ENTWICKLUNG EINES MODELLS FÜR EIN GANZHEITLICHES FEHLERMANAGEMENT

EIN PROZESSORIENTIERTES REFERENZMODELL ZUM EFFIZIENTEN FEHLERMANAGEMENT

DISSERTATION

ZUR ERLANGUNG DES AKADEMISCHEN GRAD EINES
DOKTORS DER INGENIEURWISSENSCHAFTEN
AN DER MASCHINENBAU FAKULTÄT
DER UNIVERSITÄT DORTMUND

REFERENT:
UNIV.-PROF. DR.-ING. HORST-ARTUR CROSTACK
LEHRSTUHL FÜR QUALITÄTWESEN
FAKULTÄT MASCHINENBAU
UNIVERSITÄT DORTMUND

KOREFERENT:
UNIV.-PROF. DR.-ING. KLAUS HEINZ
LEHRSTUHL FÜR FERTIGUNGSVORBEREITUNG
FAKULTÄT MASCHINENBAU
UNIVERSITÄT DORTMUND

VORGELEGT VON
DIPL.-ING. WISSEM ELLOUZE
AUS GABES
Inhaltsverzeichnis

Abbildungsverzeichnis ........................................................................................................ VII
Tabellenverzeichnis ........................................................................................................ IX

1 Einleitung .......................................................................................................................... 1
   1.1 Ausgangssituation und Problemstellung .................................................................. 1
   1.2 Zielsetzung und Vorgehensweise ............................................................................ 2

2 Stand der Technik .............................................................................................................. 5
   2.1 Grundlagen des Fehlermanagements ..................................................................... 5
      2.1.1 Begriffsbestimmungen ...................................................................................... 5
         2.1.1.1 Fehler ........................................................................................................ 5
         2.1.1.2 Prozessketten ........................................................................................... 8
      2.1.2 Ansätze des Fehlermanagements .................................................................... 10
      2.1.3 Normanforderungen ....................................................................................... 15
      2.1.4 Handlungsmaxime und Qualitätskonzepte ...................................................... 18
         2.1.4.1 Deming Kreis ............................................................................................ 18
         2.1.4.2 Null Fehler Programm (Zero Defects Concept) ....................................... 19
         2.1.4.3 Six Sigma .................................................................................................. 20
         2.1.4.4 Eskalationsprinzip ...................................................................................... 21
         2.1.4.5 Fazit ........................................................................................................... 22
   2.2 Methoden und Techniken ......................................................................................... 23
      2.2.1 Theorie zur Lösung von Erfindungsaufgaben (TRIZ) ....................................... 23
         2.2.1.1 Ablauf der TRIZ-Methodik ....................................................................... 24
         2.2.1.2 Werkzeuge der TRIZ ............................................................................... 25
      2.2.2 Theory of Constraints (TOC) ......................................................................... 29
         2.2.2.1 Systematik der TOC ................................................................................. 29
         2.2.2.2 Werkzeuge der TOC ............................................................................... 31
      2.2.3 Failure Mode and Effect Analysis (FMEA) ...................................................... 33
      2.2.4 Failure Tree Analysis (FTA) .......................................................................... 34
      2.2.5 Ereignisablaufanalyse ..................................................................................... 35
      2.2.6 Sataistical Process Control ............................................................................ 35
      2.2.7 Netzplantechnik ............................................................................................. 36

3 Praxisorientierte Fehlermanagementanforderungen ....................................................... 37
4 Modellbildung eines umfassenden Fehlermanagements ........................................ 44
  4.1 Erste Ebene des Referenzmodells ................................................................. 44
  4.2 Zweite Ebene des Referenzmodells ............................................................... 46
    4.2.1 Fehler detektieren und erfassen .......................................................... 48
    4.2.2 Fehler klassifizieren und bewerten ....................................................... 51
    4.2.3 Zuständigkeiten und Termine ............................................................... 53
    4.2.4 Abstellmaßnahmen ................................................................................. 54
    4.2.5 Korrektur und Vorbeugungsmaßnahmen ................................................. 56
    4.2.6 Umsetzung ............................................................................................ 57
    4.2.7 Controlling ............................................................................................ 59
    4.2.8 Mitarbeitermotivation und -qualifikation ................................................. 60

5 Methodenunterstützung des Modells ................................................................. 63
  5.1 Systematik ..................................................................................................... 63
    5.1.1 Forderungen an den Methodeneinsatz .................................................. 63
      5.1.1.1 Methodenauswahl .......................................................................... 65
      5.1.1.2 Komplexitätsreduzierung .............................................................. 66
      5.1.1.3 Verknüpfung der Methoden ............................................................ 66
    5.1.2 Ableitung des Handlungsbedarfs ........................................................ 67
      5.1.2.1 Zuordnung der Methoden ............................................................... 67
      5.1.2.2 Modularisierung der Methoden ...................................................... 68
      5.1.2.3 Identifikation von Schnittstellen ..................................................... 69
      5.1.2.4 Zusammenfassung ......................................................................... 69
  5.2 Implementierung in den Fehlermanagementprozess ..................................... 70
    5.2.1 Auswahl der Methoden .......................................................................... 70
      5.2.1.1 Fehler detektieren und erfassen .................................................... 70
      5.2.1.2 Fehler klassifizieren ...................................................................... 71
      5.2.1.3 Zuständigkeiten ............................................................................ 71
      5.2.1.4 Abstellmaßnahmen ....................................................................... 72
      5.2.1.5 Korrektur- und Vorbeugungsmaßnahmen ...................................... 72
      5.2.1.6 Umsetzung ....................................................................................... 73
      5.2.1.7 Controlling ...................................................................................... 73
      5.2.1.8 Mitarbeitermotivation .................................................................... 73
      5.2.1.9 Zwischenfazit 1 ............................................................................ 74
    5.2.2 Modularisierung ....................................................................................... 75
      5.2.2.1 FMEA ......................................................................................... 75
      5.2.2.2 TRIZ ............................................................................................ 78
      5.2.2.3 TOC .............................................................................................. 79
      5.2.2.4 Zwischenfazit 2 ............................................................................ 80
5.2.3 Verknüpfung von Modulen und Methoden ........................................................................ 80
  5.2.3.1 Verknüpfung innerhalb der Module ........................................................................ 80
  5.2.3.2 Verknüpfung der Module ....................................................................................... 86

6 Auswahlsystematik zur EDV-Unterstützung ...................................................................... 88
  6.1 Grundlagen der Workflow-Management-Systeme .......................................................... 88
    6.1.1 Begriffsdefinitionen ..................................................................................................... 88
    6.1.2 Das Workflow Reference Modell der WfMC ............................................................. 90
  6.2 Aufbau der Auswahlsystematik ....................................................................................... 93
    6.2.1 Ermittlung der Anforderungen aus dem Fehlermanagement .................................. 94
      6.2.1.1 Prozessspezifische Anforderungen ..................................................................... 94
      6.2.1.2 Prozessübergreifende Anforderungen ................................................................. 95
    6.2.2 Ermittlung der Funktionen von WfMS ..................................................................... 96
    6.2.3 Marktanalyse ............................................................................................................. 99
  6.3 Umsetzung der Auswahlsystematik ............................................................................... 101
    6.3.1 Ermittlung der Bedeutung der WfMS Funktionen ..................................................... 101
    6.3.2 Ermittlung der Funktionserfüllung durch die WfMS ................................................ 105
  6.4 Auswertung .................................................................................................................... 108

7 Methodik zur Einführung des Fehlermanagementsystems ......................................... 110
  7.1 Selbsteinstufung .......................................................................................................... 111
  7.2 Festlegung der eigenen Ziele ....................................................................................... 113
  7.3 Auswahl und Priorisierung der Einzelschritte .............................................................. 114
  7.4 Festlegung eines Zeitplans ........................................................................................... 114
  7.5 Entwicklung der Einzelschritte .................................................................................... 114
  7.6 Erfolgskontrolle ............................................................................................................ 115
  7.7 Software Unterstützung .................................................................................................. 116

8 Erprobung anhand eines Praxisbeispiels und kritische Diskussion der Ergebnisse .............. 119
  8.1 Prozessaufnahme .......................................................................................................... 119
  8.2 Einstufung ..................................................................................................................... 121
  8.3 Implementierung des Fehlermanagementsystems ......................................................... 123
  8.4 Vorteile des Modells aus Sicht des Anwenders .............................................................. 126

9 Zusammenfassung ............................................................................................................. 128
LITERATURVERZEICHNIS ............................................................................................................. 130

ANHANG ......................................................................................................................................... X
ABBILDUNGSVERZEICHNIS

Bild 1-1: Vorgehensweise und Aufbau der Arbeit ...............................................................3
Bild 2-1: Beschreibung von Ursachen, Wirkungen und Folgen anhand der Begriffe Abweichung, Fehler, Störung und Schaden (vgl. Westkämper 1997) .................................................................6
Bild 2-3: Modell zur vollständigen Beschreibung eines Prozesselementes (WALD 2003) 9
Bild 2-4: Prozessmodell der ISO 9000-2000 ........................................................................16
Bild 2-5: Zeitliche Entwicklung und Komponenten der vier Konzepte ......................................23
Bild 2-6: Die vier Säulen der TRIZ-Methodik (HERB 2000) .....................................................24
Bild 3-1: Branchenanteile bei der Umfrage ..............................................................................38
Bild 3-2: Größe der beteiligten Unternehmen .....................................................................39
Bild 3-3: Inhalte der Weiterbildungsmaßnahmen für das Fehlermanagement ........................39
Bild 3-4: Ziele des Fehlermanagements ...............................................................................41
Bild 3-5: Gegenüberstellung der Sammel- und Nutzbereiche der FM-Daten ..........................40
Bild 3-6: Zusammenhang Fehlererfassung und Qualitätskostenerfassung ..............................40
Bild 3-7: Fehleranfällige Prozesse ........................................................................................41
Bild 3-8: Vergleich Gestaltung des Fehlermanagementssystems ........................................42
Bild 3-9: Vergleich der Hauptziele des Fehlermanagements ..............................................42
Bild 4-1: Konzept zur Erstellung des Fehlermanagement-Referenzmodells ..............................44
Bild 4-2: Hauptprozesse des Fehlermanagements ..................................................................46
Bild 4-3: Vorgehensweise zur Ermittlung des Anforderungsprofils der Teilprozesse ..............46
Bild 4-4: Teilprozesse des Fehlermanagements .................................................................48
Bild 4-5: Prozess „Fehler detektieren und erfassen“ ............................................................49
Bild 4-6: Prozess „Fehler klassifizieren und bewerten“ ......................................................52
Bild 4-7: Prozess „Zuständigkeiten und Termine“ ...............................................................54
Bild 4-8: Prozess „Abstellmaßnahmen“ ..............................................................................55
Bild 4-9: Prozess „Korrektur- und Vorbeugungsmaßnahmen“ ............................................56
Bild 4-10: Prozess Umsetzung ..............................................................................................58
Bild 4-11: Prozess Controlling ...............................................................................................59
Bild 4-12: Prozess „Mitarbeiter Motivation und Qualifikation“ .............................................61
Bild 5-1: Systematik der Zuordnung von Methoden zu Problemlösungsphasen (KEUNCEKE 2004) ........64
Bild 5-2: gewünschter Zielzustand der Modulverknüpfung ..................................................66
Bild 5-3: Prinzip der Modulbildung ......................................................................................68
Bild 5-4: Verknüpfung der Module und Methoden ...............................................................69
Bild 5-5: Umzusetzende Forderungen mit korrespondierendem Handlungsbedarf (vgl. HEILIGER 2003) ....70
Bild 5-6: Verwendete Methoden und Modulbildung ..........................................................74
Bild 5-7: Beispiel für ein FMEA-Formblatt (PFEIFER 2001) ..............................................75
Bild 5-8: Baustein Risikobeurteilung ....................................................................................76
Bild 5-9: Baustein Fehleranalyse .........................................................................................77
Bild 5-10: Baustein Ergebnisbeurteilung .............................................................................78
Bild 5-11: Methodenmodule nach Komplexitätsreduzierung ...............................................80
Bild 5-12: IVO-Darstellung Modul 1 ....................................................................................81
Bild 5-13: IVO-Darstellung Modul 2 ....................................................................................82
Bild 5-14: IVO-Darstellung Modul 4 ....................................................................................82
Bild 5-15: IVO-Darstellung Modul 5 ....................................................................................83
Bild 5-16: IVO-Darstellung Modul 6 ....................................................................................85
Abbildungsverzeichnis VIII

Bild 5-17: IVO-Darstellung Modul 7 ................................................................. 85
Bild 5-18: Gesamtprozess mit Methodenkonfiguration .............................................. 87
Bild 6-1: Referenzmodell der WfMC (DERSZTELER 2000, S.155) ................................. 91
Bild 6-2: Aufbau der Auswahlsystematik ............................................................... 94
Bild 6-3: Anforderungen des Fehlermanagements .................................................... 96
Bild 6-4: Funktionen eines WFMS (GADATSCH 2001, S.217) ........................................ 97
Bild 6-5: Auswirkungen der Eingrenzungskriterien auf die Auswahl ............................. 101
Bild 6-6: House of Quality 2.Schritt ........................................................................ 104
Bild 6-7: House of Quality, 3.Schritt ........................................................................ 107
Bild 6-8: Rangfolge der untersuchten Anbieter ................................................................ 108
Bild 7-1: Prozess-Level-Matrix ................................................................................. 111
Bild 7-2: Webbasiertes Tool zur Einführung des Fehlermanagement-Referenzmodells ........................................... 116
Bild 7-3: Zuordnung der Methoden zu den dazugehörigen Prozessschritten ................... 117
Bild 7-4: Darstellung der Auswahlsystematik im Rahmen des webbasierten Tools ............ 117
Bild 7-5: Modul Stufenweise Einführung .................................................................... 118
Bild 8-1: Behandlung von Kundenbeanstandungen ....................................................... 120
Bild 8-2: Prozess zur Behandlung von Lieferantenfehlern ............................................. 120
Bild 8-3: Behandlung von internen Fehlern .................................................................. 120
Bild 8-4: Erfüllungsgrad bei der betrachteten Firma ...................................................... 121
Bild 8-5: Ist-Situation bei der betrachteten Firma ........................................................ 122
Bild 8-6: Effekte des Systemeinsatzes ....................................................................... 124
TABELLENVERZEICHNIS

Tabelle 2-1: Inhaltliche Beschreibung eines Prozesses (WALD 2003) .................................................................10
Tabelle 2-2: Normanforderungen an das Fehlermanagement .................................................................................18
Tabelle 2-3: Einordnung der Werkzeuge in die TOC-Systematik (SCOGGINI ET. AL., 2003, S. 767) ............32
Tabelle 6-1: Unterscheidungsmerkmale zwischen Geschäftsprozess und Workflow (vgl. GADATSCH 2000, S.258) .........................................................................................................................................................90
Tabelle 7-1: Bewertungsschema .................................................................................................................................112
1 Einleitung

1.1 Ausgangssituation und Problemstellung


1.2 Zielsetzung und Vorgehensweise

Die Zielsetzung der vorliegenden Arbeit besteht in Betracht der beschriebenen Ausgangssituation im Aufbau eines Referenzmodells, dass die Unternehmen bei der Implementierung eines ganzheitlichen Fehlermanagements unterstützt. Das Modell soll auf der einen Seite die Unternehmen befähigen, sowohl auf potentielle als auch bereits entstandene Fehler schnell und optimal zu agieren. Auf der anderen Seite soll eine methodische Hilfe für den Mitarbeiter gegeben werden. Mit dieser Hilfe kann dann die richtige Information dem richtigen Mitarbeiter im richtigen Zeitpunkt und am richtigen Ort zur Verfügung gestellt werden. Solche Bedingungen ermöglichen folglich eine aktive und durchgreifende Teilnahme der Mitarbeiter am Problemlösungskonzept. Basis hierfür ist sowohl eine maßgeschneiderte Methodenkonfiguration, als auch eine adäquate EDV-Unterstützung.
Aus der im Vorhergehenden beschriebenen Zielsetzung ergeben sich die Vorgehensweise und die inhaltlichen Schwerpunkte dieser Arbeit (Bild 1-1):

<table>
<thead>
<tr>
<th></th>
<th>Prozessorientiertes Referenzmodell zum effizienten Fehlermanagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ausgangssituation, Problemstellung, Zielsetzung und Vorgehensweise</td>
</tr>
<tr>
<td>2</td>
<td>Stand der Technik</td>
</tr>
<tr>
<td>3</td>
<td>Methoden und Techniken</td>
</tr>
<tr>
<td>4</td>
<td>Ergänzende Erhebung der Fehlermanagementanforderungen</td>
</tr>
<tr>
<td>5</td>
<td>Modellbildung eines umfassenden Fehlermanagements</td>
</tr>
<tr>
<td>6</td>
<td>Methodenunterstützung des Modells</td>
</tr>
<tr>
<td>7</td>
<td>Auswahlssystematikeiner EDV-Unterstützung</td>
</tr>
<tr>
<td>8</td>
<td>Methodik zur Einführung des Fehlermanagementsystems</td>
</tr>
<tr>
<td>9</td>
<td>Erprobung anhand eines Praxisbeispiels</td>
</tr>
<tr>
<td>10</td>
<td>Zusammenfassung</td>
</tr>
</tbody>
</table>

Anschließend an das einleitende Kapitel 1 werden in Kapitel 2 die spezifischen Begriffe des Fehlermanagements erläutert und bestehende Ansätze zum Fehlermanagement diskutiert. Dazu werden, ausgehend von Grundlagen wie Normen und aktuellen Entwicklungen der Qualitätskonzepte, spezifische Anforderungen an das Fehlermanagement abgeleitet. Ergänzende Anforderungen, die aus der momentanen Situation in deutschen Unternehmen entstehen, werden anschließend behandelt. Die Umsetzung der in den vorigen Kapiteln gewonnenen Erkenntnisse findet in Kapitel 4 in Form eines Referenzmodells statt. Hier werden die 8 Hauptprozesse sowie die dazugehörigen Teilprozesse beschrieben.

In Kapitel 5 werden die unterschiedlichen Methoden, die bei der Anwendung eines Fehlermanagements zum Einsatz kommen, behandelt. Dazu wird eine Systematik, die einen an das Referenzmodell angepassten Methodeneinsatz ermöglicht, dargestellt. Durch die Implementierung dieser Methodik wird eine Unterstützung der Hauptprozesse ermöglicht.
Im Kapitel 6 wird auf Basis der Methode „Quality function Deployment“ eine Systematik zur Auswahl einer dem Fehlermanagement angepassten Software beschrieben. Dazu wird im Laufe des Kapitels 7 eine Methodik zur schrittweisen Einführung des umfassenden Fehlermanagementprozesses erarbeitet.

Im Anschluss präsentiert Kapitel 8 die Ergebnisse einer Pilotanwendung, die bei einem Automobilzulieferer erreicht werden konnten. Eine Zusammenfassung der gewonnenen Erkenntnisse bildet den Abschluss dieser Arbeit.
2 Stand der Technik

2.1 Grundlagen des Fehlermanagements

2.1.1 Begriffsbestimmungen

Diesem Kapitel vorangestellt ist die Definition der im Zusammenhang mit dieser Arbeit wichtigen Begriffe Fehler und Prozessketten. Für eine umfassende Ermittlung der Grundlagen des Fehlermanagements werden anschließend die bereits in der Literatur behandelten Ansätze und Handlungsmaxime dieses Themenkomplexes anlaysiert und bewertet. Abschließend werden die Normanforderungen an einen ganzheitlichen Fehlermanagementprozess beschrieben.

2.1.1.1 Fehler

Stand der Technik

Abweichung
DIN 55350-12: Unterschied zwischen einem Merkmal oder einem dem Merkmal zugeordneten Wert und einem Bezugswert

Fehler
DIN 55350-11: Nichterfüllung einer Forderung
DIN 40042: Unzulässige Abweichung eines Merkmals

Störung
DIN 40041: Fehlende, fehlerhafte oder unvollständige Erfüllung einer geforderten Funktion durch eine Einheit.
DIN 31051: Im Sinne der Instandhaltung unbeabsichtigte Unterbrechung der Funktionserfüllung einer Betrachtungseinheit

Schaden
DIN 31051: Zustand einer Betrachtungseinheit nach Unterschreiten eines bestimmten Grenzwertes des Abnutzungsvorrats, der eine im Hinblick auf die Verwendung unzulässige Beeinträchtigung der Funktionseinheit bedingt.

Bild 2-1: Beschreibung von Ursachen, Wirkungen und Folgen anhand der Begriffe Abweichung, Fehler, Störung und Schaden (vgl. Westkämper 1997)


Systematische Fehler


Systematische Fehler treten immer an denselben Stellen, die als Schwachstellen bezeichnet werden, auf. Bei jedem Ausfall sind etwa die gleichen Symptome zu erkennen. Diese Fehler sind also lokalisierbar und damit auch einfacher zu beseitigen (vgl. GROTHUS 2003). Durch
Integration kontinuierlicher Überwachung oder durch gezielte Prüfmaßnahmen in den Prozessen kann das Auftreten der Abweichungen je nach Prüfhäufigkeit mehr oder weniger sicher erkannt werden. Eine Bewertung der Prozesse sowie der im Vorfeld getroffenen und durchgeführten Korrekturmaßnahmen ist damit leicht durchführbar.


**Ausnahmesituationen**

Bei Messungen lassen sich Ausreisser als spezielle Cluster auffassen, die aus einem oder wenigen Punkten bestehen und die weit von der Masse der anderen gemessenen Punkte entfernt liegen (WEHNS 1999). In Anlehnung an diese Definition aus der Statistik sind Ausnahmesituationen Abweichungen, die sich von bisherigen, üblichen und bekannten Fehlern unterscheiden. Solche Fehler sind außergewöhnlich und treten unvorhersehbar irgendwo und irgendwann auf.


2.1.1.2 Prozessketten


![Diagramm der Prozessstruktur](Bild 2-2: Darstellung der Prozessstruktur (vgl. GRÜN 2004; KÜHN 2002; TSCHICH 2000; PANDE 2000))

TP: Teilprozess  
T: Tätigkeit

Stand der Technik

<table>
<thead>
<tr>
<th>Bezeichnung des Prozesselements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestandteil</td>
</tr>
<tr>
<td>Prozessziel</td>
</tr>
<tr>
<td>Verantwortlichkeit</td>
</tr>
<tr>
<td>Input</td>
</tr>
<tr>
<td>Ressourcen</td>
</tr>
<tr>
<td>Anstoß</td>
</tr>
<tr>
<td>Ablauf</td>
</tr>
<tr>
<td>Messung/Kennzahlen</td>
</tr>
<tr>
<td>Vorgehen bei Änderungen</td>
</tr>
</tbody>
</table>

Tabelle 2.1: Inhaltliche Beschreibung eines Prozesses (WALD 2003)

2.1.2 Ansätze des Fehlermanagements


Informationen während des Fehlerabstellprozesses sollen wiederverwendet werden, um die Fehleranalyse und -beseitigung zu unterstützen und verbessern. Eine evolutionäre Vorgehensweise, die zu mehr Kreativität und Innovation führt, entsteht. Der Faktor Mensch spielt dabei eine sehr wichtige Rolle.

In der Fachliteratur werden die Begriffe Fehlermanagement und Fehlerbehandlung oftmals nicht eindeutig voneinander abgegrenzt. Die seit Anfang der 90er Jahre diskutierten Modelle werden unter dem Begriff der Fehlerbehandlung zusammengefasst.


2.1.3 Normanforderungen


Der Normenreihe DIN EN ISO 9000 ff liegt seit ihrer Überarbeitung aufgrund der prozessorientierten Ausrichtung vieler Unternehmen auch eine prozessorientierte Struktur zugrunde. Die enthaltenen Forderungen an die Gestaltung von QM-Systemen greifen die ursprünglichen Inhalte der ersten elementorientierten Versionen auf, und ergänzen diese um zusätzliche Punkte. Ihre Inhalte werden im Folgenden kurz dargestellt.

DIN EN ISO 9000 – QM-Systeme/Grundlagen und Begriffe


DIN EN ISO 9001 – QM-Systeme/Forderungen


DIN EN ISO 9004 – QM-Systeme/Leitfaden zur Leistungsverbesserung

Stand der Technik

Eine eindeutige Festlegung der Verantwortlichkeiten und Befugnisse im Unternehmen unabdingbar (Abschnitt 5.5.1). Hierfür soll ein qualifiziertes, fähiges und motiviertes Personal zur Verfügung stehen. Dazu ist eine wirksame und geeignete interne Kommunikation der Prozesse für eine reibungslose Umsetzung und Termineinhaltung erforderlich (Abschnitt 5.5, Abschnitt 6.2.). Eine überarbeitete Beschreibung der Anforderung ist in Tabelle 2-2 aufgeführt.

<table>
<thead>
<tr>
<th>Grundlage</th>
<th>Anforderungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.1 Planung, Qualitätsziele</td>
<td>▪ Qualitätsziele festgelegen</td>
</tr>
<tr>
<td>5.5.1 Verantwortung und Befugnis</td>
<td>▪ Festlegung und Bekanntmachung der Verantwortungen und Befugnisse</td>
</tr>
</tbody>
</table>
| 5.5.3 Interne Kommunikation | ▪ Einführung von internen Kommunikationsmaßnahmen  
▪ Wirksamkeit des QM-Systems kommunizieren |
| 6.2.1 Personelle Ressourcen, Allgemeines und  
6.2.2 Fähigkeit, Bewusstsein und Schulung | ▪ Erforderliche Ressourcen ermitteln und zur Verfügung stellen  
▪ Ermittlung der notwendigen Fähigkeiten des Personals  
▪ Sicherstellen, dass das Personal die Bedeutung seiner Tätigkeit erkennt  
▪ Aufzeichnungen führen |
| 8.1 Messung, Analyse und Verbesserung und  
8.2.3 Überwachung und Messung von Prozessen | ▪ Überwachungs-, Mess-, Analyse- und Verbesserungsprozesse planen und verwirklichen  
▪ Geeignete Methoden zur Überwachung und Messung der Prozesse anwenden  
▪ Prozesse müssen erreichbare Ergebnisse erreichen können, falls dies nicht so ist, müssen Korrekturmaßnahmen ergriffen werden |
| 8.3 Lenkung fehlerhafter Produkte | ▪ Fehler erkennen  
▪ Kennzeichnung und Lenkung des fehlerhaften Produktes  
▪ Festlegung der Lenkungsmaßnahmen  
▪ Festlegung der Verantwortlichkeiten und Befugnisse  
▪ Beseitigung des Fehlers  
▪ Genehmigung zum Gebrauch, zur Freigabe oder Annahme durch Sonderfreigabe einholen  
▪ Ausschluss des ursprünglich beabsichtigten Gebrauchs  
▪ Führen von Aufzeichnungen  
▪ Erneute Verifizierung eines nachgebesserten Produktes |
| 8.4 Datenanalyse | ▪ Ermittlung, Erfassung und Analyse von Daten  
▪ Prüfung der Wirksamkeit des Systems  
▪ Verbesserungen vornehmen |
| 8.5.1 Ständige Verbesserung | ▪ Verbesserung der Wirksamkeit  
▪ Einsatz von Auditergebnissen, Datenanalysen sowie Korrektur- und Vorbeugungsmaßnahmen |
Stand der Technik 18

Tabelle 2-2: Normanforderungen an das Fehlermanagement

| 8.5.2 Korrekturmaßnahmen und 8.5.3 Vorbeugungsmaßnahmen | • Ergreifen von angemessenen Korrektur- / Vorbeugungsmaßnahmen  
• Beseitigung von potentiellen Fehlerursachen  
• Einführung eines dokumentierten Verfahrens  
• Festlegung von Anforderungen zur Ermittlung potenzieller Fehler  
• Festlegung von Anforderungen zur Fehlerbewertung  
• Festlegung von Anforderungen zur Ermittlung der Fehlerursachen  
• Festlegung von Anforderungen zur Beurteilung des Handlungsbedarfes  
• Festlegung von Anforderungen zur Ermittlung der erforderlichen Maßnahmen  
• Festlegung von Anforderungen zur Aufzeichnungen der Ergebnisse  
• Festlegung von Anforderungen zur Bewertung der Korrektur-bzw. Vorbeugungsmaßnahmen |

2.1.4 Handlungsmaxime und Qualitätskonzepte

Im Laufe der Zeit sind unterschiedliche Handlungsmaximen und Qualitätskonzepte, die zu besserer Qualität und niedrigerem Fehlerniveau durch ein verbessertes Fehlermanagement führen, entwickelt worden. Diese Konzepte stellen die Basis für eine Problemlösungsbehandlung und damit für die Entwicklung und Gestaltung eines umfassenden und effizienten Fehlermanagements. Der Focus liegt hierbei auf den folgenden vier Konzepten und Vorgehensweisen: PDCA-Zyklus (Deming Kreis) (1951), Null Fehler Programm (1961), Six Sigma (1987) und dem Eskalationsprinzip (1996), die fehlerhafte Prozesse schnell und zuverlässig identifizieren und anschließend korrigieren. Zunächst erfolgt an dieser Stelle eine Zusammenstellung und Analyse der vier verschiedenen Konzepte, die als Basis für die weitere Entwicklung eines Umfassenden Fehlermanagementprozesses darstellen werden:

2.1.4.1 Deming Kreis


In der Planungsphase („plan“) wird zuerst eine detaillierte Analyse der Ist-Situation auf Basis zu ermittelnder problemspezifischer Daten durchgeführt. Dazu werden Methoden, wie z.B. die Fehlerbaummethode (FTA) eingesetzt (vgl. ZOLLONDZ 2002). Mit Hilfe der Fehlerbaumanalyse ermittelt man zu einem gedachten Ausfall eines Erzeugnisses die dafür verantwortlichen


Der dargestellte PDCA-Zyklus wird heute oft in abgewandelter Form angewendet. So wird die Check-Phase oftmals bereits in die Do-Phase integriert, um bereits während der Implementierung Erkenntnisse sammeln zu können.

