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Abstract

This thesis addresses the topic of quantum backreaction in false vacuum decay, i.e.,
the transition from a local minimum to the global minimum of the potential. Two
possible mechanisms of false vacuum decay will be discussed: the local tunneling
via bounce solution and the global tunneling on compact spaces.

We compute the bounce solution in a Φ4 model with an asymmetric double-
well potential in 4 and 2 dimensions. The quantum backreaction of fluctuations is
computed in two approximations: the one-loop approximation and Hartree approx-
imation. The results of numerical simulations are compared with the semiclassical
approach. The deviations are found to be sizeable.

The question of global tunneling is addressed within a simple 1 + 1 dimensional
model with the asymmetric double-well potential in compact space (S1). The process
is studied by real-time simulations. The wave function of the system is factorized
into various modes. The zero mode which tunnels between two wells is treated
exactly, while the nonhomogeneous modes are considered to be Gaussian. The
simulations show a variety of tunneling phenomena depending on the parameters:
there is resonant tunneling, we observe a sliding of the wave function if the potential
is strongly modified the quantum fluctuations, and of course we find suppression if
the size of the space becomes large.





Zusammenfassung

Diese Arbeit beschäftigt sich mit der Quantenrückwirkung beim Zerfall eines “fal-
schen Vakuums”, d.h., mit den Übergang von einem lokalen Minimums in das globale
Minimum des Potentials. Zwei mögliche Mechanismen für diesen Zerfall werden
diskutiert: das lokale Tunneln durch die sogenannte “Bounce-Konfiguration” und
das globale Tunneln in kompakten Räumen.

Wir berechnen die Bounce-Lösung in einem Φ4 Modell mit einem Doppelmulden-
potential in 4 und 2 Dimensionen. Die Quanten rückwirkung der Fluktuationen
wird in zwei Näherungen berechnet: in der Ein-Schleifen-Näherung und dre Hartree-
Näherung. Die Resultate der numerischen Simulationen werden mit der semiklas-
sischen Näherung verglichen. Die Abweichungen sind beträchtlich.

Mit der Frage des globalen Tunnelns beschäftigen wir uns im Rahmen eines ein-
fachen 1 + 1-dimensionalen Modells mit asymmetrischem Doppelmuldenpotential
in einem kompakten Raumes. Der Prozess wird in Realzeit-Simulationen unter-
sucht. Die Wellenfunktion des Systems wird in verschiedene Moden faktorisiert. Der
Nullmod, der zwischen den beiden Mulden tunnelt wird exakt behandelt, während
für die inhomogenen Moden eine Gauß’sche Wellenfunktion angenommen wird. Die
Simulationen zeigen in Abhängigkeit von den Parametern eine Reihe verschiedener
Tunnelphänomene: es tritt resonantes Tunneln auf, wir beobachten ein Gleiten der
Wellenfunktion, wenn das Potential durch die Quantenfluktuationen stark modi-
fiziert wird, und wir finden wie erwartet, dass das Tunneln unterdrückt wird, wenn
die Ausdehnung des Raumes groß wird.





Contents

Introduction 1

1. False vacuum decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. Plan of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Part I. 6

1. Bounce in 3+1 dimensions 7

1.1 The model and basic relations . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Non-perturbative approximations . . . . . . . . . . . . . . . . . . . . 9
1.3 The bounce in one-loop approximation . . . . . . . . . . . . . . . . . 11
1.4 The bounce in Hartree approximation . . . . . . . . . . . . . . . . . . 13
1.5 The Green’s Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5.1 The formal discussion of Green’s function . . . . . . . . . . . . 15
1.5.2 Computation of the Green’s function . . . . . . . . . . . . . . 17
1.5.3 Numerical procedure to compute Green’s function . . . . . . . 20

1.6 Computation of the Fluctuation Determinant . . . . . . . . . . . . . 22
1.6.1 Application of the determinant theorem . . . . . . . . . . . . 22
1.6.2 Expansion in terms of Feynman graphs and calculation of fi-

nite part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.7 Unstable and Translation Modes . . . . . . . . . . . . . . . . . . . . . 25

2. Renormalization 29

2.1 Divergences of the Green’s function and their regularization . . . . . 30
2.2 Divergences of the fluctuation determinant and their regularization . 31
2.3 Renormalization conditions . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Renormalization in the one-loop approximation . . . . . . . . . . . . 34

i



2.5 Renormalization in the Hartree approximation . . . . . . . . . . . . . 37

3. Self-consistent bounce in 1+1 dimensions 39

3.1 Changes in Basic Relations . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.2 The one-loop and Hartree approximations for the 2D bounce . 40
3.1.3 Green’s function . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.4 Fluctuation determinant . . . . . . . . . . . . . . . . . . . . . 43

3.2 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.1 Divergences and the renormalization of the non-perturbative

part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.2 Counterterms for the 1-loop approximation . . . . . . . . . . . 45
3.2.3 Counterterms for the Hartree approximation . . . . . . . . . . 46

4. Numerical Results 48

4.1 General remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.1 α− β parameterization . . . . . . . . . . . . . . . . . . . . . . 48
4.1.2 The bounce profile . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.3 The mode functions . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.4 Some notations . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.5 The effective potential . . . . . . . . . . . . . . . . . . . . . . 54
4.1.6 Dependence on the renormalization scale . . . . . . . . . . . . 55

4.2 Results of 3+1 Dimensional Model . . . . . . . . . . . . . . . . . . . 55
4.2.1 The translation mode . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Effective actions . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.3 Transition rates . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Results of 1+1 Dimensional Model . . . . . . . . . . . . . . . . . . . 60
4.3.1 Convergence of iteration procedure and some remarks . . . . . 60
4.3.2 The effective actions and transition rates . . . . . . . . . . . . 64

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Part II. 68

5. The 1+1 dimensional model of global tunneling 69

5.1 The model and basic relations . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Time-dependent Hartree-Fock approximation . . . . . . . . . . . . . . 72

5.2.1 Time-dependent variational principle . . . . . . . . . . . . . . 72

ii



Contents

5.2.2 Variational and Gaussian ansatzes . . . . . . . . . . . . . . . . 73
5.2.3 Separation of Hamiltonian and the Schrödinger equations . . . 73
5.2.4 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.5 The energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.6 Particle number . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.1 Divergent and finite parts of fluctuation integral . . . . . . . . 79
5.3.2 Renormalization of the energy density . . . . . . . . . . . . . 81

6. The numerical results 83

6.1 General remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.1.1 Details of implementation in numerical code . . . . . . . . . . 83
6.1.2 α− β parameterization . . . . . . . . . . . . . . . . . . . . . . 85
6.1.3 The condition for the resonances in the approximate spectra . 85

6.2 Results of the numerical simulations . . . . . . . . . . . . . . . . . . . 87
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Conclusions 98

Appendix 101

Appendix A. Some definitions and technical tools . . . . . . . . . . . . . . 101
Appendix B. The One-loop Effective Potential . . . . . . . . . . . . . . . . 105

The one-loop effective potential with renormalization conditions . . . 105
The one-loop effective potential in MS renormalization scheme . . . . 108

Appendix C. The Hartree Effective Potential . . . . . . . . . . . . . . . . . 110
The hartree potential with renormalization conditions . . . . . . . . . 110
The hartree effective potential in MS renormalization scheme . . . . 113

Appendix D. Some details of the renormalization for global tunneling . . . 114

Bibliography 120

iii





”I don’t know what I seem to the world,

but as to myself, I seem to have been only
like a boy playing on the sea-shore and
diverting myself in now and then finding

a smoother pebble or a prettier shell than
ordinary, whilst the great ocean of truth

lay all undiscovered before me.”
Sir Isaac Newton





Introduction

1. False Vacuum Decay

False vacuum decay is an old problem which can be addressed in the context of
quantum mechanics, or quantum field theory. The decay process is described by a
potential which displays a local minimum, separated from the absolute minimum
by a potential barrier, i.e. one considers an asymmetric double-well potential. A
system prepared in the local minimum, the metastable phase, may decay and find
itself on the other side of barrier. Theoretically the decay process may happen
locally in some part of space, via bounce or bubble solution, or globally, where the
mean field tunnels through the barrier. The latter type of transition is impossible
in an infinite space, as the process will have an infinite action. Therefore it can be
considered only in compact spaces.

False vacuum decay finds its most important application in cosmological models.
It may initiate inflation, or happen after inflation, if the universe gets trapped in
one of the local minima of the Higgs potential in Grand Unified Theories. The
false vacuum may decay by spinodal decomposition [1, 2, 3, 4], if for example,
by decreasing of temperature or by cosmological expansion the minimum of the
potential becomes a maximum. Other decay mechanisms are a thermal over-the-
barrier transition, bubble nucleation, or the tunneling to the true vacuum. All
these processes occur by spontaneous formation of regions of true vacuum inside the
metastable state. If the transition occurs by tunneling in a space of infinite spatial
extension, the classical solution which describes the local tunneling is called ”the
bounce” [5, 6, 7, 8]. For a N -dimensional space-time this is a SO(N) symmetric
solution in N -dimensional Euclidean space.

In realistic cosmological models one needs to include gravity. The tunneling may
proceed in de Sitter space-time. Such a solution has first been considered by Coleman
and De Luccia [9]. The renewed interest to the subject has been recently sparked by
developments in string theory, the cosmic “landscapes” (see for example [10, 11]).
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Introduction

The most common approach to compute the transition rate (the decay probability
per unit time per unit volume) is the semiclassical one, which was used by several
groups for various models [12, 13, 14, 15, 16, 17]. A computation for bounces in 4
dimensions to one-loop accuracy has been presented in Ref.[18]. A similar compu-
tation recently was performed using ζ function regularization [19].

One may ask whether the transition rate computed by the semiclassical approx-
imation receives strong corrections when the quantum back-reaction of the fluctu-
ations is taken into account. Two ways of including the quantum back-reaction
have been proposed in the literature: the one-loop backreaction, where the classical
field is determined to be an extremum of the effective action [20] and the Hartree
backreaction based on the 2PPI formalism [21, 22, 23].

Everything said above applies of infinite space, as one is used to in cosmology.
However, the tunneling with compact spaces can be of interest in cosmology as well.
Such transitions in some different context were used to describe the quantum cre-
ation of a universe [24, 25, 26, 27], or one can imagine the transition in a finite
volume of the universe [28]. The question of quantum creation of universe is widely
discussed using the WKB approximation [29, 30, 31, 32, 33, 34]. However, it may
not be appropriate to use a continuation to the imaginary time, as one does in the
WKB approximation, as the tunneling proceeds in real time. On another side the
application of the WKB technique in the quantum field theory becomes very com-
plicated. As to describe the evolution of the system during and after the tunneling
requires matching of an infinite number of modes. A solution to the problem is
to consider the system in the real time. Such approach was considered in case of
quantum mechanics [35]. For the quantum field theory the tunneling process was
discussed in Ref. [28], where the time-dependent Hartree-Fock approximation was
applied.

In this thesis we will consider the both possibilities of false vacuum decay: the
local tunneling via bounce and the global tunneling on a compact space. We restrict
ourselves to models without gravity. For local tunneling we discuss false vacuum
decay in 3+1 and 1+1 dimensional space-times and consider both the one-loop
and Hartree approximations in order to include the quantum backreaction into the
computation of transition rate. For the case of global tunneling we consider only
1 + 1 dimensional space-time.
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2. Publications

The most part of this thesis on local tunneling(bounce solution) have already been
published and presented at conferences:

1. J. Baacke, N. Kevlishvili, ’False vacuum decay by self-consistent bounces in
four dimensions’, Phys. Rev. D75: 045001, hep-th/0611004

2. J. Baacke, N. Kevlishvili, ’Self-consistent bounces in two dimensions’, Phys.Rev.
D71:025008, 2005, hep-th/0411162

3. J. Baacke, N. Kevlishvili, ’False vacuum decay: the role of quantum backre-
action’, DPG conference, Heidelberg, March 05-09, 2007 (talk is unpublished)

Some aspects on global tunneling have been published and presented at conferences:

1. J. Baacke, N. Kevlishvili, ’Tunneling in quantum field theory on a compact
one-dimesional space’, Nucl.Phys. B 745:142-164, 2006, hep-th/0505118

2. J. Baacke, N. Kevlishvili, ’Quantum tunneling on a compact space and decay
of the false vacuum’, Kosmologie Tag, Bielefeld, May 11-12, 2006 (talk is
unpublished)

3. Plan of this Thesis

The plan of this thesis is as follows. Part I covers the subject of local tunneling. In
the first chapter of this part we give an overview on the theory of bounce solutions
and present the basic relations of model and for the main quantity of interest, the
tunneling rate. Then we introduce the formalisms used to include the quantum
backreaction in different approximations, in the Hartree approximation, using the
2PPI expansion of effective action and in the one-loop approximation, as the lowest
order of the 1PI formalism. In the next two sections (Sec. 1.5,1.6) we give detailed
discussions of the mathematical formalism for the numerical computation of the
Green’s function and of the fluctuation determinant. In the last section 1.7 of this
chapter we discuss some peculiarities of the unstable and translation modes. Chapter
2 contains the renormalization in great detail. In Chap. 3 we apply the methods
discussed for 3+1 dimensions to the 1+1 dimensional model. The numerical results
for the 3+1 and 1+1 dimensions, and their comparison are extensively worked out
in chapter 4. Part I is finalized by a summary of the main results.
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Part II of this thesis is given up to the subject of global tunneling in compact
spaces. The first chapter of this part, chapter 5, contains the discussion of the model
(Sec.5.1), the approximations we are working with, and their application to our
model (Sec.5.2). In the last section 5.3 we consider the divergences in the fluctuation
integral and in the energy, and renormalize our model. The corresponding numerical
results are presented in chapter 6.

The thesis is completed by several appendices containing some definitions, some
detailed calculations of technical points and some other additional aspects.

4



Part 1.

The Bounce
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”Innocent light-minded men, who think that
astronomy can be learnt by looking at the
stars without knowledge of mathematics will,
in the next life, be birds.”

Plato, Timaeos



Chapter 1

The Bounce in 3+1 Dimensions

In this chapter we present the model and the main relations necessary for our compu-
tations. We start with the basic relations of the classical bounce solution and recall
the formula for computing the transition rate in the semiclassical approximation.
Then we discuss two different approaches of including the quantum backreaction,
giving some details of 2PPI and 1PI formalisms. In the next two sections we
present the general discussion as well as the technical tools used for the numerical
computation of the Green’s function and the fluctuation determinant. At the end
of this chapter we discuss some special aspects concerning the the unstable and
translation modes.

1.1 The model and basic relations

We will consider a scalar field theory in 3+1 dimensions, which is given by La-
grangian density

L =
1

2
∂µΦ∂µΦ − U(Φ) . (1.1)

As it was already mentioned in the introduction we consider the asymmetric double-
well potential with the following parameterization

U(Φ) =
1

2
m2Φ2 − ηΦ3 +

1

8
λΦ4 , (1.2)

shown in Fig.1.1. It has two minima, one at Φ = 0 corresponding to the unstable
(false) vacuum, and the second one at some positive value of field Φ = Φtv > 0 the
stable vacuum called presenting true vacuum.

The bounce is an O(4) symmetric nontrivial classical solution of the Euclidean
field equations (t → −iτ). If we denote the classical field as φ, then the classical

7
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Figure 1.1: The tree level potential

Euclidean action is given by

Scl[φ] =

∫

d4x

[

1

2
(∇φ)2 + U(φ)

]

, (1.3)

and the bounce which minimizes this action satisfies
[

−
(

∂

∂t

)2

− ∆

]

φ+ U ′(φ) = 0 , (1.4)

the Euler-Lagrange equation (Here we have denoted the Euclidean variables by
xi = (x1, x2, x3) and x0 = τ . The radius is r = (x2

0 + x2
i )

1/2). Using the spherical
symmetry of this solution one can write the equation of motion as

−d
2φ

dr2
− 3

r

dφ

dr
+ U ′(φ) = 0 , (1.5)

with the boundary conditions

dφ

dr
|r=0 = 0, φr→∞ = φfv . (1.6)

They correspond to the end and the beginning of the tunneling, respectively.

8



Chapter 1. Bounce in 3+1 dimensions

As it was already mentioned in the Introduction the main quantity relevant for
description of tunneling processes is the transition rate, the decay probability per
unit time per unit volume γ [6]. The most common approach to compute the
tunneling rate is the semiclassical one, where one starts with the tree level tunneling
rate and then includes corrections of first order in ~. In this order, as discussed,
e.g., in the work of C.G. Callan and S.R. Coleman [7], the fluctuations around the
bounce profile contribute a pre-exponential factor to the decay rate. Then that the
transition rate per unit volume and time takes the form

Γ1−loop =

(

Scl

2π

)2

D−1/2 exp(−Scl) , (1.7)

where

D[φ] = det′
−∆4 + M2

−∆4 +m2
(1.8)

determines the one-loop correction to the classical action

S1−loop =
1

2
ln det′

−∆4 + U ′′(φ(x))

−∆4 +m2
=

1

2
lnD[φ] . (1.9)

The detailed consideration and computation of the fluctuation determinant will be
presented in Sec.1.6. Here ∆4 is the Laplace operator in four dimensions. m is the
mass in the false vacuum

m2 = U ′′(0) . (1.10)

The prime in the determinant implies that the translation zero mode is removed and
that one replaces the imaginary frequency of the unstable mode by its absolute value.
The prefactor in Eq.(1.7) arises from the quantization of the collective coordinate
associated with translation mode. This subject will be discussed in more detail in
Sec.1.7.

Once the quantum corrections become important one can ask whether these quan-
tum fluctuations react back on the bounce profile and how significant is this influ-
ence. Two ways of including the quantum backreaction have been discussed in the
literature: the one-loop backreaction and the Hartree backreaction. In next two
sections we discuss these two approximations in general and in particular, for our
model.

1.2 Non-perturbative approximations

There are phenomena in quantum field theory for which perturbation theory is
inadequate. One of them is the process we are considering. For our computations

9



1.2. Non-perturbative approximation

we will use approximations which are based on a non-perturbative resummation of
Feynman diagrams involving one or more loops, i.e. containing arbitrary high orders
of the coupling constants and propagators.

The first approximation which we present here is the simplest one, the one-loop
approximation of the 1PI resummation scheme, summing all connected one-particle-

irreducible graphs. The definitions of reducible and irreducible Feynman diagrams
are briefly presented in Appendix A. At the one-loop level the summation corre-
sponds to the graph displayed in Fig.1.2, where the line denotes the Green’s function
with all possible vertex insertions. Summing over all possible insertions results in

G
1 2 3

n=Σ
∞

n=0

1PI

Figure 1.2: One-loop bubble diagram representing leading order of 1PI. The line
denotes a propagator G.

the logarithm of the functional determinant

Γ1PI
1−loop =

1

2
lnD , (1.11)

where D has been defined previously, see Eq. (1.8). All relevant equations are
now derived by functional variation of the effective action, given by the sum of the
classical and 1-loop actions

Seff = Scl + Γ1PI
1−loop[φ] . (1.12)

A detailed discussion of higher order 1PI graphs, including daisy, sunset (inclusive
higher-loop), basketball graphs and chains of pearls can be found in Appendix C of
[36].

The second approximation on which we focus our attention is the so called Hartree
approximation, which is the one-loop level of the 2PPI resummation scheme. The
2PPI scheme sums all connected two-particle-point irreducible diagrams (in Ap-
pendix A one can find more detailed discussion of 2PPI expansion, which follows

10



Chapter 1. Bounce in 3+1 dimensions

the derivation given in [22]). At the one-loop level the summation corresponds to
the simple loop diagram presented in Fig.1.3, where the resummation proceeds over

G

=Σ
∞

n=0
Σ
∞

m=0

1 2

Ι
m

ΙΙ

n

2PPI

Figure 1.3: One-loop bubble diagram representing leading order of 2PPI. The line
denotes a propagator G.

all possible vertex and self-energy insertions, i.e. all daisy and superdaisy graphs.
Then the sum Γ2PPI is truncated at

Γ2PPI
1−loop[φ,M2] =

1

2
lnG−1 , (1.13)

where G represents the internal propagator with an effective mass M2. The effective
mass fulfills the so-called gap equation, which is a simplified form of the Schwinger-
Dyson equation. This equation indicates the connection of the effective mass to the
self-energy. The self-energy is derived as a derivative of the quantum part of the
effective action with respect to the effective mass

1

2
∆(x) =

δΓ2PPI
1−loop[φ,M2]

δM2(x)
. (1.14)

This is equivalent to cutting each internal line of the diagram and then connecting
the two ends to the common point x.

1.3 The bounce in one-loop approximation

The backreaction to one-loop order consists in determining the classical field in such
a way that it is an extremum of the one-loop effective action, the sum of classical
and one-loop action. This approximation was introduced by Surig and applied for
the bubble nucleation in a SU(2) gauge theory [20]. We will call this approximation

11



1.3. The bounce in one-loop approximation

the one-loop backreaction. Sometimes quantum corrections are taken into account
by means of the effective potential. In this case one determines the classical solution
by solving the equations of motion using the effective potential instead of the tree
level one. But we should notice that the effective potential is only the part of the
effective action, as it does not take into account the space-time dependence of the
background fields, i.e., it does not contain terms depending on the derivatives of the
fields.

One can ask how good is the approximation where the terms including the deriva-
tives of the background fields are neglected. This question was addressed for the
electroweak phase transition, where using a derivative expansion obtained by the
heat kernel method [37] and by an exact one-loop calculation [14] it was found that
the corrections due to the nonlocal terms were of the same order as the classical
action. That means that the nonlocal terms of the effective action are in general
not negligible and should be taken into account already when computing the clas-
sical solution. The approximation we consider is exact to one loop, and thereby
equivalent to a complete summation of the derivative expansion.

