
Robust Online Scale Estimation in Time Series:

A Regression-Free Approach

Sarah Gelper1,∗, Karen Schettlinger2,

Christophe Croux1, and Ursula Gather2

May 3, 2007

1 Faculty of Economics and Management, Katholieke Universiteit Leuven,

Naamsestraat 69, 3000 Leuven, Belgium.

2 Department of Statistics, University of Dortmund, 44221 Dortmund, Germany.

Abstract: This paper presents variance extraction procedures for univariate time

series. The volatility of a times series is monitored allowing for non-linearities,

jumps and outliers in the level. The volatility is measured using the height of

triangles formed by consecutive observations of the time series. This idea was

proposed by Rousseeuw and Hubert (1996, Regression-free and robust estimation

of scale for bivariate data, Computational Statistics and Data Analysis, 21, 67–85)

in the bivariate setting. This paper extends their procedure to apply for online

scale estimation in time series analysis. The statistical properties of the new

methods are derived and finite sample properties are given. A financial and a

medical application illustrate the use of the procedures.

Keywords: Breakdown Point, Influence function, Online monitoring, Outliers,

Robust scale estimation.

∗Corresponding author. E-mail: sarah.gelper@econ.kuleuven.be, Tel: 0032/16326928, Fax:

0032/1632.67.32



1 Introduction

In this paper we propose a method to monitor variability in univariate time series.

The procedure allows one to get insight in the evolution of the variability of the

series over time. Moreover, it (i) can cope with highly non-linear signals, (ii)

is suitable for online applications and (iii) is robust with respect to outliers and

level shifts. This is achieved by making use of the vertical height of triangles

formed by consecutive data points. The method is explorative; it does not require

an explicit modeling of the time series. This technique is of interest in various

applied fields. In finance for instance, variability of returns is associated with

risk and thus directly relates to portfolio management and option pricing. In

intensive care, measurement of variables like heart rate and blood pressure need

to be constantly monitored since changes in these variables and their variability

contain crucial information on the well-being of the patient.

For both the financial and the intensive care applications, the data are recorded

with high frequency, e.g. every minute or every second. For these applications, it is

important to monitor the variability instantaneously. For this reason, the proposed

methods are designed to work online: for every new incoming observation, the

variability is easily determined by a fast updating step. The scale estimate at

the present time point is obtained by using a finite number of the most recent

observations, making it a local approach.

High frequency measurements typically lead to ‘unclean’ and noisy series con-

taining irrelevant outliers. Hence, we focus on robust techniques. For every

method, the robustness with respect to outliers is studied in detail by computing

breakdown points and influence functions. Statistical efficiencies are also derived.

These are accompanied by simulation results which provide insight into the finite

sample properties of the different methods (Appendix B).

The scale estimates discussed in this paper are regression free, i.e. directly based

on the observed data points without applying a regression fit first. The advantage

is that we do not have to bother about estimating the main signal in the series
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before estimating the variability. Regression free scale estimation methods have

already been studied by Rousseeuw and Hubert (1996) in the general bivariate

setting. Here, we are especially interested in time series scale estimation, and

adapt the estimators proposed by Rousseeuw and Hubert (1996) to be applicable

to time series with non-linear trends, trend changes and jumps. In this more special

setting of univariate times series, we are able to derive theoretical properties of

these estimators as well.

The different candidate methods are described in Section 2. Their robustness

properties are studied in Section 3 and their statistical efficiencies in Section 4.

Data applications can be found in Section 5. Finally, Section 6 briefly summarizes

the results and gives concluding remarks.

2 Description of the methods

We define a simple time series model, where the time series (yt)t∈Z is decomposed

into a level component µt and a random noise component et

yt = µt + et . (2.1)

The noise component et is assumed to have zero mean and time varying scale σt.

The focus in this study lies on estimating and monitoring σt, which reflects the

variability of the process around its underlying level µt. The level or signal µt can

vary smoothly over time but can also contain sudden jumps or trend changes. The

variability of the process yt is then captured by the scale of the et, where the latter

may contain outliers.

We make use of a moving window approach for the estimation of σt. To obtain

a scale estimate of the time series at time point t, denoted by St, we only use

information contained in the time window formed by the n time points t−n+1 to

t. As the window moves along the series, we obtain a scale estimate St for every

time point t = n, . . . , T . As such, a running scale approach is obtained, suitable
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for online application. An example would be a running standard deviation, which

would of course not be robust with respect to outliers nor be suitable for time

series containing a trend.

One possibility for online estimation of σt is to apply a scale estimate to the

residuals of a robust regression fit within a time window, as studied in Fried and

Gather (2003). This procedure is based on the fact that the local level µt can be

estimated well by robust regression filters (see e.g. Davies et al. (2004) and Gather

et al. (2006)). In that case it is assumed that, within a time window of length

n, the underlying signal µt of the series yt can be reasonably well approximated

by a linear trend. The approach presented in this paper allows for stronger non-

linearities in the time series.

2.1 Estimation Methods

The methods under consideration are regression free, i.e. a scale estimate for et in

(2.1) is obtained without fitting a regression line within the time window. Following

the approach of Rousseeuw and Hubert (1996), the scale estimates are constructed

using the vertical heights of triangles formed by triples of successive data points.

These heights correspond to the non-zero residual of an L1 fit to these three data

points. Here it is assumed that only within each triple of consecutive observations,

the series can well be approximated by a linear trend.

Consider any three successive observations yi, yi+1 and yi+2. Assuming the

series to be observed at equidistant time points, the height of the triangle formed

by these observations is given by the simple formula

hi =

∣

∣

∣

∣

yi+1 −
yi + yi+2

2

∣

∣

∣

∣

. (2.2)

The more variation there is in the time series, the larger the hi will be. Within

a window of length n, the heights of the n − 2 adjacent triangles are used in the

construction of the scale estimators studied here. Note that the heights hi in (2.2)

are invariant with respect to adding a linear trend to the time series, having the
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beneficial consequence that linear trend changes do not affect the scale monitoring

procedure.

Suppose we want to estimate the variability at time t using the observations

in the time window t− n+ 1, . . . , t of length n. For ease of notation, we drop the

dependency on t and denote these observations by y1 to yn, and the associated

heights as defined in (2.2) by hi, for i = 1, . . . , n − 2. The first estimator we

consider is proposed in Rousseeuw and Hubert (1996) and is defined via the α-

quantile of the heights obtained from adjacent triangles, with 0 < α < 1. Let h(i)

be the i-th value of the ordered sequence of all heights in the current window. The

scale estimate Qα
adj is then given by

Qα
adj(y1, . . . , yn) = cq · h(bα(n−2)c) , (2.3)

which is the bα(n − 2)c-th value in the sequence of ordered heights, with cq a

constant to achieve Fisher consistency at a specified error distribution, referred to

as the consistency factor. The value of α regulates the trade off between robustness

and efficiency, as will be discussed in detail in sections 3 and 4.

Considering observations sampled from a continuous distribution F , the corre-

sponding triangle heights will also have a continuous distribution, denoted by HF .

