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Abstract

We introduce a scalar product for n-dimensional copulas, based on the Sobolev
scalar product for W 1,2-functions. The corresponding norm has quite remarkable
properties and provides a new geometric framework for copulas. We show that, in
the bivariate case, it measures invertibility properties with respect to the ∗-product
for copulas defined by Darsow et al. The unique copula of minimal norm is the null
element for the ∗-multiplication, whereas the copulas of maximal norm are precisely
the invertible elements.
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1 Introduction

Let I = [0, 1] denote the closed unit interval. An n-dimensional copula is a
joint distribution function on the unit cube In with uniform margins. The
true importance of copulas to probability theory, however, stems from the
well known Sklar theorem [6, 5] which states that, when a joint distribution
function has continuous marginal distribution functions, it can be decomposed
into the margins and a unique copula. It follows that in this case the depen-
dence structure is fully captured by the copula, and therefore, copulas provide
a convenient framework for the study of dependence relations in probability
theory and mathematical statistics.
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From an analytical perspective, copulas are Lipschitz continuous functions
from In to I with a uniform Lipschitz constant. The set Cn of copulas is
a subset of any Sobolev space W 1,p(In,R) with p ∈ [1,∞], so that Cn can
be equipped with any Lp-topology. In fact, all the Lp-topologies on Cn with
1 ≤ p < ∞ coincide, and are different from the L∞-topology; see [2] whose
proof for the case n = 2 immediately generalizes to arbitrary dimensions.
Moreover, the set C2 of two-dimensional copulas becomes a monoid under the
∗-product

(A ∗B)(x, y) =
∫ 1

0
∂2A(x, t) ∂1B(t, y) dt

introduced by Darsow et al. in [1].

In this paper, we introduce a new structure for copulas, based on the fact that
the particular Sobolev space W 1,2(In,R) is a Hilbert space. We show that

〈f, g〉 =
∫

In
∇f · ∇g dλ

defines a scalar product for copulas with corresponding norm

‖C‖ =
( ∫

In
|∇C|2 dλ

)1/2

where λ denotes the Lebesgue measure. This scalar product structure yields
a new geometric way of looking at copulas.

We show that, especially in the case n = 2, this norm for copulas possesses a
variety of new unexpected features. First of all, it admits a representation via
the ∗-product and, therefore, provides a link between geometric and algebraic
properties of copulas. Even more importantly, the norm ‖ ‖ detects stochas-
tic properties of the copula and, in a very precise sense, measures stochastic
dependence. Indeed, we prove that the set of copulas is contained in the shell

between the spheres of radius
√

2/3 and 1, respectively. There is a unique
copula with minimal norm which is the null element for the ∗-product; it is
the product copula which corresponds to stochastically independent random
variables. On the other side, the copulas of maximal norm are precisely the
invertible elements; they link random variables X, Y with Y = f(X) a.e. for
some bijection f . Finally, using the Sobolev norm instead of the L∞-norm
resolves the well known paradox in the theory of copulas that the invertible
elements are dense; see [4].

The paper is organized as follows. Section 2 sets up the notation and re-
views basic properties of copulas in n dimensions. Section 3 introduces the
scalar product for copulas and its corresponding norm and distance. In the
bivariate case, we show that the scalar product allows a representation via
the ∗-product. In Section 4, we deduce fundamental geometric properties of
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the set of two-dimensional copulas and relate them to the algebraic struc-
ture given by the ∗-product. Finally, we compare the topology induced by our
scalar product with the topology of uniform convergence in Section 5.

2 Basic properties of copulas

In this section, we collect some basic properties of multivariate copulas. We
present some proofs because the standard literature deals mostly with the
bivariate situation.

Let R = R ∪ {±∞} be the extended real line, and Rn
the n-fold Cartesian

product R × . . . × R. For two vectors a, b ∈ Rn
with components ak ≤ bk we

write [a, b] for the parallelepiped [a1, b1] × . . . × [an, bn]. The vertices of [a, b]
are the points c = (c1, . . . , cn) with ck ∈ {ak, bk} for each k.

