Knowledge Discovery in Databases
at a Conceptual Level

Dissertation
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

der Universitat Dortmund
am Fachbereich Informatik

von
Timm Euler

Dortmund

2007

i

Tag der miindlichen Priifung:

Dekan:

Gutachterin/Gutachter:

19.12.2007

Prof. Dr. Peter Buchholz

Prof. Dr. Katharina Morik
Prof. Dr. Joachim Biskup

Danksagung

Zuerst danke ich Prof. Dr. Katharina Morik fiir die Betreuung dieser Arbeit und fiir ihre
Bereitschaft, meinen etwas ungewohnlichen Weg zu diesem Ergebnis zu unterstiitzen.
Ebenso danke ich Prof. Dr. Joachim Biskup fiir die Ubernahme der Begutachtung und
seine Anregungen. Jean-Francois Boulicaut danke ich fiir einen Anstofs.

Allen Mitgliedern des LS 8 sei herzlich gedankt fiir die Schaffung einer angenehmen,
respektvollen und unvergesslichen Arbeitsumgebung. Insbesondere Martin Scholz méchte
ich fiir die gute Zusammenarbeit danken.

Den Herstellern der von mir evaluierten Software danke ich fiir die Uberlassung der
Lizenzen. Bei Andreas Greve mochte ich mich fiir seine Miihen bei der Installation der
DB2-Datenbank bedanken.

Am dankbarsten aber bin ich fiir all die schéne Zeit, ob vergangen oder zukiinftig, mit
Verena.

iii

v

Contents

List of Figures

List of Tables

1.

Introduction

1.1. Problem description

1.1.1. Example KDD application

1.1.2. Data preparation problems

1.2. Overview of the approach
1.3. Overview of this thesis
1.4. Publications

. Knowledge Discovery in Databases

2.1. Overview of the KDD process
2.1.1. Business understandingo
2.1.2. Data understanding L Lo
2.1.3. Data preparation L
2.1.4. Mining
2.1.5. Evaluation.
2.1.6. Deployment

2.2. Two levels of KDD descriptions

2.3. Summary

A Conceptual Data Model for KDD

3.1. Background
3.1.1. Typesof datamodels,
3.1.2. Structure of the given data
3.1.3. Semantic abstractions L.

3.2. A conceptual data model for KDD
3.2.1. Semantic abstractions needed in KDD
3.2.2. Summary of conceptual data modelo

3.3. Additional KDD-specific information L.
3.3.1. Datatypes
3.3.2. Attributeroles
3.3.3. Data characteristics (metadata)

3.4. Summary

14
14
14
15
17
20
22
22
23
27

28
28
28
31
35
38
38
42
45
46
47
48
93

Contents

4.

vi

A Conceptual Process Model for KDD
4.1. Related work

4.1.1. Federated databases and schema evolution

4.1.2. Operators for knowledge discovery
4.2. Data preparation operators
4.3. Computational power of the operators . .
4.4. Data preparation graphs
4.5. Other phases of the KDD process
4.6. Two dual views of the preparation process
4.7. Summary

An lllustrating Example: KDD for Telecommunications

5.1. Overview
5.2. Selection of data for preparation
5.3. Creation of thelabel
5.4. Preparation of customer information . . .
5.5. Preparation of revenue information
5.6. Preparation of phone call information . .
5.7. Mining and deployment
5.8. Discussion

Publishing Operational KDD Process Models
6.1. Related work
6.1.1. Related fields
6.1.2. Related work in KDD
6.2. MiningMart overview
6.3. A meta model for KDD processes
6.3.1. Modelling the data
6.3.2. Modelling processing steps
6.4. Executing KDD models
6.5. A public repository of KDD models
6.5.1. Motivation
6.5.2. Realisation
6.5.3. Templates
6.5.4. Finding common subprocesses . . .

6.5.5. Retrieval of public KDD process models

6.6. Reuse and adaptation of KDD processes .
6.6.1. Reuse of the data model
6.6.2. Reuse of the process model

6.7. Summary L.

Implementing the Conceptual Level
7.1. The concept editor

7.1.1. Automatic creation of conceptual-level data elements

7.1.2. Propagation of data model changes
7.1.3. Estimation of data characteristics .

54
54
55
61
65
67
70
71
72
74

75
75
7
79
80
81
83
85
87

89
90
90
91
97
99
99
102
104
106
106
107
110
111
114
116
118
122
123

Contents

7.1.4. Schema matching between the two levels
7.2. New operators in MiningMart
7.2.1. Attribute derivation
7.2.2. Pivotisation and reverse pivotisation
7.2.3. Aggregate by relationship
7.2.4. Dichotomisation
7.2.5. Results of mining as new attributes
7.2.6. ReverseFeatureConstruction
7.3. Materialisation recommendations
7.4. The user interface L.
7.5, Summary

8. Evaluating KDD Tools

8.1. Related work
8.1.1. General software evaluation
8.1.2. KDD product evaluations

8.2. Methodology
8.2.1. Establishing evaluation requirements
8.2.2. Specification of the evaluation
8.2.3. Design of the evaluation process
8.2.4. Execution of the evaluation

8.3. Criteria for KDD tool evaluation
8.3.1. Excluded criteria,
8.3.2. General criteria for KDD software
8.3.3. Specific criteria for KDD software

8.4. A test case to check all criteria

8.5. Evaluated KDD software
8.5.1. MiningMarto
8.5.2. SPSS Clementine
8.5.3. Prudsys Preminer
8.5.4. IBM Intelligent Miner
8.5.5. SAS Enterprise Miner
8.5.6. NCR Teradata Warehouse Miner

8.6. Evaluation results.

8.7. Summary

9. Conclusions
9.1. Summary of contributions
9.2, Futurework oo
9.2.1. MiningMart extensions
9.2.2. Using ontologies in the knowledge discovery process

Appendix A: Preparation operators
A.1. Data reduction operators.
A.1.1. Attribute selection
A.1.2. Row selection

vil

Contents

A13. Sampling 199
A14. Aggregationo 200
A.2. Propositionalisation operators 0oL 201
A.2.1. Join by relationship Lo oL 201
A.2.2. Aggregate by relationship oL 202
A23. Union 203
A.3. Operators changing the data organisation 204
A.3.1. Dichotomisation 204
A.3.2. Pivotisation L 205
A.3.3. Reverse pivotisation 206
A34. Windowing 207

A 4. Data cleaning operators oo 209
A.4.1. Missing value replacement 209
A.4.2. Filtering outliers 210

A5, Feature construction operators 210
A.5.1. Discretisationo 210
AbB5.2. Scaling 211
A5.3. Value mapping 212
A.5.4. Attribute derivationo 213

A.6. Operators for pseudo-parallel processing 215
A.6.1. Segmentationo 215
A.6.2. Unsegmentation 216
Appendix B: Templates 218
B.1. Aggregation L 218
B.2. ChangeDistributionOfValues 218
B.3. ChangeNominalAttribsToNumeric 219
B.4. ChangeUnitOfMeasurement 220
B.5. ComputeAgeFromBirthdate 220
B.6. CorrectTypos o 221
B.7. Discretisation 221
B.8. ExtractIntegerTimelndexFromDate 222
B.9. GeneralisationOfAnAttribute 222
B.10.InformationPreservingDataCompression 223
B.11.IntegrateDifferentDataSourceso 223
B.12.MaterialisationDemo 224
B.13.MissingValueHandling00 224
B.14.Normalisation 225
B.15.PivotisationDemoo 225
B.16.PrepareAssociationRulesDiscoveryo 226
B.17.TimeSeriesAnalysis 227

viii

Contents

Appendix C: List of Criteria

C.1. Data access
C.2. Data modelling
C.3. Preparation process.
C.4. Learning control
C.5. Deployment Lo
C.6. KDD standards

Appendix D: Technical level of model application
Appendix E: SQL Implementation of Test Case
Bibliography

Index

228

.......... 228
.......... 231
.......... 233
.......... 238
.......... 238
.......... 239

240

244

247

269

X

List

1.1.
1.2
1.3.
1.4.

3.1.

0.1
0.2.
2.3.
0.4.
2.5.
0.6.
0.7.
0.8.
0.9.
5.10.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.
6.10.

7.1.
7.2.
7.3.
7.4.
7.5.
7.6.

8.1.
8.2.
8.3.

of Figures

Example for input data for mining00 2
Input data for drug store exampleo 3
Data for mining from drug store example 4
Motivating example in MiningMart 9
Relational data model example 33
Overview of preparation chunks 76
Selection of customers, operators 78
Selection of customers, concepts L. 79
Constructing attributes on servicedata 80
Constructing attributes on customer data 80
Preparation of revenue data, operators 82
Preparation of revenue data, concepts 83
Preparation of call detailsdata 85
Concepts of the mining phase 86
Concept web of model application. 88
MiningMart architectureo oL 97
M4 data model, technical level example 100
M4 static and dynamic parto 101
M4 data model, conceptual level example 102
M4 process model schema example 103
M4 process model instantiation example 105
Published part of M4 108
Screenshots of the Case Base 109
Frequent subgraph discovery algorithm 113
Canonical form computation algorithm 114
Propagation example 129
Graph example for traversal scheme 131
Propagation algorithm oo Lo 134
Resulting data model computation 140
Java interface for AttributeDerivation 145
Decision function created by MiningMart SVM operator 156
ISO 9126 software quality characteristics 166
Overview of test case 179
Test case input data 179

List of Figures

A.1. Pivotisation example 205
A2, Windowing example L 208

xi

List of Tables

xil

2.1.
3.1.
4.1.

0.1
0.2.
2.3.
0.4.

6.1.

7.1.
7.2.

8.1.
8.2.
8.3.

C.1.

Input requirements of mining algorithms 17
Typesof datamodelso 29
Operators and concept links 0oL 73
Model application input: Services oL 7
Model application input: Customers 80
Model application input: Revenues 81
Model application input: CDR 84
A Call Details Table. 122
M4 constraints for output creation 162
M4 assertions for estimation of characteristics 163
Tool evaluation overview 184
Tool evaluationo 185
Preparation operators per tool L. 186
Data handling: performance comparison 229

1. Introduction

In recent decades, an ever-growing part of everyday processes, such as communication or
trade processes, has substantially been transformed by using computers and networks for
their administration. This trend is likely to continue in the 21st century, as the potential
for digitalised services is still huge, be it in political, commercial, or health systems. It is,
in many cases, only a secondary effect of this development that almost every computerised
process leaves traces in the form of electronically stored data. This data may detail what
has happened, when and where it has happened, who has been involved and so on. The
amount of data that a typical organisation stores is growing fast and demands special
tools to store and access it efficiently. Even where data collection has not been the end
to which computerisation was the means, efficient data storage is becoming an urgent
demand, for example for archiving, but also increasingly for legal and other reasons.

It has long been recognised that such data collections can provide added value to their
owners, as they may reflect characteristics of the owners’ business. Such characteristics
are not likely to be easily seen by humans inspecting the data, as the sheer amount of
data is usually far too high. This has led to the development of algorithms and tools that
support data analysis in many different ways. Data Mining is an often-used general term
for the discovery of hidden information in data. However, as was early recognised, there
is a lot of work involved in a complete data mining project that does not strictly belong
to the analysis step. In fact, a process of several distinguishable phases is needed. This
process is generally referred to by the term Knowledge Discovery in Databases (KDD).
A broadly accepted definition of KDD was given by Fayyad et al. (1996):

The KDD process is the nontrivial process of identifying valid, novel, po-
tentially useful, and ultimately understandable patterns in data.

Here, a pattern is an expression in some language describing a subset of the data (or a
model applicable to that subset). The term Data Mining has come to refer to a specific
phase in this process, namely the phase where algorithms from the fields of Machine
Learning or statistics are applied to a dataset in order to extract the patterns.

While a lot of research has been performed around this learning-based pattern extrac-
tion, fewer efforts have been put to the rest of the KDD process (an overview of this
process is given in chapter 2). Most importantly, the collection and preparation of the
relevant data turns out to be a complex and time-consuming endeavour in many projects.
The main reason why data has to be prepared is that the algorithms in the mining phase
cannot usually be directly applied to the “raw” data, in the form in which it has been
collected. This part of the process, data preparation, is in the focus of this thesis, without
neglecting its high interrelatedness with other phases. The overall aim of this work is to
find out how both experienced analysts and beginners can be intensively supported by
software during this phase, while allowing a smooth integration with the other phases.

1. Introduction

Customer | Income | Gender | ProductGroup | Amount

10 30000 M Notebooks 800
13 35000 F Mobiles 140
13 35000 F MP3-Players 50
13 35000 F CDs 20

Figure 1.1.: Example for credit card transaction data, in a representation that is suitable
for analysing typical transactions, for example by a clustering algorithm. Transactions
are characterised by the type of product bought, the amount of money spent, and
details about the person who made the transaction. Since one person can make several
transactions, this introduces redundancy.

Good support for data preparation is highly needed, since both deciding how to prepare
the data, and performing the preparation, involves solving complex problems. The fol-
lowing section discusses these problems in detail. Section 1.2 then outlines the approach
taken in this work, and discusses how it solves or mitigates these problems. Section 1.3
provides an overview of the chapters of this thesis. Finally, section 1.4 lists this author’s
publications that have been used in this thesis.

1.1. Problem description

The starting point for data preparation is a given collection of structured data, together
with some knowledge about what it represents. Collecting the data and knowledge about
it is part of earlier phases in the overall KDD process, see chapter 2. For data prepa-
ration, it is crucial to understand that the data that one decides to use for knowledge
discovery has in most cases been stored for other purposes, in particular supporting the
operational demands of the data-owning institution. To support these purposes, database
administrators employ techniques to organise their data such that efficient retrieval is
possible, while at the same time redundant storage is avoided.