Based on the arguments given above the equations of motion (equations of bounce
profile) will be derived not from the variation of the classical action, but of the
effective action

δSeff = δ
(

Scl + Γ1PI
1−loop

)

= 0 (1.15)

up to renormalization counterterms, which we will discuss in detail in chapter 3.
Recall that Γ1PI

1−loop is the sum of all one-particle irreducible graphs defined in the
previous section with the propagators

G−1(x) = −∆4 + M2(x) , (1.16)

where effective mass M2 is given by

M2 = U ′′(φ) = m2 − 6ηφ+
3

2
λφ2 . (1.17)

In this case it is just function of the field φ. The one-loop action is (as already
discussed)

Γ1PI
1−loop[φ] =

1

2
ln det′

−∆4 + M2

−∆4 +m2
. (1.18)

Taking the partial derivative of the effective action with respect to the fields φ one
gets the equation for the bounce profile

−∆4φ+ U ′(φ(x)) +
3

2
[λφ(x) − 2η]F(x) = 0 , (1.19)
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Chapter 1. Bounce in 3+1 dimensions

or using rotational symmetry,

−d
2φ(r)

dr2
− 3

r

dφ(r)

dr
+m2φ(r) − 3ηφ2(r) +

λ

2
φ3(r)

+
3

2
[λφ(r) − 2η]F(x)

∣

∣

∣

∣

|x|=r

= 0 . (1.20)

The first five terms are those of the classical equation of motion, the last one arises
from the one-loop part using

δΓ1PI

δφ(x)
=

δΓ1PI

δM2(x)

dM2(x)

dφ(x)
=

1

2
F(x)(3λφ(x) − 6η) . (1.21)

Here we have introduced the fluctuation integral

F(x) ≡ G(x, x) =< x| 1

−∆4 + M2
|x >= 2

δΓ2PPI

δM2(x)
, (1.22)

which is just the limit x′ → x of the Green’s function G(x, x′).

1.4 The bounce in Hartree approximation

In the Hartree approximation one takes takes into account the backreaction not
only onto the classical field, but also onto the quantum fluctuations. However, as
discussed in Sec.1.2, one assumes that each fluctuation feels only the mean field of
all others.

As in the one-loop approximation we should start our computation from the ef-
fective action of 2PPI formalism (the sum of all two-particle-point-irreducible dia-
grams, where all internal propagators have the effective mass M2[22]). We recall

Seff [M2, φ] = Scl[φ] + Γ2PPI
1−loop[M2, φ] − 3λ

8

∫

d4x∆2(x) , (1.23)

again up to renormalization counterterms. Here ∆ is the self-energy discussed above

1

2
∆(x) =

δ

δM2(x)
Γ2PPI [φ,M2] . (1.24)

It represents a local insertion into the propagator

G−1(x) = −∆4 + M2(x) , (1.25)
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1.3. The bounce in Hartree approximation

with effective mass defined as

M2 = m2 − 6ηφ+
3

2
λφ2 +

3

2
λ∆ = U ′′(φ) +

3

2
λ∆ . (1.26)

This is a self-consistent equation, called gap equation (the simplified form of the
Schwinger-Dyson equation). To the lowest order in a loop expansion we consider
(Hartree approximation)

Γ2PPI =
1

2
ln det′

−∆4 + M2

−∆4 +m2
. (1.27)

So the self-energy ∆ is given by

∆(x) = 2
δΓ2PPI

δM2(x)
=< x| 1

−∆4 + M2
|x >= G(x, x) . (1.28)

The Green’s function is defined by equation

(−∆4 + M2)G(x, y) = δ4(x− y) . (1.29)

We define the fluctuation integral as in the one-loop case

F(x) ≡ G(x, x) . (1.30)

Taking the variational derivative of the effective action with respect to M2 we get
again Eq. (1.26). In this procedure one considers ∆ as a function of both the
effective mass M2 and of the field φ. Therefore in the last term of the effective
action (see Eq. (1.23)) we have to replace ∆ by

∆ =
2

3λ

(

M2 − U ′′(φ)
)

= −φ2 +
2

3λ

(

M2 −m2 + 6ηφ
)

. (1.31)

The partial derivative of the effective action with respect to the field φ leads to
the equation for the bounce profile in Hartree approximation

−∆4φ+ U ′(φ(x)) +
3

2
[λφ(x) − 2η]F(x) = 0 . (1.32)

It is a complicated equation. As the fluctuation integral F is a nonlinear functional

of the field φ this equation is not simply a differential or integro-differential equa-
tion. The backreaction of the quantum fluctuations onto themselves is contained in
fluctuation integral F(x), or, equivalently, in effective mass M2.

14



Chapter 1. Bounce in 3+1 dimensions

Using the spherical symmetry one can write last equation in the radial form

−d
2φ(r)

dr2
− 3

r

dφ(r)

dr
+m2φ(r) − 3ηφ2(r) +

λ

2
φ3(r)

+
3

2
[λφ(r) − 2η]F(x)

∣

∣

∣

∣

|x|=r

= 0 . (1.33)

For a rotationally symmetric background field the fluctuation integral and corre-
spondingly the effective mass are spherically symmetric as well.

1.5 The Green’s Function

1.5.1 The formal discussion of Green’s function

We have seen in last two sections that there is a universal quantity for both approx-
imations necessary to compute the bounce profile, the Green’s function G(x, x′). It
is very similar in both cases and needs the analogous technique of computation. The
main difference comes from the effective mass, which as already discussed, in the
one-loop formalism is simply a function of field φ, whereas in the Hartree approxi-
mation should be determined self-consistently.

The Green’s function is usually discussed as a function of energy. We will need
this generalization in order to be able to discuss the translation mode and to use
the determinant theorem in the next section. For the basis see Sec. 1.6. To be
consistent with future discussions we introduce the Euclidean energy ν2 already
here and determine the Green’s function in more general form. However, at the end
of our computations we will let ν = 0, except for the treatment of the translation
mode.

Within our generalization the field φ stays independent of ν, i.e. it still lives in four
Euclidean dimensions. That means we have translation invariance in the direction
of ’new time’ (we have chosen fifth dimension to be spacelike). The Green’s function
G(x, x′) now becomes G(x, x′, ν2) and it satisfies equation

[−∆4 +m2 + V (r) + ν2]G(x, x′, ν2) = δ4(x− x′) , (1.34)

with
V (r) = M2(φ) −m2 . (1.35)

where the effective mass M2(φ) is given by Eq. (1.17) or by Eq. (1.26) for the
one-loop and Hartree approximations, respectively.
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1.4. The Green’s Function

In the one-loop formalism M2(0) = m2. So in the false vacuum when r → ∞
the potential V (r) → 0. In the Hartree formalism the effective mass contains the
Green’s function, i.e. it is a functional of field φ. Here the effective mass should
be equal to bare mass M2(0) = m2 for a constant field φ(x) ≡ 0. This is one
of requirements we impose on the effective potential as renormalization condition;
otherwise, in the definition of V (r) one would replace the bare mass m2 with a
different, renormalized mass in the false vacuum, and this would affect the boundary
conditions of the fluctuations.

The Green’s function can be expressed in terms of eigenfunctions of the fluctuation
operator

G(x, x′, ν2) =
∑

α

ψα(x)ψα(x′)

ω2
α + ν2

, (1.36)

which satisfy the equation

[−∆4 +m2 + V (r)]ψα(x) = ω2
αψα(x) . (1.37)

We decompose the Hilbert space into angular momentum subspaces, introducing
the eigenfunctions Ynlm(Ω3)R

α
k (r), where Ynlm(Ω3) are spherical functions on the

3-sphere (see Appendix of Ref.[38]). The radial wave functions are eigenfunctions
of the partial wave fluctuation operator

[

− d2

dr2
− 3

r

d

dr
+
n(n + 2)

r2
+m2 + V (r)

]

Rnα(r) = ω2
nαRnα(r) . (1.38)

Here the index α labels the radial excitations, the spectrum is continuous, but
may include some discrete states like unstable and translation modes. Using these
eigenfunctions the Green’s function can be written as

G(x, x′, ν2) =
∑

nlm

∑

α

Ynlm(Ω3)Ynlm(Ω′
3)
Rnα(r)R∗

nα(r′)

ω2
nα + ν2

. (1.39)

These expressions are formal. They are not suitable for numerical computations
as they include summation over discrete states (unstable and translation modes)
and integration over continuum states. In particular, if one uses this expressions
for numerical computations, it is necessary to discretize the continuous spectrum
by introduction a finite spatial boundary. But there is a well-known alternative
possibility to express the Green’s function.
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Chapter 1. Bounce in 3+1 dimensions

1.5.2 Computation of the Green’s function

Let us first consider free Green’s function which one obtains if V (r) = 0. It can be
written

G0(x, x
′, ν2) =

∫

d4k

(2π)4

eik·(x−x′)

k2 +m2 + ν2
. (1.40)

This quantity can be expanded as [39]

∫

d4k

(2π)4

ei~k(~x−~x′)

~k2 +m2 + ν2
=

κ2

4π2

K1(κR)

κR

=
1

2π2

∞
∑

n=0

(n + 1)C1
n(cosχ)

In+1(κr<)

r<

Kn+1(κr>)

r>

=
1

2π2

∞
∑

n=0

(n + 1)C1
n(cosχ)In(r<, κ)Kn(r>, κ) ,

where r = |x| and r′ = |x′| and r< = min{r, r′}, r> = max{r, r′}. κ is defined as
κ =

√
m2 + ν2. R is given by

R2 = |x− x′|2 = r2 + r′2 − 2rr′ cosχ , (1.41)

with χ as the angle between the directions Ω3 and Ω′
3 of x and x′, correspondingly.

So the free Green’s function can be expanded as

G0(~x, ~x
′, ν2) =

1

2π2

∞
∑

n=0

(n+ 1)C1
n(cosχ)In(r<, κ)Kn(r>, κ) . (1.42)

The functions C1
n are Gegenbauer polynomials, see corresponding section in Ref.[39].

The expansion of K1(κR) in terms of products of In(κr<) and Kn(κr>) is the Gegen-
bauer expansion, given in section 7.61, Eq. (3) of Ref.[39]. For the case x = x′ one
has C1

n(cosχ) = C1
n(1) = n + 1. For convenience we have introduced functions

In(r, κ) and Kn(r, κ) expressed by the modified Bessel functions in the following
way

In(r, κ) = In+1(κr)/r , Kn(r, κ) = Kn+1(κr)/r . (1.43)

They satisfy equation for the radial wave functions with ω = 0

[

− d2

dr2
− 3

r

d

dr
+
n(n + 2)

r2
+ κ2

]

Bn(r, κ) = 0 , (1.44)
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1.4. The Green’s Function

where Bn stands for In or Kn. In(r, κ) is regular at r = 0 and diverges exponentially
as r → ∞. K(r, κ) decreases exponentially as r → ∞ and is singular as r → 0. The
Wronskian of these functions is given by

Kn(r, κ)dIn(r, κ)/dr − In(κ, r)dKn(r, κ)/dr = 1/r3 . (1.45)

Now we extend the expansion described above to the exact Green’s function. We
make the ansatz

G(x, x′, ν2) =
1

2π2

∞
∑

n=0

(n + 1)C1
n(cosχ)f−

n (r<, κ)f
+
n (r>, κ) . (1.46)

The functions f±
n (r, κ) satisfy the mode equations
[

− d2

dr2
− 3

r

d

dr
+
n(n+ 2)

r2
+ κ2 + V (r)

]

f±
n (r, κ) = 0 , (1.47)

and in addition the following boundary conditions:

f−
n (r, κ) ∝ rn r → 0 ,

f+
n (r, κ) ∝ exp(−κr)/

√
κr3 r → ∞ .

(1.48)

So f−
n is regular at r = 0 and f+

n is exponentially decreasing, i.e. bounded, as
r → ∞. For V (r) = 0 these boundary conditions are those satisfied by In(r, κ) and
Kn(r, κ), respectively. As the behavior at r = 0 is determined by the centrifugal
barrier, and the behavior for r → ∞ by the mass term, these boundary conditions
are independent of the potential. We can express these functions by means of In(r, κ)
and Kn(r, κ) introducing the new functions h±n (r, κ)

f−
n (r, κ) = In(r, κ)[1 + h−n (r, κ)] , (1.49)

f+
n (r, κ) = Kn(r, κ)[1 + h+

n (r, κ)] . (1.50)

The functions h±n (r, κ) become constant as r → 0 and as r → ∞, and for finite r
they interpolate smoothly between these asymptotic constants. If we impose, for
r → ∞ the boundary conditions h±(r, κ) → 0 the Wronskian of f+

n and f−
n becomes

identical to the one between Kn(r, κ) and In(r, κ), i.e., equal to 1/r3.
Now applying the fluctuation operator Eq.(1.34) to our ansatz, Eq.(1.46), we find

[

−∆4 + κ2 + V (r)
]

G(x, x′, ν2) =
1

2π2

1

r3
δ(r − r′)

∞
∑

n=0

(n + 1)C1
n(cosχ)

=
1

r3
δ(r − r′)

1

sin2 χ
δ(χ− χ′)

1

sin θ
δ(θ − θ′)δ(ϕ− ϕ′) , (1.51)
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Chapter 1. Bounce in 3+1 dimensions

where we have used the addition theorem

n
∑

l=0

l
∑

m=−l

Ynlm(Ω3)Y
∗
nlm(Ω′

3) =
n+ 1

2π2
C1

n(cosχ) (1.52)

and the completeness relation for the O(4) spherical harmonics.
Using the definitions of functions h±n , Eqs.(1.49) and (1.50), the Eq.(1.47) gives

mode equations
{

d2

dr2
+

[

2κ
I ′n+1(κr)

In+1(κr)
+

1

r

]

d

dr

}

h−n (r, κ) = V (r)
[

1 + h−n (r, κ)
]

, (1.53)

{

d2

dr2
+

[

2κ
K ′

n+1(κr)

Kn+1(κr)
+

1

r

]

d

dr

}

h+
n (r, κ) = V (r)

[

1 + h+
n (r, κ)

]

, (1.54)

which can be solved numerically. This point we will discuss in the next subsection.
But before let us turn to the subtraction necessary in the process of renormalization.

To perform the subtractions we will need not only the functions h±
n exact to all

orders in the potential V (r), but also the functions of the first and second order.

Let us denote them h
(1)±
n and h

(2)±
n (see Fig.1.4). In addition we have to define the

=hn
(1)

hn
(2)

= − −1
2 + −1

2!

2

Figure 1.4: The structure of the first and second order h
(i)±
n functions. The solid

line represents the Green’s function. Dots denote V (r).

inclusive sums

h(m)±
n =

∞
∑

j=m

h(j)±
n . (1.55)

Here we follow the prescription developed in Ref. [40, 41, 12]. Obviously h±
n = h

(1)
n

as it includes all orders of V (r) except the zero order part, which we have already
separated by the definition of the functions h±

n .
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1.4. The Green’s Function

Eqs. (1.53) and (1.53) can be written in the following form

Dh = V (1 + h) , (1.56)

where we introduce the notation D for the differential operator on the left hand side
of equations and where for the moment we drop all indices. Using all definitions
above it is easy to write down the equations for the first and second order as well
as for the sum h(2)

Dh(1) = V ,

Dh(2) = V h(1) , (1.57)

Dh(2) = V h(1) .

The equations will have an analogous form for the functions of higher order in V (r).
For the Green’s function we likewise may define parts of a precise order in V (r);

and express them by means of functions h
(i)±
n and sums h(i)±. For x = x′ we have

F(x) = G(x, x) =
1

2π2

∞
∑

n=0

(n+ 1)2In(r, κ)Kn(r, κ) (1.58)

×
[

1 + h
(1)
+ (r, κ) + h

(1)
− (r, κ) + h

(1)
+ (r, κ)h

(1)
− (r, κ)

]

,

F (1)(x) = G(1)(x, x) =
1

2π2

∞
∑

n=0

(n + 1)2In(r, κ)Kn(r, κ) (1.59)

×
[

h
(1)
+ (r, κ) + h

(1)
− (r, κ) + h

(1)
+ (r, κ)h

(1)
− (r, κ)

]

,

F (2)(x) = G(2)(x, x) =
1

2π2

∞
∑

n=0

(n + 1)2In(r, κ)Kn(r, κ) (1.60)

×
[

h
(2)
+ (r, κ) + h

(2)
− (r, κ) + h

(1)
+ (r, κ)h

(1)
− (r, κ)

]

.

While G(2)(x, x) is finite, G(0)(x, x) and G(1)(x, x) are divergent. This point will be
discussed in the chapter 3.

1.5.3 Numerical procedure to compute Green’s function

For the numerical computations we use the equations ( 1.53) and (1.54) for h±
n and

equations for the functions of specified order in V (r).
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Chapter 1. Bounce in 3+1 dimensions

As it was already discussed in previous subsection the boundary conditions are
chosen in such a way that at r → ∞ h+

n → 0. Therefore the differential equation
for h+

n , (1.54), is solved starting at large r = r̄ with h+
n (r̄, κ) = h+′

n (r̄, κ) = 0, and
running backward. In principle we should take r̄ = ∞. However, if r̄ is chosen far
outside the range of the potential the functions h±

n (r, κ) are already constant with
high accuracy. In the numerical computation r = ∞ always means r = r̄ with a
suitable value of r̄.

For the second differential equation (1.53) for h−
n we first obtain a solution h̃n(r, κ)

starting at r = 0, with h̃n(0, κ) = h̃′n(0, κ) = 0. This function does not satisfy the
boundary condition required for the Green’s function. The h−

n (r, κ) function we
obtain in the following way: from the definition of the functions hn we know

f−
n = In(1 + h−n ) ,

f̃−
n = In(1 + h̃−n ) . (1.61)

f−
n and f̃−

n are both solutions of the same linear homogeneous differential equation
and regular at r = 0, so they are proportional to each other, f−

n = Cf̃−
n . The

constant C can be fixed by means of the boundary condition at r → ∞. It is given
by

C =
1

1 + h̃−n (∞)
, (1.62)

and as a result we obtain the solution of the differential equation with the appropriate
boundary conditions in the following form:

h−n (r, κ) =
h̃n(r, κ) − h̃n(∞, κ)

1 + h̃n(∞, κ)
. (1.63)

Of course, here as in the case of h+
n (r̄, κ) r = ∞ is taken equal some finite value

r = r̄ in the numerical implementation.
The rescaling needed in order to get from preliminary result h̃−n the function

obeying the boundary conditions h−n is complicated by the mixing of orders. After
some transformations one can obtain

h(1)− = h̃(1)− − h̃(1)−
∞ (1.64)

and

h(2)− =
h̃

¯(2)− − h̃
(2)−
∞ + h̃

(1)−
∞ h̃

(1)−
∞ − h̃(1)−h̃

(1)−
∞

1 + h̃
(1)−
∞

. (1.65)

So now we know enough about the Green’s function and the functions entering the
expression for it in order to implement them in the numerical simulations; of course,
renormalization has still to be considered.
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1.5. Computation of the Fluctuation Determinant

1.6 Computation of the Fluctuation Determinant

1.6.1 Application of the determinant theorem

We have seen that the quantum part of the effective action in both approximations
is expressed by fluctuation determinant

D = det′
−∆4 + M2

−∆4 +m2
, (1.66)

which is formally an infinite product of eigenvalues of the fluctuation operator. The
prime denotes taking the absolute value and removing the translation mode. This
will be discussed in Sec. 1.7.

We will use the so called determinant theorem [42], or Gelfand-Yaglom theorem
[43]. We introduce the generalization of the fluctuation determinant

D̃(ν2) = det
−∆4 + M2 + ν2

−∆4 +m2 + ν2
, (1.67)

where ν can be understood as an Euclidean energy in a fifth dimension. We should
stress that this modification is purely technical and the computation itself refers to
the four space-time dimensions, i.e. to ν = 0. The only place there it will be used
is a discussion of translation mode, as it gives a possibility to manipulate the pole
in the Green’s function in l = 1 partial wave (for more details see Sec. 1.7). Note
that we have dropped prime here.

Using the decomposition of the Hilbert space into angular momentum subspaces
we can rewrite

D̃(ν2) =
∏

l,n

[

ω2
ln + ν2

ω2
ln(0) + ν2

]

=

∞
∏

n=0

[

detMn(ν2)

detM
(0)
n (ν2)

]dn

, (1.68)

where

Mn(ν2) = − d2

dr2
− 3

r

d

dr
+
n(n + 2)

r2
+m2 + V (r) + ν2 (1.69)

is radial fluctuation operator and dn denotes the degeneracy. In four dimensions it
is just (n+ 1)2. M

(0)
n (ν2) corresponds to V (r) = 0.

According to a theorem on functional determinants of ordinary differential oper-
ators the ratio of the partial wave functional determinants can be expressed as

detMn(ν2)

detM
(0)
n (ν2)

= lim
r→∞

ψn(ν2, r)

ψ
(0)
n (ν2, r)

, (1.70)
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Chapter 1. Bounce in 3+1 dimensions

Here the functions ψn(ν2, r) and ψ
(0)
n (ν2, r) are solutions of equations

Mn(ν2)ψn(ν2, r) = 0 , M(0)
n (ν2)ψ(0)

n (ν2, r) = 0 , (1.71)

respectively, with identical regular boundary conditions at r = 0. A simple proof,
given in Ref. [42], uses the fact that both sides have identical poles and zeros in the
complex ν2 plane.

It is obvious that the free partial wave function is given in terms of modified Bessel
function, or in our notation by

ψ(0)
n (ν2, r) = In(r, κ) . (1.72)

Furthermore, it is convenient to factorize the function ψn(ν2, r) into the free solution

ψ
(0)
n (ν2, r) and a factor 1 + h̃n(r, κ), which takes into account the modification due

to potential V (r):

ψn(ν2, r) =
[

1 + h̃n(r, κ)
]

In(r, κ) . (1.73)

The function h̃n(r, κ), which satisfies h̃n(0, κ) = 0 and h̃′(0, κ) = 0, has already been
introduced previously (for details see Sec. 1.5).

So for the functional determinant we finally obtain

detMn(ν2)

detM
(0)
n (ν2)

= 1 + h̃n(∞, κ) , (1.74)

and therefore

ln D̃(ν2) =

∞
∑

n=0

dn ln
[

1 + h̃n(∞, κ)
]

. (1.75)

As already mentioned we need the fluctuation determinant only at ν2 = 0, except
for the handling of the translation mode.

1.6.2 Expansion in terms of Feynman graphs and calculation of

finite part

In order to have the possibility of renormalizing the fluctuation determinant we have
to separate divergences. For this purpose we expand the full fluctuation determinant
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1.5. Computation of the Fluctuation Determinant

in terms of external vertices

lnD = ln det
−∆4 + U ′′(φ)

−∆4 + U ′′(0)
= ln det

−∆4 +m2 + V (x)

−∆4 +m2

= tr ln
[

1 + (−∆4 +m2)−1V (x)
]

=
∞
∑

N=1

(−1)N+1

N
tr
[

(−∆4 +m2)−1V (x)
]N

=

∞
∑

N=1

(−1)N+1

N
A(N) . (1.76)

Actually

A(N) = tr
[

(−∆4 +m2)−1V (x)
]N

(1.77)

is identical to the one-loop Feynman graph of order N in the external potential V (r).
The first two terms in the expansion contain the logarithmic and quadratic ultravi-
olet divergences. They will be considered analytically in context of renormalization.
However, the sum of all subsequent orders, resulting in lnD(3), or explicitly

lnD(3) =

∞
∑

n=0

dn ln [1 + hn(∞, κ)](3) , (1.78)

will be computed numerically. The ’ln’ term in the last expression is given by
definition as

ln [1 + hn(∞, κ)](3) = ln (1 + hn(∞, κ)) − h(1)
n (∞, κ) (1.79)

−
[

h(2)
n (∞, κ) − 1

2
(h(1)

n (∞, κ))2

]

.

