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Abstract. Multi-objective evolutionary algorithms (MOEAs) have be-
come increasingly popular as multi-objective problem solving techniques.
Most studies of MOEAs are empirical. Only recently, a few theoretical
results have appeared. It is acknowledged that more theoretical research
is needed. An important open problem is to understand the role of popu-
lations in MOEAs. We present a simple bi-objective problem which em-
phasizes when populations are needed. Rigorous runtime analysis point
out an exponential runtime gap between a population-based algorithm
(SEMO) and several single individual-based algorithms on this problem.
This means that among the algorithms considered, only the population-
based MOEA is successful and all other algorithms fail.

1 Introduction

The understanding of the role of populations in single-objective EAs has been
supported by theoretical results [11, 12]. For example, there are problems where
reducing the parent population size by one leads to an exponential increase in
the runtime [10].

In a population of a single-objective EA, all individuals are comparable.
This is typically not the case for MOEAs. Hence, it is not obvious that results
for single-objective problems carry over to MOEAs when applied to a truly
multi-objective problem. The use of populations in multi-objective EAs is often
motivated by the need to find a set of solutions (the Pareto set) rather than
a single optimal solution. However, it is unclear whether one can achieve the
same goal by restarting a single individual algorithm. Laumanns et al. [8] prove
that some simple population based MOEAs can slightly outperform a single
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individual based approach called ε-constrained method. This result alone is not
sufficient to understand the role of populations in MOEAs since the runtime
gap is rather small, and it gives only little insight into why the population
based approach can be superior. In this paper, we present a problem where
many single individual-based algorithms, including the ε-constrained method,
fail dramatically. Furthermore, the presented problem has a structure that can
better explain why the individual based algorithms fail.

This paper is organized as follows. We introduce the MOEAs considered and
the necessary notation in the next section. The objective function will be pre-
sented in Section 3. In Sections 4–6, we show that all considered single individual
algorithms fail on this objective function. Finally, in Section 7, we prove that
SEMO efficiently discovers all Pareto optimal points in the objective space.

2 Preliminaries

2.1 Notation

We assume that the reader is familiar with the concepts of multi-objective opti-
mization (see, e.g., [2]). We consider a maximization problem f : {0, 1}n → Rm.
For clarity, we say that a vector b from the objective space Rm weakly dominates
another vector a, denoted a � b, if ai ≤ bi, for all i. We say b dominates a,
denoted a ≺ b, if a � b and ai < bi for at least one index i. This notation will
also be used for solutions x and y in the search space {0, 1}n. For example, x � y
if and only if f(x) � f(y).

2.2 The Multi-objective EAs

All the single individual multi-objective evolutionary algorithms considered in
this paper are instantiations of the following scheme.

Choose x uniformly from {0, 1}n.
Repeat

Apply mutation to x to obtain x′.
If selection favors x′ over x

then x := x′.

The algorithms differ in the choice of the mutation operator and in the choice
of the selection operator. Two different mutation operators are considered. The
local mutation operator flips a randomly chosen bit of x. The global mutation
operator flips each bit of x independently with probability 1/n. In the single-
objective case, the objective function f establishes a total order in the search
space and selection favors x′ over x if f(x′) ≥ f(x). Then, we obtain randomized
local search (RLS) and the (1+1) EA with the local and global search operator,
respectively.

For multi-objective problems, there are several options when to favor the
offspring x′ over the parent x. In this work, we consider four different selection
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operators. The weakest selection operator favors x′ over x if x′ weakly domi-
nates x, or x′ and x are incomparable. The weak selection operator favors x′

over x if x′ weakly dominates x. The strong selection operator favors x′ over x
if x′ dominates x. Finally, we define the ε-constraint selection operator for two
criteria problems as follows. (See [8] for the general definition with m criteria.) If
f1(x) < ε, then the operator favors x′ over x if f1(x′) ≥ f1(x). If f1(x) ≥ ε, then
the operator favors x′ over x if f1(x′) ≥ ε and f2(x′) ≥ f2(x). Informally, the
idea of the ε-constraint selection is to turn the first objective into a constraint,
such that only solutions x with f1(x) ≥ ε are feasible. So the primary goal is to
minimize the constraint violation and then maximize the function f2.

By the different choices of the mutation and the selection operators, we obtain
eight different single individual MOEAs as summarized in Table 1. To obtain
different Pareto optimal solutions, a single objective algorithm is run repeatedly,
either sequentially (re-starts) or in parallel (multi-starts), and the hope is that
not all runs will end up with the same solution. In case of the ε-constraint
selection operator, it is necessary to vary the parameter ε between runs.

local global

weakest RLSweakest (1+1) EAweakest

weak RLSweak (1+1) EAweak

strong RLSstrong (1+1) EAstrong

ε-constr. RLSε-constr. (1+1) EAε-constr.

Table 1. The single individual algorithms considered according to selection and mu-
tation operator.

We compare the single individual algorithms with the population based al-
gorithm SEMO which was introduced in [8]. The idea of SEMO is to keep a
population of incomparable individuals. In each step, an offspring is produced
and added to the population if it is not dominated by some individual in the
population. Afterwards it may be necessary to remove individuals from the pop-
ulation that are weakly dominated by the new individual.