Definition 1 Let Sk, 1 ≤ k ≤ n, be nonempty subsets of R, F : S = S1 ×
. . . × Sn → R be a function, and B = [a, b] be a parallelepiped all of whose
vertices c are in S. Then the F -volume of B is given by

VF (B) =
∑

c

sgn(c) F (c)

where sgn(c) is defined to be 1 if ck = ak for an even number of k’s, and −1
otherwise.

The function F : S → R is called n-increasing if VF (B) ≥ 0 for all paral-
lelepipeds B whose vertices lie in S.

Suppose αk = min Sk and βk = max Sk for each k. Then F is called grounded
if F (t) = 0 for all t ∈ S such that tk = αk for at least one k. The functions
Fk : Sk → R with Fk(t) = F (β1, . . . , βk−1, t, βk+1, . . . , βn) for 1 ≤ k ≤ n are
called the (one-dimensional) margins of F .

Example 2 Consider the bivariate case where n = 2 and S = [a1, b1]× [a2, b2]
is a rectangle. Then a function F : S → R is 2-increasing if, and only if,

F (y1, y2)− F (y1, x2)− F (x1, y2) + F (x1, x2) ≥ 0 (1)

for all rectangles B = [x1, y1] × [x2, y2] ⊂ S. The expression on the left hand
side of (1) can be interpreted as the second order difference of F on B.

F is grounded if, and only if, F (a1, y) = F (x, a2) = 0 for all x ∈ [a1, b1] and
y ∈ [a2, b2]. In other words, F satisfies a zero boundary condition on the two
“lower” boundary parts of S.
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The margins of F are the two functions F1(x) = F (x, b2) on [a1, b1] and
F2(y) = F (b1, y) on [a2, b2]. These represent the boundary values of F on
the remaining “upper” boundary parts.

Lemma 3 Let F : S → R be grounded and n-increasing. Then F is mono-
tonically increasing in each argument.

PROOF. Let (t1, . . . , x, . . . , tn) and (t1, . . . , y, . . . , tn) be two points in S with
x ≤ y, and consider the parallelepiped

B = [α1, t1]× . . .× [αk−1, tk−1]× [x, y]× [αk+1, tk+1]× . . .× [αn, tn].

Since F is n-increasing we have VF (B) ≥ 0, and by the groundedness of F the
F -volume of B calculates to

0 ≤ VF (B) = F (t1, . . . , y, . . . , tn)− F (t1, . . . , x, . . . , tn).

2

Lemma 4 Let F : S → R be a grounded, n-increasing function with margins
Fk. Then

|F (x1, . . . , xn)− F (y1, . . . , yn)| ≤
n∑

k=1

|Fk(xk)− Fk(yk)|

for any two points x, y ∈ S.

PROOF. The proof follows easily from the triangle inequality in combination
with Lemma 3; see, e.g., [5] for the case n = 2. 2

For the following, we denote by ∂k the partial derivative with respect to the
k-th variable.

Theorem 5 Let F : S = S1 × . . . × Sn → R be a grounded, n-increasing
function. Then, for any k ∈ {1, . . . , n}, the following holds true.

(i) The partial derivative ∂kF (x1, . . . , xn) exists for all xj ∈ Sj with j 6= k
and almost all xk ∈ Sk.

(ii) The partial derivatives of F satisfy

0 ≤ ∂kF ≤ 1.

(iii) For each j 6= k, the functions

t 7→ ∂jF (x1, . . . , xk−1, t, xk+1, . . . , xn)
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are monotonically increasing a.e. on Sk.
(iv) If the margin Fk of F is Lipschitz continuous, then F satisfies the Fun-

damental Theorem of Calculus with respect to xk, i.e.,

F (x1, . . . , xk, . . . , xn) = F (x1, . . . , αk, . . . , xn)+
∫ xk

αk

∂kF (x1, . . . , t, . . . , xn) dt.

PROOF. Because monotone functions are differentiable a.e., Lemma 3 im-
plies the statement about the existence of ∂kF , as well as ∂kF ≥ 0. The
inequality ∂kF ≤ 1 follows from Lemma 4. This proves (i) and (ii).

Concerning (iii), let j 6= k and consider the parallelepiped

B = [α1, t1]× . . .× [xj, yj]× . . .× [xk, yk]× . . .× [αn, tn].