In that case the functional form of the estimator (2.3) corresponds to

Qα
adj(F ) = cq ·H−1

F (α). (2.4)

Assuming normality of the noise component, it is not difficult to show that one

needs to select

cq = (Qα
N)−1 with Qα

N :=

√

3

2
Φ−1

(

α + 1

2

)

. (2.5)

Here Φ(z) is the standard normal cumulative distribution function at z, and the

index N refers to the assumption of normality. For example, for α = 0.5 we have

cq = 2.51.

We present two alternatives to the Qα
adj estimator making use of averages in-

stead of the quantile. The first alternative is constructed as the Trimmed Mean

4



(TM) of the adjacent triangle heights and is defined by

TMα
adj(y1, . . . , yn) = cm · 1

bα (n− 2)c

bα (n−2)c
∑

i=1

h(i) . (2.6)

The second alternative is the square root of a Trimmed Mean of Squares (TMS)

of the adjacent triangle heights:

TMSαadj(y1, . . . , yn) = cs ·

√

√

√

√

1

bα (n− 2)c

bα (n−2)c
∑

i=1

h2
(i) . (2.7)

The trimming proportion equals (1 − α) where α can vary between zero and one.

As for the Qα
adj estimator, it regulates the trade off between efficiency (high α) and

robustness (low α). The functional form of these estimators is given by

TMα
adj(F ) = cm · TMα

1 (HF ) (2.8)

and

TMSαadj(F ) = cs · TMα
2 (HF ) . (2.9)

Here, we use a trimmed moment functional TMα
p which is defined as the α-trimmed

pth central moment to the power of 1/p,

TMα
p : G 7→ TMα

p (G) = E(Xp|X ≤ Qα(G))1/p , (2.10)

with X ∼ G. The consistency factors cm and cs can be derived for Gaussian noise:

cm =
α

√
6
[

ϕ(0) − ϕ(
√

2/3Qα
N)
] , (2.11)

cs =

√

α/3
√

α/2 −
√

2/3Qα
N ϕ(

√

2/3Qα
N)

, (2.12)

with Qα
N defined in (2.5), and ϕ(z) the associated density of Φ(z). Details on how

these expressions are obtained can be found in Appendix A. For example, for α =

0.5, one has cm = 2.51 and cs = 2.16. The consistency factors cq, cm and cs have

been derived at the population level. However, extensive simulations (reported

in Appendix B) have shown that they yield very good approximations, already
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for samples of size n = 20. We stress that the finite sample case is not without

importance in this setting since the scale estimates are computed within windows of

limited size. To achieve unbiasedness at finite samples for a Gaussian distribution

of, for example, the Qα
adj estimators, one could replace cq by its finite sample

counterpart cnq (obtainable by means of Monte-Carlo simulations). In Appendix

B, a simple approximative formula for this finite sample factor cnq , with α = 0.5,

is derived:

cnq ≈ 1.21
n

n+ 0.44
. (2.13)

We only consider scale estimators based on heights of adjacent triangles. Alter-

natively, one could use the heights of triangles formed by all triples of data points

within the window, or any other subset of them. Several such possibilities are de-

scribed in Rousseeuw and Hubert (1996). However, for online monitoring of high

frequency time series, the use of adjacent triangles is natural and appealing. The

adjacent based methods are fast to compute and the update of the estimate for a

new incoming observation is quick. The fastest algorithm to insert a new observa-

tion in an ordered series takes only O(log n) time and hence, so does the update of

the adjacent based estimators. Moreover, using all possible triangles in one win-

dow requires the local linearity assumption to hold in the entire window and not

only for triples of consecutive observations. As such, methods based on adjacent

triangles are more suitable when the underlying signal has strong nonlinearities.

3 Robustness Properties

To evaluate the robustness of the estimators with respect to outlying observations,

we look at their breakdown points and influence functions.

3.1 Breakdown Points

Loosely speaking, the breakdown point of a scale estimator is the minimal amount

of contamination such that the estimated scale becomes either infinite (explosion)
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or zero (implosion).

Let yn = {y1, . . . , yn} be a sample of size n with empirical distribution function

Fn. Let S denote one of the investigated scale functionals (2.4), (2.8) or (2.9) taking

values in the parameter space (0,∞) which we consider equipped with a metric

D satisfying sups1,s2∈(0,∞)D(s1, s2) = ∞ . For evaluating the breakdown point of

scale functionals, the metric D(s1, s2) = | log(s1/s2)| seems a suitable choice as it

yields ∞ in both cases, explosion and implosion.

Further, let ykn be a sample obtained from yn but with a proportion of k/n

observations altered to arbitrary values (k ∈ {1, . . . , n}), and let F k
n denote the

the empirical distribution of ykn. We define the finite sample breakdown point (fsbp)

of S at the sample yn, or at Fn, by

fsbp(S, Fn, D) = min
1

n

{

k ∈ {1, 2, . . . , n} : sup
F k

n

D
(

S(Fn), S(F k
n )
)

= ∞
}

,

which is equal to

fsbp(S, Fn) = min
{

fsbp+(S, Fn), fsbp−(S, Fn)
}

, (3.1)

where

fsbp+(S, Fn) = min
1

n

{

k ∈ {1, 2, . . . , n} : sup
F k

n

S(F k
n ) = ∞

}

(3.2)

is the explosion breakdown point, and

fsbp−(S, Fn) = min
1

n

{

k ∈ {1, 2, . . . , n} : inf
F k

n

S(F k
n ) = 0

}

(3.3)

the implosion breakdown point.

It is possible to give an upper bound for the finite sample breakdown point for

affine equivariant scale estimates S (Davies and Gather (2005)):

fsbp(S, Fn) ≤
⌊

n− n∆(Fn) + 1

2

⌋

/n , (3.4)
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where n∆(Fn) is the maximal number of observations which might be replaced

within the sample, such that the scale estimate remains positive. For scale esti-

mates based on adjacent triangle heights n∆(Fn) is equal to bα(n− 2)c − 1. Note

that the bound (3.4) is not obtained for the scale estimates S considered here.

Rousseeuw and Hubert (1996) calculated the finite sample breakdown point of

theQα
adj estimator in a regression setup with random design; but we consider a fixed

design with equidistant time points, yielding higher values for the finite sample

breakdown point: Suppose that yn is in general position and defineB := bα(n−2)c.
If the replacement sample ykn is chosen with k = B−1 such that B+1 observations

are collinear, then this results in B− 1 zero triangle heights and n−B− 1 heights

larger than zero. Hence, theBth largest value of the ordered heights will be positive

which implies fsbp−(S, Fn) ≥ B/n. On the other hand, replacing B observations

such that B + 2 observations are collinear implies that at least B heights will be

zero and therefore fsbp−(S, Fn) ≤ B/n. We thus obtain

fsbp−(S, Fn) = bα(n− 2)c/n .

For the explosion breakdown point, we follow the proof of Theorem 3 in

Rousseeuw and Hubert (1996) and obtain

fsbp+(S, Fn) =

⌈

n− 1 − bα(n− 2)c
3

⌉

/n .

Hence, the finite sample breakdown point corresponds to

fsbp(S, Fn) =
1

n
min

{⌈

n− 1 − bα(n− 2)c
3

⌉

, bα(n− 2)c
}

. (3.5)

The maximum value for fsbp(S, Fn) depends not only on the choice of α but

also on whether n is divisible by four or not (see Table 1). A proof can be found

in Appendix A.