For data mining, data must usually be organised in a different way. Mining algorithms
find patterns in a set of ezamples of a certain phenomenon, where each example must
describe the phenomenon in question as detailed as necessary to find useful patterns.
Most mining algorithms require all examples to be in a single table. Figure 1.1 shows a
table with data about credit card transactions. Such a table might be used for analysing
common features of typical transactions. However, the table exhibits some redundancy;
it violates the usual design principles of relational databases (specifically, it violates the
second normal form, see section 3.1.2). The institution that owns this data is unlikely to
have stored it in this format. Data miners call this format propositional, since it is used
by propositional learning algorithms (among others), which use some form of proposi-
tional logic to represent subgroups in the data. Thus it is necessary, for most mining
approaches, to transform the data into this format, which is called propositionalisation
(Knobbe, 2004). Propositionalisation often involves re-introducing redundancy that had
been carefully removed by the database designers by splitting the data into separate

1.1. Problem description

Table SalesInfo: Table Seasonlnfo:
ShopID | ProductID | Week | Sales Week ‘ Christmas ‘ SommerSale ‘
12 430 1 16 1 0 0
12 430 2 15
12 430 3 18 30 0 1
13 5012 1 35

Figure 1.2.: Input data for the drug store application. The shop and product IDs refer to
additional tables. The “Week” attribute of the first table refers to the same attribute
of the second table.

tables.
Data preparation involves much more than integrating data into one table, though.

Before explaining the main preparation issues in detail, an example will serve to illustrate
them.

1.1.1. Example KDD application

This example KDD project on sales data has been realised by Stefan Riiping (Riiping,
1999). While its data preparation part is not very complex, it serves well to illustrate the
main issues. Note that even this less complex application took several months to develop.
A larger KDD application is presented in chapter 5.

The input data for this project comes from a chain of drug stores. The stores sell a
large range of products. For each product in each drug store, the given data contains the
number of times it has been sold in a particular week, for a two-year period. The goal
of this project was to predict the number of sales of certain products for the next week,
given data from the last few weeks. Predicting this number is useful for reducing the
amounts of a product that have to be kept in stock. Due to the requirements of the drug
store chain, prediction had to be done separately for each particular product in every
particular shop. Since there is a large number of products, and the drug store chain has 20
different stores, this amounts to a large number of individual applications of the mining
algorithm. Therefore about 50 of the most interesting products have been selected. This
means that the same learning task had to be solved for 1000 different selections of data
of the same kind (i.e. having the same schema).

The input data is organised in a typical star schema: one relation (table) holds the
information about the stores, another one the information about the products, while
a central table keeps the sales information (number of times a product has been sold)
for each product, each store and each week. For the data analysis, mainly the central
table is needed in this application, but an additional table has been introduced by the
data miner after a number of attempts to make useful predictions based on the central
table alone had failed. For each week in which products were sold, this additional table
specifies whether different seasonal events took place, like bank holidays or seasonal sales.
Figure 1.2 shows the input data for this application.

1. Introduction

Table MiningData_Shopl2 Product430:

SalesWeek1 ‘ SalesWeek2 ‘ SalesWeek3 ‘ Christmas ‘ SummerSale ‘ SalesLabel
16 15 18 0 0 17

20 17 18 0 1 19

Figure 1.3.: Input data for the mining algorithm in the drug store application.

The learning/mining algorithm that has been used is the support vector machine
(SVM), see section 7.2.5. For it to be applicable, the data must be represented as n-
dimensional real vectors £ € R™. The vectors represent the examples from which the
patterns are to be found. Each vector is given a label that represents what is to be pre-
dicted. Training the SVM on such input will yield a function that can be used to predict
the label of other vectors of the same kind, for which the label is not yet known.

In the drug store application, the label to be predicted is the sales information of the
coming week, given some time point (the shop and product are fixed for each prediction
task, as noted above). Several ways of setting up the example vectors can be imagined.
One might try to use the complete sales data from before the given time point, or only
parts of it. One might try to add information about the product or the shop to each
vector. The representation that turned out to be successful, in terms of the achieved
mining results, built the vectors by moving a window over the past sales data. Any time
window of m subsequent weeks can produce one example (one combination of ¥ and
label), though in this application the time windows have been chosen so that they do
not overlap. Further, for each window, the information about which seasonal event took
place in the week whose sales are predicted, is added to the vector Z (this information is
available even for future weeks, since bank holidays etc. are fixed). Because the vectors
must use real numbers (a technical input requirement by the SVM algorithm), whether
or not an event takes place is indicated by the numbers 1 and 0.

Note, then, that some notion of t7me plays a particular role in this application. Yet,
learning algorithms have no understanding of time. This is why time must be encoded
in the representation, in this case using a fixed set of attributes for fixed-length time
periods, the windows.

Figure 1.3 shows the data representation that is needed in this application for applying
the SVM; the figure shows the input for only one of the 1000 learning tasks. In fact, the
data in figure 1.3 is subject to another data preparation step before the SVM is applied:
all sales values are scaled to the real interval [0..1], which is not a necessary technical
requirement of the SVM, but often useful for training an SVM. This is not shown for
better readability.

Figures 1.2 and 1.3 show the input and output of a particular preparation process. It
can be seen that the data representation is changed and extended fundamentally between
the two figures. The steps that are needed in this application example to create adequate
input for the SVM are: selection of the shop; selection of the product; moving a window
over the sales data for that product and that shop, and collecting the contents of all

1.1. Problem description

windows in a new representation; adding the seasonal information that is relevant for
each window; scaling the integer numbers to the new range between 0 and 1. These five
steps have to be carried out in the same manner for the 1000 different combinations of
shop and product.

This example illustrates the task of data preparation, which can be stated as follows
for this work:

Transform a given relational database to meet the technical input require-
ments of a chosen mining algorithm, such that the algorithm gives good results
(finds valid, novel, and potentially useful patterns).

Note that this task description assumes that the decision which mining algorithm is to
be used has already been made. Sometimes several algorithms are tried, then the task
above has to be solved for each.

One can imagine that the first part of the task, meeting the technical requirements,
can be solved by automatic approaches. A few attempts to do so have been made in
the literature, see section 6.1.2. Essentially, these approaches are based on automatic
planning. The planning goal is given by the technical input requirements of the chosen
mining algorithm. However, for real-world KDD projects, such a planning goal is under-
specified: meeting the technical requirements is possible in many ways, as the restrictions
they impose on the input data format are not very strong. These restrictions are listed
in section 2.1.3; they mainly involve a few data type constraints, based on an abstract
notion of data type. Meeting these constraints is in no way sufficient to guarantee the
success of the mining algorithm.

In other words, solving the second part of the task description above, namely choosing
a representation that makes the algorithm successful, is much more complex (see also
section 2.1.3). It requires human expertise, and cannot be automated currently. The
space of possible input data representations is too big to be searched automatically, and
no useful search heuristics are known. For humans, the best heuristic is a case-based
approach, where the experience gained from earlier projects helps to guide the process
in a new application. For example, the particular way of dealing with time in the above
application can be useful in other projects, too. It is one goal of this work to support this
case-based approach.

In a sense, data preparation, as a part of knowledge discovery, can be compared to soft-
ware development. In software development, real-world requirements must be analysed
first. They lead to a technical architecture for the software. The technical architecture
determines the components of the software, and how they interact to achieve the main
functionality. Specifying the components means to set up some technical requirements
that the components must fulfil. But even realising the components, after they have been
specified, involves human efforts and cannot be automated. Analogously, real-world goals
for data analysis lead to the choice of a general method of analysis, in particular a mining
algorithm, but also lead to some ideas for “information components” on which the analy-
sis will be based. In the above example application, the information components are the
time windows and the information about seasonal events. Both in software development
and in data analysis, only human experts are capable of finding such components. But
even after their specification, the way to realise them remains to be found by humans.

1. Introduction

Decades of experience in software development have led to a number of heuristics, often
called design patterns (Gamma et al., 1995), that can be used to guide programmers when
realising the software components. To some extent, they may even provide guidelines for
the overall architecture. The design patterns are abstractions of solutions that have been
useful in the past, and describe their essence. The situation in knowledge discovery is
not yet as advanced: not many useful design patterns have been found so far, despite
many attempts to find correlations between data sets, real-world analysis goals, and
suitable machine learning algorithms for their solution. These attempts are discussed in
section 6.1.2. It turns out to be difficult to describe the essence of KDD solutions in
general terms, so that they can be transferred to new KDD problems.

Therefore, this work identifies a suitable level of abstraction for the modelling of KDD
solutions. This will provide the means to collect and describe KDD solutions in a detailed
way, and to identify re-occurring patterns, which can be modelled in the same framework.
In contrast to the software engineering design patterns, solutions and patterns modelled
in this way will be directly ezecutable, without the difficult and error-prone process of
implementing an abstract software pattern in actual software. Collections of such patterns
and successful solutions to KDD problems will make the experience that was gathered
during their creation accessible to the public, and reusable by anyone. This will make
data mining and the preparation of data for it much easier to perform, even for users
without a strong background in the field, because they can rely on approved solutions
which are modelled at an intuitive level and are ease to use. This re-usage framework thus
addresses a larger audience than design patterns, for whose deployment expert knowledge
is needed.

But why is it actually a problem that data preparation cannot be automated? The
answer will be given in the following. The above application example helps to illustrate
the main points.

1.1.2. Data preparation problems

It has been estimated (see (Pyle, 1999) and a 2003 KDnuggets poll') that between 50 and
80 per cent of the time spent on a typical KDD project are dedicated to data preparation.
The example above has illustrated the task, whose solution will be supported by the
contributions of this thesis. Solving this task poses the following particular problems.

Exploration When developing a new KDD application, neither the mining algorithm
nor the data representation that will give the best results are known beforehand.
Several approaches usually have to be tried. Even in the example KDD project
above, where the mining algorithm and the outline of its task were chosen early on,
many options remain to be explored. As noted there, several ways of representing
the examples for learning can be imagined. Even after deciding for the window-
based approach, the number of weeks for which past data is used to predict the
future (the number n above) is open. Which kinds of seasonal events should be
included for prediction is also unclear. Prediction could be done for the following
week given data for some weeks, but also for the week after that, depending on the
requirements of the drug store chain. Note that any decision to change one of these

"http://wuw.kdnuggets.com/polls/2003/data_preparation.htm

1.1. Problem description

options may involve changing several parts of the preparation process, not only the
application of the mining algorithm.

Complexity Data preparation processes can be rather complex, involving dozens of single
transformation steps (where the steps are in themselves not trivial, as will become
apparent). Chapter 5 presents an example for a larger application. It has many
steps, and each step produces a new, different (intermediate) representation of the
input data. Keeping an overview of the many intermediate steps and their results
is difficult: on the one hand, the data to be analysed must be known very well,
on the other hand, a high-level overview of how it can be used in relation to the
mining algorithm(s) must be kept.

Education It was already mentioned that the best heuristic for human KDD developers,
when exploring a new application, is to rely on their experience about successful
KDD projects from the past. But knowledge about past projects, and about what
were the decisive factors that made them successful, is easily and quickly lost, and
is difficult to transfer between humans. As noted above, suitable “design patterns”,
an analogue from software engineering, hardly exist yet. Such design patterns would
describe the essence of a number of previously developed, successful solutions of
KDD problems (for example how to deal with time).

Programming Early knowledge discovery projects had to rely on low-level program-
ming to perform the required data transformations. Developing such programs is
expensive in terms of human work efforts, and typically results in a poorly docu-
mented collection of programs that are difficult to maintain and difficult to reuse
on similar problems. Even simple tasks, like the scaling of the values to [0..1] in
the application above, become cumbersome by having to repeat them many times.
The exploration of several preparation options (see above) is very tedious indeed
with such programs. Note also that in the example from section 1.1.1, essentially
the same task has to be solved 1000 times, but each time on different selections of
the data. Organising this in a typical data querying language like SQL is not easy.
These problems have led to the development of a number of commercial software
tools that support various data transformations in a graphical way. However, as
this thesis will show, these tools still suffer from a number of shortcomings; for
example, they do not represent the data in an adequate way, they do not allow to
represent many similar tasks in one model, and they typically offer only a few types
of transformations that still leave the process more complex than it could be.

Large data sets Real-world KDD projects are usually fraught with the difficulties of
processing very large amounts of data. The mining algorithms typically have super-
linear runtime, and their implementations are therefore usually not capable of pro-
cessing more data than fits into main memory of the system that runs them. Yet,
assembling and preparing the data for this step, as well as the productive deploy-
ment of learned results, requires the handling of much larger amounts. This first of
all means that efficient data storage is required, suggesting the use of information
systems. Secondly, performing even simple transformations may consume a lot of

1. Introduction

time, which prohibits a style of development in which every step in a complex trans-
formation has to be executed immediately, before further steps can be specified.
Unfortunately some data preparation tools enforce just this style of development.
Similarly, low-level programming, error-prone as it tends to be, requires too many
test cycles to be convenient on large data sets.

The present thesis provides analyses, and develops a framework with an implemented
system, that help to solve or mitigate these problems. The following section explains the
general approach.

1.2. Overview of the approach

The overall goal of this work is to ease the work on data preparation in data mining
for human users. Therefore it examines how data preparation can be presented to users
in intuitive terms that describe what is done using KDD-related vocabulary. For exam-
ple, some notion of time, or the idea of a label (see above), should be made explicit.
Rather than having to use general-purpose devices, like programming languages, data
miners should be supported by software that directly employs this vocabulary. The term
conceptual level is used for this description level. It is contrasted with a technical level
which does not use KDD-specific concepts; for example, describing a KDD process in
SQL would be located at the technical level. Section 2.2 discusses the two levels in more
detail.