Then VF (B) ≥ 0 is equivalent to

F (. . . , yj, . . . , xk, . . .)− F (. . . , xj, . . . , xk, . . .)

≤ F (. . . , yj, . . . , yk, . . .)− F (. . . , xj, . . . , yk, . . .).

If yj tends to xj this implies

∂jF (. . . , xk, . . .) ≤ ∂jF (. . . , yk, . . .).

Finally, if Fk is Lipschitz continuous, Lemma 4 implies that also the function
t 7→ F (x1, . . . , xk−1, t, xk+1, . . . , xn) is Lipschitz continuous, and hence abso-
lutely continuous. Therefore, it satisfies the Fundamental Theorem of Calculus
formulated in (iv). 2

Definition 6 An n-dimensional copula is a grounded and n-increasing func-
tion C : In → I with margins Ck(t) = t. The set of all n-dimensional copulas
is denoted by Cn.

We point out that, in view of Lemma 4, each copula C ∈ Cn is Lipschitz
continuous on In, with a uniform Lipschitz constant depending only on n.

It is elementary to prove lower and upper bounds for copulas; see [5]. In fact,
for each C ∈ Cn one has

C−(x1, . . . , xn) ≤ C(x1, . . . , xn) ≤ C+(x1, . . . , xn) (2)

for all (x1, . . . , xn) ∈ In where C+ and C− are the so-called Fréchet-Hoeffding
upper and lower bound given by

C−(x1, . . . , xn) = max(x1 + . . . + xn − n + 1, 0)

C+(x1, . . . , xn) = min(x1, . . . , xn)
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The upper bound C+ is always a copula itself, whereas the lower bound C− is
a copula only for n = 2. For proofs and further results we refer to [5]. Finally,
there is a third distinguished copula, namely the product copula

P (x1, . . . , xn) = x1 . . . xn.

The probabilistic role of copulas is best described by the following result due
to Sklar; see [6, 5].

Theorem 7 (Sklar’s theorem) For every n-dimensional distribution func-
tion H with marginal distribution functions F1, . . . , Fn, there exists a C ∈ Cn

such that

H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)).

Moreover, if the Fk are continuous then C is unique.

Conversely, given any C ∈ Cn and distribution functions F1, . . . , Fn, the above
equation defines an n-dimensional distribution function H with marginal dis-
tribution functions F1, . . . , Fn.

In the continuous case, the unique copula given by Sklar’s theorem will of-
ten be denoted by CX1,...,Xn . Moreover, in this setting, the random variables
X1, . . . , Xn are independent if and only if CX1,...,Xn = P .

Of particular interest are bivariate copulas where one considers the set C2

of all two-dimensional copulas. The following theorem collects once more the
most important properties of copulas in C2.

Theorem 8 For each C ∈ C2 the following holds:

(i) C is increasing in each argument.
(ii) C is Lipschitz continuous.
(iii) For every x ∈ I, the partial derivative ∂2C(x, y) exists for almost all

y ∈ I; similarly, for every y ∈ I, the partial derivative ∂1C(x, y) exists
for almost all x ∈ I.

(iv) The partial derivatives of C satisfy

0 ≤ ∂iC(x, y) ≤ 1

for i = 1, 2 as well as

C(x, y) =
∫ x

0
∂1C(t, y) dt =

∫ y

0
∂2C(x, t) dt.

(v) The functions t 7→ ∂1C(x, t) and t 7→ ∂2C(t, y) are defined and increas-
ing a.e. on I.
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It has been shown by Darsow et al. [1] that the set C2 carries a distinguished
algebraic structure, namely, it becomes a monoid when equipped with the
so-called ∗-multiplication

(A ∗B)(x, y) =
∫ 1

0
∂2A(x, t) ∂1B(t, y) dt. (3)

Note that (A ∗ B)(x, y) is well defined because each partial derivative is an
L1-function with respect to t, as well as an L∞-function; we refer to [1] for
proofs and more details. Direct calculations show that for any copula C ∈ C2

we have

C+ ∗ C = C ∗ C+ = C

P ∗ C = C ∗ P = P

(C− ∗ C)(x, y) = y − C(1− x, y)

(C ∗ C−)(x, y) = x− C(x, 1− y)

(4)

In particular, the copula C+ represents the unit element in (C2, ∗).

