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Chapter 1

Introduction

1.1 Motivation

The properties of various magnetic materials can be successfully described by one-dimen-
sional spin-1/2 isotropic antiferromagnetic Heisenberg quantum spin systems with tem-
perature independent spin-spin coupling. Prominent examples are Cu(L-alanin), (Refs. [1,
2]), SroCuO3 (Refs. [3-5]), and SrCuOs (Ref. [3]). Also the high-temperature phase of the
spin-Peierls material CuGeOj3 can be described by the frustrated one-dimensional spin-1/2
isotropic antiferromagnetic Heisenberg quantum spin system (Ref. [6]).

However, the successful description of a real system at finite and especially high tem-
peratures has to include the phononic degrees of freedom which contribute significantly to
the thermodynamic properties. In particular, the spin-phonon coupling, together with the
original spin-spin coupling J, generates an effective spin-spin coupling which in contrast
to the original spin-spin coupling is temperature dependent [7]. At low temperatures the
spin-phonon interactions are expected to generate phase-transitions like the spin-Peierls
transition [8, 9].

The aim of this study is to investigate the effects generated by the spin-phonon inter-
action. We will examine how the spin-phonon interaction changes the properties of the
system with respect to those of the pure spin system.

In particular, we are interested whether a mapping of the experimental magnetic sus-
ceptibility of real materials onto the magnetic susceptibility (as a function of temperature)
of the spin-phonon model yields information about the phonon frequencies and the spin-
phonon couplings of the real systems.

Another important question is whether in these models phonons exist at zero temper-
ature and how the spin-phonon interaction influences the specific heat of the model.

Furthermore, we will investigate under which conditions the spin-phonon interaction
generates a structural phase transition which corresponds to the spin-Peierls transition.
Such a transition manifests itself in the appearance of dimerization generated by the
phonon displacement operator b}L + by, in a step-like behavior with step-width of two
lattice units in the staggered correlation function, and in a spin-gap in the magnetic
susceptibility below a certain temperature.

In particular, this study may be of interest for future investigations which will try to
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understand the appearance of spin-Peierls phase transitions in more complicated higher di-
mensional models. Spin-Peierls phase transitions exist only in three-dimensional systems,
because according to the Mermin-Wagner theorem [10], long-range (antiferromagnetic)
order at nonzero temperature is possible only in three-dimensional systems. Kosterlitz-
Thouless phase transitions [11], which can exist in two-dimensional systems which are of
topological order only (i. e. of long-range order of non-conventional type), cannot occur
in Heisenberg systems.

We restrict our study to a very special and simple model, namely the one-dimensional
spin-1/2 isotropic antiferromagnetic Heisenberg quantum spin system with nearest neigh-
bour interaction which is coupled to one-dimensional dispersionless phonons. This re-
striction is necessary because of conceptual problems such as the minus sign problem and
difficulties to find an appropriate algorithm.

This work is organized as follows. We start with a brief history of the spin models
and the spin-Peierls phenomenon in sections 1.2 and 1.3. In chapter 2 we present a
short review of the quantum Monte Carlo methods which have been developped since
1977. We proceed by applying a very efficient quantum Monte Carlo method, the loop
algorithm, to the XX7Z Heisenberg model and the dimerized model. Our aim is to study
the magnetic susceptibility and the specific heat of these systems. Furthermore, we apply
the continuous version of the loop algorithm on the isotropic Heisenberg model. To test
the efficiency of this algorithm we determine the magnetic susceptibility and the specific
heat of this system and compare our results with the exact values calculated by Kliimper
[19]. Moreover we study the number of transition times of the isotropic Heisenberg model
as a function of the temperature. At low temperatures this number will turn out to be
proportional to the inverse temperature.

In chapter 3 we will introduce a modification of the discrete version of the loop al-
gorithm. This modification includes the update procedure for the phononic degrees of
freedom by considering both the spin-phonon coupling and the free phonons. By us-
ing this modified loop algorithm we are able to simulate an isotropic Heisenberg model
coupled to Einstein phonons. We point out the approximations of both this model and
this algorithm and justify their suitability. The approximations of the algorithm include
effects of finite size and finite Trotter number. These effects are studied in detail.

In chapter 4 we report on a simulation of the one-dimensional spin-1/2 isotropic anti-
ferromagnetic Heisenberg model coupled to Einstein phonons. The spin-spin interaction
includes nearest neighbor interaction only. We study in detail the magnetic susceptibility,
the effective spin-spin coupling, the probability of the phonon occupation, the specific
heat, and the local displacement. By determining the appearance of dimerization at low
temperatures we present a phase diagram of the model. By examining the spin-spin corre-
lation we determine the behavior of the correlation length as a function of the temperature
in dependence on the phonon frequency and the spin-phonon coupling.

Finally, in chapter 5 we study the two-frequency model. This model is of particular
interest for the understanding of CuGeQOj3, because the spin-Peierls phase transition of
this material is generated mainly by phonons of two frequencies.
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1.2 Spin models

The Hamiltonian of the XYZ-model or generalized (one-dimensional) Heisenberg model
(with nearest neighbour interaction) is,

N
H =3 (JoSSl + JyS Sty + JS[Si), (1.1)
=1
where S denotes the spin operator. Heisenberg [12] suggested the isotropic model, i. e.
that with J, = J, = J,, and was the first to investigate it. By using this model, he was able
to explain the Weiss molecular forces by the quantum mechanical exchange interaction
of the spins. Bethe [13] introduced a method for the calculation of the eigenfunctions
in zeroth and the eigenvalues in first order of the approximation method of London and
Heitler. By using this “Bethe-ansatz” he solved the isotropic model exactly. Subsequently,
Hulthén [14] calculated with the Bethe-ansatz the energies of the ground state and the
first excited state.

With the help of the Bethe-ansatz, Orbach [15] determined the energy eigenvalues of
the one-dimensional Heisenberg model for chain lengths up to NV = 10. Des Cloizeaux and
Pearson [16] computed the lowest excitations of this system. Finally, Bonner and Fisher
[17] evaluated the complete thermodynamics (especially the magnetic susceptibility and
the specific heat) of this model. Eggert et al. [18] determined the magnetic susceptibility
with high precision with the help of the Bethe ansatz solution to the quantum transfer
matrix. Furthermore, Kliimper calculated the complete thermodynamics with very high
precision with the help of an approach to the thermodynamics on the basis of the physical
excitations (spinons) [19]. In a recent study, he did this over the very large temperature
range 1072* < T/J < 10 [20].