All contributions to lnD(3) are finite, i.e. it can be computed numerically. However,
in order to avoid delicate numerical subtractions of terms of different order in V (r)
we first rewrite the last expression in the following form

ln [1 + hn(∞, κ)](3) =

[

ln (1 + hn(∞, κ)) − hn(∞, κ) +
1

2
(hn(∞, κ))2

]

(1.80)

+h(3)
n (∞, κ) − 1

2
h(2)

n (∞, κ)
(

hn(∞, κ) + h(1)
n (∞, κ)

)

.

Now each term on the right-hand side of the last expression is of order V 3(r). And
it is almost ready to be implemented in numerical code. First we should consider
the question of unstable and translation modes.
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Chapter 1. Bounce in 3+1 dimensions

1.7 Unstable and Translation Modes

Let us recall that determinant of the fluctuation operator was defined with a prime
denoting modifications with respect to the naive determinant. We have ignored
these modifications in the previous section when considering the computation of
the determinant and of its finite part. As mentioned in sections 1.1 and 1.6 these
modification concern:

(i) the unstable mode – the negative eigenvalue mode ω2
u < 0 appearing in the

s-wave, n = 0. It manifests itself by the fact that 1 + h̃0(∞, m) < 0. So the original
fluctuation determinant for n = 0 is negative and its square root appearing as a
prefactor in Γ would be imaginary. However, as discussed, e.g., in Ref. [42], the
transition rate appears as the imaginary part iΓ of the energy. This implies that the
factor i has to be removed in order to get Γ itself. This means that we have to replace
the the fluctuation determinant by its absolute value. So for our computation this
corresponds to just taking the absolute value of the expression 1 + h̃0(∞, m) in the
logarithm in Eq. (1.78), for the n = 0 term. Incidentally this discussion implies
that there should be exactly one unstable mode, this is the case here.

(ii) the translation mode – zero mode with vanishing of ω2
t = 0, the lowest radial

excitation in the n = 1 channel with degeneracy (n+ 1)2 = 4, which are Goldstone
modes associated with the breaking of translation invariance (because we have four
infinitesimal translations, we have four eigenfunctions with eigenvalue zero, propor-
tional to ∂µφ), and thereby by the vanishing of 1 + h̃1(∞, m) at ν = 0.

The presence of zero mode in the semiclassical approximation can be shown by
taking the gradient of the classical equation of motion (see for example Ref. [42]):

∇i [−∆4φ+ U ′(φ)] = [−∆4 + U ′′(φ)]∇iφ = 0 . (1.81)

Here the operator acting on ∇iφ is just the fluctuation operator. The wave function
associated with this mode is not Gaussian, so the translation mode does not appear
in the fluctuation determinant, which arises from Gaussian integrations. This is
implied by the prime on the determinant.The coordinate associated to the zero
mode is a collective coordinate which has to be handled separately.

In the semiclassical approximation the quantization of the collective coordinate
results in a prefactor (N−2

0 /2π)2 where

N−2
0 =

∫

d4x (∇iφ)2 (1.82)

is the normalization of the zero mode. Using a virial theorem this is usually con-
verted into (Scl/2π)2. Furthermore the dimension of the determinant with the prime
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1.6. Unstable and transition modes

is different by 8 energy dimensions because four modes have been removed. As it
appears in the denominator with a square root, this gives Γ the correct dimension
(per volume, per time).

In semiclassical approximation the transition mode can be removed numerically
following the prescription in Ref. [12]: one computes h̃1(∞,±ε2) for some sufficiently
small ε and replaces it everywhere as follows

[

1 + h̃1(∞, m)
]

→ h̃1(∞, ε2) − h̃1(∞,−ε2)
2ε2

, (1.83)

i.e., one takes the numerical derivative at ω2 = 0.
There is another method of computation of n = 1 contribution to the transition

rate recently discussed in the literature [19]. The authors integrate the radial equa-
tion for modes for some arbitrary but small quantity, similar to ν2 we use. letting
this parameter to zero they find the expression for the determinant with removed
zero mode. Recalling that the zero mode one can express by means of the classical
bounce solution and performing some transformations they find a simple formula

(

Scl[φ]

2π

)2
(

det′ Mn=1

detM(0)
n=1

)−1/2

=

[

π

2
φ∞

(

φ0 −
3

2
φ2

0 +
α

2
φ3

0

)]2

, (1.84)

for the n = 1 prefactor contribution to the transition rate. Here φ∞ corresponds to
the point there the tunneling ends and is simply φ0 = φ(0). Such a simple formula
one can understand as a technical simplification.

The method just described cannot be used for the case when the backreaction is
included as there is no exact zero mode. The classical equation of motion receives
additional contributions from the fluctuation integral, and so does the fluctuation
operator in the Hartree approximation. In neither case ∇iφ is an eigenmode of
the fluctuation operator. Basically the problem is that now the fluctuations enter
the dynamics and they have to be taken into account when discussing translation
invariance. This is an involved matter, for a discussion beyond the semiclassical
approximation see, e.g. [44], a similar treatment in the present context is beyond
the scope of this thesis.

Of course the exact theory is still translation invariant, the problem which we
encounter is an artefact of the approximations we are making. So we have to find
a pragmatic way for taking into account the collective coordinates and we have to
remove four modes, otherwise we will not obtain a proper transition rate.

In fact, when backreaction is taken account we still find, in the n = 1 partial
wave, a zero of 1 + h̃1(∞,−ω2

t ) with ω2
t close to zero. This has been found already

26



Chapter 1. Bounce in 3+1 dimensions

in [20] in calculations for bubble nucleation. We will remove this mode as being the
approximate translation mode.

By numerical computations we first should determine the position of the eigen-
value. This we do by requiring 1 + h̃1(−ω2

t ,∞) to vanish and then compute the
numerical derivative as in the semiclassical approximation (1.83) not at ν2 = 0 but
at ν2 = −ω2

t , i.e., we remove a factor ω2
t + ν2.

As the Green’s function appears as a functional derivative of effective action we
have to remove the zero mode as well. Recalling the form of Green’s function in
terms of eigenfunctions (1.39) we can separate the zero modes in n = 1 channel at
r = r′

G1(r, r, ν
2) =

R2
t (r)

ν2 + ω2
t

+
∑

α6=0

R2
1α(r)

ν2 + ω2
1α

. (1.85)

As a next step we can use the fact that the pole term is antisymmetric with respect
to ν2 + ω2

t . So we compute the Green’s function at ν2 = −ω2
t ± ε2 and take the

average of these two values. Then the pole term disappears and the averaged Green’s
function takes the form

1

2

[

G1(r, r,−ω2
t + ε2) + G1(r, r,−ω2

t − ε2)
]

=
∑

α6=0

R2
1α(r)

ω2
1α − ω2

t

(ω2
1α − ω2

t )
2 − ε4

. (1.86)

As long as ω2
t and ε2 are much smaller than the ω2

1n this is a good approximation to
the desired reduced Green’s function

[G1(r, r, 0)]red =
∑

n6=0

R2
1n(r)

ω2
1n

. (1.87)

This was again very formal discussion. However, the averaging used here one can
apply to the explicit computations.

In the real numerical computations of the Green’s function we use of course ex-
pression (1.46). It is obvious that the pole arise from the rescaling of the mode
function h̃1(ν

2, r), i.e., from dividing by 1 + h̃−(ν2,∞) (see Eq.(1.63)).
By the averaging over the Green’s functions at ν2 = −ω2

t ± ε2 we add two very
large terms which almost cancel. This is a delicate point and it should be done in a
somewhat smoother way: if ε2 is sufficiently small we can assume that 1+ h̃1(ν

2,∞)
passes through zero linearly and we may replace

1 + h̃1(∞,−ω2
t ± ε2) → ±1

2

[

h̃1(∞,−ω2
t + ε2) − h̃1(∞,−ω2

t − ε2)
]

. (1.88)
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1.6. Unstable and transition modes

So that the average over the Green’s functions takes a form

[G1(r, r, 0)]red ' f+
1 (−ω2

t + ε2, r)f̃1(−ω2
t + ε2, r) − f+

1 (−ω2
t − ε2, r)f̃1(−ω2

t − ε2, r)

h̃1(−ω2
t + ε2,∞) − h̃1(−ω2

t − ε2,∞)
,

(1.89)
where f̃1(ν

2, r) = I1(κr)[1 + h̃1(ν
2, r)] is the mode function f−

1 before the renormal-
ization.

As the translation mode is only approximate, the virial theorem used for the
semiclassical case no longer holds and we have to go back to the original expression
for the prefactor of the transition rate. This prefactor is then just the normalization
of the zero mode. Therefore one can compute the false vacuum decay rates via

Γ =

(

1

2πN 2
0

)2

exp(−Seff) . (1.90)

Of course the treatment of the approximate zero mode is an additional approxi-
mation, beyond the one-loop or Hartree approximations. The question of allowable
regions, justifying such an approximation, will be discussed along with the numerical
results.
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Chapter 2

Renormalization

In this chapter we present the discussion of the divergences and of renormalization.
As we have already seen in the previous chapter the Green’s function and the fluc-
tuation determinant have divergences of logarithmic, quadratic and quartic order.
For regularization we will use dimensional regularization, the numerical approach
would admit other regularizations, like Pauli-Villars.

Besides the regularization we have to discuss the renormalization conditions. One
way of renormalization we consider is MS scheme. This renormalization is often
used when presenting the parameters of a theory as determined from experiment,
or when making predictions for experimental data. In the context of semiclassical
corrections this prescription was used in [18, 19]. The MS prescription has to be
complemented by specifying a renormalization scale µ.

On the other hand, one may wish to compare the results of the various approaches
for situations were the two vacua between which the tunneling takes place have sim-
ilar ”physical” properties. This would be the case if the renormalized one-loop or
Hartree effective potentials and their classical counterparts have, e.g., the same po-
sition of the local minima and the same energy differences between the two vacua.
The effective potential decribes the quantum corrections if the classical field is ho-
mogeneous in space-time. It is therefore relevant for the properties of the vacua and
for qualitative features, as the double-well structure. Of course, the bounce is not
homogeneous in space-time. However, we will use the effective potential to impose
the renormalization conditions and fix the parameters of two vacua between which
the tunneling takes place.

Altogether we will consider two approximations, Hartree approximation and one-
loop approximation, in two different renormalization schemes, the MS scheme and
the ’physical’ renormalization, where in the last one we pose renormalization con-
ditions on the effective potential in such a way as to have the same parameters for
the vacua as in the classical theory. Details of the calculations can be found in the
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2.1. Divergences of the Green’s function

corresponding Appendices.

2.1 Divergences of the Green’s function and their

regularization

We have already seen in Sec.1.5 that one can decompose the Green’ function into
parts of a well-defined order in V (r)

F(x) = F (0)(x) + F (1)(x) + F (2)(x)

=

∫

d4k

(2π)4

1

k2 +m2
(2.1)

−
∫

d4yV (y)

∫

d4k

(2π)4

eik(x−y)

k2 +m2

∫

d4k′

(2π)4

e−ik′(x−y)

k′2 +m2
+ F ¯(2)(x) .

Here, as we have discussed, the first and second terms are divergent and the last
one convergent. The convergent part will be computed numerically (see section 1.5).
The divergent terms will be considered analytically, renormalized and then the finite
terms we will compute numerically.

Let us start with leading order part:

F (0)(x) =

∫

d4k

(2π)4

1

k2 +m2
= − m2

16π2

(

Lε − ln
m2

µ2
+ 1

)

, (2.2)

the second equality is taken from appendix A, in particular equation (A.11).
The next to leading order term is more complicated:

F (1)(x) = −
∫

d4yV (y)

∫

d4kd4q

(2π)8

eik(x−y)−k(x−y)+q(x−y)

(k2 +m2)((k + q)2 +m2)

= −
∫

d4yV (y)

∫

d4k

(2π)4

∫

d4q

(2π)4

eiq(x−y)

(k2 +m2)((k + q)2 +m2)

= −
∫

d4k

(2π)4

∫

d4q

(2π)4

eiqxṼ (q)

(k2 +m2)((k + q)2 +m2)
,

where we have introduced q = k′ − k and where we have defined the Fourier trans-
formation

Ṽ (q) =

∫

d4ye−iq·yV (y) . (2.3)
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Chapter 2. Renormalization

The integration over k can be done analytically:

F (1)(x) = −
∫

d4q

(2π)4
eiqxṼ (q)

∫

d4k

(2π)4

1

(k2 +m2)((k + q)2 +m2)

=

∫

d4q

(2π)4
eiqxṼ (q)

{

−
Lε − ln m2

µ2

16π2

− 1

16π2

[

2 −
√

|q|2 + 4m2

|q| ln

√

|q|2 + 4m2 + |q|
√

|q|2 + 4m2 − |q|

]}

. (2.4)

In the last expression we have used results obtained in appendix A, in particular
equation (A.12).
So we can decompose the next to leading term in the divergent and the finite parts

F (1)(x) = − 1

16π2
V (x)

(

Lε − ln
m2

µ2

)

+ F (1)
fin(x) , (2.5)

with

F (1)
fin(x) = − 1

16π2

∫

d4q

(2π)4
eiqxṼ (q)

[

2 −
√

|q|2 + 4m2

|q| ln

√

|q|2 + 4m2 + |q|
√

|q|2 + 4m2 − |q|

]

.(2.6)

The Fourier transformed potential Ṽ (q) can be computed using the Fourier-Bessel
transformation:

Ṽ (q) → Ṽ (|q|) =
4π2

|q|

∫ ∞

0

drr2J1(|q|r)V (r) (2.7)

For the detailed intermediate steps of Fourier-Bessel transformation see equation
(A.13). As one can see, the integrand on the right hand side of (2.6), except for
the exponential, depends only on the absolute value of q. As a consequence the
fluctuation integral itself is a function of only the absolute value of x,

F (1)
fin(x) → F (1)

fin(r) (2.8)

which likewise is obtained as a Fourier-Bessel transformation.

2.2 Divergences of the fluctuation determinant and

their regularization

As we already have seen in the Sec.1.6 the fluctuation determinant has divergences
in the first D(1) and second D(2) order of expansion in the external potential V (r)

D = D(1) + D(2) + D(3) . (2.9)
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2.2. Divergences of the fluctuation determinant

We will need this quantity in the 1-loop part of the effective action

S1−loop =
1

2
lnD . (2.10)

As discussed previously, see Eq. 1.76, the logarithm of the fluctuation determinant
can be expanded with respect to powers of V (r)

lnD =
∞
∑

N=1

(−1)N+1

N
A(N) . (2.11)

The first two terms in the expansion are divergent. One can write

lnD = A(1) − 1

2
A(2) + (lnD)(3) . (2.12)

Let us consider each term separately.

A(1) = tr
[

(−∆4 +m2)−1V (x)
]

=

∫

d4k

(2π)4

Ṽ (0)

k2 +m2
. (2.13)

The Fourier transform of the potential has been defined in the previous section, and
in particular

Ṽ (0) =

∫

d4xV (x) .

Using equation (A.11) we get

A(1) =

∫

d4−εk

(2π)4−ε

1

k2 +m2

∫

d4xV (x) = 2π2

∫

drr3V (r)

∫

d4−εk

(2π)4−ε

1

k2 +m2

= −2π2

∫

drr3V (r)
m2

16π2

[

2

ε
− γ + ln 4π − ln

m2

µ2
+ 1

]

. (2.14)

In the last expression one can separate the divergent and finite terms:

A(1) = − m2

16π2

(

Lε − ln
m2

µ2

)
∫

d4xV (x) + A
(1)
fin , (2.15)

where finite part is

A
(1)
fin = −m

2

8

∫

drr3V (r) . (2.16)
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For the second order term we have

A(2) = tr
[

(−∆4 +m2)−1V
]2

(2.17)

=

∫

d4k

(2π)4

d4k′

(2π)4

∫

d4xd4y ei~k(~x−~y)e−i~k′(~x−~y)V (x)V (y)

(k2 +m2)(k′2 +m2)
.

In terms of the Fourier transforms of the potential this can be rewritten as

A(2) =

∫

d4k

(2π)4

d4k′

(2π)4

1

(k2 +m2)(k′2 +m2)

∫

d4qd4q′

(2π)8
Ṽ (q)Ṽ (q′)

×
∫

d4xd4yei(k−k′+q)xei(q′+k′−k)y

=

∫

d4k

(2π)4

∫

d4q

(2π)4

Ṽ (q)Ṽ (−q)
(k2 +m2)((k + q)2 +m2)

=

∫

d4k

(2π)4

∫

d4q

(2π)4

|Ṽ (q)|2
(k2 +m2)((k + q)2 +m2)

.

Using result of appendix A ( Eq.(A.12)) we have

A(2) =
1

16π2

(

Lε − ln
m2

µ2

)
∫

d4x(V (x))2 + A
(2)
fin , (2.18)

with the finite term

A
(2)
fin =

1

128π4

∫

q3dq|Ṽ (q)|2
[

2 −
√

q2 + 4m2

q
ln

√

q2 + 4m2 + q
√

q2 + 4m2 − q

]

. (2.19)

Here as well as in the case of Green’s function the finite terms will be evaluated
numerically. But before discussing the numerical evaluation we will have to consider
the divergent parts, i.e., we have to consider the renormalization in the one-loop and
Hartree approximations.

2.3 Renormalization conditions

As it was already mentioned in the introduction of this chapter we will consider two
different re normalizations: the MS scheme and a ’physical’ scheme where we try to
keep the effective potential close to the tree level one. While the MS prescription
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2.4. Renormalization in the one-loop approximation

is more or less straightforward, the renormalization conditions for the ’physical’
scheme have to be discussed in some detail.

Because the bounce is not homogeneous in space-time one should use for the
computations the effective action, this is what we have done until now. However,
as we want to put some ”physical” conditions on the quantum corrections and
get renormalization conditions, we use the effective potential in order to fix the
parameters of the two vacua between which the tunneling takes place.

The bounce solution is defined by the false vacuum boundary condition r → ∞,
i.e. φ(r) → 0 and M(r) → m2 as r → ∞. It is essential to maintain this asymptotic
behavior of the bounce in one-loop and Hartree approximations. In other words we
require that the left minimum of the effective potential remains at φ = 0:

Ueff(0) = U(0) = 0 , (2.20)

U ′
eff (0) = U ′(0) = 0 . (2.21)

Next, we require that the mass remains the bare mass, i.e. the curvature of effective
potential at φ = 0 is unchanged

U ′′
eff(0) = U ′′(0) = m2 . (2.22)

Furthermore, it is reasonable to fix the true vacuum of the effective potential at its
tree level value:

U ′
eff (φ+) = 0 . (2.23)

The last condition we can require is the conservation of the energy difference between
two vacua:

Ueff(φ+) = U(φ+) = −ε . (2.24)

Of course the exact shapes of the effective potential in the semiclassical, one-loop
and Hartree approximations will be different, but the two vacua, specified by the
behavior near the two minima, will be similar to the tree level ones.

2.4 Renormalization in the one-loop approximation

For the one-loop backreaction case we choose the counterterm potential to be a
fourth order polynomial of field φ with the following parameterization

δU = −δL = δρφ+
1

2
δm2φ2 − δηφ3 +

1

8
δλφ4 , (2.25)
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where we have already taken into account that there will be no φ-independent “cos-
mological constant” term.

The detailed computation of the counterterms for the ’physical’ renormalization
conditions is given in the Appendix B. Here we present only the results:

δρ = −12ηm2

64π2
(Lε − ln

m2

µ2
+ 1) , (2.26)

δm2 =
3

32π2
(12η2 + λm2)

(

Lε − ln
m2

µ2

)

+
3λm2

32π2
, (2.27)

δη =
9ηλ

32π2

(

Lε − ln
m2

µ2

)

+ δηf , (2.28)

δλ =
9λ2

32π2

(

Lε − ln
m2

µ2

)

+ δλf . (2.29)

The finite terms δηf and δλf are the solutions of a system of linear equations given
in Appendix B.

The corresponding counter terms in the MS scheme are, by definition, just the
parts proportional to Lε. However, we have to deviate slightly from this convention
and have to choose the linear counter term δρφ to coincide with the one for the
’physical’ scheme, so δρ has to be chosen as in Eq. (2.26)); otherwise the false
vacuum is shifted away from its tree level position φ = 0. All other finite parts are
set zero. A more detailed discussion of this point is given in the corresponding part
of Appendix B.

With these counterterms the equations of motion and the effective action of the
bounce become finite. Let us discuss them in more details.

The equation for the bounce profile in one-loop approximation is given by

φ′′ +
3

r
φ′ − U ′(φ) + δU ′(φ) +

1

2
U ′′′(φ)F = 0 . (2.30)

Using everything we have discussed in the previous sections the fluctuation term
and the derivative of counterterm potential in the equation of motion are given by

δU ′(φ) +
1

2
U ′′′F = δρ + δm2φ− 3δηφ2 +

1

2
δλφ3

+
1

2
(3λφ− 6η)

[

− m2

16π2

(

Lε − ln
m2

µ2
+ 1

)

− 1

16π2

(

3

2
λφ2 − 6ηφ

)(

Lε − ln
m2

µ2

)

+ F (1)
fin + F (2)

]

.
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2.4. Renormalization in the one-loop approximation

After inserting the explicit expressions for counterterms, we see that all divergent
terms cancel and one gets a finite expression for the sum of the fluctuation term and
the counterterm potential

δU ′(φ) +
1

2
U ′′′F = −3δηfφ

2 +
1

2
δλfφ

3 +
3

2
(λφ− 2η)(F (1)

fin + F (2)) .

So the finite equation for the bounce profile in the ’physical’ renormalization scheme
is given by

φ′′ +
3

r
φ′ − U ′(φ) − 3δηfφ

2 +
1

2
δλfφ

3 +
3

2
(λφ− 2η)(F (1)

fin + F (2)) = 0 . (2.31)

In the MS scheme, after some simple transformations using the counterterms we
have discussed above, the equation for the bounce profile will have the form

φ′′ +
3

r
φ′ − U ′(φ) − 3m2λ

32π2
φ

(

1 − m2

µ2

)

+
3

2
(λφ− 2η)(F (1)

fin + F (2)) = 0 , (2.32)

which we get from the previous one if we put the δηf and δλf counterterms zero
and take into account the finite part of the leading order of the fluctuation integral,
as it does not cancel in this scheme.