Definition 9 Given a copula C ∈ C2, the transposed copula C> is defined by

C>(x, y) = C(y, x).

A copula C ∈ C2 is called symmetric if C = C>.

Note that P, C+ and C− are all symmetric. Moreover, it is easy to see that
for any A, B ∈ C2 we have

(A ∗B)> = B> ∗ A>. (5)

Definition 10 A copula C ∈ C2 is left invertible if there is a copula A, called
a left inverse, such that A ∗ C = C+. It is right invertible if there is a copula
A, called a right inverse, such that C ∗ A = C+. A copula is called invertible
if it is both left and right invertible.

The following result is given in [1, Theorem 7.1].

Theorem 11 The left and right inverse of a copula C ∈ C2 are unique, if
they exist, and given by the transposed copula C>. Moreover, the following
statements hold true:

(i) C is left invertible if, and only if, for each y ∈ I, ∂1C(x, y) ∈ {0, 1} for
almost all x ∈ I.

(ii) C is right invertible if, and only if, for each x ∈ I, ∂2C(x, y) ∈ {0, 1}
for almost all y ∈ I.
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3 The Sobolev scalar product for copulas

Let us denote by · the Euclidean scalar product, by | | the Euclidean norm
on Rn, and by λ the n-dimensional Lebesgue measure. Recall that the set of
n-dimensional copulas is denoted by Cn.

It follows immediately from Theorem 8, and has been noticed in [2], that

Cn ⊂ W 1,p(In,R)

for every p ∈ [1,∞] where W 1,p(In,R) is the standard Sobolev space. However,
it has not been exploited in this context that W 1,2(In,R) is a Hilbert space
with respect to the scalar product

〈f, g〉W 1,2 =
∫

In
fg dλ +

∫

In
∇f · ∇g dλ (6)

where ∇f denotes the vector consisting of the weak partial derivatives of f .
We refer to [3] for more details.

Since copulas are continuous functions, there is an even simpler way to define
a scalar product for them. Define a subspace of W 1,2(In,R) by

W 1,2
0 (In,R) = {f ∈ W 1,2(In,R) | f ∈ C0(In,R), f(0) = 0}.

Proposition 12 Setting

〈f, g〉 =
∫

In
∇f · ∇g dλ

defines a scalar product on W 1,2
0 (In,R).

PROOF. Indeed, 〈 , 〉 is a symmetric bilinear form which is nondegenerate
on W 1,2

0 (In,R) since 〈f, f〉 = 0 implies that f is constant a.e. so that, by
continuity and f(0) = 0, we conclude that f = 0. 2

Note that the subspace generated by Cn is contained in W 1,2
0 (In,R) and, hence,

inherits the scalar product 〈 , 〉 from W 1,2
0 (In,R). Therefore, with a slight

abuse of notation because Cn is not a vector space itself, we can make the
following definition.

Definition 13 The restriction of 〈 , 〉 to Cn is called the Sobolev scalar prod-
uct on Cn.
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Then we define, as usual, the corresponding Sobolev norm on Cn by

‖C‖ =
( ∫

In
|∇C|2 dλ

)1/2

(7)

and the Sobolev distance function on Cn × Cn by

d(A,B) =
( ∫

In
|∇A−∇B|2 dλ

)1/2

. (8)

Remark 14 (i) Obviously, ‖ ‖ defines a semi-norm on the whole Sobolev
space W 1,2(In,R).

(ii) The Sobolev norm ‖ ‖ is reminiscent of the classical energy functional,
which is well known in PDEs and differential geometry. In fact, one
might call

E(C) =
1

2
‖C‖2 =

1

2

∫

In
|∇C|2 dλ

the energy of a copula C ∈ Cn.
(iii) (Cn, d) is a complete metric space [2, Theorem 4.5], and the ∗-product

on C2 is continuous with respect to d [2, Theorem 4.2].

We have seen that the Sobolev scalar product for copulas appears very nat-
urally from an analytical point of view. However, for the case n = 2, it also
allows a representation via the algebraic product structure on C2, defined by
the ∗-multiplication in (3).