Table 1 shows that, depending on n, more than one quantile might be chosen to

achieve an estimate with maximum fsbp, with the order of the empirical quantile

being bα(n − 2)c ∈
{⌊

n+1
4

⌋

, . . . , n+ 1 − 3
⌊

n+1
4

⌋}

. This is due to the fact that

both implosion and explosion of the estimator are regarded as breakdown.
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max. value of reached for corresponding

fsbp(S, Fn) α ∈ bα(n− 2)c ∈

n ∈ {4k − 1, k ∈ N}: n+1
4n

[

n+1
4(n−2)

, n+5
4(n−2)

) {

n+1
4

}

n ∈ {4k, k ∈ N}: 1
4

[

n
4(n−2)

, n+8
4(n−2)

) {

n
4
, n+4

4

}

n ∈ {4k + 1, k ∈ N}: n−1
4n

[

n−1
4(n−2)

, n+11
4(n−2)

) {

n−1
4
, n+3

4
, n+7

4

}

n ∈ {4k + 2, k ∈ N}: n−2
4n

[

n−2
4(n−2)

, n+14
4(n−2)

) {

n−2
4
, n+2

4
, n+6

4
, n+10

4

}

Table 1: Maximum values for the finite sample breakdown point fsbp(S, Fn) with

corresponding values of α and the rank bα(n − 2)c of the triangle heights with S

representing one of the scale estimates Qα
adj , TM

α
adj or TMSαadj .

If collinear observations rather than outliers are expected in the sample, the

best choice is to set α to the maximal value within the range given in Table 1,

i.e. α =
n+1−3bn+1

4 c
(n−2)

. However, if the aim is to prevent explosion, then setting α =

n+1
4(n−2)

, and hence taking the smallest empirical quantile, is recommendable. Since

we only consider data in general position, preventing explosion is more important

here. Thus, in the remainder of this paper, we choose α to be equal to

αopt =
n+ 1

4(n− 2)
. (3.6)

As Rousseeuw and Hubert (1996) point out, the finite sample breakdown point

tends to a meaningful limit which they call asymptotic breakdown point. Here,

all interval limits for the α attaining the maximum fsbp tend to 0.25 as n goes

to infinity. So, the maximal asymptotic breakdown point for the considered scale

estimates is 0.25 for α = 0.25. For other values of α, the asymptotic breakdown

point equals min{(1 − α)/3, α}.

3.2 Influence Functions

The Influence Function (IF) quantifies the difference in estimated scale due to

adding small amounts of outliers to the data. The uncontaminated time series is
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denoted by yt and, for deriving the IF, we assume local linearity and a constant

scale within the time window considered. Hence,

yi = a+ bi+ εiσ (3.7)

for i = 1, . . . , n, where εi
iid∼ F0. Typically, F0 will be taken as the standard normal

N(0, 1). Since all our estimation methods are regression invariant, we assume that

a = b = 0 in equation (3.7) without loss of generality. As defined by Hampel

(1974), the influence function of a scale functional S at the model distribution F

is given by

IF(w, S, F ) = lim
ε↓0

S((1 − ε)F + ε∆w) − S(F )

ε
, (3.8)

where ∆w denotes the point mass distribution at w for every w ∈ R. For each

possible value w, IF(w, S, F ) quantifies the change in estimated scale when a very

small proportion of all observations is set equal to the value w. Applying definition

(3.8) to the Qα
adj functional (2.4), and taking the standard normal distribution

N(0, 1) for F , we obtain the following expression for the influence function:

IF(w,Qα
adj , N(0, 1)) = cq

−G(Qα
N , w)

2
√

2/3 ϕ
(

√

2/3 Qα
N

) , (3.9)

where cq and Qα
N are defined according to (2.5) and

G(Qα
N , w) = −3

(

2Φ(
√

2/3Qα
N) − 1

)

+ Φ(
√

2(Qα
N − w)) − Φ(

√
2(−Qα

N − w))

+ 2
(

Φ(
√

(4/5)((w/2) +Qα
N)) − Φ(

√

(4/5)((w/2) −Qα
N))
)

. (3.10)

The analytical derivation of this expression can be found in Appendix A. The IF

of the Qα
adj estimator for α = 0.25 is depicted in the upper left panel of Figure 1.

We notice three important properties: the IF is smooth, bounded and symmetric.

Smoothness implies that a small change in one observation results in a small change

of the estimated scale. Because the influence function is bounded, large outliers

only have a limited impact on the estimated scale. As soon as the value of an outlier

exceeds a certain level (approximately 9), the IF is flat and the exact magnitude
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of the outlier is of no importance anymore for the amount by which the estimated

scale increases. Finally, we note that the influence function is symmetric around

zero, i.e. a negative and positive outlier of the same size have an equal effect on

the estimated scale.

Influence functions have also been computed for the estimators based upon

trimmed sums of (squared) heights. We only present the outcomes here; the

mathematical derivations can be found in Appendix A. Let M denote one of the

moment based functionals in equations (2.8) or (2.9), then the influence function

at the standard normal N(0, 1) is given by

IF(w,M,N(0, 1)) =
cp

pα

[

− (Qα
N)pG(Qα

N) − 3
α

cp
+
√

2
(

I√2,
√

2 + I−
√

2,
√

2

)

+2

√

4

5

(

Ip√
1/5,

√
4/5

+ Ip
−
√

1/5,
√

4/5

)

]

, (3.11)

with p = 1 and c = cm for TMα
adj while p = 2 and c = cs for the TMSαadj estimator.

In the above expression, we also need the integral

Ipa,b =

∫ Qα

N

0

hpϕ(aw + bh)dh ,

which can be computed analytically (see Appendix A). The upper right panel of

Figure 1 shows the IF for TMα
adj , where α equals 0.25. It shows the same properties

as the influence function of Qα
adj – it is smooth, bounded and symmetric. In the

middle left panel we see the corresponding IF of the TMS estimator, which is

remarkably close to that of TM . When comparing the influence function of the

three robust estimators, sharing the same breakdown point, we can see that they

are very similar.

In the middle right and lower panel of Figure 1, the IF of the non robust

estimators, TMα
adj and TMSαadj with α = 1, are plotted. The influence functions are

smooth and symmetric but unbounded. As expected, the IF of the TMS-method

is clearly quadratic, while the IF of the TM-approach resembles the absolute value

function. For smaller values of α, the difference between the IFs of the two trimmed

mean approaches becomes much less pronounced.
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Figure 1: Influence functions for the Qα
adj, TM

α
adj, and TMSαadj estimator, for

α = 0.25 and for α = 1.
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Finally, we also simulated empirical influence functions at finite samples to

confirm the quite complicated expression for the theoretical IF (see Appendix B).

It can be observed that already for n = 20, the empirical IF is very close to its

theoretical counterpart.

4 Statistical Efficiencies

The efficiency of an estimator measures its relative precision and is related to its

asymptotic variance (ASV). Here, we study the efficiency of an estimator S relative

to the non-robust TMS1
adj estimator:

Efficiency(S, F ) =
ASV(TMS1

adj, F )

ASV(S, F )
.