The next quantity we should discuss is the effective action

Seff = Scl + S1−loop +

∫

d4xδU

= Scl −
m2

32π2

(

Lε − ln
m2

µ2

)
∫

d4xV (x) +
1

2
A

(1)
fin − 1

4
A

(2)
fin

− 1

64π2

(

Lε − ln
m2

µ2

)
∫

d4x(V (x))2 +
1

2
(lnD)(3) +

∫

d4xδU .

After some simple transformations the full one-loop action for the physical renor-
malization becomes

Seff = Scl +
1

2
(lnD)(3) − 1

4
A

(2)
fin +

∫

d4x

(

−δηfφ
3 +

1

8
δλfφ

4

)

. (2.33)

Note that the finite term A
(1)
fin cancels against the finite parts of the φ independent,

the linear and the mass counterterms.
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In the MS scheme the one-loop effective action has a similar form. If we put the
finite parts of the counterterms equal zero, except in δρ, we get

Seff = Scl +
1

2
(lnD)(3) +

1

2
A

(1)
fin − 1

4
A

(2)
fin

−3m2η

16π2
(1 − ln

m2

µ2
)

∫

d4xφ . (2.34)

2.5 Renormalization in the Hartree approximation

For the Hartree backreaction case all divergent parts are related. As a consequence
these divergences can be removed by one counter term

δUdiv = B(M4 −m4) =
1

64π2

(

Lε − ln
m2

µ2
+ 1

)

(M4 −m4) . (2.35)

Here we have used notations of Appendix C for the counterterm. The part propor-
tional to m2 is an infinite renormalization of the vacuum energy.

If we want to make the results of this approximation comparable with the ones in
the one-loop approximation we have to do the finite renormalization. So we define
the counterterm potential in Hartree approximation to be a sum of the divergent
counterterm (2.35) and the finite fourth order polynomial in field φ

δU = δUdiv + δΛfin + δρfinφ+
1

2
δm2

fin − δηfinφ
3 +

1

8
δλfinφ

4 . (2.36)

Using the detailed calculations of Appendix C we find the cosmological constant,
the linear and the mass counterterms to be zero. Two other counterterms satisfy a
system of linear equations which contain the effective mass, i.e., because of the gap
equation we get a set of nonlinear equations. These can be solved numerically using
an iterative procedure (see Appendix C).

Using this counterterms we find the finite gap equation of the following form:

M2(x) = m2 − 6(η + δηf )φ(x) +
3

2
(λ+ δλf)φ

2(x) +
3

2
λFfin(x) , (2.37)

with

Ffin(x) =
M2 −m2

16π2
+ F (1)

fin(x) + F (2)(x) . (2.38)

The finite equation for bounce profile becomes

−∆4φ+ U ′(φ) + δU ′
fin(φ) +

1

2
[−6(η + δηf ) + 3(λ+ δλfφ)]Ffin = 0 , (2.39)
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2.5. Renormalization in the Hartree approximation

and the effective action is

Seff = Scl + S1−loop −
3λ

8

∫

d4x∆2(x) +

∫

d4xδU

= Scl +
1

2
(lnD)(3) +

1

2
A(1) − 1

4
A(2) − 3λ

8

∫

d4xF2
fin +

∫

d4xδU .

After some simple transformations the effective action for the ’physical’ renormal-
ization scheme becomes

Seff = Scl +
1

2
(lnD)(3) − 1

4
A

(2)
fin +

1

64π2

∫

d4xV 2(x) − 3λ

8

∫

d4xF2
fin(x)

+

∫

d4x

[

−δηfφ
3(x) +

1

8
δλfφ

4(x)

]

. (2.40)

Note that finite term A
(1)
fin cancels as a whole against some combination of the

counterterms.
Unlike the one-loop approximation in the Hartree MS scheme A

(1)
fin does not ap-

pear, it cancels with the finite part of the only counterterm we introduce in this
case. So that the effective action reduces to

Seff = Scl +
1

2
(lnD)(3) − 1

4
A

(2)
fin +

1

64π2

∫

d4xV 2(x) − 3λ

8

∫

d4xF2
fin(x) . (2.41)

In this case gap equation and the equation of motion do not contain any finite
counterterms

M2(x) = m2 − 6ηφ(x) +
3

2
λφ2(x) +

3

2
λFfin(x) , (2.42)

−∆4φ+ U ′(φ) +
3

2
(−2η + λφ(x))Ffin = 0 . (2.43)

As it was already mentioned in Appendix C, none of equations in Hartree approxi-
mation depend on renormalization scale. Due to the special structure of divergences
the µ dependence is removed automatically together with the divergent term.
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Chapter 3

Self-consistent bounce in 1+1

dimensions

Along with numerical results for the 3+1 dimensional case we will present numerical
results of the computations in 1+1 dimensions, and compare these results with the
corresponding ones in 3+1 dimensions. Therefore in this chapter we discuss briefly
the modifications, or more precisely the simplifications of the analytical background
presented in the previous chapters.

The initial motivation for considering the 1+1 dimensional model was the work
of Bergner and Bettencourt [45] who have computed the self-consistent corrections
for two systems: the kink in one space dimension and the bounce solution in two
Euclidean dimensions. In Ref. [46] we have reconsidered their approach, using
different methods for computing the quantum corrections, the methods we have
presented for 3+1 dimensional in the previous chapters.

3.1 Changes in Basic Relations

3.1.1 The model

We consider a scalar field theory in 2D, with Lagrange density

L =
1

2
∂µΦ∂µΦ − U(Φ) , (3.1)

where the potential is given as before by

U(Φ) =
1

2
m2Φ2 − ηΦ3 +

1

8
λΦ4 . (3.2)
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3.1. Changes in basic relations

The bounce is an SO(2) symmetric classical solution of the Euclidean field equations
(t → −iτ). Denoting the Euclidean variables by x1 = x and x2 = τ the radius
becomes r =

√

x2
1 + x2

2.
The classical Euclidean action is given by

Scl[φ] =

∫

d2x

[

1

2
(∇φ)2 + U(φ)

]

, (3.3)

and the bounce which minimizes this action satisfies

−∆2φ+ U ′(φ) = 0 , (3.4)

or in the radial form

−d
2φ

dr2
− 1

r

dφ

dr
+ U ′(φ) = 0 , (3.5)

with boundary conditions

dφ

dr
|r=0 = 0, φr→∞ = Φ+ , (3.6)

as in 4-dimensional case.
The form of the semiclassical transition rate remains the same, the only difference

appears in the S1−loop part, where ∆4 should be replaced by the Laplace operator in
two dimensions, ∆2. So the one-loop correction to the classical action is now given
by

S1−loop =
1

2
ln det′

−∆2 + U ′′(φ(~x))

−∆2 +m2
=

1

2
lnD[φ] , (3.7)

where m is the mass in the false vacuum, as before,

m2 = U ′′(0) . (3.8)

and the prime again denotes that the translation zero mode has to be removed and
that one replaces the imaginary frequency of the unstable mode by its absolute
value.

3.1.2 The one-loop and Hartree approximations for the 2D

bounce

There are no changes of principle in the formalism of the one-loop and Hartree
backreactions. All changes should be done are connected to the replacement of the
four dimensional partial derivatives with two dimensional ones.
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Chapter 3. Bounce in 1+1 dimensions

In the both approximations corresponding propagators are defined as

G−1(x) = −∆2 + M2(x) . (3.9)

The Green’s function is defined by the equation

(−∆2 + M2)G(~x, ~y) = δ2(~x− ~y) . (3.10)

The equation for the bounce profile in both cases is

−∆4φ+ U ′(φ(x)) +
3

2
[λφ(x) − 2η]F(x) = 0 , (3.11)

or using rotational symmetry,

−d
2φ(r)

dr2
− 1

r

dφ(r)

dr
+m2φ(r) − 3ηφ2(r) +

λ

2
φ3(r)

+
3

2
[λφ(r) − 2η]F(x)

∣

∣

∣

∣

|x|=r

= 0 . (3.12)

The structure of the effective masses remains as before.

3.1.3 Green’s function

Here as well as in the 4 dimensional case we consider generalization of the Green’s
function, which in equivalent to the introduction of an additional dimension, needed
for handling the translation mode. The translation mode we will not be discussed
again for the 2 dimensional case, as this discussion is similar to the one for 4 dimen-
sions.

The Green’s function satisfies

[−∆2 +m2 + V (r) + ν2]G(~x, ~x′) = δ2(~x− ~x′) , (3.13)

with

V (r) = −6ηφ(r) +
3

2
λ
(

φ2(r) + G(~x, ~x)
)

. (3.14)

The Green’s function can be expressed by the eigenfunctions of the fluctuation
operator

G(~x, ~x′, ν2) =
∑

α

ψα(~x)ψα(~x′)

ω2
α + ν2

. (3.15)
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3.1. Changes in basic relations

which satisfy
[−∆2 +m2 + V (r)]ψα(~x) = ω2

αψα(~x) . (3.16)

After the decomposition of the Hilbert space into angular momentum subspaces,
the radial wave functions Rnl(r) are eigenfunctions of the partial wave fluctuation
operator:

[

− d2

dr2
− 1

r

d2

dr2
+
l2

r2
+m2 + V (r)

]

Rnl(r) = ω2
nlRnl(r) . (3.17)

Then the Green’s function takes the form

G(~x, ~x′) =
∑

l

∑

n

eil(ϕ−ϕ′)Rnl(r)Rnl(r
′)

ω2
nl + ν2

. (3.18)

For the real computations again we will use the expansion of the Green’s function
in the modes. The free Green’s function is now given by

G0(~x, ~x
′, ν2) =

∫

d2k

(2π)2

ei~k(~x−~x′)

k2 + ν2 +m2
(3.19)

and for the expansion into partial waves one gets

G0(~x, ~x
′, ν2) =

1

2π

∞
∑

l=−∞

eil(ϕ−ϕ′)Il(κr<)Kl(κr>) , (3.20)

where r< = min |~x|, |~x′|, r> = max |~x|, |~x′| and κ2 = m2 + ν2. The modified Bessel
functions satisfy

[

− d2

dr2
− 1

r

d2

dr2
+
l2

r2
+ κ2

]

Bl(κr) = 0 , (3.21)

where Bl stands for Il or Kl. Their Wronskian is given by

Kl(κr)dIl(κr)/dr − Il(κr)dKl(κr)/dr = 1/r . (3.22)

The expansion of the exact Green’s function is based on the ansatz

G(~x, ~x′, ν2) =
1

2π

∞
∑

l=−∞

eil(ϕ−ϕ′)f−
l (r<, ν

2)f+
l (r>, ν

2) . (3.23)

The functions f±
l (r, ν2) satisfy the mode equations
[

− d2

dr2
− 1

r

d2

dr2
+
l2

r2
+ κ2 + V (r)

]

f±
l (r, ν2) = 0 , (3.24)
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Chapter 3. Bounce in 1+1 dimensions

and exactly the same boundary conditions as in the 4 dimensional theory.

From the technical point of view we introduce the functions h±(r, ν2) which in-
terpolate smoothly between the boundaries at r → 0 and r → ∞ and satisfy the
equations

{ d
2

dr2
+ [2κ

I ′l(κr)

Il(κr)
+

1

r
]
d

dr
}h−l (r, ν2) = V (r)[1 + h−l (r, ν2)] , (3.25)

{ d
2

dr2
+ [2κ

K ′
l(κr)

Kl(κr)
+

1

r
]
d

dr
}h+

l (r, ν2) = V (r)[1 + h+
l (r, ν2)] , (3.26)

which we have to solve numerically in a way it was described in the numerical part
of Sec.1.5. Finally the Green’s function is given by

G(~x, ~x′, ν2) =
1

2π

∞
∑

l=−∞

eil(ϕ−ϕ′)I−l (κr<)K+
l (κr>)(1 + h−l (r<, ν

2))(1 + h+
l (r>, ν

2) .

(3.27)

3.1.4 Fluctuation determinant

The formal discussion of the fluctuation determinant will be left out. There one
should just make changes corresponding to the change of number of dimensions.

The fluctuation determinant can be expressed by means of h̃l(∞, ν2) functions
(which are solutions of equation for h−

l (r, ν2) starting a r = 0)

detMl(ν
2)

detM
(0)
l (ν2)

= 1 + h̃l(∞, ν2) , (3.28)

and

ln D̃(ν2) =
∞
∑

l=0

dl ln
[

1 + h̃l(∞, ν2)
]

, (3.29)

where dl denotes the degeneracy, dl = 2 for l > 0 and dl = 1 for l = 0. As before
the fluctuation determinant in the transition rate formula refers to the fluctuation
operator at ν2 = 0 and therefore in the numerical computations we will just need
the functions h̃l(∞, 0) as for the Green’s function, except for the l = 1 mode.
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3.2. Renormalization

3.2 Renormalization

3.2.1 Divergences and the renormalization of the

non-perturbative part

It is well-known that renormalization in 1 + 1 dimensions requires only normal
ordering. This means that we have to redefine the Green’s function by

G(~x, ~x) → G(~x, ~x) − G0(~x, ~x) , (3.30)

which in the Hartree approximation will redefine the ∆(~x) as well. The last expres-
sion can be written in terms of h±l (r) functions

∆(~x) =

∞
∑

l=0

dlIl(mr)Kl(mr)
[

h−l (r) + h+
l (r) + h−l (r)h+

l (r)
]

. (3.31)

In addition one has to subtract the tadpole diagram in the fluctuation determinant
as well. The only divergent part of the perturbative expansion is

[

1

2
lnD

]

div

=
1

2

∫

d2xV (r)G0(~x, ~x) , (3.32)

which has to be removed. It is less trivial to remove it from the non-perturbative
part. It was computed using the partial waves. Now we notice that the part we
want to remove is of order V (r), so in the partial waves it should be given by the
contributions of the first order in V (r). This is easy to compute. One just calculates

the first order contribution h̃
(1)
l (r) solving numerically the mode equation

{ d
2

dr2
+ [2m

I ′l(mr)

Il(mr)
+

1

r
]
d

dr
}h̃(1)

l (r) = V (r) , (3.33)

and then subtracts it from contribution to the fluctuation determinant of a l partial
wave

dl ln(1 + h̃l(∞)) → dl

[

ln(1 + h̃l(∞)) − h̃
(1)
l (∞)

]

. (3.34)

The normal ordering is not unique. It depends on the mass used. In our calcula-
tions we use the mass of the false vacuum. It can be changed and this change will
correspond to the redefinition of the couplings of our model η and λ.

Removing the divergent parts proceeds by adding counterterms corresponding to
the 1-loop and Hartree approximations.
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Chapter 3. Bounce in 1+1 dimensions

3.2.2 Counterterms for the 1-loop approximation

Here as well as in the 4 dimensional case we will compare two different renormaliza-
tion schemes, MS and the one with ”physical” renormalization conditions. These
conditions we leave as before, they should keep the effective potential close to the
tree-level one, i.e. they fix two vacua between which the tunneling takes place. The
computational technique we use for this purpose is the same as in the 4D case,
therefore we will not go into details and present only the results.

From the form of the divergent terms one can infer that for the renormalization for
the one-loop backreaction one just needs a polynomial of the second order. However,
in order to have the possibility to fix the position of both vacua we add to it finite
terms of the third and fourth order, so that it has a form

δU = −δL = Λ + δρφ+
1

2
δm2φ2 − δηfφ

3 +
1

8
δλfφ

4 . (3.35)

Using the conditions we have discussed in Sec. 2.3, we get the following counterterms

Λ = 0 ,

δρ = −3η

4π

(

Lε − ln
m2

µ2
− 1

)

, (3.36)

δm2 =
3λ

8π

(

Lε − ln
m2

µ2
− 12η2

m2λ
− 1

)

.

For the finite counterterms δηf and δλf we get a system of two linear equations
which have to be solved numerically

−δηfφ
3
+ +

1

8
δλfφ

4
+ = −M2

+

8π
ln

M2
+

m2
− 3η

4π
φ+ +

3λ

16π

(

1 +
12η2

m2λ

)

φ2
+ (3.37)

−3δηfφ
2
+ +

1

2
δλfφ

3
+ =

36η2

8πm2
φ+ − 3λφ+ − 6η

8π
ln

M2
+

m2
. (3.38)

In the MS scheme we do not add finite terms, but to keep the local minimum of
effective potential at the tree-level minimum we again have to introduce a finite linear
counterterm, exactly as we have done in the 4 dimensional case. The counterterms
are

δρd = −3η

4π
Lε , (3.39)

δm2
d =

3λ

8π
Lε (3.40)
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and

δρf =
3η

4π

(

ln
m

µ2
+ 1

)

. (3.41)

The equation for the bounce profile in the scheme with ’physical’ renormalization
conditions will be

−d
2φ

dr2
− 1

r

dφ

dr
+ U(φ) +

1

2
U ′′′(φ)F (1) +

3η

4π
− 3λ

8π

(

1 +
12η2

m2λ

)

φ

−3δηfφ
2 +

1

2
δλfφ

3 = 0 . (3.42)

The same equation in the MS scheme is

−d
2φ

dr2
− 1

r

dφ

dr
+ U(φ) +

1

2
U ′′′(φ)F (1) +

3η

4π
− 3λ

8π
ln
m2

µ2
φ = 0 . (3.43)

It depends on the renormalization scale µ as it was to expected.
And at last the quantity of our interest, the effective action, is given by

Seff = Scl +
1

2
(lnD)(2)

+

∫

d2x

[

3η

4π
φ− 3λ

16π

(

1 +
12η2

m2λ

)

φ2 − δηfφ
3 +

1

8
δλfφ

4

]

(3.44)

and

Seff = Scl +
1

2
(lnD)(2) +

∫

d2x

[

3η

4π
φ+

3λ

16π
ln
m2

µ2
φ2

]

. (3.45)

for the scheme with ’physical’ renormalization conditions and for the MS scheme,
respectively.

3.2.3 Counterterms for the Hartree approximation

For 2D case of Hartree backreaction is again true, as a consequence of the structure
of this approximation, that the divergences can be removed by one counterterm

δUdiv = B(M2 −m2) =
1

8π

(

Lε − ln
m2

µ2
− 1

)

(M2 −m2) . (3.46)

In addition we consider the finite counterterm potential

δUfin = δρfφ+
1

2
δm2

f − δηfφ
3 +

1

8
δλfφ

4 . (3.47)
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Chapter 3. Bounce in 1+1 dimensions

The renormalization conditions we require fix the linear and quadratic terms to be
zero

δρf = 0 , (3.48)

δm2
f = 0 (3.49)

and for the last two terms we get the linear system of two equations

δηfφ
3
+ − 1

8
δλfφ

4
+ =

M2
+

8π

(

ln
M2

+

m2
− 1

)

− 3λ

8
∆2

+ +
m2

8π
, (3.50)

1

2
δλfφ

3
+ − 3δηfφ

2
+ = −3

2
∆+ ((λ+Df)φ+ − 2(η + Cf)) . (3.51)

In the MS scheme we get only one counterterm given by Eq. (3.46). So that the
effective potential in this case is

Ueff =
m2

2
φ2 − ηφ3 +

λ

8
φ4 +

M2

8π

(

ln
M2

m2
− 1

)

− m2

8π
ln
m2

µ2
− 3λ

8
∆2 . (3.52)

The equations for the bounce profile will coincide with ones in 4D case

−∆4φ+ U ′(φ) + δU ′
fin(φ) +

1

2
[−6(η + δηf) + 3(λ+ δλfφ)]Ffin = 0 (3.53)

and

−∆4φ+ U ′(φ) +
3

2
(−2η + λφ(x))Ffin = 0 , (3.54)

for the ’physical’ renormalization scheme and the MS scheme, respectively, where
the finite part of fluctuation integral is Ffin = F (1) − 1

8π
. Finally the expressions of

the effective action are

Seff = Scl +
1

2
(lnD)(2) − 3λ

8

∫

d2xF2
fin

+

∫

d2x

[

− 1

8π
V (x) − δηfφ

3 +
1

8
δλfφ

4

]

(3.55)

and

Seff = Scl +
1

2
(lnD)(2) − 1

8π

∫

d2xV (x) − 3λ

8

∫

d2xF2
fin , (3.56)

again for the case with ’physical’ renormalization conditions and for the MS scheme,
respectively.

47



Chapter 4

Numerical Results

The subject of this Chapter are the numerical results obtained in the 4D and 2D
model we have considered. Most of the computational technique was already dis-
cussed in the appropriate places during the description of the analytical part. Here
we will briefly address the question of obtaining the bounce profile and some tricks
we have used in order to cover as big a part of the parameter space as possible.

The theory we consider has a 2 dimensional parameter space (the third parameter,
the mass m we have set to be equal unity). Instead of the couplings η and λ which
we have used up to now we introduce a more convenient parameterization which
makes transparent the relative importance of the quantum part of the action and of
the classical one.

In the both cases, for 4D model as well as for the 2D, we first discuss the question
of convergence of bounce profile. Then we present the relative changes of the effective
action and transition rate in the two approximations we consider here, as compared
to the semiclassical approximation. The last section of this chapter will dedicate to
the question of dependence of our results on the renormalization scale we choose.
One should notice that all results before (Sec. 4.2 and Sec. 4.3) are computed for
µ = m = 1.

4.1 General remarks

4.1.1 α − β parameterization

For a better understanding of our numerical results, we have decided to use so called
’α−β’ parameterization (see for example [12, 47, 48]), which makes transparent the
relative importance of the classical and quantum parts of effective action.
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Chapter 4. Numerical results

We introduce the parameters

α = λβ , (4.1)

β =
m4

4η2
, (4.2)

and the rescaling of the coordinates xµ = Xµ/m for µ = 0, 1, 2, 3 and of the field
φ =

√
βφ̂. In this new parameterization the classical action takes the form

Scl(φ) = βŜcl(φ̂) , (4.3)

where the rescaled classical action Ŝcl(φ̂) is given by

Ŝcl[φ̂, α] =

∫

d4X

(

1

2
(∇φ̂)2 + U(φ̂)

)

. (4.4)

Here the tree level potential with the rescaled field depends only on the parameter
α

U(φ̂) =
1

2
φ̂2 − 1

2
φ̂3 +

α

8
φ̂4 . (4.5)

From this expressions one can understand the meaning of the parameters α and
beta. The parameter α parameterizes the shape of the potential: for small value of
α potential is strongly asymmetric, for α = 0 the second minimum disappears, for
α → 1 two minima become degenerate and the potential is symmetric double-well
potential. That is so called thin-wall approximation (for details see, for example,
Appendix A in Ref.[18]). For values of α larger than 1 the rôles of false and true
vacua are interchanged, so one can restrict the values of the parameter α to the
interval from 0 to 1.