P := {x}, where x is uniformly chosen from {0, 1}n.
Repeat

Choose x uniformly from P .
Apply mutation to x to obtain x′.
If x′ is not dominated by any individual in P

then add x′ to P , and remove all individuals
weakly dominated by x′ from P .

In this paper, local SEMO refers to SEMO with the local mutation opera-
tor and analogously for global SEMO. The local SEMO and the global SEMO
can be considered as multi-objective counterparts to (single-objective) RLS and
the (1+1) EA, respectively. Both variants of SEMO have been the subject of
theoretical runtime analyses ([5, 8, 9]).
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3 The Objective Function

The idea is to devise an objective function that partitions the search space into
k paths, each leading to some Pareto optimal solution. The search points on
a path form plateaus such that it is difficult to proceed along a path, i. e., to
reach the next plateau dominating the previous plateau. But there is always a
short distance to another path. The idea is that the single-objective algorithms
will spend most of the time jumping between paths, instead of improving on a
single path, or they will spend much time to overcome a plateau. The hope is
that SEMO will quickly produce a population of k individuals, one individual
for each path, and these individuals will advance in parallel to their respective
optima.

Let n = k · m and x a bit string of length n. We say that bit string x is
divided into k blocks, where each block has length m ≥ 2.

Definition 1 (Block Value, Active Block). Given a search point x ∈
{0, 1}k·m and an integer i, 0 ≤ i ≤ k− 1. Then the ith block value of x, denoted
|x|i, is defined as

|x|i :=
m·(i+1)−1∑

j=m·i
xj .

The active block of a search point x is the left-most block with lowest block value.
The number

j := argmin
0≤i≤k−1

{|x|i}

denotes the active block index.3

Table 2 gives examples of block values and active blocks, where k = 4 and
m = 3. The following multi-objective function is essentially OneMax defined on
the active block, weighted differently with respect to each objective as to create
different Pareto optimal solutions.

Definition 2 (Objective Function). For all search points x the objective
function f : {0, 1}n → N× N is defined by

f(x) :=
(
f1(x), f2(x)

)
,

where

f1(x) := 2j·m · (|x|j + 1) and f2(x) := 2(k−j−1)·m · (|x|j + 1)

and j is the active block index of x. The aim is to maximize f .

3 The definition of the active block is equivalent to the following: j is the active block
index of x if and only if |x|j < |x|i for all i, 0 ≤ i < j and |x|j ≤ |x|i for all i,
j < i < k.
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x |x|0 |x|1 |x|2 |x|3 j f(x)

000 000 000 000 0 0 0 0 0 (1, 512)

111 011 010 001 3 2 1 1 2 (128, 16)

010 111 011 001 1 3 2 1 0 (2, 1024)

111 111 111 110 3 3 3 2 3 (1563, 3)

111 110 111 111 3 2 3 3 1 (24, 192)

111 111 111 111 3 3 3 3 0 (4, 2048)

Table 2. Examples of block values, active blocks (underlined), and objective function
values.

The following proposition states that search points with the same active
block index are comparable whereas search points with distinct block indices are
incomparable.

Proposition 1. Let x, y ∈ {0, 1}n be two search points with active block index i
and j, respectively.

1. If and only if i = j, x and y are comparable.
2. Moreover, if i = j, x � y is equivalent to |x|i ≤ |y|j.

Proof. Assume i = j. Then the objective function values of x and y depend
only on |x|i and |y|j , respectively. Since f1 and f2 are strictly increasing func-
tions, x weakly dominates y or vice versa. Moreover, |x|i ≤ |y|j is equivalent to
f1(x) ≤ f1(y) ∧ f2(x) ≤ f2(y) and the latter is equivalent to x � y.

It remains to show that if x and y are comparable then i = j. W. l. o.g. assume
x � y. Then, by f1, the assumption implies 2i·m(|x|i + 1) ≤ 2j·m(|y|j + 1). This
is equivalent to |x|i ≤ 2(j−i)·m(|y|j + 1) − 1. For i > j, the right-hand side of
the last inequality is at most 2−m(m + 1) − 1 < 0 as m ≥ 2. Hence, i > j is
impossible. For i < j, considering f2 leads to the same contradiction. ut

We can now describe the Pareto front and the Pareto set. It follows from
Proposition 2 that the Pareto front has cardinality k.

Proposition 2. Let n = m · k. For all integers i, 1 ≤ i ≤ k − 1, define the sets

X∗
0 := {1n}, and

X∗
i :=

{
x ∈ {0, 1}n

∣∣ |x|i = m− 1,
∀ j, 0 ≤ j < i, |x|j = m, and
∀ j, i < j < k, |x|j ≥ m− 1

}
.

Furthermore, for all integers i, 1 ≤ i ≤ k − 1, define the points

F ∗
0 :=

(
m + 1, 2(k−1)·m · (m + 1)

)
, and

F ∗
i :=

(
2i·m ·m, 2(k−i−1)·m ·m

)
.
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Then the Pareto set X∗ and the Pareto front F ∗ of the bi-objective function
defined in Definition 2 with parameters m and k are given by

X∗ =
k−1⋃
i=0

X∗
i and F ∗ =

k−1⋃
i=0

{F ∗
i }.

Furthermore, f−1(F ∗
i ) = X∗

i .