We maintain the local linearity assumption (3.7) and let F indicate the distribu-

tion of the error terms, supposed to be independent. Computing the asymptotic

variance of the scale estimators requires caution because the estimators are based

on heights of triangles, and these heights are autocorrelated. Similar to Portnoy

(1977), we can write the asymptotic variance of an estimator based on the heights

hi as

ASV(S, F ) =
+∞
∑

l=−∞
E
(

ψ(hi, S,HF )ψ(hi+l, S,HF )
)

, (4.1)

where ψ(hi, S,HF ) is the influence function of the estimator S as a function of the

heights hi, which follow distribution HF determined by F . Note that ψ(hi, S,HF )

is different from the influence function as described in Section 3, where we examine

the effect of an outlying observation, while here we need the influence function of

the heights, as these are the elements in the construction of the estimators. If

the error terms in equation (3.7) are independently distributed, the heights are

auto-correlated up to two lags, and equation (4.1) reduces to

ASV(S, F ) = E
(

ψ2(hi, S,HF )
)

+ 2E
(

ψ(hi, S,HF )ψ(hi+1, S,HF )
)

+ 2E
(

ψ(hi, S,HF )ψ(hi+2, S,HF )
)

.
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As in Jureckova and Sen (1996), when F is a standard normal distribution, the

ψ-functions for our estimators are given by

ψ(h,Qα
adj, HN) = cq

(

α−I(h<Qα

N
)

2
√

2/3ψ
(√

2/3Qα

N

)

)

ψ(h, TMα
adj, HN) = cm

α

(

hI(h < Qα
N) +Qα

N(α− I(h < Qα
N))
)

− 1

ψ(h, TMSαadj, HN) = c2s
2α

(

h2I(h < Qα
N) + (Qα

N)2(α− I(h < Qα
N))
)

− 1
2
,

where Qα
N is the α-quantile of the distribution of the heights under the standard

normal distribution (see equation (2.5)), N is an index referring to the assumption

of normality and I is the indicator function. The exact value of the ASV for

the non-trimmed mean-squared-heights estimator TMS1
adj equals 35/36. For the

other estimators, the ASV is obtained by numerical integration. The left panel of

Figure 2 evaluates the ASV of the estimators relative to the ASV of the TMS1
adj

estimator. Naturally, the efficiencies are higher for higher values of α, except for

the Qα
adj where the efficiency decreases steeply when α is larger than 0.86. The

TMSαadj estimator is slightly more efficient than the TMα
adj estimator for every

value of α. Surprisingly the most efficient scale estimator is the Qα
adj, at least for

α smaller than 0.85. Hence, replacing the quantile by a trimmed sum does not

result in an increase of efficiency for a large range of values of α.

At the optimal breakdown point of 25%, where α equals 0.25, we obtain an

efficiency of only 25% for the Qα
adj estimator and of around 20% for both trimmed

mean estimators. Hence the price paid for the maximal breakdown point is very

high. Taking the median of the heights, α = 0.5, results in an efficiency of 49%

for the Qα
adj, 0.38% for the TMα

adj and 0.43% for the TMSαadj estimator. These

efficiencies are more reasonable and hence α = 0.5 is recommended. Then, the

asymptotic breakdown point is 16.6% and the finite sample breakdown point (see

(3.5)) allows for three outliers in a window of 20 observations.

To compare the asymptotic and finite sample behavior of the estimators, the

right panel of Figure 2 presents a simulated approximation of the ASV for window
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Figure 2: Asymptotic (left panel) and finite sample (window width 20, right panel)

efficiencies forQα
adj (solid), TMα

adj (short dash) and TMSαadj (long dash), for varying

α.

width n = 20 in the moving window approach:

ASV (S, F ) ≈ nVar(Sn, F ) ,

where Var(Sn, F ) is obtained by computing the scale estimate Sn 10000 times for

a simulated time series of length n with i.i.d. standard normal noise. Comparing

the right and left panel of Figure 2 indicates that a window width of 20 already

provides a good approximation of the asymptotic variance and that the ordering

of the scale estimates remains unchanged in the finite sample setting. Moreover,

a much more elaborated simulation study, summarized in Appendix B, has been

undertaken, where times series where generated from different sampling schemes,

including outlier generating ones. A conclusion is that for values of α not too

close to one, the three different robust procedures remain quite close to each other

under a large variety of sampling scheme. The simulation results confirm that

taking α too small results in too large a loss of efficiency. We thus suggest using

Q0.5
adj in practice: This estimator yields a good compromise between robustness and

efficiency.
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5 Applications

In this section we present an artificial data example to illustrate the online scale

estimation methods and two real data applications, one application in finance and

one in medicine.

5.1 Artificial data

The running scale approach is illustrated using a simulated time series of length

500, starting with a quadratic trend. After a trend change (at observation 250)

and a level shift (at observation 250), the trend becomes linear. The true scale σt

is constant at one for the first 300 observations, then jumps to three and grows

linearly thereafter. Contamination is only included in the subseries with linear

trend, i.e. starting from observation 251 on. We include 5% replacement outliers

from a N(0, 102) around the linear trend. The upper graph in Figure 3 plots the

time series, while the bottom graph shows the estimated scales using either the

Q0.5
adj, or the non-robust standard deviation computed from an OLS-fit within each

window considered. The latter estimation approach is called here a running sd.

The true scale function σt, which is known here, is also presented.

As can be seen from Figure 3, the Q0.5
adj estimator performs quite well. The

shift in the magnitude of the scale (after observation 300) is detected with some

delay since for the first observation after this shift, most observations included in

the window for scale estimation are still from the period before the scale shift.

Furthermore, the Q0.5
adj estimator can easily cope with the non-linearities in the

signal of the times series and with the presence of the outliers in this time series.

Comparing this with the scale estimates which use the running sd approach,

one can first notice that during the period of the quadratic trend, when no outliers

are present, the true scale is systematically overestimated. The reason for this

is that the running sd method relies on the local linearity assumption to be true

within each window. The latter assumption is clearly violated in the first part of

16



the series. As expected, the running sd approach is not robust w.r.t. the trend

and level shift in the signal at t = 250, resulting in a high spike. Finally, in the

last part of the series, the running sd is again substantially overestimating the true

scale, now caused by the presence of outliers in the second part of this time series.

5.2 Real data applications

To illustrate the use of the online scale estimation methods for financial data,

we look at Apple Computer, Inc. stock returns (AAPL). The more volatile the

returns of a stock are, the more risky it seems to invest in it. The upper panel of

Figure 4 plots the returns of the AAPL stock from July 5th 2000 until September

27th 2006. These returns are based on daily closing prices. There are a few large

negative outliers, which indicate that the stock price during that particular day

decreased steeply. The lower panel of Figure 4 presents the scale, estimated using

both the Q0.5
adj and the running sd-estimator, here for n = 20. Note that the

negative outliers strongly influence the running sd-estimates during certain time

periods. This is undesirable since we do not want a single isolated observation to

potentially result in extremely high scale estimates for several periods. If we are

not in the neighborhood of outliers, then the robust and non-robust approaches

give similar results. During the period we consider, the volatility of the stock

return has decreased. From the beginning of the period until the beginning of

2003, the AAPL stock has become less risky. From then on, the volatility has

stabilized.