2.1.4.2 Null Fehler Programm (Zero Defects Concept)


Nach der Fehlererkennung in der ersten Phase werden zuerst Sofortmaßnahmen, die den entstandenen Fehler und dessen Folge bereinigen oder minimieren sollen, ermittelt.

Die darauf folgende Phase der Ursachenidentifizierung bezieht sich darauf, dass nicht alle Fehler vermieden werden können und aus diesem Grund die entstandenen Fehler systematisch auf ihre Ursachen hin untersucht werden. Bewährte Methoden dazu sind unter anderem: die „7 Werkzeuge“ (Datenerfassung/Stratifikation, Strichliste, Histogramm, Pareto-Diagramm, Ishikawa-Diagramm, Korrelationsdiagramm, Qualitätsregelkarte) oder die Versuchsmethodik nach Shainin und Taguchi.

In der Phase der Ursachenbehebung wird der Mitarbeiter aufgefordert, jedes Problem, das einer Erfüllung der Null-Fehler-Norm im Wege steht, auf einem einseitigen Formular darzustellen. Der zuständige Vorgesetzte ist danach verantwortlich, das Problem innerhalb einer bestimmten Frist zu lösen.

Die Bewertung und Verbesserung wird mittels einer Expertengruppe durchgeführt: Die Fachleute kommen regelmäßig mit den Vorsitzenden der Lenkungsgruppen Qualität zusammen, um die erforderlichen Maßnahmen zur Aufwertung und Verbesserung des Qualitätsprogramms festzulegen.

2.1.4.3 Six Sigma


Six Sigma ist eine Managementmethode, welche die Unternehmensorganisation auf Kundenzufriedenheit und kontinuierliche Produktivitätssteigerung in allen Unternehmensbereichen ausrichtet. Dabei liefert Six Sigma eine methodische Vorgehensweise zur Abbildung und Analyse des IST-Prozesses, um die für den Prozess wichtigen Fehlermöglichkeiten zu erkennen (vgl. MAGNUSSON 2003).


Stand der Technik


In der „Analyze“-Phase werden die Daten aus der Messphase auf ihren qualitativen Zusammenhang hin untersucht. Neben der Ermittlung der Ursachen für schlechte Prozessleistung und schlechte Produkte, werden die Auswirkungen und Folgen durch eine Risikoanalyse abgeschätzt und anhand von Kennzahlen bewertet. Auf Grundlage der Analyse kann dann ein Ziel für die Verbesserung festgelegt werden.


2.1.4.4 Eskalationsprinzip


Es definiert einen Mechanismus, in dem die Bearbeitung und Weitergabe von Fehlerfällen zwischen verschiedenen Bearbeitungsbereichen in Abhängigkeit bestimmter Kriterien festgelegt wird. Die geordnete Eskalation bildet den Rahmen für ein Organisationskonzept, das in enger Zusammenarbeit mit existierenden Organisationsstrukturen dabei hilft,
Stand der Technik

Fehlermanagementprozesse sicher in einem Unternehmen zu implementieren. Dabei wird das Konzept in folgende Schritte gegliedert: Fehler erfassen, Fehler analysieren, Fehler korrigieren und Fehler eskalieren.


In der Makrologik ist im Gegensatz zur Mikrologik jeder Bearbeitungsbereich eine Eskalationsstufe. Bei der Eskalierung wird mit dem Fehlerfall auch die Verantwortung und Berechtigung zu seiner Bearbeitung weitergegeben. Ob ein Fehlerfall eskaliert wird, und wenn wohin, hängt von seiner Bedeutung und Komplexität ab.

2.1.4.5 Fazit

Six Sigma Konzeptes beschreiben die fünf Stufen des DMAIC-Konzeptes die notwendigen Schritte für das Fehlermanagement.

Bild 2-5: Zeitliche Entwicklung und Komponenten der vier Konzepte

2.2 Methoden und Techniken


Im Folgenden sollen die Methoden, die in der vorliegenden Arbeit verwendet werden, um die Mitarbeiter bei der Durchführung der erforderlichen Aktivitäten unterstützen, erläutert und beschrieben werden. Zunächst wird die Funktionsweise der Methoden im Allgemeinen vorgestellt. Für den optimalen Einsatz dieser Methoden im Rahmen des Fehlermanagements wird eine Anpassung und Modularisierung der Methoden auf den FM-Prozess in Abschnitt 5.2 erfolgen.

2.2.1 Theorie zur Lösung von Erfindungsaufgaben (TRIZ)


Die Überwindung der psychologischen Denkbarriere oder des sogenannten psychologischen Trägheitsvektors erfolgt durch eine Abstraktion des Problems. Dadurch wird das konkrete Problem standardisiert. Es folgt ein Vergleich mit Problemen aus anderen Wissenschaftsgebieten, um dann durch Rückübertragung auf das eigentliche Problem eine Lösung zu erhalten.

### 2.2.1.1 Ablauf der TRIZ-Methodik

Hinter dem Verfahren TRIZ verbirgt sich eine Vielzahl von Methoden für unterschiedlichste Anwendungszwecke. Dabei besteht der Werkzeugkasten zum kreativen Problemlösen im Wesentlichen aus 4 Gruppen, die in Bild 2-6 dargestellt sind.

![Bild 2-6: Die vier Säulen der TRIZ-Methodik (HERB 2000)](image-url)
Die Darstellung beruht auf den Gesetzmäßigkeiten und Regeln technischer Erfindungen, die von Altschuller aufgestellt wurden: (JANTSCHGI 2004)

- Werden bestimmte Grundsätze bei der präzisen Problembeschreibung beachtet, so ergeben sich allein daraus häufig neue Ideen, kreative Lösungsansätze und Entwicklungsrichtungen.
- Der (technische) Widerspruch und seine Analyse ist das zentrale Element Tausender von Patentschriften.
- Viele Probleme wurden schon in anderen Branchen auf prinzipieller Ebene vergleichbar gelöst.
- Die Weiterentwicklung technischer Systeme folgt bestimmten Grundregeln.


2.2.1.2 Werkzeuge der TRIZ


**Werkzeuge Systematik**

Der Werkzeugbaukasten „Systematik“ stellt Methoden bereit, um eine Neuentwicklung zu starten. Dazu muss zuerst die Ausgangssituation beurteilt und das eigentliche Problem klar strukturiert werden. Folgende Methoden helfen dabei:
♦ Innovations-Checkliste

Der sich an die IC anschließende Schritt besteht in der Problemformulierung. Diese ist in dem Baukasten aufgeführt, stellt allerdings keine Methode im eigentlichen Sinne dar, so dass an dieser Stelle nicht weiter darauf eingegangen werden soll.

♦ Idealität

♦ Ideale Maschine
Die Ideale Maschine ist, genau wie die oben beschriebenen Methoden, eines der Werkzeuge der TRIZ-Methode und wird folgendermaßen definiert:


♦ Ressourcen
Mit Ressourcen sind sämtliche Substanzen und Energiefelder gemeint, die im und um das System existieren und funktionell einsetzbar sind. Durch Variation des Zusammenspiels können deren Eigenschaften genutzt werden, um die Wirkungsweise eines Systems zu erhöhen (vgl. TRIZ 2003).

♦ Antizipierende Fehlererkennung (AFE)
Das Werkzeug AFE funktioniert nach dem Prinzip, dass die Suche nach möglichen Fehlern umgewandelt wird in die Aufgabe, Fehler zu erfinden. Auch hier erfolgt eine Abstrahierung des

♦ Operator MZK

♦ Zwergen Modellierung

Altschuller geht von sehr vielen, kleinen, intelligenten Leuten aus (→ Zwergen), die zur Problemlösung zur Verfügung stehen. Dabei wird folgende Vorgehensweise angewandt:

- Der konfliktverursachende Bereich des betrachteten Systems wird durch viele kleine Zwergen nachgebildet.
- Die Zwergen werden in Gruppen eingeteilt, die gemäß den Randbedingungen der Aufgabe handeln.
- Das resultierende Modell wird nun so modifiziert, dass das Problem gelöst wird. Das bedeutet, dass die Zwergen so agieren müssen, dass der betrachtete Konflikt überwunden wird.

Durch diese Vorgehensweise konzentriert sich der Entwickler auf die Fragestellung, was zu tun ist, ohne sich fortwährend Gedanken um technische Limitierungen zu machen (vgl. TRIZ 2003).

♦ ARIZ

Der Algorithmus kommt immer nur dann zum Einsatz, wenn andere TRIZ-Methoden kein befriedigendes Resultat liefern. In der Praxis wird die Methode nur in unter 5% aller Fälle, in denen TRIZ eingesetzt wird, verwendet (vgl. TRIZ 2003).
Stand der Technik

Werkzeuge Wissen

Die Säule „Wissen“ ist das zentrale Element der TRIZ-Methodik. Aufgrund der zunehmenden Spezialisierung der Fachkräfte, nicht nur im Bereich der Entwicklung, verfügen diese Personen über Problemlösefähigkeiten, die sich an Strukturen ihres Spezialgebietes orientieren. Es muss daher Ziel sein, den Blick „über den Tellerrand“ zu schärfen und Lösungswegen anderer Bereiche und Felder gegenüber sensibilisiert zu sein. In der TRIZ-Methodik sind zu diesem Punkt die folgenden zwei Werkzeuge aufgeführt:

♦ Effekte


♦ Stoff-Feld-Analyse


Ein komplettes Modell wird durch zwei Stoffe und ein Feld repräsentiert. Das innovativ zu lösende Problem wird als Versuch dargestellt, um die Beziehung zwischen beiden Stoffen und zugehörigem Feld zu illustrieren.


Werkzeuge Analogie

♦ Technischer Widerspruch

Ein technischer Widerspruch liegt vor, wenn die Verbesserung eines Systemparameters A eine Verschlechterung des Systemparameters B bewirkt. Eine Möglichkeit, diese Widersprüche zu

♦ Physikalischer Widerspruch

Werkzeuge Vision

♦ Evolutionsstufen

♦ S-Kurve

2.2.2 Theory of Constraints (TOC)


Im folgenden Abschnitt sollen die Ziele der TOC, die der Methode zugrunde liegende Systematik, sowie die Werkzeuge, die die Implementierung unterstützen, vorgestellt werden.

2.2.2.1 Systematik der TOC

Goldratt geht in seiner Theorie davon aus, dass Produktionssysteme aus Prozessketten bestehen, die miteinander verknüpft sind. Wie bei einer realen Kette stellt er die These auf, dass die Zielerreichung des Gesamtprozesses maßgeblich durch das schwächste Glied


1. **Physikalischer Engpass**


2. **Managementbezogener Engpass**

Unter managementbezogenen Engpässen sind Verfahrensanweisungen oder andere geltende Verordnungen zu verstehen, die einer Verbesserung der Gesamtleistung des Unternehmens entgegenstehen. Die Anordnungen werden in dem Glauben erstellt, sinnvoll zu sein und Mitarbeiter bei der Durchführung ihrer Arbeit zu unterstützen, haben aber teilweise den gegenteiligen Effekt.
3. Verhaltensorientierter Engpass


Die Überwindung dieser Constraints erfolgt mit Hilfe eines fünfstufigen Ansatzes (vgl. Goldratt, 1990):

♦ Identifikation des Engpasses, d.h. Identifikation der betrieblichen Einheit, die das größte Hemmnis für die Zielerreichung darstellt.
♦ „Ausbeuten“ des Engpasses in der Weise, dass ohne aufwendige Änderung die Potentiale und Möglichkeiten des Engpasses erschlossen werden.
♦ Unterordnung aller Tätigkeiten, die nicht mit dem Engpass verbunden sind.
♦ Verbreiterung des Engpasses, sofern dieser nach Durchführung der Schritte 2 und 3 nicht beseitigt wurde. Verbreiterung bedeutet in diesem Zusammenhang die Ergreifung von Maßnahmen, wie beispielsweise der Kauf neuer Maschinen, um einen Produktionsengpass zu beseitigen.
♦ Aufspüren des nächsten Engpasses: Vermeidung von Trägheit.


2.2.2.2 Werkzeuge der TOC

Der zunehmenden Forderung nach einer methodischen Unterstützung des TOC-Konzeptes wurde mit der Bereitstellung der nachfolgend erläuterten Werkzeuge entsprochen. Der Aufbau folgt einer Baumstruktur, die sämtliche Verknüpfungen und Abhängigkeiten unterschiedlicher Elemente darstellt. In Tabelle 2-3 sind die Fragestellungen, die unterstützenden Tools, sowie die Ergebnisse, die diese Methode(n) liefert(n), dargestellt. Im folgenden Abschnitt sollen die Werkzeuge genauer erläutert werden.
Tabelle 2-3: Einordnung der Werkzeuge in die TOC-Systematik (SCOGGINI ET. AL., 2003, S. 767)

- Evaporating Clouds (EC)
  Bei den EC handelt es sich aufgrund der leicht zu lernenden und anzuwendenden Methode um die am häufigsten eingesetzte Technik der TOC. Der Ansatz der Methode besagt, dass jedes existierende Problem in Form eines bestehenden Konfliktes beschrieben werden kann. Wenn eine der Wirkbeziehungen aufgelöst werden kann, ist auch der Konflikt gelöst.

- Current Reality Tree (Ist-Zustands-Baum)

- Future Reality Tree (Zukunftsbaum)
♦ Prerequisite Tree (Voraussetzungsbaum)

Der Prerequisite Tree (PT) unterstützt den Anwender bei der Umsetzung von umfangreichen Projekten, die ein sehr anspruchsvolles Ziel verfolgen. Der Prozess des PT erlaubt die Identifikation von Hindernissen, die der Zielerreichung im Weg stehen, sowie die Überwindung dieser Hindernisse. Der PT beschreibt in Diagrammform die notwendigen Bedingungen und Beziehungen, die die Erreichung von Zielen oder Zwischenzielen kennzeichnen.


♦ Transition Tree

Der Transition Tree (TT) wird benutzt, um einen Aktionsplan zu erstellen, der zu einem gewünschten Ergebnis führt. Der Grundgedanke besteht darin, dass eine Aktion eine Reaktion zur Folge hat, deren Ergebnis abgewartet werden muss, um eine neue Aktion durchzuführen. Durch dieses sukzessive Vorgehen lässt sich die Umsetzung einer Maßnahme überdenken und so mögliche Probleme bei der Implementierung frühzeitig erkennen. Das Ziel, dass mit einer Aktion verfolgt wird, muss definiert sein und kann erst nach der Einführung bewertet werden.

Als Beispiel sei an dieser Stelle ein Fertigungsprozess genannt, in dem ein Ausgangserzeugnis in diversen Arbeitsschritten zu einem Endprodukt gefertigt wird. Der TT kann also dafür genutzt werden, die notwendigen Arbeitsschritte vom gegenwärtigen Zustand zu dem gewünschten Zielzustand aufzuzeigen (Vgl. SCHIEKOPF, 1999, S. 89).

2.2.3 Failure Mode and Effect Analysis (FMEA)

Die FMEA wurde im Rahmen der Entwicklungsprojekte der NASA in der 60’er Jahren entwickelt. Verwurzelt ist die FMEA in Bereichen der Sicherheitstechnik, bis sich das Einsatzgebiet Mitte der 80’er Jahre auf die Automobilindustrie erweiterte.


Mit Hilfe der FMEA können sowohl Produkte, als auch deren Herstellungsprozess bewertet werden. Im ersten Fall handelt es sich um eine Konstruktions-, im zweiten Fall um eine Prozess-FMEA. Die Unterschiede der FMEA-Arten äußern sich vor allem in der Planungsphase, in der die FMEA erstellt wird, und der Zielsetzung, die mit der Durchführung verbunden ist (vgl. PFEIFER 1993, S. 60).


Bei der FMEA handelt es sich um eine Methode mit einer feststehenden Struktur, die mit Hilfe von Formblättern bearbeitet werden kann. Durch die Verwendung von Formblättern wird die interne und externe Kommunikation formalisiert und gleichzeitig transparent dokumentiert. Der Formblattaufbau kann den unternehmensspezifischen Gegebenheiten angepasst werden. Zumeist basieren sie aber auf den Formblättern, wie sie vom Verband der Automobilindustrie (VDA 6.1) angeboten werden, bzw. haben das Formblatt für die Ausfalleffektanalyse nach DIN 25448 zugrunde gelegt.

### 2.2.4 Failure Tree Analysis (FTA)

Die Fehlerbaumanalyse (Failure Tree Analysis, FTA) hat ihren Ursprung in den Bereichen Luft- und Raumfahrt, der Militärtechnik und dem Reaktorbau, also in Bereichen, in denen der Begriff Qualität sehr stark mit dem Begriff Sicherheit verknüpft ist. Ursprünglich von der amerikanischen Raumfahrt entwickelt, griff die japanische Industrie die Methode auf und übertrug sie auf die Herstellung von Konsumgütern (vgl. PFEIFER, 1993, S. 80).

Folgende Bedingungen müssen erfüllt sein, um eine FTA durchführen zu können:

- Denken in Systemzusammenhängen: Das System wird in überschaubare Systemelemente zerlegt und deren Zusammenhang in einem Blockdiagramm dargestellt.
- Auswahl kritischer Systemelemente: Von allen möglichen Elementen werden diejenigen betrachtet, die besonders wichtig oder kritisch sind. Falls eine Rangfolge nicht eindeutig zu ermitteln ist, werden Kriterien aufgestellt, mit deren Gewichtung und Bewertung diese ermittelt werden kann (z.B. ABC-Analyse).

2.2.5 Ereignisablaufanalyse

Während die Fehlerbaumanalyse Ursachen für ein bestimmtes Ereignis ermittelt, verfolgt die Ereignisablaufanalyse (Event Tree Analysis – ETA) genau den umgekehrten Weg. Für ein spezielles Ereignis werden die Auswirkungen bzw. die Folgen analysiert (vgl. DIN 25419).


Die Analyse mittels der Ereignisablaufanalyse erfolgt inductiv, dass bedeutet, von einem Startpunkt werden Folgeereignisse so weit wie möglich dargestellt. Um ein umfassendes Bild zu schaffen, muss das betrachtete System mit seinen Wirkzusammenhängen, sowie deren Verknüpfungen, bekannt sein. Die Wirkungen werden so weit verfolgt, bis alle Systemelemente abgefragt sind. Für jeden Pfad des Ereignisablaufdiagramms kann eine Wahrscheinlichkeitsbewertung vorgenommen werden. Die Unfallwahrscheinlichkeit erhält man dann durch Kombination aller Wahrscheinlichkeiten entlang der Pfade, die zu einem Unfall führen. Die gesuchten Wahrscheinlichkeiten können meist nur geschätzt werden, was zu großen Ungenauigkeiten und Fehlern in der Berechnung der Pfadwahrscheinlichkeiten führen kann.

2.2.6 Statistical Process Control


Die SPC-Anwendung ist vom Ablauf her ein Regelkreis. Dabei ist der Prozess als Regelstrecke, die beobachteten Merkmale als Regelgröße, der Maschinenbediener als Regler und die Maschineneinstellgrößen als Stellgrößen anzusehen (vgl. HERING 2003, S. 235).
Im Rahmen der Anwendung von statistischen Verfahren wird davon ausgegangen, dass sowohl bei der Herstellung, als auch bei der Vermessung von Erzeugnissen, Unterschiede bezüglich der betrachteten Merkmale feststellbar sind. Diese Abweichungen von Merkmalen (Soll zu Ist) werden als Streuung bezeichnet.

Wichtigstes Hilfsmittel zur Ausregelung von Abweichungen bei der statistischen Prozessregelung sind verschiedene Arten von Qualitätsregelkarten (QRK).


2.2.7 Netzplantechnik

3 Praxisorientierte Fehlermanagementanforderungen


Die Auswertung der Daten ergab, dass der Bereich Qualitätsmanagement in 90% der Unternehmen für die Abwicklung des Fehlermanagements verantwortlich ist. An zweiter Stelle wird die Abteilung Fertigung miteinbezogen. Während hauptsächlich diese beiden Abteilungen für die Fehlererfassung zuständig sind, liegt die Zuständigkeit bei der Fehlerauswertung und der Maßnahmenergreifung ausschließlich beim Qualitätsmanagement. Die mit der Fehlerbehandlung vertrauten Mitarbeiter sind meistens höher qualifizierte Mitarbeiter (z.B. Ingenieur, Meister, Facharbeiter, Techniker), die erfahrungsgemäß Kenntnisse über den prinzipiellen Umgang mit Computern und Software besitzen. Die DV-Grundlagen, die momentan die meist vermittelten Ausbildungsinhalte darstellen, verlieren zukünftig an

Im Rahmen der Produktfehler wird bei 65% der Unternehmen (Tendenz steigend) zwischen Maßnahmen zur Fehlerbeseitigung und zur Fehlerursachenbeseitigung unterschieden. Wichtig für 70% ist dazu die Rückverfolgbarkeit des Fehlers. Bei diesen Unternehmen sind Fehler rückverfolgbar und führen zur Sperrung des gesamten produzierten Loses. Etwa die Hälfte der Unternehmen (45%) neigen zu einer individuellen Behandlung der fehlerhaften Teile. Eine eindeutige Festlegung der Verantwortlichkeit bei der Fehlerbehandlung ist bei 85% der befragten Unternehmen notwendig.

Die Prozessparameter werden derzeit bei 70% der Befragten erfasst. Eine kontinuierliche Erfassung gewinnt in Zukunft weiter an Interesse. Während die fehleranfälligen Prozesse im eigenen Werk 58% der Betriebe bekannt sind, sind es lediglich 42%, die die möglichen fehlerhaften Prozesse bei Zulieferern kennen.

Stand der Technik

Stand der Technik

![Diagramm](image)

**Bild 3-8: Vergleich Gestaltung des Fehlermanagementssystems**

**Bild 3-9: Vergleich der Hauptziele des Fehlermanagements**

**Fazit**


Durch die Prozessorientierung beim Fehlermanagement sind viele Bereiche und Abteilungen im Unternehmen betroffen. Hiermit vervielfältigen sich die Daten und Informationsquellen in den Unternehmen. Dazu steigen die Anforderungen an Datenverdichtung und Auswertung, um den Aufwand der erforderlichen systematischen Dokumentation, das Controlling und die Berichterstattung im Unternehmen zu erleichtern. Ein leistungsstarkes Fehlermanagements-system für die Verarbeitung der Daten und die Weitergabe der Informationen ist also unabdingbar, um die Mitarbeiter bei deren Tätigkeiten unterstützen zu können.
4 Modellbildung eines umfassenden Fehlermanagements

Für eine umfassende Analyse der bestehenden Methoden erfolgte im Kapitel 2.1.2 eine Zusammenstellung und Erläuterung der verschiedenen in der Literatur diskutierten Konzepte zum Thema Fehlermanagement. Die Vor- und die Nachteile werden ermittelt und ihre Anwendungsgebiete dargestellt.

In diesem ersten Schritt werden die Hauptprozesse eines Fehlermanagement-Referenzmodells festgelegt.

Im zweiten Schritt werden die Teilschritte jedes Hauptprozesses ermittelt. Bei der Erstellung des Anforderungsprofils der einzelnen Prozessschritte werden nicht nur die Normanforderungen (siehe Kapitel 2.1.3), sondern auch die unternehmerische Sichtweise betrachtet. Für eine praxisorientierte und anwenderfreundliche Gestaltung der einzelnen Teilschritte werden Ergebnisse aus der im Kapitel 3 vorgestellten Umfrage benutzt.

Im dritten Schritt wird das Fehlermanagement-Referenzmodell an die Bedürfnisse der Unternehmen angepasst. Man spricht hier von der Customizing-Phase. Maßgeschneiderte Tätigkeiten werden entwickelt. Diese Tätigkeiten erfüllen auf der einen Seite die unterschiedlichen Anforderungen der Teilprozesse im Referenzmodell. Auf der anderen Seite beachten diese Tätigkeiten die unterschiedlichen Unternehmensgegebenheiten.

**Bild 4-1: Konzept zur Erstellung des Fehlermanagement-Referenzmodells**

4.1 Erste Ebene des Referenzmodells

Die Entstehung eines potenziellen Fehlers und dessen Erkennung löst den Fehlermanagementprozess aus. Eine detaillierte Erfassung der Fehlerdaten bildet den
Ausgangspunkt für die weiteren Schritte des Prozesses. Dabei steht eine kontinuierliche Erfassung in einheitlicher Form im Mittelpunkt.


4.2 Zweite Ebene des Referenzmodells

Für die Ermittlung der einzelnen Teilprozesse innerhalb der Fehlermanagement-Prozesskette werden auf der einen Seite die Normen mit Fokus auf die DIN ISO 9000:2000 betrachtet (siehe Abschnitt 2.1.3). Auf der anderen Seite werden die Ergebnisse der durchgeführten Umfrage, um zu praxisorientierten und anwenderfreundlichen Lösungen zu gelangen, einbezogen (siehe Kapitel 2.2). Die Anforderungen aus der Norm und der Umfrage werden im weiteren Verlauf in unterschiedliche Teilprozesse überführt (siehe Bild 4-3).
In Bild 4-4 sind die Prozesse und Teilprozesse des Fehlermanagements dargestellt, die im Folgenden vorgestellt werden. Dabei wird erst der Hauptprozess beschrieben und anschließend wird auf die Teilprozesse eingegangen.

**FEHLER DETEKTIERN UND ERFASSEN**

- Abweichung erkennen
- Abweichung quantifizieren und prüfen
- Sofortmaßnahmen
- Fehler in den Fehlerdaten eintragen
- Daten sichern
- Daten weiterleiten

**FEHLER KLASSEIFIZIEREN UND BEWerten**

1. Vergleich mit bestehenden Daten
   - Bekannte und erwartete Fehler
   - Bekannte und unerwartete Fehler
   - Unbekannte Fehler
   - Fehler bewerten
   - Kritische Fehler
   - Hauptfehler
   - Nebenfehler
   - Daten sichern
   - Daten weiterleiten

**ZUSTÄNDIGKEITEN UND TERMINE**

- Termine festlegen
- Betroffene Funktions-/Teilprozess ermitteln
- Abteilung ermitteln
- Person festlegen
- Daten sichern
- Daten weiterleiten

**ABSTELLMAßNAHMEN**

- Fehlerfolge ermitteln
- Fehlerfolge eliminieren
- Fehler beheben
- Fertigungsstop
- Reparaturauftrag für Betriebsmittel
- Ja
  - Kennzeichnung als Sonderfr.
  - Techn. Daten der Sonderfr. dok.
- Nein
  - Kennzeichnung als Ausschuss
  - Teile Verschrotten
  - Teil zur Nacharbeit weitergeben
- Nein
  - Kennzeichnung als Nacharbeit
  - Teil prüfen
  - Teil freigeben
- Daten sichern
- Daten weiterleiten
4.2.1 Fehler detektieren und erfassen


Für diese Einteilung in Fall 1) oder 2) müssen bereits Erfahrungen vorliegen. Liegen diese nicht vor, ist von Zustand 3) auszugehen. Sofern der Fehler als kritisch oder unbekannt eingestuft wird, ist eine Sofortmaßnahme zur Schadensbegrenzung, also eine sofortige Reaktion einzuleiten, ohne erst eine detaillierte Fehleranalyse abzuwarten (Hofmann 1990). Dies sind in erster Linie unfallverhütende- bzw. Sicherheitsmaßnahmen, wie z.B. das Abschalten der Maschinen, das Absperrung eines Gefahrenbereiches oder das Auslösen eines Alarms. Dadurch können schwerwiegende Folgeschäden des Fehlers gemindert werden. In einem weiteren Schritt kommt der Erfassung des Fehlers eine entscheidende Bedeutung für den weiteren...