Proof. We first prove that for all i, 0 ≤ i < k, the set X∗
i contains all Pareto

optimal search points with active block index i. By Proposition 1, two search
points are comparable if and only if they have the same active block index.
Restricted to search points x with a fixed active block index i, functions f1 and
f2 are strictly increasing in the active block value |x|i. Therefore, to prove that
X∗

i contains exactly the Pareto optimal search points with active block index i,
it suffices to prove the claim that X∗

i contains exactly the search points with
maximal active block value and active block index i. The highest active block
value for search points with active block index 0 is m, and this value is only
reached by search point 1n. Hence, the claim holds for set X∗

0 . We now prove
that the claim also holds for all other sets X∗

i , 0 < i < k. The highest active
block value for search points with active block index different from 0 is m − 1.
By definition, set X∗

i contains only search points with active block index i and
active block value m−1. To show that X∗

i contains all such search points, assume
that y is any search point with active block index i and active block value m−1.
It then follows from Definition 1 that |y|i = m − 1, that for all j, 0 ≤ j < i,
|y|j > |y|i = m − 1, and that for all j, i < j < k, |y|j ≥ |y|i = m − 1. Hence,
search point y must belong to set X∗

i . The claim therefore also holds for sets X∗
i ,

0 < i < k.
By the discussion above, and the fact that the active block index is defined

for all search points, all Pareto optimal search points must be member of one of
the sets X∗

i , 0 ≤ i < k. Hence, all Pareto optimal search points are members of
the set X∗.

We now prove that the objective function f maps all elements of X∗ to
a point in F ∗, and that for every point y in F ∗, there exists a search point
x in X∗ such that f(x) = y. The active block value of 1n is m, so f(1n) =
(m + 1, 2(k−1)·m · (m + 1)), and hence the element in X∗

0 is mapped to point F ∗
0 .

For all i, 0 < i < k, all elements x in X∗
i have active block value m − 1, and

therefore f(x) = (2i·m ·m, 2(k−i−1)·m ·m). Hence, for all i, 0 < i < k, all elements
in X∗

i are mapped to point F ∗
i .

We now show that the preimage of F ∗ is contained in X∗. Obviously, the
equality f−1(F ∗

0 ) = X∗
0 holds. Now assume that i ≥ 1 and suppose that x with

active block index j 6= i is contained in the preimage of F ∗
i , i. e., f(x) = F ∗

i .
By considering the first objective, this implies 2j·m(|x|j + 1) = 2i·mm which is
equivalent to |x|j = 2(i−j)mm−1. If i > j the last equality implies |x|j > m and
if i < j it implies |x|j < 0. Both cases are impossible. ut

A popular method to solve a multi-objective problem g = (g1, . . . , gm) is to
solve the single-objective problem g′ :=

∑
i wi · gi instead, where the scalar ob-
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jective function g′ is a weighted sum of the original vector valued function g. The
hope is to find different Pareto optima for different parameter settings wi > 0.
However, it is well-known that such linear aggregation functions fail for the
non-convex parts of the Pareto front of g. Pareto optimal vectors which are not
located on the convex hull of the solutions in the objective space cannot be de-
tected for any setting of the weights. For our bi-objective problem f presented in
Definition 2, maximizing w1f1+w2f2 is equivalent to maximizing wf1+(1−w)f2

where w ∈ [0, 1]. As the entire Pareto front of f is non-convex, any choice of
w allows only to detect the solutions that maximize either f1 or f2. Hence, all
methods that require a convex Pareto front are not applicable to f .

4 Weak And Strong Selection

We show that there is a large fraction of the Pareto front such that, with an
overwhelming probability, the algorithms RLSweak, (1+1) EAweak, RLSstrong,
and (1+1) EAstrong have to be started eΩ(n) times before finding any Pareto
optimal point from this fraction. The next proposition follows directly from
Proposition 1.

Proposition 3. All search points selected by either the weak selection operator,
or the strong selection operator have the same active block index as the initial
search point.

Theorem 1. Let n = m·k, where m is a constant, and A is any of the algorithms
RLSweak, (1+1) EAweak, RLSstrong, and (1+1) EAstrong. Then, for all constants
α, 0 < α < 1, there is a subset F ∗

α of the Pareto front F ∗ with cardinality
|F ∗

α| ≥ α|F ∗| − 1 such that the probability that algorithm A needs less than ec·n

runs to find any Pareto optimal point in F ∗
α is bounded by e−Ω(n), c > 0 a

sufficiently small constant.

Proof. Define F ∗
α := ∪k−1

i≥(1−α)k{F
∗
i }, where F ∗

i is as in Proposition 2. The Pareto
front contains k points, and F ∗

α contains αk elements, so the cardinality of F ∗
α is

greater than α|F ∗|−1. All search points in the pre-image of F ∗
α have active block

indices at least (1− α)k. By Proposition 3, in order to find a search point with
an active block index that high, the initial search point must have active block
index at least (1 − α)k. To get such a high active block index, it is necessary
that all of the first b(1 − α)kc blocks have block value unequal to 0. An upper
bound on the probability that the active block index is higher than (1 − α)k
is therefore (1− (1/2)m)(1−α)·k = e−Ω(n) as m is a constant and, therefore,
k = Θ(n). Furthermore, the probability that the event occurs within ec·n runs is
no more than ec·n · e−Ω(n) = e−Ω(n), for c > 0 a sufficiently small constant. ut