The second application concerns heart rate measurements recorded at an in-

tensive care unit once per second. The top panel in Figure 5 shows a time series

of such heart rate measurements plus N(0, 0.012)-noise, added to prevent the scale

estimates from imploding due to measurement accuracy. The first part of the

time series seems rather stable with a few positive outlying values while at around

22:27h not only does the heart rate of the patient suddenly increase but also its

variability.
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Figure 3: Artificial time series (top panel). The bottom panel presents the scale

as estimated by the Q0.5
adj estimator and the residual standard deviation after an

OLS-fit with n = 50. The true scale is represented by the thin solid line.
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as estimated by the Q0.5
adj estimator and the residual standard deviation after an

OLS-fit with n = 20.
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The bottom panel presents again the Q0.5
adj and the running sd estimator using

a window width of n = 240 seconds. Both methods detect the sudden increase in

variability. However, the effect of the outliers on the running sd clearly motivates

the need for robust methods in this application. Similar to the artificial example,

the running sd estimates outstanding large variability around the level shift which

does not reflect the data. This results from the preceding regression step where the

level around the jump is not estimated correctly and thus, the residuals indicate

a large variability. This problem occurs for all regression-based scale estimates,

including robust approaches such as a running Qn scale estimate (Rousseeuw and

Croux (1993)) based on the residuals from a repeated median regression (Siegel

(1982)), as described in Fried and Gather (2003).

Additionally, regression-based methods estimate the variability around a line

within the whole window while the proposed adjacent-type methods are only based

on a linear approximation for three consecutive data points and hence rather esti-

mate short-term variability. Figure 5 demonstrates this: the estimations from the

running standard deviation are larger than the Qα
adj estimations, especially during

the period of increased variability.

6 Conclusion

This paper studies regression-free scale estimation procedures for online application

in time series. The estimators are based on the heights of adjacent triangles which

makes them suitable for time series with non-linearities. Moreover, it is shown

that the presented methods perform well for time series with trend changes, level

changes, time varying scale and outliers. This is confirmed by theoretical and

simulation based evidence, as well as by real data examples including a financial

and a physiological application. The estimators achieve a maximal asymptotic

breakdown point of 25% while the Qα
adj estimator, based on the α-quantile of

heights, turns out to have the best performance in terms of efficiency. Choosing α
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to be equal to 0.5 provides both, reasonable robustness and efficiency.

The proposed online scale monitoring procedure is easy to implement since all

scale estimates are defined explicitly. For every new observation, the associated

estimate St requires only O(log n) computing time, allowing for fast online com-

putation. The selection of the window length n is not treated in this paper. We

assume here that the practitioner provides some subject matter information for a

reasonable choice for n. Alternatively, an automatic adaptive selection procedure

for n could be developed, similar as in Gather and Fried (2004).

Besides allowing for fast and easy online computation, the estimates based

on adjacent triangles are more robust in the face of non-linearities than other

existing robust scale estimation procedures in the time series context. For deriving

the theoretical influence function and asymptotic efficiencies, we have required

local linearity and that the error terms within a single window be independent.

However, these assumptions are required only to maintain analytical tractability

of the theoretical results. When used as an explorative tool in an applied time

series context, the latter assumptions are by no means required.
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Appendix A: Proofs

Consistency Factors

To obtain the asymptotic consistency factor for the Qα
adj estimator, we rely on the

local linearity assumption with normally distributed i.i.d. error terms as in equation

(3.7). If εi
idd∼ N(0, σ2) = F , then we need to select cq such that Qα

adj(F ) = σ. The

heights for triangles formed by equidistant and consecutive time points are defined

by (2.2). Now under the local linearity assumption, substitute (3.7) in (2.2) to

obtain

hi =
∣

∣

∣

(

εi+1 −
εi + εi+2

2

)

σ
∣

∣

∣
=
∣

∣

∣
vi

√

3

2
σ
∣

∣

∣
. (A.1)

with vi ∼ N(0, 1).

Since Qα
adj is defined by the correction constant cq times the α quantile of all

heights, it follows that

P
(

cq
√

3/2 σ |vi| ≤ Qα
adj(F )

)

= 2P

(

vi ≤
Qα
adj(F )

cq
√

3/2 σ

)

− 1 = α

⇒ Φ

(

Qα
adj(F )

cq
√

3/2 σ

)

=
α + 1

2
⇒ Qα

adj(F ) = Φ−1((α + 1)/2) cq
√

3/2 σ .

Hence, in order to get Fisher consistency, we need to select

cq =
√

2/3
1

Φ−1((α+ 1)/2)
.

Note that cq = (Qα
N)−1.

Using definition (2.8) and equation (A.1), we get

TMα
adj(F ) = cmE

(

σ
√

3/2|v|
∣

∣

∣
σ
√

3/2|v| ≤ Qα
N σ

)

= cm
σ
√

3/2

α

(

2

∫

√
2

3
Qα

N

0

v ϕ(v)dv
)

.

= cm
σ
√

6

α

[

ϕ(0) − ϕ(
√

2/3Qα
N)
]

.

Hence, to get TMα
adj(F ) = σ, we take

cm =
α

√
6
[

ϕ(0) − ϕ(
√

2
3
Qα
N)
] .
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Figure 6: Finite sample breakdown points, explosion and implosion breakdown

points for varying values of α for exemplary n.

For the TMSαadj defined by (2.9), we get

TMSαadj(F ) = csE

(

σ2 3

2
v2
∣

∣

∣
|v| ≤

√

2

3
Qα
N

)1/2

= cs

√

3

2

√

2

α
σ

(

∫

√
2

3
Qα

N

0

v2ϕ(v)dv

)1/2

= cs

√

3

α
σ

(

−
√

2/3Qα
N ϕ(

√

2/3Qα
N) +

α + 1

2
− 1

2

)1/2

.

Fisher consistency is ensured by taking

cs =

√

α/3
√

α/2 −
√

2/3Qα
N ϕ

(

√

2/3Qα
N

)

.

The Finite Sample Breakdown Point

In the following, the maximum value possible for the finite sample breakdown

point fsbp(S, Fn), given by (3.5), of any of the considered scale estimates S ((2.3),

(2.6) or (2.7)) at a sample yn of size n with empirical distribution function Fn

is determined. Further, the corresponding values of α for which the maximum

breakdown is achieved are derived. Therefore, consider the quantities

A :=

⌈

n− 1 − bα(n− 2)c
3

⌉

and B := bα(n− 2)c .
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By (3.5), the finite sample breakdown point fsbp(S, Fn) equals min{A,B}/n.

For increasing values of α ∈ [0, 1], the quantity A is decreasing while B is

increasing (see Figure 6). Hence, the maximum breakdown point will be equal to

B/n for certain α ∈ [αmin, α1), and it will equal A/n for certain α ∈ [α1, αmax).

The maximum value for fsbp(S, Fn) is reached for any value of α for which A = B

whenever this is possible. To determine the bounds αmin and αmax, we distinguish

between the four cases where either n+1, n, n−1 or n+2 respectively is divisible

by four.

Case I: n ∈ {4k − 1, k ∈ N}.