Im folgenden Abschnitt werden die Teilprozesse detailliert vorgestellt. Da die Prozessschritte „Abweichungen erkennen“ und „Abweichungen prüfen“ eng miteinander verknüpft sind, werden sie in einem Abschnitt erläutert.

### Abweichungen erkennen, quantifizieren und prüfen


Sind diese Voraussetzungen erfüllt, sollte der Prüfumfang festgelegt sein. Je nach Stabilität eines Prozesses können Sortierprüfungen (100%-Prüfung), Stichprobenprüfungen in verschiedenem Umfang, bis hin zu einem völligen Prüfverzicht definiert werden. Im Unternehmen existieren dafür Prüfanweisungen, d.h. die Prüfmethoden, die Prüfmittel, die Dokumentationsart etc. sind in Form von Handlungsanweisungen dokumentiert und liegen dem betroffenen Mitarbeiter vor. Idealerweise liegt ein Prüfplan vor, in dem zusätzlich der Ort und Zeitpunkt der Prüfung dokumentiert ist.
Kommt es zu einer Reklamation durch den Kunden, so ist dies ein Fehler, der außerhalb des Unternehmens aufgetreten ist. Der Fall muss durch den Kundendienst in den FM-Prozess eingesteuert werden. Voraussetzung dafür ist ein funktionierender Informationsfluss.


Der Idealzustand ist erreicht, wenn ein kontinuierlicher Verbesserungsprozess zur dauerhaften Sicherstellung eines hohen Niveaus der Erkennung eingerichtet ist. Diese Stufe ist gekennzeichnet durch eine nach Möglichkeit automatisierte Fehlererkennung und eine im Sinne des KVP’s kontinuierliche Optimierung von Prüfplänen.

**Sofortmaßnahmen**

Unter Sofortmaßnahmen im Zusammenhang mit dem Auftreten eines Fehlers sind hier insbesondere Maßnahmen zu verstehen, die die Sicherheit der Mitarbeiter gewährleisten. Dies kann beispielsweise die Betätigung eines Not-Aus-Schalters oder die Absperrung eines gefährdeten Bereiches sein. Die Mitarbeiter sind durch Verfahrensanweisungen, die ihnen bekannt sein müssen, angewiesen, entsprechend zu reagieren. Unter Umständen benötigte Hilfsmittel müssen in ausreichender Menge vorhanden sein.

In komplexen Produktionssystemen können Fehler derart schwerwiegend sein, dass ein Fertigungsstopp sinnvoll ist. Ein Beispiel dafür wäre das Auftreten von Fehlern, die kritisch sind, also eine potentielle Gefährdung von Personen darstellen und/oder das Endprodukt unbrauchbar werden lassen, sowie Hauptfehler, die zu einem voraussichtlichen Ausfall führen (PFEIFER 2001 S.157). Die Kriterien, die zu einem Fertigungsstopp führen, müssen den Mitarbeitern durch Schulungen oder Unterweisungen bekannt gemacht und durch Verfahrensanweisungen dokumentiert werden, damit ein betroffener Mitarbeiter schnell reagieren kann.

**Fehler in die Fehlerdatenbank eintragen**


Wie eingangs erwähnt, muss die Dokumentation der Fehlerdaten sehr sorgfältig erfolgen. Das setzt wiederum voraus, dass die Mitarbeiter mit dem Dokumentationssystem vertraut sind und
entsprechende Anweisungen erhalten haben, um eine eindeutige Fehlerdokumentation zu erreichen.

Im Optimalfall werden Fehlerdaten von einem automatischen Erfassungssystem in die Datenbank eingetragen.

**Daten sichern**


**Daten weiterleiten**


### 4.2.2 Fehler klassifizieren und bewerten


Auch wenn Abweichungen aufgrund einer vorhergehenden Analyse oder aufgrund des Erfahrungswissens der Mitarbeiter eigentlich bekannt sind, so können diese an Stellen im Prozess entstehen, an denen sie nicht erwartet werden. In diesen Fällen sind daher geeignete Reaktionen häufig nicht vorgeplant. Die Ähnlichkeiten bei der Fehlerstruktur können jedoch den Verlauf der weiteren Bearbeitung erleichtern. Die Situation wird bei unerwartet auftretenden und
nicht bekannten Abweichungen weiter verschärft. In diesem Fall müssen die Fehler bewertet und priorisiert werden. Fehlerschwerpunkte müssen festgelegt werden.

- **Bekannte und erwartete Fehler**

Ein bekannter und sogar erwarteter Fehler bedeutet, dass dieser schon in ähnlicher Form aufgetreten ist und bereits dokumentiert wurde. Die Erfassung des Fehlers erfordert eine umfassende Überwachung des Produktionsprozesses, beispielsweise durch SPC (Statistical Process Control), mit Hilfe dessen Abweichungen frühzeitig erkannt werden. Zusätzlich finden zu einem geeigneten Zeitpunkt Prüfmaßnahmen während des Prozesses statt, die eine unzulässige Abweichung nach einem Prozessschritt aufzeigen.

Treten Fehler auf, die diesem Muster entsprechen, so lassen sich anhand der in früheren Fällen durchgeführten Problemlösungen, die nachvollziehbar dokumentiert wurden, Maßnahmen einleiten, die den Fehler schnell beheben.

- **Bekannte, aber unerwartete Fehler**

Unter diese Kategorie fallen Fehler, die in dieser Form bereits aufgetreten sind, die allerdings an Stellen im Prozess auftreten, an denen sie nicht erwartet werden oder bei denen angenommen wurde, dass sie eliminiert seien. Für einen solchen Fall gibt es kein Standardvorgehen, das sich auf bisherige Problemlösungen stützt und es muss ein neuer Lösungsweg gefunden werden. Allerdings kann durch eine Analogie bei ähnlichen Fehlerstrukturen möglicherweise eine Vorgehensweise abgeleitet werden, die eine schnellere Fehlerbeseitigung erlaubt.

- **Unbekannte Fehler**


### Bild 4-6: Prozess „Fehler klassifizieren und bewerten“
Vergleich mit bestehenden Daten

Jeder entdeckte Fehler wird dahingehend überprüft, ob er in dieser oder ähnlicher Form bereits aufgetreten ist. Ist der Fehler bereits bekannt, so erfolgt eine Problemlösung analog der aus früheren Ereignissen dokumentierten Lösung. Liegt ein unbekannter Fehler vor, so folgen die im weiteren Verlauf beschriebenen Schritte.

Fehler bewerten

Im Prozessschritt Fehlerbewertung erfolgt eine Einordnung des Fehlers hinsichtlich der Auswirkungen, die dieser nach sich ziehen würde. Folgende Unterteilung ist vorgesehen (DIN 55350, Teil 31):

- **Kritischer Fehler**
  
  Von einem kritischen Fehler ist anzunehmen bzw. bekannt, dass er voraussichtlich für Personen, die das fehlerhafte Produkt nutzen, reparieren oder darauf angewiesen sind, gefährliche oder unsichere Situationen darstellt. Weiterhin wird ein Fehler als kritisch betrachtet, wenn größere Anlagen (z.B. Schiffe, Rechenanlagen, großindustrielle Anlagen, etc.) in ihrer Funktion gefährdet sind.

- **Hauptfehler**

  Ein Hauptfehler ist ein Fehler, der mit einer hohen Wahrscheinlichkeit zu einem Ausfall der Funktion führt, oder die Brauchbarkeit für den Verwendungszweck wesentlich herabsetzt.

- **Nebenfehler**

  Als Nebenfehler werden solche Fehler bezeichnet, die voraussichtlich für den vorgegebenen Verwendungszweck keine Minderung der Funktion bedeuten. Auch beeinflusst die Abweichung von geltenden Festlegungen den Gebrauch oder Betrieb der Einheit nur geringfügig.

4.2.3 Zuständigkeiten und Termine

In diesem Prozessschritt werden Verantwortlichkeiten, Befugnisse und Termine für die am FM-Prozess beteiligten Personen festgelegt. Basis für eine erfolgreiche Beseitigung von Fehlern ist ein sinnvoller, stringenter und nachvollziehbarer Informations- und Entscheidungsablauf. Um diesen zu erreichen, muss sichergestellt werden, dass der Informationsfluss derart geregelt ist, dass betroffene Mitarbeiter schnell und umfassend über einen aufgetretenen Fehler informiert werden. Nach der Information der betroffenen Mitarbeiter müssen Handlungsanweisungen an die ausführenden Mitarbeiter erfolgen, die diese in die Lage versetzen, Maßnahmen zu ergreifen bzw. umzusetzen, die der Fehlerbeseitigung dienen.

Handlungsanweisungen sind gekennzeichnet durch einen Fälligkeitstermin und die Festlegung von Mitarbeitern, die die Verantwortung für die Durchführung der Maßnahmen tragen. Eindeutige Abläufe stellen sicher, dass bei der Abstellung der Fehler die Befugnisse der durchführenden Mitarbeiter in den betroffenen Unternehmensbereichen transparent gemacht wurden, und keine Konflikte entstehen. Um die Schritte nachvollziehen zu können, werden sie dokumentiert. In Bild 4-7 sind die Teilprozesse dargestellt.
Termine festlegen


Betroffene Funktion/Teilprozess ermitteln


Abteilung ermitteln

Nachdem die betroffene Funktion ermittelt wurde, wird das Problem weiter eingegrenzt, indem die von dem Fehler betroffene Abteilung identifiziert wird. Dabei hilft die Prozessvisualisierung, um betroffene Abteilungen ausfindig zu machen.

Person festlegen


4.2.4 Abstellmaßnahmen

Unter Abstellmaßnahmen werden hier die Handlungen, die zur Fehlerkorrektur, Fehlerfolgeminimierung und Lenkung fehlerhafter Produkte führen, verstanden. Fehlerfolgen gehen möglicherweise über die internen Grenzen des Unternehmens hinaus und verursachen nicht nur internen Schaden, sondern können auch zu einem Imageschaden führen. Durch schwerwiegende Fehler können temporäre Anlagenstillstände oder Rückrufaktionen entstehen. Es ist also sehr wichtig, diese Folgen zu ermitteln und möglichst frühzeitig zu eliminieren bzw. zu mindern. Darüberhinaus muss der fehlerfreie Verlauf des Fertigungsprozesses mit dem geforderten Qualitätsniveau gesichert werden. Der unbeabsichtigte Gebrauch fehlerhafter Produkte muss verhindert werden. Hierfür sind die fehlerhaften Teile so zu kennzeichnen, dass

Die Gesamtdarstellung des Teilprozesses ist aus Bild 4-8 ersichtlich. Im Fall des Fertigungsstopps muss unter Unständen ein Reparaturauftrag für das betroffene Betriebsmittel erteilt werden. Im Folgenden wird der Unterprozess, der den Umgang mit dem fehlerhaften Teil beschreibt, erläutert.

**Abstellmaßnahmen**

- Fehlfolge ermitteln 4.1
- Fehlfolge eliminieren 4.5
- Fehler beheben 4.2
- Fertigungsstopp 4.3
- Reparaturauftrag für Betriebsmittel 4.6
- Ja
- Kennzeichnung als Sonderfr. 4.9
- Techn. Daten der Sonderfr. Dok. 4.10
- Nein
- Kennzeichnung als Ausschuss 4.11
- Teile Verschrotten 4.13
- Nein
- Kennzeichnung als Nacharbeit 4.12
- Teil zur Nacharbeit weitergeben 4.14
- Teil prüfen 4.15
- Teil freigeben 4.16
- Daten weiterleiten 4.18
- Daten sichern 4.17
- Fehlerhaftes Teil markieren 4.19
- Fehlerhaftes Teil sperren 4.20

*Bild 4-8: Prozess „Abstellmaßnahmen“*

**Fehlerhaftes Teil markieren und sperren**


**Freigabe des fehlerhaften Teils**

Grundsätzlich kommen drei Möglichkeiten für die Behandlung fehlerhafter Teile in Frage. Kann das Teil auch durch Nacharbeit nicht mehr den Anforderungen entsprechen, so muss es als Ausschuss deutlich gekennzeichnet, unter Unständen in Sperrlagern verwahrt und entsprechend verschrottet werden.

Liegen die Qualitätsmerkmale des Teils außerhalb des Toleranzfeldes, besteht dennoch die Möglichkeit, dass das Teil in bestimmten Einsatzfeldern ohne Nacharbeit verwendbar ist. In dem Fall kommt es zu einer Sonderfreigabe. Dabei wird das Teil als solches gekennzeichnet,
die Sonderfreigabe bzw. die technischen Daten werden dokumentiert und das Teil anschließend freigegeben.

Die dritte Möglichkeit besteht darin, dass das Teil außerhalb des Toleranzfeldes liegt und nicht ohne Nacharbeit verwendet werden kann. Es folgt eine entsprechende Kennzeichnung, die Weitergabe des Teils zur Nacharbeit und eine abschließende Prüfung. Erfüllt das Teil wiederum nicht die Anforderungen, wird die Entscheidungsschleife erneut durchlaufen, ansonsten wird das Teil freigegeben.

### 4.2.5 Korrektur und Vorbeugungsmaßnahmen


**Bild 4-9: Prozess „Korrektur- und Vorbeugungsmaßnahmen“**

#### Fachteam bilden und einladen

Fehlerbewertung
Die Fehlerbewertung dient der genauen Einordnung des Fehlers hinsichtlich des erforderlichen Aufwandes, der betrieben werden muss, um den Fehler abzustellen. Die Bewertung erfolgt im Fachteam und kann durch Hilfsmittel wie zum Beispiel Portfolioanalyse unterstützt werden.

Ursachen suchen
In diesem Teilschritt wird die Fehlerhistorie zurückverfolgt, bis die Fehlerursache identifiziert ist. Bei hochkomplexen Fehlern ist eine geeignete methodische Unterstützung unerlässlich, um systematisch die Ursachen der Fehlerentstehung aufzufinden. Eine weitere Unterstützung bieten die bereits vorhandenen Fehlerdokumentationen, an denen sich eine Problemlösung orientieren kann.

Vorgesehene Prüfmaßnahmen
Sind die Fehlerursachen bekannt, so werden die bestehenden Prüfmaßnahmen entlang des Fehlerbaumes hinsichtlich ihrer Effektivität neu bewertet. Falls durch neue Prüfungen an den Schnittstellen der Arbeitsschritte das Auftreten des Fehlers frühzeitig entdeckt werden kann, so werden neue Prüfungen in einem geeigneten Umfang implementiert.

Empfohlene Maßnahmen
In diesem Prozessschritt werden alle Maßnahmen gesammelt, die einen positiven Einfluss auf die Fehlerhäufigkeit besitzen. Dabei erfolgt zunächst eine Sammlung ohne abschließende Bewertung der Maßnahmen, analog der Brainstorming-Technik.

Maßnahmen treffen
Der Teilprozess „Maßnahmen treffen“ beinhaltet die Bewertung der im vorigen Prozessschritt aufgezeigten Maßnahmen. Die wirkungsvollsten Maßnahmen, die mit vertretbarem Aufwand durchzuführen sind, werden beschlossen.

Aktionsplan
Der Aktionsplan regelt die Implementierung der beschlossenen Maßnahmen. Es werden Termine, verantwortliche Bereiche mit verantwortlichen Personen, sowie bei komplexen Maßnahmen mögliche Meilensteine in einer Roadmap festgelegt.

4.2.6 Umsetzung
Die Voraussetzung für die Umsetzung beschlossener Maßnahmen besteht im Vorhandensein grundlegender Kenntnisse der Mitarbeiter in den Bereichen Kommunikation, also der Vermittlung von Inhalten an beteiligte Bereiche, Fertigkeiten im Umgang mit Hilfsmitteln, sowie Wissen über das im Unternehmen existierende QM-System. Grundsätzlich muss durch Schulungen oder entsprechende Qualifikation der beauftragten Mitarbeiter die Basis für eine erfolgreiche Umsetzung von Maßnahmen geschaffen werden.

<table>
<thead>
<tr>
<th>Umsetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminplan erstellen</td>
</tr>
<tr>
<td>6.1</td>
</tr>
</tbody>
</table>

Bild 4-10: Prozess Umsetzung

**Terminplan erstellen**


Hilfreich in diesem Zusammenhang ist das Aufzeigen des kritischen Pfades, also die Abfolge von Vorgängen, die termingerecht erfolgen müssen, damit der Terminplan für das Gesamtprojekt eingehalten werden kann.

**Aktionsplan erstellen**

Der Aktionsplan beinhaltet die durchzuführenden Tätigkeiten. In dieser Aggregierungsebene werden Verantwortlichkeiten, Befugnisse und Termine, sowie der dafür verantwortliche Mitarbeiter festgelegt. Diese Tätigkeiten stellen den Aktionsplan dar, der in Form eines Prozessablaufdiagramms o.ä. visualisiert wird.

**Teilaufgaben weiterleiten**

Sofern ein komplexes Maßnahmenpaket vorliegt, wird dieses in kleinere, funktional abgeschlossene Bausteine zerlegt. Der Koordinator der Maßnahme delegiert die Teilaufgaben an andere Mitarbeiter und überwacht und koordiniert deren Abarbeitung.

Unter Umständen liegt im Unternehmen nicht genügend Know-how vor, um umfangreiche Maßnahmen zu projektieren und durchzuführen. In so einem Fall kann eine Fremdvergabe an ein externes Unternehmen sinnvoll sein. Eindeutige und nachvollziehbare Kriterien für eine Fremdvergabe sollten im Vorfeld eines umfangreichen Projektes unternehmensweit bekannt sein.

**Maßnahmen durchführen**

Zwischenergebnisse in Form von Meilensteinen werden durch ein geeignetes Controlling auf deren Erreichung hin überprüft. Dabei hat das Controlling zum Einen die Aufgabe, den Zeitrahmen des Projektes einzuhalten, zum Anderen sollen frühzeitig bei auftretenden
Problemen geeignete Gegenmaßnahmen ergriffen werden. Bei der Durchführung der Maßnahmen wird auf Erfahrungswissen zurückgegriffen.

Der Idealzustand ist gekennzeichnet durch den Einsatz einer Projektmanagementsoftware. Mit Hilfe der Software wird der Projektleiter im operativen Bereich in der Weise unterstützt, dass er in der Lage ist, über die Software, Projekte in den Bereichen der Aufgabenplanung, der Termin- und Ablaufplanung etc., zu steuern.

4.2.7 Controlling


Controlling bietet einen Ansatz, bei der Umsetzung von Maßnahmen frühzeitig Abweichungen zu erkennen, und stellt damit eine leistungsfähige Wirkungskontrolle dar. Das Controlling ist als Hilfestellung für den Projektleiter zu verstehen, in dem durch Kennzahlen, Diagramme o.ä. der aktuelle Stand jederzeit abrufbar ist.

Ist-Situation ermitteln


Soll-Situation ermitteln

Dieser Teilprozessschritt beinhaltet die im Unternehmen hinsichtlich des Fehlermanagements und der Maßnahmen festgelegten Ziele. Mögliche Ziele bestehen darin, einen Kennwert zu erreichen, sowie einen definierten Zustand herzustellen bzw. abzustellen. Die Definition der Maßnahmenziele sollte so genau wie möglich erfolgen.

Der Soll-Zustand orientiert sich idealerweise an den Bedürfnissen des Kunden. Eine weitere Möglichkeit der Definition besteht im Benchmarking, sowohl mit der Konkurrenz aus dem eigenen Marktsegment, als auch mit anderen führenden Unternehmen, die über vergleichbare Prozesse, wenn auch ggf. mit anderen Anforderungen, verfügen.

Soll/Ist-Vergleich


Ergebnis interpretieren

Dem Soll/Ist-Vergleich schließt sich die Interpretation der Ergebnisse an, also die Bewertung der Abweichungen. Entweder stimmt der Soll-Zustand mit dem Ist-Zustand überein, dann wird dies in einem Bericht vermerkt und es folgt keine weitere Aktion. Sind die Abweichungen nicht mehr tolerierbar, so müssen Maßnahmen festgelegt werden, die eine Verbesserung zur Folge haben. Diese Maßnahmen werden schon während der Umsetzung, z.B. durch Audits, auf ihre Wirksamkeit hin überprüft.

Der gesamte Hauptprozess Controlling ist als Regelkreis anzusehen, in dem in wiederkehrenden Schleifen dieselbe Vorgehensweise immer wieder durchlaufen wird.

4.2.8 Mitarbeitermotivation und -qualifikation

Mitarbeiter befragen, Ergebnisse auswerten

Bei der Umsetzung von Maßnahmen werden die Mitarbeiter eng in den Prozess eingebunden, indem sie ihre Erfahrungen aus bisherigen Maßnahmen einbringen können. Die Kenntnisse und möglichen Verbesserungsvorschläge müssen im weiteren Verlauf umgesetzt werden. Als Plattform bieten sich Workshops an, in denen Mitarbeiter aus betroffenen Bereichen zusammenkommen.

Fähigkeiten der Mitarbeiter ermitteln

Im Rahmen der Analyse der Ist-Situation müssen die Fähigkeiten der Mitarbeiter ermittelt werden. Mit Hilfe einer Qualifikationsmatrix, in der die Qualifikationen der Mitarbeiter dokumentiert sind, lässt sich einschätzen, welche Fähigkeiten ein Mitarbeiter besitzt.

Schulungsbedarf ermitteln

Aus dem Soll/Ist-Vergleich der Anforderungen des Arbeitsplatzes sowie der Qualifikation des Mitarbeiters, ergibt sich bei Abweichungen ein Schulungsbedarf. So wird geprüft, ob bestimmte Fehler durch geeignete Schulungen der Mitarbeiter vermieden werden können. Außerdem ist der Schulungsbedarf der Mitarbeiter systematisch zu erfassen und zu planen, so dass die Mitarbeiter geeignete Fehlervermeidungsmaßnahmen selbstständig durchführen können.


Schulungsinhalte ergänzen

Die Wirksamkeit und Notwendigkeit von vorhandenen Schulungen müssen regelmäßig auf Aktualität und Inhalt überprüft werden. Liegen Änderungen in den Anforderungen vor, so muss auf die neue Situation auch schulungstechnisch reagiert werden.

Mitarbeiter schulen

Je komplexer Maßnahmen, Methoden und Prozesse zur Fehlervermeidung bzw. -beseitigung sind, desto höher ist auch der Schulungsaufwand der Mitarbeiter, die mit den komplexen Systemen umgehen müssen. So darf beispielsweise die Bedienung bestimmter Softwaresysteme zum Fehlermanagement, wie zum Beispiel Work-Flow-Management-Systeme...
(WFMS), keine Schwierigkeiten bereiten. Mitarbeiter müssen im Umgang mit diesen Systemen geschult werden, wobei auf eine Anpassung an die jeweiligen Anforderungen zu achten ist.

**Mitarbeitermotivation**

Erfahrungsgemäß stoßen neue Maßnahmen und Strategien bei 80% der Mitarbeiter auf Ablehnung, unabhängig davon, ob diese nun sinnvoll sind oder nicht /Pfei93d/. Da aber den Mitarbeitern bei der Umsetzung der Maßnahmen eine entscheidende Rolle zukommt, muss diesen Akzeptanzproblemen aktiv begegnet werden. Der erste Schritt besteht sicherlich in der Information und Schulung der Mitarbeiter, um so die Vorteile und die Notwendigkeit des Fehlermanagementprozesses darzulegen. Weiterhin erfolgt bereits in einer frühen Projektphase die Einbindung der Mitarbeiter, um diese am Prozess zu beteiligen, indem sie ihre Erfahrungen und Kenntnisse einbringen können.

Möglichkeiten, die Akzeptanz im Unternehmen zu steigern, bestehen beispielsweise in der Einrichtung eines betrieblichen Vorschlagswesens mit Prämien für Verbesserungsvorschläge oder der Auszeichnung z.B. zum „Mitarbeiter des Monats“.
5 Methodenunterstützung des Modells


Nachdem im Abschnitt 2.2 die Methoden, die in der vorliegenden Arbeit verwendet werden, erläutert und beschrieben wurden, sind im Abschnitt 5.1 die Forderungen an einen effizienten und wirkungsvollen Methodeneinsatz definiert, und der sich daraus ableitende Handlungsbedarf vorgestellt. Auf Basis dieser Forderungen wird ein Konzept für die Methodenkonfiguration eingeführt. Die Anpassung und Modularisierung der Methoden auf den FM-Prozess erfolgt in Abschnitt 5.2.

5.1 Systematik


5.1.1 Forderungen an den Methodeneinsatz

Im Rahmen der Umsetzung ergeben sich aufgrund bestimmter Randbedingungen Anforderungen, die zu erfüllen sind, um die Funktionalität und Handhabbarkeit des Modells zu gewährleisten. So müssen sämtliche Tätigkeiten auf die Erreichung festgelegter Ziele ausgerichtet werden, um einen effizienten und wirkungsvollen Methodeneinsatz zu gewährleisten (Heiliger, 2003, S. 42). Das Ziel besteht im vorliegenden Abschnitt in der Implementierung einer methodischen Unterstützung, die hilft, Fehler nachhaltig zu beseitigen. Dabei sollte die Bedienbarkeit der Methoden auch für Nicht-Spezialisten möglich sein, also nach Möglichkeit kein explizites Expertenwissen verlangen, und dennoch im hohen Maße leistungsfähig sein. In der Literatur treten in anderen Anwendungsfällen analoge Problemstellungen auf, die an dieser Stelle diskutiert werden sollen, um mögliche Synergien für den Einsatz beim Fehlermanagement nutzen zu können.

Nach Keunecke (Keunecke, 2004) bestehen die Hauptdefizite des Methodeneinsatzes im Prozessmanagement in der Überwindung der Widersprüche „hoher Komplexitäts- /Abstraktionsgrad“, sowie „mangelnde Problemorientierung“. Die Überwindung dieses


Der Ansatz der Modularisierung wurde auch am WZL der RWTH Aachen bei der Entwicklung der IPO-Systematik verwendet. Zu den fünf verwendeten Prozessschritten wurde die methodische Unterstützung der Systematik über eine Modularisierung klassischer QM-Methoden und Prozessmanagementkonzepten erreicht (TILLMANN 2003, S. 19).

Eine grundsätzliche Vorgehensweise zur Überwindung des Konfliktes der mangelnden Problemorientierung, also eine exaktere Zuordnung von Methode und Problem, kann nach KEUNECKE (KEUNECKE 2004) in einer schrittweisen Detaillierung erfolgen (Bild 5-1).

Bild 5-1: Systematik der Zuordnung von Methoden zu Problemlösungsphasen (KEUNECKE 2004)
Im ersten Schritt werden die Methoden in einem groben Rahmen einzelnen Phasen zugeordnet. Empfehlenswert ist diese Einteilung bei großen Projekten. Im zweiten Schritt werden Methoden den konkreten Elementen der Problemlösung zugeordnet. Dabei tritt die Schwierigkeit auf, dass sich komplexe Methoden nicht spezifisch auf ein Problem anwenden lassen. Ebenfalls problematisch in diesem Zusammenhang ist, dass der Anwender aufgrund der Komplexität einzelner Werkzeuge nicht die erhoffte Unterstützung erfährt, und er daher die eingesetzten Methoden nicht effektiv nutzen kann. Der dritte Schritt besteht in einer Modularisierung komplexer Methoden, die sich aus den Ansätzen der ersten und zweiten Ordnung ergibt. Die Phase dient der Aufbereitung der Methodenbestandteile in Module, die für eine konkrete Problemlösung verwendet werden können.