Any approach towards easing data preparation for humans must account for the ex-
plorative nature of data preparation, and should also address the other problems above.
In particular, reusing approved solutions developed by others should be supported, to
address the problems listed under “education” above. This work presents an environment,
called MiningMart, that employs a conceptual level of KDD process descriptions. It can
be used for the graphical modelling of KDD applications, their organisation into sub-
parts, their immediate execution on relational databases, and their publication and reuse
based on an open metamodel. Figure 1.4 shows a screenshot of the KDD project from
section 1.1.1 above, as modelled in MiningMart. This application model represents the
preparation and mining for all 1000 learning tasks involved in that project, which can be
executed by a single mouse click.

MiningMart addresses the problems listed above by the following measures.

Providing a catalogue of transformation operators By providing a set of transforma-
tion operators that solve standard tasks, the development of complex data transfor-
mations can be reduced to combining such operators into directed acyclic graphs,
in which each operator processes the output of the previous one(s). This avoids
low-level programming completely and frees users from having to learn any formal
languages. It also allows an intuitive graphical representation of the graphs. The
operators are organised into groups according to the mining-related preparation
problems they solve.

Providing a catalogue of preparation solutions Based on the above reference list of
preparation operators, models of complete preparation processes can be created

1.2. Overview of the approach

] MiningMart- [DrugstoreSalesPrediction] -2

Case Insert Compile Tools Window Help

B e ¥ 85 % % %o i T E

Editor | Bird's view | 4/ Log | DrugstoresalesPrediction - Drawing | PracessingChain - Drawing : } OperatorTools | Step sewtings |

TEiETIT i
94\ DrugstoreSalesFradicrion: (2] = Annotations |
¢ 900 ProcessingChain: Chai Segmentation
SelectRelevantitermng— 3 SegmentBy
SegrmemByitern: Ste "“:D:l - Parameter
3 {|ThelnputConcept Sel
SegmentByshop: Stp SelectRelevantitems SegmentByltem SegmentByShop i e — ;
‘| TheAttribute
WindowingOnSal i
. ” ||| TheQutputConcept S
JninSalesToHolida: = =
jmin e
StaleMurmericyalue| [il
> JoinSalesToHolidays WindowifigOnSalesData

4] i]] [¥

Properties rDescriplinn |

Artribute Walle
Name ‘WindowingOns. ApplySYM
Type IStep
Boundls (297, 158, 35,
Hyperlink
Calor
Operatar Windawing
Incaming [>egrmentaci Byt
Outgaoing [WincowecSale
Yiew Concept
— View Input Estimations
-
<] Il [T K1 1 I [¥
Auswahl

Figure 1.4.: The KDD application from section 1.1.1 in MiningMart.

and published. Then processes that have been successfully used in KDD applica-
tions can be shared among experts, can be directly re-used on different data sets,
and can be used to educate new KDD analysts. A central web portal for publishing
and downloading these processes has been set up. This web-based repository of
KDD solutions can help to reduce the time needed for finding solutions to KDD
problems, by providing examples of solutions that have worked previously. Func-
tionality that supports re-using such solutions is included in MiningMart. Further,
among the complete processes for whole applications, subprocesses can be identi-
fied that solve typical subproblems in data preparation, and that can be published
separately as templates for those subproblems. These templates can be identified
manually, but an automatic method of discovering them in a collection of complete
solutions is also presented. The templates go beyond design patterns from software
engineering (see above), since they are directly executable, and can be reused with-
out a strong background in programming. All these aims, which are related to the
“education” problem above, could not be achieved previously due to the lack of a
common model for KDD applications.

Providing a suitable abstract data model Publishing preparation solutions is of little
use if the data that they have been applied to is not also described. Publishing the
data itself is undesirable, but publishing a model of the data schema is sufficient.

1. Introduction

This work employs an abstract data model that is suitable for this purpose. Having
such a model has other advantages. It allows to abstract from the given data and
to use a view on it that is more oriented towards the tasks to be solved (although
the abstraction should not be too high, as a data miner must know their data
well). The specification of the preparation operators discussed above can be given
in terms of this data model, making the operators applicable to any technical data
source as soon as the latter is mapped into the abstract model. Thus a chain of
operators becomes easily reusable by simply mapping the model of its input data
to a new data source. The results of each application of a transformation operator
are automatically documented. Further, using an abstract data model moves the
many intermediate data sets that are created in a typical preparation process into
the focus. These data sets are important artifacts of the KDD process, as they are
excellent sources of information, or interfaces, for planning the further development
of a preparation solution, or integrating additional tools or analyses (like data
visualisation methods). One requirement that the abstract data model must fulfil
therefore is the ability to structure these data sets, so that the user can keep a clear
overview of them. This addresses the “complexity” problem above.

Speeding up development Developing a preparation solution consumes expensive hu-

man time, while performing the actual data processing consumes cheap computer
time. MiningMart provides means to speed up development, and to reduce the num-
ber of test cycles during the development of a new KDD application. The latter
mitigates the problem of handling large data sets. One of the ways to achieve the
former is pseudo-parallel processing: a process is modelled once but can be executed
on a number of identical tables. In the drug store sales analysis example above, this
means that 1000 learning tasks are hidden behind one “conceptual” model of the
KDD process they have in common; the system controls the many data sets in-
volved, so that users can concentrate on modelling. This also serves to reduce the
complexity of the task.

Processing data in an information system Information systems have been developed

over decades towards powerful data storage systems. In most KDD applications
the data to be analysed is initially stored inside a (often relational) database,
anyway. MiningMart thus exploits the efficient data storage capabilities of such
systems, avoiding the need introduced by many KDD tools to transfer data to
other systems.

Easing documentation Representing the data transformation operators, as well as the

10

data models they operate on, explicitly is in itself a much better documentation
than can be provided by low-level programming code. The main reason is that
these explicit elements are located at different levels of abstraction: the parameters
of the operators, the operators themselves, the subprocesses, and the processes can
be seen to form a hierarchy, whose explicit representation allows top-down brows-
ing of a KDD application model. These levels are reflected in the KDD system,
but also in the web repository. Additionally, all elements of these levels are docu-
mentable by free text annotations. Finally, publishing background information on

1.3. Overview of this thesis

the purposes, goals, and achievements of each KDD application that is available in
the web repository is supported.

The general MiningMart approach has been outlined in (Kietz et al., 2000; Kietz et al.,
2001; Morik & Scholz, 2004) and (Euler, 2005d). MiningMart is based on a declarative
metamodel, to be explained in section 6.3, which has first been documented in (Morik
et al., 2001) and later in (Scholz & Euler, 2002). A sketch of the major components of
the MiningMart framework is given in figure 6.1 on page 97.

The MiningMart system is compared to other KDD tools in this work, based on the
following contribution.

Enabling objective comparisons of KDD tools Having specified a catalogue of prepa-
ration operators allows to compare different software packages that are designed
for KDD applications with respect to the extent to which they support these op-
erators. Detailed comparisons of such software tools are very useful for institutions
that would like to start KDD projects, in order to find the product that matches
their particular requirements best. However, for an in-depth comparison, the avail-
able operators are not the only criterion. Chapter 8 of this thesis develops not only
further, more detailed criteria for KDD tools, but also presents a methodology by
which these criteria can be derived and evaluated objectively. The methodology is
applicable to other types of software products as well, and is adaptable to different
evaluation purposes.

1.3. Overview of this thesis

This thesis first gives some background on the knowledge discovery process, following
an informal, but widely accepted terminology standard, in chapter 2. The chapter in-
troduces many notions and specific problems that are addressed in subsequent chapters.
It argues that support for KDD, like for other application domains, is best given at a
“conceptual” description level, which uses the concepts and ideas of KDD rather than
general-purpose notions. The following chapters demonstrate how such a conceptual sup-
port can be achieved.

Chapter 3 chooses a conceptual data model for structured data that is tailored to-
wards the specific needs of knowledge discovery. The chapter begins with a definition
of physical, logical and semantic data models. The relational data model is identified as
being still the most common technical-level model that represents input data for KDD.
An entity-relationship model is found to be a suitable conceptual-level data model, by
listing semantic notions (abstractions) that must be supported for KDD. The chapter
ends by discussing the role of data types and data characteristics.

Chapter 4 then examines the data processing parts of a KDD process, in particular
data preparation. Based on an analysis of the major preparation tasks that are needed
for KDD, it explains the notion of a preparation operator. A comprehensive list of data
preparation operators, together with their role for the preparation for mining, is given in
appendix A. The operators are specified using the conceptual data model from chapter 3.
The set of operators is divided into groups according to which mining-related preparation
purpose they serve. The data model from chapter 3, and the process model presented in

11

1. Introduction

this chapter, are established as two dual views on the preparation process. Control of the
process can be executed from either view, but together they provide more information
and flexibility to the user than each alone.

These theoretical chapters are followed by an illustration of their basic concepts using
a model KDD application, in chapter 5. The model application is based on two real-
world applications and involves rather complex data preparations. The chapter explains
the application in terms of the two dual conceptual views; this level of description can
be contrasted with the technical realisation of the model application, which is given in
appendix D.

Chapter 6 introduces the MiningMart environment, which supports the two dual con-
ceptual views on the KDD process, based on a metamodel for modelling KDD processes.
A public repository of such process models is presented, which serves as a knowledge
portal to KDD users, enabling the flow of knowledge between experts in the field and
from experts to inexperienced users. The chapter discusses the central issues of reuse and
adaptation of KDD process models. The chapter also introduces templates for solutions
to typical, small data preparation problems; these templates are also published in the
repository. Appendix B lists many templates developed for this work. They provide a
public, modular collection of recipes for solving typical preparation tasks for KDD. A
method for discovering such templates automatically is also presented in chapter 6.

Chapter 7 provides a more technical description of how certain parts of MiningMart
have been implemented by the author. The implementations concern mainly the data
model (section 7.1), but also some important operators (section 7.2). Besides these major
system parts, further functionality has been added by the author, based on the analy-
ses from previous chapters. In particular, the model application, the requirements for
reusability from chapter 6, and a number of evaluation criteria from chapter 8 sug-
gested certain additions that will be described. This includes measures that support the
execution-independent development and the direct reuse of data and process models.

Chapter 8 uses the insights from the previous chapters, as well as practical experiences
made implementing the model KDD application, to develop detailed criteria for the
evaluation of KDD software tools, with a focus on data processing. The methodology for
identifying these criteria is presented. It allows to tailor the evaluation towards different
purposes or audiences. The criteria are used to evaluate a number of KDD tools, which
exemplifies the practical applicability of the methodology.

Each of the above chapters contains a summary with the main arguments that are
needed to follow the overall work.

Finally, chapter 9 summarises this thesis, outlines its contributions, and discusses open
issues for future work.

1.4. Publications

Parts of this thesis have already been published in journals, conference proceedings and
as technical reports. This previously published work is listed in the following.

A brief overview of the MiningMart approach (chapter 6) has been given in (Euler
et al., 2003), which is joint work with Katharina Morik and Martin Scholz. The author
of this thesis contributed 33% to this paper.

12

1.4. Publications

Work on the data model (chapter 3) was preceded by the paper (Euler & Scholz, 2004),
which discusses using ontologies for MiningMart. This paper was joint work with Martin
Scholz to which the author contributed 50%.

The model application from chapter 5 has been briefly presented in (Euler, 2005b), and
also (Euler, 2005d). The latter paper mainly provides the presentation of the MiningMart
web repository as a knowledge platform. Chapter 6 is based on it.

The preparation operators presented in chapter 4 and appendix A are a more detailed
version of (Euler, 2005¢). A slightly modified version of that paper has been published
in a journal (Euler, 2006).

The software comparison methodology (chapter 8) has been published in (Euler, 2005a),
including the evaluation of KDD software tools.

Using the support vector machine for feature selection, as discussed in section 7.2.5,
has been documented in the technical report (Euler, 2002a).

The MiningMart meta model M4, discussed in section 6.3, is documented in the tech-
nical report (Scholz & Euler, 2002), which was joint work with Martin Scholz to which
the author of this thesis contributed 50%.

Two other technical reports by this author which are related to the work in this thesis,
though not used in the thesis as such, are (Euler, 2002b) and (Euler, 2002c).

13

2. Knowledge Discovery in Databases

This chapter sets the framework for the subsequent discussions by introducing the KDD
process according to an informal, yet well-known standard. It has long been recognised
that several phases of the process can usefully be distinguished. The early conceptions of
these phases (for a brief but clear overview see (Gaul & Sauberlich, 1999)) were rather
similar to each other and evolved quite naturally into the CRisP-DM standard (Chapman
et al., 2000), which has established a common terminology. This standard is presented
in section 2.1. Section 2.2 then presents the notion of describing a KDD process at two
different levels, a technical and a conceptual, task-oriented one. The connection between
the two levels is explored in subsequent chapters.

2.1. Overview of the KDD process

A complete KDD process consists of much more than just the application of learning
algorithms to data. The various tasks around data analysis can be assigned to different
phases of the process, which provides a good conceptual overview of KDD, though it does
not imply that there are no interdependencies between the phases. The cross-industry
standard CRi1sP-DM (see (Chapman et al., 2000)) is the most established conceptualisa-
tion of the KDD process that also provides a common terminology, and it will be used
here to introduce basic concepts around KDD.

In Crisp-DM, a number of generic tasks is defined that need to be solved during
most KDD projects. The generic tasks are intended to be general enough to cover all
possible situations in the KDD process. They are categorised into six phases that make
up the process; while there is a natural sequence for these phases, a typical project will
experience backtracking and reviewing earlier phases in the light of intermediate results.
The phases form the top level in this hierarchical process model; the generic tasks form
the second level. At a third level, the generic tasks are specified and detailed according to
the data mining context, that is, the given situation (for example the application domain,
the type of mining problem etc.). Finally, the fourth level records the details of a concrete
process instance.

The following subsections describe the six phases of the KDD process. The description
draws on CRISP-DM (Chapman et al., 2000) and (Pyle, 1999). While a lot of details are
omitted, what follows will provide an understanding of the context in which this work is
placed. Other general introductions to KDD include (Witten & Frank, 2000).

