226 0.273 0.161
20 0.201 0.218 0.151
30 0.182 0.190 0.145
50 0174 0171 0.143
100 0.157 0.151 0.133

Table 3. Averaged error rates of LDA, QDA and PVS at varying class sizes

Astonishingly, here LDA till shows smaller error rates than QDA. For QDA,
there does not seem to be enough data. Both methods can be largely improved by
aclass pair wise variable selection using QDA. But note that such variable selec-
tion simply using the KS-test statistic will fail to detect situations of correlation
between variables.
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Figure 4: Averaged error rates on test data in example 3.2.

3.3 Real world data

The method is now applied to some real world data. The task is register classifi-
cation (i.e. correct labelling into high and low pitch) of singers and instruments
by pitch-independent features. As predictor variables characteristics of the funda-
mental and the first 12 harmonics are used. The fundamental [F'0] of a sound is
exactly its pitch frequency, where the harmonics [F'1, F'2, .. ] are all integer mul-
tiples of the fundamental frequency. The pitch-independent variables are the mass
of the harmonics F0 to F'12 and the width (number of fourier frequencies above
some specified threshold in direct neighbourship to the harmonics in the normal-
ized periodogram) without the information about its corresponding frequency.
Figure 5 illustrates the so-called voice print corresponding to the whole song
“Tochter Zion” for a particular singer. For masses and widths boxplots are in-
dicating variation over the involved tones (cp. Weihs and Ligges (2003)). For the
analyses of this paper we use these characteristics of the voice print for individual
tones per harmonic and singer or instrument.

This classification problem may be an example for local modelling as it is de-
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Figure 5: Voice print of professional bass singer.

scribed in the previous sections, since apart from the classes (namely: high and
low register) and the 26 variables also the subclass, i.e. the instrument-type, may
influence the distribution of the data. For this reason, local modelling has already
been shown here to improve the results.

The data set consists of 432 observations. The subclasses k := (i,¢), i € {all
instruments}, ¢ € {low, high} are all combinations of instrument : AND reg-
ister ¢ and contain between 9 and 90 observations. A detailed description of the
classification problem as well as a description of the data set and the results of
global and local modelling are described in Szepannek et al. (2005). In that paper
Linear Discriminant Analysis and Decision Trees are used to build both local and
global classification rules. It turned out that the best results are obtained using lo-
cal LDA-classifiers. Several methods are derived to build classification rules from
the local LDA-models for each instrument. The error rates (estimated by leave
one out cross validation) have been improved up to 26.9%.

Two of the winner-classification rules are briefly described here:

The first one is referred to as average density rule. The estimated multivariate
normal densities of the local instrument-subclasses as they are returned by LDA
are summed up for the classes, leading to the classification rule:

¢=argmax ) p(alk)I1ey(f (k) 9

k
where f(k) = f(i,c) = cisthefunction that labels the subclasses k = (7,¢) to
the corresponding classes ¢ asit isintroduced in Section 1 and p(x|k) is the esti-
mated density of the observation given the subclass £ = (i, ¢). Since comparing
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densities on different variable subsets is questionable the local models here have
to be built on a globally chosen variable subspace.

The second method will be called global weighting of local posteriors. It makes
use of the fact, that each of the instruments (i.e. the subclasses) appears in com-
bination with all registers in an attribute-like manner and therefore an additional
"global” classification into the correct (unknown) instrument-subclass can be per-
formed. Local LDA classification rules are built for every instrument separately.
The obtained local posterior probabilitiesfor the register of a new object are then
weighted by some global weights that are gained by the posterior probabilities of
the”global” classification into the instrument-subclass. The classification rule can
be described by

¢ =argmax Y _ P(cli,x) x P(i|x) (10)

whichisan applicaton of Bayes' theorem. i here denotestheindex of the subclass-
attribute (instrument). This method turned out to render the smallest obtained er-
ror rate. The different local models (given the instrument-subclass) can be built on
different variable subsets. But for calculation of the global classification posterior
probabilities into the right instrument-subclass of course for all instruments the
same variables have to be taken into account.

For comparison, an analysis has been performed using external knowledge about
the instrument for the prediction (i.e. an object is classified with respect to the
correct local model). Using this extrainformation the error rates can be improved
up to 15% which can be considered as a” lower bound” for the error rates.

While the average density rule does not allow modelling on different variable
subsets, the method of global weighting of local posteriors does alow models on
different feature subsets for different instruments but for the global instrument-
classification for al instrumentsthe variables must be the same. For application of
this method, it is necessary that the subclasses possess an attribute-like structure.
Implementing the PV S method, leads to pairwise comparisons of any combina-
tions (i, ¢) of instrument and register on possibly differing variables.

Using now the PVS approach (with LDA) one observes a further slight improve-
ment of the error rate up to 24.3%. A summary of the different modelling results
givenin table 4.

14



method 110 error rate

global LDA 0.345
average density rule 0.301
global weighting of local posteriors 0.269
PVS (with LDA) 0.243
”lower bound” 0.150

Table 4: Leave one out cross validated error rates for the different methods

Remark: Relationship between the PVS-method and the ’winner model’

By definition the conditional probability of register, given instrument (and obser-

vation x) isgiven by

P(i, c|x)
P(ilx)

This changes the classification rule of the "winner model” of global weighting

of local posteriorsin equation 10 into

P(cli,z) = (11)

¢ = arg max Z P(c,i|x) (12)

Usingthefunction f (k) = f (i, c¢) = c asitisdefined above, then our classification
rule becomes

¢=argmax Y Iy (f(i,"))P(c, i) (13)

(4,c*)

This classification rule is of the same form as it is introduced in equation 2 in
Section 1 for local modelling by the PV'S approach. It can be seen, that in both
methods modelling is essentially done in the same way. The differenceisin esti-
mating the local membership probabilities. The PVS method here only usesthose
variables that are important for decision between two subclasses. This explains
why the result of the winner rule is even slightly improved by using the proposed
method.
Additionally, the proposed PV'S method is more flexible since it can also be ap-
plied to subclasses that do not possess an attribute-like character as the subclasses
in the example do.
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4 Summary

The problem is tackled to perform local modelling for classification where the
variable subspaces of the different local models can differ. An approach of pair-
wise variable selection [PVS] is suggested to perform the maximal possible vari-
able selection by splitting a K -subclass classification probleminto K(K — 1)/2
subclass pair-wise classification problems. An algorithm is presented to build a
classification rulefrom the results using thismethod. This principle can be applied
to any classification method returning class-membership posterior probabilitiesin
combination with any (meaningful) variable selection procedure.

Situations are outlined where such proceeding is strongly beneficial. The method
is investigated on different simulated and real world data sets using (linear and
guadratic) Discriminant Analysis and the results are compared to their original
results using global variable selection. Gain in classification error rate can be no-
ticed, especially if the number of observationsis not very large.

Additionally, the pairwise variable subset selection can give interpretational in-
sight into which features characterize the differences between two (sub)classes.
On the other hand, the computation time grows since there have to be built K (K —
1)/2 classification models. Furthermore, the classification rule of each object has
to be iteratively evaluated by the Pairwise Coupling algorithm.
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