Anisotropic Heisenberg models have also been investigated. In the pioneering work
of Lieb, Schultz, and Mattis [21] the one-dimensional antiferromagnetic model with J, #
Jy and J, = 0 (XY-model) was investigated. They determined its ground state, all
elementary excitations, and the free energy. They showed the XY-model to have a long-
range order (in contrast to the isotropic model). This discovery is named “Lieb-Schultz-
Mattis theorem”. Katsura [22] calculated the partition function and the free energy
of the XY-model in the external magnetic field. Furthermore, he calculated both the
magnetic susceptibility and the specific heat for three models: (i) J, = J, and J, = 0,
(i) Jy = Jy = 0 and J, # 0, (ili) J, = J, = J,. (He studied the case (iii) by the
high-temperature expansion and by analysing small systems). Yang and Yang [23, 24, 25|
examined the XXZ-model (J, = J, # J,) with the Bethe-ansatz. Lieb [26] showed the
equivalence between the XXZ-model and the 6-vertex model and calculated the entropy of
the two-dimensional “ice-model” by using the transfer matrix method. Moreover he solved
the Rhys F model [27] and the two-dimensional Slater KDP model [28] exactly. According
to Wu [29] the two-dimensional Slater KDP model experiences a ferromagnetic phase
transition of second order, where for the substance KH,PO, the transition temperature
is T' = 123K. Finally, Baxter [30-33] solved the XYZ-model exactly with the help of the
transfer matrix method, where he used the equivalence between this model and the 8-
vertex model. The XYZ-model includes as special cases the one-dimensional Ising model
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(the two-dimensional Ising model was solved by Onsager [34]), the dimer model [35], the
ice model, the Rhys F model, and the Slater KDP model. Johnson et al. [36] calculated the
lowest excitations of the XYZ-model. Kliimper and Zittartz [37] calculated all eigenvalues
of the transfer matrix of the 8-vertex model in the thermodynamic limit and used this
result to determine all energy excitations of the XYZ-model. A modern formulation of
the solutions of the 6-vertex and the 8-vertex models is given in Ref. [38]. A review on
these models is Ref. [39].

1.3 Spin-Peierls phase transition

In 1955, Peierls [40] argued that periodic lattice vibrations with wavelength of twice the
lattice constant, A\ = 2a, can generate a phase transition from the conducting state to the
dimerized insulating ground state of a semiconductor. This phenomenon is now named
“Peierls transition.” McConnell and Lynden-Bell [41] suggested the magnetic analogon,
where the exchange interaction between the spin generates a phase transition from the
antiferromagnetic phase to the dimerized phase. This is now called the spin-Peierls phase
transition. Pytte [42] and Cross and Fisher [43] examined the spin-Peierls phenomenon at
the mean field level by the random phase approximation for one-dimensional spin systems
coupled to three-dimensional phonons.

The spin-Peierls phase transition was experimentally verified in 1975 in organic materi-
als with complicated crystal lattice structure [44, 45]. This phenomenon found increasing
interest in the recent past, because of the discovery of a spin-Peierls transition in the in-
organic material CuGeQj [6], whose thermodynamic behavior can be described with good
approximation by a one-dimensional isotropic antiferromagnetic Heisenberg-model with
next nearest neighbour interaction [46-48]. The crystal structure of CuGeOj consists of
octaeders and tetraeders with the oxygen atoms at the corners, a copper atom within
the center of each octaeder and a germanium atom within the center of each tetraeder
[49, 50]. Its phase transition is generated mainly by phonons of two frequencies [51, 52].

Possibly, a-NaV505, whose magnetic susceptibility for high-temperatures can be well
decribed by the one-dimensional isotropic antiferromagnetic Heisenberg system with near-
est neighbour interaction [53], is a second inorganic spin-Peierls material with simple
crystal structure [53-55]. However, recent X-ray structure data analysis [56, 57| and
Raman experiments [58] show a-NaV,0j5 to be rather a quarter-filled ladder than a one-
dimensional Heisenberg system. So new scenarios for the phase-transition have to be
taken into consideration. Recent observations suggest a charge ordering and spin-Peierls
transition [59].

Experimentally, the spin-Peierls phase transition can be identified if the following
observations are satisfied simultaneously [6]:

e Dimerization of two neighboured spins and therefore doubling of the unit cell.

e Two neighboured spins pair each to a spin singlet. Hence, a gap appears in the
magnetic susceptibility.

e A peak appears in the specific heat, because the phase transition is of second order.



Chapter 2

Quantum Monte Carlo methods and
applications

2.1 Quantum Monte Carlo methods

The underlying idea of quantum Monte Carlo methods is to map a d-dimensional quantum
system onto a d + 1-dimensional classical system. This becomes possible by application
of the Trotter-Suzuki equation [60],

M

N
exp (ZA,) = lim (eM/M. .eM/MYT (2.1)

=1 M—o0

where the non-Abelian operators of the left hand side can be expressed by the commuting
operators of the right hand side in the limit M — oo. With the help of this formula,
Suzuki et al. [61] invented the first quantum Monte Carlo algorithm and applied it to the
one-dimensional XY-model.

Hirsch et al. [62-64] invented the worldline algorithm for fermionic systems, where the
fermions are located on the sites of the lattice. They also suggested to describe systems
with both fermionic and bosonic degrees of freedom by this algorithm. In later studies,
they used this idea and applied the worldline algorithm to electron-phonon systems, the
Su-Schrieffer-Heeger model [65], the molecular crystal model [66], and a model to examine
the Peierls instability [67].

Marcu and Wiesler [68] applied the worldline algorithm to spin models, especially
to the one-dimensional XXZ-model. They showed the magnetic susceptibility to depend
linearly on the inverse Trotter number squared.

The first non-local update procedure, where whole clusters are updated, so that the
autocorrelation times are reduced significantly and critical slowing down is reduced, was
introduced by Swendsen and Wang [69]. This algorithm was applied to the Potts model
[69] and the classical two-dimensional XX-model [70].

From then on further cluster algorithms were invented [71-77] [71, 72, 73, 74, 75, 76, 77|
and applied to the two-dimensional XXX-model [71, 72, 76, 77]. A new invention were the
loop updates [76, 77], which gave birth to the loop algorithm [78-80] and its continuous
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version [81], i. e., its limit M — oo. In this work we will use both the discrete and the
continuous version of the loop algorithm.

Figure 2.1: Plaquettes (upper row) and breakups (lower row) of the loop algorithm which
are required for a quantum Monte Carlo algorithm of the XXX Heisenberg model. The
spins are located at the corners of the plaquette. The thick lines denote the world-
lines (connections of the up-spins). Naturally, for each of these plaquettes there exists
a counterpart, where up- and down-spins are interchanged, so that we have in total six
plaquettes. In the lower row (breakups), the thick lines denote the directions which the
loops have to follow.

The loop algorithm introduced by Evertz et al. [78, 80] is an elegant method for the
simulation of a d-dimensional quantum spin system with nearest neighbour interaction.
This algorithm maps the d-dimensional quantum system onto a d + 1-dimensional clas-
sical spin system with periodic boundary conditions (to satisfy translation invariance).
The loop algorithm has several advantages as compared to the conventional world line
algorithm. The autocorrelations are drastically reduced, because the spin updates are
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Figure 2.2: Update procedure of the discrete loop algorithm. We consider here a chain
with NV = 4 lattice sites, Trotter number M = 2, and periodic boundary conditions. The
Trotter time is the ordinate. Interaction plaquettes are denoted by circles in the middle
of the plaquettes. In this example, we start with an initial spin configuration with zero
magnetization (a). We attribute a breakup to each interaction plaquette. For the XXX
model breakup « is attributed to plaquette a, breakup [ is attributed to plaquette b. For
plaquette ¢ we have to choose either a or 5. Figure (b) shows the breakup pattern which
consists of two loops. Let us flip the smaller loop, i. e. flip its spins. The result is a new
spin configuration, shown in (c¢). The transition from (a) to (c) is called a spin-update.

performed globally. This results in a substantial reduction of the required number of
quantum Monte Carlo sweeps. Moreover the variation of both the winding number and
the magnetization is automatically included in the update procedure.