2.1.1. Business understanding

This phase might more generally be called “Application understanding”, as this process
model is not restricted to business projects. In this phase, the most important task is to

14

2.1. Overview of the KDD process

identify the goals of the project in terms of the application domain or the end-users of the
KDD results. In a health-related project, such a goal might be to understand the main
factors affecting the success of a treatment of a particular disease. While the discussion
in this phase should be non-technical, a clear understanding of what is to be achieved
is needed. In particular, success criteria must be established. Further, a detailed project
plan that lists the resources, requirements, risks, costs and possible benefits of the project
should be made.

The purpose of this phase is to provide the data analysts with an understanding of
the background of the KDD application. A common danger in data analysis is to find a
pattern that is already known to domain experts, as such patterns often comprise coarse
relationships in the data that show up easily (Morik et al., 2005). If this happens, time
and effort are wasted unfruitfully. To avoid it is only possible with a good understanding
of the domain and of the questions that the data owners would like to have answered.
A simple example of directly addressing the needs of the data owners is to use mining
to maximise the return on investment (ROI) in businesses, as modelled by a (heuristic)
function (Ling et al., 2005; Singh et al., 2005).

Recently, Pechenizkiy et al. (2005) have attempted to support the identification of
relevant issues in this phase by adapting frameworks from the field of Information Systems
that relate technical systems to their organisational and external environments. Their
work is preliminary and has provided only rather superficial models so far. But they
suggest lines of further research, in particular to examine the key factors of successful
use of data mining systems. Some experience-based ideas on these factors can be found in
(Hermiz, 1999) and (Coppock, 2003). Both these authors point out that there exist many
data analysis-related problems to which data mining is not the appropriate solution. But
even if it is appropriate, there is a danger of gaining insights that are not actionable in the
given organisation. In such cases, the solutions to the data mining tasks that were found
cannot be translated, for some reason, into actions that help to achieve the overall goal
of the institution (see also Piatetsky-Shapiro in Wu et al. (2003)). This highlights the
need for involving the organisational environment in planning a KDD project. Coppock
(2003) stresses that this is often a communication problem between technical and business
experts; but similar problems can also occur between different groups of technical experts,
as vividly described by (Freeman & Melli, 2005). One remedy suggested by Kohavi et al.
(2004) is to present preliminary analysis results to the business experts in order to gain a
common understanding (based on concrete material) of what could and should be done.
Additional material about this phase can be found in (Pyle, 1999).

2.1.2. Data understanding

With a firm background about the application at hand, the available data collections
should be examined. Because the data is often collected for other purposes than knowl-
edge discovery (see the introduction to this chapter), simply accessing and assembling the
data may be a nontrivial, time-consuming task, depending on the sizes of data sets, the
way they are distributed in the organisation, and privacy or security issues. Usually, data
from different computer systems, collected at different times in various formats, must be
brought together. Often the data is copied to a central site, a Data Warehouse (Inmon,
1996; Meyer & Cannon, 1998), which provides a regularly updated, static snapshot of

Y

15

2. Knowledge Discovery in Databases

the dynamic operational data. Such data warehouses are not only used for KDD, but for
many different kinds of analysis. However, in an increasing number of institutions, data
sets with the same or a similar structure exist at several locations, for example in the
individual stores of a supermarket chain. In these cases it may make sense to mine the
data sets locally and combine the results. This is referred to as Distributed Data Mining.
A good introduction is (Park & Kargupta, 2002).

It is common to describe data sets as collections of tables which each have a number
of columns. However, not all data sets easily allow this representation; for example, log
files of web servers need extensive processing before (the relevant parts of) their contents
can be represented as tables. A sub-discipline of KDD called Web Mining has emerged to
deal with such data (see for example (Kosala & Blockeel, 2000)). But even when the data
is available in tables, there is often a lot of further processing needed to allow automated
analysis. This is the subject of the next phase in the KDD process, data preparation,
and of the following chapters.

Data understanding involves more than the assembly of data, though. A description
of the tables and their attributes is needed that includes

e the quantity of data (number of rows for each table);

e the meaning, or content description, of each of the attributes, whose names are
often cryptic;

e the data type of each attribute (strings, numbers, dates, times, texts, media files
and other types may occur);

e statistical information about each attribute, such as which different values it takes,
how they are distributed, what the minimum, maximum, mean or median values
are (if applicable), possible correlations with or dependencies on other attributes,
and so on;

e information about the quality of the data, that is, whether the collection process
was reliable, or whether “gaps” occur in the data (called missing values), and how
they are represented;

e information about the integrity of the data, for example, whether different tables
can be linked via key relationships;

e information about the completeness of the data, that is, to what extent all avail-
able data could be collected, and whether the available data may be considered
representative of the population of entities that it describes;

e information about any known regularities or dependencies in the data, which is
often based on prior (background) knowledge; for example, one can expect that
data about vehicles would not contain an odd number of wheels, so that any such
entries can be suspected to be errors;

e and any other information that describes the data as it is and serves to judge its
relevance for the project, or to highlight “unreliable” or poorly understood parts of
the data.

16

2.1. Overview of the KDD process

Specific attributes must not have missing or empty values

Specific attributes must be realised as real numbers

Only continuous or only discrete attributes are accepted

Discrete attributes must be realised as sets of boolean attributes

Not more than N values of discrete attributes are accepted

Only 2 classes (2 distinct values for the label attribute) can be used
Continuous attributes must be normalised to the same/a given range
Key attributes are not accepted as part of the representation

Only one data table is accepted

Table 2.1.: Possible input requirements of mining algorithms (after (Kietz et al., 2000)).

In other words, in this phase the data is made accessible for knowledge discovery,
and basic information pertaining to it is collected and should be documented. Many of
these issues have already been solved if the data-owning institution has created a data
warehouse. In these cases data understanding becomes much easier. It can be further
simplified by using graphical visualisations of various data properties.

The purpose of collecting the above information is to translate the business goals, which
were stated in the previous phase in terms of the application, to technical goals. This is a
very difficult task that requires much expertise in data mining, and much communication
with the application experts (Kohavi et al., 2004). The goal is a first project plan that
describes how to prepare the data and perform the analysis in the following phases. This
plan would include the type of data mining problem that is going to be solved (see the
mining phase, 2.1.4), and the choice of one or more supporting software tools; chapter 8
deals with tool selection criteria. Based on this plan, a first justification for the likelihood
of success for the project can be given. However, such a plan must be considered tentative,
as it is likely that insights from later phases will lead to some revisions.

2.1.3. Data preparation

The previous phases can be said to prepare the data analyst. The data itself, after
assembly, is very likely to also need further preparation for a number of reasons:

e Technical requirements of mining algorithms: As noted in the introduction, data
mining algorithms impose restrictions on the input data, such as accepting only
continuous attributes (see section 3.3.1 about data types), or requiring the same
scale for all continuous attributes. Table 2.1, adapted from (Kietz et al., 2000), lists
possible input requirements of mining algorithms.

e Introducing background knowledge: Often, information that is not yet captured in
the data can be added to ease the task for the mining algorithm (for mining, see the
following phase). For example, a person’s birthday can be used to compute their
current age or even, more abstractly, their age group according to some background
criteria.

17

2. Knowledge Discovery in Databases

18

Removing background knowledge: Contrasting with the previous point, it may also
make sense to remove patterns from the data that are already known and are likely
to distract the mining algorithm from more subtle, new patterns. An example is to
remove trends from time series data.

Controlling the process: Some mining algorithms internally change the data. For ex-
ample, some decision tree algorithms (e.g. (Quinlan, 1993)) internally group values
of discrete attributes. It is usually preferable to control such changes by performing
them explicitly beforehand; at least, this should increase the understandability of
the mining result.

Exposing information content: Mining can be significantly sped up if only relevant
parts of the data are used. Some attributes may be redundant and can be removed,
which is called feature selection; here, some automatic methods are available (Liu
& Motoda, 1998). In contrast, feature construction attempts to construct new at-
tributes based on the given ones, with the aim of making some “hidden” information
directly available to the mining algorithm. This is discussed further below.

Changing the data organisation: Except for multirelational learning algorithms (see
e.g. (Wrobel, 1997; Muggleton, 1995; Knobbe, 2004)), most mining algorithms ex-
pect the data in a single table. This may require joining different data tables into
one, a process called propositionalisation in the context of data mining (Knobbe
et al., 2001); it is known to be an effective way of gathering information from more
than one table into one, for mining purposes (Krogel et al., 2003). Many proposi-
tionalisation approaches automatically add columns with information from other
tables to one central table which is then used for mining. However, such automatic
approaches do not scale well to complex and large databases. A careful manual
selection of columns to be added is required in such cases.

Records of this single propositionalised table often have to be organised in a spe-
cific way. For example, in association rule mining, a transaction table is expected
(Agrawal et al., 1993). Another example is learning from time series, where a series
of windows (fragments from the original series), instead of the given series of single
values, may be needed to enable mining (compare section 1.1.1).

Cleaning the data: As was mentioned before, the data may contain gaps due to
the way it was collected. It is important to distinguish between empty and missing
values (Pyle, 1999). Empty values represent absence of a feature, such as a non-
existing driving license for underaged persons. Missing values are gaps that could
have been filled, such as sensor data that is not collected due to malfunctioning of
the sensor. Empty and missing values usually have to be removed or filled, as many
mining algorithms cannot deal with them. Further, errors (like typing errors) from
the storage process may have to be corrected, and outliers (records with extreme
or rarely occurring values) should be taken care of. These tasks are frequently in
themselves the subject of data mining projects (e.g. in (Loureiro et al., 2005)).

Sampling the data: Large data sets can pose a significant performance challenge
both for preparation and mining. It may be necessary to reduce the amount of

2.1. Overview of the KDD process

data used for analysis, but this has to be done without skewing the representative-
ness of the data, if possible. A comprehensive overview of sampling approaches for
knowledge discovery is given by Scholz (2007).

e Accounting for technical constraints: The tools which are used expect the data in
a specific format that may have to be created. These technical requirements stem
from the tools that are used, not from the mining algorithms as such.

Most of these reasons for preparing the data are unique to KDD (or data analysis in
general), i.e. they are not given in other application areas where data transformations
are employed (discussed in section 4.1). Data cleaning is an exception, it is an issue that
is also often solved for building a data warehouse, for example.

As explained in chapter 1, most data mining algorithms use a propositional data for-
mat, in which the examples that the algorithm learns from are given in a feature-based
representation, each example taking a particular value for each feature. This format is
also called attribute-value format, and this work, with its focus on data preparation,
mainly uses the term attribute instead of feature, though the latter is more common in
the machine learning literature.

Some of the above problems, like introducing background knowledge or exposing in-
formation content, are usually solved by feature construction, i.e. by introducing new
attributes/features that are not present in the original data, but contain the added infor-
mation. In a typical KDD application, many important features are constructed manually,
and this is a major part of the preparation process. Specific operators for it are given in
this work, see section A.5. Automatic feature construction methods also exist and may
complement the manual preparation (Liu & Motoda, 1998).

With this background, the following high-level preparation tasks have been identified
in this work. In a typical KDD application, some or all of these tasks may have to be
solved. Chapter 4 introduces a number of basic operations (data transformations) for
each task which can be used to solve it.

Data reduction Often the data may have to be reduced because the chosen mining
algorithm does not scale to the available amounts of data. Besides random selection
(sampling) and selection based on data properties, the aggregation of data can be
useful. Aggregation changes the level of detail of the information in the data, for
example by computing a monthly average for daily amounts, which would reduce
the amount of data by a factor of 30.

Propositionalisation This is the task of integrating data spread over several tables, to
allow the application of a learner that requires a single data table as input. See
section 1.1.

Changing the organisation In many applications it is necessary to change the represen-
tation of the data rather fundamentally, as exemplified in the example application
in section 1.1.1. This often involves introducing attributes, i.e. metadata (schema-
level elements), based on values of a different attribute, i.e. based on data (instance-
level elements), and/or vice versa. In other words, the way the data is organised is
changed.

19

2. Knowledge Discovery in Databases

Data cleaning See above.

Feature construction As explained above, new information or new representations of
given information are often essential to allow learning. Numeric data may be dis-
cretised or scaled to a new range, or new attributes may be computed in many
different ways from given attributes. The term feature construction is used here to
be consistent with the machine learning literature, although attribute construction
could be used as well.

These tasks may help to structure a complex preparation process. For example, data
reduction should be among the first tasks to be addressed in such a process, since it
may reduce the time required to execute the following tasks. Propositionalisation may
be another task to be solved early, as well as creating the required organisation of the
data. Feature construction can then be among the last issues to be addressed.

At the heart of the KDD process, in the mining phase, lies a machine learning algorithm
(the terms learning and mining are often used synonymously, also in this work; the term
modelling is also used in the literature, but is used in this work to refer to the creation of
data or process models). Data preparation changes the representation of the data, thus
following the fundamental insight from machine learning research that the representation
of examples to learn from has often more impact on the quality of results than the learning
algorithm itself (e.g., (Langley & Simon, 1995; Morik, 2000)).

The data preparation phase is in the focus of the present work. As mentioned in the
introduction, it is also very often the most time-consuming phase in the KDD process,
consuming between 50 and 80% of the overall time, according to (Pyle, 1999) and a
2003 KDnuggets poll'. Chapter 4 refers to the tasks above and introduces specific data
transformations that can be applied to solve them.