Both weak and strong selection turn out to be inadequate. The active block
index of the initial search point will almost always be low, but these selection
operators do not allow changing the active block index in a run. The weakest
selection operator alleviates this problem by allowing to change the active block
index; however, we show in the next section that this is not sufficient.
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5 Weakest Selection

We prove that RLSweakest and the (1+1) EAweakest need with overwhelming
probability an exponential time to find any Pareto optimal solution. The idea is
the following. All Pareto optimal solutions have at most k 0-bits. We show that
if the number of 0-bits is close to k, it is unlikely to lose another 0-bit in the
next accepted step and it is much more likely to gain new 0-bits. Thus, there is
a strong tendency to increase the number of 0-bits. To show that the probability
of increasing the number 0-bits is high, we first show that there are many 1-bits
that can be turned into zeroes.

Proposition 4. Let x be any search point with ` ≥ m 1-bits. There are ` − m
1-bits in x such that flipping any of these 1-bits produces a search point x′ which
is not dominated by x.

Proof. There are at most m 1-bits in the active block of x. Assume that any
of the remaining ` − m 1-bits flip. If the active block index changes, x and
x′ are incomparable (Proposition 1). Otherwise, the active block value remains
unchanged implying that x′ cannot be dominated by x. ut

5.1 RLS

The analysis of how the number of 0-bits evolves over time will be based on
a simple Markov process also known as the gambler’s ruin problem. A gambler
owns an initial capital of a dollars and plays against an adversary whose initial
capital is b dollars. The gambler wins and loses a round with probability p and
1 − p, respectively. If he loses a round, he pays a dollar to the adversary and
otherwise receives a dollar from the adversary. They continue the game until
one player is ruined and the winner is the player who then owns the combined
capital a + b. For a proof of the next theorem see, e.g., [4] or [1].

Theorem 2. For p 6= 1/2, the probability that the gambler wins is

1− ta

1− ta+b
,

where t := (1−p)/p. Consequently, for p > 1/2, this probability is at least 1− ta.

Theorem 3. For k ≥ 4 and m ≥ 5, the expected time for RLSweakest to find any
Pareto optimal solution is eΩ(n). Moreover, there are positive constants c and c′

such that the probability that RLSweakest finds any Pareto optimal solution in
ec′·n runs, each of ec·n steps, is e−Ω(n).

Proof. By Chernoff bounds, the initial search point has less than n/4 0-bits
with an exponentially small probability of e−Ω(n). We only consider the case
where the first search point has at least n/4 0-bits and wait for the first point
in time where the number of 0-bits is at most n/4. In the following, we consider
only situations with at most n/4 0-bits. Then the number of 1-bits is at least
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3n/4 > m and we can apply Proposition 4. Each mutation step of RLS either
increases or decreases the number of 0-bits by 1, but not all steps are accepted.
The probability that the next step is accepted and the number of 0-bits increases
is at least (3n/4−m)/n = 3/4− 1/k ≥ 2/4. The probability that the next step
is accepted and the number of 0-bits decreases is at most (n/4)/n ≤ 1/4. Hence,
accepted steps increase and decrease the number of 0-bits with a probability of
at least p := 2/3 and at most 1− p = 1/3, respectively. We consider the number
of 0-bits as the capital of the gambler in Theorem 2. Initially, it is bn/4c and
the capital of his opponent is 1. Then the probability that the number of 0-bits
increases to bn/4c + 1 before it decreases to 0 is at least 1 − tbn/4c+1 where
t := 1/2. We are interested in the probability to produce a Pareto optimal point.
A Pareto optimal point has less than k 0-bits. Hence, we consider the gambler
ruined as soon as his capital reaches k dollars. This is equivalent to reducing
his initial capital by k. Since m ≥ 5, we have k ≤ n/5 and obtain an upper
bound of tbn/4c−k+1 = e−Ω(n) for the probability to reach a Pareto optimal point
before a point with at least n/4 0-bits again. Hence, we can apply this argument
repeatedly such that for a sufficiently small constant c, ec·n repetitions of the
game are successful with a probability of only e−Ω(n). Taking into account the
probability that the initial step is not as desired leads to the result that a run of
ec·n steps is successful with a probability of only e−Ω(n) and leads to the claimed
expected runtime.

We now consider independent runs of RLSweakest, i. e., sequential runs (re-
starts) or parallel runs (multi-starts). If each of ec′·n runs includes up to ec·n

steps, the probability that any of these runs is successful is at most ec′·n·e−Ω(n) =
e−Ω(n) if c′ > 0 is sufficiently small. Hence, independent runs of RLSweakest do
not help to increase the success probability substantially. ut

5.2 (1+1) EA

The global mutation operator of the (1+1) EAweakest may flip many bits in one
step and increase or decrease the number of 0-bits by large values. Although the
probability of a large change in a single step is rather low, such a step is not
unlikely to happen in a run including exponentially many steps. Therefore, we
have to take large changes into account. The following drift theorem provides
a general technique for proving exponential lower bounds on the first hitting-
time in Markov processes. It serves as a counterpart to Theorem 2. We apply
a result due to [7] that goes back to [6]. Analyzing the proof in [7], it follows
immediately that it includes a stronger result than stated, namely a result on
the success probability to reach a state with certain properties and not only the
expected waiting time. We state this result in Theorem 4.