Theorem 15 For all A,B ∈ C2 we have

〈A,B〉 =
∫ 1

0
(A> ∗B + A ∗B>)(t, t) dt

=
∫ 1

0
(A> ∗B + B ∗ A>)(t, t) dt.

PROOF. The partial derivatives of the transposed copula are given by

∂1A
>(x, y) = ∂2A(y, x)

∂2A
>(x, y) = ∂1A(y, x)

(9)

Using (3) and (9) we can write

∫ 1

0

∫ 1

0
∂1A(x, y) ∂1B(x, y) dx dy =

∫ 1

0

( ∫ 1

0
∂2A

>(y, x) ∂1B(x, y) dx
)
dy

=
∫ 1

0
(A> ∗B)(y, y) dy

∫ 1

0

∫ 1

0
∂2A(x, y) ∂2B(x, y) dx dy =

∫ 1

0

( ∫ 1

0
∂2A(x, y) ∂1B

>(y, x) dy
)
dx

=
∫ 1

0
(A ∗B>)(x, x) dx.
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Adding up both terms we obtain the first identity.

The second equation follows from the fact that, along the diagonal, we have
(A ∗B>)(t, t) = (A ∗B>)>(t, t) = (B ∗ A>)(t, t) for each t ∈ I. 2

Corollary 16 If A, B ∈ C2 are symmetric, then

〈A,B〉 = 2
∫ 1

0
(A ∗B)(t, t) dt.

4 The Sobolev geometry of C2

In this section, we continue our study of the Sobolev scalar product, respec-
tively, the corresponding Sobolev norm on C2.

Theorem 17 Let A,B ∈ C2. Then

1

2
≤ 〈A,B〉 ≤ 1,

where both bounds are sharp.

PROOF. Theorem 15, in connection with the bounds for copulas given in (2),
implies that

2
∫ 1

0
C−(t, t) dt ≤ 〈A,B〉 ≤ 2

∫ 1

0
C+(t, t) dt.

Simple calculations yield
∫ 1
0 C−(t, t) dt = 1/4 and

∫ 1
0 C+(t, t) dt = 1/2.

Finally, one easily computes that

〈C−, C−〉 = 〈C+, C+〉 = 1

〈C−, C+〉 =
1

2
.

(10)

This shows that the bounds in the statement are sharp, and the proof is
complete. 2

Corollary 18 We have

d(A,B) ≤ 1 = d(C−, C+)

for all A,B ∈ C2; in particular, the diameter of (C2, d) is 1.
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PROOF. The inequality d(A,B) ≤ 1 is a consequence of the identity

d(A,B)2 = ‖A−B‖2 = ‖A‖2 + ‖B‖2 − 2 〈A,B〉 (11)

in connection with Theorem 17. The equality d(C−, C+) = 1 follows from (11)
and (10). 2

Corollary 19 For any A,B ∈ C2 the following holds true.

(i) d(A, B) = 1 if, and only if, ‖A‖ = ‖B‖ = 1 and 〈A,B〉 = 1/2.
(ii) 〈A,B〉 = 1 if, and only if, ‖A‖ = ‖B‖ = 1 and A = B.

PROOF. Again, both statements follow from (11) in combination with The-
orem 17. 2

Proposition 20 The transposition map C 7→ C> is an isometry on the met-
ric space (C2, d). Moreover, for every C ∈ C2 we have

‖C‖2 ≥ 2
∫ 1

0
(C ∗ C)(t, t) dt,

with equality if and only if C is symmetric.

PROOF. The fact that ‖C‖ = ‖C>‖ follows readily from the definitions.
Using Theorem 15, as well as C> ∗ C> = (C ∗ C)>, we can therefore write

0 ≤ ‖C − C>‖2

= ‖C‖2 + ‖C>‖2 − 2〈C, C>〉
= 2

(
‖C‖2 −

∫ 1

0
((C ∗ C)> + (C ∗ C))(t, t) dt

)

= 2
(
‖C‖2 − 2

∫ 1

0
(C ∗ C)(t, t) dt

)

from which the second assertion follows. 2

Theorem 21 For all C ∈ C2, the following hold:

(i)

〈P, C〉 =
2

3

〈C+, C〉 = 2
∫ 1

0
C(t, t) dt

〈C−, C〉 = 1− 2
∫ 1

0
C(t, 1− t) dt
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(ii)

‖C − P‖2 = ‖C‖2 − 2

3
(iii)

2

3
≤ ‖C‖2 ≤ 1.