2.1.4. Mining

Once the data is prepared, a mining algorithm can be applied to it. CrIsSP-DMm differen-
tiates between the following mining problem types, of which several can be combined in
a KDD project:

e Segmentation (more often called clustering), the division of a data set into mean-
ingful or significantly different subsets;

e Concept description, the derivation of an understandable description of (a subset
of) the data. Discovering an interesting subset of the data in the first place, before
describing it, is called subgroup discovery;

e Dependency analysis, the search for significant dependencies between data items,
or between events represented by the data;

e (Classification, the assignment of class labels to unlabelled data, based on a model
built from labelled data;

"http://wuw.kdnuggets.com/polls/2003/data_preparation.htm

20

2.1. Overview of the KDD process

e Prediction, also called regression, the assignment of a predicted, continuous value
to data, based on a model built from data where this value is available.

CRrisp-DM also mentions data description and summarisation as a data mining problem
type, but assigns it to the data understanding phase because it is seen as preparatory to
the actual mining; hence, statistical and visualisation techniques are used to address this
type. More sophisticated methods, such as the discovery of rules to describe patterns
in the data (e.g. (Miinstermann, 2002)), are seen as concept descriptions. Learning in
structured output spaces, like learning parse trees for natural language sentences, has
recently been reduced to classification (using many possible class labels, for example one
for each possible parse tree given an input sentence), by using a joint representation for
input and output and learning a discriminator function that returns one label, given the
input (Tsochantaridis et al., 2005).

Segmentation, concept description and dependency analysis are called descriptive min-
ing tasks; classification and regression are predictive tasks.

For each problem type, a number of machine learning algorithms exist that automate
the task. For this work, not much about these algorithms, nor further details about the
problem types, needs to be known. Introductory material can be found in many textbooks
from machine learning and data mining, including (Mitchell, 1997) or (Witten & Frank,
2000). Nevertheless, there are some important issues to be aware of in the context of this
work.

e Selecting a problem type and machine learning algorithm determines only the tech-
nical requirements on the data representation that is used as input for mining. Other
aspects mentioned in section 2.1.3 remain open. This is why data preparation is an
explorative process, as mentioned in the introduction.

e Most machine learning algorithms have superlinear runtime complexities, which
restricts the amount of data that can be used for training the models. For many
algorithms, training set sizes beyond main memory capacities are ruled out, though
specific implementations to work on databases have been created for some settings
(e.g. (Miinstermann, 2002)). Often this restriction introduces the need for data
reduction (see the data preparation phase).

e For the tasks of classification and regression, two sets of labelled data are needed:
one for training the model and one for controlling its generalisation performance
(to avoid the so-called overfitting). These sets are called training set and test set.
The label represents the class or the amount to be predicted. Acquiring labels can
be expensive, but the two sets must be big enough to be representative of the
underlying population. For data preparation it is important to note that both sets
must be prepared in exactly the same way.

e For classification and regression, all the unlabelled data that is not used for training
and testing has to be prepared in rather the same way as the labelled data, if it is
to be used during deployment (deployment is explained in section 2.1.6). It would
not make sense to train a model on one representation and have it make predictions
based on a different representation. For training, the data set size is often simply

21

2. Knowledge Discovery in Databases

adjusted to the available main memory. But for deployment, the size of the data
set poses a significant performance challenge on the data preparation phase, if,
as is typical, the unlabelled part of the data set is large. For example, to predict
marketing response behaviour of customers, a company with millions of customers
may use only the data of some tens of thousands of customers for training, but
then apply the model to all its customers. Thus all customer data goes through the
preparation process.

e The tasks that need to be solved in the mining phase, which include training, testing
and the tuning of certain algorithm-dependent parameters, can lead to complex
experiments with nested applications of basic operations (Mierswa et al., 2003).
Adequate support must be given to the user for such experiments; see section 4.5.

e Some mining algorithms allow, or even require, some post-mining operations, such
as pruning of a decision tree or a rule set. Since these operations concern the learned
model rather than the data sets, they are assigned to the mining phase in this work.
Though in some literature a specific post-processing phase is introduced as part of
the KDD process, in this work, the term “post-processing” is used to refer to data
processing that follows the mining phase (see section 2.1.6), while “preparation” or
“pre-processing” precede mining.

o In distributed mining settings, special algorithms may be applied that combine
locally learned models. Assuming homogeneous data schemas at each local site, this
requires to prepare the data at each site in exactly the same way before learning
locally. Thus it makes sense to define the preparation process once and apply it
several times. Chapter 6 describes how this can be achieved.

2.1.5. Evaluation

In the previous phase, the evaluation of the learned model using a test set or other
measurable criteria serves to refine the model until a satisfactory quality is achieved.
However, in CRISP-DM, there is an extra evaluation phase whose subject is the whole
process so far. Each phase of the process offers a lot of options, so a lot of decisions must
be made during a KDD project. In the light of the mining results achieved so far, those
decisions should be reviewed. Each phase provides new insights into the data and new
ideas about what could be mined. It may now be desirable to repeat some parts of the
process with modifications. Also, the results so far should be documented, including the
steps that led to them.

2.1.6. Deployment

In the final phase, the data mining results are mapped back to the original goals and
objectives set out in the first phase. Because often the objectives are to improve operations
and processes that the data owning organisation performs, this means to integrate the
results into existing work flows. This is a nontrivial endeavour which should be included
into the project plans from the outset.

22

2.2. Two levels of KDD descriptions

When the mining problem was descriptive, its results are new insights into the entities
represented by the data that was analysed. Deployment may here be limited to the
creation of a report for the management of the organisation, who can decide about new
policies for the operational processes of the organisation. For example, the physicians of
a clinic may change or implement certain treatment procedures after KDD has identified
problematic patient subgroups. This kind of deployment of mining results is beyond the
scope of KDD.

When the mining problem was predictive, one of its results is a function that predicts
labels for new, unlabelled data. The main deployment action is to apply this function on
such data, and to use the predicted label in a business process. For example, if sales of a
product are predicted for a certain time point in the future, acquisition and stocking of
the product can be planned, like in the example application in section 1.1.1.

Another issue in predictive settings is that the label on which the mining algorithm is
trained may need to be transformed during data preparation; for example, some neural
net implementations require numerical input in the real interval [0..1]. Only reversible
transformations can be used in these cases, because the predictions made by the algorithm
have to be translated back to the original label values, before they are usable. Thus a
data post-processing step is required after mining. See also section 7.2.6.

Both for descriptive and predictive problems, another deployment issue often arises.
The KDD results reflect the state of the data owning organisation, or the entities it
deals with, as far as they are represented by data; reports on this state become outdated
over time. So quite often the KDD process, now that it is documented and justified by
good results, will be executed on a routinely basis, in regular intervals, to update the
model(s) on new data (Brachman & Anand, 1996) (one of the few KDD application
reports that mention this is (Hereth & Stumme, 2001)). This kind of regular mining
may be executed by nonexpert staff. It may require to integrate a predictive model into
operational computer systems, or to regularly provide a descriptive mining algorithm
with new training data. For example, when predicting customer response behaviour in
marketing, one may want to send letters automatically to those customers that were
predicted to respond positively. This kind of integration would in turn require to also
integrate all data preparation steps that were applied. In many institutions this poses a
problem as it concerns data from operational systems, whose capacities may not suffice to
perform complex data preparations beside the actual business operations (Kohavi et al.,
2004). A specific business process may thus have to be defined in order to perform regular
deployment.

2.2. Two levels of KDD descriptions

Computer scientists are used to the idea of realising an abstract, task-oriented model
of an application or a domain in lower-level languages. These languages are typically
general-purpose programming languages: powerful formalisms that must be handled by
highly skilled experts. Yet the application or domain in question may be rather simple.
In this view there are two different description levels of the application. One of them
is much closer to human understanding of the domain, but it has to be translated to
a lower-level formalism. In the case of Knowledge Discovery in Databases, early work

23

2. Knowledge Discovery in Databases

had to rely on low-level approaches to data preparation and mining because nothing else
was available. The field was just emerging and too complex to have developed a higher-
level understanding quickly. The present work attempts to summarise and extend the
higher-level concepts in data preparation that have emerged in the decade that KDD has
existed. This section introduces the two description levels and their connection, while the
following two chapters elaborate on details of both levels, but in particular the higher
level. Chapter 6 then shows how both levels can be formalised in a metamodel of KDD
processes to enable collaborative work on blueprints of KDD solutions.

The technical level describes the data and any operations on the data independently
of any application purpose. The higher level deals with KDD concepts: the role that the
data plays, and the purpose of applying a preparation method, are seen in the context
of the knowledge discovery application. This level will therefore be called conceptual.
Similar level distinctions have been made in the knowledge representation literature.
Newell (1982) argues that different levels of computer systems have the following common
attributes: there is a medium that is to be processed (for example, bit vectors or logical
expressions); there are components that provide the primitive processing capabilities (like
registers); and there are laws of composition and behaviour that assemble components
into a system and determine how the system behaviour depends on the components’
behaviour. Newell sees the introduction of a new level justified when a system can be
defined in terms of the medium and components of that level alone, without reference to
any of the previously used levels; at the same time, the new level must be reducible to the
next lower level. Newell used the term “symbolic level” for general-purpose computation,
and introduced a “knowledge level” to be used for the modelling of intelligent agents.
The corresponding medium is knowledge, and the components are goals and actions.
Adapting this idea to the present work, its goal is to introduce the conceptual level for
data preparation in KDD, whose medium is given by data sets, and whose components
are processing operators. It makes perfect sense to describe data preparation in terms of
this level, without recourse to any other level. Yet there is also a possible reduction to
the next level below, the technical, implementation-dependent level, and this reduction
is discussed wherever appropriate in the following chapters.

An extension of the multiple-level approach is the multiple-model approach which
underlies the work on the KADS project (Schreiber et al., 1993c). Various models are
used there to highlight selected aspects of the (knowledge-based) system that is to be
engineered; irrelevant aspects can be neglected in the construction of one model because
they are accounted for by another model. For example, an organisational model can be
set up to reflect the socio-organisational environment and its interaction with a system,
or a task model shows how overall system tasks are decomposed into subtasks (Schreiber
et al., 1993b). The term “model” emphasises the fact that these views on a system are
products of an engineering process. It would not be inappropriate to say that a conceptual
model for data preparation is presented in subsequent chapters; however, to emphasise
the reducibility to the technical level, the term level is preferred.

Regarding the development of a KDD process, the two levels are characterised by
different aspects:

e Technically, the syntactic well-formedness of all operations with regard to the un-
derlying technical data model (see chapter 3) must be ensured.

24

2.2. Two levels of KDD descriptions

e On the KDD level, what makes the KDD process successful can be more easily un-
derstood, documented and administrated (modified, stored, and re-used) by using
the concepts relevant to KDD.

One may relate the different levels to different types of users of data collections: while
for example database administrators are typically concerned with the technical level,
KDD experts and statisticians (data analysts) tend to think and work on the conceptual
level, as they cannot take the application out of their focus.

One of the purposes of this work is to argue that the general understanding of KDD
has matured enough to allow explicit software support for the conceptual level, with
automatic administration of the technical level. This has the following advantages:

e Many important aspects of the application at hand remain implicit if only the tech-
nical level is considered. This was demonstrated in a different domain by Clancey
(1983), who analysed the rules used in the expert system MYCIN and found that
they were difficult to understand or modify by people who had not invented them,
even though the formalism in which the rules were expressed was explicitly chosen
to be simple (in order to make automatically generated explanations of the system’s
reasoning understandable to humans). Clancey showed that rules played different
roles and were based on different kinds of justification, and suggested to encode this
type of background knowledge, as well as domain knowledge (from medicine), in

MYCIN. This corresponds to an explicit introduction of conceptual-level elements.

e If the higher level is made explicit, the lower one can be hidden, as will be demon-
strated in subsequent chapters. A software that hides the technical level can present
the entire KDD process to a user in terms of the concepts introduced in section
2.1. This eases the development of and daily work on KDD applications.

e Several technical realisations of the same conceptual model can be supported by
a system. Section 1.1.1 introduced a KDD application in which the same learning
task had to be solved on 1000 data sets of the same kind. Similarly, in distributed
data mining, frequently the same data schema is used at several local sites, so
that a decision is made to prepare or analyse data locally before combining the
results. In these cases all the identical technical processes can be hidden behind
one conceptual model of the process.

e By making the conceptual level explicit, it is automatically documented and can be
stored and retrieved for later reference. KDD applications without conceptual sup-
port have often produced good results which could later not be reproduced because
essential know-how about, for example, the data preparations or model parame-
ter settings, was lost, e.g. (Wirth et al., 1997). Thus the educational potential of
conceptual software support should not be underestimated.

e Self-explanatory, task-oriented names for the data entities can be used on the higher
level, extended by free-text annotations, rather than the cumbersome abbreviations
often used on the technical level.

e The conceptual level lends itself well to graphical representations, allowing a largely
graphical interaction between the user and the KDD system.

25

2. Knowledge Discovery in Databases

e The conceptual level allows to waive the use of formal languages for data processing,
making solutions of processing tasks accessible to a wider audience. This is an
important aim achieved by the framework of chapter 4.

e The conceptual level serves to focus a user’s efforts on relevant analysis tasks while
freeing them from technical details. It can help to develop clearer ideas of what is
to be done, by giving “mental tools”, or by providing constraints that disallow badly
formed or semantically invalid models. An example can be found in (Schreiber et al.,
1993a), where the development of precise (conceptual) models of problem-solving
algorithms revealed a clearer picture of their differences and commonalities than
existed before.

e Independence of the conceptual level allows to reuse parts or all of a conceptual
process model on new data by simply changing the mapping to the technical level.
Though this may require conceptual adaptations, it saves much effort compared
to a development from scratch. This is true even if only solutions of subtasks are
reused. Due to its work saving potentials, adaptability of KDD process models is
becoming an important requirement for modern KDD software (see section 6.6 and
criterion 1 in appendix C).

e At a conceptual level, different KDD projects can be compared much easier than
on a technical one. This allows groups of KDD experts to work collaboratively
by sharing collections of conceptual descriptions of successful projects, in which
standard recipes for the solution of certain (sub-)tasks may then be identified; see
section 6.6.

e The use of the conceptual level allows the comparison of different software tools
by abstracting from technical details. Criteria for comparison can be formulated
on the conceptual level, which makes their communication and application much
easier. Chapter 8 presents such criteria and a comparison of tools based on them.

e In grid-based knowledge discovery, which is still a research area, the KDD process
has to be set up declaratively before its execution, as the computational resources
for execution are allocated on demand (AlSairafi et al., 2003). Conceptual modelling
is very suitable for this declarative development.