For each quantum Monte Carlo step a spin update is generated as follows. Start with
a given “initial” spin configuration, where at each lattice site there is exactly one classical
spin. The Hamiltonian acts locally on individual interaction plaquettes. Hence, for each
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interaction plaquette one can choose a certain “breakup” plaquette. The probability for
the breakups depends only on the spin configuration of the considered plaquette, i. e.,
this is a local process. One thus covers the whole lattice with a breakup pattern. The
graphs defined by the breakups constitute a set of loops, where each spin is attributed
to exactly one loop. Because of the zero divergence criterion the loops always close. For
the isotropic Heisenberg chain without exterior magnetic field the loops can be flipped
separately with the probability 1/2. The update procedure is shown in Fig. 2.2.

The Boltzmann weights of the plaquettes for the isotropic Heisenberg chain (cf. Fig. 2.1)
are,

u = BT/
ga/em) gy P7
€ Sin M
J
_ M) gy BT 9.9
c e cosh — (2.2)

The breakup-procedure becomes more complicated for the XXZ-model than for the
XXX-model. While the XXX-model needs only two breakups, the XXZ-model requires
a third breakup for the anisotropy parameter |[A| < 1. For |A| > 1 a fourth breakup,
called “freezing”, is needed where all four spins of a plaquette are flipped together. This
plaquette requires that the two loops corresponding to the breakup are flipped (and
therefore “freezed”) together.

2.2 Application to the XXZ-model

The loop algorithm [78, 80] can be applied to the anisotropic (XXZ) Heisenberg model.
Its Hamiltonian is
JXN
H= §lzlglwalw+1+0?0iy+1+Aalzgf+1: (2.3)
where A denotes the anisotropy parameter and o is the Pauli matrix.

Quasi one-dimensional systems whose anisotropy parameter A differs strongly from
unity have already been identified. Prominent examples are CsCoCl;, CsCoBrs, and
RbCoCl3 with A ~ 6,...,7 [82] and CseCoCly with A ~ 0.25 [83, 84].

We examine the XXZ-model for the anisotropy parameter 0 < A < 5. The case A =0
corresponds to the XX model which is particularly simple, because it consists only of the
kinetic term and has no potential contribution. This becomes understandable by the
Jordan-Wigner transformation which transforms spin-operators into fermion operators,

1 _ _
SPSi + SISt = §(Sl+5l+1 + 575%1)
1 _ _
= §(Cl+cl+1 + ¢ ), (2.4)

where ¢ and ¢~ denote the fermion creation and annihilation operators, respectively.
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Figure 2.3: Magnetic susceptibility per site versus temperature. The anisotropy coupling
constant A is chosen between 0.0 and 5.0. The exact data for A = 1.0 are taken from A.
Kliimper (isotropic model), A = 0.0 is the XX-model (the dashed line shows the analytic
data). A model with A — oo would correspond to the Ising model with infinite coupling
constant JA. The chain length is N = 64 and the Trotter number is M = 80.

The model with A = 1 is the isotropic Heisenberg chain. Finally, the case A — oo
corresponds to the Ising model with J, = JA. The maximum of its magnetic susceptibility
and specific heat is shifted, because of the infinite A, towards infinite temperature 7'/J
and the height of its magnetic susceptibility approaches zero in units of xJ/N.

In Fig. 2.3 we show the magnetic susceptibility as a function of temperature for various
choices of A. With growing A the overall height of the susceptibility is lowered and shifted
towards higher temperatures. This behavior is understandable, because for large A the
potential contribution of the Hamiltonian becomes dominant, so that for very large A
the rescaled susceptibilities of the different chains can be mapped onto that of the Ising
model with the coupling constant JA.

Note that in Fig. 2.3 temperature and magnetic susceptibility are presented in units
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Figure 2.4: Specific heat per site versus temperature. The parameters are identical to
those of Fig. 2.3. The anisotropy coupling constant A is chosen between 0.0 and 5.0. The
data for A = 1.0 are taken from A. Kliimper (isotropic model), A = 0.0 is the XX-model
(the solid line shows the analytic data). A model with A — oo would correspond to the
Ising model with infinite coupling constant JA. The temperature of the maximum of its
specific heat would be infinity. The chain length is N = 64 and the Trotter number is
M = 80.

of J and 1/J, respectively. Hence, the magnetic susceptibility of the Ising model which
is nonzero in units of 1/(JA) is identical to zero for all temperatures in units of 1/J if
A — o0.

In Fig. 2.4 we show the specific heat as a function of temperature for the same choices
of A. With growing A the overall height of the specific heat is lowered and shifted towards
higher temperatures.

The loop algorithm allows the examination of systems of large size (e. g. N = 64
and M = 80). Because of the large chain length, finite-size effects are negligible for
temperatures T > 0.3J.
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The loop algorithm turned out to be a useful and fast algorithm for the investigation
of pure Heisenberg models and Heisenberg models coupled to Einstein phonons. However,
it includes a systematic error due to the finite Trotter number.

In the following section we will investigate the Heisenberg model with the continuous
version of the loop algorithm as introduced by Beard and Wiese [81].

2.3 Beard-Wiese algorithm

In the continuous version of the loop algorithm the interaction plaquettes are replaced by
segments in the direction of the Trotter time. These segments can be updated separately.
Since the continuum limit is the limit M — oo, where M is the Trotter number, this means
that the diagonal plaquettes become horizontal “transition times” and the updates of the
segments occur by means of a “decay constant” A = J. By using this update procedure,
new transition times are generated. For the XXX-model the new transition times can
be generated only for segments whose two spins have opposite sign (named “optional
decay” by Beard and Wiese [81]. The loops are created by following the spin-segments
until a new transition times. Now the transition to the corresponding site has to occur
and the loop proceeds in the opposite direction. Because of the zero-divergence criterion
the loops always close and each spin-segment can be attributed to exactly one loop. For
the XXX-model the loops can be flipped individually with the probability 1/2. By their
very nature, transition times separate regions with different spin. Due to the loop flip in
average half of the former transition times will be eliminated. The configuration of spins
and transition times generated by this update will be the start for the next update. An
example is shown in Fig. 2.5.

The continuous loop algorithm has several advantages as compared to the discrete
one.

(i) In contrast to the finite Trotter number case, there are no systematical errors.

(ii) Computer time is saved, because it is no longer required to update M Trotter
layers. Instead, segments with given continuous Trotter time interval are updated.

(iii) The correct number of transition times at given temperature results automatically
from the update procedure. By contrast, in the discrete case the Trotter number has to
be chosen by hand, so that it could either be too small (leading to systematical errors) or
be unnecessarily large (requiring a lot of computer time).

We found that for given temperature and for given statistical convergence the computer
time was ten times less for the continuous loop algorithm than for the discrete one.

To be complete, we have to note that an important advantage of the discrete loop
algorithm has not got lost for the continuous version. The change of magnetization and
change of winding number are automatically included in both the discrete and continuous
loop algorithm.