Der Vergleich unterschiedlicher Vorgehensweisen und Ansätze zeigt im Wesentlichen, dass für eine wirksame und methodisch unterstützte Lösung Konzepte vorhanden sind, die sich grundsätzlich in ähnliche Richtungen bewegen. So scheint eine Komplexitätsreduzierung durch Modularisierung von Methoden ein zielführendes Konzept zu sein.


Nachfolgend werden die sich aus den eingangs genannten Ausführungen ergebenden Ableitungen dargestellt.

5.1.1.1 Methodenauswahl


Neben der Vielzahl von Methoden kommt erschwerend hinzu, dass starke Überschneidungen in den erzielten Resultaten stattfinden. So gibt es beispielsweise für die Analyse von Fehlerursachen diverse Methoden, die ähnliche Ergebnisse liefern. Der Unterschied liegt in der

Es gilt daher die Fragestellung zu klären, welche Funktion in dem entsprechenden Prozessschritt unterstützt werden soll, und welche Methode bei der Umsetzung eingesetzt werden kann, so dass eine wirkungsvolle und maßgeschneiderte Unterstützung gewährleistet wird.

5.1.1.2 Komplexitätsreduzierung

Die Forderung nach einer leicht zu bedienenden, gleichzeitig aber sehr leistungsfähigen methodischen Unterstützung, birgt in sich einen Widerspruch. So liefert beispielsweise bei fachgerechter Anwendung die Methode FMEA hervorragende Ergebnisse, ist jedoch aufgrund ihrer Komplexität sehr aufwendig und erfordert ein hohes Maß an Fachwissen und betrieblichen Ressourcen. Gerade aber in kleinen und mittelständischen Unternehmen sind diese Voraussetzungen zur Durchführung unter Umständen nicht vorhanden, so dass sich ein Konflikt zwischen der Komplexität der Methoden und deren Handhabbarkeit ergibt, den es zu lösen gilt. Die sich aus diesem Konflikt ergebende Forderung besteht in der deutlichen Komplexitätsreduzierung der eingesetzten Methoden für den Fehlermanagementprozess, bei nahezu gleicher Leistungsfähigkeit.

5.1.1.3 Verknüpfung der Methoden


Bild 5-2: gewünschter Zielzustand der Modulverknüpfung
5.1.2 Ableitung des Handlungsbedarfs


Bei der Realisierung bietet sich eine an KEUNECKE (KEUNECKE 2004) angelehnte Vorgehensweise an, die eine sukzessive Detaillierung des Lösungsweges beinhaltet. So sollen für den Fall des Fehlermanagements in einer ersten Stufe die verwendeten Methoden festgelegt und den einzelnen Hauptprozessen zugeordnet werden. Im zweiten Schritt erfolgt die Eingrenzung der verwendeten Methoden sowie deren Anpassung an die Bedürfnisse des Fehlermanagements. Im abschließenden dritten Schritt werden die Methoden sowohl innerhalb der gebildeten Module als auch prozessübergreifend verknüpft.

Im Folgenden soll der aus den Forderungen an das Modell abgeleitete Handlungsbedarf detailliert erläutert werden.

5.1.2.1 Zuordnung der Methoden

In Bezug auf die vorliegende Arbeit besteht die erste Forderung in der Auswahl geeigneter Methoden und deren Zuordnung zu den entsprechenden Hauptprozessen. Das Ziel besteht dabei in der Bildung von Modulen, die inhaltlich den entsprechenden Hauptprozess unterstützen. Zu jedem Prozessschritt wird eine Analyse durchgeführt, die beinhaltet, was erreicht werden soll. Dementsprechend erfolgt die Auswahl der Werkzeuge.

Der erste Schritt bei der Implementierung der Methoden in den Fehlermanagement-Prozess besteht in der Auswahl geeigneter Werkzeuge. Wie bereits erwähnt, soll bei der Auswahl der Methoden eine anforderungsgerechte Selektion erfolgen. Durch diesen Ansatz beschränkt sich die Auswahl der Methoden nicht nur auf diejenigen, die aus dem Qualitätsmanagement bekannt sind. Vielmehr rücken durch die vorgenommene Bedarfsanalyse auch Methoden anderer Bereiche ins Blickfeld. So sei an dieser Stelle die TRIZ-Methodik erwähnt, die ihren Ursprung als starkes Werkzeug zur Lösungsfindung im Bereich der Entwicklung hat, sowie die Theory of Constraints, die ursprünglich der Prozesskettenoptimierung entstammt.

Zu jedem Hauptprozess soll ein korrelierendes Methodenmodul gebildet werden, welches den Prozessschritt unterstützt (Bild 5-3).
5.1.2.2 Modularisierung der Methoden


Dieser Ansatz der Modularisierung wird in vielen Veröffentlichungen als ein Schlüssel für eine sprunghafte Verbesserung gesehen (vgl. TILLMANN, KEUNECKE, HEILIGER etc.). Der Einsatz dieses Instrumentariums verfolgt das Ziel, bei gleichbleibender Güte der Ergebnisse den Grad des einzusetzenden Fachwissens zu reduzieren, und dadurch bei den Mitarbeitern die Hemmschwelle abzubauen, die Methodik einzusetzen. Neben der Reduktion des Arbeitsaufwandes bei der Durchführung lässt sich ein größerer Mitarbeiterkreis in die Umsetzung einbeziehen, was sowohl deren Motivation erhöht, als auch neue Potentiale zur Lösungsfindung erschließt, da ein größerer Personenkreis einbezogen wird.
5.1.2.3 Identifikation von Schnittstellen


![Bild 5-4: Verknüpfung der Module und Methoden](image)


5.1.2.4 Zusammenfassung

In Bild 5-5 sind die drei Forderungen, die an das Prozessmodell zur Methodenunterstützung des Fehlermanagements gestellt werden, zusammengefasst. Der korrespondierende Handlungsbedarf ergibt sich direkt aus diesen Forderungen. Die konkrete Umsetzung für den Fehlermanagementprozess wird im anschließenden Kapitel vorgenommen.
5.2 Implementierung in den Fehlermanagementprozess

Das im vorigen Abschnitt dargelegte Konzept sowie die ermittelten Handlungsbedürfnisse werden im folgenden Abschnitt umgesetzt und konkret auf das Referenzmodell des Fehlermanagements übertragen.

5.2.1 Auswahl der Methoden


5.2.1.1 Fehler detektieren und erfassen


Wichtig nach dem Auftreten des Fehlers ist dessen vollständige Erfassung mit allen zugehörigen Details. Für die Erfassung bieten sich Standardformulare an, die die sechs „W-

Generell sollte eine Fehlererfassung EDV-basiert erfolgen, um einen späteren Zugriff zu erleichtern und Fehlerdaten systematisch auswerten zu können. Die FSL kann immer dann sinnvoll eingesetzt werden, wo keine direkte Eingabe in ein EDV-System möglich ist (z.B. Maschinenarbeitsplatz). Eine anschließende Übertragung der Daten der papierbasierten FSL in das EDV-System muss gewährleistet sein.


Unabhängig davon, wie die Daten aufgenommen werden, sollten diese in einer computergestützten Datenbank archiviert werden, um eine später Auswertung zu erleichtern. Die sorgfältige Fehlererfassung ist die Voraussetzung für eine wirksame Fehlerbeseitigung.

5.2.1.2 Fehler klassifizieren

Für den zweiten Hauptprozess gilt es Methoden zu finden, die eine Klassifizierung und Bewertung des aufgetretenen Fehlers ermöglichen. Insbesondere der Fall des unbekannten Fehlers ist dabei zu betrachten, da bereits aufgetretene Fehler aufgrund des vorhandenen Erfahrungswissens schnell einzuteilen sind und keine eingehendere Klassifizierung benötigen.

Ein gutes Instrument für eine grobe Einteilung der Fehler ist die ABC-Analyse, die auf dem Pareto-Prinzip basiert. Übertragen auf das Fehlermanagement besagt dieses, dass 20 Prozent der Fehler, 80 Prozent der Fehlerfolgen verursachen. Mit Hilfe der vorliegenden Fehlerdaten und ggf. eines Expertenteams lassen sich die sogenannten A-Fehler identifizieren, so dass eine erste Abschätzung der bedeutendsten Fehler vorliegt.

Eine weitere Methode ist die FMEA, die ebenfalls eine Einteilung der Fehler vornimmt. Im Gegensatz zur ABC-Analyse, die eine relativ grobe Analyseform darstellt, liefert die FMEA in Form einer Risikoprioritätszahl ein genau quantifizierbares Ergebnis. Eine mögliche Verknüpfung der Methoden wird bei der Umsetzung des dritten Handlungsbedarfes betrachtet.

5.2.1.3 Zuständigkeiten

5.2.1.4 Abstellmaßnahmen

Der Hauptprozessschritt „Abstellmaßnahmen“ dient der kurzfristigen Beseitigung von Fehlern. So werden fehlerhafte Einheiten in Sperrlager überführt und danach wird entschieden, ob die Teile zur Nacharbeit, als Ausschuss oder als Sonderfreigabe weitergegeben werden. Diese unmittelbaren Aktionen bieten keine Möglichkeit der methodischen Unterstützung. Interessant sind in dieser Hinsicht die Teilprozessschritte „Fehlerfolge ermitteln“ und „Fehlerfolge eliminieren“.


Desgleichen kann die Methode FMEA eingesetzt werden, da diese Elemente enthält, die für eine genauere Risikoabschätzung der Folgen eines Fehlers eingesetzt werden können.

5.2.1.5 Korrektur- und Vorbeugungsmaßnahmen

Der Prozessschritt „Korrektur- und Vorbeugungsmaßnahmen“ befasst sich mit der langfristigen, d.h. nachhaltigen, Fehlerbeseitigung. Ziel dieses Prozesselements ist die Beseitigung der Fehlerursachen und die Implementierung von Maßnahmen, die ein Wiederauftreten der Fehler verhindern.

Um dieses Ziel erreichen zu können, bedarf es leistungsfähiger Werkzeuge mit Hilfe derer sich Fehlerursachen ermitteln lassen. In einem nächsten Schritt müssen Lösungen generiert und nach Möglichkeit bewertet werden.


Die Möglichkeit der Analyse von Fehlerursachen bietet zudem die FMEA. Der Vorteil im Einsatz der FMEA, die bereits in anderen Modulen Verwendung findet, besteht im Vorhandensein eines interdisziplinären Expertenteams. Dadurch existiert die Möglichkeit, auf ein sehr breites Wissensspektrum bei der Lösungsfindung zurückzugreifen.

Die Theory of Constraints (TOC) stellt ebenfalls Werkzeuge für die Aufstellung von Ursache-Wirkungsbeziehungen bereit. In gleicher Weise bietet die TOC die Möglichkeit, getroffene Verbesserungsmaßnahmen und deren Auswirkungen für alle beteiligten Elemente und
Prozessschritte, auf deren Wirksamkeit und Nutzen für das Gesamtsystem hin, zu untersuchen und zu validieren.


5.2.1.6 Umsetzung


Neben der Netzplantechnik bietet sich aus der TOC-Systematik der Transition Tree als Werkzeug an, um die Umsetzung von Maßnahmen methodisch zu unterstützen. Durch ein schrittweises Vorgehen bei der Erstellung des Transition Trees erfolgt eine strukturierte Umsetzung, und verhindert auf diese Weise, dass mögliche Schwachpunkte übersehen werden.

5.2.1.7 Controlling

Der wesentliche Aspekt in diesem Prozessschritt besteht in der Wirkungskontrolle der einzusetzenden Maßnahmen. Diese erfolgt im Rahmen einer Ergebnisbewertung. Aufgrund der Möglichkeit, die erhaltenen Ergebnisse schnell und durch Abschätzungen zu beurteilen, finden sich wenige Wege, eine methodische Ergebnisbeurteilung vorzunehmen. Lediglich die Fehler-Möglichkeits- und Einflussanalyse enthält Elemente, die eine Bewertung der getroffenen Maßnahme ermöglichen. Die FMEA wird in den folgenden Abschnitt 5.2.2 auf die Eignung hin untersucht, ob sie einen wirkungsvollen Beitrag für dieses Prozesselement leisten kann.

5.2.1.8 Mitarbeitermotivation

Die Mitarbeiter eines Unternehmens sind zweifellos die wichtigsten Ressourcen. Motivierte Mitarbeiter tragen wesentlich dazu bei, dass der Unternehmenserfolg gesichert und vergrößert wird. Es ist unabdingbar, eine positive Grundstimmung zu vermitteln und eine Arbeitsumgebung zu schaffen, in der sich die Mitarbeiter wohl fühlen. Dieser Anspruch gilt natürlich auch für den Fall des Fehlermanagements. So sind es die Mitarbeiter, die Fehler entdecken, beseitigen und
nach Lösungen suchen, um eine kontinuierliche Verbesserung des Fehlermanagementprozesses zu erreichen. Eine konkrete methodische Unterstützung der Motivation wird hier nicht weiterverfolgt. Jedoch existieren durchaus geeignete Maßnahmen, die eine Erhöhung der Zufriedenheit und Motivation zur Folge haben.

Der wichtigste Aspekt besteht in der Einbindung betroffener Mitarbeiter, d.h. alle direkt von den Auswirkungen eines Fehlers betroffenen Personen werden aktiv bei der Fehlerbeseitigung einbezogen. Dies kann beispielsweise durch Gespräche mit den Fehlerbeauftragten oder aber in Form von Qualitäts-Zirkeln erfolgen. Durch diese Maßnahmen wird dem Personal das Gefühl gegeben, dass es ernstgenommen, und seine Meinung sowie auch Erfahrung benötigt wird.

Einen positiven Effekt ruft eine solche Einbindung allerdings nur hervor, wenn die Anregungen und Vorschläge der Mitarbeiter berücksichtigt und honoriert werden. Geschieht dies nicht, so wird genau der gegenteilige Effekt erreicht. Eine Möglichkeit des Unternehmens, die positiven Aspekte zu verstärken, besteht in der Einführung eines betrieblichen Vorschlagswesens, bei dem durch ein Prämienystem Verbesserungsvorschläge belohnt werden. Das Unternehmen muss es sich zur Aufgabe machen, eine Kultur zu schaffen, die die Mitarbeiter dazu anhält, selbstständig Verbesserungsvorschläge einzureichen.

Eine weitere Maßnahme besteht darin, Mitarbeiter über den Erfolg oder Misserfolg durchgeführter Maßnahmen zu unterrichten, und so eine transparente Informationspolitik zu betreiben. Durch diese Rückmeldung wird erreicht, dass sich die Mitarbeiter für ihr Handeln verantwortlich fühlen, was zu einer stärkeren Identifikation mit ihrer Aufgabe führt.

5.2.1.9 Zwischenfazit 1


---

**Bild 5-6: Verwendete Methoden und Modulbildung**

![Methodenportfolio](image.png)
5.2.2 Modularisierung


Eine Komplexitätsreduktion lässt sich nicht immer durchführen. Auf der einen Seite ist diese Tatsache darin begründet, dass einige der Methoden bereits für das Prozesselement in der originären Form geeignet sind, auf der anderen Seite liegt es aber auch daran, dass die Methoden von vornherein bereits einen geringen Komplexitätsgrad besitzen.

Die verwendeten Methoden wurden bereits in Abschnitt 2.2 ausführlich beschrieben. An dieser Stelle wird ergänzend zu den bisherigen Ausführungen die Spezifikation für den Fehlermanagementprozess vorgenommen.

5.2.2.1 FMEA

Wie aus Bild 5-6 zu erkennen ist, finden sich für die FMEA in diversen Fehlermanagementmodulen Einsatzmöglichkeiten. Diese Tatsache lässt bereits darauf schließen, dass die FMEA eine Vielzahl an Elementen enthält, die für die Methodenunterstützung verwendet werden können. Weiterhin deutet dieser Zusammenhang darauf hin, dass eine Modularisierung der Methode aufgrund der unabhängigen Funktionselemente mit relativ geringem Aufwand möglich ist und so eine signifikante Aufwandsreduzierung erreicht werden kann.

Bild 5-7: Beispiel für ein FMEA-Formblatt (PFEIFER 2001)
Die funktionalen Elemente lassen sich bereits aus Bild 5-7 ablesen. Die Modularisierung der FMEA sowie deren Zuordnung zu den Methodenmodulen wird im Folgenden vorgenommen.

**Modul 2: Fehler klassifizieren und bewerten**

In diesem Prozessschritt wird eine Bewertung eines Fehlers vorgenommen. Dass die FMEA eine quantifizierbare Bewertung eines potentiellen Fehlers in Form einer Risikoprioritätszahl (RPZ) liefert, legt den Einsatz dieser Methode nahe. Wie in Bild 5-8 dargestellt, wird nur der Baustein der Risiko-Bewertung eingesetzt. Die nun aufgetretenen unbekannten Fehler lassen sich mit Hilfe dieser Methode von einem Expertenteam einschätzen und durch die RPZ in eine Rangordnung bringen. Die Bewertung der Einflusszahlen kann sich aufgrund der unterschiedlichen Einschätzung durch unterschiedliche subjektive Wahrnehmung eines Fehlers im Expertenteam unterscheiden. Um diese Schwankungen zu vermeiden, sollte das FMEA-Team aussagekräftig besetzt sein, d.h. alle beteiligten Bereiche sollten vertreten sein. Desweiteren sollte sich die Zusammensetzung des Teams nicht laufend ändern, um so eine gewisse Konstanz so gewährleisten.

**Bild 5-8: Baustein Risikobewertung**

Der ursprüngliche Einsatz der Methode bezieht sich auf die präventive Entdeckung von potentiellen Fehlern. Denkbar ist dieser Ansatz auch für das Fehlermanagement, um durch eine durchgeführte FMEA noch nicht aufgetretene Fehler aufzudecken, die jedoch schwerwiegende Auswirkungen auf das Gesamtsystem haben. Aufgrund des Aufwandes, mit dem eine FMEA verbunden ist, empfiehlt es sich, diese Stufe erst anzuwenden, wenn der Reifegrad des Fehlermanagementsystems weit fortgeschritten ist. Zuvor sollte der Schwerpunkt auf der Betrachtung der vorliegenden Fehler liegen.

Als Ergebnis des Einsatzes dieser Methode liegt eine quantifizierte Rangfolge der Fehler sowie eine Identifizierung der Hauptfehler, vor.
Modul 4: Abstellmaßnahmen

Die in Modul 2 vorgenommene Ermittlung der RPZ kann zur Beseitigung der mittelfristigen Fehlerfolgen herangezogen werden. So lässt sich aus den Komponenten der RPZ, also der Auftretenswahrscheinlichkeit, der Bedeutung des Fehlers und der Entdeckungswahrscheinlichkeit, ableiten, an welcher Stelle in verstärktem Maße Prüfungen einzusetzen sind, um eine frühzeitige Entdeckung des Fehlers zu gewährleisten.

Modul 5: Korrektur- und Vorbeugungsmaßnahmen


![Bild 5-9: Baustein Fehleranalyse](image-url)

In der Regel beziehen sich diese Auswirkungen auf den Kunden, der das Produkt verwendet oder anderweitig von dem Produkt im Fehlerfall betroffen sein könnte. Einem möglichen Fehler können in der FMEA auch mehrere Fehlerursachen zugeordnet werden.

Modul 7: Controlling

Für den Prozessschritt Controlling wurde die Methode FMEA gewählt, da sie, aufbauend auf den vorherigen Modulen, eine relativ einfache Möglichkeit bietet, den Erfolg getroffener
Maßnahmen zu überprüfen. Dazu wird der Baustein „Ergebnisbewertung“ aus dem Formblatt herangezogen (siehe Bild 5-10).


5.2.2.2 TRIZ


Unter Umständen ist der Einsatz der TRIZ-Methodik nicht erforderlich und die in Modul 5 verwendeten Methoden reichen aus, eine zielführende Lösung zu generieren. Sollte jedoch keine andere Methode eine zufriedenstellende Lösung produzieren, so stellt die TRIZ-Methodik
Methodenunterstützung des Modells

5.2.2.3 TOC

Die Theory of Constraints stellt einen für die Prozessoptimierung durchgängigen Werkzeugkasten zur Verfügung, der von der Ursachenfindung von Problemen bis hin zur Implementierung von Verbesserungsmaßnahmen reicht. Die Methodik und Vorgehensweise der TOC wurden in Abschnitt 2.2.2 erläutert, so dass an dieser Stelle nur auf ausgewählten Werkzeugen (Future Reality Tree, Transition Tree) eingegangen werden soll.

Modul 5: Korrektur- und Vorbeugungsmaßnahmen

Die in diesem Teilschritt durch andere Methoden generierten Lösungsmöglichkeiten müssen in das unter Umständen sehr komplexe betriebliche Umfeld integriert werden. Dabei darf der Blick für den Gesamtzusammenhang nicht verloren werden. Eine Lösung, die lokal ein Problem behebt, hat eventuell Auswirkungen auf andere Systembereiche, so dass der Gesamtnutzen einer Maßnahme nicht dem des an der lokalen Stelle eingebrauchten Nutzens entspricht. Im schlimmsten Fall sind die Auswirkungen auf die betrieblichen Abläufe insgesamt gesehen sogar negativ, so dass ursprünglich Erfolg versprechende Maßnahmen den gegenteiligen Effekt zur Folge haben.


Modul 6: Umsetzung

Für die Umsetzung von Maßnahmen bietet die TOC mit dem Transition Tree ein Werkzeug an, welches die Umsetzung eines Aktionsplanes von Maßnahmen unterstützt. Die Wirkweise der Methode wurde in Abschnitt 5.1 beschrieben.

Mit dem Transition Tree (TT) lassen sich die einzelnen Teilschritte, die für die Erreichung eines Zieles notwendig sind, in diesem Fall die erfolgreiche Implementierung einer Maßnahme, in Form eines Baumdiagramms darstellen. Ähnlich wie bei dem Future Reality Tree werden durch Maßnahmen bestimmte Reaktionen hervorgerufen, deren Ergebnis abgewartet werden muss, um die Wirksamkeit der Maßnahme zu überprüfen. Der TT lässt sich einerseits dazu einsetzen, eine Vorgehensweise für die Umsetzung von Maßnahmen zu planen, andererseits bietet er bereits in der Umsetzung eine Wirkungskontrolle, ob der eingeschlagene Weg auch wirklich zielführend ist.

Durch diese Vorgehensweise wird die Umsetzung sukzessiv begleitet, sinnvoll geplant und eventuelle Konflikte, die durch den Einsatz des Future Reality Trees nicht aufgedeckt wurden,
werden erkannt und beseitigt. Durch die Wirkungskontrolle übernimmt dieses Werkzeug bereits teilweise Aufgaben des Controllings, jedoch auf einer operativen Ebene, so dass der Baustein als Hilfestellung für die Mitarbeiter zu sehen ist, die für die Umsetzung verantwortlich sind.

5.2.2.4 Zwischenfazit 2


Nachdem in diesem Abschnitt Vereinfachungen auf mikroskopischer Ebene vorgenommen wurden, sollen im folgenden Kapitel durch die makroskopische Betrachtung des gesamten Prozesses weitere Synergien hinsichtlich einer Komplexitätsreduzierung erschlossen werden.

5.2.3 Verknüpfung von Modulen und Methoden

In diesem Kapitel erfolgt sowohl die Verknüpfung der Methoden innerhalb der Methodenmodule, als auch die Vernetzung der Module zu einem durchgängigen Prozess. Um dies zu erreichen, müssen die Schnittstellen zwischen den Modulen und Methoden identifiziert werden. Dadurch werden die logischen Verknüpfungen zwischen den Methoden erstellt und in einen Gesamtzusammenhang gebracht. Weiterhin wird bei der Erstellung der Module die in Kapitel 5.1 beschriebene IVO-Systematik verwendet.

5.2.3.1 Verknüpfung innerhalb der Module

Zunächst wird die Verknüpfung innerhalb der Methodenmodule vorgenommen. Dadurch wird jedes Modul zu einem thematisch in sich geschlossenen Funktionselement.
**Modul 1**

Die verwendeten Methoden im ersten Modul, welches für die Erfassung der Fehler zuständig ist, lassen sich einfach verknüpfen. Die Detektion eines Fehlers löst eine standardisierte Erfassung durch Fehlersammellisten aus. Diese papiergestützte Erfassung mit allen relevanten Angaben wird in ein EDV-Datenbanksystem übertragen, in dem die Daten zur weiteren Verarbeitung zur Verfügung stehen.

![Bild 5-12: IVO-Darstellung Modul 1](image)

Die Befüllung der Datenbank erfolgt desweiteren durch die durch SPC erfassten Fehlerdaten. Die SPC wird an dieser Stelle stellvertretend für Fehlererkennungssysteme genannt, die in der Lage sind, automatisch Fehlerdaten in eine Datenbank einzuspeisen. Die Ergebnisse dieses Hauptprozesses bestehen in der Existenz von strukturiert vorliegenden Fehlerdaten mit allen relevanten Angaben (vgl. 6-W-Fragen), so dass nun eine Weiterverarbeitung auf dieser Basis erfolgen kann.

**Modul 2**


**Modul 3**


**Modul 4**

Die im vierten Modul unterstützten Teilprozesse lauten „Fehlerfolge ermitteln“ und „Fehlerfolge eliminieren“. Das Ziel besteht in der mittelfristigen Beseitigung der Auswirkungen eines Fehlers und geeigneten Maßnahmen, um die Auswirkungen des Fehlers möglichst schnell zu entdecken. Bild 5-14 stellt die logische Vernetzung der verwendeten Methoden dar.

Ein Hilfsmittel besteht in der Analyse der identifizierten Hauptfehler mit der Ereignisablaufanalyse. Diese Methode liefert eine Aufschlüsselung der Fehlerfolgen in Form
eines Baumdiagramms. Die Auswirkungen des Fehlers auf alle Systembereiche werden auf diese Weise erfasst und visualisiert.

Unterstützend hinzugezogen wird an dieser Stelle der Baustein „Risikoanalyse“ der FMEA. Nachdem die Auswirkungen des Fehlers bekannt sind, bietet die Risikoanalyse eine Möglichkeit, entsprechend der drei Wahrscheinlichkeiten Schwerpunkte bei den Abstellassnahmen zu bilden. So impliziert beispielsweise eine schlechte Bewertung der Entdeckungswahrscheinlichkeit (Wert $\geq 7$), dass Prüfmaßnahmen unzureichend sind und die Auswirkungen des Fehlers erst spät entdeckt werden. Liegt eine hohe Auftrittswahrscheinlichkeit des Fehlers vor, so muss neben einer geeigneten Prüfung zur Entdeckung des Fehlers unter Umständen die Prozessführung überprüft werden.

**Modul 5**


Wie aus Bild 5-15 ersichtlich, sind die ermittelten Hauptfehler Grundlage für die Durchführung einer Fehlerbaumanalyse (FTA). Mit Hilfe dieser Methode lassen sich deduktiv die Fehlerursachen ermitteln. Das Ergebnis besteht in einem Baumdiagramm, das die aktuelle Ist-Situation und die Ursache-Wirkungsbeziehung des Fehlers beschreibt. Für eine ausführliche Beschreibung der Methode sei an dieser Stelle auf Abschnitt 2.2 verwiesen.

![Bild 5-15: IVO-Darstellung Modul 5](image)

Die Erstellung des Fehlerbaums wird durch den Einsatz des Bausteins „Fehleranalyse“ der FMEA unterstützt. Dieses Element befasst sich mit dem Auffinden von potentiellen Fehlerursachen. Obwohl die Vorgehensweise dieser Methodik nicht so ausgiebig strukturiert erfolgt wie in der FTA, ist sie dennoch in der Lage, Ansatzpunkte und Input für die Erstellung
Methodenunterstützung des Modells


Die Systematik dieses Methodenmoduls ist als Schleife zu verstehen, die so lange durchlaufen wird, bis eine befriedigende Lösung gefunden ist. Die mit Hilfe der aufgezeigten Methodik ermittelten Lösungsansätze kennzeichnen das Ergebnis dieses Prozessschrittes und werden im folgenden Hauptprozess „Umsetzung“ weiterverarbeitet.