(a) Let α = n+1
4(n−2)

− ε with arbitrary small ε > 0. Then

B =

⌊(

n+ 1

4(n− 2)
− ε

)

(n− 2)

⌋

=

⌊

n+ 1

4
− ε(n− 2)

⌋

<
n+ 1

4
.

Hence B/n < n+1
4n

for α < αmin := n+1
4(n−2)

.

(b) Consider x ∈ [n+ 1, n+ 5) and α = x
4(n−2)

. Then B = bx/4c = (n+ 1)/4,

A =

⌈

n− 1 −B

3

⌉

=

⌈

n− 1 − (n+ 1)/4

3

⌉

=

⌈

n+ 1

4
− 2

3

⌉

=
n+ 1

4
= B

and hence A/n = B/n = n+1
4n

for α ∈
[

n+1
4(n−2)

, n+5
4(n−2)

)

.

(c) For α = n+5
4(n−2)

it is B = b(n+ 5)/4c = (n+ 1)/4 + 1 and

A =

⌈

n− 1 − (n+ 1)/4 − 1

3

⌉

=

⌈

n+ 1

4
− 1

⌉

=
n+ 1

4
− 1 .

Thus, A/n < n+1
4n

for all α ≥ αmax := n+5
4(n−2)

.

From (a), (b), (c) and as A and B are decreasing and increasing in α, respectively,

the maximum value for fsbp(S, Fn) = n+1
4n

is reached for α ∈
[

n+1
4(n−2)

, n+5
4(n−2)

)

.

Case II: n ∈ {4k, k ∈ N}. Analogously to Case I, one can show:

(a) For α = n
4(n−2)

− ε, ε > 0, it is B =
⌊

n
4
− ε(n− 2)

⌋

< n
4

and hence 1
n
B < 1

4

for α < αmin := n
4(n−2)

.
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(b) (i) Consider x ∈ [n, n + 4) and α = x
4(n−2)

. Then B = bx/4c = n/4

and A =
⌈

n−1−n/4
3

⌉

=
⌈

n
4
− 1

3

⌉

= n
4
, and thus A/n = B/n = 1/4 for

α ∈
[

n
4(n−2)

, n+4
4(n−2)

)

.

(ii) For x ∈ [n+4, n+8) and α = x
4(n−2)

, it is B = bx/4c = n/4+1 and A =
⌈

n
4
− 2

3

⌉

= n
4
. Following it is A/n = 1/4 < B/n for α ∈

[

n+4
4(n−2)

, n+8
4(n−2)

)

.

(c) For α = n+8
4(n−2)

it is B = b(n + 8)/4c = n/4 + 2 and A =
⌈

n
4
− 1
⌉

= n
4
− 1 .

Hence, it is A/n < 1
4
∀ α ≥ αmax := n+8

4(n−2)
.

Thus, the maximum value 1/4 for the finite sample breakdown point fsbp(S, Fn)

is reached for α ∈
[

n
4(n−2)

, n+8
4(n−2)

)

.

Case III: n ∈ {4k + 1, k ∈ N}
Analogously one can show that

(a) 1
n
B < n−1

4n
for α < αmin := n−1

4(n−2)
.

(b) (i) 1
n
A = 1

n
B = n−1

4n
for α ∈

[

n−1
4(n−2)

, n+3
4(n−2)

)

.

(ii) 1
n
A = n−1

4n
< 1

n
B for α ∈

[

n+7
4(n−2)

, n+11
4(n−2)

)

(c) 1
n
A < n−1

4n
∀ α ≥ αmax := n+11

4(n−2)
.

Thus, the maximum value n−1
4n

for fsbp(S, Fn) is reached for α ∈
[

n−1
4(n−2)

, n+11
4(n−2)

)

.

Case IV: n ∈ {4k + 2, k ∈ N}
Again, analogously one can show that

(a) 1
n
B < (n− 2)/4n for α < 1/4.

(b) 1
n
B = n−2

4n
for α ∈

[

1
4
, n+2

4(n−2)

)

.

(c) 1
n
A = n−2

4n
for α ∈

[

n+2
4(n−2)

, n+14
4(n−2)

)

.

(d) 1
n
A ≤ n−2

4n
− 1

n
for any α ≥ n+14

4(n−2)
.
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From (a), (b), (c) and (d) we can conclude that the maximum breakdown point

fsbp(S, Fn) = n−2
4n

is reached for α ∈
[

1
4
, n+14

4(n−2)

)

. Note that in this case, the

equation A = B does not hold for any value of α ∈ [0, 1] because:

A = B

⇔
⌈

n− 1 − bα(n− 2)c
3

⌉

= bα(n− 2)c

⇔ bα(n− 2)c − 1 < n−1−bα(n−2)c
3

≤ bα(n− 2)c

⇔ n− 1

4
≤ bα(n− 2)c <

n+ 2

4
.

By definition bα(n − 2)c ∈ N. However, for n ∈ {4k + 2, k ∈ N} there is no

integer in the interval [n−1
4
, n+2

4
).

Influence Functions

For the derivation of equation (3.9), recall that the functional of the Qα
adj estimator

is defined by (2.4)

Qα
adj(F ) = cqH

−1
F (α),

for any distribution F of the error terms εi. Here,

HF (u) = P
(∣

∣εi+1 −
εi + εi+2

2

∣

∣ ≤ u
)

,

for all u > 0. The IF as defined in (3.8) then equals

IF(w,Qα
adj, F ) = cq

∂

∂ε
H−1
Fε

(α)∣
∣

ε = 0
= cq

−∂HFε

∂ε

(

H−1
F (α)

)

∣

∣

ε = 0

H
′

F

(

H−1
F (α)

) . (A.2)

Here, assuming F = N(0, 1), we have

H−1
F (α) = H−1

N (α) = Qα
N =

√

3

2
Φ−1

(

α + 1

2

)

,

referring to the assumption of normality by the index N .

We now compute numerator and denominator of (A.2) separately. For the

numerator, we need the distribution function of the heights from the contaminated
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series yεt , which can be written as

HFε
(u) = (1 − ε)3HF (u) + ε(1 − ε)2P

(∣

∣w − yt−1 + yt+1

2

∣

∣ ≤ u
)

+2ε(1 − ε)2P
(∣

∣yt −
w + yt+1

2

∣

∣ ≤ u
)

+O(ε2) ,

for any u > 0. Computing the derivative of this expression with respect to ε and

evaluating in ε = 0 yields

∂HFε
(u)

∂ε
∣

∣

ε = 0
= −3HF (u) + P

(∣

∣w − yt−1 + yt+1

2

∣

∣ ≤ u
)

+ P
(∣

∣yt −
w + yt+1

2

∣

∣ ≤ u
)

.

Since F = N(0, 1), standard calculations give

∂HNε

∂ε
(h)∣
∣

ε = 0
= −3

(

2Φ(
√

2/3h) − 1
)

+ Φ(
√

2(h− w)) − Φ(
√

2(−h− w))

+2
(

Φ(
√

(4/5)((w/2) + h)) − Φ(
√

(4/5)((w/2) − h))
)

:= G(h,w), (A.3)

and we note that G(Qα
N) equals expression (3.10).