In Figs. 2.6 — 2.8 we show the magnetic susceptibility for the isotropic antiferromag-
netic Heisenberg chain. With this fast algorithm we were able to calculate this quantity
for chain lengths up to N = 256 with very high precision, allowing the examination for
temperatures down to 7" = 0.04.J.
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Figure 2.5: Update procedure of the continuous loop algorithm. We consider here a chain
with N = 4 lattice sites and periodic boundary conditions. The Trotter time is the ordinate.
In this example, we start with an initial spin configuration with zero magnetization (a). We
follow those bond-segments in the direction of the Trotter time which have unlike spins on their
boundaries. In this example, we have four segments, where all satisfy this condition. With
the help of the decay constant A (which is equal to the spin coupling constant J for the XXX
model) we find new transition times. These are denoted by horizontal bars in figure (b). In this
example, we have four transition times. Loops are generated in the following way. Follow the
spin-segments until a transition time is reached. Then switch to the neighboured spin-segment
(whether the left or right neighbour is given by the transition). Follow this spin-segment until
the next transition and continue until the loop closes. Then start with an other spin-segment
which has not yet been attributed to a loop and construct a further loop. Continue until all
spin-segments have been attributed to loops. Figure (c) shows a loop configuration consisting
of two loops which have been generated by the transition time configuration (b). Now flip the
loops with probability 1/2. In this example, we flip the small loop, i. e. its spins will be flipped.
By doing so we obtain the new spin configuration shown in figure (d). The transition from (a)
to (d) is called a spin-update.

By comparing our results with the exact ones of Kliimper [19] we found very high
precision:
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XJ/N

0.04

0.02
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Figure 2.6: Magnetic susceptibility as a function of temperature for chain length N = 16,
N = 64, and N = 256, respectively. The number of spin-updates for each temperature
is 108,107, and 10°, respectively. The precision is very high: AyJ/N < 1 x 10~ and
Ax/x < 0.2% for 0.04J < T < 0.9J and N = 256; AxJ/N <1 x 107° and Ax/x <
0.015% for 0.9J < T < 10J and N = 16. The solid line shows the exact data from A.
Kliimper.

Ax/x T/J N number of updates
<02% 004....09 256 10°
<015% 0.9,....10 16 108
Ac/c T/J N number of updates
<05% 0.7,....10 64 10°
AUJJ T/J N number of updates
<1x10° 001,...,0.03 1024 10°
<4x10°° 0.04,...,07 256 10
<4x10°  0.7,...,10 16 108
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Figure 2.7: Magnetic susceptibility as a function of temperature for chain length N = 16,
N = 64, and N = 256, respectively. The number of spin-updates for each temperature
is 108,107, and 10°, respectively. The precision is very high: AyJ/N < 1 x 10" * and
Ax/x < 0.2% for 0.04J < T < 0.9J and N = 256; AxJ/N <1 x 107° and Ax/x <
0.015% for 0.9J < T < 10J and N = 16. The solid line shows the exact data from A.
Kliimper.

For chain length N = 64 we were able to calculate the specific heat with high precision
in the temperature range 0.15J < T < 10J, see Figs. 2.9 and 2.10.

From the results above we can conclude on a very important advantage of the contin-
uous loop algorithm in comparison to the discrete one. In both algorithms, the relative
error resulting from finite size effects is constant over a large temperature range provided
that the chain length N is increased inversely proportional to the temperature 7.

In the discrete loop algorithm the same is correct for the Trotter number M, i. e. the
appropriate Trotter number to be chosen has to increase as M o 1/T. The computer
time for each update is proportional to N x M. However, the precision of the quantum
Monte Carlo simulation decreases if N x M is increased and the number of updates
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Figure 2.8: Low-temperature behavior of the magnetic susceptibility for chain length
N = 64, N = 256, and N = 1024, respectively. The number of spin-updates for each
temperature is 107, 10%, and 10°, respectively. The curve for N = 1024 is not smooth,
because of insufficient statistics. The solid line shows the exact data from A. Klimper.

remains constant. To obtain the same precision for larger systems, one has to increase
the number of updates. According to our experience, the number of updates has to be
increased roughly as NV x M. Hence, for given precision, the investigation of a system
requires a computer time which is proportional to (N X M)? and therefore approximately
proportional to 1/T*.

In the continuous loop algorithm the number of transitions increases proportional to
the inverse temperature (for 7' < J). The computer time for each update is proportional
to the product of the chain length and the number of transition times. The difference
between the discrete and the continuous loop algorithm is that in the continuous case
the precision of the quantum Monte Carlo simulation increases if the chain length N is
increased and the number of updates remains constant. To obtain the same precision for
larger systems, one has to decrease the number of updates. According to our experience,



CHAPTER 2. QUANTUM MONTE CARLO METHODS AND APPLICATIONS 16

0.4

c/N

0.0 2.0 4.0 6.0 8.0 10.0

Figure 2.9: Specific heat per site versus temperature for a chain with N = 64. The
number of spin-updates for each temperature is 10%. The precision is Ac/c < 0.5% for
0.7J <T < 10J. The solid line shows the exact data from A. Kliimper.

the number of updates has to be decreased roughly by N2. Hence, for given precision,
the investigation of a system requires a computer time which is nearly independent of the
temperature. This property of the continuous loop algorithm saves much computer time
with respect to the discrete one if systems at low temperatures are investigated. The gain
increases roughly proportional to the fourth power of the inverse temperature.

This remarkable observation can be understood as follows. If the chosen temperature
is not too low, then each update of a long chain is equivalent to several updates of
a short chain, because very distant spins have decoupled. Unfortunately, for very low
temperatures a large chain length is still required, because of the large spin-spin correlation
length.

From the discrete case of the loop algorithm we can infer the mean number of diagonal
plaquettes per site to increase linearly with the inverse temperature 3 if the extrapolation



CHAPTER 2. QUANTUM MONTE CARLO METHODS AND APPLICATIONS 17

0.4

c/N

0.0 0.5 1.0 1.5 2.0 2.5 3.0
T/

Figure 2.10: Like in Fig. 2.9 we present the specific heat per site versus temperature for a
chain with NV = 64. The scale is enlarged in order to show the low temperature behavior
and the peak more clearly. The data fit both the low temperature region and the peak
with high precision. The solid line shows the exact data from A. Kliimper.

to infinite Trotter number M is performed. This can be understood as follows. The
Boltzmann weights of the plaquettes of the discrete algorithm are given by Eq. (2.2).
The mean number of diagonal plaquettes per site for infinite Trotter number is then

approximately given by
lim | M b = B—J (2.5)
M—00 a+b+c 2

We calculated the mean number Ny of transition times per site. It should be identical
to the number of diagonal plaquettes per site for infinite Trotter number in the discrete
case. It is monotonously increasing with growing inverse temperature 3. Its limiting value

1S
lim Ny, = 1.181,79(11) 8. (2.6)
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Figure 2.11: Mean number Ny of transition times per site multiplied with the temperature.
The chain length is N = 16, N = 64, and N = 256, respectively. One can infer from
the figure that N;; < 1 for T' > 5J. This means that in this high-temperature region the
loops mainly follow the Trotter direction. The consequence for the discrete model is that
a small Trotter number is sufficient to describe the model at high temperatures.

see Figs. 2.11 and 2.12.