**Modul 6**

Das Ziel des Moduls 6 „Umsetzung“ besteht in der Erstellung eines Projektplanes, der die Lösungsansätze aus dem vorhergehenden Modul in den betrieblichen Ablauf implementiert. Wie in Bild 5-16 gezeigt, wird die Aufstellung des Projektplanes durch zwei Werkzeuge methodisch unterstützt.


**Modul 7**

Für den Fall, dass die Korrekturmaßnahmen nicht den gewünschten Erfolg haben, wird der Gesamtprozess beginnend mit Modul 5 erneut durchlaufen, um basierend auf dem Erfahrungswissen eine neue Lösung für das bestehende Problem zu generieren.

Modul 8


5.2.3.2 Verknüpfung der Module

An dieser Stelle werden die Methodenmodule zu einem Gesamtprozess verknüpft, indem die Schnittstellen zwischen den Modulen aufgezeigt und vernetzt werden. Bild 5-18 zeigt das Ergebnis dieser Verknüpfungen.


Fehleranalyse

FMEA: Risikoanalyse

TOC: Future
Reality Tree

TRIZ

FMEA: Fehleranalyse

Fehlerbaumanalyse

Generiert Lösungen

Prüft Lösungen

Modul 1

Fehler-
sammelliste

befüllt

Datenbank

SPC

befüllt

Modul 2

Pareto-
Analyse

FMEA: Risiko-
beurteilung

Modul 4

FMEA: Risiko-
beurteilung

Ereignisablaufanalyse

Auswirkung
der Fehlerfolge
bewertet

Modul 5

TRIZ

Fehlerbaum-
analyse

FMEA: Fehleranalyse

Modul 6

Netzplan

TOC

Projektplan

Modul 7

FMEA: Ergebnis-
beurteilung

Wirksame
troffene
Maßnahmen

Modul 1

Fehler-
sammelliste

befüllt

Datenbank

SPC

befüllt

Modul 2

Pareto-
Analyse

FMEA: Risiko-
beurteilung

Modul 4

FMEA: Risiko-
beurteilung

Ereignisablaufanalyse

Auswirkung
der Fehlerfolge
bewertet

Modul 5

TRIZ

Fehlerbaum-
analyse

FMEA: Fehleranalyse

Modul 6

Netzplan

TOC

Projektplan

Modul 7

FMEA: Ergebnis-
beurteilung

Wirksame
troffene
Maßnahmen

Bild 5-18: Gesamtprozess mit Methodenkonfiguration
6 Auswahlsystematik zur EDV-Unterstützung


Vor diesem Hintergrund soll dieses Kapitel einen Überblick über die Grundlagen des Workflow Managements und der Workflow-Management-Systeme geben und anschließend eine Systematik, die der Auswahl einer auf das Fehlermanagement abgestimmten Software dient, erläutern.

6.1 Grundlagen der Workflow-Management-Systeme

6.1.1 Begriffsdefinitionen

Definition Workflow

„Ein Workflow verbindet die einzelnen Aufgaben (Aktivitäten) eines Prozesses zu einem Ablauf und definiert, wer (welche Rolle) welche Aufgabe mit welchen Mitteln und welchen Informationen durchführt. Eine Aufgabe kann selber in einzelne Arbeitsschritte aufgeteilt werden, welche manuell oder mit Hilfe von Anwendungen abgearbeitet werden.“ (HALTER 1996)

Definition Workflow-Management

„Workflow–Management ist die Automatisierung von Prozessen oder Arbeitsabläufen, bei denen, anhand von Dokumenten, Informationen oder Aufgaben nach bestimmten Regeln oder Prozeduren von einem Mitarbeiter zum nächsten weitergereicht werden.“ (WFMC 1999)

Definition Workflow-Management-Systeme

„A system that defines, creates and manages the execution of workflows through the use of software, running on one or more workflow engines, which is able to intercept the process definition, interact with workflow participants and, where required, invoke the use of IT tools and applications.“ (WFMC 1999)


Im Rahmen der Beschreibung von Workflow-Management und Workflow-Management- Systemen wird neben dem Workflow auch häufig der Geschäftsprozess genannt. Da die beiden Begriffe dabei nicht synonym verwendet werden können, soll im Folgenden eine Definition und Abgrenzung des Geschäftsprozesses erfolgen.

Definition Geschäftsprozess


Eine Abgrenzung dieses Begriffes gegen den Begriff des Workflow ist, wie schon in der Einleitung dieses Kapitels beschrieben, notwendig und soll im Folgenden durchgeführt werden.

Ein Ansatz, der dieser Tatsache entgegenwirkt indem die Unterschiede der beiden Begrifflichkeiten hervorgehoben werden, ist in der nachfolgenden Tabelle 6-1 dargestellt:

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Geschäftsprozess</th>
<th>Workflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zielsetzung</td>
<td>Analyse und Gestaltung von Arbeitsabläufen im Sinne gegebener (strategischer) Ziele</td>
<td>Spezifikation der technischen Ausführung von Arbeitsabläufen</td>
</tr>
<tr>
<td>Gestaltungsebene</td>
<td>Konzeptionelle Ebene mit Verbindung zur Geschäftsstrategie</td>
<td>Operative Ebene mit Verbindung zu unterstützender Technologie</td>
</tr>
<tr>
<td>Detaillierungsgrad</td>
<td>In einem Zug von einem Mitarbeiter an einem Arbeitsplatz ausführbare Arbeitsschritte</td>
<td>Konkretisierung von Arbeitsschritten hinsichtlich Arbeitsverfahren sowie personeller und technologischer Ressourcen</td>
</tr>
</tbody>
</table>

Tabelle 6-1: Unterscheidungsmerkmale zwischen Geschäftsprozess und Workflow (vgl. Gadatsch 2000, S.258)


6.1.2 Das Workflow Reference Modell der WfMC

Das Workflow Reference Modell ist die derzeit bekannteste Referenzarchitektur für WfMS und wurde von der Workflow Management Coalition (WfMC) erarbeitet. Die WfMC ist ein von WfMS-
Auswahlsystematik zur EDV-Unterstützung


Bild 6-1: Referenzmodell der WfMC (DERSZTELER 2000, S.155)

Im Mittelpunkt der Referenzarchitektur der WfMC steht die Komponente zur Abwicklung und Koordination laufender Workflows (Workflow Enactment Service). Dabei wird offen gehalten, ob dieser Dienst durch eine oder mehrere Workflow-Engines realisiert wird und wie diese Komponenten intern strukturiert sind. Sie verfügt über fünf Schnittstellen, mit der Komponenten anderer Hersteller verbunden werden können.

Workflow-Modellierungswerkzeuge (Process Definitions Tools) werden über die Schnittstelle 1 (Interface - workflow Process Definition Read/Write Interface) mit der zentralen Komponente verbunden. Ausgetauscht werden hier Workflow-Schemata. Dazu muss eine Workflow-


Um in standardisierter Form Informationen über den aktuellen Ausführungszustand erfragen zu können und um laufende Workflows zu administrieren, sollten die Administrations- und Monitoringwerkzeuge anderer Hersteller über die Schnittstelle 5 (Interface 5 - Draft Audit Specification) angeschlossen werden.

6.2 Aufbau der Auswahlsystematik

Die zur Ermittlung der für den Einsatz im Fehlermanagement geeigneten WfMS gewählte Systematik besteht grundsätzlich aus zwei Stufen, die insgesamt aus drei aufeinander folgenden Schritten aufgebaut sind.


Das nachfolgende Bild 6-2 zeigt den schematischen Aufbau der im Rahmen dieser Untersuchung verwendeten Auswahlsystematik.
Nachdem der grundlegende Aufbau der Auswahlsystematik in diesem Abschnitt dargestellt wurde, soll im Folgenden näher auf die Ermittlung der für die Durchführung benötigten Inputdaten eingegangen werden. Dazu wird im nächsten Abschnitt zunächst auf die Ermittlung der Anforderungen eingegangen.

6.2.1 Ermittlung der Anforderungen aus dem Fehlermanagement
Wie im vorhergehenden Abschnitt beschrieben, erfordert die Durchführung des QFD im Rahmen der Auswahlsystematik unter anderem die Anforderungen des Fehlermanagements als Inputdaten. Diese lassen sich auf Basis des im Vorfeld beschriebenen Referenzmodells ableiten. Zwei Arten, die prozessspezifischen und die prozessübergreifenden Anforderungen, lassen sich hier ableiten.

6.2.1.1 Prozessspezifische Anforderungen


### 6.2.1.2 Prozessübergreifende Anforderungen

Die prozessübergreifenden Abläufe des Fehlermanagements stellen hauptsächlich Anforderungen in Bezug auf die Informationsverarbeitung dar. Sie wirken dem in der Praxis

Das folgende Bild 6-3 zeigt eine Übersicht über die Anforderungen des Fehlermanagements:

![Bild 6-3: Anforderungen des Fehlermanagements](image)

Für einen erfolgreichen Einsatz von WfMS (Workflow-Management-Systeme) im Rahmen des Fehlermanagements müssen die eben ermittelten Anforderungen ausreichend erfüllt werden. Die Funktionen, der sich die WfMS dabei bedienen sollen, werden im folgenden Abschnitt aufgeführt.

**6.2.2 Ermittlung der Funktionen von WfMS**

Die Funktionen eines WfMS’s, für die, unter Beachtung der im vorhergehenden Abschnitt ermittelten Anforderungen, eine Gewichtung erstellt werden soll, bilden den zweiten Teil der Inputdaten im Rahmen der Auswahlsystematik. Die Funktionen von WfMS lassen sich in die

![Funktionen eines WFMS](image)

Bild 6-4: Funktionen eines WfMS (GADATSCHE 2001, S.217)

**Modellierung und Simulation von Workflows**

Instanzierung und Ausführung von Workflows


Monitoring laufender Vorgänge und nachträgliche Analyse

Während die Bereitstellung von Statusinformationen über die laufenden Vorgänge, sowie die Auslastung der Ressourcen, insbesondere des Personals und der integrierten Applikationen eine passive Funktion einnimmt, sind vom WfMS auch aktive Überwachungsaufgaben auszuführen. Dies sind insbesondere die Kontrolle der Start- und End-Termine von Vorgängen sowie von vorgangsbezogenen Wiedervorlagen, die durch die Bearbeiter erzeugt wurden. Von der Überwachung zu unterscheiden ist die nachträglich durchgeführte Prozessanalyse. Sie erstreckt sich z.B. auf die angefallenen Prozesskosten der instanzierten Workflows, die mit den auf Grund des Workflow-Modells kalkulierten Sollkosten verglichen werden können und im Falle der Überschreitung vorgegebener Schwellwerte die Veranlassung von Maßnahmen zur Folge haben können (vgl. GADATSCH 2000, S.261 f.)

Durch die Bereitstellung von Statusinformationen laufender Vorgänge werden dem WfMS Informationen zur Laufzeit des Workflows wie z.B. der Arbeitsfortschritt bereitgestellt. Auf Informationen über die Auslastung von integrierten Applikationen und Personal kann das WfMS mit Hilfe der Funktion Bereitstellung der Ressourcenauslastungen zugreifen. Eine weitere

Mit der Aufführung der Funktionen von WfMS und der Anforderungen des Fehlermanagements sind die Daten für die erste Stufe der Auswahlsystematik bereitgestellt. Im zweiten Schritt müssen diese Daten in Abhängigkeit zueinander gebracht werden. Dies geschieht im Rahmen der Auswahlsystematik wie bereits beschrieben mit Hilfe der Methodik QFD.


Nachdem in diesem Abschnitt die Beschreibung aller vorbereitenden Maßnahmen der gewählten Auswahlsystematik und der sie unterstützenden Software erfolgt ist, kann im nächsten Abschnitt die Durchführung der erforderlichen Schritte behandelt werden.

6.2.3 Marktanalyse

Für die Durchführung dieser Arbeit erfolgte eine Marktuntersuchung, um die Vielfalt der von den unterschiedlichen Anbietern angebotenen Workflow-Management-Systeme zu erfassen. Die nachfolgenden Untersuchungen in Bezug auf die Anwendbarkeit im Fehlermanagement erforderten eine Reduzierung der ermittelten WfMS auf zehn zur Untersuchung am besten geeignete Systeme.


Um die Marktuntersuchung im Rahmen dieser Arbeit möglichst umfassend anzulegen, wurden zwei weitere Auflistungen hinzugezogen. Das ist zum einen eine im Internet veröffentlichte Auflistung der DSK Unternehmensberatung (DSK Beratung 2004) und zum Anderen eine
Auswahlvorschriften zur EDV-Unterstützung


Um den Aufwand der für diese Arbeit erforderlichen weiteren Untersuchungen einzuschränken, sollten die so ermittelten WfMS-Produkte auf eine Auswahl von zehn Systemen reduziert werden. Da diese WfMS nicht willkürlich bestimmt werden sollten, wurden Eingrenzungskriterien bestimmt, die eine objektive Reduzierung auf die zehn, für die im Rahmen dieser Arbeit durchgeführten Untersuchungen am besten geeigneten WfMS ermöglichen. Bei der Bestimmung der Eingrenzungskriterien wurde darauf geachtet, dass die für die Anwendung der WfMS im Fehlermanagement zwingend erforderlichen Sollkriterien eingehalten werden. Weiter wurden die Eingrenzungskriterien so bestimmt, dass nur wirtschaftlich stabile Produkte zu den weiteren Untersuchungen zugelassen werden. Dabei stellen die Datenbankunterstützung und die universelle Eignung Eingrenzungskriterien bezüglich des Fehlermanagements dar, während die wirtschaftliche Situation und die Verfügbarkeit von Informationen eher allgemeine Anforderungen darstellen.

- Datenbankunterstützung: In Hinblick auf die Anwendbarkeit von den WfMS Produkten im Fehlermanagement unbedingt zu erfüllendes Kriterium ist die Datenbankunterstützung. Unter den auf dem Markt erhältlichen WfMS arbeiten einige mit reinen E-Mail basierende Strukturen, die dieser erhöhten Anforderung an die Datenverwaltung nicht gerecht werden können. Für die weitere Auswertung sollen daher nur Systeme ausgewählt werden, die in Verbindung mit einer Datenbank arbeiten.

- Universelle Eignung: Da diese Arbeit den Anspruch erhebt, die Aufgabenstellung bezüglich der Einsatzmöglichkeit von WfMS im Fehlermanagement möglichst umfassend zu bearbeiten, muss ein WfMS in allen Bereichen (Dienstleistung, Produktion und Verwaltung…) einsetzbar sein, in denen auch Fehlermanagement betrieben wird.

- Marktposition des Anbieters: Neben den für das Fehlermanagement zwingend zu erfüllenden Kriterien hatte auch die wirtschaftliche Situation der Firma, die das WfMS an den Markt bringt, entscheidenden Einfluss auf die Auswahl. So wurde die Größe der Firma, sowie die Erfahrung und die Referenzen mit in die Auswahlentscheidung einbezogen. Damit soll erreicht werden, dass nur Produkte betrachtet werden, die sich stabil verhalten, d.h. die auch in absehbarer Zukunft noch unter dem in der Untersuchung verwendeten Namen und mit den gleichen Spezifikationen angeboten werden. Nicht zuletzt wurde die Bedeutung der Anbieter und der WfMS in dieser Arbeit statistisch daran festgemacht, in wie vielen der ausgewerteten Quellen das Produkt genannt wurde.

Während die meisten Produkte die Sollkriterien bezüglich der Anwendbarkeit im Fehlermanagement erfüllen, stellte sich als Hauptausfallkriterium die wirtschaftliche Lage heraus. So entfielen alleine 41% der Produkte aufgrund von Umstrukturierungen der Produktpalette, Verkauf an eine andere Firma oder Insolvenz. Das zweitgrößte Eingrenzungskriterium stellte der Mangel an Informationen dar. So lagen bei ca. 22% der Produkte keine oder ungenügende Informationen vor, ein Zustand, dem auch durch ein direktes Anschreiben der Firmen nicht entgegenzuwirken war. Am dritthäufigsten hatte das Eingrenzungskriterium der universellen Einsetzbarkeit Einfluss auf die Auswahl: In 20% der Fälle war anhand der Referenzen der Firmen auf eine branchenspezifische Ausrichtung des Produktes zu schließen. Das folgende Bild 6-5 zeigt prozentual die Auswirkung der einzelnen Eingrenzungskriterien.

Bild 6-5: Auswirkungen der Eingrenzungskriterien auf die Auswahl

Zehn WfMS, die die für eine weitere Untersuchung erforderlichen Kriterien am geeignetsten erfüllen, wurden ausgesucht. Mit der Auswahl der für die weiteren Untersuchungen geeigneten Systeme ist der Abschnitt Marktanalyse abgeschlossen. Die erlangten Ergebnisse bilden die Inputdaten einer Systematik, mit deren Hilfe die Auswahl der WfMS in Hinblick auf die Anwendbarkeit im Fehlermanagement weiter differenziert werden soll.

6.3 Umsetzung der Auswahlsystematik

Nachdem im vorhergehenden Abschnitt die grundlegende Beschreibung der Auswahlsystematik erfolgt ist und mit der Ermittlung der benötigten Inputdaten alle vorbereitenden Maßnahmen für die Durchführung der QFD getroffen sind, behandelt dieser Abschnitt die eigentliche Umsetzung mit allen dafür erforderlichen Schritten.

6.3.1 Ermittlung der Bedeutung der WfMS Funktionen

Nach der Bestimmung der Anforderungen des Fehlermanagements und der Funktionen von WfMS wird im zweiten Schritt der Auswahlsystematik die erste QFD durchgeführt. Hauptgegenstand ist dabei die Ermittlung der Korrelationen zwischen den Funktionen und den

Funktionen des WfMS, die bei der Erfüllung der Anforderungen unterstützend beitragen, werden hingegen durch einen unausgefüllten Kreis gekennzeichnet (○) und mit einer Wertigkeit von drei belegt. Diese Funktionen können die jeweiligen Anforderungen des Fehlermanagements zwar nicht komplett abdecken, erfüllen jedoch entscheidende Nebenaufgaben und schaffen so wichtige Voraussetzungen für die Anforderungserfüllung, oder unterstützen auf diese Weise die Ausführung anderer Funktionen.

Funktionen des WfMS, die zur Erfüllung der Anforderungen nur indirekt beitragen, werden im House of Quality durch ein Dreieck gekennzeichnet (△), was einer mathematischen Wertigkeit von eins entspricht. Diese Funktionen sind zur direkten Erfüllung der Anforderung nicht notwendig, tragen jedoch indirekt zur Anforderungserfüllung bei, indem sie steuernde, verarbeitende oder koordinierende Aufgaben übernehmen und so die Abläufe innerhalb des Fehlermanagements unterstützen. Funktionen, die in diesem Sinne innerhalb der Matrix mit keiner Kennzeichnung versehen sind, haben bezüglich der jeweiligen Anforderung des Fehlermanagements keinen, oder einen nur vernachlässigbar kleinen, Einfluss. Im Folgenden soll die Festlegung der Korrelationsbeziehung anhand der oben beschriebenen Grade vorgenommen werden.


Abschließend mit der Festlegung der Korrelationsbeziehungen zwischen den Funktionen eines WfMS, und der Anforderung der Wirtschaftlichkeitsprüfung, sind alle Abhängigkeiten zwischen Funktionen und Anforderungen systematisch bewertet, und können wie in Bild 6-6 im House of Quality dargestellt werden.

Das Verfahren der QFD sieht darüber hinaus in der Regel eine Darlegung der Korrelationsbeziehungen innerhalb der Funktionen vor, um die Auswirkung sich gegenseitig positiv oder negativ beeinflussender Funktionen gezielt zu hervorzuheben und im Berechnungsverfahren zu berücksichtigen. Dies geschieht üblicherweise im sogenannten „Dach“ des House of Quality. Im Rahmen dieser Arbeit wird auf die Untersuchung der Korrelationsbeziehungen der Funktionen von WfMS verzichtet, da zu einen davon ausgegangen werden kann, dass bei der Entwicklung der Systeme durch die Hersteller bereits eine optimierte Abstimmung erreicht wurde, und zum anderen die Zusammenstellung der Funktionen im Zusammenhang mit dieser Untersuchung als vorgegeben anzusehen ist und
daher keine modifizierbare Variable darstellt. Um eine gleichwertige Berücksichtigung der Anforderungen zu gewährleisten, wird während der Durchführung der QFD auf deren unterschiedliche Gewichtung verzichtet.


Dieses Zwischenergebnis geht als Gewichtung in Verbindung mit den Funktionen eines WFMS, neben den durch die Marktanalyse ermittelten WFMS Anbietern, als Input in die zweite QFD ein und ist temporär unabhängig. Die weitere Verfolgung der Auswahlsystematik durch die Ausführung der zweiten QFD, mit dem Ziel, die Funktionserfüllung durch unterschiedliche WFMS zu untersuchen, wird im folgenden Abschnitt beschrieben.
### Bild 6-6: House of Quality 2. Schritt

<table>
<thead>
<tr>
<th>Anforderung zur Fehlererkennung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prozessumrandung</td>
<td></td>
</tr>
<tr>
<td>Fehlererkennung - automatisch</td>
<td></td>
</tr>
<tr>
<td>Fehlererkennung - technischer Dialog</td>
<td></td>
</tr>
<tr>
<td>Ermittlung von Kundenanforderungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anforderung zur Fehleranalyse</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematische Fehlerbehandlung</td>
<td></td>
</tr>
<tr>
<td>Möglichkeiten im Entwurf</td>
<td></td>
</tr>
<tr>
<td>Annäherung der Fehler</td>
<td></td>
</tr>
<tr>
<td>Bildung von Spezifikationen</td>
<td></td>
</tr>
<tr>
<td>Systematische Bestimmung der Fehlerursachen</td>
<td></td>
</tr>
<tr>
<td>Bestimmung und Information der Zulässigkeiten</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anforderung zur Fehlerbewertung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktualisierung einer systematischen Problemstellung</td>
<td></td>
</tr>
<tr>
<td>Durchführung einer systematischen Problemstellung</td>
<td></td>
</tr>
<tr>
<td>Wirkungsprüfung</td>
<td></td>
</tr>
<tr>
<td>Relevanz nach allgemeinen Vorgaben</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prozessbegleitende Anforderungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prozessbericht über Aktivitäten</td>
<td></td>
</tr>
<tr>
<td>Funktionsüberwachung, Berichterstattung von Informationen</td>
<td></td>
</tr>
<tr>
<td>Durchführungsauswahl</td>
<td></td>
</tr>
<tr>
<td>Werkstoffverarbeitung</td>
<td></td>
</tr>
</tbody>
</table>

### Gewichtung

**Max. = 12,9**

**Prozentuale Bedeutung**

<table>
<thead>
<tr>
<th>100</th>
<th>90</th>
<th>80</th>
<th>70</th>
<th>60</th>
<th>50</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>12,9</td>
<td>12,9</td>
<td>12,9</td>
<td>12,9</td>
<td>12,9</td>
<td>12,9</td>
<td>12,9</td>
</tr>
</tbody>
</table>
6.3.2 Ermittlung der Funktionserfüllung durch die WfMS

Im dritten und damit letzten Abschnitt der Auswahlmethodik, werden die unter Beachtung der aktuellen Marktsituation ausgewählten WfMS der unterschiedlichen Anbieter bezüglich ihres Erfüllungsgrades und der im zweiten Schritt gewichteten Funktionen, untersucht. Wie im vorhergehenden Schritt, wird die Voraussetzung einer systematischen Vorgehensweise durch die Methodik des QFD geschaffen.

Die Inputdaten, die innerhalb der QFD bestimmen was zu erfüllen ist, und deren Eintragung im House of Quality, in der Liste auf der linken Seite neben der Korrelationsmatrix, erfolgt, werden in diesem Fall durch die Funktionen der WfMS gebildet. In die über der Korrelationsmatrix angeordnete Liste werden als zweite Gruppe von Inputdaten die zehn auf Basis der Marktuntersuchung ermittelten WfMS eingetragen (siehe hierzu Bild 6-7). Im Gegensatz zur Ausführung des ersten QFD wird in diesem Fall eine Gewichtung der Anforderungen vorgenommen, indem das Ergebnis des ersten Abschnitts der Auswahlmethodik in die QFD eingebunden wird. Diese Verknüpfung kann mit Hilfe des zur Unterstützung verwendeten Programms QFD Capture automatisch ausgeführt werden. Da die WfMS nicht in Kombination miteinander im Fehlermanagement eingesetzt, und von einander unabhängig untersucht werden, haben sie folglich auch keine Korrelationsbeziehungen zueinander, und die Darstellung im „Dach“ des House of Quality bleibt aus.

Analog zur Durchführung der QFD im zweiten Schritt besteht der Hauptgegenstand dieses Abschnittes in der Bestimmung der Korrelationsbeziehungen. In diesem Fall werden die WfMS den zu erfüllenden Funktionen gegenübergestellt. Die Bewertung basiert hierbei auf einem Evaluationsbogen, der den an der Untersuchung beteiligten WfMS-Anbietern zugesandt und anschließend ausgewertet wurde.

mit keiner Wertung versehen wurden, erfüllen die Anforderungen nicht, oder es lagen hierzu keine ausreichenden Informationen vor.


Nachdem die Funktionalitäten der WFMS bezüglich der durch das Fehlermanagement gestellten Anforderungen vollständig erfasst und bewertet wurden, können die Ergebnisse in das House of Quality übernommen, und mit dessen Hilfe weiterverarbeitet werden. Das folgende Bild 6-7 zeigt das im Rahmen des dritten Schrittes der Auswahlmethodik erstellte House of Quality:

Bild 6-7: House of Quality, 3. Schritt

![Bild 6-7: House of Quality, 3. Schritt](image-url)
6.4 Auswertung

Durch den im vorhergehenden Kapitel beschriebenen Einsatz der Auswahlsystematik konnte eine Gewichtung der für das Fehlermanagement bedeutenden WfM-Funktionen vorgenommen werden um, darauf aufbauend, eine Bewertung der zehn mittels der Marktanalyse ermittelten WfMS Anbieter durchführen zu können. Die abschließende Auswertung des daraus hervorgehenden Ergebnisses bildet den Gegenstand dieses Kapitels.

Das folgende Bild 6-8 zeigt in diesem Zusammenhang das im Fuß der zweiten QFD wiedergegebene Endergebnis der Auswahlsystematik.

![Bild 6-8: Rangfolge der untersuchten Anbieter](image)


Für den Einsatz der untersuchten WfMS im Fehlermanagement lässt sich unter Betrachtung der Ergebnisse die Aussage treffen, dass zumindest die vier bestplatzierten Systeme (A1, A2, A3 und A4) die an sie gestellten Anforderungen zufriedenstellend erfüllen. Darüberhinaus sind jedoch bei allen Systemen noch erhebliche Verbesserungspotentiale vorhanden, deren Ausschöpfung von den Anbietern genutzt werden kann, um die WfMS für den Einsatz im Rahmen des Fehlermanagements weiter zu qualifizieren. So erreichen selbst die vier bestplatzierten WfMS nur ca. 60 % des innerhalb der Untersuchung angenommenen Optimums an Funktionalität.

7 Methodik zur Einführung des Fehlermangementsystems


Durch eine Splitzung der Gesamtaufgabe zur Einführung des Fehlermanagements in Teilaufgaben wird die Anpassung an die Unternehmenssituation weiterhin bestärkt: Bei einem bereits existierenden Fehlermanagement kann sich der Anwender auf die Teilaufgaben beschränken, die das bereits vorhandene System erweitern können. Durch eine einfache Streichung der bereits erledigten Teilaufgaben wird das Bearbeiten des Fehlermanagements in seiner Komplexität verringert und eine einfachere und schneller Bearbeitung, durch Aufteilung einzelner Teilaufgaben an Personen oder Gruppen, gewährleistet (CROSTACK ET AL. 2005F).

Um dem Anwender einen großen Spielraum bei der Einführung des Fehlermanagements zu ermöglichen und eine Unabhängigkeit von Vorbedingungen zu gewährleisten, wird eine Phasen-Level-Matrix eingeführt (Bild 7-1). Jede Phase umfasst fünf Levels, die für die Entwicklungsstufen bei der Einführung eines Referenzmodells stehen. Der fünfte Level beinhaltet eine über die reine Erfüllung des Referenzprozesses übergreifende Erweiterung des Referenzmodells. Das angestrebte Zielniveau hat der Anwender bereits mit Abschluss des vierten Levels erreicht.