The parameter β controls the size of the quantum corrections. In the semiclas-
sical approximation the one-loop action as well as the classical one depends on the
parameter α only, i.e.

Seff = βŜcl[φ̂, α] + S1−loop(α) , (4.6)

so for large values of β the effective action is dominated by classical part and for small
β by the quantum correction. Of course this is not really true after the backreaction
is included. But one can still expect the effects of backreaction to be small for large
β and relatively important for small values of the parameter β.

In our numerical computations we have set mass m equal unity. So all dimension-
ful parameters and results are given in the mass units.

For large values of β the tunneling rate gets strongly suppressed, so we will be
mostly interested in small values of β.
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4.1. General remarks

4.1.2 The bounce profile

The self-consistent profiles φ(r) are obtained by iteration, each iteration consists
of two steps: in the first step we solve the equation for the bounce profile φ(r)
with a given F(r). In the second step the fluctuation integral F(r) is computed for
the profile φ(r) obtained in the first step. The iteration proceeds until the largest
difference along the profiles of two subsequent iterations maxr ∆φ(r) is smaller than
10−5. Of course in the very first step for a new parameter set the function F(r)

 0.5
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r)

xβ
1/
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r

Figure 4.1: Behavior of φ̂(r) = φ(r)/
√
β for β = 20, 0.5, 0.2 and 0.05 at α = 0.6,

for Hartree with renormalization conditions. These profiles are seen
to increase with decreasing β while they are independent of β in the
semiclassical approximation.

is not yet known and we would start by solving the classical equation of motion.
However, if the quantum corrections are large it is dangerous to start the iteration
with F(r) ≡ 0, we would start with a bad approximation for φ(r), and the procedure
might diverge immediately. In order to avoid this problem we have organized our
numerical code in such a way that we run a series of solutions for fixed α starting
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Chapter 4. Numerical results

with a large value of β. There the quantum corrections are small. We then stepwise
decrease the values of β, using the self-consistent value of F(r) for a given β in the
first iteration step of next lower value of β.

In the semiclassical approximation the profiles φ(r) are, at fixed parameter α and
arbitrary values of β, determined by one universal profile

φ̂α(r) = β−1/2φ(r) (4.7)

which is independent of β. Therefore, to make transparent the changes of the profile
by the backreaction for fixed α but different values of β, i.e. different amount of
quantum corrections we will can display the normalized profiles

φ̂(r) = β−1/2φ(r) (4.8)
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Figure 4.2: The fluctuation integral F(r) for the Hartree backreaction (case III) as
a function of r for α = 0.6. The curves display a change with β (the
parameter β takes the values 10, 0.1, 0.05.

For large β, when the backreaction is weak, these profiles are expected to be
independent of β and close to φ̂α(r). This was observed for the β & 10. The β-
dependence observed for smaller values of β depends on the type of backreaction
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and on the renormalization conditions. In Fig. 4.1 we present the bounce profile in
the Hartree approximation with the physical renormalization conditions for α = 0.6
and different values of β. The corresponding fluctuation integral one can see in Fig.
4.2 (we have just taken different values of β to make the changes visible).

With decreasing β the normalized profiles get higher for the 4D model. The change
in profile becomes substantial for the very small values of β ' 0.05. In 2D model
gets lower with decrease of β. If β becomes smaller than 1, this decrease becomes
substantial. For some lower limiting value of β ' 0.8 the iterative procedure ceases
to converge, during the iteration the profile collapses to φ(r) ≡ 0.

10 20 30 40 50

N
14

15

16

17

Σ
N

Figure 4.3: Convergence of the sum over the angular-momentum as a function of
maximal value N . α = 0.5, β = 1 for the 4D model; circles correspond
to ΣN ; stars - Σas

N .

For the 3+1 dimensional case the required accuracy is obtained after 20-30 it-
erations in the whole parameter space, this takes about 3 min of CPU time. In
the 1+1 dimensional case, for parameters near the collapse of procedure, one needs
80-100 iterations, this takes about 5 min with 1.7 GHz processor. In the regions
of parameter space far away from the critical points we again need only 20 − 30
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iterations. .

4.1.3 The mode functions

The functions h
(i)
l and h

(i)
l have to be determined by solving the Eqs. (1.5.3). Numer-

ically this is done using the Runge-Kutta integration method [49]. The integration
should be extended up to r = ∞. In fact we have integrated until the maximal
value R = rmax for which the profile φ(r), and correspondingly V (r) are known.
This value R has to be large enough so that the field φ(r) is sufficiently close to
its value φ = 0 in the false vacuum. Then we are also in the region where V (r)
has become sufficiently small and where the mode functions have become constant.
As φ(r) decreases exponentially, this can be ensured with moderate values of R. In
numerical computations we have taken R = rmax = 20.

The expressions for finite part of the Green’s function and fluctuation determinant
imply summation over the angular momentum n. The single terms in the sum
(including the degeneracy factor) are proportional to the n−3. This has been verified
numerically for the 2D as well as for the 4D case and presents one of the cross-checks
of the procedure and accuracy. The sum over n was separated in two parts. Until
some value N = nmax it was computed exactly. The rest of sum from N to ∞ was
added in its asymptotic form. In order to parameterize the terms at large n > N
which represent the asymptotic tail we have used a fit A/n3 +B/n4 +C/n5 for the
five highest terms (N−5, ..., N) in the sum. In the Fig. 4.3 we show the dependence
of ΣN , the exact sum up to n = N , and of the sum Σas

N which has the sum over the
asymptotic tail appended. As to be expected the latter one converges much faster
to the asymptotic value Σ∞.

The convergence is seen to be excellent in both 4D and 2D cases. In the 3+1
dimensional model one has to extend up to N = 40−50, whereas in 1+1 dimensions
it is sufficient to choose N = 25 − 30. So for the computations in the 4 dimensions
we have set N = 50 and in 2 dimensions N = 25.

4.1.4 Some notations

To make the discussion of the results in different approximations and different renor-
malization schemes simpler we introduce the following short notations:

• Case I: one-loop back-reaction, with renormalization conditions.

• Case II: one-loop back-reaction, with MS renormalization.
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• Case III: Hartree back-reaction, with renormalization conditions.

• Case IV : Hartree back-reaction, with MS renormalization.

4.1.5 The effective potential

Before we go on with the detailed presentation of results for the 3+1 and 1+1 di-
mensional models, we have to see the changes due to the to different renormalization
schemes we implement in our computations. The best possibility to do this is to
show the effective potential. In Fig. 4.4 five curves are plotted for α = 0.7 and
β = 0.3: the tree-level potential (solid line) and four effective potentials for two
approximations and two renormalization schemes. As one can see the effective po-
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Figure 4.4: The effective potential for α = 0.7 and β = 0.3. solid line: tree level
potential; dotted line: case I; dash-dotted line: case II; short-dashed
line: case III; long-dashed line: case IV ; cases I and III are hardly
visible.

tentials for case I and case III are very close to the tree-level one over the whole range
and exactly coincide in the minima (are hardly visible). For two other cases, in MS
scheme the position of true vacuum is shifted and the energy difference between two
vacua differs from the tree-level one as well.
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4.1.6 Dependence on the renormalization scale

We have studied dependence of our results on the renormalization scale. In some
sense the change of µ scale corresponds to the change of couplings, the connection
between these changes is given by the renormalization group.

Here in general we have chosen µ = m for convenience. Usually one considers
µ2 ' q2 as an appropriate scale, where q2 is a momentum transfer squared of a
scattering process. Here the “external momenta” can be related to the size of the
classical solution. So a reasonable value for µ2 can be obtained by computing the
average of momentum q2 in the classical solution:

q2 =

∫

dq q3 |ϕ(q)|2 q2

∫

dq q3 |ϕ(q)|2
(4.9)

We find that the typical average momentum q has values between 0.5 and 1. This
shows that our standard choice was reasonable. Nevertheless we have computed
the effective action for a range of values between µ = 0.5 and 2, for the one-loop
backreaction with the MS scheme for different values of α and β parameters. The
dependence on the renormalization scale within this range is very small, the absolute
values of the differences are 10−4 − 10−3 while absolute value of action is of order
103 − 104.

4.2 Results of 3+1 Dimensional Model

4.2.1 The translation mode

Discussion of numerical results we start with the translation mode and notice that
the squared frequency of the mode in the one-loop and Hartree backreaction which
we identify as translation zero mode ω2

t is generally of the order 10−3 in mass units.
It is not much larger than in the semiclassical approximation, where as one expects,
it is located closer to the zero. We find it at 10−5 − 10−4. As already mentioned
above, it does not stay so small near the critical points. It becomes at most of order
10−1 there.

4.2.2 Effective actions

As mentioned in Sec. 4.1 the effective action in the semiclassical approximation can
be written in the form

Ssemi−cl = βŜcl[φ̂] + S1−loop , (4.10)
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Figure 4.6: Ratio of Seff and Ssemi−cl as a function of β for α = 0.2; (for notation
see figure 4.5).
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where Ŝcl and S1−loop are functions of α only. To make the deviations due to the
backreaction more transparent we display the ratio of the effective action with back-
reaction in various approximations to the semiclassical one

ρ =
Seff

βŜcl[φ̂] + S1−loop

=
backreaction

semiclassical
. (4.11)

It is obvious that the ratio should go to unity for β → ∞ as η becomes η = 1/2
√
β

and λ = α/β goes to zero. Actually already for β & 5 ρ is very close to one.
We present the ratio (4.11) in n Figs. 4.5, 4.6 and 4.7 for α = 0.05, α = 0.2 and

α = 0.6 respectively. All figures display the deviation for four different cases. One
can see that for all values of α the ratio goes to 1 for β & 5. However, for α = 0.05
and α = 0.2 ρ is always larger than 1 for all four cases. But for α = 0.6 ρ > 1 in
the one-loop approximation and ρ < 1 in the Hartree approximation.
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Figure 4.7: Ratio of Seff and Ssemi−cl as a function of β for α = 0.6; (for notation
see figure 4.5).

One should notice that in the semiclassical approximation the effective action is
mostly dominated by the classical part of action and one-loop part has a relatively
small contribution. For example, for α = 0.6 Ssemi−cl = 395.08β + 13.03 where
the first term is the classical action, and the second one the one-loop action, or for
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4.2. Results of the 4D model

α = 0.05 Ssemi−cl = 97.87β + 3.562. This dominance of the classical action is not
always true then the quantum backreaction is included. For large values of β the
dominance holds, but for the small β the quantum corrections become of the same
order as the classical action. However, one should notice that the increase of the
ration ρ is not due to the one-loop and double- bubble part. The contribution of
the classical action is equally important. It strongly deviates from its semiclassical
value, as a result of the strong change in the φ(r) profile (The separation of the
effective action in the classical and quantum parts is very qualified after the quantum
backreaction is included)

As one sees on the vertical axis the deviation from the semiclassical action is quite
strong in the whole parameter space. And if we recall that we are considering the
relative changes of the effective action and the effective actions are of the order of
a few hundred this implies a very substantial changes (several magnitudes) in the
transition rates. Therefore, as one expects the next quantity we will present is the
transition rate.

We have not studied the region α > 0.8 in detail, as here we approach the thin-
wall limit and the classical action becomes so large that the semiclassical action is of
order of few thousands (e.g. 1500β for α = 0.8) and correspondingly the transition
rates are incredibly small.

4.2.3 Transition rates

The transition rate we have for to discuss in the same way as the effective action,
we consider the ratio of the transition rate to its semiclassical value. Of course, in
principle it reflects the behavior of the effective action, but also includes the ratio of
the prefactors. We present again three plots with logarithm of the ratio of transition
rates as a function of parameter β for α = 0.05, α = 0.2 and α = 0.6, in Figs. 4.8,
4.9 and 4.10 respectively.

As we see the ratios amount several orders of magnitude. For small and middle
values of α all four cases with backreaction are suppressed with respect to the
semiclassical rate. But for the large α the Hartree backreaction rates are suppressed
with respect to the semiclassical one in both cases. For the one-loop backreaction
the rates are enhanced (for all α & 0.5).
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Figure 4.9: Logarithm of the ratio Γ/Γsemi−cl as a function of β for α = 0.2; (for
notation see figure 4.8.
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4.3 Results of 1+1 Dimensional Model

The numerical results of the 2D model are in most points very similar to the ones
for the 4D model. Therefore we will not discuss them in details and do only the
short comments.

4.3.1 Convergence of iteration procedure and some remarks

We present the numerical results for the middle and large value of α parameter
α = 0.3 and α = 0.6 and cover the range between 0.8 . β 6 20 in β parameter.
In the order to avoid the convergence of iteration procedure over the not suitable
choice of initial value for the fluctuation integral, we use the same technic as in the
4D model and let the numerical code run for a fix value of α, starting from the large
values of β, slowly decreasing it and using the self-consistent value of the fluctuation
integral F(r) for the next step.

On the Fig. 4.11 we present the normalized start value of field φ(0)/
√
β. As

one can see the plot ends around β ' 0.8 for all four schemes we consider. Below
this value the iteration procedure converges. The expression of this phenomena one
finds in the collapse of the bounce profile to φ(r) ≡ 0, in the rapid increase of the
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effective action and in the large squared frequency of the zero mode ω2
t which near
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Figure 4.11: Behavior of φ(0)/
√
β near the critical values for α = 0.6. Short-dashed

line: case I; full squares: case II; solid line: case III and full circles:
case IV .

the critical point becomes of order 10−1.
We have tried to modify the iteration procedure by implementing so called ”over-

relaxation” scheme, where one defines the portion of the result in each iteration step
to be taken for the further computations:

fi+1(r) = σfi(r) + (1 − σ)(Ofi)(r) . (4.12)

Here the function fi(r) denotes the i’th iteration of a function to be iterated, in our
case φ(r) or M(r). O stays for the operator producing the new iteration result,
profile or effective mass and the number σ defines the relative portion of the i’th
step and the new iteration results. For the normal iteration σ = 0. Implementation
of this scheme in the numerical code and running it for different values of σ has
shown the common runaway behavior below the critical value of β.

We have investigated the behavior of another quantities important for the com-
putation of bounce profiles, like fluctuation integral (it appears in the equation
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of bounce profile multiplied by factor λφ = αφ/β, with small β this contribution
becomes more and more important) and the sums over the partial waves in the
fluctuation determinant and fluctuation integral. The fluctuation integral shows no
anomaly in the critical region, that means that the instability of the bounce solution
is not result of appearance of a additional unstable mode in the fluctuation operator
(if squared frequency of such mode will cross zero the fluctuation integral will get
very large contribution proportional to the square of its wave function).

So we have not been able to find the reason for the unusual behavior of iteration
procedure. All included quantities shown no anomalies. Therefore we conclude that
the disappearance of the bounce solution under the critical value of β is a genuine
phenomenon and not a technical problem of iteration scheme. We suspect that
bounce solution just does not exist below this critical value and that the decay of
the false vacuum proceeds via some different mechanisms.

The translation zero mode is found at ω2
t = 10−3 − 10−2 for the most part of the

parameter space. Near the critical value of β it receives the largest values, which
are so about 0.1.

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0  1  2  3  4  5  6

S
ef

f/S
se

m
i-c

l

β

Figure 4.12: Ratio of Seff to Ssemi−cl as a function of β for α = 0.3; for this and the
next figure: dotted line with full squares: case I; empty squares: case
II; long-dashed line with full circles: case III; empty circles: case IV.

62



Chapter 4. Numerical results

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 0  1  2  3  4  5  6

S
ef

f/S
se

m
i-c

l

β

Figure 4.13: Ratio of Seff and Ssemi−cl as a function of β for α = 0.6; (For notation
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4.3.2 The effective actions and transition rates

To make the influence of the backreaction more transparent we plot the ratios of
effective actions to the semiclassical effective action, as we have done for the 4D (see
(4.11)).

In Figs. 4.12 and 4.13 are displayed results for the α = 0.3 and α = 0.6 parameters
(for the very small values of α the critical point is found at relatively large β, this
explains our choice of parameters to display).

As in the 4D model for both values of α the ratio goes to 1 for β & 6 and they
show the same behavior for the middle and large values of β: ρ < 1 for the one-loop
approximation and is ρ > 1 for Hartree approximation. And as one can see in most
cases the deviation from the semiclassical action is quite sizeable (goes till 30%).

The question of dominance of the different parts included in effective action here
is very similar to the one for the 4D case. In the semiclassical approximation the
relative contribution of the one-loop part imply 10−3 − 10−4 to the classical part.
The situation changes when the quantum backreaction is included. For small values
of β the quantum corrections become of the same order as the classical part.

Again we consider the ratio of the transition rate for the four schemes to the
semiclassical one. Of course we show two plots for α = 0.3 and α = 0.6 in Figs. 4.14
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and 4.15 respectively. To make changes more transparent we plot the logarithm
of the ratio as a function of β. As one can see the ratios amount several orders
of magnitude. For both values of α the ratio with backreaction is suppressed with
respect to the semiclassical ratio.

4.4 Summary

We have presented results for the 4D and 2D models using the α−β parameterization
for four different cases: two schemes for incorporating the quantum backreaction and
two renormalization schemes. The effective action and transition rate were compared
to the values obtained in the semiclassical approximation. The deviations become
very sizeable for small values of β and amount several orders in magnitude to the
transition rates. These deviations, of course, are approximation and renormalization
scheme dependent. We find differences in the behavior of system in 3 + 1 and 1 + 1
dimensional models.

In 4 dimensional case we are able to make a computations for the most part of
the parameter space. Here the deviation from the semiclassical approximation is
found to be very sizeable. For α > 0.5 the corrections in action amount 30% and
the transition rate is suppressed for the Hartree approximation and enhanced in
one-loop approximation. For the α < 0.5 the corrections become of order 100% and
the transition rate is always suppressed.

In the 2 dimensional model we were not able to cover the whole parameter space,
as the iteration procedure diverges for β . 0.8. The effective action near the region
of critical value in β increases rapidly and the corrections amount 20 − 30%. The
correction stay suppressed with respect to the semiclassical approximation.
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”To the inventor the products of his imagination
appear necessary and natural, such that he does
not look at them as objects of the mind, but rather
as things belonging to reality, and thus he wishes
them to be seen like that.”

Albert Einstein



Chapter 5

A 1+1 Dimensional Model of Global

Tunneling

In this chapter we will describe the 1+1 dimensional model for the single scalar
field, again with the asymmetric double-well potential. The system is assumed to be
initially localized in the false vacuum and to tunnel globally into the true vacuum.
This is possible only if the space is compact, here we consider a one-dimensional
circle. We decompose the wave function in a discrete set of degrees of freedom.
For the nonzero modes we apply the Gaussian approximation, while for the zero
we solve the Schrödinger equation. The interaction of the zero mode with nonzero
modes is given by fluctuation integral, which contains some divergences and should
be renormalized. Another divergent quantity is energy density. We will work in the
Schrödinger representation.

The first section is devoted to the general description of the model. In the second
section we give some overview of the time-dependent variational principle. In the
next section this principle is applied to the model we consider here. In the last section
aspects of renormalization are discussed, where we use the technique discussed in
the publications on the nonequilibrium dynamics (see for example, Ref. [50, 51, 52]).

5.1 The model and basic relations

We consider a scalar quantum field theory in 1+1 dimensions with a compact space,
i.e. on a manifold R × S1. As one can see in the Fig. 5.1 the space is represented
by a circle of radius a and an infinite time axis.

The action is given by

S =

∫ 2πa

0

dx

∫

dt

[

1

2
Φ̇2 − 1

2

(

∂Φ

∂x

)2

− U(Φ)

]

, (5.13)
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t
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x

Figure 5.1: 1+1 dimensional compact space.

with asymmetric double well potential, which we choose in the following parameter-
ization

U(Φ) =
1

2
m2Φ2 − ηΦ3 +

λ

8
Φ4 . (5.14)

It has two minima (see Fig. 5.2), one at Φ = Φ− = 0 and the a second one at

Φ+ =
3η

λ
+

√

9η2

λ2
− 2m2

λ
. (5.15)

As we consider the 2 dimensional theory the field Φ is dimensionless, and η and λ
have the dimension mass2. The upper limit of integral corresponds to the periodic
boundary conditions in x.

We introduce the expansion into normal modes

Φ(x, t) = ϕ0(t) +
∞
∑

n=−∞

ϕn(t)eiknx , (5.16)

with the momenta defined as
kn =

n

a
. (5.17)

Applying this expansion we get the action in the form

S = 2πa

∫

dt

[

1

2
ϕ̇2

0 +
1

2

∑

n6=0

ϕ̇nϕ̇−n − 1

2

∑

n

ω2
nϕnϕ−n (5.18)

+η
∑

nn′

ϕnϕn′ϕ−n−n′ − λ

8

∑

nn′n′′

ϕnϕn′ϕn′′ϕ−n−n′−n′′

]

,

70



Chapter 5. The model in 1+1 dimensions

Φ

U(Φ)
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Figure 5.2: Double-well potential.

with

ω2
n = m2 +

n2

a2
. (5.19)

The field Φ should be real. This requirement leads to the condition ϕ−n = ϕ†
n.