PROOF. Recall that P, C+ and C− are symmetric. Then, using Theorem 15
and (4), we can write

〈P,C〉 =
∫ 1

0
(P ∗ C + C ∗ P )(t, t) dt = 2

∫ 1

0
P (t, t) dt =

2

3
.

The identities for 〈C+, C〉 and 〈C−, C〉 are shown analogously. This proves (i).
Now, (ii) and (iii) are immediate consequences from (i) and Theorem 17. 2

Corollary 22 For all C ∈ C2, we have

〈C − P, P 〉 = 0.

The next theorem is one of the main results of the paper. It describes fun-
damental features of the Sobolev norm on C2, and shows that the geometric
Sobolev norm detects algebraic properties of copulas. Loosely speaking, the
Sobolev norm measures the ”degree of invertibility” of two-dimensional copu-
las.

Theorem 23 The Sobolev norm on C2 satisfies

2

3
≤ ‖C‖2 ≤ 1

for all C ∈ C2. Moreover, the following assertions hold:

(i) ‖C‖2 = 2/3 if, and only if, C = P .
(ii) ‖C‖2 ∈ [5/6, 1] if C is left or right invertible.
(iii) ‖C‖2 = 1 if, and only if, C is invertible.

PROOF. The foremost statement is contained in Theorem 21(iii). The first
item in the list is an immediate consequence of Theorem 21(ii).

As for the second assertion, it follows from (7) that

‖C‖2 =
∫ 1

0

∫ 1

0
∂1C(x, y)2 dx dy +

∫ 1

0

∫ 1

0
∂2C(x, y)2 dx dy. (12)
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If C is left invertible we know from Theorem 11 that (∂1C)2 = ∂1C a.e., so
the first summand in (12) is always equal to

∫ 1

0

∫ 1

0
∂1C(x, y) dx dy =

∫ 1

0
y dy =

1

2
.

To estimate the second term in (12), we consider the inequality

0 ≤
∫ 1

0

∫ 1

0
(∂2C(x, y)− x)2 dx dy

=
∫ 1

0

∫ 1

0
∂2C(x, y)2 dx dy − 2

∫ 1

0
x

∫ 1

0
∂2C(x, y) dy dx +

∫ 1

0

∫ 1

0
x2 dx dy

=
∫ 1

0

∫ 1

0
∂2C(x, y)2 dx dy − 1

3
.

Hence the second summand is at least 1/3. Since 1/2 + 1/3 = 5/6, we have
proved the second statement.

Finally, in view of Proposition 8 (iii), we have (∂iC)2 ≤ ∂iC for i = 1, 2 with
equality if, and only if, ∂iC ∈ {0, 1}. Consequently, (12) implies that

‖C‖2 ≤
∫ 1

0

∫ 1

0
∂1C(x, y) dx dy +

∫ 1

0

∫ 1

0
∂2C(x, y) dx dy =

1

2
+

1

2
= 1

with equality if, and only if, ∂1C, ∂2C ∈ {0, 1} a.e. In view of Theorem 11,
this is equivalent to C being invertible. 2

Corollary 24 For any C ∈ C2, the following are equivalent:

(i) ‖C‖ = 1.
(ii) ∂1C, ∂2C ∈ {0, 1} a.e.
(iii) C is invertible, i.e., C ∗ C> = C> ∗ C = C+.
(iv)

∫ 1
0 (C ∗ C> + C> ∗ C)(t, t) dt = 1.

PROOF. This follows immediately from Theorem 11, Theorem 23 and The-
orem 15. 2

As a consequence, we obtain the following geometric picture for the set C2 of
copulas. 1

First of all, the set C2 has diameter 1 and lies between the spheres of radius√
2/3 and 1, respectively; furthermore, it is contained in the affine hyperplane

perpendicular to P . Due to the boundary conditions, any ray in the vector
space W 1,2

0 (I2,R) emanating from the origin intersects C2 in at most one point.