Bei der Einführung eines neuen Fehlermanagementsystems bzw. der Weiterentwicklung eines bestehenden Systems sind im Unternehmen, unter Verwendung der Einführungsmethodik, die folgenden Schritte zu berücksichtigen:

- Selbsteinstufung mit Hilfe des Erfüllungsgrad-Diagramms
- Festlegung der eigenen Ziele bei der Verwendung der Einführungsmethodik, z. B. Erreichung des Referenzmodellniveaus (Phase 4 in allen Phasen) und erweiterter Merkmale (Phase 5) im Bereich „Umsetzung“
- Auswahl und Priorisierung der Einzelschritte
- Festlegung eines Zeitplans für die Umsetzung der Entwicklungsschritte
- Entwicklung der Einzelschritte gemäß dem festgelegten Zeitplan
- Kontrolle des Erfolges der verschiedenen Maßnahmen

7.1 Selbsteinstufung

Unternehmensbereich ist die Fertigung einer Erzeugnisgruppe. Die in der Einführungsmethodik als Fragen formulierten Kriterien werden auf diesen Bereich angewendet und vom Nutzer daraufhin analysiert, ob und wie angemessen das jeweilige Kriterium im betrachteten Bereich erfüllt ist. Zur Bewertung werden vom Nutzer Punkte vergeben, in der Skala von 0 (Kriterium nicht erfüllt) bis 10 (Kriterium voll erfüllt).

<table>
<thead>
<tr>
<th>Punktzahl</th>
<th>im FM-System der Firma festgelegt</th>
<th>wirksamkeit nachgewiesen</th>
<th>Erläuterung</th>
</tr>
</thead>
</table>
| 10        | ja                               | ja                       | - Regelmäßige Anwendung  
- Sehr gute Ergebnisse  
- Dokumentierte Verfahren und Abläufe  |
| 8         | nein                             | ja                       | - Regelmäßige Anwendung  
- Gute Ergebnisse  
- Keine Dokumentation  |
| 6         | ja                               | Überwiegend (75 %)       | - Unregelmäßige Anwendung  
- Befriedigende Ergebnisse  
- Dokumentierte Verfahren und Abläufe  |
| 4         | nein                             |                          | - Vorhanden und anwendbar  
- Befriedigende Ergebnisse  
- Keine Dokumentation  |
| 0         | ja/nein                          | nein                     | - Nicht vorhanden  
- Ungenügende Ergebnisse  
- Unabhängig von der Dokumentation  |

Tabelle 7-1: Bewertungsschema

Als Ergebnis der Ist-Analyse können somit Kennzahlen ermittelt werden, die bei Einhaltung der definierten Bewertungsregeln und einer vergleichbaren Bewertungsbasis auch für bereichs- oder unternehmensübergreifende Vergleiche geeignet sind. Diese Kennzahlen werden als Erfüllungsgrade bezeichnet.

Für jede Phase können so Erfüllungsgrade ermittelt werden. Der Erfüllungsgrad einer Phase ergibt sich aus dem Verhältnis der tatsächlich erreichten Punktzahl zur maximal möglichen
Punktzahl, die sich aus der Anzahl der jeweiligen Fragen multipliziert mit der maximalen Punktzahl (10 Punkte) berechnet.

\[ E_{ges} = \frac{\sum \text{Punkte}}{10 \times n} \times 100 \]

Legende:

\( E_{ges} = \) Gesamterfüllungsgrad (in %)

\( n = \) Anzahl der Kriterien


Erst wenn alle Kriterien, d.h. alle Einzelfragen größer oder gleich sechs Punkte sind, gilt die Checkliste als abgeschlossen und damit die Anforderungen der Level als erfüllt. Der Erfüllungsgrad ist somit größer oder gleich 60 %. In der Phasen-Level-Matrix wird dieser Bereich grün markiert. Wenn in einer Checkliste mindestens eine Frage mit vier oder weniger Punkten bewertet wird, oder wenn der Erfüllungsgrad größer oder gleich 40 %, aber kleiner 60 % ist, dann wird dieses Feld der Phasen-Level-Matrix gelb markiert. Dies bedeutet, dass der Erfüllungsgrad zwar akzeptabel ist, die kritische Grenze aber mindestens bezogen auf ein Kriterium unterschritten wird. Die Checkliste wird als abgeschlossen betrachtet, jedoch mit dem Hinweis, dass das kritische Kriterium einer Verbesserung bedarf. Wenn der Erfüllungsgrad der Checkliste kleiner als 40 % ist oder mindestens eine Frage mit 0 bewertet wird, markiert man das zugehörige Feld der Phasen-Level-Matrix bei Abbildung der Ist-Situation rot, was bedeutet, dass dieser Bereich enorme Mängel aufweist. Um die Belange des Referenzmodells erfüllen zu können, ist eine Beseitigung dieser Mängel erforderlich.

**7.2 Festlegung der eigenen Ziele**

der Auswahl von zusätzlichen Erweiterungen, die sich entsprechend gut mit dem Referenzmodell verbinden lassen.

7.3 Auswahl und Priorisierung der Einzelschritte


Nachdem einige Einzelschritte umgesetzt wurden, sollte in regelmäßigen Abständen die Betrachtung der Ist-Situation aktualisiert werden. Dies dokumentiert nicht nur den Fortschritt besonders anschaulich, sondern bietet auch jeweils eine Basis zur Planung der weiteren Vorgehensweise.

7.4 Festlegung eines Zeitplans


7.5 Entwicklung der Einzelschritte

Die individuell festgelegte Umsetzung des Referenzmodells mit Hilfe der Einführungsmethodik erfolgt dann sukzessive. Die Reihenfolge der Umsetzung der Einzelschritte kann der Nutzer dabei, wie beschrieben, frei wählen.
Da die Einzelschritte abgeschlossene Aufgaben beinhalten, können diese teilweise an verschiedene Mitarbeiter delegiert werden. So kann eine Einzelaufgabe jeweils von einem für den entsprechenden Bereich kompetenten Mitarbeiter oder einer Gruppe aus Mitarbeitern verschiedener Qualifikationen durchgeführt werden. Durch die Aufteilung der Einzelaufgaben ist außerdem eine Verteilung der mit den Einzelschritten verbundenen Arbeit möglich.

Für die Umsetzung der vorgeschlagenen Einzelschritte reicht die kurze Beschreibung in der Einführungsmethodik bei weitem nicht aus. Sie soll nur einen Anhaltspunkt geben, welche Aufgaben zur Entwicklung eines umfassenden Fehlermanagements erforderlich sind und wie diese aussehen können. Für eine konkrete Umsetzung muss sich der Mitarbeiter oder die Gruppe zunächst entsprechendes Expertenwissen aneignen. Gegebenenfalls müssen externe Berater hinzugezogen werden.

7.6 Erfolgskontrolle

Nach der Umsetzung der Maßnahmen erfolgt im weiteren Verlauf eine Erfolgskontrolle, um sicherzustellen, dass die erwünschten und in der Einführungsmethodik vorgegebenen Ziele erreicht wurden. Dabei stellen die Einzelschritte die Basis für das weitere Vorgehen, sprich die darauf folgenden Einzelschritte, dar. Erst wenn die Ergebnisse dieser Einzelschritte von angemessener Qualität sind, kann mit der Umsetzung weiterer Einzelschritte begonnen werden. Zur Erfolgsbewertung sollte der Nutzer die bei der Selbsteinstufung beschriebenen Bewertungskriterien zugrunde legen, um eine Vergleichbarkeit der Ergebnisse zu gewährleisten.


Der Schritt der „Selbsteinschätzung“ samt der dazugehörigen Auswertung kann auch durch Vergleich verschiedener Unternehmensbereiche oder verschiedener Unternehmen, Anwendung finden. Als Voraussetzung dafür sollten die Zielniveaus ähnlich sein, und die Fehler und deren Behandlung sollten sich in Art und Schwierigkeit nicht erheblich unterscheiden.

### 7.7 Software Unterstützung

Zur Unterstützung der Mitarbeiter beim Gesamtverständnis des Modellzusammenhangs, dessen Einführung und dem richtigen Einsatz der unterschiedlichen Methodenmodule, wurde ein webbasiertes Tool entwickelt. Das Tool veranschaulicht die unterschiedlichen Schritte des Aufbaus und der Einführung eines ganzheitlichen, effizienten und prozessorientierten Fehlermanagements (Bild 7-2).

Dazu werden die Prozesse visualisiert. Dies ermöglicht ein besseres Verständnis der Abläufe und eine schnellere und effektivere Durchführung und Kontrolle der darin enthaltenen Aktivitäten. Besonders wichtig ist das Tool bei der Modularisierung der Methoden und deren Verknüpfung mit den dazugehörigen Teilschritten im Fehlermanagementmodell. Es wird für die Mitarbeiter deutlich, welche Methode und welches Modul für die Informationssuche, Informationsauswertung, Lösungsfindung und Aktivitätenumsetzung erforderlich sind (Bild 7-3).
Für die Auswahl einer geeigneten Software zur Implementierung des Fehlermanagement-Modells wird die im Kapitel 6 entwickelte QFD in diesem Tool mit eingebunden. Dies ermöglicht einen schnellen Zugriff über die für die Auswahl erforderlichen Anforderungen und deren Änderungen, falls sich die Unternehmensziele im Laufe der Zeit ändern (Bild 7-4).

Für die Einführung des ganzheitlichen Fehlermanagements wird im Rahmen des webbasierten Tools die Checkliste für die Auswertung des Ist-Zustandes in jedem Unternehmen abgebildet. Nach einer Bewertung der unterschiedlichen Fragen in dieser Checkliste wird der Ist-Zustand im Unternehmen automatisch abgebildet (Bild 7-5).
Bild 7-5: Modul Stufenweise Einführung
8 Erprobung anhand eines Praxisbeispiels und kritische Diskussion der Ergebnisse

Im Verlauf dieses Kapitels wird die prototypische Einführung des Modells am Beispiel eines Automobilzulieferers gezeigt. Zunächst werden in Abschnitt 8.1 die Ausgangssituation sowie die unterschiedlichen Prozesse innerhalb des Unternehmens geschildert. Danach stellt Abschnitt 8.2 die Ergebnisse der Selbsteinstufung dar. Abschließend wird im Abschnitt 8.3 der Einsatz eines WfMS erläutert.

8.1 Prozessaufnahme

Innerhalb des, im weiteren Verlauf des Kapitels betrachteten, Unternehmens produzieren mehr als 100 Mitarbeiter in zwei Werken auf einer Fläche von etwa 5.000 m² Werkzeuge und Stanzteile, vorwiegend für die Automobilindustrie. Im ersten Werk werden Werzeuge für den Bereich der Blechumformung entwickelt und produziert. Die im zweiten Werk angesiedelte Stanz- und Umformtechnik fertigt auf modernen Pressen und Stanzautomaten kostengünstig ihre Qälitätssstanzteile von 0,3 bis 10 mm Blechstärke. Die Produktpalette reicht vom Einlegeteil bis hin zum Dauerläufer in Aluminium, Stahlblech oder Federbandstahl, vom Einzelteil bis hin zu montierten Baugruppen.


Bild 8-1: Behandlung von Kundenbeanstandungen

Bild 8-2: Prozess zur Behandlung von Lieferantenfehlern

Bild 8-3: Behandlung von internen Fehlern
8.2 Einstufung


![Bild 8-4: Erfüllungsgrad bei der betrachteten Firma](image)

Erprobung anhand eines Praxisbeispiels


Im ersten Hauptprozess werden die Fehlerdaten in Papierform zentral archiviert. Durch die Einführung des Instrumentariums und die damit verbundene Datenarchivierung und - Speicherung, wird ein schnellerer und leichterer zentraler Zugriff auf die Daten ermöglicht. Dazu wurden die Fehlerkosten durch eine Erweiterung des Fehlermeldungsslates genauer erfasst. Hierfür wurde die Erfassung um die Zahlen Maschinenstillstandszeit, Maschinennummer, Reparaturkosten, Fremdleistung sowie die Kundenbelastungen ergänzt.

Beim Hauptprozess „Korrektur- und Vorbeugungsmaßnahmen“ wird auf der einen Seite (Level3) die Abteilung Produktentwicklung nicht regelmäßig über aufgetretene Fehler informiert.
Eine systematische Berichterstattung über die schwerwiegenden Fehler an die Produktentwicklung wird implementiert. Auf der anderen Seite (Level 4) werden fehlende Standardprozesse zur konstruktiven Optimierung der Produkte definiert.

Die letzte Schwierigkeit vor der Einführung des Instrumentariums lag bei den beiden Leveln 1 und 3 des achten Hauptschrittprozesses. In diesem Zusammenhang werden zukünftig einerseits Erfahrungen der Mitarbeiter in Bezug auf das Fehlermanagement regelmäßiger abgefragt, und andererseits soll das innerbetriebliche Vorschlagswesen im Fehlermanagement besser eingebunden werden.

Nachdem die oben genannten Verbesserungsmaßnahmen durchgeführt worden sind -und dadurch die Anforderungen erfüllt wurden-, bestand die Möglichkeit, das Fehlermanagementssystem einzuführen.

Um eine optimale Anwendung der im Unternehmen eingesetzten Methoden zu gewährleisten, erfolgte eine Bereitstellung der im Kapitel 5 entwickelten Methodenunterstützung des Referenzmanagementprozesses anhand eines auf Microsoft-Office-Produkten basierenden und web-fähigen Tools. Besonderes Augenmerk wird dabei auf eine ganzheitliche Betrachtung und auf die Sicherung der effizienten Umsetzung in der Praxis gelegt. Das Tool stellt für die Anwender eine wichtige Hilfestellung bei der Informationssuche, -vorbereitung, -nutzung und- weitergabe dar und wird in Kapitel 7 näher erläutert.

8.3 Implementierung des Fehlermanagementsystems


Das mit einem WfMS unterstützte FM-System bietet den Vorteil, dass weitreichende Definitions möglichkeiten für die Prozess- und Workflowgestaltung zur Verfügung stehen. Die für das Fehlermanagement besonders wichtige Flexibilität der vordefinierten Prozesse wird durch den Einsatz einer Software angemessen durch die im Folgenden genannten Einzelfunktionen unterstützt: Delegieren (freies Weiterleiten und Umverteilen von Aufgaben während der Laufzeit), Ausnahmebehandlung (Auslassen oder Wiederholen einzelner oder mehrerer Prozessschritte), Sichtbarkeit (Festlegen der Sichtbarkeit und der Verwendungsmöglichkeiten der Dokumente während der Laufzeit) und mehrere Aktivitäten (mehrere Aktivitäten können in freier Reihenfolge, aber auch gleichzeitig gestartet werden).

Die Wiederverwendung von Workflows und, in eingeschränktem Maße, die Definition von Ad-hoc-Workflows wird ebenfalls durch das FM-basierte WfMS unterstützt. Zudem lassen sich Vorgänge durch externe Ereignisse, wie beispielsweise den Empfang einer Mail, starten. Auf diese Weise können Fehlermanagementprozesse bearbeitet werden, die, bedingt durch
technische oder organisatorische Restriktionen, nicht vollständig im Fehlermanagementssystem abgebildet werden können.

Die einfache und intuitiv verständliche Oberfläche bedarf nur eines geringen Schulungsaufwandes, was besonders für die Verwendung im Rahmen einer prototypischen Anwendung von Bedeutung ist. Daraus ableitbar ist ein effizienter, schneller Einsatz des Fehlermanagementssystems. Demnach, und durch die förderliche Akzeptanz der beteiligten Mitarbeiter, kann das System nach nur kurzer Zeit im gesamten vorhergesehenen Funktionsumfang eingesetzt werden.

Das Fehlermanagementssystem ist für die Integration in eine Microsoft Office Umgebung entwickelt worden. Somit lassen sich die in der Mehrzahl der Unternehmen in MS-Office-Formaten vorhandenen Fehlermanagementdokumente und -formulare einbinden.

Bei der zur Erprobung herangezogenen Firma wurde das Instrumentarium in das bestehende IT-Netzwerk eingebunden. So war es möglich, die bereits vorhandenen Arbeitsplatzrechner der beteiligten Mitarbeiter zu nutzen. Desweiteren erfolgte die Einrichtung eines, eigens für die folgenden zentralen Aufgaben zuständigen und das Firmennetzwerk unterstützenden, Servers: (1) Verwaltung des Prozessablaufes, (2) zentrale Speicherung der Fehlermanagementprozesse in einer SQL-Datenbank, (3) zentrale Speicherung des aktuellen Zustandes jedes einzelnen Prozesses und (4) Dokumentation und Archivierung. Neben dem Server wurde das System auf drei Arbeitsplatzrechnern als Client installiert und für den Zugriff auf den Server eingerichtet. Die Mitarbeiter stellten bereits nach einer kurzen Zeitspanne fest, dass das System eine Erleichterung und Vereinfachung der Arbeit realisiert. Zur Konkretisierung der Aussagen der Mitarbeiter verdeutlicht das folgende Bild 8-6 die Effekte des WiMS:

<table>
<thead>
<tr>
<th>Kriterium</th>
<th>vor Einführung des FM-Systems</th>
<th>nach Einführung des FM-Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearbeitungsaufwand</td>
<td>hoch (viele Routinetätigkeiten)</td>
<td>↓</td>
</tr>
<tr>
<td>Durchlaufzeit</td>
<td>schwer zu ermitteln (bis zu 1 Woche)</td>
<td>↓</td>
</tr>
<tr>
<td>Informationsverfügbarkeit</td>
<td>nur in Papierform im QM-Büro</td>
<td>↑</td>
</tr>
<tr>
<td>Flexibilität des Prozesses</td>
<td>große Flexibilität</td>
<td></td>
</tr>
<tr>
<td>Zielgenauigkeit und Effektivität der Fehlerbehandlung</td>
<td>gut (wenn von erfahrenen Mitarbeitern durchgeführt)</td>
<td>↑</td>
</tr>
<tr>
<td>Implementierungsaufwand</td>
<td>---</td>
<td>↑</td>
</tr>
</tbody>
</table>

*Bild 8-6: Effekte des Systemeinsatzes*

Im weiteren Verlauf werden die festgestellten Effekte näher beschrieben. Insbesondere wird jeweils die Frage nach dem Auslöser herangeogen, um bei zukünftigen Einführungen des Fehlermanagementssystems die zu erwartenden Effekte besser einschätzen zu können und
die Erkenntnisse optimal auf andere Unternehmen oder Unternehmensbereiche übertragen zu können.

**Bearbeitungsaufwand**


**Durchlaufzeit**

Es kam zu einer klaren Senkung der Durchlaufzeiten bei der Fehlerbehandlung. Insbesondere der Verzicht auf papierbasierte Informationsträger (Formulare, Tabellen, Zeichnungen) und ihre im Vergleich zu einer E-Mail aufwendige Weitergabe, trugen zu diesem Effekt bei.

**Informationsverfügbarkeit**

Durch die zentrale Speicherung der Daten und ihre ständige Verfügbarkeit wurde der Aufwand zur Suche von ähnlichen Fehlern reduziert. Auch die Vorbereitungen zur Analyse historischer Fehlerdaten konnten anhand der umfangreichen Suchfunktionen gemindert werden.

**Flexibilität des Prozesses**


**Zielgenauigkeit und Effektivität der Fehlerbehandlung**

Durch die Tatsache, dass Informationen stets vollständig im System vorhanden sind, und kontrolliert weitergegeben werden können, wird jeder beteiligte Mitarbeiter zwar rechtzeitig und umfassend informiert, jedoch nicht mit für ihn unwichtigen Informationen konfrontiert. Diese speziell dem Aufgabengebiet des jeweiligen Mitarbeiters angepasste Informationsweitergabe ermöglicht eine optimale Unterstützung der Arbeit und der in dieser eingebundenen erforderlichen Entscheidungen.

**Implementierungsaufwand**


8.4 Vorteile des Modells aus Sicht des Anwenders

Um die Vorteile des in dieser Arbeit entwickelten Modells zum prozessorientierten Fehlermanagement aus Sicht der Anwender zu ermitteln, wurde der Abteilungsleiter Qualitätsmanagement in der Firma gebeten, seine Erfahrungen nach prototypischer Implementierung des Konzeptes zu äußern. Folgendes Statement wurde abgegeben:

Anhand der im Rahmen dieser Arbeit entwickelten Checkliste wurde eine IST- Analyse zum Fehlermanagement durchgeführt. Dabei stellte sich heraus, dass einzelne Levels der 8 Phasen nur unzureichend umgesetzt waren. Die Forderungen der Norm ISO 9001 waren zwar erfüllt, durch die Lücken in der „Phasen-Level-Matrix“ wurde jedoch schnell klar, dass aufgrund der Nichterfüllung einiger Levels ein ganzheitliches Fehlermanagementsystem nicht gegeben war.


Mit dem erreichen des Level 4 in allen Phasen war ein rechtzeitiger Informationsaustausch, die Terminverfolgung und die Termineinhaltung in unserem Unternehmen noch nicht gewährleistet.

Ein sehr hilfreiches Instrument um diese Mängel zu beheben, ist ein Workflow - Managementsystem, welches im Rahmen des Pilotversuches bei uns im Haus installiert wurde.

Dadurch hatten die im Vorfall betroffenen Abteilungen in unserem Unternehmen zeitnah Informationen über den aufgetretenen Fehler. Die Abteilungen wurden in Kenntnis gesetzt über die von ihnen zu verrichtenden Tätigkeiten und auch die Überwachung der Termineinhaltung war problemlos gewährleistet.


Auch ist man bei der Behebung von Fehlern weniger auf Mitarbeiter angewiesen, die spezielle Fachkenntnisse besitzen müssen. Dadurch kann der Weggang von Mitarbeitern leichter kompensiert werden und die Einarbeitungszeit neuer Mitarbeiter wird erheblich verkürzt.
Für mich ergeben sich wesentliche Vorteile des Leitfadens:

- Er ist sowohl bei der Einführung eines neuen als auch für die Verbesserung eines bestehenden Fehlermanagementsystems geeignet.

- Die graphische Darstellung in der „Phasen-Level-Matrix“ zeigt einen raschen Überblick über den Stand des Unternehmens betreffend der Entwicklung eines umfassenden Fehlermanagementsystems.


- Die Empfehlung des Einsatzes eines Workflow-Managementsystems ist zwar gerade für kleine und mittelständische Unternehmen mit nicht unerheblichen Kosten verbunden. Die Reduzierung der Übergangszeiten bei der Informationsverbreitung, die Reduzierung des zeitlichen Aufwandes bei der Fehlerbehebung und die Steigerung der Wirksamkeit getroffener Maßnahmen sprechen jedoch eindeutig für die Einführung eines Workflow-Managementsystems.

Abschließend möchte ich darauf hinweisen, dass etwa 50% unserer Kundenreklamationen auf Lieferantenfehler zurückzuführen sind. Wir werden den betreffenden Lieferanten im Rahmen der Lieferantenentwicklung deshalb diesen Leitfaden empfehlen bzw. die Lieferanten mit Hilfe des Leitfadens dabei unterstützen, ihr Fehlermanagementsystem weiterzuentwickeln.
9 Zusammenfassung


In vorliegender Arbeit wurde ein Referenzprozess für das Fehlermanagement erstellt, der insbesondere die Anforderungen an Qualität, Zeit und Kosten sowie an den Mitarbeiter und den Informationsfluss berücksichtigt. Auf Basis der erarbeiteten Grundlage des Fehlermanagements (Handlungsmaxime, Normanforderungen und Ansätze des Fehlermanagements) und der ergänzenden Anforderungen (Umfrage zum Fehlermanagement in deutschen Unternehmen) wurde das Referenzmodell mit 8 Hauptprozesse und 73 Teilprozessen erstellt. Das Modell bildet den Rahmen für ein geführtes, schnelles und sicheres Handeln der Mitarbeiter. Die klare und verständliche Struktur des Modells weist als Ergebnis eine transparente und leicht erkennbare Darstellung der fehlerbezogenen Prozesse innerhalb eines Unternehmens auf.