For the denominator of expression (A.2), we note that

HF (u) = P (h ≤ u) = P
(∣

∣yt+1 −
yt + yt+2

2

∣

∣ ≤ u
)

= Φ(
√

2/3u) − Φ(−
√

2/3u)

from which it follows that

∂HF (u)

∂u
∣

∣

u = Qα

N

= 2
√

2/3ϕ(
√

2/3 Qα
N). (A.4)

The expression of the IF (Qα
adj, N(0, 1), w) for normal distributed error terms fol-

lows from equations (A.2), (A.3) and (A.4).

The functionals TMα
adj and TMSαadj both take the same form

M : F 7→M(F ) = cE(hp|h ≤ Qα
F )1/p =

c

α

(
∫ Qα

F

0

hp dHF (h)

)1/p

, (A.5)

where p = 1 for the TMα
adj and p = 2 for the TMSαadj, c is either cm (equation

(2.11)) or cs (equation (2.12)) and Qα
F = H−1

F (α). The influence function, as

defined in equation (3.8), is given by

IF(w,M,F ) =
∂

∂ε

c

α

(
∫ Qα

Fε

0

hp dHFε
(h)

)1/p

∣

∣

ε = 0
,

6



and the chain rule delivers

IF(w,M,F ) =
c

α

1

p
E(hq|h ≤ Qα

F )(1/p)−1 ∂

∂ε

∫ Qα

Fε

0

hpdHFε
(h)∣
∣

ε = 0
.

We know that E(hp|h ≤ Qα
F ) = 1/cp, so

IF(w,M,F ) =
cp

pα

[

∂

∂p

∫ p

0

hpdHF (h)∣
∣

p = Qα

F

∂

∂ε
Qα
Fε

∣

∣

ε = 0
+

∂

∂ε

∫ Qα

F

0

hpdHFε
(h)∣
∣

ε = 0

]

:=
cp

pα
(T1 + T2) .

We will now separately examine the first and second term T1 and T2.

Applying the Leibnitz rule to the first term yields

T1 = (Qα
F )pH

′

F (Qα
F )

∂

∂ε
Qα
Fε

∣

∣

ε = 0
.

Recall now that the influence function of Qα
adj can be rewritten as

IF(w,Qadj, N(0, 1)) = cq
∂

∂ε
Qα
Nε

∣

∣

ε = 0
= cq

−G(Qα
N , w)

H
′

N(Qα
N)

,

hence for F = N(0, 1)

T1 = −(Qα
N)pG(Qα

N , w) .

To obtain the second term T2, we use the expression for G in (A.3) and obtain

T2 =

∫ Qα

N

0

hpdG(h)

= −3

∫ Qα

N

0

hpdHF (h) +

∫ Qα

N

0

hpdΦ(
√

2(h− w)) −
∫ Qα

N

0

hpdΦ(
√

2(−h− w))

+ 2

∫ Qα

N

0

hpdΦ(
√

(4/5)((w/2) + h) − 2c/α) − 2

∫ Qα

N

0

hpdΦ(
√

(4/5)((w/2) − h))

= −3
α

cp
+

∫ Qα

N

0

hp
[√

2
(

ϕ(
√

2(w + h) + ϕ(
√

2(w − h)
)

+ 2
√

4/5
(

ϕ(
√

4/5(w/2 + h)) + ϕ(
√

4/5(w/2 − h))
)

]

dh .

Defining

Ipa,b =

∫ Qα

N

0

hpϕ(aw + bh)dh , (A.6)

results in expression (3.11) for IF(w,M,N(0, 1))

7



In expression (3.11) of the influence function, there still appear integrals which

have to be computed. In practice, we can do this by numerical integration tech-

niques; or we can derive an analytic expression for Ipa,b. Using the substitution

method for solving integrals, define u = aw + bh and rewrite equation (A.6) as

Ipa,b =

∫ aw+bQ

aw

(

u− aw

b

)p

ϕ(u)
1

b
du .

We now distinguish between p = 1 and p = 2. For p = 1 one can verify that

I1
a,b =

ϕ(aw) − ϕ(aw + bQ)

b2
+
aw

b2
(Φ(aw) − Φ(aw + bQ)) ,

and for p = 2, after some calculations, we get

I2
a,b =

1

b3
[

(aw−bQ)ϕ(aw+bQ)−awϕ(aw)+(1+a2w2)Φ(aw+bQ)−(1+a2w2)Φ(aw)
]

In the special case where α = 1, we obtain simplified expressions for the mean

over all heights and the mean over all squared heights:

IF(w, TM 1
adj, N(0, 1)) = cm

[

− 3
√

6ϕ(0) + 2wΦ(
√

2w) +
√

2ϕ(
√

2w) − w

+ 2
(
√

5ϕ(
√

1/5w) + wΦ(
√

1/5w) − w/2
)

]

,

and

IF(w, TMS1
adj, N(0, 1)) =

1

2
(w2 − 1).

Appendix B: Simulations

Correction Factors

In definitions (2.3), (2.6) and (2.7), consistency factors are used to achieve Fisher

consistency. However, these estimators may still be biased for finite samples;

replacing the consistency factors by correction factors then ensures unbiasedness

of the scale estimators. Those correction factors cnq , c
n
m and cns depend on the

8



α = n+1
4(n−2)

α = 0.5 α = 1

n Qα
adj TMα

adj TMSαadj Qα
adj TMα

adj TMSαadj TMα
adj TMSαadj

10 2.18 4.40 4.07 1.27 2.61 2.32 1.02 0.85

15 2.43 4.90 4.42 1.34 2.76 2.42 1.02 0.84

20 2.61 5.27 4.70 1.24 2.57 2.24 1.02 0.84

50 2.46 4.98 4.34 1.22 2.53 2.18 1.02 0.82

100 2.57 5.17 4.49 1.22 2.52 2.18 1.02 0.82

200 2.57 5.18 4.49 1.21 2.52 2.17 1.02 0.82

∞ 2.56 5.17 4.47 1.21 2.51 2.16 1.02 0.82

Table 2: Correction factors obtained by 10000 simulation runs for several values

of n and α, together with the consistency factors (n→ ∞), under the assumption

of Gaussian noise.

window width n and differ slightly from the consistency factors. To obtain the

correction factors, we assume linearity and a constant scale σ within the time

window considered, as in (3.7). Here, F0 will be taken to be the standard normal

N(0, 1). Table 2 gives values of the correction factors under the assumption of

i.i.d. Gaussian error terms and based on 10000 simulation runs for different window

widths and different values of α. In the first column, we choose α such that the

optimal finite sample breakdown point is achieved, as is explained in Section 3.1.

From Table 2 it is clear that as the window width increases, the correction factors

converge to their asymptotic values. These asymptotic values are the consistency

factors in the definition of the functionals in equations (2.3), (2.6) and (2.7).

In practice, we suggest using Qα
adj with α = 0.5 because this yields a good

compromise between robustness and efficiency. For application to real data, we

advise using the finite sample correction factor for this estimator. Though this can

be obtained for any sample size by simulation, it might be rather time consuming.