The following chapters show that the connection between the two levels is well under-
stood in KDD. Chapter 3 applies the two-level view to the given data, while chapter 4
is concerned with processing the data. Chapter 6 presents a KDD system that provides
support for most of the conceptual aspects from chapters 3 and 4 in all its interactions
with users. In particular, section 6.1 discusses more literature showing that the concep-
tual level has been missing or incomplete in many previous approaches to KDD systems.
Chapter 8 compares current KDD software packages based on criteria that include the
conceptual aspects and other important issues.

26

2.3. Summary

2.3. Summary

A complete KDD process has several phases. This work focuses on data preparation.
Detailed reasons why data sets may have to be prepared have been given in section 2.1.3:
technical requirements of mining algorithms are listed in table 2.1, but as noted in chap-
ter 1, the main preparation task is to find a representation based on which a learning
algorithm can find novel and interesting patterns. This task cannot be automated. How-
ever, important subtasks have been identified in section 2.1.3 that can be used to structure
a preparation process, and thus to guide human users (the subtasks are: data reduction,
propositionalisation, changing the organisation of the data, data cleaning, and feature
construction).

In the explorative preparation phase, users can be supported through models of the
preparation process that use KDD-oriented vocabulary. Section 2.2 has argued that such
models can and should use a separate, KDD-specific description level, meaning that the
KDD process can be sufficiently described using only elements of the models, without
recourse to lower system levels. The term “conceptual level” is used in this thesis for the
higher modelling level. The following two chapters introduce the conceptual level for the
data and for the data transformations.

27

3. A Conceptual Data Model for KDD

This chapter examines the data as given for KDD and presents an abstract view of
the data, a conceptual data model, that can be used to control the preparation process.
Section 3.1 prepares the ground by making some observations about what kind of data are
usually given for analysis, followed by a discussion of certain semantic abstractions that
have been identified in the literature to classify various conceptual data models. Section
3.2 then identifies an Entity-Relationship (ER) model as providing very adequate support
of the KDD process. Finally, section 3.3 specifies some information to be attached to the
data model; this information is useful for controlling the development of the KDD process
at the conceptual level.

3.1. Background

This section first gives some background on data models (section 3.1.1). It then consid-
ers the data as it is usually given for KDD and identifies a data model for the technical
description level (section 3.1.2). Finally it introduces possible aspects of conceptual level
data models from the literature (section 3.1.3), based on which a suitable model is ex-
plained (section 3.2.2).

3.1.1. Types of data models

A data model consists of a set of abstract modelling constructs used to describe the
data from a part of the real world. Data models differ mainly in the types of modelling
constructs they support explicitly, implicitly or not at all. The most common modelling
constructs are listed in section 3.1.3. In every data model a distinction is made between
the structural description of a database, called the database schema, and the database
itself, which is called an instance of the schema.

Usually, three types of data models are distinguished:

Physical data models are used to handle the concrete storage of data. Such models may
include information about data records, files, file locations, access rights etc. They
represent the system view of the data.

Logical data models support views of the data that are more abstract but can be pro-
cessed by a computer directly. The most important example for this group is the
relational data model, which is implemented in relational database management
systems. Other examples include the historical network and hierarchical models
as well as the more modern object-oriented models. Logical data models are not
concerned with concrete storage of the data, but still view the data as collections
of records; they can be mapped directly to a physical data model.

28

3.1. Background

Dependency on: ‘ DBMS class ‘ Specific DBMS
Dependency of:

Conceptual models | no no

Logical models yes no

Physical models yes yes

Table 3.1.: Dependency of the data model types on DBMS classes and specific DBMS,
adapted from (Batini et al., 1992).

Semantic data models are the most abstract models. They allow designers to represent
data rather in the way the data arises in the real world. They are independent
of any realisation in a computer system. They provide a list of (often graphical)
abstraction concepts used to model objects, attributes or relationships.

Semantic data models are sometimes also called conceptual models (Nijssen, 1977; Ba-
tini et al., 1992). Although this term clashes with its use in the well-known ANSI/X3/
SPARC database management system framework (Tsichritzis & Klug, 1978), where con-
ceptual schemas correspond to what are called logical models above, it will be preferred
in this work because it matches the notion of a conceptual description level introduced
in section 2.2.

Another source of confusion is the fact that certain data models can play the role
of both conceptual and logical models. Table 3.1 (adapted from (Batini et al., 1992))
may help to clarify the terminology: it basically states that logical data models define
classes of database management systems (DBMS) that support them directly, such as
relational databases, while conceptual models are independent of any database system.
In this sense, object-oriented models can be logical if a database implementation uses
object-oriented structures, but may also be used as conceptual models and then mapped
to a relational logical model, for example.

Data models concern what is called domain knowledge in the knowledge representation
literature, as recognised there (Wielinga et al., 1993) (obviously there are many other
types of knowledge that one might want to represent, such as inference knowledge). In
knowledge representation, a classical distinction is made between “levels” of knowledge
that can be represented by the same structure (Brachman, 1979): implementational, log-
ical, epistemological, conceptual and linguistic. A structure represents implementational
knowledge if it models data structures or pointers; it represents logical knowledge if its
elements are predicates, propositions or logical connectives; it represents epistemological
knowledge if it provides the notions of concepts, attributes, types of relationships etc.; it
models conceptual knowledge if its elements are concepts of the domain in question, for
example cats and dogs; and it represents linguistic knowledge if its elements are words
of a concrete (natural) language, like “dog”. Using this categorisation, conceptual data
models as defined in the present work provide epistemological elements.

When talking about the building blocks, or constructs, of conceptual data models,
a number of different meta models can be distinguished. A meta model prescribes the
constructs available to form a conceptual model. Overviews and comparisons of classic
meta models are given in (Hull & King, 1987) or (Peckham & Maryanski, 1988). Among

29

3. A Conceptual Data Model for KDD

the most well-known meta model is the Entity-Relationship (ER) model with its various
extensions.

The main advantages of using conceptual data models, rather than physical or logical
ones, are as follows (Hull & King, 1987):

e Approximation to human thinking. Concepts and abstractions in conceptual mod-
els reflect the way humans organise their world more closely than logical models.
Initially, conceptual models were developed for the design of information systems;
they were expected to support the process of deriving logical schemas. It is hoped,
with some justification (Formica & Missikoff, 2004), that formalising aspects of the
world in conceptual models is more intuitive for humans than in logical models.

e Increased separation of semantic and physical components. Even in logical data
models like the relational model, which provide a very useful abstraction from the
physical data level, users must follow rather technical details in order to state
moderately complex queries. Consider the task of finding all components of some
technical device. In the relational model, typically information about the devices
would be stored in a certain relation, but separately from information about the
possible components which would be stored in another relation. The link between
these two types of information is only available implicitly: it would typically be an-
other relation containing pairs of identifiers of components and devices. The details
of this implicit link must be known to anyone wanting to solve the given task. In
contrast, in a conceptual data model this link could be explicitly represented. This
is much more correlated to the way humans tend to think about such information,
and simpler query languages can be formulated. Obviously the mapping to a given
logical and ultimately a physical data model becomes more complex in turn.

e Reduced semantic overloading. Where logical models cannot express a semantic
abstraction explicitly, they have to use implicit means. It may easily happen that
the same implicit means are used to express different semantic abstractions. For
example, the part-of relationship between devices and components is modelled in a
relational model in the same way as other types of relationships like association or
inheritance (see section 3.1.3). The aim of conceptual models is to represent such
abstractions in a structural manner.

e Provision of several levels of detail. Since conceptual models use a set of explicit
abstraction mechanisms, one may browse through such a model viewing only the
most important structural types for a global overview, then include more details
for a finer search.

The aim of this chapter is to identify a suitable conceptual meta model for data in
Knowledge Discovery. As was mentioned earlier, data-related activities are central to the
KDD process, and the design and combination of data transformations to prepare the
data for learning consumes the bulk of the time spent on a KDD project. These activities
can benefit greatly from the above advantages of conceptual models. Referring to the two
levels of description from section 2.2, both logical and physical data models are seen as
being located at the technical level in the context of this work.

30

3.1. Background

3.1.2. Structure of the given data

This subsection takes a look at the data as it is given, before the KDD process starts. As
mentioned earlier, data to be analysed using KDD has usually been collected for purposes
very different from analysis. A useful distinction can be made between structured and
unstructured data. Unstructured data forms include text documents, images, or video
files. While such data items may have an inner structure, the structure is not explicitly
represented and therefore unavailable for analysis. Structured data, in contrast, consists
of small atomic pieces of information like strings or numbers and some structured way
of organising them. Semi-structured data is inbetween, it includes, for example, text
documents whose parts (title, introduction, chapter, etc.) are marked by tags but contain
unstructured text.

At the heart of the KDD process is a mining algorithm; almost all mining algorithms
deal exclusively with structured data. Unstructured data can be brought into a structured
format by special-purpose preprocessing operations, though this is far from trivial. The
often-used terms “Web mining” or “Text mining” indicate research areas concerned with
such tasks (rather than with mining unstructured data directly, as the names suggest).
The most wide-spread structured data format is the so-called attribute-value format, or
tabular data. This is simply a table with columns storing particular data items. The
format is also called propositional, as explained in sections 1.1. One example of struc-
tured data that is not in attribute-value format is graph data, often stored as adjacency
matrices or lists, and indeed non-classical mining algorithms are sometimes used on such
data (Washio & Motoda, 2003). An example is frequent subgraph discovery, which is
discussed in section 6.5.4.

So far fixed data collections have been considered. In the stream mining scenario,
continuously arriving data is considered; see e.g. (Babcock et al., 2002) or (Domingos &
Hulten, 2000). The present work does not deal with the particular challenges of (real-
time) stream mining, but presumes fixed data collections as input to a KDD project.

This input data for a KDD process is in the vast majority of cases given in a relational
database or in tabular flat files. Databases with other logical models (for example hier-
archical or object-oriented) still play a peripheral role. The literature on successful KDD
applications clearly reflects this (Kitts et al., 2005; Soares et al., 2005). One reason is
certainly that almost all mining algorithms require their input data in an attribute-value
format, while hardly any mining algorithms that directly exploit hierarchical or object-
oriented data structures have been developed yet. The attribute-value format also easily
allows to include data from external, additional sources, like web pages. For example,
currency change rates, provided by a web service, may be useful in certain preparation
steps. The present work therefore considers only relational or tabular data, and its results
do not apply to different logical data models.

The relational data model

Because relational databases provide the data for KDD in almost all applications, a brief
description of the relational data model follows. More details can be found, for example,
in (Biskup, 1995) or (Ullman, 1988).

The relational model was originally developed by Codd (1970). Its elementary con-

31

3. A Conceptual Data Model for KDD

structs are attributes and relations. Every attribute has exactly one domain whose values
it can take. A relation is defined as a finite subset of the Cartesian product of the domains
of a sequence of attributes. The time-invariant structure of relations is described by rela-
tion schemas. A database schema is a set of relation schemas; the set of possible instances
of this schema can be restricted by intra- and interrelational integrity constraints.

More formally, let A be a set of attributes and D be a set of domains. Each d; € D
is a domain, i.e. a set of values. Typical domains would be integer, float or string with
corresponding values. Let dom : A — D be a function that denotes the domain for each
attribute. A relation schema is a tuple R = (X,X) with X € A, where ¥ is a set of
intrarelational integrity constraints which can be modelled by boolean functions that
use only attributes from X. A database schema is a tuple DS = (Ry,...,R,,A) such
that each R; (1 < i < n) is a relation schema and A is a set of interrelational integrity
constraints, again boolean functions.

Let X © A. A tuple over X is a function ¢ : X — dom(X) (where dom(X) :=
dom(Ay) x ... x dom(Ap,) if X = {A1,...,An}). The value(s) that the tuple takes for
an attribute A; (or an attribute set V < X) is (are) given by t[A;] (or t[V], respec-
tively). For a given relation schema R = (X, X), a relational instance r is defined as a
finite set of tuples over X that fulfil the conditions in . For a given database schema
DS = (Ry,...,R,,A), a database instance can be given by a set of relational instances
r1,...,Tn to the relation schemas Ry,..., R, such that all these instances fulfil the in-
terrelational integrity constraints A.

This definition assumes that for every tuple and every attribute a value from that
attribute’s domain can be given. In practice, the tuple may represent an object for which
the corresponding feature is unknown. Usually, the domains are extended by a special
symbol to represent this situation, but the exact interpretation of this symbol may vary
(compare the discussion of empty and missing values in section 2.1.3).

As for intra- and interrelational integrity constraints, only those types of constraints
are given here that are needed for this work. Let S = (X, X) be a relation schema and s
an instance to it; let also V,W < X. A functional dependency V' — W holds if and only
if Yu,v € s:u[V] = v[V] = u[W] = v[W]. An attribute set K < X is called a key of S
if and only if X is functionally dependent on K (K — X) but not functionally dependent
on any strict subset of K. To require functional dependencies or keys in a relation is an
intrarelational integrity constraint. A relation can have zero, one or more than one keys;
in practice one of the keys should be designated as primary key if there are several.