LITERATURVERZEICHNIS

   Anforderungen an die Workflow-Unterstützung für wissensintensive Geschäftsprozesse, Deutsches Forschungsinstitut für künstliche Intelligenz, Kaiserslautern 2001

   Integriertes Qualitätsmanagement-Konzept für die kontinuierliche Qualitätsverbesserung, Verlag Institut für Arbeitswissenschaft, Kassel 1998

ALTSCHELLER, G. (1998):


KBA (2005)
   www.kba.de

   Menschliche Zuverlässigkeit, ecomed, Landsberg Fachverlag, 1992

CORNET, A. (2002):
   Plattformkonzepte in der Automobilentwicklung, Deutscher Universitäts-Verlag, Wiesbaden 2002

Crosby, Ph. B. (1979):
   Quality is free, McGraw-Hill Book Company, New York /USA 1979

   Prozessorientiertes Fehlermanagement als Garant der Wettbewerbsfähigkeit, In: Zukunft Qualität, Tagungsband zur FQS – Forschungstagung 2005

   Extensive Failure Management- A Reference Model. The 8th International QMOD Conference (Quality Management for Organisational and Regional Development), Conference Proceedings, Palermo June 29 - July 1, 2005


Instrumentarium zum umfassenden Fehlermanagement für ein schnelles und gesichertes Handeln bei Ausnahmesituationen in kleinen und mittleren Unternehmen, Schlussbericht zum AIF-Projekt Nr. 13735 N, Dortmund 2005

Instrumentarium zum umfassenden Fehlermanagement für ein schnelles und gesichertes Handeln bei Ausnahmesituationen in kleinen und mittleren Unternehmen, Leitfaden (Anlage zum Schlussbericht Schlussbericht zum AIF-Projekt Nr. 13735 N), Dortmund 2005

Potenziale und Notwendigkeiten eines strategischen Fehlermanagements für Ausnahmesituationen, In: Zukunft Qualität, Tagungsband zur FQS – Forschungstagung 2003


DERSZTELER, G. (2000):
Prozessmanagement auf Basis von Workflow-Systemen. Eul-Verlag, Lohmar 2000

Qualitätsmanagementsysteme – Grundlagen und Begriffe, DIN Deutsches Institut für Normung e.V. Berlin 2000
DIN 19226 (1994):

Leittechnik – Leittechnik und Steuerungstechnik. Beuth Verlag, Berlin Wien Zürich 1994


Fehlerbaumanalyse, Methode und Bildzeichen, Deutsches Institut für Normung e.V., Beuth, Berlin 1981

DIN 55 350 (1993)

Begriffe zu Qualitätsmanagement und Statistik. Beuth Verlag, Berlin Wien Zürich 1993

DSK Beratung (2004):

WWW. Server der DSK Beratung GmbH (http://www.dsk-beratung.de/index.asp)


Prozesssicherheit in fertigungstechnischen Prozessketten – Systemanalyse, ganzheitliche Gestaltung und Führung. FBK Produktionsbereiche Berichte, Herausgeber: Prof. Dr.-Ing. Günter Warnecke, Band 46, Kaiserslautern 2003

Frielings, E. (2003):

Human-FMEA. Innovatives Fehlermanagement, Management und Qualität, Band 38, Heft 5, 2003

Gadatsch, A. (2001):

Management von Geschäftsprozessen. Vieweg Verlag, Braunschweig 2001

Gadatsch, A. (2000):


Prozessmanagement. Carl Hanser Verlag, München, Wien 1994


Goldratt, E. (1990):

Theory of Constraints: What is this thing called the Theory of Constraints and how should it be implemented? Croton-on-Hudson, North River, New York 1990
GOLDRATT, E., COX, J. (1992):


GRÜNZ, L. (2004):

Ein Modell zur Bewertung und Optimierung der Materialbereitstellung, Shaker Verlag, Aachen 2004


HASTEDT-MARKWART C. (1999):

Workflow-Management-Systeme. In: Informatikspektrum Jg. 22 Heft 2, Springer Verlag, Berlin Heidelberg 1999

HEEG, F.-J. (1993):


Rapid Quality Deployment, Qualitätsorientierte Produktentstehung durch modularisierte Qualitätsmethoden, Fortschrittsberichte VDI, Reihe 16, Nr.: 156, VDI Verlag, Düsseldorf 2003

HERB R., HERB T., KOHNAUSER V. (2000):

TRIZ – Der systematische Weg zur Innovation, Moderne Industrie Verlag, Landsberg/Lech 2000


Hochreiter, P. (2004): 
Fehlermanagement in Unternehmen, Business Village GmbH Verlag, Göttingen, 2004

Hofmann, P. (1990): 
Fehlerbehandlung in flexiblen Fertigungssystemen. R. Oldenbourg Verlag, München, Wien 1990

Horn, G. (1999): 
Risiko Mensch in der chemischen Industrie, Dortmund 1999

Rechnerunterstützte und benutzerorientierte Fehlerbehandlung bei automatisierten Fertigungsanlagen – Lösungswege und Realisierungsmöglichkeiten zur Repräsentation von Fehlerwissen mit Hypertext, Shaker Verlag, Aachen, 1998

Industrie- und Handelskammer (2003): 
Qualitätsmanagementsysteme, ein Wegweiser für die Praxis; Hrsg.: Industrie- und Handelskammern in Nordrhein-Westfalen und Baden- Württemberg, Düsseldorf; Karlsruhe 2003

ISO 10303 (1994): 
Industrielle Automatisierungssysteme und Integration - Produktdarstellung und -austausch. ISO International Organization for Standardization (Hrsg.), 1994


Jantschgi, J. (2004): 

Management und Statistik – Die Lean Six Sigma Methode, Umdruck Kursmaterial – Lean Six Sigma, Universität Dortmund / Xerox, 2004

Jöbstl, O. (1999): 
Qualitätsmanagement von A–Z -Erläuterungen moderner Begriffe des Qualitätsmanagements- Springer Verlag, Berlin Heidelberg New York 2002

KEUNECKE, L. (2004):
Methodenkonfiguration zur Verbesserung der menschlichen Qualitätsfähigkeit in flexiblen Produktionssystemen, Shaker Verlag, 2004

Erfolgreiches Qualitätsmanagement, Band 1, Forum Verlag, 2004

Supply Chain Management –Optimierte Zusammenarbeit in der Wertschöpfungskette–menschlichen Qualitätsfähigkeit in flexiblen Produktionssystemen, Shaker Verlag, 2004

LESMEISTER, F. (2001):
Verbesserte Produktplanung durch den problemorientierten Einsatz präventiver Qualitätsmanagementmethoden, Dissertation RWTH Aachen, VDI Verlag, Düsseldorf 2001


LÖBMANN, A. (2001):

MÜLLER, D. H., TIEFJEN, T. (2000);
FMEA Praxis. Das Komplettpaket für Training und Anwendung, Hanser Verlag, 2000

NICOLAYSSEN, E. (1996):
Modell unterstützte Fehlerbehandlung in der Montage, VDI Verlag, Düsseldorf 1996

ORENDI, G. (1993):

The Six Sigma Way, How GE, Motorola and other top companies are honing their performance, McGraw-Hill; New York, 2000


Fehlermanagement mit objektorientierten Technologien in der qualitätsorientierten Produktion, Band 183 der Reihe FZKA-PFT. Forschungszentrum Karlsruhe 1997


QDES, Ein produkt- und branchenneutraler Qualitätsinformationssatz. In Qualität und Zuverlässigkeit, Band 37 (1992) 8


REICHERT, O. (1994):

Netzplantechnik. Vieweg Verlag, Braunschweig/ Wiesbaden 1994


THE QFD HANDBOOK, WILLEY VERLAG, NEW YORK 1998


Statistische Methoden der Qualitätssicherung, Hanser Verlag, 3.Auflage, München 1995


„Exception error“ – über Fehler und deren Ursachen beim Handeln in Unbestimmtheit und Komplexität, gdi impuls 4/96

SCEINOPF, L. (1999):

Thinking for a Change – Putting the TOC Thinking Processes to Use, St. Lucie Press; Boca Raton (Florida, USA), 1999


SCHWAB, K. (1996):


SOFTWAREREPORT (2000):


STANDISH ROUP (2004):

2004 CHAOS Demographics and Project Resolution - excerpt from the 2004 Third Quarter Report.

STAHL, P. (1997):

Die Qualitätstechnik FMEA als Lerninstrument in Organisationen, Deutscher Universitätsverlag, Wiesbaden 1997

SYTSMA, S. (1997):


TERNINKO, J. (1997)

STEP BY STEP QFD: CUSTOMER-DRIVEN PRODUCT DESIGN, VERLAG ST. LUCIE PRESS BOCA RATON 1997

THEDEN, P. (1997)


Qualitätsgerechte Prozesskettenoptimierung mit Hilfe systematischer Innovationsmethoden (IPO), Schlussbericht, FQS-DGQ-Band 86-03, 2003


Qualitätsicherung: statistische Methoden. Hanser Verlag, München Wien 1995

TRIZ (2003):

TRIZ Online Magazin, 2003, [http://www.triz-online.de/triz_tools/default.htm](http://www.triz-online.de/triz_tools/default.htm)


VDI/VDE 3542 (1998):

Sicherheitstechnische Begriffe für Automatisierungssysteme, 1998

WALD, G. (2003):

Prozessorientiertes Instandhaltungsmanagement. Shaker, Aachen 2003

Engpassorientierte Fertigungssteuerung – eine Untersuchung über die in OPTIMIZED PRODUCTION TECHNOLOGY implementierten Konzepte der Produktionsplanung und –steuerung. Peter Lang Verlag, Frankfurt 1992

WEIHS, C. (1999):

Statistische Methoden zur Qualitätssicherung und –optimierung, Willey-VCH Verlag, Weinheim 1999

WESTKÄMPER, E. (1997):


WORKFLOW MANAGEMENT COALITION (1999):


Grundlagen Qualitätsmanagement, Einführung in Geschichte, Begriffe, Systeme und Konzepte. Oldenbourg Verlag, München 2002
ANHANG

A. KORRELATIONEN DER FUNKTIONEN UND ANFORDERUNGEN

Prozessüberwachung

Funktionen des WfMS, die direkt zur Erfüllung der Anforderungen beitragen:

- Workflow-Modellierung
- Simulation und Analyse der Workflow-Modelle
- Bereitstellung von Statusinformationen laufender Vorgänge
- Bereitstellung von Abweichungen zwischen Workflow-Modell und Ausführung


Funktionen des WfMS, die der Erfüllung der Anforderungen unterstützend beitragen:

- Organisationsmodellierung
- Applikationsmodellierung
- Datenmodellierung
- Überwachung der Vorgangswiedervorlagen


Funktionen des WfMS, die zur Erfüllung der Anforderungen nur indirekt beitragen:

- Rollenauflösung zur Aktivitätsträgerermittlung
- Information der Aktivitätsträger
- Synchronisation der Aktivitätsträger
- Aufruf, ggf. Parametrisierung von Applikationen

Während der Prozessüberwachung existieren maschinell unterstützte Workflows, für die Applikationen aufgerufen und ggf. parametrisiert werden. Weiter ist die Identifizierung,
Information und Synchronisation der am Prozess beteiligten Personen erforderlich. Ferner müssen die Daten, die durch während des Prozesses aufgerufene Applikationen erzeugt wurden, verwaltet werden. Diese Funktionen steuern eher den Prozess, als dass sie direkt zur Erfüllung der Anforderung beitragen.

**Fehlererfassung – automatisch**

*Funktionen des WfMS, die direkt zur Erfüllung der Anforderungen beitragen:*

- Aufruf, ggf. Parametrisierung von Applikationen
- Verwaltung der Workflow-Daten
- Bereitstellung von Statusinformationen laufender Vorgänge
- Bereitstellung von Abweichungen zwischen Workflow-Modell und Ausführung


**Fehlererfassung – rechnergestützter Dialog**

*Funktionen des WfMS, die direkt zur Erfüllung der Anforderungen beitragen:*

- Aufruf ggf. Parametrisierung von Applikationen
- Verwaltung der Workflow-Daten


*Funktionen des WfMS, die bei der Erfüllung der Anforderungen unterstützend beitragen:*

- Applikationsmodellierung
- Datenmodellierung
- Bereitstellung von Statusinformationen laufender Vorgänge
- Bereitstellung von Abweichungen zwischen Workflow-Modell und Ausführung

Im Gegensatz zur automatischen Fehlererfassung muss bei der rechnergestützten Fehlererfassung definiert werden, welche Applikationen und Daten dem Anwender zur Bearbeitung der Fehlererfassung zur Verfügung gestellt werden. Dies wird durch die Funktion der Applikations- und Datenmodellierung umgesetzt. Bei dieser Art der Fehlererfassung dient in erster Linie der den Fehler meldende Mitarbeiter als Informationsquelle. Die Bereitstellung der Statusinformationen laufender Vorgänge und der Abweichungen vom Workflow Modell durch das
WfMS nimmt in diesem Fall, im Gegensatz zur automatischen Fehlererfassung, eine unterstützende Funktion ein.

Funktionen des WfMS, die zur Erfüllung der Anforderungen nur indirekt beitragen:
- Organisationsmodellierung
- Instanziierung von Vorgängen aus Workflow-Modellen
- Rollenauflösung zur Aktivitätsträgerermittlung
- Information der Aktivitätsträger
- Synchronisation der Aktivitätsträger


Erfassung von Kundenbeanstandungen

Funktionen des WfMS, die direkt zur Erfüllung der Anforderungen beitragen:
- Aufruf, ggf. Parametrisierung von Applikationen
- Verwaltung der Workflow-Daten

Die Erfassung der Kundenanforderungen erfolgt in erster Linie durch den Einsatz der gleichen Funktionen wie beim rechnergestützten Dialog.

Funktionen des WfMS, die bei der Erfüllung der Anforderungen unterstützend beitragen:
- Applikationsmodellierung
- Datenmodellierung

Auch bei den unterstützenden Funktionen bestehen eindeutige Parallelen zum Vorgang beim rechnergestützten Dialog. Lediglich auf die Funktion der Bereitstellung der Statusinformationen und Abweichungen durch das WfMS kann verzichtet werden, da zunächst ausschließlich der Kunde als Informationsquelle dient.

Funktionen des WfMS, die zur Erfüllung der Anforderungen nur indirekt beitragen:
- Organisationsmodellierung
- Instanziierung von Vorgängen aus Workflow-Modellen
- Rollenauflösung zur Aktivitätsträgerermittlung
- Information der Aktivitätsträger

Systematische Fehlerbeschreibung

Funktionen des WfMS, die direkt zur Erfüllung der Anforderungen beitragen:

- Workflow-Modellierung
- Datenmodellierung
- Verwaltung von Workflow-Daten
- Erzeugung von Protokolldaten

Für die systematische Fehlerbeschreibung im Rahmen der Fehlerisolierung ist die Beschaffung und Verarbeitung von Informationen von entscheidender Bedeutung. Durch die Funktion der Datenmodellierung wird sichergestellt, dass alle zur Beschreibung des Fehlers nötigen Daten zur Verfügung stehen. Um auch das Umfeld, in dem der Fehler entstanden ist, beschreiben zu können, ist eine Visualisierung der Zusammenhänge und Abläufe durch die Workflow-Modellierung erforderlich. Da in der Fehlerbeschreibung Daten aus mehreren Quellen zusammengestellt werden, wird eine hohe Anforderung an deren Verwaltung gestellt, um die Ergebnisse für die weitere Verwendung im FM Prozess zugänglich zu machen. Eine wichtige Datenquelle sind hier auch die durch das WfMS protokollierten Workflow-Daten.

Funktionen des WfMS, die bei der Erfüllung der Anforderungen unterstützend beitragen:

- Applikationsmodellierung
- Aufruf ggf. Parametrisierung von Applikationen

Auch für die Fehlerbeschreibung stehen unterstützende Programme, wie z. B. Datenbanken, zur Verfügung. Es muss daher festgelegt werden, welche Applikationen während der Fehlerbeschreibung unterstützend zur Verfügung gestellt werden können. Um eine maschinelle Unterstützung des Prozesses ermöglichen zu können, ist es erforderlich, Applikationen an geeigneter Stelle aufzurufen und ggf. zu parametrisieren.

Funktionen des WfMS, die zur Erfüllung der Anforderungen nur indirekt beitragen:

- Organisationsmodellierung
- Rollenauflösung zur Aktivitätsträgerermittlung
- Information der Aktivitätsträger
- Synchronisation der Aktivitätsträger

Zur Steuerung der Fehlerbeschreibung muss der dafür am besten geeignete Aktivitätsträger mit Hilfe der Funktionen der Organisationsmodellierung und der Rollenauflösung ermittelt und informiert werden. Soll eine Fehlerbeschreibung von mehreren Mitarbeitern bearbeitet werden, ist ihre Synchronisation nötig.
Vergleich mit Erfahrungsdaten

Funktionen des WfMS, die direkt zur Erfüllung der Anforderungen beitragen:

• Datenmodellierung

Die zentrale Rolle bei dem Vergleich mit den Erfahrungsdaten aus der Falldatensammlung nimmt die Auswahl und Bereitstellung der Daten ein.

Funktionen des WfMS, die bei der Erfüllung der Anforderungen unterstützend beitragen:

 o Applikationsmodellierung
 o Verwaltung der Workflow-Daten

Auch für den Vergleich mit den Erfahrungsdaten müssen den Bearbeiter Applikationen zur Verfügung gestellt werden, die den Vergleich ermöglichen und unterstützen. Bei dem Vergleich mit den Erfahrungsdaten werden viele Daten gehandhabt, was eine effektive Verwaltung erfordert.

Funktionen des WfMS, die zur Erfüllung der Anforderungen nur indirekt beitragen:

△ Erzeugung von Protokolldaten
△ Aufruf, ggf. Parametrisierung von Applikationen


Klassifizierung des Fehlers

Funktionen des WfMS, die direkt zur Erfüllung der Anforderungen beitragen:

• Workflow-Modellierung
• Datenmodellierung
• Bereitstellung von Statusinformationen
• Bereitstellung von Ressourcenauslastungen

Um die Bedeutung des Fehlers im Rahmen der Fehlerklassifikation einschätzen zu können, müssen durch die Datenmodellierung ausgewählte Informationen bereitgestellt werden. Einschätzungen bezüglich der Fehlerauswirkung lassen sich aufgrund des Prozessstatusses und der Ressourcenauslastung treffen. Für die Einordnung der Fehlerbedeutung ist es weiterhin wichtig, an welcher Stelle der Ablauforganisation der Fehler aufgetreten ist, und welche nachfolgenden Bereiche davon betroffen sind. Diese Information wird durch die Workflow-Modellierung geliefert.
Funktionen des WfMS, die bei der Erfüllung der Anforderungen unterstützend beitragen:

- Applikationsmodellierung
- Erzeugung von Protokolldaten

Die Applikationen, die zur Bearbeitung der Fehlerklassifikation unterstützend beitragen, müssen dem Anwender zur Verfügung gestellt werden. Zur Klassifikation des Fehlers sind Kenntnisse bezüglich der Workflow-Daten erforderlich. Diese werden durch die vom WfMS erzeugten Protokolle bereitgestellt.

**Funktionen des WfMS, die zur Erfüllung der Anforderungen nur indirekt beitragen:**

- Aufruf und ggf. Parametrisierung von Applikationen
- Verwaltung der Workflow-Daten

Die Klassifizierung der Fehlerdaten kann teilweise maschinell unterstützt werden. Dazu ist es erforderlich, zu geeigneten Zeitpunkten Applikationen aufzurufen und die durch sie erzeugten Daten zu verwalten.

**Einleitung von Sofortmaßnahmen**

**Funktionen des WfMS, die direkt zur Erfüllung der Anforderungen beitragen:**

- Workflow-Modellierung
- Applikations-Modellierung
- Simulation und Analyse der Workflow-Modelle
- Instanziierung von Vorgängen aus Workflow-Modellen
- Information der Aktivitätsträger
- Synchronisation der Aktivitätsträger
- Aufruf, ggf. Parametrisierung von Applikationen

Funktionen des WfMS, die bei der Erfüllung der Anforderungen unterstützend beitragen:

- Organisationsmodellierung
- Datenmodellierung
- Rollenauflösung zur Aktivitätsträgerermittlung
- Bereitstellung von Statusinformationen
- Bereitstellung von Ressourcenauslastungen
- Überwachung der Vorgangswiedervorlagen
- Bereitstellung von Abweichungen zwischen Workflow-Modell und Ausführung


**Systematische Bestimmung der Fehlerursache**

Funktionen des WfMS, die direkt zur Erfüllung der Anforderungen beitragen:

- Workflow-Modellierung
- Datenmodellierung

Zur Ermittlung der Fehlerursache durch die Fehlerursachenanalyse muss der genaue Prozessablauf bekannt sein, um den Fehler bis zu seinem Ursprung hin zurück verfolgen zu können. Die daraus entstehende Anforderung, den Prozess abzubilden, erfüllt die Workflow-Modellierung. Um die Fehlerursache ermitteln zu können, sind weiter prozessbezogene Daten, wie beispielsweise technische Zeichnungen, erforderlich, die in den jeweiligen Stufen der Fehlerursachenanalyse bereitgestellt werden müssen. Dies kann durch die Funktion der Datenmodellierung umgesetzt werden.

**Funktionen des WfMS, die bei der Erfüllung der Anforderungen unterstützend beitragen:**

- Applikationsmodellierung
- Instanziierung von Vorgängen aus Workflow-Modellen
- Verwaltung der Workflow-Daten
- Bereitstellung von Statusinformationen
- Bereitstellung von Abweichungen zwischen Workflow-Modell und Ausführung

Die bei der Fehlerursachenanalyse benötigten Prozessdaten werden durch die Statusinformationen der laufenden Vorgänge bereitgestellt. Als Grundlage geht in die Fehlerursachenanalyse der finale Fehler als Abweichung zwischen Workflow-Modell und Ausführung ein. Auch in dieser Phase des FM müssen unterstützend Applikationen zur

Funktionen des WfMS, die zur Erfüllung der Anforderungen nur indirekt beitragen:

- Aufruf, ggf. Parametrisierung von Applikationen
- Erzeugung von Protokolldaten

Die systematische Bestimmung der Fehlerursache kann teilweise maschinell unterstützt werden. Dazu ist es erforderlich, zu geeigneten Zeitpunkten Applikationen aufzurufen. Aus den vom WfMS erzeugten Protokollen lassen sich vereinzelt Daten gewinnen, die von Bedeutung für die Erkennung der Fehlerursache sind.

Bestimmung und Information der Zuständigkeit

Funktionen des WfMS, die direkt zur Erfüllung der Anforderungen beitragen:

- Organisationsmodellierung
- Datenmodellierung
- Rollenauflosung zur Aktivitätsträgerermittlung
- Information der Aktivitätsträger

Die Bestimmung der Zuständigkeiten erfolgt in erster Linie über die Rollenauflosungskomponente des WfMS. Von besonderer Bedeutung ist dafür auch die detaillierte Spezifizierung der Aufbauorganisation durch die Organisationsmodellierung, in der festgelegt wird, welche Mitarbeiter im Unternehmen für welche Aufgaben verantwortlich sind. Die Datenmodellierung stellt die an die Aktivitätsträger zu übermittelnden Informationen zusammen. Die Funktion Information der Aktivitätsträger übernimmt die eigentliche Übermittlung der Daten.

Funktionen des WfMS, die bei der Erfüllung der Anforderungen unterstützend beitragen:

- Workflow-Modellierung
- Applikationsmodellierung
- Instanziierung von Vorgängen aus Workflow-Modellen
- Synchronisation der Aktivitätsträger
- Bereitstellung von Ressourcenauslastungen

Information der Zuständigkeiten erfolgt durch Vorgänge, die aus zuvor definierten Workflow-Modellen instanziert werden.

*Funktionen des WfMS, die zur Erfüllung der Anforderungen nur indirekt beitragen:*

- Verwaltung der Workflow-Daten
- Aufruf, ggf. Parametrisierung von Applikationen


*Auswahl einer systematischen Problemlösung*

Funktionen des WfMS, die direkt zur Erfüllung der Anforderungen beitragen:

- Workflow-Modellierung
- Daten-Modellierung

Um die Auswahl der Problemlösung systematisch vorzunehmen, ist es in erster Linie erforderlich, den Workflow schematisch zu definieren und darzustellen. Eine zentrale Rolle bei der Auswahl der Problemlösung spielen die zugrunde gelegten Daten. Die richtige Zusammen- und Bereitstellung der für die Auswahl benötigten Daten realisiert die Datenmodellierung.

*Funktionen des WfMS, die bei der Erfüllung der Anforderungen unterstützend beitragen:*

- Applikationsmodellierung
- Simulation und Analyse der Workflow-Modelle

Die Systematik zur Auswahl einer Problemlösung kann durch Applikationen unterstützt werden, die zu den richtigen Laufzeiten des Prozesses bereitgestellt werden müssen. Die Simulation und Analyse der Workflow-Modelle kann während der Auswahl fortwährend eingesetzt werden, um die ausgewählte Problemlösung auf Fehlerfreiheit zu testen.

*Funktionen des WfMS, die zur Erfüllung der Anforderungen nur indirekt beitragen:*

- Aufruf ggf. Parametrisierung von Applikationen
- Verwaltung der Workflow-Daten
- Erzeugung von Protokolldaten
- Bereitstellung von Statusinformationen laufender Vorgänge
- Bereitstellung von Ressourcenauslastungen
- Bereitstellung von Abweichungen zwischen Workflow-Modell und Ausführung

unterstützt werden. Dazu ist es erforderlich, zu geeigneten Zeitpunkten Applikationen aufzurufen.

**Durchführung einer systematischen Problemlösung**

Das die Anforderungen erfüllende Funktionsprofil entspricht dem der Einleitung von Sofortmaßnahmen.

**Wirksamkeitsprüfung**

*Funktionen des WfMS, die direkt zur Erfüllung der Anforderungen beitragen:*

- Workflow-Modellierung
- Simulation und Analyse der Workflow-Modelle
- Bereitstellung von Statusinformationen laufender Vorgänge
- Bereitstellung von Ressourcenauslastungen
- Überwachung der Vorgangswiedervorlagen
- Bereitstellung von Abweichungen zwischen Workflow-Modell und Ausführung

Um die Wirksamkeit der Problemlösung überprüfen zu können, müssen die ausgeführten Workflows modelliert, simuliert und analysiert werden. Die Einbeziehung prozessbezogener Daten, wie Ressourcenauslastungen, Status- und Abweichungsinformationen, ist dazu dringend notwendig. Die aufgrund der Wirksamkeitsprüfung erforderlichen Vorgangswiedervorlagen können durch das WfMS mit Hilfe einer eigenen Funktion überwacht werden.

*Funktionen des WfMS, die bei der Erfüllung der Anforderungen unterstützend beitragen:*

- Applikationsmodellierung
- Datenmodellierung
- Aufruf ggf. Parametrisierung von Applikation
- Verwaltung der Workflow-Daten
- Erzeugung von Protokolldaten

Um den Prozess der Wirksamkeitsprüfung zu unterstützen, werden einige Applikationen eingesetzt, die zum richtigen Zeitpunkt bereitstehen müssen. Die Wirksamkeitsprüfung kann teilweise maschinell unterstützt werden, was erforderlich macht, dass Applikationen durch das WfMS aufgerufen werden. Die durch die Applikationen erzeugten Daten müssen verwaltet werden. Eine wichtige Informationsquelle zur Wirksamkeitsprüfung bilden auch die vom WfMS erstellten Protokolle mit den Workflow-Daten.
Rückmeldung an alle Beteiligten

Funktionen des WfMS, die direkt zur Erfüllung der Anforderungen beitragen:

- Rollenaufloesung zur Aktivitaetstragerermittlung
- Information der Aktivitaetstrager
- Aufruf und ggf. Parametrisierung von Applikationen
- Uberwachung der Vorgangswiedervorlagen


Funktionen des WfMS, die bei der Erfüllung der Anforderungen unterstuetzend beitragen:

- Organisationsmodellierung
- Workflow-Modellierung

Die Organisations- und Workflow-Modellierung bildet eine wichtige Voraussetzung fuer die Bestimmung der zu informierenden Aktivitaetstrager.

Funktionen des WfMS, die zur Erfüllung der Anforderungen nur indirekt beitragen:

- Applikationsmodellierung
- Datenmodellierung
- Instanzierung von Vorgaengen aus Workflow-Modellen
- Bereitstellung von Statusinformationen laufender Vorgaenge
- Bereitstellung von Ressourcenauslastungen


Protokollierung aller Ablaufe

Funktionen des WfMS, die direkt zur Erfüllung der Anforderungen beitragen:

- Aufruf, ggf. Parametrisierung von Applikationen
- Erzeugung von Protokolldaten
Die Protokollierung aller Abläufe kann vollständig maschinell erfolgen. Dafür müssen Applikationen aufgerufen und ggf. parametriert werden, die die Daten so zusammenstellen und aufbereiten, dass sie durch das WfMS protokolliert werden können.

**Funktionen des WfMS, die bei der Erfüllung der Anforderungen unterstützend beitragen:**

- Verwaltung der Workflow-Daten
- Bereitstellung von Statusinformationen laufender Vorgänge
- Bereitstellung von Ressourcenauslastungen
- Bereitstellung von Abweichungen zwischen Workflow-Modell und Ausführung

Die Protokollierung aller Abläufe erfordert eine Verwaltung der durch die unterschiedlichen Applikationen erzeugten Daten. Diese werden ergänzt durch Informationen über den Prozessverlauf bezüglich der Ressourcenauslastung und der Abweichungen.

**Funktionsübergreifende Bereitstellung von Informationen**

**Funktionen des WfMS, die direkt zur Erfüllung der Anforderungen beitragen:**

- Datenmodellierung
- Verwaltung der Workflow-Daten
- Erzeugung von Protokolldaten

Die funktionsübergreifende Bereitstellung von Informationen erfordert eine umfassende Modellierung, Verwaltung und Erzeugung von Daten.

**Funktionen des WfMS, die bei der Erfüllung der Anforderungen unterstützend beitragen:**

- Bereitstellung von Statusinformationen laufender Vorgänge
- Bereitstellung von Ressourcenauslastungen
- Bereitstellung von Abweichungen zwischen Workflow-Modell und Ausführung

Daten, die funktionsübergreifend zur Verfügung gestellt werden müssen, betreffen den Status, die Abweichungen des Vorgangs, und die Ressourcenauslastungen.

**Funktionen des WfMS, die zur Erfüllung der Anforderungen nur indirekt beitragen:**

- Organisationsmodellierung
- Workflow-Modellierung
- Rollenauflösung zur Aktivitätsträgerermittlung
- Information der Aktivitätsträger

Die Organisationsmodellierung und Workflow-Modellierung ermöglicht eine Übersicht darüber, welchen Unternehmensbereichen und Arbeitsstationen Informationen zugänglich gemacht werden müssen. Die Rollenauflösung und Information der Aktivitätsträger ermöglicht, dass sensible Informationen nur differenziert einem bestimmten Aktivitätsträgerkreis zugänglich gemacht werden können.
Qualitätsdatenauswertung

Funktionen des WfMS, die direkt zur Erfüllung der Anforderungen beitragen:

- Applikationsmodellierung
- Datenmodellierung
- Aufruf, ggf. Parametrisierung von Applikationen

Von entscheidender Bedeutung bei der Qualitätsdatenauswertung ist die Bereitstellung aller, für die Auswertung wichtigen, Daten. Für die Unterstützung der Auswertung ist weiter die Bereitstellung von dafür vorgesehenen Applikationen dringend erforderlich, die in vielen Fällen auch automatisch aufgerufen werden müssen, um so eine weitgehend maschinelle Bearbeitung der Qualitätsdatenauswertung zu gewährleisten.

Funktionen des WfMS, die bei der Erfüllung der Anforderungen unterstützend beitragen:

- Verwaltung der Workflow-Daten
- Erzeugung von Protokolldaten

Die Qualitätsdatenauswertung erfordert Informationen, die durch eine Verwaltung und Protokollierung anfallender Workflow-Daten zur Verfügung gestellt werden.