Using this condition one can introduce the real fields for n 6= 0 via

ϕ±n =
1√
2
(ϕn1 ± iϕn2), n > 0 . (5.20)

Going to the Schrödinger representation one can write the following Hamiltonian

H = 2πa

{

− 1

8π2a2

[

∂2

∂ϕ2
0

+
∑

n>0,j

∂2

∂ϕ2
nj

]

+
1

2

[

m2ϕ2
0 +

∑

n>0,j

ω2
nϕ

2
nj

]

−η
∑

nn′

ϕnϕn′ϕ−n−n′ +
λ

8

∑

nn′n′′

ϕnϕn′ϕn′′ϕ−n−n′−n′′

}

, (5.21)

where the index j stands for the real and imaginary part of the modes j = 1, 2.
In order to get rid of overall volume factors 2πa we introduce the rescaling for the
modes

ϕk = χk/
√

2πa . (5.22)
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In this convention the Hamiltonian takes the form

H = −1

2

[

∂2

∂χ2
0

+
∑

n>0,j

∂2

∂χ2
nj

]

+
1

2

[

m2χ2
0 +

∑

n>0,j

ω2
nχ

2
nj

]

−η′
∑

nn′

χnχn′χ−n−n′ +
λ′

8

∑

nn′n′′

χnχn′χn′′χ−n−n′−n′′ . (5.23)

In order to get rid of the volume factors in couplings we have redefined them in
following form η′ = η/

√
2πa and λ′ = λ/2πa. One should notice that for the

reasons which will get obvious in the future here we have still retained the complex
fields in the cubic and quartic parts

χ±n =
1√
2
(χn1 ± iχn2) . (5.24)

5.2 Time-dependent Hartree-Fock approximation

5.2.1 Time-dependent variational principle

The quantum mechanical time-dependent theory, i.e. the time-dependent Schrödinger
equation, can be derived by considering time dependent states |ψ, t > and requir-
ing that

∫

dt < ψ, t|i~∂t − H|ψ, t > be stationary against independent variations
of |ψ, t > and < ψ, t|. This variational principle was formulated by Dirac [53, 54]
and is equivalent to Hamilton’s principle. This variational principle will be applied
to trial wave functions of Hartree type. The resulting scheme is nonperturbative,
the solutions of the corresponding evolution equations contain arbitrary powers of
the coupling constants (partial resummation of the perturbation series). They will
take into account the quantum backreaction of the fluctuations onto themselves.
The time evolution of the Gaussian wave function in time-dependent variational
approximation was studied by Cooper and al. in Ref. [55].

In our discussion we use the time dependent Hartree-Fock approach, but we dif-
fer from the simulations in the out-of-equilibrium quantum field theory, where the
Gaussian wave function is used for all modes. We will separate the zero mode from
the others and consider it exactly. It is this mode, corresponding to a constant field,
which describes the global tunneling.
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5.2.2 Variational and Gaussian ansatzes

Now we make a variational ansatz for the wave function and impose a variational
principle:

Ψ(χ0, χn, t) = ψ0(χ0, t)
∏

n>0

ψn(χnj, t) . (5.25)

Furthermore, for the modes with n 6= 0 we make the ansatz of a Gaussian wave
function

ψn(χnj, t) =
e−iαn(t)

[2πσ2
n(t)]1/4

exp

[

−1

2

(

1

2σ2
n(t)

− i
sn(t)

σn(t)

)

χ2
nj

]

, (5.26)

while we do not further specify ψ0, it remains a general Schrödinger wave function,
i.e. its Schrödinger equation will be integrated exactly.

The time dependent variational principle now imposes the condition

δ

∫

dχ0

∏

n>0,j

dχnjΨ
†(χ0, χnj, t) (i∂t −H)Ψ(χ0, χnj, t) = 0 . (5.27)

We have suppressed the index j in the wave function, as later on we will find that
the dynamics is independent of it.

5.2.3 Separation of Hamiltonian and the Schrödinger equations

We have factorized the wave function into two different parts, the constant field
mode n = 0 which describes the global tunneling and which we consider exactly,
and the modes with n 6= 0 on which we apply Gaussian ansatz. So one expects
to get separate Schrödinger equations for them. Therefore first of all we rewrite
the Hamiltonian in a appropriate way, i.e. we split the Hamiltonian in the parts
corresponding to the zero mode, nonzero modes and the interaction between the
zero and nonzero modes and nonzero modes onto themselves.

The part of Hamiltonian H00 which exclusively contains the zero mode is given
by

H00 = −1

2

∂2

∂χ2
0

+ Ũ(χ0) , (5.28)

with the part of potential containing only zero mode

Ũ(χ0) =
1

2
m2χ2

0 − η′χ3
0 +

λ′

8
χ4

0 . (5.29)
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5.2. Time-dependent Hartree-Fock approximation

The parts bilinear in the quantum modes lead to the Hamiltonian

H0n =
∑

n>0,j

[

−1

2

∂2

∂χ2
nj

+
1

2
ω2

nχ
2
nj

]

. (5.30)

which contains only nonzero modes.
Due to the Gaussian ansatz for the n 6= 0 modes the expectation values of any

odd powers of n 6= 0 fluctuations vanish. So if we want to consider the interaction
between zero and nonzero modes we need to retain only terms bilinear in the n 6= 0
modes. So we should consider terms of the cubic and quartic in χn

[

∑

n,n′

χnχn′χ−n−n′

]

I0n

= 3χ0

∑

n6=0

χnχ−n = 3χ0

∑

n>0,j

χ2
nj (5.31)

and
[

∑

n,n′,n′′

χnχn′χn′′χ−n−n′−n′′

]

I0n

= 6χ2
0

∑

n6=0

χnχ−n = 6χ2
0

∑

n>0,j

χ2
nj . (5.32)

As result for the coupling between zero and nonzero modes we get the following
Hamiltonian

HI0n = (−3η′χ0 +
3λ′

4
χ2

0)
∑

n>0,j

χ2
nj , (5.33)

with the scaled couplings η′ and λ′, we have discussed in the previous section.
The part of the Hamiltonian cubic in the nonzero modes has a vanishing expec-

tation value. The quartic term does not vanish, it has the expectation value

<
∑

n,n′,n′′

χnχn′χn′′χ−n−n′−n′′ >= 3
∑

nj,n′j′

< χ2
nj >< χ2

n′j′ > . (5.34)

Here we have used the fact that the wave functions for n 6= 0 are Gaussian. The
related part of the Hamiltonian describes the self interaction of the nonzero modes.
It is given by

< HInn >=
3

8
λ′

[

∑

nj

< χ2
nj >

]2

=
3

2
λ′F2 . (5.35)

Applying the variational principle we get for the zero mode wave function the
Schrödinger equation

i∂tψ0(χ0, t) =

[

−1

2

∂2

∂χ2
0

+ Ũ(χ0) + (−6η′χ0 +
3λ′

2
χ2

0)F
]

ψ0(χ0, t) , (5.36)
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where only the zero mode part of Hamiltonian H00 and the interaction part between
zero and nonzero modes are presented. Here we have introduced the fluctuation
integral

F =
1

2
<
∑

n>0,j

χ2
nj > . (5.37)

It will be specified more after introduction of the mode functions fn(t).
For the nonzero modes, n 6= 0 we find the Schrödinger equation to be

i∂tψn(χn, t) =

[

−1

2

∂2

∂χ2
nj

+
1

2
(ω2

n +W (t))χ2
nj

]

ψn(χn, t) . (5.38)

Here we have introduced the notation

W (t) =< Ũ ′′(χ0) −m2 > +3λ′F , (5.39)

where

< Ũ ′′(χ0) −m2 >=

∫

dχ0ψ
∗
0(χ0, t)[−6η′χ0 +

3λ′

2
χ2

0]ψ0(χ0, t) . (5.40)

In addition we introduce the quantity Ω2
n(t) = ω2

n +W (t).
As we see the Schrödinger equation for the quantum mode wave function is in-

dependent of the index j. Therefore the previous summations over j just lead to a
degeneracy factor 2 and the index j by the mode functions can be really suppressed.

Using the the Gaussian ansatz (5.26) the Schrödinger equation for the n 6= 0
modes implies

σ̇n(t) = sn(t) , (5.41)

ṡn(t) = −Ω2
n(t)σn(t) +

1

4σ3
n(t)

, (5.42)

α̇n(t) =
1

4σ2
n(t)

. (5.43)

The first two of these equations can be related to mode functions fn(t) satisfying
the mode equation

f̈n(t) + Ω2
n(t)fn(t) = 0 , (5.44)

with the effective mass squared Ω2
n = m2 +W (t). Denoting ωn0 = Ωn(0), we have

σn(t) =
|fn(t)|√

2ωn0

, (5.45)

sn(t) =
1√
2ωn0

d

dt
|fn(t)| . (5.46)
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5.2. Time-dependent Hartree-Fock approximation

The wave function of the nonzero modes is then given by

ψn(χn, t) = e−iαn(t)

[

2ωn0

2π|fn(t)|2
]1/4

exp

[

i

2

ḟ ∗
n(t)

f ∗
n(t)

χ2
n

]

. (5.47)

In deriving these relation we have used repeatedly the Wronskian relation for the
mode functions

ḟ ∗
n(t)fn(t) − f ∗

n(t)ḟn(t) = 2iωn0 , (5.48)

which corresponds to the initial conditions

fn(0) = 1 , ḟn(0) = −iωn0 . (5.49)

Using the Eq.(5.47) for the wave function of nonzero modes one can derive the
expectation value of χ2

n

∫

dχn |ψn(χn, t)|2 χ2
n =

|fn(t)|2
2ωn0

, (5.50)

the sum of which corresponds to the the fluctuation integral, i.e.

F(t) =
∑

n>0

|fn(t)|2
2ωn0

. (5.51)

The discussion of this quantity will be continued in the Sec. 5.3.

5.2.4 Initial conditions

We want to start the evolution of the system approximately in the ground state
of the left well of the double-well potential. This means that we approximate the
potential around r = 0 by an harmonic oscillator potential m2φ2/2 and use the
ground state wave function of this oscillator as the initial wave function. We then
find the total energy of the system to be close to zero, as one expects for such an
approximate ground state. Of course, the choice of such an initial state is quite
arbitrary. However, a different choice would lead to a higher total energy. This
would make the tunneling easier and indeed might convert the tunneling through
the barrier into an ”over the barrier” transition.

In Sec. 5.2 we have discussed the initial conditions for the nonzero modes. The
system starts with the following mode functions

fn(t) ' e−ωn0t , (5.52)
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which results in the initial wave functions

ψ(χn, 0) =
[ωn0

π

]1/4

e−ωn0χ
2
n/2 . (5.53)

Here ωn0 =
√

m2
0 + n2/a2. The effective mass m0 is determined by the gap equation

which we will introduce in the next section.
For the zero mode we likewise start with a Gaussian wave function

ψ(χ0, 0) =
[m

π

]1/4

e−mχ
2
n/2 , (5.54)

where we set the frequency ω = m, that corresponds to the ground state wave
function for a potential with η = λ = 0.

5.2.5 The energy

We have separated the Hamiltonian in the zero mode H00, nonzero modes H0n and
two interaction parts HI0n and HInn. Taking the expectation values of them we will
get the corresponding energies:

classical energy

< H00 > =

∫

dχ0ψ
∗
0(χ0, t)

[

−1

2

∂2

∂χ2
0

+ Ũ(χ0)

]

ψ0(χ0, t) , (5.55)

fluctuation energy

< H0n > = 2
∑

n>0

1

2ωn0

[

1

2

∣

∣

∣
ḟn(t)

∣

∣

∣

2

+
1

2
ω2

n |fn(t)|2
]

, (5.56)

interaction energy

< HI0n > = < Ũ ′′(χ0) −m2 > F , (5.57)

self − interaction energy

< HInn > =
3

2
λ′F2 . (5.58)

It is convenient to replace ω2
n by ω2

n0 in < H0n >, so that < H0n > becomes the free
Hamiltonian for the initial fluctuation wave functions. Then the rest term −W (0)F
should be added to the interaction energy < HI0n >.

The sum of all parts of energy amounts the conserved energy, consistent with the
Schrödinger equations presented in the previous subsection

E =< H00 +H0n +HI0n +HInn > . (5.59)

The energy density we have introduced here is divergent and needs renormalization
(see Sec. 5.3).
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5.2.6 Particle number

In the context of our model the particle number is an artificial concept, as the
“particles” never get really free. However, we use this quantity as an indicator for
the excitations of the nonzero modes.

A particle number for the n 6= 0 modes may be defined in various ways. A
Fock space is defined by the mode decomposition (5.16). To the operators χnj and
their conjugate momenta πnj = ∂/∂χnj one can associate creation and annihilation
operators. In order to do so, one has to assign to these modes a frequency. A
standard choice is the the frequency ωn0, then we consider particle excitation in the
Fock space defined at t = 0, with mass m = m0; this is what we will consider.
Another standard choice is the adiabatic particle number, based on a Fock space
with mass m = M2(t) and effective frequencies Ωn(t). In the present context such
a definition has the shortcoming that the effective mass M2(t) may get negative, so
that the low momentum modes have imaginary frequency and the adiabatic particle
number is not defined.

The creation and annihilation operators for an oscillator of frequency ωn0 are

cnj =

√

ωn0

2

(

χnj +
1

ωn0

∂

∂χnj

)

, (5.60)

c†nj =

√

ωn0

2

(

χnj −
1

ωn0

∂

∂χnj

)

. (5.61)

Then a particle number is the expectation value

Nnj =< c†njcnj >=<
1

ω2
n0

[

−1

2

∂2

∂χ2
nj

+
1

2
ω2

n0χ
2
nj

]

> (5.62)

Computing the expectation value with the wave function ψn(χnj) given by Eq. (5.47)
one finds

Nnj =
1

4ω2
n0

[

∣

∣

∣
ḟn(t)

∣

∣

∣

2

+ ω2
n0 |fn(t)|2

]

− 1

2
. (5.63)

In the discussion of the excitations of the modes with n > 0 we will merely use the
total particle number, defined as N =

∑

nj Nnj.

5.3 Renormalization

As it was already mentioned in the previous section the fluctuation integral and the
energy density contain divergences and should be renormalized. In 1+1 dimensions
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Chapter 5. The model in 1+1 dimensions

the renormalization is rather easy. However, we will consider it in some details,
as we have take into account that we treat a nonequilibrium system with discrete
momenta and that we consider the Hartree approximation, i.e. the renormalization
should be done for a resumed perturbation series.

Though we treat the system in a nonperturbative approach, the divergences are
related exactly to those of standard perturbation theory. The mode functions can
be expanded perturbatively with respect to the potential V (t) which contains the
couplings η and λ; so such an expansion is at the same time an expansion with
respect to these couplings.

We write the mode functions as

fn(t) = e−iωn0t [1 + hn(t)] (5.64)

to have a possibility to convert the differential equation for the fn(t) into an integral
equation for the functions hn(t):

hn(t) =
i

2ωn0

∫ t

0

dt′
(

e2iωn0(t−t′) − 1
)

V (t′) [1 + hn(t′)] , (5.65)

where we have defined V (t) = W (t) −W (0), using Eq. (5.39).

So that for the absolute value squared of the mode functions, which enters the
expression for the fluctuation integral and energy density, we have

|fn(t)|2 = 1 + 2Rehn(t) + |hn(t)|2 (5.66)

in terms of the functions hn(t). One can find (see Appendix D) that Rehn(t) for
large n behaves as

Rehn(t) ' −V (t)

4ω2
n0

+O

(

1

ω3
n0

)

. (5.67)

5.3.1 Divergent and finite parts of fluctuation integral

Using the definition of functions hn(t) and the expression (5.66) one can write the
fluctuation integral as

F =
∑

n

1

2ωn0

[

1 − V (t)

2ω2
n0

+O

(

1

ω3
n0

)]

, (5.68)
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where one can immediately separate a divergent and a subtracted parts

F (0) =
∞
∑

n=0

1

2ωn0

, (5.69)

Fsub =

∞
∑

n=0

1

2ωn0

[

2Rehn(t) + |hn(t)|2
]

. (5.70)

The divergent part has to be regularized, this will separate it into the standard
renormalization part and a finite contribution. The divergent part contains summa-
tion over the discrete momenta. In order to relate their divergent behavior to the
standard divergences in field theory in an infinite volume we use the Plana formula
[56].

∞
∑

n=1

1

2ωn0
= πa

∫ ∞

−∞

dk

(2π)2ω0

[

1 +
2

exp(2πaω0) − 1
− 1

πaω0

]

, (5.71)

with ω0 =
√

k2 +m2
0. The second part of the integrand resembles integrals found in

quantum field theory at finite temperature. There, however, it is not space but time
which satisfies periodic boundary conditions on a compact support. The details of
computation for the last expression can be found in the Appendix D.

The first term in the bracket is divergent, the same term one will obtain for infinite
space. It goes into the renormalization of the various couplings. The second term
is specific for our model, as it arises from the periodic boundary conditions. The
third part comes from the fact that F contains the nonzero modes only and no
subtraction has been applied to the zero mode.

The first term can be regularized in a standard way [50] using the dimensional
regularization

(
∫

dk

(2π)2ω0

)

reg

=

∫

d2−εk

(2π)2−ε

i

k2
0 − k2 −m2

0 + io
=

1

4π
Lε0 , (5.72)

with Lε0 = 2/ε + ln(4π/m2
0) − γ. m2

0 depends on the initial conditions, and the
renormalization condition should not; therefore we redefine Lε0 = Lε + lnm2/m2

0

with Lε = 2/ε+ ln(4π/m2) − γ and include the lnm2/m2
0 term into the finite part.

So the remaining finite part is

F (0)
fin = 2πa

∫ ∞

−∞

dk

(2π)2ω0

1

exp(2πaω0) − 1
− 1

4m0
+
a

4
ln
m2

m2
0

(5.73)

and the finite part of the fluctuation integral becomes

Ffin = F (0)
fin + Fsub . (5.74)
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5.3.2 Renormalization of the energy density

As the divergence in the fluctuation integral comes from the term
∑∞

n=1
ωn0

2
we just

subtract it, so that

< H0n > = 2
∑

n>0

1

2ωn0

[

1

2

∣

∣

∣
ḟn(t)

∣

∣

∣

2

+
1

2
ω2

n |fn(t)|2
]

(5.75)

= Efl,sub −
1

2
m0 + a

∫ ∞

0

dkω0 − 2a

∫ ∞

0

k2dk

ω0 (exp(2πaω0) − 1)
,

where the subtracted fluctuation energy is

Efl,sub = 2
∑

n>0

1

2ωn0

[

1

2

∣

∣

∣
ḟn(t)

∣

∣

∣

2

+
1

2
ω2

n |fn(t)|2 − ω2
0

]

. (5.76)

Note that here was used the Eq. (D.8) for the divergent sum.
The integral over ω0 in Eq. (5.75) after dimensional regularization is

[

a

∫ ∞

0

dkω0

]

reg

=
a

4
m2

0

(

Lε + ln
m2

m2
0

+ 1

)

. (5.77)

The last term, the ”thermal” integral in Eq. (5.75) can be recast into the form of
a free energy, using an integration by parts:

−2a

∫ ∞

0

k2dk

ω0 (exp(2πaω0) − 1)
=

∫ ∞

0

dk

2π
ln (1 − exp(−2πaω0)) . (5.78)

So that the finite part of the fluctuation energy can be defined as

Efl,fin = Efl,sub +
a

4
m2

0

(

ln
m2

m2
0

+ 1

)

+

∫ ∞

0

dk

2π
ln (1 − exp(−2πaω0)) . (5.79)

The renormalization is done by adding a counterterm

δCM2 = δC(m2+ < Ũ ′′(χ0) −m2 > +3λ′Ffin) , (5.80)

where we define the effective mass of the fluctuations by a gap equation

M2 = m2+ < Ũ ′′(χ0) −m2 > +3λ′Ffin . (5.81)

Choosing the counterterm

δC = −a
4
Lε , (5.82)
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and defining the initial mass m0 again by the gap equation

m2
0 = m2+ < Ũ ′′(χ0) −m2 > +3λ′F (0)

fin , (5.83)

the gap equation (5.81) is satisfied for all t. It can be written as

M2(t) = m2
0 + V (t) , (5.84)

with the potential V (t) introduced in the beginning of this section

V (t) =< Ũ ′′(χ0) > −m2
0 + 3λ′Ffin(t) , (5.85)

which now becomes finite.
For the energy we obtain the following finite expression

Efin = < H00(χ0) > +Efl,fin − 1

2
m0+ < Ũ ′′ −m2

0 > Ffin +
3

2
λ′F2

sub

+
a

4
m2

0(ln
m2

m2
0

+ 1) +

∫ ∞

0

dk

2π
ln (1 − exp(−2πaω0)) . (5.86)

The last two terms are, for a fixed radius a, independent of time; we leave them out
when presenting the energy conservation. The term −m0/2 marks the absence of
the zero mode in the sum over fluctuations. If m0 = m this term exactly cancels, at
t = 0, the expectation value < H00(χ0) >. If one considers the initial gap equation
(5.83), the term −1/4m0 gets canceled, by the term < Ũ ′′(χ0)−m2 >, for m0 = m.
This is equivalent to the sufficiently large a such that am > 1, this corresponding
to a ”temperature” Teff/m < 1/2π, the ”thermal” integrals become very small, then
the solution m0 of the gap equation is close to m and energy E ≈ 0.
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Chapter 6

The Numerical Results

In this chapter we will present the numerical results we have obtained after imple-
mentation of the expressions of previous chapter in the numerical code. In section
6.1 we discuss the problems of integration of Schrödinger equations and the solutions
we have used. We point out some possibilities to check the correct implementation
of equations and running of code.

For the presentation of the results we again use the α − β introduced in section
4.1.1. Here we will just briefly repeat some definitions.

To have a better possibility for interpretation of our results, which display reso-

nances, we consider the case of quantum mechanical tunneling in asymmetric double-
well potential and compute the approximate spectra of the left and right wells, treat-
ing them as a separate oscillators. This gives the condition for a degeneracy of a
levels in the spectrum of right well with the ground state of the left well.

The results are presented for some, most interesting parts of parameter space. We
were not able to cover the whole parameter space because the simulations for each
parameter set require large CPU times.

6.1 General remarks

6.1.1 Details of implementation in numerical code

We have to implement in the numerical code the expressions obtained in Chap. 5.
For this purpose we discretize the variable χ0 in equidistant discrete values χ0,k with
a step width ∆χ0. We used 4000 grid points, which typically extend over a region
of −10 < χ0 < 50. So ∆χ0 is of the order 10−2.

Then the wave function for the zero mode ψ0(t) becomes a system of functions
ψ0(χ0k) and the corresponding Schrödinger equation will be spitted into a system
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0 10 20 30 40

t

-40

-20

0

20

40

E

Figure 6.1: Energy conservation; parameters m = η = λ = 1, a = 6; dotted
line: classical energy; dash-dotted line: fluctuation energy; dashed line:
interaction energy; solid line: self-interaction of the fluctuations. The
total energy (not displayed) is E = (2.39 ± 0.001) × 10−5.

of the differential equations for ψ0(χ0k). To discretize the second derivative of the
wave function we make a replacement

∆4

∂χ2
0

ψ0(χ0,k) →
ψ(χ0,k+1) + ψ(χ0,k−1) − 2ψ(χ0,k)

(∆χ0)2
. (6.1)

This discretization leads to instabilities in the time evolution unless the time intervals
are chosen of the order ∆χ2

0. So the Runge-Kutta time step was chosen ∆t =
0.00002. In addition to the evolution of the wave function ψ0 we have to integrate
the equations of motion for the nonzero modes, i.e. the for the functions hn(t).
Furthermore for each Runge-Kutta step we have to compute sums over the nonzero
modes, which typically were taken into account up to n = 200, and we have to
compute various expectation values in the n = 0 wave function. All this makes the
code very slow. A typical simulation takes a few hours on the standard PC for the
evolution time t ' 100.