This equation justifies the claim that in the discrete case the required Trotter number
M is proportional to the inverse temperature. Furthermore, together with the behavior
of the correlation length, this justifies to choose the Trotter number of the same order as
the chain length.

2.4 Dimerized model

It is of phenomenological interest to study the dimerized model, i. e., the model with
static dimerization 6. This model can be described by a Hamiltonian similar to that of



CHAPTER 2. QUANTUM MONTE CARLO METHODS AND APPLICATIONS 19

1.20

119 | ]
118 o000, ]
117 | ]
116 | . ]

1.15 - ]

N, T/J

1.14 - .

1.13 - eN= 64
| o N= 256

L1z ¢ 5 N = 1024 1

1.11 .

110 M
0.0 0.1 0.2 0.3 0.4 0.5

T/

Figure 2.12: Mean number Ny of transition times per site multiplied with the temperature.
The chain length is N = 64, N = 256, and N = 1024, respectively. For T" — 0 we get
NuT/J — 1.181,79(11). This proportional increase of the number of transition times
with inverse temperature at small temperatures is the reason why we increase the Trotter
number with the inverse temperature in later examinations.

the isotropic Heisenberg model, the only difference is the replacement of the spin-spin
coupling constant J by the alternating coupling J.;r; = J(1 + 6(—1)"),
J N

=1

H

The dimerized model is not exactly solvable by the Bethe ansatz. Therefore numerical
methods are of particular importance for its study.

This model was the subject of intensive investigation [85-89]. It is the adiabatic limit
of the spin-phonon model, Eq. (3.1), which will be examined in detail in the following
chapters. The special case, Eq. (2.7), can be understood as a model with static dimeriza-
tion which results from the consideration of only one phonon mode, i. e. one with fixed
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Figure 2.13: Magnetic susceptibility of a dimerized chain. The dimerization § is varied
between 0.2 and 0.999. § = 0 corresponds to the undimerized model and § = 1 to the
completely dimerized model whose thermodynamic properties are identical with the N = 2
chain which is shown for comparison. The exact data of the undimerized Heisenberg chain
are from A. Kliimper.

momentum 7 /a, with a being the lattice constant.

The magnetic susceptibility for a chain with N = 64 and M = 80 as a function of
temperature is shown for different choices of ¢ in Figs. 2.13 and 2.14. For comparison, the
exact data for the undimerized Heisenberg chain and the numerical data for the N = 2
chain are shown. The undimerized chain corresponds to the limit 6 — 0 and the N = 2
system corresponds to the limit § — 1 (complete dimerization). The appearance of the
spin gap is not a finite-size effect, but results from the dimerization.

As we will see in the discussion of spin-phonon systems, the static dimerization dis-
cussed in this chapter cannot be expressed in simple form as the dimerization at zero
temperature generated by the spin-phonon coupling. Neither the magnetic susceptibilities
nor the specific heats of the two models can be mapped onto one another. The magnetic
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Figure 2.14: Low-temperature region of the magnetic susceptibility of a dimerized chain.
The dimerization ¢ is varied between 0.2 and 0.999. § = 0 corresponds to the undimerized
model and § = 1 to the completely dimerized model whose thermodynamic properties are
identical with the N = 2 chain which is shown for comparison. The exact data of the
undimerized Heisenberg chain are from A. Kliimper.

susceptibility of spin-phonon systems (for not too low temperatures) can be mapped onto
that of a Heisenberg system by the introduction of a global (temperature independent)
effective spin-spin coupling constant. By contrast, no such effective spin-spin coupling can
be found for static dimerized chains, where only at very high temperatures the magnetic
susceptibility approaches that of the Heisenberg chain.

Furthermore, static dimerized chains cannot describe the physical spin-Peierls materi-
als CuGeO3 and NaV,05 correctly, because the magnetic susceptibility of these materials
drops exponentially near the critical temperature from a finite value to zero, where above
the temperature it can be described by a (frustrated) Heisenberg chain. This is in con-
trast to the static dimerized chain whose susceptibility approaches that of the Heisenberg
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Figure 2.15: Specific heat of a dimerized chain. The dimerization ¢ is varied between 0.2
and 0.999. 6 = 0 corresponds to the undimerized model and § = 1 to the completely
dimerized model whose thermodynamic properties are identical with the N = 2 chain
which is shown for comparison. The exact data of the undimerized Heisenberg chain are
from A. Kliimper.

chain only at very high temperatures. However, static dimerized chains might be useful
for the description of these materials, if a nonzero dimerization is used below the critical
temperature and a zero dimerization is used above the critical temperature.

For the same values of the dimerization d we plot the specific heat as a function of
temperature. The overall maximum occurs at higher temperatures and takes higher values
for growing dimerization (Fig. 2.15).

Furthermore, we examine the correlation length & as a function of the temperature 7’
and the dimerization §.

At zero temperature it is known that & oc §72/3 [19]. For the analysis of the data we
will rescale both ¢ and T with §%/3.
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Figure 2.16: Spin-spin correlation length £ as a function of the dimerization § for various
temperatures. The chain length is N = 256. The correlation lenghths were calculated
with the Beard-Wiese algorithm and determined by a pure exponential fit. The correlation
lengths at very low temperatures lie on the curve £ /a = 0.8852/3. The correlation lengths
decrease for higher temperatures.

For T'= 0 and § = 0 one expects a power law behavior of the correlation function,
SES? ) o< 1/r. For finite and very low temperatures one expects
L ~l+r

(—1)li=dlgli=ila/t

5757y = —
(5:55) i — j

(2.8)

However, by fitting our data in this way we cannot confirm the scaling law for ¢ # 0.
The fit gets even worse after rescaling both £ and 7' by including logarithmic correc-
tions, i. e. rescaling by §%/3/,/In |].
To solve the problem we will try a purely exponential fit of the correlation function,
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Figure 2.17: Spin-spin correlation length £ as a function of the temperature T for systems
with N = 256 which were calculated with the Beard-Wiese algorithm. The correlation
length was determined by a pure exponential fit. In this figure both & and T" are rescaled
with 6%/3, where § is the dimerization.

(S757) = (—1)liileli=ile/t, (2.9)

We proceed by rescaling both & and T with §?/3. By doing so it becomes obvious that
the scaling law is satisfied at low temperatures and even at higher temperatures (see
Fig. 2.17). As expected from dimensional considerations and known from previous work
[90], also the spin gap A shows a scaling law, A oc §%/3. More precisely,

§/a = (0.88+0.01)5 %3
AT = (0.7£0.1)6%3. (2.10)

The fit shows that & becomes roughly temperature independent at very low tempera-
tures and decreases with growing J. A check with the magnetic susceptibility data shows
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that this low temperature behavior is determined by the spin-gap. This means, within
the spin gap, £ is roughly temperature independent and above the gap & decreases with
growing temperature.

To conclude, in the examined temperature region the spin-spin correlation can be
fitted very well by an exponentially decaying function without power law contributions
and logarithmic corrections. We cannot exclude that power law contributions may become
significant at even lower temperatures than we have examined.