1 As an aside we mention that C2 is convex; this is easy to check.
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The unique copula of minimal norm is the product copula P , whereas copulas
of maximal norm are precisely those which are invertible with respect to the
∗-multiplication. In between, the copulas which are left or right invertible are

contained in the shell of radii
√

5/6 and 1.

Finally, we point out that the above results can also be seen from a prob-
abilistic viewpoint. In fact, Darsow et al. prove in [1, Theorem 11.1] that a
continuous random variable Y is completely dependent on X (i.e., there is
a Borel measurable function f such that Y = f(X) a.s.) if and only if the
copula C = CX,Y linking X and Y is left invertible. Consequently, two con-
tinuous random variables X, Y are mutually completely dependent (i.e., there
is a Borel measurable bijection f such that Y = f(X) a.s.) if and only if
the copula C is invertible. Therefore, the Sobolev norm measures probabilistic
dependence properties, and the geometric picture stemming from Theorem 23
possesses a probabilistic counterpart.

5 Comparison with the L∞-topology for copulas

We conclude this paper with some remarks concerning the topology induced by
the Sobolev norm ‖ ‖ on W 1,2

0 (In,R), which contains the subspace generated
by Cn. Recall from (6) that the standard Sobolev norm is given by

‖f‖2
W 1,2 = ‖f‖2

L2 + ‖∇f‖2
L2 = ‖f‖2

L2 + ‖f‖2.

Proposition 25 The norms ‖ ‖ and ‖ ‖W 1,2 are equivalent on the subspace
generated by Cn.

PROOF. Trivially, we have ‖f‖ ≤ ‖f‖W 1,2 . In order to prove the proposition,
we will show an adapted version of the Poincaré inequality

‖f‖2
L2 ≤ 1

2
‖∇f‖2

L2 (13)

yielding ‖f‖W 1,2 ≤ 3/2 ‖f‖.

In order to prove (13) we may assume, in view of the theorem of Meyers and
Serrin, that f is smooth. Then, due to the boundary conditions of copulas, we
can write

|f(x)| =
∣∣∣∣
∫ xn

0

∂f

∂xn

(x′, t) dt

∣∣∣∣ ≤ x1/2
n

( ∫ xn

0

∣∣∣ ∂f

∂xn

(x′, t)
∣∣∣
2
dt

)1/2
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by Hölder’s inequality where x = (x′, t) ∈ In = In−1 × I. Therefore,

‖f‖2
L2 =

∫

In
|f(x)|2 dx

≤
∫

In
xn

∫ 1

0

∣∣∣ ∂f

∂xn

(x′, t)
∣∣∣
2
dt dx

≤
∫

In−1

( ∫ 1

0
xn dxn

∫ 1

0
|∇f(x′, t)|2 dt

)
dx′

=
1

2

∫

In
|∇f(x)|2 dx

=
1

2
‖∇f‖2

L2 .

This proves (13) and, hence, the proposition. 2

From a probabilistic viewpoint, the notion of convergence in distribution plays
a central role. It is equivalent to the pointwise convergence of the copulas.
Since copulas are Lipschitz continuous function on In with a uniform Lip-
schitz constant, this is the same as L∞-convergence for copulas. It follows
from (13) that convergence of copulas w.r.t. the Sobolev norm ‖ ‖ implies
L2-convergence, hence also L∞-convergence.

On the other hand, convergence in distribution does not imply convergence
w.r.t. ‖ ‖. This is most prominently illustrated by the somewhat paradoxi-
cal phenomenon that any copula can be L∞-approximated by a sequence of
invertible copulas, i.e., copulas which correspond to mutually completely de-
pendent random variables [4]. This implies that, from a practical point of
view, the product copula which describes stochastic independence cannot be
distinguished in the L∞-topology from copulas describing mutually completely
dependent behavior.

The Sobolev norm, however, resolves this paradox—invertible copulas can only
approximate invertible copulas, as the following result shows.

Theorem 26 If (Ck)k∈N is a sequence of invertible copulas Ck ∈ C2 with
limk→∞ ‖Ck − C‖ = 0 for some C ∈ C2, then C is invertible.

PROOF. In view of Corollary 24, we have ‖Ck‖ = 1 for all k which implies
‖C‖ = 1 since limk→∞ ‖Ck −C‖ = 0. Applying Corollary 24 again proves the
theorem. 2
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