Therefore, we propose a simple approximative formula for the finite sample cor-

9
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Figure 7: Approximation of the finite sample correction factors for the Qα
adj for α

equal to 0.5. The dots represent the simulated value of dn for 10000 simulations

and the solid line is the approximation using formula (B.7).

rection factor of the Q0.5
adj under the assumption of i.i.d. normal error terms. The

correction factor cnq can be written as a multiple of its asymptotic value:

cnq = dn cq .

As cnq approaches cq for n tending to infinity, we know that dn attains one. We run

10000 simulations for varying window widths, up to n = 200 observations. A plot

of the simulated values for dn can be found in Figure 7. The shape of the plot is

well approximated by a function of the form

dn =
n

n− a
,

where the constant a can be estimated by an OLS regression of the following model:

n(dn − 1) = a dn + ut

which yields a = 0.44. Since cq equals 1.21 for α = 0.5, we get

dn ≈ n

n− 0.44
⇒ cnq ≈ 1.21

n

n+ 0.44
. (B.7)
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This approximation gives values close to the large scale simulated values of dn, as

can be seen by the solid line in Figure 7, and is easy to use in practice.

For the pure descriptive purpose of monitoring scale, one will often not be

willing to make distributional assumptions on the noise component. If this is the

case, then the estimators may be computed omitting the correction factors. The

estimated sequence St will of course be the same, up to scalar multiplication.

Empirical Influence Functions

The theoretical influence function in equation (3.8) is an asymptotic concept. In

practice however, we work with finite sample sizes or, for the considered applica-

tion, window widths. A finite sample equivalent of the influence function defined

in (3.8) is given by the Empirical Influence Function (EIF). It is a simulation based

curve and defined by

EIF(w;S, F, n,Ns) =
n

Ns

Ns
∑

s=1

(S(ỹs) − S(ys)) , (B.8)

where n = 20 the window width, and Ns = 10000 is the number of simulations. For

every simulated sample ys of size n from a N(0, 1) distribution the scale estimate is

computed. This sample is then contaminated by replacing one randomly selected

observation by the value w, resulting in a contaminated series ys from which again

the scale estimator S is computed. Figure 8 shows the EIF of the different adjacent

type estimators, similar to Figure 1, for α = 1 and α = αopt ≈ 0.29 as defined

in equation (3.6). It is striking how close the theoretical and empirical influence

functions are already for n = 20.

Simulated bias and efficiency under contamination

In this section, a simulation study is carried out to compare the finite sample

performance of the estimators in the moving window approach. The estimation

methods are compared with respect to two criteria: their mean bias and root
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Figure 8: Empirical Influence functions (EIF) for the Qα
adj, TM

α
adj, and TMSαadj

estimators, for α corresponding to the optimal finite sample breakdown point and

for α = 1. 12



mean squared error. The Mean Bias (MB) of an estimator S is defined as the

mean relative difference between the estimated and the true scale over all scale

estimates resulting from the moving window:

MB (S) =
1

T − n+ 1

T
∑

t=n

St − σt
σt

, (B.9)

where n denotes the window width, T the length of the time series, σt the true scale

at time t and St the estimated scale. Using the simulated finite sample correction

factors, we expect the bias to be zero on average for all proposed estimators. It

gives insight in the deviation of the estimated scale from the true scale. Another

summary measure is the Mean Root Squared Error (MRSE):

MRSE (S) =
1

T − n+ 1

(

T
∑

t=n

(St − σt)
2

σ2
t

)1/2

. (B.10)

It measures the finite sample precision of the estimators.

We consider four simulation settings for which we simulate Ns = 1000 time

series of length T = 1000. We choose the window width n equal to 20 and make

use of the correction factors as presented above. For every simulated time series,

we compute the mean bias and mean root squared error. The estimators are

evaluated for α equal to αopt = (n+1)/(4(n− 2)), where the optimal finite sample

breakdown point is achieved, and α equal to 0.5. We also consider the non-robust

versions of the TMα
adj and TMSαadj estimators, where α equals 1. An overview of

the simulation schemes can be found in Table 6.

Setting Description

1 Clean data: yt
iid∼ N(0, 1)

2 Fat tailed data: yt
iid∼ t3

3 5% outliers: yt
iid∼ 0.95N(0, 1) + 0.05N(0, 5)

4 10% outliers: yt
iid∼ 0.90N(0, 1) + 0.10N(0, 5)

Table 3: Simulation Settings
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Figure 9: Mean bias for clean data (top left), fat tailed data (top right), data with

5% outliers (bottom left) and 10 % outliers (bottom right). In every graph, the

first three boxplots present the MB for the Qα
adj , TM

α
adj and TMSαadj estimators

so that the optimal fsbp is achieved. The middle three boxplots correspond to the

three estimators for α=0.5 and the last two boxplots represent the MB for the

non-robust TM 1
adj and TMS1

adj estimators.
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α = αopt = n+1
4(n−2)

α = 0.5 α = 1

Qα
adj TMα

adj TMSαadj Qα
adj TMα

adj TMSαadj TMα
adj TMSαadj

Clean data 0.44 0.54 0.51 0.29 0.34 0.32 0.22 0.21

Fat tailed data 0.43 0.48 0.47 0.36 0.39 0.37 0.33 0.41

5% outliers 0.52 0.62 0.59 0.38 0.41 0.40 0.51 0.70

10% outliers 0.60 0.70 0.67 0.50 0.52 0.51 0.75 1.00

Table 4: Average MRSE for the four simulation schemes, using window width n

20, and 3 different values of α: α = n+1
4(n−2)

for obtaining the optimal fsbp, α = 0.5

and α = 1 for the non-robust estimators.

In the first simulation setting, we consider a time series of clean i.i.d. standard

normal data. The mean bias is presented in the top left panel of Figure 9. As

expected, all scale estimators are unbiased, i.e. the mean bias is on average zero.

The largest biases occur for αopt. The average of the MRSE over the 1000 time

series is presented in the first row of Table 4. The non-robust procedures, where α

equals 1, have the smallest variation of the estimated scale around the true scale.

This is in line with the findings presented in Figure 2, where it is shown that the

efficiency of both moment based estimators is higher for larger values of α.

In the second setting, we look at a heavy tailed distribution, namely a Student-

t with three degrees of freedom. Again, we use finite sample correction factors to

obtain unbiasedness. The mean bias is on average equal to zero, as illustrated

in the top right panel of Figure 9. Table 4 indicates that the smallest MRSE is

obtained by the non-robust TM 1
adj estimator, the difference in MRSE with the

robust estimators where α equals 0.5 is small.

The third and fourth simulation settings assess the behavior of the scale esti-

mation procedures for contaminated data. We induce respectively 5% and 10%

outliers. The outliers come from a replacement outlier generating process with a

proportion ε of the observations coming from a normal distribution with standard

deviation 5. We consider 5% outliers in the bottom left panel of Figure 9 and 10%

15



in the bottom right panel. We use the finite sample correction factors obtained

from simulations based on non-contaminated i.i.d. standard normal data. Under

contamination, all procedures overestimate the scale, but the non-robust estima-

tors TM 1
adj and TMS1

adj perform particularly bad. The difference in bias between

the estimators based on α = 0.25 or 0.5 is small in both settings. Among the

robust estimators, the Q0.5
adj has the smallest MRSE.
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