Chapter 3

Heisenberg chain coupled to Einstein
phonons

3.1 The spin-Peierls transition in CuGeQOs;

The discovery of the spin-Peierls phase transition in the inorganic compound CuGeQOj3 by
Hase et al. [6] has motivated the examination of the one-dimensional Heisenberg model
coupled to one-dimensional Einstein phonons. For this reason, I will review the properties
of CuGeOs in this section.

The crystal structure of CuGeOs consists of octaeders and tetraeders with the oxygen
atoms at the corners, a copper atom within the center of each octaeder and a germanium
atom within the center of each tetraeder [49, 50].

The “unit cell” a, X b, X ¢, observed by Véllenkle et al. [49] turned out to be a pseudo
unit cell. The actual unit cell is eight times larger, a = 2a, = 9.5998A, b = b, = 8.4665A,
and ¢ = 4¢, = 11.77 8A. This results from the behavior of the GeOy tetraeders. A periodic
change of their tilting and rotation is formed along the c-axis with the period of 4c,. The
directions of their rotations along the a-axis are in anti-phase. This results in a doubling
of the pseudo unit cell along the a-axis [91].

The thermodynamic behavior of CuGeOj3 can be described in good approximation by
a one-dimensional isotropic antiferromagnetic spin-1/2 Heisenberg quantum spin system
with nearest and next nearest neighbour interaction [46-48].

The spin-spin coupling constant of CuGeOs was measured to be J = 1.7THz [92] or
roughly J ~ 100K.

The precise value of the frustration parameter for CuGeQOj is under discussion. Recent
studies yielded o ~ 0.24 [46], o ~ 0.354 [48], and « ~ 0.36 [47].

The spin-Peierls phase transition is generated mainly by phonons of two frequencies
[51, 52, 93]. The values of the angular frequencies Q2 and the spin-phonon couplings ¢
are not precisely known. Braden et al. [51] measured ©; = 3.2THz and 2, = 6.8THz.
Gros and Werner [93] found ©; = 3.13THz = 151K, Qy, = 6.65THz = 317K, ¢,J/2 =
0.45THz, and g, ~ 4¢g;. In a later publication, Werner et al. [52] found ©; = 3.12THz,
Q9 = 6.53THz, g1J/2 = —15K, and goJ/2 = 58K. To conclude, we get the approximate
values Q; = 2J and Q9 = 4J for the angular frequencies and g; = —3/8 and g = 3/2 for

26
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the spin-phonon coupling constants.

X-ray diffuse scattering measurements in CuGeQOj3 in the temperature range 14K <
T < 40K have shown that the inverse correlation length in the c-direction behaves as
JT —T.

sp» Where Ty, = 14K is the critical temperature of the spin-Peierls phase transition

[94]. The corresponding (non-classical) critical exponent is v = 1/2.

3.2 Introduction of the Heisenberg model coupled to
phonons

Pytte [42] and Cross and Fisher [43] have presented one-dimensional spin models in which
the spin-Peierls phase transition is generated by three-dimensional phonons. These models
are at present too difficult to be examined by numerical methods.

This is why one-dimensional spin models coupled to dispersionless one-dimensional
phonons have been investigated. Because of the Mermin-Wagner theorem [10] these mod-
els cannot generate a spin-Peierls transition at finite temperatures.

The Hamiltonian we examine is,

H =5 3 (GF — )1+ g(0] + b)) + Q23 bib, (3.1)
=1 =1

where b and b denote the phonon creation and annihilation operators ,& is the Pauli
matrix, g is the spin-phonon coupling, and €2 is the phonon frequency. The shift by ¢ in
0107+1 — t is required for quantum Monte Carlo studies, because the minus sign problem
appears whenever ¢t < 1. The value t = 1 was used by Pytte [42] in his pioneering work on
spin-Peierls systems. The same shift has been used also in later investigations [7, 95, 96].

For this model, Sandvik and Campbell [9] have shown the existence of a phase transi-
tion from the undimerized to the dimerized phase if the spin-phonon coupling g exceeded
a critical value g.(€2). Phase diagrams for a wide range of parameters have been presented
by Weifle et al. [97] and Kiithne and Léw [98], in final form by Raas and Uhrig [99].

Sandvik et al. [7] investigated the model via quantum Monte Carlo for a special choice
of parameters: Q = 0.2J and g = 1/(4v/2). They measured the magnetic susceptibility
and the effective spin-spin coupling as a function of the temperature. They found the
system to be in the dimerized phase, in accordance with the later phase diagram of Raas
and Uhrig [99].

Augier et al. [95] examined this model with an exact diagonalization calculation by
using the coherent states introduced by Fehrenbacher [100, 101]. For a four site chain
with € = 2J they found that the mean phonon occupation number increases with g.

3.3 Approximations of the model

The investigation of a spin-phonon system requires a number of approximations which
have to be kept in mind when one attempts to compare the theoretical results of the model
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with experimental observations of real substances. These approximations are necessary
because finite computer time and conceptual problems such as the minus sign problem
and difficulties to find an appropriate algorithm requires the restriction on a finite (often
very small) number of degrees of freedom. The approximations of our model include:

The system is restricted to the one-dimensional case, i. e. we consider a chain. This
is opposed to the well known observation that physical solids are three dimensional
systems. However, one-dimensional models can describe with good approximation
the magnetic properties of three-dimensional materials whose magnetic structure
is quasi one-dimensional. This means the interchain couplings have to be weak
compared to intrachain couplings. Spin-Peierls materials are an example.

The spin system is restricted to the isotropic case (i. e. the XXX model). Anisotropic
contributions (i. e. the more general XXZ or XYZ model) are not considered.

The spin interaction is restricted to the nearest neighbour interaction. Longer-range
interactions (next-nearest neighbour etc.) have been neglected. This restriction was
necessary because of the appearance of the minus sign problem in these models
which leads to negative probabilities. Physical systems, however, sometimes do
show longer range interactions. Only very few materials such as NaV,05 can be
described by restriction to nearest neighbour interactions.

The investigated system is restricted to one-dimensional phonons. Actually, phonons
are three dimensional entities. The spin-Peierls transition requires three dimensional
phonons [42, 43].

We restrict ourselves to dispersionless phonons. This is evidently an oversimpli-
fication, because phonons of real materials do always show dispersion. However,

the Peierls-active phonon modes of CuGeQO3 have rather sharp angular frequencies,
Q]_ = 2J and Qg =4J [52]

The ladder operators of the dispersionless phonons are localized. We restrict our
study to bond phonons. This approach was used also in previous investigations [7, 9,
88, 95, 96, 98]. However, if the phonons are localized at the spin sites then the spin-
phonon coupling can generate an effective frustration [8, 102]. Naturally, a complete
understanding has to include both bond and site phonons. Recent observations on
CuGeOj3 appear to show a contribution of spin-phonon coupling to the frustration

[92].

The system is restricted to the harmonic approximation. We do not consider in-
teractions of higher order such as phonon self-interaction. This approximation is
justified, because spin-Peierls phase transitions are assumed to be generated by
spin-phonon interactions [42, 43].