Theorem 4 (Drift Theorem). Let X0, X1, X2, . . . be the random variables
describing a Markov process over the state space S and g : S → R+

0 a function
that assigns to each state a non-negative real number. Pick two real numbers
a(n) and b(n) which depend on a parameter n such that 0 ≤ a(n) < b(n) holds.
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Let the random variable T denote the earliest point in time t ≥ 0 that satisfies
g(Xt) ≤ a(n).

If there are constants λ > 0 and D ≥ 1 and a polynomial p(n) > 0 such that
the four conditions

g(X0) ≥ b(n),

b(n)− a(n) = Ω(n),

∀t ≥ 0 : E
(
e−λ(g(Xt+1)−g(Xt))

∣∣ Xt, a(n) < g(Xt) < b(n)
)
≤ 1− 1/p(n)

∀t ≥ 0 : E
(
e−λ(g(Xt+1)−b(n))

∣∣ Xt, b(n) ≤ g(Xt)
)
≤ D

hold then for all time bounds B ≥ 0

Prob(T ≤ B) ≤ eλ(a(n)−b(n)) ·B ·D · p(n).

Since λ(a(n) − b(n)) = −Ω(n) and p(n) is a polynomial, the last bound is
exponentially small for B := ec·n if c > 0 is sufficiently small.

Theorem 5. For 4 ≤ k ≤
(
(1/10) − ε

)
n, ε < 1/10 a positive constant, the

expected time for the (1+1) EAweakest to find any Pareto optimal solution is
eΩ(n). Moreover, there are positive constants c and c′ such that the probability
that the (1+1) EAweakest finds any Pareto optimal solution in ec′·n runs, each
of ec·n steps, is e−Ω(n).

Proof. Let the random variable Xt ∈ {0, 1}n denote the search point of the
(1+1) EAweakest at time t ≥ 0 when applied to f . To apply the above drift
theorem, g(Xt) equals the number of 0-bits of Xt. We choose b(n) := n/10 and
a(n) := k = n/m. By Chernoff bounds, the initial search point X0 has more
than b(n) 0-bits with an overwhelming probability of 1− e−Ω(n). Thus, we only
consider the case where b(n) < g(X0) such that the first condition is satisfied.
As k ≤

(
(1/10)− ε

)
n, also the second condition is met.

To check the third condition we have to bound

E
(
e−λ(g(Xt+1)−g(Xt))

∣∣ Xt, k < g(Xt) < n/10
)

from above. Let pj(Xt) denote the probability that the g-value increases by j in
the next step when the current search point is Xt and k < g(Xt) < n/10. Then
the above expectation is bounded from above by

n−g(Xt)∑
j:=−g(Xt)

e−λ·j · pj(Xt). (∗)

For j > 0, we only increase the value of the sum (∗) if we replace pj(Xt) with
some lower bound pj independent of Xt and increase p0(Xt) by ∆j := pj(Xt)−pj .
For all j ≥ 2, we choose the trivial lower bounds pj := 0. The probability p1(Xt)
is lower bounded by the probability of the event that exactly one 1-bit of at least
n− b(n)−m ≥ 9n/10−m 1-bits flip (Proposition 4). Hence, for k ≥ 4,

9n/10−m

n

(
1− 1/n

)n−1 ≥ 9
10e

− 1
ke

≥ 2
10
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and we can choose p1 := 2/10.
For j < 0, the value of the sum (∗) only increases if we replace pj(Xt) by some

upper bound pj and decrease p0(Xt) by ∆j := pj − pj(Xt). The probability of
decreasing the g-value by j in the next step is upper bounded by the probability
of the event that at least j 0-bits are turned into 1-bits. Hence,(

g(Xt)
j

)
· 1
nj

≤ (n/10)j

j!
· 1
nj

=
1

10jj!

and pj := 1/(10jj!) is a correct upper bound. We now consider the Markov pro-
cess where all probabilities pj(Xt) are replaced with our corresponding bounds.
If we pessimistically assume that the g-value, the number of 0-bits can decrease
by any j > 0 (i. e., also for j > g(Xt)) we only overestimate the probability to
decrease the g-value. We obtain a process where the transition probabilities are
independent of the g(X)-value. The new process with

pj := 0, for all j ≥ 2,

p1 :=
2
10

,

p0 := 1−
∑
j 6=0

pj ,

p−1 :=
1
10

,

p−j :=
1

10jj!
, for all j ≥ 2,

reaches a g-value of at most a(n) only “faster” than the original process describ-
ing the (1+1) EAweakest applied to f .

It now suffices to bound the sum

e−1·λp1 + e−0·λp0 + e1·λp−1 +
∑
j≥2

ej·λp−j

=
(
1− p1 − p−1 −

∑
j≥2

p−j

)
+ e−λp1 + eλp−1 +

∑
j≥2

ej·λp−j

= 1−
(
(1− e−λ)p1 + (1− eλ)p−1

)
+

∑
j≥2

(
ej·λ − 1

)
p−j (∗∗)

for an appropriate choice of λ > 0. We choose λ := (1/2) ln 2 and show that the
sum (∗∗) is at most 1− α + β for positive constants α and β, where α > β. For
our choice of λ, we obtain

(1− e−λ)p1 + (1− eλ)p−1 =: α >
17

1000
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and

∑
j≥2

(
ej·λ − 1

)
p−j ≤

∑
j≥2

2j/2

10jj!
=

∑
j≥2

(
√

2/10)j

j!