The numerical accuracy was checked in the numerical code by computing Wron-
skians and by verifying the energy conservation. The relative accuracy obtained was
better than six significant digits. The deviation in the total energy was of order 10−8
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while the various parts of the energy take values of order 102. A typical example of
energy conservation is displayed in Fig. 6.1 for α = 0.5, β = 1 and a = 6.

6.1.2 α − β parameterization

The parameter space for our model consists of for parameters m, η, λ and a. So it
is quite large. To make the discussion of the numerical results more transparent we
introduce here, as well as in the case of the bounce, the α− β parameterization.

One introduces the rescaling X = mx and Φ = m2Φ̂/2η. Then for infinite space
the classical action takes the form

Scl =
m4

4η2

∫

d2X

[

1

2

(

∇XΦ̂
)2

+ Û(Φ̂)

]

= βŜcl(α) , (6.2)

with β = m4/4η2, α = λβ/m2 and

Û(Φ̂) =
1

2
Φ̂2 − 1

2
Φ̂3 +

α

8
Φ̂4 . (6.3)

The one-loop effective action is a function of α only. β multiplies the classical action,
so for large β the system essentially becomes classical and the quantum effects only
lead to small corrections. For small β the quantum effects become essential.

We will in the following consider parameter sets with fixed α and β, i.e., fixed λ
and η, and study the dependence on a.

6.1.3 The condition for the resonances in the approximate

spectra

As we will see, in some part of the parameter space the tunneling phenomena will
be characterized by the occurrence of resonances. In quantum mechanical tunneling
this phenomena was already observed (see Ref.[35]). For a better understanding of
this phenomenon we approximatively consider the left and right wells as separate
harmonic oscillator potentials and estimate the position of their energy levels. The
resonances can then be thought of as arising from the degeneracy of levels in the
left and in the right wells. The energy levels of the oscillator in the left well are
El

n = (n+ 1/2)m. The absolute minimum of the potential is at

χ+
0 =

√
2πaΦ+ =

√
2πa

2η

λ
Φ̂+ , (6.4)
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Figure 6.2: Approximate levels in the both wells of potential.

where

Φ̂+ =
3

2α

(

1 +

√

1 − 8

9
α

)

(6.5)

is the position of the absolute minimum in α − β parameterization. The energy
levels for the oscillator in the right well are given by

Er
n =

(

n +
1

2

)

ω+ + Ũ(χ+
0 ) , (6.6)

with oscillator frequency

ω2
+ = Ũ ′′(χ+

0 ) = 2m2

[

9

8α

(

1 +

√

1 − 8

9
α

)

− 1

]

(6.7)

and the depth of the well

Ũ(χ+
0 ) = 2πaβÛ(Φ̂+) < 0 . (6.8)

So the condition for a degeneracy of a level in the spectrum of the right hand well
with the ground state of the left hand well (which we take as an initial state) is

2πaU(Φ+) +

(

n +
1

2

)

ω+ =
1

2
m . (6.9)
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As we intend to study the dependence of the tunneling process on the radius of the
space manifold a by fixed α and β, we present here the dependence of the tunneling
phenomena on length scale. If the degeneracy holds for some value a and an integer
n, it will hold again for a′ = a+ ∆a, n′ = n− ∆n with

∆a = − ω+

2πU(Φ+)
∆n . (6.10)

The constant multiplying ∆n on the right hand side determines the spacing of
resonance levels as a function of a at fixed α and β.

Of course one can also have resonances between excited states of the left well
and the right well, but as we prepare our initial state to correspond roughly to the
ground state of the left well, these will be less important.

A more essential feature is the excitation of field quanta of the nonzero modes,
which will have a dissipative effect on the dynamics of the zero mode and broaden
the resonances. The effect of the nonzero modes gets obvious if one considers the
effective potential in which the zero mode is moving

U0(χ0, t) = Ũ(χ0) + (Ũ ′′(χ0) −m2)F(t) . (6.11)

The potential gets deformed by the presence of the fluctuation integral. If F(t) is
negligible the evolution of the system proceeds like in the quantum mechanics. If
F(t) remains small the time-dependent modifications of the potential will allow a
few other approximate eigenstates of the zero mode to mix in, the resonant oscil-
lations develop “higher harmonics” and become irregular. If F(t) gets large the
deformations become substantial. If F(t) is positive the potential barrier can dis-
appear entirely, then the zero mode may “slide” into the true minimum. If F(t) is
negative the potential is tilted counterclockwise and the barrier is enhanced.

6.2 Results of the numerical simulations

As already mentioned we have studied the tunneling process as a function of space
radius a for the fixed parameters α and β, or equivalently, for fixed η and λ. The
mass determines the time and length scales, we choose it to be unity.

We present the numerical results for four parameter sets:

• set I: α = 0.8, β = 0.5, i.e., λ = 1.6, η = 1/
√

2; ∆a = 0.529;

• set II: α = 0.6, β = 2, i.e., λ = 0.3, η = 1/
√

8; ∆a = 0.0338;
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Figure 6.3: The maximum ϕ̄0 of the expectation value < ϕ0(t) > for set I (α =
0.8, β = 0.5), as a function of a.
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Figure 6.4: The maximum ϕ̄0 of the expectation value < ϕ0(t) > for set II (α =
0.6, β = 2), as a function of a.
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• set III: α = 0.4, β = 1, i.e., λ = 0.4, η = 1/2; ∆a = 0.0167;

• set IV : α = 0.25, β = 0.25, i.e., λ = η = 1; ∆a = 0.0166.

Corresponding to the value of β we expect large quantum corrections for the set I
and IV , in case II the corrections should be small, and moderate for the set III.

We have studied the behavior of the average of the zero mode < χ0(t) > and
of its wave function ψ0(χ0) as a function of time. For the fluctuations we have
considered the fluctuation integrals, the particle number, and the various energies.
These quantities give a good detailed description of the behavior of the system as
a function of time for the one single parameter set. However, in order to get an
overview of the process as a function of a we have to suppress the detailed time-
dependent information, we need one single quantity for each parameter set; we have
chosen the maximal value attained by the expectation value of the zero mode during
the whole time evolution. It is this quantity which we plot as a function of length
scale a for fixed parameters α and β. We denote this value as ϕ̄0. According our
observations in the cases where we have effective tunneling, this zero mode average
settles at a value of ϕ0 beyond the potential barrier, the late time average is typically
20% smaller than the maximal value in ϕ0, reached initially.

We start with displaying results for the maximal value ϕ̄0 as a function of a for
the four parameter sets which we have defined, in Figs. 6.3 - 6.6. They give a
global picture of the tunneling in quantum field theory. The horizontal lines labeled
by Φm and Φ0 indicate the position of the maximum of U(Φ) and the zero of the
position between the two minima. As one can see in all cases the tunneling displays
a resonance phenomenon. Above by defining the parameter sets we display were
given the estimates for the spacing of resonances. The observed spacings roughly
correspond to these estimates. One can observe some irregular spacings which may
be due to the excited states of the left oscillator or of the nonzero modes. When
compared to similar figures obtained in quantum mechanical simulations [35] the
resonances seen in our simulations are broader, as to be expected form the interaction
with the environment of the n 6= 0 modes.

As another observation, the maximal value of < ϕ0 > never reaches the second
minimum (the ”true vacuum”), even on the resonances. In part this is due to the
fact that the effective potential seen by the zero mode is modified by the quantum
fluctuations. In addition some part of the wave function always remains in the false
vacuum ϕ0 = 0, i.e. even at late times there is a finite probability to find the system
in false vacuum. The behavior of the wave function will be discussed in more detail
later in this section.
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Figure 6.5: The maximum ϕ̄0 of the expectation value < ϕ0(t) > for set III (α =
0.4, β = 1), as a function of a.
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Figure 6.6: The maximum ϕ̄0 of the expectation value < ϕ0(t) > for set IV (α =
0.25, β = 0.25), as a function of a.
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Figure 6.7: Probability density |ψ0(χ0)|2 at intermediate times (t = 10), for α = 0.8,
β = 0.5, and a = 1.35

For the parameter sets I − III the tunneling shuts off entirely at some high
values of a because the scale a multiplies the classical action. Large β implies a
large classical action and, therefore, for set II this shutting-off already happens at
small values, a ' 0.5. For set I one still finds resonant tunneling for a > 3. However,
the transition time at the resonances increases substantially. For the last peak on
the Fig. 6.3 it was t ' 1000. For sets II and III after some value of a the zero mode
wave function displays no tunneling at all. The set IV is quite different. Here at
large a the system always tunnels, due to the deformations of the effective potential
caused by the large quantum fluctuations. The double well potential seen by the
zero mode at early times is replaced later by a potential without barrier, and, as we
will see below, the late time wave function extends over the whole range inside the
potential walls from −5 to +20. We call this kind of transition a sliding transition.

After this overview over the dependence on a we now consider in detail the evo-
lution of the zero mode wave function as a function of time.

For all parameter sets and all values of a the wave function of the zero mode
initially evolves slowly; it becomes slightly asymmetric and develops a tail into the
region of the potential barrier.

On the resonances the wave function, which initially is essentially the ground state
wave function of the left well first connects to a particular wave function in the right
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Figure 6.8: Evolution of the expectation value of the zero mode < ϕ0 > and of the
particle number N ; parameters α = 0.6, β = 2, a = 0.5.
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Figure 6.9: The zero mode wave function for α = 0.6, β = 2, a = 0.5; dashed lines:
the wave functions at t = 0 and 109; solid lines: the wave functions at
t = 50 and t = 168.
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Figure 6.10: Evolution of the expectation value < χ0 > and of the fluctuation
integral F(t) for set IV and a = 1.2.

well. One can see the well-defined number of peaks in the right well on the Fig. 6.7,
they indicate a specific approximate level within the right well. If the fluctuations of
the quantum field remain small one observes an oscillation forth and back between
these two wave functions, as usually expected in a quantum mechanical system. This
case we can discuss based on the example of set II. As the parameter β is quite
large the quantum fluctuations remain small and one sees the resonances expected
from the qualitative picture of the degenerate levels in the separately considered
wells. In Fig. 6.8 we observe the regular oscillations of the zero mode. In the
same plot is shown the particle number (multiplied by 1000) as an indicator of the
quantum excitations. The behavior of corresponding wave function we present at
four different times in Fig. 6.9. The oscillations of the wave function appear to be
very regular, it returns almost to itself after half a period t ' 55.

If the nonzero field modes get excited, then the oscillations of the zero mode are
disturbed, and the other wave functions mix in. This increase the number of peaks
and makes the wave function looks quite chaotic in some cases.

Off resonance the expectation value of ϕ0 remains small. It still develops a tail
into the right well, but this part of the wave functions does not develop further.

Parameter set III with β = 1 we expect to be intermediate in the quantum
excitations, the fluctuations should get sizeable but not extremely large. As shown
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Figure 6.11: Evolution of the wave function during the barrier transition: param-
eters α = 0.5, β = 1; a = 6; long-dashed line: t = 7;dash-dotted line:
t = 7.4; short-dashed line: t = 7.8; dotted line:t = 8.2; straight line:
t = 8.6.

in Fig. 6.5 the tunneling is still characterized by resonances which shut off after
some value of a. In this case a = 2. For a > 2 the transition proceeds very
slowly (t ' 300 for a last displayed resonance) and we are not able exclude further
resonances anymore.

Except for the resonance region one finds efficient tunneling if the fluctuations of
the nonzero momentum modes are large. In this case the penetration of the wave
function into the barrier region makes the fluctuation integral positive, so that the
barrier disappears and the wave function slides down, almost without changing its
initial form (Gaussian wave function).

Set IV is close to such sliding evolution. For small a the zero mode shown still the
resonant behavior, but for a > 0.5 the picture changes and the system ends always
in the right well. However, the evolution of the system is very complex. Initially
the fluctuations grow and tilt the potential. The barrier disappears and the wave
function starts its movement to the right well. Then the fluctuation integral F gets
small or negative, this causes the barrier to appears again (see Fig. 6.10). The whole
evolution is a consequence of successive oscillations between these to states. Even at
the late times the effective potential seen by the zero mode oscillates constantly, and
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Figure 6.12: The wave function after tunneling, set IV and a = 1.2 and time t = 30.

one can not decide if it is a double or single well potential. In spite of the complexity
of the process the wave function shifts towards the deeper well. This one can see at
large values of a: the potential is tilted, but the fluctuation integral remains positive
on the average, and the wave function slides down towards the modified absolute
minimum. As an example we have chosen parameters α = 0.5, β = 1 and a = 6
shown in the Fig. 6.11. At late times the potential shows no trace of the double-well
structure, as plotted on the Fig. 6.12.

For small values of α potential is very asymmetric, therefore one could think,
that the tilting of the potential is a consequence of this particular parameter choice.
We therefore have done simulations for big α = 0.8 and small β = 0.2, i.e. more
symmetric potential. We again find that for a > 1 the transition occurs again by
sliding. We display the behavior of the potential for early times (around the time
when the fluctuation integral becomes negative for the first time) in the Fig. 6.13.
So it seems that sliding occurs universally for small β and large a.

In spite of complexity of the process evolution and the drastical change of the
form of the wave function the energy remains conserved better than one part in 108.
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Figure 6.13: Evolution of the effective potential U0(χ0, t); solid line: t = 0; dashed
line: t = 11; dash-double dotted line:t = 13.

6.3 Summary

The results we have shown display quite a different behavior of tunneling from the
ones we are used to imagine by ”false vacuum decay”, when we just assume it to
happen by bounce solution even with quantum corrections. The tunneling occurs in
a variety of different ways. For large β, implying small field fluctuations, the system
behaves like a quantum mechanical system with a single degree of freedom, showing
resonances. The resonant tunneling happens when, as a function of the parameters,
here the radius a, the levels of separate oscillators in the both wells coincide. For
large spatial extension a this resonant tunneling shuts off as expected.

For smaller values of β the nonzero momentum modes are enhanced and modify
the pure quantum mechanical behavior. If this enhancement is weak it can be
considered as a kind of dissipation; the mean value of the zero mode shows regular
periodic oscillations, on and off resonance. On resonance some more modes are
involved and the wave function oscillates between the two wells. Then off resonance
the wave function essentially remains in the left well, with some tail in the right
hand well. For parameter sets where the excitation of the nonzero momentum modes
becomes sizeable, the regular oscillations on resonance are disturbed, the behavior of
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the mean value of the zero mode become irregular. At late times the wave function
extends over the entire region allowed at the given energy. Off resonance at late
times the system again remains concentrated in the left hand well.

If the quantum corrections become substantial appears another phenomenon: the
quantum fluctuations tilt the effective potential seen by the zero mode and the
barrier disappears either temporary or entirely. In such cases the wave function
slides down into the new minimum.
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We have considered the false vacuum decay as a local process, where the tunneling
happens via bounces and as a global process on a compact space. In both cases the
subject was the importance of the quantum backreaction.

We have presented two schemes for incorporating the quantum backreaction in the
computations of the decay probability in the false vacuum decay via bounce: the
one-loop backreaction and the Hartree backreaction. We have used two different
sets of renormalization conditions: the MS scheme and the scheme with ”physical”
renormalization conditions. The numerical results were presented for the 3+1 di-
mensional and 1+1 dimensional models. We have considered the deviations of the
effective action and transition rates in different approximations to the corresponding
semiclassical values. The changes due to quantum backreaction makes several orders
of magnitude in transition rates in comparison to the semiclassical approximation
(the changes in the 2D model are seen to be smaller, as the iteration procedure
ceases to converge for small values of β).

Besides of being possibly important for applications the magnitude of such cor-
rections has two aspects of principle: if they are small, then this confirms the basic
approach. So for most of the parameter range we can trust the semiclassical ap-
proach because it is stable with respect to higher order corrections, at least the ones
we have investigated. If they are large the basic approach becomes questionable,
so one learns about its possible limits. And even, as observed in the 1 + 1 dimen-
sional case, the bounce may cease to exist and one has to look for other tunneling
mechanisms.

In order to do these investigations we have developed computational techniques,
analytical and numerical, which allow to perform such calculations efficiently and to
present data for a large number of parameter sets. Such techniques may be useful
in other physical contexts.

For the analysis of global tunneling on the compact space we have used the real-
time formalisms, the time-dependent Hartree-Fock approximation. The wave func-
tion of the zero mode was treated as a solution of the Schrödinger equation, while
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the nonzero modes was considered in Gaussian approximation. These approxima-
tions allow to include the backreaction of the nonzero modes onto the zero mode
and onto themselves.

The numerical simulations show that the tunneling in general occurs in a resonant
way. If the enhancement of the nonzero modes is weak the tunneling of the zero
mode occurs essentially in the same way as in quantum mechanics; the zero mode
shows periodic oscillations, on and off resonance and the influence of the nonzero
modes may be considered as a kind of dissipation, causing,.e.g., a broadening of the
resonance peaks. If the nonzero modes are excited substantially, their backreaction
causes a new phenomenon, which we have called sliding (for details see summary
6.3). If the size of space 2πa becomes large, typically a > 1 we find the tunneling
to be suppressed, as to expected.

The variety of phenomena observed in our simulations cannot be expected to
be described by WKB approximation, even if we apply the time-dependent WKB
approximation to the n = 0 mode, as done for the quantum mechanics in Ref. [55].
The analytic estimates break down as soon as nonzero fluctuations are included.

The effects of the quantum backreaction are seen to be very sizeable. Of course in
the present the cosmology of the very early universe, where such phenomena could
play a rôle is not developed so far that the improvements due to one-loop corrections,
with or without backreaction would be important for model building. Of course the
qualitatively new features observed in global tunneling change the picture one got
used to, based on the WKB approximation, and may enter into the basic conception
of such models [57, 58]. We think that in any case it is important to have a very good
understanding of basic mechanisms, here: the tunneling in quantum field theory, in
order to build models on safe grounds. We hope to have contributed to such an
understanding with the thesis presented here.
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Appendix A:

Some Definitions and Technical Tools

In this appendix we will present definitions of reducible and irreducible Feynman
graphs, some details of 2PPIexpansion, divergent integrals, their dimensional reg-
ularization and discuss Fourier transformations.

A.1: Definitions

Resummation schemes are in general based on the division of the perturbative Feyn-
man diagrams into different classes and then the summation over all graphs within
one class, in general an infinite number of them. One well-known division into
classes is based on the following definition: a diagram that does not fall apart if
N arbitrary propagator lines are cut is called N -particle irreducible (NPI). For
first approximation of our interest we refer to the 1PI (one-particle irreducible)
diagrams.

A diagram is connected if there are no isolated interaction vertices.

A diagram that does not fall apart if two propagator lines meeting at the same

point are cut is called two-particle-point-irreducible (2PPI). The set of 2PPI di-
agrams is infinite as well. On this resummation scheme is based the second ap-
proximation we use for our computations, Hartree approximation, which is just the
one-loop level of 2PPI expansion.

A.1: 2PPI Expansion

In this part of appendix we will briefly repeat the formal part of the 2PPI expansion
following the basic work by Verschelde and his collaborators [22, 23, 59, 60, 61, 62].
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As in Ref.[22], one defines the effective action of local composite operators in
Euclidean space-time

Γ2PPI [φ,∆] = W[J1, J2] − J1φ− 1

2
J2(φ

2 + ∆) , (A.1)

where the external sources J1 and J2 are both local and fix the expectation value of
Φ and Φ2

φ = < Φ >=
δW
δJ1

, (A.2)

1

2
(φ2 + ∆) =

1

2
< Φ2 >=

δW
δJ2

, (A.3)

exp (−W[J1, J2]) =

∫

DΦ exp
[

−
(

S[Φ] + J1Φ + J2Φ
2
)]

. (A.4)

Then the effective equations of motion are

δΓ2PPI [φ,∆]

δφ
= −J1 − J2φ , (A.5)

δΓ2PPI [φ,∆]

δ∆
= −1

2
J2 . (A.6)

The combinatorial tricks how to sum all 2PR diagrams one can find again in Ref.[22].
The result is the complete effective action of the 2PPI formalism

Γ2PPI [φ,∆] = S[φ] + Γ2PPI
q [φ,M2] − 3λ2

4
∆2 (A.7)

consisting of the classical action, the quantum part and the constant which prevents

Γ + + +2PPI

q = +

Figure A.1: Quantum part of the 2PPI effective action including some three-loop
contributions.

double counting. One should notice that the prefactor in a constant term is different
by different parameterizations of potential. For the parameterization used in this
thesis it should be replaced by 3λ2

8
. The quantum part Γ2PPI

q contains the one-loop
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contribution (’ln det’) and all 2PPI graphs (see Fig.A.1). These diagrams are to
be computed using the propagarot

G(k) =
1

k2 + M2
, (A.8)

with an effective mass M. Notice that this propagator is local, however, it is different
from the two-point Green’s function. The effective mass depends on the local self-
energy ∆ which is obtained as a derivative of the quantum part of the effective
action with respect to the effective mass

1

2
∆ =

δΓ2PPI
q [φ,M2]

δM2
. (A.9)

This is equivalent to cutting a line by deriving with respect to the propagator G(k)
and then connecting the two ends to a common third point x

δ

δM2
=

∫

[dk]
δG(k)

δM2

δ

δG(k)
=

∫

[dk]
−1

(k2 + G2)2

δ

δG(k)
. (A.10)

The mass corrections to the self-energy form one-, two- and three-loop diagrams are
shown in Fig.A.2.

∆ + + += + +

Figure A.2: 2PPI self-energy including some three-loop contributions.

A.3: Divergent Integrals

The first divergent integral which needs to be regularized appears in the leading
order of the fluctuation integral

I0 = µε

∫

d4−εk

(2π)4−ε

1

k2 +m2
= − m2

16π2

(

Lε − ln
m2

µ2
+ 1

)

. (A.11)
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Here and everywhere else Lε = 2
ε
− γ + ln 4π. The factor µε gives the integral its

correct dimension in 3+1 dimensions. The next one is the integral of the first order

I1 = µε

∫

d4−εk

(2π)4−ε

1

(k2 +m2)((k + q)2 +m2)
.