The phonon frequency is assumed to be temperature independent. This is not
necessarily the case for physical systems where a softening of the phonon (i. e. a
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decrement of its frequency with decreasing temperature) may occur near the phase
transition.

e The spin-phonon coupling is assumed to be temperature independent. This is not
necessarily the case for physical systems. However, the experimental situation can-
not yet decide whether the spin-phonon coupling is temperature independent or
not.

e We are restricted to the monoatomic lattice. Phononic contributions due to the
structure of lattice cells are not included in our model. This approximation, how-
ever, is most probably justified, because structural changes such as the spin-Peierls
phenomenon should be valid for a large class of materials but not depend on their
crystal structure.

3.4 The modified loop algorithm

The simulation of a Heisenberg chain coupled to phonons requires a modification of the
loop algorithm. Only the spins can be updated globally. The phonons, however, have
to be updated locally, because there is no conservation of phonon number. Hence, spins
and phonons have to be updated separately and alternatingly. Since the local phonon
update yields larger autocorrelation times, a quantum Monte Carlo step consists of one
spin update and n phonon updates.

We will consider an isotropic antiferromagnetic Heisenberg chain coupled to (disper-
sionless) Einstein phonons. The Hamiltonian used is Eq. (3.1) with ¢ = 1.

By using the Baker-Campbell-Haussdorff equation we can describe the contributions
of the spin-spin and the spin-phonon interaction simultaneously, although the phonon
generator b' does not commute with the phonon annihilator b. The partition function Z
can therefore be written as a product of expectation values whose operators are block-
diagonalized in the spin space into 2 x 2 blocks and diagonalized in the phonon space.
The interaction part of the Hamiltonian can therefore be described by two Trotter layers.
A third Trotter layer is required for the description of the free phonons.

The partition function of the examined model can be written as,

M-—1
Z = lim
M=o kO,--%M—I Jl;[o

N—-1 +

( T (sl P00/ M\k3j+1,z>>

=0

N/2-1

(I (ksjerorle ™2™ (kg0 o)
=0

(kajpoorir|e PP M | koo o)), (3.2)

where k denotes the spin and phonon configurations of the lower and upper edge of the
interacting plaquettes, the inverse temperature is 3, the Trotter number M, and the
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Hamiltonian for the spin-spin and the spin-phonon interaction is

J L.
H, = 5(@0,+1 —1)(1+ g(bf + ). (3.3)

The Boltzmann weights for the local interaction part are,

<+ + m|exp(—,8’Hl/M)| + +n> = 6m,n

2
(+— mlexp(=BH,/M)| + —n) = ldm,n + %\/m!n! exp 2 (% + (ﬂ) )

2
m 2,8Jg 2k+n—m 1
2 < M ) k'(m — k)![(k +n —m)!

k=max{0,m—n}

2

i <25Jg> 2k+n—m 1
k—max{om-n} \ M k(m — k) (k +n —m)!’
(3.4)

where m and n denote the phonon occupation number at the lower and upper edge of the
plaquette, respectively. Spin up and spin down are denoted by + and —.

Both spins and phonons are updated with a local heat bath update. It is obvious that
detailed balance is satisfied for the two steps and therefore also for the whole procedure.

According to our experience, by using the importance sampling technique, n = 20
phonon updates per spin update is an appropriate choice for a wide range of parameters.
For the evaluation of the expectation values only the last of the phonon updates will
be used. Moreover the first 10% of the quantum Monte Carlo steps will be used for
thermalization only.

In our simulations we examine systems with chain lengths N = 16,...,256 and Trotter
number M = 20,...,320, where N = 64 and M = 80 are typical values. The phonon
frequencies are chosen between 2 = 0.2J and 2 = 20J, the spin-phonon coupling are
varied between g = (0 and g = 1.5.

We consider typically 10°,...,10° configurations for the spin updates (and therefore
2-10%,...,2-107 phonon sweeps) per temperature value.

3.5 Effects of finite size and finite Trotter number

Suzuki [103] found the partition function for finite Trotter number M to have contri-
butions which are proportional to 1/M?. As a consequence, all expectation values have
contributions proportional to 1/M? [104]. This was shown by Marcu et al. for the mag-
netic susceptibility, the internal energy, and the specific heat [68, 104, 105]. However, a
complication appears, because the expectation values have further contributions which
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[ m i+1

Figure 3.1: Interaction plaquette for the spin-phonon loop algorithm. The sites of the
spins are denote by ¢ and 7 + 1. The Trotter layers are denoted by 7 and j + 1. The
phonon occupation of the (horizontal) bonds are denoted by m and n. Naturally, for this
plaquette there exists also a counterpart where up- and down-spins are interchanged.

are proportional to 1/M"™, where n is an even integer. Hence, an extrapolation to the in-
finite Trotter number case which considers only the contributions which are proportional
to 1/M? is not necessarily sufficient.

In the following, we will show under which conditions an extrapolation is sufficient
which considers only the contributions proportional to 1/M?. In some cases, however,
one has to consider the contributions proportional to 1/M?*.

Let us first investigate the high-temperature region where small Trotter numbers
should be sufficient. We plot the magnetic susceptibility (Fig. 3.2) and the internal energy
(Fig. 3.3) versus 1/M? for a short chain with N = 16 sites (with ¢ = 0.2 and Q = J)
and M = 10,...,80. For T' = 0.2J we confirm the dependence of the thermodynamic
properties on 1/M?. For larger temperatures, T > 0.5J the statistical fluctuations are
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Figure 3.2: Magnetic susceptibility as a function of the inverse of the square of the Trotter
number. The chain length is N = 16, the spin-phonon coupling constant is ¢ = 0.2, and
the phonon frequency is 2 = J. The temperature is varied in the range 7' = 0.2J,...,1.4J.

larger than the contributions of the finite Trotter number effects. Hence, if not very high
accuracy is required, then for 7' > 0.5.J a Trotter number as small as M = 20 is sufficient.
This result is important to save computer time which increases linearly with M.

Let us now regard the low-temperature region. Here, it is no longer sufficient to use
small Trotter numbers.

For the Heisenberg model we chose the chain length N = 64 and examined the system
at the fixed temperature 7' = 0.2J. The spin-spin correlation depends clearly on the
inverse Trotter number squared (Fig. 3.4). This is correct for all distances of the sites, i. e.
li—j| =1,...,N/2. Also the internal energy, specific heat, and magnetic susceptibility
show the 1/M? proportionality. The result for infinite Trotter number can be obtained
by extrapolation with the 1/M? law (Fig. 3.5).

From the same figure we see that the proportionality constant of the 1/M? contribution
is completely different for the different physical properties. The data for M = 20 differ
from those for M = oo by only 1% for the magnetic susceptibility, by 3% for the internal
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Figure 3.3: Internal energy as a function of the inverse of the square of the Trotter number.
The chain length is N = 16, the spin-phonon coupling constant is ¢ = 0.2, and the phonon
frequency is 2 = J. The temperature is varied in the range T'=0.2J,...,1.4J.

energy, and by 200% for the specific heat.

In the following four figures we present the results for a chain with ¢ = 1.0 and Q = 2.J
at fixed temperature 7" = 0.2J. The dependence of the staggered spin-spin correlation
on M is shown for the chain length N = 32 (Fig. 3.6) and for N = 64 (Fig. 3.7). For
distances |i — j| < N/5 we find only terms proportional to 1/M?. For larger distances,
1/M* corrections have also to be considered.