Let R = (X,%1) and S = (Y,X3) be two relation schemas. Let V € X with V =
{A,..., Ay} and W € Y with W = {By,...,B,}, so that |V]| = |W|. Let r be an
instance to R and s be an instance to S. An inclusion dependency between V and W,

written R[V] € S[W], holds if and only if
Vier:3ues:Vi=1,...,n:t[A;] = u[B;]

As an example, consider the attribute set A = {Name, Salary, Department}, the do-
main set D = {string, integer} and the function dom : A — D such that dom(Name) =
string, dom(Salary) = integer and dom(Department) = string. Figure 3.1 displays
two relation schemas R = (X,%1) and S = (Y,%9) with X = {Name, Salary} and
Y = {Name, Department}, and with instances

32

3.1. Background

Relation R: Relation S:
Name ‘ Salary Name ‘ Department
Jones | 50000 Smith Marketing
Marks | 55000 Jones Marketing
Smith | 50000 Marks | Management

Davis | 60000

Figure 3.1.: Two relation schemas and instances.

e r = {(Smith,50000), (Jones, 50000), (M arks, 55000), (Davis,60000)}
o s = {(Smith, Marketing), (Jones, Marketing), (Marks, Management)}.

The set {Name} is a key of R and also a key of S. No other subset of A is key any-
where. The inclusion dependency S[{Name}| € R[{Name}] holds (but R[{Name}] <
S[{Name}| does not hold). Corresponding boolean functions form the sets ¥; and Xs.

Research on the design of relational databases has identified a number of techniques
that help to achieve a non-redundant design, which is more or less invulnerable to logical
inconsistencies. Certain normal forms have been identified for this purpose. The first nor-
mal form requires to use only atomic domains for each attribute, rather than structured
domains, and to use a primary key for each relation. The second normal form additionally
requires that no non-key attribute is functionally dependent on a strict subset of a set
of attributes that form a key. Bringing a relation into second normal form can require to
split it into several relations, each of which corresponds to a subset of the key attributes
on which other attributes are dependent. The third normal form requires, in addition
to the conditions for the second normal form, that all non-key attributes are mutually
independent, or in other words, only dependent on the key. Again, bringing a relation
into third normal form can involve splitting it. Further normal forms exist, but are not
needed here.

Since these design techniques are rather well-known, in most (but not all) KDD appli-
cations the input data is stored in a relational database, and is given in third normal form.
This form eliminates much redundancy that might otherwise be present in the data. In
many KDD applications, unfortunately it is necessary to re-introduce some redundancy,
as explained in section 1.1.

Set semantics and bag semantics

In the relational data model, sets of tuples fill a relation. As figure 3.1 demonstrates,
data stored in this model can easily be represented as tables. For this work the general
term tabular data, or attribute-value data, is used to include structured data that can be
represented as tables with named columns whose values are from a particular domain.
However, there is a difference between the relational model and general tabular data: the
former excludes the possibility of having two identical tuples in a relation, since sets of
tuples form the instances; while the latter may contain duplicate rows, for example if
produced in spreadsheets. For example, if the tuple (Smith,50000) was inserted again
into relation R in figure 3.1, it should not appear twice in a tabular representation,

33

3. A Conceptual Data Model for KDD

if the relational model is followed strictly. Yet in practice, existing relational database
management systems generally allow the insertion of several identical tuples into one
relation, and to disallow this requires specific actions by a user. The term bag semantics
is sometimes used to denote a situation where duplicates are allowed, while set semantics
denotes the opposite, the exclusion of duplicate rows/tuples (Garcia-Molina et al., 2002).
Formally, using bag semantics can be modelled by populating an instance with multisets
(sometimes also with sequences) of tuples, rather than sets of them (a multiset is a map
from a set to the natural numbers, each element of the set being mapped to the number
of times it occurs in the multiset).

One salient difference between the two interpretations can be seen when considering the
relational operation called projection. In the relational data model, let » be an instance
of the relation schema R = (X,X). The restriction of a tuple ¢ € r onto an attribute set
V € X is denoted by t[V]. The projection of r onto an attribute set V' < X is called
7y (r) and is defined as 7y (r) := {t[V][t € r}. Thus it may hold that |7y (r)| < |r|. In
contrast, under bag semantics, selecting a subset of attributes from a relation will not
reduce the number of tuples/rows. For this reason the term “projection” should not be
used under bag semantics; instead, “attribute selection” is used in this work.

For KDD, bag semantics should be used because possible data sources include tabular
data from spreadsheets etc. In practice, this is a minor issue since duplicate rows are
rather undesirable, and if data from some source contains duplicates, then early on in
the preparation process the duplicates are usually either removed or an artificial key
is created. Yet nothing forces KDD users to do so, thus set semantics should not be a
requirement for data models in KDD.

A richer, formal model for tabular data has been developed by Gyssens et al. (1996);
it is essentially matrix-based, and thus distinguishes between different orders of rows of
a table, which is not desired for this work as discussed now.

Ordered and unordered data

In the relational model instances are sets, thus they bear no internal order. Under bag
semantics, multisets are used which also do not involve an order. But technically, data
sets must be stored in some order, obviously. This section briefly discusses why one may
abstract from a technical (implementation-dependent) order, to multisets at the logical
or conceptual level.

For KDD purposes, the order of data elements (rows in a table, tuples in a sequence) is
not important. The reason is that in principle, mining algorithms are insensitive towards
the order of their input examples during training or testing, although some order may
be preferred for technical reasons. This is true even for (time) series analysis, sequence
discovery, incremental learning approaches, or for learning with concept drift, because
the choice of a subset of examples is the same regardless of the given order in the su-
perset. For example, in incremental learning (which is often also used to handle concept
drift, e.g. (Klinkenberg, 2004)), a model is trained on some data set and then updated
using additional data. This additional data is identified according to some criterion (of-
ten time-based), but no particular order is required to identify it, nor is any particular
order needed within the additional set. In time or value series analysis, signal-to-symbol
transformations can be done as long as the (time) index is given, independent of the order

34

3.1. Background

of reading the signals. In fact, windowing (see section A.3.4) is an often-used technique
whose purpose is to encode the order of tuples in such a way that it becomes exploitable
by mining algorithms, since these algorithms make no assumptions on the order of read-
ing tuples. Even when mining natural language text, often a word-order independent
representation (the “bag-of-words” model (Salton & Buckley, 1988)) is used, and where
the context of a word is considered, like in Named Entity Recognition (NER), techniques
similar to windowing (which correspond to choosing a fixed-size context) are applied.
Pure text is unstructured data, which this work does not consider; methods to extract
structure from text may well be order-dependent. Whenever the technical realisation of a
mining algorithm for structured data is order-dependent, this is seen as undesirable and
its effects are minimised, like in the BIRCH clustering algorithm (Zhang et al., 1996).

Similarly, most preparation operators presented in the following chapter are indepen-
dent of the order of tuples in their input; for any order, the same multiset of tuples is
produced for the output. The only exception is SAMPLING (section A.1.3). Implemen-
tations of sampling techniques are usually order-dependent. However, at the conceptual
level, only the fact that the data is somehow sampled is of interest. Thus this operator
can also hide its technical implementation from users. Further, the operator ATTRIBUTE
DERIVATION (section A.5.4) is a special case, in that it directly accesses the technical
level and can thus deliver output that depends on the order of the input data.

Thus orderedness of tuples is a technical-level notion, and some implementations of
mining algorithms or preparation operators may indeed depend on ordered input for
technical or efficiency reasons. But conceptually, two data tables that differ only in the
stored order of rows are equal, for KDD purposes. See also (Abiteboul & Vianu, 1991)
(discussed again in section 4.1). This equality should be reflected in the conceptual data
model to be used for KDD. If some sorting of data is needed to fulfil the technical
requirements of a mining algorithm implementation, this can be done automatically at
the hidden technical level.

As was said above, this work considers only such data for KDD that is given in a
relational data base or in flat files that organise their data in tables. A generalisation
of these two forms is the relational data model with bag semantics, in which the order
of tuples within a relation is dependent on implementational issues. Thus the technical
description level (see section 2.2) of the given data has been identified. The following
sections are concerned with the conceptual level.

3.1.3. Semantic abstractions

Conceptual data models are a means to organise a part of the real world in a struc-
tural schema which correlates to some extent with the way humans tend to conceive
that part. In order to classify and compare conceptual meta models, some general con-
cepts of abstraction have been proposed in the literature early on (Abrial, 1974; Smith
& Smith, 1977; Nijssen, 1977; Brodie, 1984; Hull & King, 1987; Storey, 1993). Such ab-
stractions are sometimes called “epistemological primitives” in knowledge representation
(Brachman, 1979). In the present work they are called semantic abstractions. Specific
conceptual models differ in the set of abstractions they support, and how they support
them. The most comprehensive list of possible meta constructs (semantic abstractions)
is given in (Hull & King, 1987), where a General Semantic Model (GSM) is introduced.

35

3. A Conceptual Data Model for KDD

The GSM is designed for tutorial purposes and encompasses a wide range of concrete
conceptual models; in fact this makes it so general that it would often offer rather too
many possibilities to model a concrete situation. Therefore the list below does not contain
the concrete constructs of the GSM but the general abstraction mechanisms behind them
(see the literature cited above). Some references to the GSM are made for orientation.

Entity An entity represents any thing that exists. It may be a concrete, physical thing
like a person or car or an abstract notion like a legal corporation. In object-oriented
models, entities are called objects. Entities are the instances of a conceptual data
schema.

Classification Groups of similar entities can be viewed as belonging to the same class.
For example, the class Person may be used to collect all entities that represent
persons. In the Entity-Relationship model, classes are called entity types. In the
present work also the term concept is used, because it is used in the MiningMart
system (chapter 6) for historical reasons. In the GSM, classes are called abstract
atomic types (in contrast to printable atomic types, which are low-level data types
like string or integer). A class is described by attributes.

Attribute Attributes describe properties of classes. All entities in a class have the prop-
erty that an attribute denotes. For example, if the class Person has an attribute
Name it means that all entities representing persons can have a name. Domains can
be used to restrict the possible values of attributes. (The GSM uses a more general
notion of attribute because it uses attributes to model relationships.)

Relationship Relationships model any meaningful connection between entities of two
or more classes. For example, a class Person could be connected to a class Car
by a relationship that models ownership. The relationship instances then specify
which persons own which cars. This is an example of a binary relationship. Binary
relationships can usually be read in two directions: a person owns a car while the car
is owned by the person. Some conceptual models explicitly model both directions.
The arity of a relationship is the number of classes connected; binary relationships
have arity 2. In general, conceptual models fall into either of two classes (Hull &
King, 1987): those that explicitly model relationships, and those that use attributes
pointing from a class to its related class instead. Relationships can be used for very
different semantic interpretations (Storey, 1993), so that the exact interpretation
of relationships in a given meta model should be prescribed in order to simplify the
models.

Cardinality Relationships differ in the numbers of instances they may connect. For exam-
ple, a person can own zero, one or several cars, but a car is (at least officially) owned
by only one person. Conceptual models often allow to restrict a semantic schema
so as to express such cardinalities explicitly. Combinations of atleast/atmost and
zero/one/many are the most common cardinalities.

Role Classes that participate in a relationship play a certain role in that relationship. For
example, a person can be said to play the owner role in the relationship representing

36

3.1. Background

ownership. This concept is useful to distinguish different relationships a class takes
part in, from the view of the class. Some meta models such as KL-ONE (Brachman
& Schmolze, 1985) use only (binary) roles in the place of relationships.

Aggregation This abstraction allows to view a relationship between classes as a class in
its own right (Brodie, 1984). When considering the aggregate, specific details of its
components are suppressed. For example, the type Lecture might be an aggregate
of the classes Lecturer, Student, ScheduledTime and RoomNumber. In this case,
the instances of the four-ary relationship connecting instances of the four classes are
seen as composite entities. It is a matter of some subjectivity whether such entities
should be modelled as classes or relationships; aggregation gives the flexibility to
allow both (Biskup, 1995).

Grouping Grouping is an abstraction which allows to view a particular set of entities as
a different type of entity. It is also called association but today this term is used
heavily in object-oriented modelling and is therefore avoided here. For example, a
certain group of persons (instances of the class Person) may form a team which is
modelled by the grouping Team. The difference to classification is that the member
entities (persons in the example) are instances of their own class, and there is an
extra class (here Team) that models the powerset of member entities, i.e. whose
instances are sets of member instances.

Generalisation This abstraction is used when entities (instances) of one class (the sub-
class) are always also entities of a second class (the superclass). For example, each
instance of the class Lecturer (each lecturer entity) is also an instance of Person.
The relationship between the two classes is called an Is-A relationship (every lec-
turer is a person). The subclass has all attributes of the superclass, and can have
its own additional attributes.

Model constraints Apart from supporting only a subset of the above concepts of abstrac-
tion, conceptual models may also use further explicit restrictions on how to use or
combine their constructs. For example, in the entity-relationship model, attributes
can only have domains whose values are printable (i.e. alphanumeric strings), but
cannot point to other entities. Another common and useful constraint is to disallow
cyclic Is-A relationships, or to disallow any class to be subclass of two other classes.

Derived components Some data models come with a language for specifying derivation
rules. These rules allow to derive new structures and to fill them with instances (Hull
& King, 1987). For example, a derived attribute for the class Lecturer would be one
that contains the number of lectures this lecturer gives; it could be derived from the
cardinality information of the relationship Lecture and its instances. Considering
conceptual models for data preparation in KDD, the derivation of new structures
is done using data transformations. One might informally see the transformation
operations given in chapter 4 as derivation constructs of the conceptual data model
to be identified below. Therefore no particular derivation mechanisms are given in
this chapter.

37

3. A Conceptual Data Model for KDD

The above notions of abstraction can be realised to varying degrees in conceptual
meta models. For example, the Entity-Relationship model supports relationships ezplic-
1tly while object-oriented models can only support them implicitly, either by using classes
that represent an aggregation or by using object-valued attributes.