= exp(
√

2/10)− 1−
√

2/10 =: β <
11

1000
.

Hence, the sum (∗∗) is at most 1− δ for a positive constant δ and we can choose
a constant polynomial p(n) := 1/δ.

It remains to check the last condition of Theorem 4. We bound

E
(
e−λ(g(Xt+1)−n/10))

∣∣ Xt, n/10 ≤ g(Xt)
)

≤ E
(
e−λ(g(Xt+1)−g(Xt))

∣∣ Xt, n/10 ≤ g(Xt)
)

from above and proceed analogously to the case of the third condition. We bound
pj(Xt) by the trivial lower bound pj := 0, for all positive j. For j negative, the
probability pj(Xt) is upper bounded by the probability of the event that at least
j 1-bits flip. The corresponding probability is at most(

n

j

)
· 1
nj

≤ 1
j!

≤
(e

j

)j

.

We consider the process where

pj := 0, for all j ≥ 1,

p0 := 1−
∑
j≥1

pj ,

p−j :=
(e

j

)j

, for all j ≥ 1.

Now it suffices to estimate the sum

e−0·λp0 +
∑
j≥1

ej·λp−j ≤ 1 +
∑
j≥1

2j/2
(e

j

)j

≤ 1 +
∑
j≥1

(√2e
j

)j

= O(1) +
∑
j≥12

(1
2

)j

= O(1).

Hence the last sum is bounded by some positive constant D.
By Theorem 4, the probability that a state with less than k 0-bits is reached

in B := ec·n steps is e−Ω(n) if c is sufficiently small. Taking into account the
probability that the initial search point has at least n/10 0-bits leads to the
success probability of e−Ω(n) in a run of up to ec·n steps. This result implies the
claimed expected runtime and, by the same arguments as presented at the end
of the proof of Theorem 3, a success probability of e−Ω(n) for ec′·n independent
runs. ut
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6 ε-constraint Selection

Proposition 5. Let n = m · k and let A be any of the algorithms RLSε-constr.

and (1+1) EAε-constr.. For a constant β, 0 < β < 1, define the stochastic process
X1, . . . , Xs, where Xi ∈ {0, 1}(1−β)mk is the (1 − β)mk-bit long suffix of the
search point in step i of algorithm A working on the objective function defined
in Definition 2. Then, given that the search points in the first s steps of A have
active block indices less than βk and active block values 0, each of the vectors Xi

is uniformly distributed over {0, 1}(1−β)mk.

Proof. The proof is by induction over the number of iterations i. The initial
search point is sampled uniformly at random, so the statement trivially holds for
the base case i = 1. Assume that the vectors X1, . . . , Xi are uniformly distributed
over {0, 1}(1−β)mk. Because the active block index of Xi is less than βk and
the active block value is 0, acceptance of a new search point does not depend
on the (1 − β)mk-bit long suffix of the search point. The global and the local
mutation operator applied to a uniformly distributed suffix, produces a uniformly
distributed suffix. (See e.g., [3]). ut
Theorem 6. Let n = m · k, where m ≥ 2 is a constant and α, 0 < α < 1,
is an arbitrary constant. Then there exists constants c, c′ > 0, and a subset F ∗

α

of the Pareto front F ∗ with cardinality |F ∗
α| ≥ α · |F ∗| such that the probability

that ec′·n runs, each of ec·n steps, of RLSε-constr. or (1+1) EAε-constr. find any
Pareto optimal point of F ∗

α is e−Ω(n). The parameter setting ε is allowed to
change between runs.

Proof. Define F ∗
α := ∪α·k−1

i=0 {F ∗
i }, where F ∗

i is as in Proposition 2. We call a
run bad when the initial search point has active block index higher than αk, or
has active block value higher than 0. The probability of the first case is upper
bounded by the probability of the event that all the first αk blocks have block
values different from 0, and the second case is upper bounded by the probability
of the event that all blocks have block values different from 0. Because the
second event implies the first event, the probability of a bad run is no more than
(1− (1/2)m)αk = e−Ω(n).

Assume now that the initial search point has active block index less than αk
and active block value 0. No Pareto optimal search point has active block value
0 when m ≥ 2. We lower bound the optimization time by analyzing the time
until the search point for the first time has active block value at least 1. We
say that the algorithm is in the constraint-minimization state when the search
point x has function value f1(x) < ε, and in the maximization state when the
search point x has function value f1(x) ≥ ε. In the maximization state, a search
point x will be replaced by a search point x′ if and only if f2(x′) ≥ f2(x) and
f1(x′) ≥ ε. Consequently, the algorithm will never leave the maximization state
once entered, and the active block index can only decrease in this state. (See
Definition 2.) The maximal active block index during a run will, therefore, never
be higher than the active block index in the first step after the algorithm has en-
tered the maximization state. We will show that with overwhelming probability,
the highest active block index will never be higher than (k/2)(1 + α).
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We divide the search point into three parts as shown in Figure 1. We first
divide the string into an αk blocks long prefix and a (1 − α)k blocks long suf-
fix. Then, we divide the suffix into two almost equally long parts, each ap-
proximately (k/2)(1 − α) blocks long. The last part now begins at block index
αk + (k − αk)/2 = (k/2)(1 + α).