The mean phonon occupation number (Figs. 3.8a and 3.9a), the effective spin-spin
coupling constant Jog(7) (Figs. 3.8b and 3.9b), and the internal energy (Figs. 3.8d and
3.9d) show the linear dependence on 1/M?, i. e. the value for infinite Trotter number can
easily be extrapolated. For the magnetic susceptibility the 1/M* contributions have to
be considered (Fig. 3.9¢).

The data (for the system with Q = 2J, ¢ = 1.0, and 7' = 0.2J) for M = 20 differ
from those for M — oo in the range 10% to 40% for the different observables. The
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Figure 3.4: Spin-spin correlation (S7S%) of the Heisenberg model as a function of the
inverse Trotter number squared. The temperature is 7' = 0.2/, the number of spin-
updates is 10%, the chain length is N = 64, and the examined Trotter numbers are
M = 20,30, 40, 60, 80, co. We show the results for mutual distances |i — j| of the sites of
2, 12, 22, and 32, respectively.

contribution of the 1/M? term is 14% for the mean phonon occupation number, 10% for
the effective spin-spin coupling constant, 16% for the internal energy, and 20% (N = 64)
or 40% (N = 32), respectively, for the magnetic susceptibility (Figs. 3.8 and 3.9).

In the present work we either extrapolated our results in the Trotter number, according
to the law above, or when we found the statistical fluctuations to be larger than the effect
of the finite Trotter number, we did not attempt an extrapolation and gave the explicit
value of the Trotter number in the figures.

For given g and {2 the mean phonon occupation number is expected to grow with
increasing temperature. As can be seen in Fig. 3.10 this is indeed the case. At low
temperatures, however, a peak followed by a rapid decrement occurs. But this is only an
effect of the finite Trotter number, it disappears with growing M.

In Fig. 3.11 we show the results for 2 = 2J, ¢ = 1.0 and N = 16, 32,64,128. The
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Figure 3.5: Internal energy U/(JN), specific heat ¢/N, and magnetic susceptibility xJ/N
of the Heisenberg model as a function of the inverse Trotter number squared. The tem-
perature is 7' = 0.2.J, the number of spin-updates is 10°, the chain length is N = 64, and
the examined Trotter numbers are M = 20, 30, 40, 60, 80, co.

tendency of the magnetic susceptibility appears to approach a finite value at T — 0.
(Actually, a gap appears at very low temperatures, because as we will see later, the
system with this choice of parameters is dimerized). The sharp decrease in the curves for
N = 16,32, 64 is a finite-size effect, i. e., the energy gap causing the drop results from the
discreteness of the spectrum of the finite system. It is not an intrinsic property of the
spin chain.

In the following chapter we will examine the thermodynamic properties of spin-phonon
chains. It will turn out that we can examine with very good accuracy especially those
systems which have a phonon frequency which is at least as large as the spin-spin cou-
pling constant. This is because these systems require a smaller configuration space than
systems with a smaller phonon frequency. Systems with small phonon frequency have pre-
viously been supposed to generate the spin-Peierls phase transition, because the phonons
of the organic spin-Peierls materials appear to be rather soft. However, this situation
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Figure 3.6: Spin-spin correlation (S7S?) of the spin-phonon model with phonon frequency
2 = 2J and spin-phonon coupling constant g = 1.0 as a function of the inverse Trotter
number squared. The temperature is 7" = 0.2.J, the number of spin-updates is 10°, the
chain length is N = 32, and the examined Trotter numbers are M = 20, 25, 30, 40, 60, 80.
We show the results for mutual distances |i— j| of the sites of 2, 8, 12, and 16, respectively.

has dramatically changed with the discovery that the spin-Peierls transition generating
phonons of the inorganic material CuGeQOj are at least as large as the spin-spin coupling
constant J. Approximate values are £2; ~ 2J and 2y ~ 4J.

Furthermore, we will see in the following chapter that large deviations of the spin-
phonon systems from the Heisenberg chain will occur only where large spin-phonon cou-
plings are considered. This is the reason why in Figs. 3.6 — 3.11 we are investigating the
dependence on the finite Trotter of a model with the parameters {2 = 2J and g = 1.0.

In Fig. 3.7 we examine dependence on the finite Trotter number of the spin-spin
correlation function for a model with these parameters and at the temperature 7' = 0.2J.
The statistical fluctuations are at least as large as the systematical effects of the finite
Trotter number for a model with chain length N = 64 and Trotter number M = 80, where
10% spin updates and 2 x 107 phonon updates have been used. This result is important,
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Figure 3.7: Like in Fig. 3.6 we show the spin-spin correlation (S7S?) as a function of the
inverse Trotter number squared. Here we present the data for the chain length N = 64
instead of N = 32. Phonon frequency, spin-phonon coupling, temperature, the number of
spin-updates, and the examined Trotter numbers are identical. For large mutual distances
li — j| the spin-spin correlations for N = 32 are much larger than those for N = 64.
Evidently, this is a pure finite size effect and means that N = 32 chains cannot be used
for the examination of systems with temperatures 7' < 0.2.].

because when in the later discussion we will examine a possible power-law behavior of
the correlation length as a function of the temperature we will use systems with 2 = 2J,
g < 1.0 in the temperature range 0.2J < T < J. Hence, effects of the finite Trotter
number are clearly negligible for these systems in this temperature range.

The same is true for the magnetic susceptibility of this system (Q = 2J and g = 1.0)
in the temperature range 7" > 0.2J as can be inferred from Figs. 3.9c and 3.11. The
reason is that the spin-gap of this system (with N > 64) is smaller than the temperatures
investigated. Moreover the effects of the finite Trotter number are negligible for this
system in the temperature region 7" > 0.2J, provided that the Trotter number is chosen
as large as M > 80.

To conclude, both the effects of finite size and finite Trotter number are negligible
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Figure 3.8: (a) Mean phonon occupation number per site, (b) effective spin-spin coupling
Joff(1)/J, (c) magnetic susceptibility x.//N, and (d) internal energy U/(JN) of the spin-
phonon model with phonon frequency €2 = 2J and spin-phonon coupling constant g = 1.0
as a function of the inverse Trotter number squared. The temperature is 7' = 0.2J, the
number of spin-updates is 10°, the chain length is N = 32, and the examined Trotter

numbers are M = 20, 25, 30, 40, 60, 80.

when systems with Q2 > 2.J and g < 1.0 are investigated for N > 64 and M > 80 in the
temperature range 7" > 0.2.J.
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Figure 3.9: The same quantities as in Fig. 3.8. However, here we show data for the
larger chain length N = 64 instead of N = 32. Remarkably, (a) the mean phonon
occupation number per site, (b) the effective spin-spin coupling J.g(7')/J, and (d) the
internal energy U/(JN) do not differ significantly for these two chain lengths. Finite size
effects are significant only for (c) the magnetic susceptibility x.J/N. The susceptibility is
much larger for N = 64 than for N = 32. This results from the appearance of the finite
size gap at low temperatures.
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Chain length N and the Trotter number M are varied over a wide range. The peak at
low temperatures is an effect of the finite Trotter number, see Fig. 3.9. Note the drop for
the lowest temperature in the cases of N = 16 and N = 32.
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Figure 3.11: Magnetic susceptibility versus temperature. The spin-phonon coupling con-
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