Alert Verification

Determining the Success of Intrusion Attempts

Christopher Kruegel Technical University Vienna
William Robertson University of California, Santa Barbara

Overview

Motivation
— problem of irrelevant alerts

Alert verification
— verify success of attack
— passive and active mechanisms

Prototype
— Snort extension

Evaluation

Conclusions

Motivation

* Intrusion detection systems produce large amounts of alerts

« Often, administrators ignore these alerts because
— there are too many of them
— there are too many irrelevant ones

 Two main strategies to reduce alerts
1. combine, summarize, and correlate alerts
2. remove irrelevant alerts (or greatly reduce their priorities)

Irrelevant Alerts

 Alert classification

— Type 1 (true positive)
alert raised in response to successful attack

— Type 2 (non-relevant positive)
alert raised in response to actual attack that failed its objectives

— Type 3 (false positive)
alert raised in response to benign event

Irrelevant Alerts

Irrelevant Alerts

Non-relevant positive example

» Infected machine launches a Code Red attack against Apache
web server (running on Linux host)

» Intrusion detection system (IDS) faithfully reports attack

Problem
« IDS reports an actual attack (cannot call it a false alarm)

 However, target host is not vulnerable (cannot call it a relevant attack)

 Even worse when web server is a Microsoft |IS, but it is patched

Alert Verification

« Alert verification
— process of verifying the success of attacks
— allows IDS to distinguish between true positives (Type 1 alerts)
and non-relevant and false positives (Type 2 and Type 3 alerts)
— allows IDS to suppress an alert or reduce its priority

* Requirements

— accuracy
« the alert verification process should correctly tag all successful and
unsuccessful alerts
« quality of input data
+ timeliness of input data

Alert Verification

 Requirements (cont.)
— low impact
the verification process should not interfere with regular operations
— ease-of-use

« Classification
— according to verification technique
1. context-based technique
2. forensics-based technique

— according to point in time when verification data is gathered
1. passive alert verification
2. active alert verification

Alert Verification Techniques

Context-based verification

model properties of networks and hosts

model requirements of attacks (based on these properties)
check whether an attack can possibly success, given a particular
network configuration

example

» host operating system is a modeled property

« Code Red attack requires a Microsoft Windows target
« attacks against Linux hosts can be suppressed

related work

« M2D2 [Morin, 2002]
* Real-time Network Awareness [Roesch, 2003]

Alert Verification Techniques

Forensics-based verification

— check for known outcome of attacks

— checkable and visible traces of attacks

— known outcome has to be defined for attacks similar to
misuse-based IDS signatures or virus signatures

— example
worm is known to create a certain Windows Registry entry

— related work
Cisco IDS [2004]

Alert Verification Classification

Passive alert verification
— gather context information once (or at regular intervals)

— information is available previously to attack

Active alert verification

— gather context information or forensic data after alert is generated
— information is gathered in response to attack

— mechanisms can be divided into following groups

e active with remote access
e active with authenticated access
active with dedicated sensor support

10

Passive Alert Verification

A priori information about

— host operating system, services and configuration, and
network topology

Possibility to check

— if target host and service exist,
— if service is reachable, and
— if service is potentially vulnerable

basically no impact on network operations

can be managed at network level (no host support needed)
database of network and hosts must be created and maintained
information can be stale (i.e., out-of-date)

limitations to the amount of information that can be gathered

11

Active Alert Verification

With remote access

— a network connection to the target of the attack is needed
— allows active scanning in response to attack

* Information can be gathered about
— status and changes of services (using also passive information)
— actual vulnerabilities

* Vulnerability scanner
— checks remotely for vulnerabilities
— often ships with a large database of checks that can be performed

12

Active Alert Verification

information is current

can be managed at network level (no host support needed)
large amount of checks already exist

possible impact on network operations and services

e bandwidth consumption and service crashes
vulnerability scanner is not completely accurate

Vulnerability scanner can produce

— false positives (no loss compared to IDS only)

— false negatives (problematic, but unlikely as a vulnerability scanner
performs a basic variation of corresponding attack)

13

Active Alert Verification

With authenticated access

— verification process disposes of local (user) access to target host
— run scripts and system commands

« Information gathered about

— file integrity or existence of suspicious files
— system status about processes and network connections

+ current and accurate information

+ basically no impact on network operations
- requires host support

- checks have to be developed

14

Active Alert Verification

With dedicated sensor support

— verification process disposes of local (user) access to target host
— dedicated sensors are installed and configured

« Information gathered about
— kernel level events, system calls

+ current information

+ high-quality audit data

+ basically no impact on network operations

- requires sensors to be installed and configured
- checks have to be developed

15

Prototype

Active alert verification prototype

— uses the remote access technique

— based on NASL scripts written for Nessus vulnerability scanner
— implemented as a patch to Snort IDS

Nessus

— widely-used, open source vulnerability scanner

— many high quality checks available

— very modular and easy to integrate

— extensible NASL (Nessus Attack Scripting Language) language

16

Prototype

Snort patch
— extension of Snort’s alert processing pipeline
— intercepts alerts before being passed to output plug-ins

— multiple verification threads
» ensures high throughput if checks are waiting for time outs

Selection of appropriate vulnerability check

— based on CVE ID
— both defined by Snort alerts and NASL scripts
— when no matching script is found, alert remains unverified and is simply

passed on

All alerts are appropriately tagged and passed to output plug-ins

17

Prototype

Snort-AV prototype system
— no setup overhead
e as easy as setting up Snort
— covers a significant fraction of Snort alerts
— well maintained
« patch against latest Snort version 2.1.3
— reasonably popular
« about 5.000 downloads
— readily available

hitp://www. cs.ucsb. edu/~wkr/rojects/ids _alert verficatdion/

18

Evaluation

Synthetic benchmark

— Snort-AV on a test bed with an attacker and a victim host

— evaluation set consisting of
1. nine working exploits against popular services such as Apache, bind,
sshd, sendmail, wu-ftpd
2. full scan using Nessus

— Snort generated 6,659 alerts, of which only 24 alerts were relevant
— among those 24 relevant alerts were all nine exploits
— all 24 relevant alerts were correctly verified, the rest was suppressed

19

Evaluation

Real world benchmark

— Snort-AV with two honeypots
« Snort-2.0.2
 Linux RedHat 7.2
* Windows 2000

— during a 14 days period
 164.415 alerts in response to attacks against RedHat 7.2
* 79.198 alerts in response to attacks against Windows 2000

— verification process results
+ 161.166 attacks (98.3%) against RedHat 7.2 tagged as unsuccessful
« 78.785 attacks (99.4%) against Windows 2000 tagged as unsuccessful

20

Evaluation

Real world benchmark (cont.)

— most attacks were
« Slammer and Nachia worms
* scan activity against ports commonly used by web proxy and socks proxy

— unsuccessful attacks were manually checked
+ possible because many attacks target non-existing services

— significant fraction of alerts were non-relevant positives
+ despite the fact that an out-of-the-box Snort was used

Limitations
— alert verification quality depends on quality of Nessus
— CVE ID sometimes imprecise

21

Conclusions

Real world systems produce a large amount of alerts
— in particular, non-relevant positives are a problem

Alert verification is a process that determines the success of attacks to suppress
irrelevant alerts

Classification
— context-based versus forensics-based techniques
— passive versus active verification techniques

Snort-AV

— prototype of an active alert verification system with remote access
— integrates the Nessus vulnerability scanner into the Snort IDS

— effective in synthetic and real world experiments

22