Assume first that ε < 2αmk. As long as the algorithm is in the constraint
minimization state, the active block index is less than αk. (See Definition 2.)
Therefore, by Proposition 5, the (1 − α)k blocks long suffix will be uniformly
distributed. Furthermore, in the step when the algorithm enters the maximiza-
tion state, the blocks in the interval from αk to (k/2)(1+α) will also be uniformly
distributed. Hence, the probability that the first search point in the maximiza-
tion state has active block index higher than (k/2)(1 + α) is upper bounded
by the probability that all the blocks in the interval from αk to (k/2)(1 + α)
have block values different from 0. By the uniform distribution, the probability
of this event is no more than (1 − (1/2)m)(k/2)(1−α) = e−Ω(n). Therefore, with
overwhelming probability, the active block index during the entire run will be
no more than (k/2)(1 + α).

We now consider the second case where ε ≥ 2αkm. In this case, all elements
in F ∗

α violate the ε-constraint. If the active block index becomes higher than αk,
none of the search points in F ∗

α can be found. We optimistically assume that
the active block index during the entire run will never be higher than αk when
ε ≥ 2αkm.

Hence, for both cases, we can now assume that the active block index is less
than (k/2)(1+α) during the entire run. So by Proposition 5, the suffix Xi corre-
sponding to the last (k/2)(1−α)−1 blocks of the search point will be uniformly
distributed over the set {0, 1}m((k/2)(1−α)−1). We say that the vector Xi is good
if all blocks in Xi have block values different from 0. Because Xi is uniformly
distributed, Prob(“Xi is good”) = (1 − (1/2)m)(k/2)(1−α)−1 = e−Ω(n). To reach
active block value 1 within s steps, at least one of the variables X1, . . . , Xs must
be good. By union bound, the probability of at least one good variable Xi during
a run of length s := ecn is no more than Prob(∪ecn

i=1“Xi is good”) ≤ ecn ·e−Ω(n) =
e−Ω(n) for a sufficiently small constant c.

Furthermore, ec′·n runs, each of length ec·n, will be successful with probability
e−Ω(n) for a sufficiently small constant c′ > 0. ut

0 αk (k/2)(1 + α) k − 1

| {z }
(k/2)(1−α)

| {z }
(k/2)(1−α)−1

Figure 1. Active block index.

7 SEMO

We prove that within polynomial time, the SEMO population covers the entire
Pareto front on the problem defined in Definition 2. The idea is the following. The
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problem consists of k independent paths, one path for each block, with Pareto
optimal solutions at the end of each path. However, to progress to a higher level
on a path, a large plateau must be overcome. We show that the individuals in
the SEMO population will be distributed over these paths, with at most one
individual per path. SEMO will, thereby, optimize the paths in parallel, such
that no gain along any path is lost. The individuals in the population of SEMO
are pairwise incomparable. Hence, the following proposition is a consequence of
Proposition 1.

Proposition 6. For each block index j, 0 ≤ j ≤ k − 1, a population in SEMO
has at most one element with active block index j.

We introduce a concept called the active path of the population to analyze
the parallel improvements along each path. Informally, the active path number
corresponds to the active block index on which SEMO has advanced the most,
and the active path value designates how far on this path SEMO has advanced.

Definition 3 (Active Path). Let x1, x2, . . . , xr be the individuals in a SEMO
population, and j1, j2, . . . , jr their respective active block indices. Then the active
path value v of a population is the maximal active block value in the population,
i. e.,

v := max
1≤i≤r

{|xi|ji
},

and the active path number t of the population is the highest active block index
among the individuals having active block value v, i. e.,

t := max
1≤i≤r

{ji | |xi|ji = v}.

(Note that, by Proposition 6, there is only one individual in the population with
active block index t.)

Table 3 gives five examples of active path number and active path value of
a population. Each row describes a population, and each population has three
individuals. The last two columns in the table give the active path number t and
the active path value v of the corresponding population. Additionally, the active
path representative in each population is framed.

When the active path value of a population is m, the population must contain
the Pareto optimal solution 1n. After the Pareto optimal solution 1n has been
found, SEMO will quickly discover the rest of the Pareto front. Our approach
to analyze SEMO, therefore, focuses on the time it takes to increase the active
path value to m.

Proposition 7. The active path value never decreases. If the active path number
decreases then the active path value increases.

Proof. Suppose that the active path value decreases, and the old active path was
represented by individual x. Then individual x cannot be member of the new
population. Hence, the new population must contain a new element x′ such that
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P Individual 0 Individual 1 Individual 2 t v

1 00 00 00 01 00 00 01 01 00 2 0

2 01 01 01 01 00 00 01 01 00 0 1

3 01 01 01 11 01 01 01 01 00 1 1

4 01 01 01 11 01 01 11 11 01 2 1

5 11 11 11 11 01 01 11 11 01 0 2

Table 3. Examples of the active path concept.

x � x′. Proposition 1 implies that |x|j ≤ |x′|j , which contradicts that the active
path value decreases.