Wirtschaftlichkeitsprüfung

Funktionen des WfMS, die direkt zur Erfüllung der Anforderungen beitragen:

- Applikationsmodellierung
- Datenmodellierung
- Simulation und Analyse der Workflow-Modelle


Funktionen des WfMS, die bei der Erfüllung der Anforderungen unterstützend beitragen:

- Organisationsmodellierung
- Workflow-Modellierung
- Rollenauflösung zur Aktivitätsträgerermittlung
- Aufruf, ggf. Parametrisierung von Applikationen
- Verwaltung der Workflow-Daten
- Bereitstellung von Statusinformationen laufender Vorgänge
- Bereitstellung von Ressourcenauslastungen

Die Bestimmung der Wirtschaftlichkeit erfordert Informationen über die an der Fehlerbehebung beteiligten Aktivitätsträger und Abteilungen, sowie über die durchlaufenen Arbeitsschritte, die

Funktionen des WfMS, die zur Erfüllung der Anforderungen nur indirekt beitragen:

△ Instanziierung von Vorgängen aus Workflow-Modellen
△ Erzeugung von Protokolldaten

Die für die Ermittlung der Wirtschaftlichkeit bedeutenden Daten können aus den vom WfMS erzeugten Protokollen entnommen werden. Die nötigen Vorgänge zur Erfüllung dieser Aufgaben werden aus zuvor definierten Workflow-Modellen instanziert.
B. **KORRELATION DER WfMS UND DER FUNKTIONEN**

*Modellierung und Simulation von Workflows*

**Organisationsmodellierung**

*WfMS, die die geforderte Funktion in besonderem Maße erfüllen:*

- **Anbieter A4**
  Das Produkt dieses Unternehmens verfügt zur Umsetzung dieser Funktion über ein eigenes Designermodul für Ressourcen und Kosten.

- **Anbieter A1**

- **Anbieter A2**
  Im Modul Process Designer werden die Anwenderhierarchien eines Unternehmens modelliert. Dabei wird konsequent zwischen technischer und fachlicher Modellierung getrennt. Die Darstellung erfolgt als neuer Ansatz durch Baumansichten.

*WfMS, die die geforderte Funktion grundlegend erfüllen:*

- **Anbieter A6**
  Flexible, an die Dynamik des Unternehmens gekoppelte Anpassung des Organisationsaufbaus mit Hilfe von graphischen Modellierungswerkzeugen.

- **Anbieter A5**
  Die Income Suite verfügt über klassische Organigramme mit Ressourcenzuordnungen.

- **Anbieter A7**

- **Anbieter A8**
  Das Personalverzeichnis von multiDESK Workflow erlaubt die graphische Definition von Organisationen.

- **Anbieter A3**
  Organisationen werden im integrierten Organisationsexplorer abgebildet. Auf der Grundlage bereits vorgegebener Klassen können weitere Klassen mit frei konfigurierbaren Hierarchien eingerichtet werden.
Workflow-Modellierung

WfMS, die die geforderte Funktion in besonderem Maße erfüllen:

- Anbieter A1
  eFirst process bietet mit dem Modul Process Analyzer (basierend auf Corel iGrafix Process) ein vollständiges Modul zur graphischen Modellierung von Workflows.

- Anbieter A4
  Über ein eigenes Designermodul können den Arbeitsabläufen Ressourcen, Arbeitsinhalte, die Führung des Arbeitsflusses und Meilensteine zugewiesen werden.

- Anbieter A3
  Workflows werden im integrierten Workflowmodellexplorer abgebildet und können exportiert und importiert werden. Dies geschieht in Anlehnung an die Spezifikationen der WfMC.

- Anbieter A2
  Die Modellierung von Geschäftsprozessen erlaubt sowohl die Erstellung von kompletten Geschäftsprozessen auf beliebig vielen Ebenen, als auch die Definition von Prozessbausteinen, die zur Laufzeit zu einem Geschäftsprozess zusammengestellt werden können. Die Modellierung erfolgt dabei entsprechend dem Standard der WfMC.

WfMS, die die geforderte Funktion grundlegend erfüllen:

- Anbieter A8

- Anbieter A7
  Die Modellierung erfolgt graphisch, die einzelnen Objekte werden entsprechend dem zu definierenden Ablauf miteinander verbunden und in Abhängigkeit gebracht.

- Anbieter A5
  Die mit Workflow-Technologien umzusetzenden Abläufe werden in Modelle des „think Workflow Managers“ transferiert.

- Anbieter A6
  Es erfolgt eine flexible Anpassung an die Organisationsstruktur und/oder Prozessänderungen durch die unterstützten graphischen Modellierungswerkzeuge.
Applikationsmodellierung

WfMS, die die geforderte Funktion in besonderem Maße erfüllen:

- Anbieter A2

Der Cosa Tool Agent Manager ist das zentrale Modul zur Integration externer Anwendungen. Mit Hilfe des sog. Tool Agents können diese in Cosa BPM integriert werden.

- Anbieter A1

Der Process Integrator verbindet eFirst process mit anderen Applikationen. Das Integrationsmodul bietet die Möglichkeit, die Prozesse innerhalb von eFirst process mit Informationen aus verschiedenen bestehenden Applikationen oder Datenbanken zu verbinden.

WfMS, die die geforderte Funktion grundlegend erfüllen:

- Anbieter A7


- Anbieter A3


- Anbieter A8

Es können Anwendungen definiert werden, mit denen bestimmte Aufgaben bearbeitet werden können. Bestehende Anwendungen lassen sich integrieren, ohne dass dazu Programmierkenntnisse nötig sind.

WfMS, die die geforderte Funktion partiell erfüllen:

- Δ Anbieter A4

Der standardbasierte, flexible und für zahlreiche Branchen konfigurierbare Business Process Manager lässt sich problemlos implementieren und je nach Bedarf erweitern. Dadurch entsteht eine einheitliche Infrastruktur zur Verwaltung von Geschäftsprozessen, die die Schnittstelle zwischen Benutzern und verschiedenen Anwendungen bildet. Die Applikationsmodellierung erfolgt durch Java API.

- Δ Anbieter A5

Ein reines Applikationsmodell existiert nicht. In Projekten werden die bei den Aktivitäten aufzurufenden Applikationen ebenfalls als Ressourcen modelliert.
Datenmodellierung

*WfMS, die die geforderte Funktion in besonderem Maße erfüllen:*

- Anbieter A6
  Die Integration von Daten kann während der Modellierung mittels des Pavone ProcessModeler vorgegeben werden.

- Anbieter A4
  Über das Designermodul kann der Benutzer einen oder mehreren definierten Prozessen die zu deren Ausführung benötigten Parameter und Daten zuweisen.

*WfMS, die die geforderte Funktion grundlegend erfüllen:*

- Anbieter A2
  COSA bietet eine umfassende Anzahl von Möglichkeiten für die Datenmodellierung bei der Systemintegration und der Einbindung einer heterogenen Systemlandschaft in einem Arbeitsablauf.

- Anbieter A7

- Anbieter A1
  Das Integrationsmodul des Process Integrators bietet die Möglichkeit, die Prozesse innerhalb von eFirst process mit Informationen aus verschiedenen bestehenden Datenbanken zu verbinden.

- Anbieter A5
  Die Datenmodellierung wird über Objektmodelle abgedeckt. Den Objekttypen können dabei Attribute zugeordnet werden und diesen wiederum Datentypen.

- Anbieter A3
  Im Prozess verwendete Daten werden in Variablen aufgenommen. Diese Variablen können frei angelegt und typisiert, sowie den verwendeten Anwendungen über deren Parameter zugeordnet werden.

*WfMS, die die geforderte Funktion partiell erfüllen:*

- Anbieter A8
  Die Datenmodellierung erfolgt in einem separat zu betreibenden Daten Management System.
Simulation und Analyse der Workflow-Modelle

**WfMS, die die geforderte Funktion in besonderem Maße erfüllen:**

- Anbieter A5
  Die Modelle können direkt mit dem Modul Income Simulator ausgeführt und analysiert werden. Dabei können auf unterschiedliche Weise Daten in das System eingebracht werden, so dass ein möglichst realitätsnäher Ablauf der Workflows getestet werden kann.

- Anbieter A3

- Anbieter A4

- Anbieter A2
  Im Simulations-Modul des Process Designers können die modellierten Prozesse dynamisch getestet und eine entsprechende Bewertung der Leistungsfähigkeit erstellt werden. Für eine noch intensivere Tiefenanalyse können darüberhinaus die COSA Prozessmodelle direkt von speziellen Applikationen gelesen werden.

**WfMS, die die geforderte Funktion grundlegend erfüllen:**

- Anbieter A7
  Die Simulation des Workflows erfolgt in einer graphischen Oberfläche. Dabei können unterschiedliche Einlastungen gefahren und anschließend ausgewertet werden.

- Anbieter A1
  Workflows können mit unterschiedlichsten, an der Praxis orientierten Einlastungen simuliert und hinsichtlich Ressourcen, Kosten und Engpässen je Prozessschritt ausgewertet werden.

Das System von Anbieter A8 stellt keine Funktion für die Simulation und Analyse von Workflow-Modellen bereit.
**Instanzierung und Ausführung von Workflows**

**Instanzierung von Vorgängen aus Workflow-Modellen**

WfMS, die die geforderte Funktion in besonderem Maße erfüllen:

- **Anbieter A2**
  Mit Hilfe des Moduls COSA Case Composer können Geschäftsprozesse auf Basis vordefinierter Prozessbausteine ad hoc vom Endanwender zusammengestellt und noch während der Bearbeitung weiter modifiziert werden.

WfMS, die die geforderte Funktion grundlegend erfüllen:

- **Anbieter A8**
  Ein Workflow wird aus der Planung exportiert und steht dann als Vorlage zur Verfügung. Wird er nun von einem Benutzer gestartet, entsteht für jeden Start eine neue Instanz dieses Workflows.

- **Anbieter A5**
  Zur Ausführungszeit der Workflows werden die Modelle entsprechend instanziiert.

- **Anbieter A1**
  An die Workflow-Engine übergebene Workflowprozesse können instanziiert werden.

- **Anbieter A4**
  Die Instanziierung von Vorgängen aus Workflow-Modellen erfolgt wahlweise manuell oder regelbasiert.

- **Anbieter A3**
  Die Workflow-Modelle werden in Instanzen geführt, wobei immer eine Instanz eines bestimmten Workflow-Modells aktiv ist und sich Prozesse nur aus dieser Instanz starten lassen. Bei Änderung eines Modells wird zur Konsistenzsicherung eine neue Instanz des Modells automatisiert erzeugt.

WfMS, die die geforderte Funktion partiell erfüllen:

- **Anbieter A7**
  Prozesse können über flexible Workflowzweige bei Bedarf integriert werden.

**Rollenauflösung zur Aktivitätsträgerermittlung**

WfMS, die die geforderte Funktion in besonderem Maße erfüllen:

- **Anbieter A2**
  Die Zuordnung von Aufgaben an die einzelnen Anwender kann auf verschiedene Weise erfolgen. Als grundlegende Prinzipien stehen die automatische Zuordnung zu Anwendern, die selektive Auswahl durch Anwender, sowie die fallbasierte oder die auslastungsabasierte
Zuordnung von Arbeitsschritten, zur Verfügung. Es stehen dazu mehrere Zuordnungsmechanismen bereit.

**WfMS, die die geforderte Funktion grundlegend erfüllen:**

- Anbieter A1
  Die Zuordnung von Aktivitäten zu Rollen erfolgt dynamisch anhand von instanzbezogenen Parametern.

- Anbieter A3
  Aktivitäten können Rollen und Personen als Ausführende im Workflow-Modell fest zugeordnet werden.

- Anbieter A6
  Die Zuordnung von Aufgaben an die verantwortlichen Personen oder Gruppen, sowie die Erstellung eines Rollenmodells und einer Stellvertreterregelung, ist möglich.

- Anbieter A5
  Einzelne Aufgaben innerhalb einer Instanz werden den Rollen übermittelt, wobei Techniken wie Wiedervorlagen oder Stellvertreterregelungen unterstützt werden.

- Anbieter A8
  Die Rollenauflösung zur Aktivitätsträgerermittlung erfolgt über die angebundene Rulesengine.

**WfMS, die die geforderte Funktion partiell erfüllen:**

- Anbieter A7
  Das System erkennt Auslastungseingänge. Auf dieser Basis können zusätzliche Ressourcen eingebunden werden.

**Information der Aktivitätsträger**

**WfMS, die die geforderte Funktion in besonderem Maße erfüllen:**

- Anbieter A5
  Die Anwender erhalten automatisch alle notwendigen Informationen zu ihren Aufgaben, Applikationen für die Bearbeitung und dazugehörigen Dokumente, und zwar aufgabenspezifisch, zum richtigen Zeitpunkt und unabhängig davon, wo sie sich gerade befinden.
Anbieter A3
Aktivitätsträger werden durch eine Meldung des OS:DRT-Clients auf neu vorliegende Aktivitäten hingewiesen. Falls der Client nicht geöffnet ist, kann auch per E-Mail über neue Aktivitäten informiert werden. Durch die Möglichkeit des aktiven Scriptings innerhalb der Workflow-Modelle sind eine Reihe weiterer Meldeszenarien denkbar, z.B. das Melden per SMS.

WfMS, die die geforderte Funktion grundlegend erfüllen:

- Anbieter A4
  Die Information erfolgt z.B. über eine automatische E-Mail-Benachrichtigung oder über ein Portal.

- Anbieter A8
  Das System arbeitet mit einer Benutzeroberfläche, die einem Schreibtisch nachempfunden ist. Auf diesem Schreibtisch werden in Postkörben Informationen sichtbar, die für den jeweiligen Mitarbeiter bestimmt sind.

- Anbieter A6
  Eine Aufgabenliste kann regelmäßig per E-Mail zugeschickt werden.

- Anbieter A2
  Die Information der Aktivitätsträger erfolgt über Postkörbe.

- Anbieter A1
  eFirst Process stellt sicher, dass jederzeit alle Informationen dort sind, wo sie benötigt werden.

WfMS, die die geforderte Funktion partiell erfüllen

Anbieter A7
Das System erkennt Auslastungsglähse. Auf dieser Basis können zusätzliche Ressourcen eingebunden werden.

Synchronisation der Aktivitätsträger

WfMS, die die geforderte Funktion grundlegend erfüllen:

- Anbieter A3
  Teilnehmer einer Aktivität werden durch das System automatisch synchronisiert. Es ist sichergestellt, dass jeweils nur eine Person, eine Aktivität zu einer bestimmten Zeit bearbeiten kann, für die übrigen Teilnehmer ist dieser Schritt dann als „in Bearbeitung“ gekennzeichnet.

- Anbieter A2
Anbieter A6
Es erfolgt ein Abgleich der Aufgaben mit der E-Mail Datenbank

Anbieter A8

Anbieter A4
Die Synchronisation erfolgt über automatische E-Mail Benachrichtigungen, Meilensteine oder über Team Collaboration Funktionalitäten.

Anbieter A5

WfMS, die die geforderte Funktion partiell erfüllen:

- Anbieter A1
  In Verbindung mit der Information der Aktivitätsträger

- Anbieter A7
  Das System erkennt Auslastungsgespässe. Auf dieser Basis können zusätzliche Ressourcen eingebunden werden.

Aufruf, ggf. Parametrisierung von Applikationen

WfMS, die die geforderte Funktion in besonderem Maße erfüllen:

- Anbieter A1
  Der Process Integrator verbindet eFirst process mit anderen Applikationen. Das Integrationsmodul bietet die Möglichkeit, die Prozesse innerhalb von eFirst process mit Informationen aus verschiedenen bestehenden Applikationen oder Datenbanken zu verbinden. Der Process Integrator interagiert mit bereits bestehenden Applikationen und integriert sie.

- Anbieter A4
  Umfangreiches API, Aufruf von Java Methoden (Component Integrator), Schnittstellen zu EAI, Nutzung von XML-Web Services.
Anbieter A3


**WfMS, die die geforderte Funktion grundlegend erfüllen:**

- **Anbieter A2**

Es ist möglich, dass externe Ereignisse einen Prozess in Cosa starten oder einzelne Aufgaben ausführen können. COSA BPM stellt Funktionen zur Verfügung, die eine automatisierte oder ereignisbasierte Durchführung von workflow-gesteuerten Prozessen ermöglichen.

- **Anbieter A5**

Bestehende Applikationen können über ein Plug-In-Konzept eingebunden sowie mit einfachen Formulareditoren und einfachen Applikationen schnell entwickelt und integriert werden. Bei jeder Aktivität kann festgelegt werden, welche Parameter übergeben werden, so dass die Applikationen (sofern sie dies zulassen) im Kontext der zu erledigenden Aufgabe aufgerufen werden.

- **Anbieter A8**


**WfMS, die die geforderte Funktion partiell erfüllen.**

- **Anbieter A7**

Prozesse können über flexible Workflowzweige bei Bedarf integriert werden.

**Verwaltung der Workflow-Daten**

**WfMS, die die geforderte Funktion in besonderem Maße erfüllen:**

- **Anbieter A3**

  Sämtliche Daten eines Workflows werden in der verwendeten Datenbank verwaltet und können durch mitgelieferte Administrationstools eingesehen werden. Eine Änderung der Daten eines Workflows ist damit auch zur Laufzeit möglich.

- **Anbieter A1**

  eFirst process bietet, über das reine Prozessmanagement hinaus, umfangreiche Möglichkeiten zur Verwaltung von prozessbegleitenden Informationen oder Zusammenhängen, ein
vollständiges, webbasierendes Dokumentenmanagement und Möglichkeiten zur Verwaltung von z.B. Qualitätsmanagementhandbüchern.

**WfMS, die die geforderte Funktion grundlegend erfüllen:**

- **Anbieter A4**
  Die Verwaltung der Daten erfolgt durch die Ablage im FileNet Content Manager.

- **Anbieter A8**
  multiDESK Workflow ist ein datenbankbasiertes System mit der Microsoft RDO-Schnittstelle. Das System ist datenbankunabhängig und erlaubt es, vorhandene Datenstrukturen zu nutzen. Der Zugriff auf und die Bearbeitung der Dokumente erfolgen über die OLE Schnittstelle bzw. DCOM, einem weit verbreiteten Industriestandard.

- **Anbieter A6**
  Einfache Einbindung von relationalen Datenbeständen in Lotus notes basierte Workflows sowie Auslagerung von Workflow-Daten in relationale Datenbanken.

- **Anbieter A5**
  Alle Daten werden in einer Oracle Datenbank abgelegt.

- **Anbieter A2**

**Erzeugung von Protokolldaten**

**WfMS, die die geforderte Funktion in besonderem Maße erfüllen:**

- **Anbieter A3**

**WfMS, die die geforderte Funktion grundlegend erfüllen:**

- **Anbieter A1**
  Alle laufenden Vorgänge werden in einer Datenbank protokolliert.

- **Anbieter A7**
  Der gesamte Ablauf des Workflows wird in einer umfangreichen Protokollumgebung aufgezeichnet.
o Anbieter A2
Alle relevanten Laufzeit- und Protokolldaten werden in einer Datenbank gespeichert

o Anbieter A6
Die Workflow-Aktionen werden umfangreich protokolliert.

o Anbieter A4
Die Erzeugung der Protokolldaten erfolgt über den Workflow, die Ablage erfolgt revisionssicher.

*WfMS, die die geforderte Funktion partiell erfüllen:*

Δ Anbieter A5
Alle Daten werden in einer Datenbank abgelegt, eine darüber hinausgehende Protokollierung ist lauf Hersteller nicht notwendig.

Δ Anbieter A8

*Monitoring laufender Vorgänge und Analyse ausgewählter Vorgänge*

Bereitstellung von Statusinformationen laufender Vorgänge

*WfMS, die die geforderte Funktion in besonderem Maße erfüllen:*

- Anbieter A6

- Anbieter A2
Der Cosa Business Activity Monitor steht als graphisches Tool zur Verfügung. Mit dem BAM können jederzeit Informationen über den Status von Prozessen abgefragt werden.

- Anbieter A1
Alle laufenden Vorgänge werden in der Datenbank protokolliert und können über das Modul Process Monitor überwacht und ausgewertet werden.

*WfMS, die die geforderte Funktion grundlegend erfüllen:*

o Anbieter A5
Alle Daten zur Ausführung der Instanzen liegen in der Oracle Datenbank bereit. Ebenso können Berichte über aktuelle Durchlaufzeiten usw. abgerufen werden, die durch entsprechende Applikationen erstellt wurden.
o Anbieter A7
Der zentrale Leitstand ermöglicht ein direktes Überwachen der Workflow-Vorgänge. Die aktiven Workflow-Teile werden aufgelistet und der einzelne Status kann direkt nachvollzogen werden.

o Anbieter A3
Über die Administrationstools kann jederzeit auf die laufenden und beendeten Vorgänge zugegriffen werden. Ferner können Statusinformationen generiert werden.

o Anbieter A8
In der Vorgangsverfolgung kann der aktuelle Zustand eines Vorgangs innerhalb seines Lebenszyklusses angezeigt werden. Die präsentierten Graphiken geben einen einfachen visuellen Überblick über den Fortschritt des Vorgangs. Die Daten können über eine Excel-Schnittstelle weiter bearbeitet werden.

o Anbieter A4
Die Bereitstellung erfolgt über den Quene-Füllstand als Applet, Vorgangstracker und E-Mail Benachrichtigung

WfMS, die die geforderte Funktion partiell erfüllen:

Bereitstellung von Ressourcenauslastungen

WfMS, die die geforderte Funktion in besonderem Maße erfüllen:

- Anbieter A2
Die Abfragen des Business Activity Monitor können individuell an den aktuellen Bedarf angepasst werden, um Engpässe, freie Ressourcen, Auslastungen, etc. zu identifizieren.

- Anbieter A4
Es steht das Analysemodul OLAP Cube zur Verfügung, um das Volumen eingehender und ausgehender Arbeit zu überwachen und zu erfassen.

WfMS, die die geforderte Funktion grundlegend erfüllen:

o Anbieter A5
Aufbauend auf den Daten zur Ausführung der Instanzen existieren Applikationen, die den Ausführungsweg der verwendeten Ressourcen graphisch visualisieren. Ebenso existieren Berichte über aktuelle Durchlaufzeiten.

o Anbieter A7

**WfMS, die die geforderte Funktion partiell erfüllen:**

> Anbieter A3

Dies ist standardmäßig nicht möglich, kann jedoch über die integrierten Scrip-Funktionalitäten individuell programmiert und anschließend je nach Bedarf generiert werden.

Das WfMS von Anbieter A8 beinhaltet keine Funktion für die Bereitstellung von Ressourcenauslastungen.

**Überwachung von Vorgangswiedervorlagen (zeitbezogene Trigger)**

**WfMS, die die geforderte Funktion in besonderem Maße erfüllen:**

- **Anbieter A3**


**WfMS, die die geforderte Funktion grundlegend erfüllen:**

- **Anbieter A7**


- **Anbieter A4**

  Wiedervorlagen, z.B. über Timer oder Eskalationsmechanismen.

- **Anbieter A2**

  Vorgangswiedervorlagen können bei der Modellierung berücksichtigt werden. Wenn Aktivitäten im Wiedervorlagemodus definiert werden, erscheinen diese erst am festgelegten Wiedervorlagedatum in der Worklist des Anwenders.

- **Anbieter A8**

  Zusätzlich zu den vom Administrator definierten Terminabhängigkeiten können die Bearbeiter eigene Termine für die Erledigung eines Vorgangsschritts festlegen. Dabei kann das genaue Erinnerungsdatum oder ein entsprechender Zeitraum sowie der Wortlaut des Meldungstextes angegeben werden.
o Anbieter A5
Die einzelnen Aufgaben werden Rollen übermittelt, wobei Techniken, wie Wiedervorlagen oder Stellvertreterregelungen, unterstützt werden

Bereitstellung von Abweichungen zwischen Workflowmodell und Ausführung

WFMS, die die geforderte Funktion grundlegend erfüllen:

o Anbieter A2
Die Bereitstellung erfolgt über den Business Activity Monitor.

o Anbieter A1
Durch integrierte Alarmfunktionen können kritische Prozesse automatisch überwacht werden und Prozessfehler lassen sich frühzeitig erkennen.

WFMS, die die geforderte Funktion partiell erfüllen:

Δ Anbieter A5
Für den Abgleich zwischen den Geschäftsprozessmodellen und den Workflow-Modellen existieren zahlreiche Konzepte, die derzeit nicht durch Tools unterstützt werden.

Laut der Anbieter Anbieter A8, Anbieter A4, Anbieter A3 und Anbieter A7 ist eine Abweichung nicht möglich und eine entsprechende Funktion wird folglich nicht bereitgestellt.
# LEBENSLAUF

## Persönliche Daten

<table>
<thead>
<tr>
<th>Name</th>
<th>Wissem Ellouze</th>
</tr>
</thead>
<tbody>
<tr>
<td>geboren am</td>
<td>24.11.1976 in Gabes</td>
</tr>
</tbody>
</table>

## Schulbildung

<table>
<thead>
<tr>
<th>Datum</th>
<th>Bildungsbereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.09.1982–30.06.1988</td>
<td>Grundschule in Sfax (Tunesien)</td>
</tr>
<tr>
<td>01.09.1988 – 30.06.1995</td>
<td>Gymnasium in Sfax (Tunesien)</td>
</tr>
<tr>
<td></td>
<td>Abschluss: Mathematischer „Baccalaureat“</td>
</tr>
</tbody>
</table>

## Deutschkurs

<table>
<thead>
<tr>
<th>Datum</th>
<th>Ort/Institut</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.10.1996 – 06.12.1996</td>
<td>Deutschkurs (Grundstufe 2) am Hummel Sprachen Institut in Stuttgart</td>
</tr>
<tr>
<td>13.01.1997 – 21.03.1997</td>
<td>Deutschkurs (Grundstufe 3) am Institut für Auslandsbeziehungen in Stuttgart</td>
</tr>
<tr>
<td></td>
<td>Abschluss: Nachweis deutscher Sprachkenntnisse für ausländische Studienbewerber</td>
</tr>
</tbody>
</table>

## Studium

<table>
<thead>
<tr>
<th>Datum</th>
<th>Bildungsbereich</th>
</tr>
</thead>
</table>

## Praktische Tätigkeiten während des Studiums

<table>
<thead>
<tr>
<th>Datum</th>
<th>Tätigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.05.2002. – 28.09.2002</td>
<td>Diplomarbeit bei MTU- Maintenance Hannover</td>
</tr>
<tr>
<td>01.10.2001 – 15.02.2002</td>
<td>Praktikum bei der MTU- Maintenance Hannover</td>
</tr>
<tr>
<td>01.06.2002 – 31.08.2002</td>
<td>Studentische Hilfskraft, im Bereich Numerische Methoden am Institut für Integrierte Produktion Hannover gGmbH</td>
</tr>
<tr>
<td>01.03.2000 bis 31.12.2001</td>
<td>Studentische Hilfskraft, am Institut für Qualitätssicherung an der Universität Hannover</td>
</tr>
<tr>
<td>01.03.2000 – 14.11.2000</td>
<td>Studentische Hilfskraft, im Bereich Anwendung der Keramik in der Schleiftechnik am Institut für Fertigungstechnik und Werkzeugmaschinen an der Universität Hannover</td>
</tr>
<tr>
<td>01.09.1998 bis 31.05.2002</td>
<td>Studentische Hilfskraft, in der Abteilung Numerische Methoden am Institut für Umformtechnik an der Universität Hannover</td>
</tr>
</tbody>
</table>

## Berufstätigkeiten

<table>
<thead>
<tr>
<th>Datum</th>
<th>Tätigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seit 01.11.2007</td>
<td>Qualitätsleiter bei der Firma Hella KGaA Hueck &amp; Co.</td>
</tr>
<tr>
<td>01.07.2006-31.10.2007</td>
<td>Qualitätsreferent bei der Firma Hella KGaA Hueck &amp; Co.</td>
</tr>
<tr>
<td>01.11.2003-31.06.2005</td>
<td>Wissenschaftlicher Mitarbeiter am Lehrstuhl für Qualitätswesen, Prof. Dr.-Ing. H.-A. Crostack, Universität Dortmund</td>
</tr>
<tr>
<td>01.11.2002-31.10.2003</td>
<td>Wissenschaftlicher Mitarbeiter- Abteilung Qualitätsmanagement - der Dortmunder Initiative für rechnerintegrierte Fertigung (RIF) e.V.</td>
</tr>
</tbody>
</table>