Using the so called Feynman trick:

1

AαBβ
=

Γ(α + β)

Γ(α)Γ(β)

∫

dω
ωα−1(1 − ω)β−1

(ωA+ (1 − ω)B)α+β

one can write

µ−εI1 =

∫

d4−εk

(2π)4−ε

∫ 1

0

dω

(ω((k + q)2 +m2) + (1 − ω)(k2 +m2))2

=

∫

d4−εk

(2π)4−ε

∫ 1

0

dω

(k2 +m2 + 2ωkq + ωq2)2

=

∫

d4−εk

(2π)4−ε

∫ 1

0

dω

((k + ωq)2 + M2)2
=

∫ 1

0

dω

∫

d4−εl

(2π)4−ε

1

(l2 + M2)2
,

here were introduced two new variables M2 = m2 + ω(1 − ω)q2 and l = k + ωq.

I1 =

∫ 1

0

dω

(4π)2−ε/2

Γ(2 − 2 + ε/2)

Γ(2)
(
M2

µ2
)−ε/2

=

∫ 1

0

dω

16π2

(

1 +
ε

2
ln 4π

) 2

ε

(

1 − ε

2
γ
)

(

1 − ε

2
ln

M2

µ2

)

=
1

16π2

(

2

ε
− γ + ln 4π

)
∫ 1

0

dω

(

1 − ε

2
ln
m2 + ω(1 − ω)q2

µ2

)

=
Lε

16π2
− 1

16π2

∫ 1

0

dω ln
−ω2q2 + ωq2 +m2

µ2

=
Lε

16π2
− 1

16π2

∫ 1

0

dω

[

ln(ω
q

µ
− q +

√

q2 + 4m2

2µ
) + ln(−ω q

µ
+
q −

√

q2 + 4m2

2µ
)

]

=
Lε − lnm2/µ2

16π2
− 1

16π2

[

−2 +

√

q2 + 4m2

q
ln

√

q2 + 4m2 + q
√

q2 + 4m2 − q

]

.
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So the second integral of our interest is

I1 =

∫

d4−εk

(2π)4−ε

1

(k2 +m2)((k + q)2 +m2)
(A.12)

=
Lε − lnm2/µ2

16π2
− 1

16π2

[

−2 +

√

q2 + 4m2

q
ln

√

q2 + 4m2 + q
√

q2 + 4m2 − q

]

.

The computation of the next to leading order term in the fluctuation integral
contains the Fourier transformation

Ṽ (q) =

∫

d4ye−iqyV (y) .

One can show that this reduces to the Fourier-Bessel transformations

Ṽ (q) =

∫

d4xe−iqxV (x) =

∫

drr3dΩ3e
−i|q|r cos χV (r)

=

∫ ∞

0

drr3V (r)4π

∫ π

0

dχ sin2 χe−i|q|r cos χ

=

∫ ∞

0

drr3V (r)4πJ1(|q|r)Γ
(

3

2

)

Γ

(

1

2

)

2

|q|r

=
4π2

|q|

∫ ∞

0

drr2J1(|q|r)V (r) . (A.13)

An analogous formula holds for the inverse transformation.

Appendix B.

The One-loop Effective Potential

The one-loop effective potential with renormalization conditions

In the one-loop approximation the effective mass is a second derivative of the tree
level(classical) potential.In our model we have chosen potential to be

U(φ) =
m2

2
φ2 − ηφ3 +

λ

8
φ4 . (B.1)

So the effective mass has a form

M2 = U ′′(φ) = m2 − 6ηφ+
3

2
λφ2 . (B.2)
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The 1-loop effective potential includes the classical potential, the part coming form
the 1-loop corrections(’lndet’ term) and the counterterms. In our case one finds it
to be

Ueff (φ,M2) = U(φ) +
1

2
ln det

2 + M2

2 +m2
+ δU(φ)

=
m2

2
φ2 − ηφ3 +

λ

8
φ4 − M4

64π2

(

Lε − ln
M2

µ2
+

3

2

)

(B.3)

+
m4

64π2

(

Lε − ln
m2

µ2
+

3

2

)

+ δρφ+
1

2
δm2φ2 − δηφ3 +

1

8
δλφ4 .

Here we have introduced the counterterms in a way most appropriate form, as
a corrections to the coupling constants.We have not introduced the cosmological
constant, as it is not necessary to fulfill renormalization condition Ueff(0) = 0, which
will be discussed later in this appendix. As one can immediately see M2(0) = m2

and two divergent terms in the effective potential cancel for φ = 0.

The first and the second derivative of effective potential look like

U ′
eff = m2φ− 3ηφ2 +

λ

2
φ3 + δρ+ δm2φ− 3δηφ2 +

1

2
δλφ3

− M2

32π2
(3λφ− 6η)

(

Lε − ln
M2

µ2
+ 1

)

, (B.4)

U ′′
eff = m2 − 6ηφ+

3

2
λφ2 + δm2 − 6δηφ+

3

2
δλφ2

− 1

32π2
(3λφ− 6η)2

(

Lε − ln
M2

µ2

)

− 3λM2

32π2

(

Lε − ln
M2

µ2
+ 1

)

.(B.5)

The renormalization conditions which we can put on counterterms should serve
two aims: first they should cancel the divergences and second avoid drastical changes
in the form of the effective potential. As we have seen above one can have maximally
five counterterms, so the maximal number of renormalization conditions is five. We
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choose them to be:

1) height of local minimum is 0

Ueff(0,M2(0)) = 0 , (B.6)

2) local minimum is not shifted

U ′
eff(0,M2(0)) = 0 , (B.7)

3) curvature at local minimum is conserved

U ′′
eff(0,M2(0)) = m2 , (B.8)

4) height of absolute minimum is conserved

Ueff(φ+,M2(φ+)) = U+ , (B.9)

5) absolute minimum is not shifted

U ′
eff(φ+,M2(φ+)) = 0 . (B.10)

where φ+ is the position of the absolute minimum

φ+ =
3η

λ
+

√

9η2

λ2
− 2m2

λ
. (B.11)

As it was already mentioned above the first condition fixes just a cosmological
constant, however, in our case the effective potential fulfills this condition automat-
ically.

The second condition leads to the following linear counterterm:

δρ = −12ηm2

64π2
(Lε − ln

m2

µ2
+ 1) . (B.12)

The condition on the second derivative of effective potential (third condition) fixes
the quadratic counterterm

δm2 =
3

32π2
(12η2 + λm2)

(

Lε − ln
m2

µ2

)

+
3λm2

32π2
. (B.13)

The last two conditions lead to the system of equations:

δρφ+ +
1

2
δm2φ2

+ − δηφ3
+ +

1

8
δλφ4

+ =
M4(φ+)

64π2

(

Lε − ln
M2(φ+)

µ2
+

3

2

)

− m4

64π2

(

Lε − ln
m2

µ2
+

3

2

)

,

δρ+ δm2φ+ − 3δηφ2
+ +

1

2
δλφ3

+

−M2(φ+)

32π2
(3λφ+ − 6η)

(

Lε − ln
M2(φ+)

µ2
+ 1

)

= 0 .
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We separate the counterterms δη and δλ in infinite (δηd, δλd) and finite (δηf , δλf)
parts, the infinite ones one can write down immediately:

δηd =
9ηλ

32π2

(

Lε − ln
m2

µ2

)

, (B.14)

δλd =
9λ2

32π2

(

Lε − ln
m2

µ2

)

(B.15)

to get the finite parts one should solve the following system of linear equations:

−δηfφ
3
+ +

1

8
δλfφ

4
+ =

1

64π2

[

−M4
+

(

ln
M2

+

m2
− 3

2

)

− 3λm2φ2
+ + 12m2ηφ+

−3

2
m4 − 9λ

2
φ3

+(λφ+ − 8η) ln
m2

µ2

]

, (B.16)

−3δηfφ
2
+ +

1

2
δλfφ

3
+ =

6λφ+ − 12η

64π2

[

−M2
+

(

ln
M2

+

m2
− 1

)

−m2

]

+
9

64π2
λφ2

+(λφ+ − 6η) ln
m2

µ2
. (B.17)

where we have introduced a notation M2
+ = M2(φ+). These equations were solved

numerically.

The one-loop effective potential in MS renormalization scheme

In the MS renormalization scheme one does not put any renormalization conditions,
i.e. one has just the divergent counterterms and no finite terms. This is equivalent
to letting Lε → 0 and no introduction of counterterms at all. However, to have a
possibility to compare results of computation in MS scheme with ones with renor-
malization conditions we require the system to have the same initial conditions, i.e.
at φ = 0 the effective potential should coincide with classical potential. For this
purpose we introduce a finite linear counterterm δρfφ, this is the only term we will
need. The effective potential has a form

Ueff (φ,M2) =
m2

2
φ2 − ηφ3 +

λ

8
φ4 − M4

64π2

(

Lε − ln
M2

µ2
+

3

2

)

+
m4

64π2

(

Lε − ln
m2

µ2
+

3

2

)

(B.18)

+ δρfφ+ δρdφ+
1

2
δm2

dφ
2 − δηdφ

3 +
1

8
δλdφ

4 .
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The divergent counterterms do not differ from the ones in the previous subsection
(1-loop effective potential with renormalization conditions):

δρd = −12ηm2

64π2
Lε , (B.19)

δm2
d =

3

32π2
(12η2 + λm2)Lε , (B.20)

δηd =
9ηλ

32π2
Lε , (B.21)

δλd =
9λ2

32π
Lε . (B.22)

As we have discussed above the effective potential should coincide with tree level
potential, so we require

Ueff(0) = 0 (B.23)

and

U ′
eff(0) = 0 . (B.24)

The first condition is fulfilled automatically, for the second one we need the linear
term we have already introduced in the effective potential. The first derivative of
effective potential

U ′
eff = m2φ− 3ηφ2 +

λ

2
φ3 − M2

32π2

(

1 − ln
M2

m2

)

(−6η + 3λφ) + δρf .

The second condition leads to

δρf = −3ηm2

16π2

(

1 − ln
m2

µ2

)

. (B.25)

So the effective potential will get

Ueff (φ,M2) =
m2

2
φ2 − ηφ3 +

λ

8
φ4 − M4

64π2

(

3

2
− ln

M2

µ2

)

+
m4

64π2

(

3

2
− ln

M2

µ2

)

− 3ηm2

16π2
φ

(

1 − ln
M2

µ2

)

, (B.26)

where the local minimum coincides with the one of the classical potential, but the
absolute minimum at φ̃+ is shifted away from its bare value φ+.
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Appendix C.

The Hartree Effective Potential

The hartree effective potential with renormalization conditions

In the Hartree approximation the self-consistent effective potential is an extremum
(maximum) of a variational potential

Ueff = max
M2

U(φ,M2) . (C.1)

The variational potential includes the classical potential, the 1-loop corrections, the
term including a local insertion in the propagator (∆2 term) and the counterterms

U(φ,M2) =
m2

2
φ2 − ηφ3 +

λ

8
φ4 +

1

2
ln det

2 + M2

2 +m2
− 3λ

8
∆2(x) + δU(φ)

=
m2

2
φ2 − ηφ3 +

λ

8
φ4 − M4

64π2

(

Lε − ln
M2

µ2
+

3

2

)

+
m4

64π2

(

Lε − ln
m2

µ2
+

3

2

)

− 3λ

8
∆2(x) + δU(φ) . (C.2)

In this approximation exactly as in the case of the one-loop approximation we
want to fulfill renormalization conditions which as far as it is possible avoid the
difference in the form between the tree level potential and the effective potential.
For this purpose we introduce in addition to the standard Hartree counterterms
Λd, AM2, BM4, a finite polynomial in φ in the following form

Λf + δρfφ+
1

2
δm2

fφ
2 − δηfφ

3 +
1

8
δλfφ

4 , (C.3)

where we have introduced the cosmological constant, as it is necessary here in the
contrary to the 1-loop case.

So the variational potential gets a form

U(φ,M2) = Λf + δρfφ+
m2 + δm2

f

2
φ2 − (η + δηf )φ

3 +
λ+ δλf

8
φ4

− M4

64π2

(

Lε − ln
M2

µ2
+

3

2

)

+
m4

64π2

(

Lε − ln
m2

µ2
+

3

2

)

−3λ

8
∆2(x) + Λd +BM4 , (C.4)
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with

∆(φ,M2) =
2

3λ

(

M2 − (m2 + δm2
f ) + 6(η + δηf )φ− 3

2
(λ+ δλf)φ

2

)

(C.5)

and do not write the quadratic term in the effective mass, as it is obvious that we
will not need this counterterm to cancel the divergences.

According definition (1.28) ∆ is a variation of the potential (C.4) with respect to
the effective mass:

∂U(φ,M2)

∂M2
= 0 (C.6)

one has

∆(φ,M2) = − M2

16π2

(

Lε − ln
M2

µ2
+ 1

)

+ 4BM2 . (C.7)

Putting together everything we just have discussed, we derive the gap equation

M2 = (m2 + δm2) − 6(η + δηf)φ+
3

2
(λ+ δλf)φ

2

+
3

2
λ

[

− M2

16π2

(

Lε − ln
M2

µ2
+ 1

)

+ 4BM2

]

. (C.8)

To make the gap equation finite we should put B = Lε/64π2. However, we take
’1 − ln m2

µ2 ’ with

B =
1

64π2

(

Lε − ln
m2

µ2
+ 1

)

. (C.9)

This entails

∆(φ,M2) =
M2

16π2
ln

M2

m2
(C.10)

and

M2 = (m2 + δm2
f ) − 6(η + δηf)φ+

3

2
(λ+ δλf)φ

2 +
3

2
λ
M2

16π2
ln

M2

m2
.(C.11)

For the further discussion we will need the first derivative of the effective potential

U ′
eff (φ) =

dUeff(φ)

dφ
=
∂U(φ,M2)

∂φ
+
∂U(φ,M2)

∂M2

dM2

dφ
,

where M2 is a solution of the gap equation, that means the second term in the last
expression vanishes. Therefore, for the first derivative of the effective potential one
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has

U ′
eff (φ) = δρf + (m2 + δm2

f)φ− 3(η + δηf )φ
2 +

λ+ δλf

2
φ3

+
3M2

32π2
ln

M2

m2
[−2(η + δηf) + (λ+ δλf )φ] .

Now we are ready to impose the renormalization conditions. There will be again
five conditions, but as a first condition we will require no change of effective mass
(bare vacuum condition) at φ = 0, M2(0) = m2. One can easily check that this
condition is equivalent to the one on the curvature of the effective potential at false
minimum:

1) effective mass at local minimum is conserved

M2(0) = m2 , (C.12)

2) height of local minimum is 0

Ueff(0,M2(0)) = 0 , (C.13)

3) local minimum is not shifted

U ′
eff(0,M2(0)) = 0 , (C.14)

4) height of absolute minimum is conserved

Ueff(φ+,M2(φ+)) = U+ , (C.15)

5) absolute minimum is not shifted

U ′
eff(φ+,M2(φ+)) = 0 , (C.16)

where φ+ is again the position of the absolute minimum

φ+ =
3η

λ
+

√

9η2

λ2
− 2m2

λ
. (C.17)

From the first condition is obvious that

δm2
f = 0 . (C.18)

The second condition fixes the cosmological constant. The divergent part of the
cosmological constant cancels m4Lε/64π2 term in the effective potential, so that
Λd = −m4Lε/64π2, so we define it analogously to the B counterterm

Λ = − m4

64π2

(

Lε − ln
m2

µ2
+ 1

)

. (C.19)
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The requirement the local minimum to be not shifted (third condition) leads to
determination of the linear counterterm:

δρf = 0 . (C.20)

The last two conditions on the effective potential at absolute minimum lead to
the nonlinear system for equations for δηf and δλf counterterms:

δηfφ
3
+ − δλf

8
φ4

+ =
M4

+

64π2

(

ln
M2

+

m2
− 1

2

)

+
m4

128π2
− 3λ

8
∆2

+ , (C.21)

3δηf(φ
2
+ + ∆+) − δλf

2
φ+(φ2

+ + 3∆+) = −1

2
[6η − 3λφ+] ∆+ , (C.22)

here we again use the notation M2
+ = M2(φ+) and have introduced the new one,

∆+ = ∆(φ+,M2
+). One should notes that the equations are independent of µ. This

is a consequence of Hartree resummation scheme. The above system of equations
was solved numerically using an iterative procedure:

M2
+ = M̃2

+

⇓
x



















(C.10) ⇒ ∆+

⇓
(C.21, C.22) ⇒ δηf , δλf

⇓
(C.11) ⇒ M2

+ .

(C.23)

In the first step one puts the effective mass to be equal its tree level value at an
absolute minimum M̃2

+ = m2−6ηφ+ + 3
2
λφ2

+, as a second step one computes ∆+ for
this value on effective mass. Then one determines corresponding δηf and δηf and
computes the new value of an effective mass according (C.11) with just computed
values of counterterm coefficients and ∆+. Now this value of effective mass is a new
input for the whole procedure (one should start with second step).

The hartree effective potential in MS renormalization scheme

In MS scheme for the Hartree approximation in contrary to the one-loop case one
should ensure that the effective mass obeys the bare vacuum condition at local
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minimum M2(0) = m2. In this case has a gap-equation the following form:

M2 = m2 − 6ηφ+
3

2
λφ2

+
3

2
λ

[

− M2

16π2

(

Lε − ln
M2

µ2
+ 1

)

+ 4BM2

]

. (C.24)

To fulfill the bare vacuum condition we choose the coefficient of the counterterm B
as in the previous subsection (C.9)

B =
1

64π2

(

Lε − ln
m2

µ2
+ 1

)

. (C.25)

We are forced to put the ’ln’ term in counter term. This will remove the µ de-
pendence from the whole of calculations, but as the most of results we present is
computed for µ2 = m2, it will not be important. The only thing we can not do is
to investigate the dependence of our results in Hartree MS scheme on the renormal-
ization scale.

In addition as in the one-loop MS we want to fix effective potential at φ = 0,
therefore we define a cosmological constant in a similar to (C.19). So the effective
potential is given by:

Ueff (φ,M2) =
m2

2
φ2 − ηφ3 +

λ

8
φ4 − M4

64π2

(

1

2
− ln

M2

m2

)

+
m4

128π2
− 3

8
λ∆2 . (C.26)

The condition Ueff(0) = 0 and U ′
eff (0) = 0 are fulfilled automatically.

The last comment, as in the one-loop case of MS scheme, the absolute minimum
is shifted from its bare value φ+.

Appendix D.

Some details of renormalization for tunneling process

Here we present how the expression (5.67) is obtained. The functions hn(t) satisfy
the following integral equation

hn(t) =
i

2ωn0

∫ t

0

dt′
(

e2iωn0(t−t′) − 1
)

V (t′) [1 + hn(t′)] (D.1)
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and we should separate the real part of it. It is obvious that the term

− i

2ωn0

∫ t

0

dt′V (t′) [1 + hn(t′)]

is always imaginary, so we can neglect it for our aims. So that

Rehn(t) = Re
i

2ωn0

∫ t

0

dt′e2iωn0(t−t′)V (t′) [1 + hn(t′)] .

This integral can be integrated partially, as a result be get

Rehn(t) = Re

{

− 1

4ω2
n0

V (t)[1 + hn(t)]

− i

2ωn0

∫ t

0

dt′e2iωn0(t−t′)

[

∂V (t′)

∂t′
(1 + hn) + V (t′)ḣn(t)

]}

. (D.2)

The integral term is of the order ω−3
n0 at least, and we do not want to expand till

this order. The function hn(t) is also of the order ω−1
n0 at least, so the only term of

our interest is

Rehn(t) = − 1

4ω2
n0

V (t) + O
(

1

ω3
n0

)

. (D.3)

The next point we want to address here is a computation of the divergent sums
appearing in the fluctuation integral and the energy density.

The sum in the divergent part of the fluctuation integral can be rewritten

∞
∑

n=1

1

2ωn0
=

∞
∑

n=1

∫ ∞

−∞

dk

2π

1

k2 + k2
n +m2

0

, (D.4)

with kn = n/a. The sum can be done as

∞
∑

n=1

1

k2 + n2/a2 +m2
0

=
πa

2ω0

coth(πaω0) −
1

2ω2
0

=
πa

2ω0

(

1 +
1

exp(2πaω0) − 1

)

− 1

2ω2
0

,

with ω0 =
√

k2 +m2
0. So one can write

∞
∑

n=1

1

2ωn0
= πa

∫ ∞

−∞

dk

(2π)2ω0

[

1 +
2

exp(2πaω0) − 1
− 1

πaω0

]

. (D.5)

115



Appendix D

Alternatively this expression can be derived using the Abel-Plana formula [56]:

∞
∑

n=0

f(n) =
1

2
f(0) +

∫ ∞

0

dxf(x) + i

∫ ∞

0

dt
f(it + ε) − f(−it+ ε)

e2πt − 1
. (D.6)

The small real ε is imposed by the fact that the formula is derived using the residue
theorem, opening up a contour originally enveloping the positive real axis. As our
function f(x) = 1/2

√

m2
0 + x2/a2 has cuts along the imaginary axis, starting at

x = ±iam0 the contour has to run along the side with a small positive real part.
For f(it± ε) we find

√

m2
0 +

(it± ε)2

a2
=

√

− t2

a2
+m2

0 ± iε′ = ±
√

t2

a2
−m2

0 ,

with ε′ = 2tε/a2 > 0.Therefore

i(f(it + ε) − f(−it + ε)) =
2

√

t2

a2 −m2
0

Θ(t− am0) .

So the second integral in the Plana formula becomes

i

∫ ∞

am0

dt
√

t2

a2 −m2
0

f(it+ ε) − f(it− ε)

e2πt − 1

= 2a

∫ ∞

m0

dω0
√

ω2
0 −m2

0

1

e2πaω0 − 1
= 2a

∫ ∞

0

dk

ω0

1

e2πaω0 − 1
.

Here we have substituted t = aω0 and k =
√

ω2
0 −m2

0.
In the first integral we substitute x = ak and finally get

∞
∑

n=0

1

2ωn0
=

1

4m0
+ a

∫ ∞

0

dk

2ω0
+ a

∫ ∞

0

dk

ω0

1

e2πaω0 − 1
(D.7)

for the divergent sum in the fluctuation integral.
Another sum which will appear as a leading contribution to the energy density is

∑ 1

2
ωn0

It can be computed easily using the same strategy, one obtains

∑ 1

2
ωn0 =

1

4
m0 + a

∫ ∞

0

dk
1

2
ω0 − a

∫

dkk2

ω0

1

e2πaω0 − 1
. (D.8)
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