For the second claim, let the old active path number i be represented by the
search point x. If the active path number decreases then the new active path must
be represented by the search point x′, having active block index j, 0 ≤ j < i. By
Proposition 1, the search point x will remain in the new population. The only
way the new search point x′ can be the new active path representative is when
x′ has higher active block value than x. This means that the active path value
must increase. ut
Proposition 8. The expected time to increase the active path value is bounded
above by the expected time to change the active path number k times.

Proof. Since there are k different blocks, the maximal number of times the active
path number can increase without being decreased is k − 1. Hence, by Propo-
sition 7, after k active path number changes, the active path value must have
increased at least once. ut
Theorem 7. The expected time until the SEMO population covers the Pareto
front is O(nk2 log m).

Proof. Our analysis will be based on 1-bit-mutations only. Since the probability
that a specified bit flips is at least 1/n and 1/(en) for the local and the global
mutation operator, respectively, the waiting time for a specific 1-bit-mutation
is only larger for the global SEMO. Consequently, it suffices to derive upper
bounds on the runtime of the global SEMO.

We divide the optimization process into two consecutive phases. The first
phase begins when the algorithm starts and ends when the population for the
first time contains the Pareto optimal solution 1n. Thereafter, the second phase
starts and it lasts until the entire Pareto front is covered.

In the first phase, the active path value must be increased at most m times
because an active path value of m implies that the population includes the
individual 1n. By Proposition 8, at most k active path number changes suffice
to increase the active path value once. We call a step successful if

1. the active path number increases, or
2. the active path value increases.
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We claim that a step is successful if it first chooses the individual x represent-
ing the active path (i. e., its active block index equals the active path number)
and then flips one or more of the 0-bits in the active block to obtain x′. Two
cases must be considered, either x and x′ have the same active block index, or
they do not.

In the case that x and x′ have the same active block index, then x′ clearly
dominates x because x′ has more 1-bits in its active block. Hence, x′ replaces x
in the new population and the active path value increases.

Now, assume that x and x′ have different active block indices i and j, re-
spectively. We first show that x′ will be accepted. If the new search point x′ is
not accepted, then there must exist a search point y in the population which
strictly dominates x′. Proposition 1 implies that y has active block index j, and
that |x′|j < |y|j . Furthermore, because i is the active block index in x, and x′

by assumption differs from x in block i only, we have |x|i ≤ |x|j = |x′|j . How-
ever, the last inequality implies that |x|i < |y|j , which contradicts that x was
the active path representative in the old population. The search point x′ will,
therefore, be accepted.

If i > j then |x|i < |x|j = |x′|j because i is the active block index of x, and x
and x′ do not differ in block j. The search point x′ will be the new active path
representative and the active path value increases. Analogously, i < j implies
|x|i ≤ |x|j = |x′|j . Hence, x′ has at least as high active block value as x, and x′

has higher active block index than x. The search point x′ will be the new active
path representative and the active path number will increase.

Now we estimate the probability of a successful step. By Proposition 6, the
probability of choosing the individual representing the active path is at least 1/k.
Given that the active block value is v, the probability of flipping at least one of
the m− v 0-bits in the active block of x (and no other bits) is at least

m− v

n

(
1− 1

n

)n−(m−v)

≥ m− v

n

(
1− 1

n

)n−1

≥ (m− v)
en

.

The probability of a successful step, therefore, is at least (m− v)/(ekn). Using
Proposition 8, the expected duration of the first phase is bounded from above
by

m−1∑
v=0

k · ekn

(m− v)
= ek2n

m∑
v=1

1
v

= O
(
k2n log m

)
.

In the second phase, the population contains the Pareto optimal solution 1n,
and it will never be removed from the population. Given that there are i re-
maining points in the Pareto front to be discovered, the probability of selecting
x = 1n and mutating solely one 1-bit in one of the corresponding i blocks is at
least

1
k
· im

n
·
(

1− 1
n

)n−1

≥ im

ekn
=

i

ek2
.
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The expected time to find the at most k − 1 remaining points in the Pareto
front is, therefore, no more than

k−1∑
i=1

ek2

i
≤ ek2

k∑
i=1

1
i

= O(k2 log k).

Hence, the expected time until SEMO covers the entire Pareto front is bounded
by O(k2n log m). ut

8 Conclusion

This paper introduces a simple bi-objective function to contrast two types of
multi-objective EAs: population-based and single individual-based algorithms.
The problem features a large number of incomparable search points and large
plateaus. The runtime of the population-based algorithm SEMO is compared
with the runtime of nine single individual-based approaches (eight variants from
Table 1 plus the linear aggregation approach in Section 3). Table 4 summarizes
the results. Among the algorithms studied, only SEMO finds the Pareto front in
expected polynomial time. All single individual algorithms fail on this problem
because they either too easily accept incomparable search points, or because
they cannot overcome the large plateaus in the search space. SEMO is efficient
on the problem because the individuals in the population collectively lead to
better solutions, i. e., each individual follows a path leading to one Pareto optimal
solution. The result demonstrates the importance of populations for certain types
of multi-objective problems.

Our result improves an earlier result in [8] where it is shown that some simple
population-based MOEAs slightly outperform the ε-constrained method. How-
ever, the result yields only a small polynomial runtime gap. Here, we provide
an exponential gap, proving that even multi-start variants of a number of sin-
gle individual-based approaches fail with overwhelming probability. In contrast,
SEMO discovers all Pareto optimal solutions efficiently.
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