3.2. A conceptual data model for KDD

This section will identify a conceptual data model that is suitable for the purposes of
KDD. Section 3.2.1 discusses which of the semantic abstractions from section 3.1.3 are
useful for KDD-specific purposes. Section 3.2.2 then summarises a conceptual data model
that supports these abstractions.

3.2.1. Semantic abstractions needed in KDD

The usefulness of a data abstraction concept for KDD purposes is judged under the
following considerations. The data preparation phase can involve complex combinations
of single data transformations as specified in chapter 4 and exemplified in chapter 5. Each
of these data transformations produces a new representation of the data. Therefore in a
long preparation chain many intermediate representations are produced. Each of these
intermediate results can be the starting point of a new (sub-)chain of further processing,
perhaps after a revision of the first KDD results (see section 2.1.5); it can be a useful
source of information, for example for data understanding; it may allow fruitful analyses,
whether or not these are related to the KDD project that produced it; it is a natural
interface to other tools. In sum, these intermediate data representations are important
artifacts of the KDD process. For a KDD user the problem arises, however, that there
can be a rather large number of them. Therefore, the conceptual data model to be used
must allow to structure the set of intermediate results. This structuring should ideally
reflect the way the data representations are related to each other, by reflecting how they
were created. This is exactly what will be achieved in this section, giving a much clearer
overview of the KDD process and its results to the user than would be possible without
this conceptual-level support. A further discussion is given in section 4.6.

Another topic for consideration is the complexity of the conceptual model. Ideally, the
model should explicitly support all abstractions that are useful, without forcing circum-
ventions (implicit representations) of them, while it should not offer any constructs that
are superfluous for the purpose for which the model is used (Borgida & Mylopoulos,
2004). The overall goal is to make the usage of the model as simple as possible. On the
other hand, for the intended usage in this work, the model must be operational in the
sense that its mapping to the technical level can be clearly specified, and that trans-
formations of the conceptual schema result in well-defined operations at the technical
data model. Wielinga et al. (1993) state that often such formal precision impairs the
conceptual clarity of knowledge representing models, therefore they argue for the use
of both informal and formal models. Without debating the usefulness of informal mod-
els, the present work advocates clear semantics, and it will be demonstrated that good
conceptual clarity is achieved with the chosen framework.

38

3.2. A conceptual data model for KDD

Using more semantic constructs could make the conceptual model more general, effec-
tively allowing to model the application domain of the KDD process in a manner that
is independent of the concrete KDD project, so that this model can be reused in other
projects. The development of such models is the aim of research on ontologies. The word
ontology is today used in computer science to denote a description of a shared concep-
tualisation of an application domain (Gruber, 1993). Shared refers to a group of users
or machines. Ontologies are built using different formalisms of varying expressivity; for
an introduction see (Staab & Studer, 2004). Formalisms for describing ontologies are
(modern) conceptual meta models for data. Sometimes an ontology exists for the appli-
cation domain from which the data is collected, and this can be useful for Knowledge
Discovery, in particular for the mining step (see e.g. (Litvak et al., 2005) or (Svatek et al.,
2005)), but also for some data preparation tasks as in (Bogorny et al., 2005), or even
for designing parts of the KDD process (the “scenario”based approach of (Brisson et al.,
2004)). In fact, it would be very helpful to describe a KDD application in terms of a given
ontology throughout the different phases of a complete KDD process (Euler & Scholz,
2004; Cespivova et al., 2004). This would also help to reuse existing KDD applications
on similar data sets (Morik & Scholz, 2004); see also section 6.6.

However, realising this idea is fraught with two difficulties. First, standard ontologies
simply do not exist yet for the vast majority of application domains.! Therefore their
consistent use across KDD projects or across institutions is not possible. Second, not
all ontology formalisms are suitable for supporting KDD-oriented data processing (most
of the approaches from the literature mentioned in the previous paragraph are rather
domain-specific). In particular, formalisms that are designed to allow automated reason-
ing, such as description logics, tend to render rather complex data models which are
inappropriate to structure the many different data views that are created in a typical
KDD data preparation process. Thus a trade-off between the expressivity of the con-
ceptual model and its clarity or simplicity has to be found. The present work attempts
to find a balance between these goals. It selects only a small number of constructs for
the conceptual (ontological) level, with a canonical mapping to the technical level, but
proposes some additional elements that allow basic reasoning about some applicability
constraints of operators, to be described in section 3.3. While this conceptual meta model
may not be able to capture all semantic aspects of an application domain, it does allow
to set up a KDD process based on data schemas expressed in it, and it can capture at
least basic semantic concepts so that the schemas are reusable. The important issue of
reusability is discussed again in sections 4.3 and 6.6. The present work develops a coher-
ent conceptual model for KDD, combining data- and process-oriented views (see section
4.6) in a single framework. Future work may explore other options for the conceptual
data model and their implications for the rest of the KDD process (see section 9.2).

Turning now to the semantic abstractions listed in section 3.1.3, all conceptual meta
models (and all ontologies) use the concept of classification, and almost all use attributes.
(Entities are the instances of semantic schemas and are therefore not usually represented
explicitly in conceptual models, whose purpose it is to specify the schema.) These ab-
stractions are also needed for KDD purposes. They allow a simple and direct mapping

'The development of public “foundational” ontologies, open to be extended for specific applications, is
the subject of ongoing research (Niles & Pease, 2001; Masolo et al., 2003).

39

3. A Conceptual Data Model for KDD

to the technical level: classes correspond to tables (though some classes may be declared
to just represent an abstract superclass of some given classes, without a corresponding
table); attributes correspond to columns; and each row of a table represents an entity.

Conceptual meta models differ according to whether the association between a class
and its entities is given by intensional descriptions or definitions of the class, or by an
extensional approach that simply lists the associated entities. This is not a crisp but
a gradual distinction. For example, description logics are a definitorial framework, in
which the extensions of certain atomic concepts (classes) are listed, but those of defined
concepts (classes) are derived from such lists. In contrast, the Entity-Relationship model
allows no intensional descriptions other than the attributes of a class. For work in KDD,
an extensional approach seems to be more natural, because data sets, the extensions,
must be analysed as they are given, without any assumptions on properties that can be
used for intensional descriptions.

Another reason for using an extensional approach is implied in the idea of using one
conceptual model for the representation of several data sets of the same kind. If the
conceptual model specifies only the schema of a class, several technical-level data tables
with this schema can be represented by this class. As motivated in sections 1.1.1 and 2.2,
this can be very useful for KDD applications. Thus another requirement that the data
model should fulfil is to allow such one-to-many mappings between the two levels.

As was mentioned in section 3.1.3, conceptual meta models fall into two classes ac-
cording to the way they represent relationships (Hull & King, 1987). For KDD an explicit
representation of relationships is required. The reason is that in many applications the
data to be analysed are distributed over several tables and have to be integrated. This is
comparatively easy to be done if the way the tables are semantically connected is clearly
represented in the conceptual model. Of course, the semantic connection between the
tables may be hidden or too complex to be directly modelled. Nevertheless, support for
relationships will be useful once the connections have been uncovered or created anew,
which would invariably be the first subgoal of data preparation in such cases. Therefore
conceptual meta models and ontologies that do not explicitly model relationships can be
ruled out for the purposes of this work.

As regards the abstraction concept cardinality, it provides useful information, for ex-
ample for the estimation of data set sizes (see section 3.3.3) after joins. Support for
cardinalities is thus desirable.

Roles are somewhat redundant when relationships are given. They are a convenient
means of communication but do not serve particular technical purposes, at least not in
a KDD process. They are not needed for KDD.

Aggregation might be useful in some KDD projects, but it is not necessary to have
it explicitly modelled. Given that relationships are present in the conceptual model,
aggregation would allow to add attributes to a relationship so that it can also be seen as a
class. However, in such cases it is also possible to model the respective type as a class with
relationships to the other involved class. As an example, consider again the type Lecture
from section 3.1.3. If it has extra attributes (say a maximum number of participating
students), the type can be modelled as a class with relationships to RoomNumber and
so on, rather than an aggregate type. This may be considered inconvenient in certain
situations, but it is a consequence of the decision to keep the conceptual model rather

40

3.2. A conceptual data model for KDD

simple. Aggregation is a dispensable concept for KDD purposes, not least because none
of the standard data transformations of chapter 4 makes any specific use of aggregations.

A similar argument holds for grouping, which is a special type of relationship: it can
be modelled by a relationship with cardinalities zero or one for the member class, and
several for the set class. There is no reason why this specific type of relationship should
be explicitly modelled for KDD purposes, while a large number of other semantic inter-
pretations for relationships (Storey, 1993) are not supported. Again no data preparation
operation makes use of this concept, so it is not needed for KDD.

However, generalisation is an important semantic concept which should be explicitly
supported for KDD. While it is similar to grouping in that it could be modelled by
a relationship, its significance for human thinking makes it an important tool. In this
work, two particular types of generalisation are considered very useful. They have been
identified based on the characteristics of many important preparation operators from
chapter 4, which produce an output class that is linked to the input of the same operator
by one of these two types of generalisation. Therefore these two types help to achieve
the important aim of structuring the many intermediate data sets produced by a KDD
process.

The two types are called separation and specialisation. For this work they are defined
as follows:

Separation A class is a separation of another class if and only if it is described by exactly
the same set of attributes as the other class, and each of its instances is also an
instance of the other class. For example, the class representing persons aged over
50 can be modelled as a separation of the class representing all persons.

Specialisation A class is a specialisation of another class if and only if it is described by a
strict superset of the attributes of the other class, and restricting it to the attributes
of the other class yields instances of the other class. For example, if adding the
attribute Income to the class Person results in a new class PersonWithIncome,
then PersonWithIncome is a specialisation of Person.

Separation and specialisation are thus two subtypes of Is-A relationships. They might be
used together with or instead of Is-A relationships, but because the existence of either
a separation link or a specialisation link between two classes implies the existence of an
Is-A link, the latter is considered redundant in this work.

To sum up the discussion on useful properties of conceptual data models for KDD,
mainly the following criteria were identified:

e the meta model must allow to give a clear structure to the many intermediate
artifacts of the KDD process;

e it should not be too complex, yet have clear semantics and allow a precise mapping
to the technical level,;

e it must explicitly support relationships of arbitrary arity;

e it should allow a one-to-many mapping from classes to technical-level tables; and

41

3. A Conceptual Data Model for KDD

e apart from classes, attributes and relationships, it must be able to express cardi-
nalities and must support separation and specialisation.

Entity-relationship (ER) models (Chen, 1976; Teorey et al., 1986; Thalheim, 2000)
have been successfully used in database design for a long time. They use classes, at-
tributes and relationships. In most ER models, relationships of any arity are allowed. A
number of tables with the same schema can be modelled by one class and its attributes,
making ER models the natural choice for representing several like-shaped data tables by
one concept. The two types of generalisation that are needed in this work, separation and
specialisation, have already been used in ER models, albeit with slightly different seman-
tics than here. The semantics needed here can easily be accommodated by an ER model.
Based on this, different intermediate data tables in the KDD process can be represented
by different concepts (entity types), and the way they have been created from other data
tables can be indicated by relationships as well as separation and specialisation links.

On the one hand, KDD experts must understand the data they analyse very well; on
the other hand, they must keep an overview of long processes of data transformations,
as well as their intermediate results. ER models provide a level of abstraction that is
well suited for this purpose. The schema of the transformation inputs and outputs, and
the way they are linked semantically, are therefore represented at the conceptual level
using an ER model in this work. The data instances are not explicitly represented, but
can be easily accessed, in a supporting software, from an entity type that represents
them. A few additional elements that are useful for data modelling in a KDD context are
added in section 3.3, but the conceptual data model as such is specified in the following
section 3.2.2.

3.2.2. Summary of conceptual data model

This section gives a formal description of the conceptual model as proposed for this work,
for reference purposes. Also, how to create such a model from a relational database schema
is specified. Thus this chapter has identified the two levels of description from section 2.2
for the data, as well as the connection between them that is needed in order to hide the
technical level from the user. Chapter 4 will do the same for the KDD process elements.

The ER model

The model comprises the following elements. There is a global, finite, ordered sequence
of atomic attributes A = (A1, ..., Ax), a set of domains D and a map dom : A — D
mapping each atomic attribute to exactly one domain.

The following domains are available:

e Binary := {a,b} u {L}

e Discrete := X* u {L}, where ¥* is the Kleene closure of some set of alphanumeric
symbols X

e Time :=Nu {Ll}

e Continuous := R u {1}

42

3.2. A conceptual data model for KDD

The domain Time is useful for representing time-related information, such as dates, clock
times, or time indices. The above selection of domains is discussed in section 3.3.1. Thus
the set of domains is D = {Binary, Discrete, Time, Continuous}. The special symbol
1 is an element of all sets in D and denotes the empty value.

The class notion (section 3.1.3) is realised by entity types in ER frameworks. However
to be consistent with chapter 6 where the MiningMart system is described, the term
concept will be used here. So, a concept over A is given by C = (4;,,...,4;,,) with
m=>=>1landl<i <...<4, <kand A;; € A,...,A4;, € A, where C is the name of
the concept and (4;,,...,A4,;,,) is the sequence of m attributes describing this concept.
The notation attrib(C) will be used to denote the attribute sequence (A;,,...,4;,) of a
concept C, which is also called the concept signature.

An entity e of C' is an element of the Cartesian product E¢c of the domains of all
attributes of C: e € E¢ := dom(A;,) x ... x dom(A4;,,). An instance I of a concept C
is a multiset of such entities: I : Ec — (N u {0}). For an entity e € E¢, I(e) denotes
the number of times e occurs in I. To allow the one-to-many mapping from concepts to
instances, a concept can have several instances; it can also have no instances, a situation
that may arise during the development of a KDD process, before it is executed (compare
section 6.4).

A relationship type R is given by R = (C1,...,Cp,c1,...,Cn) Where m > 2, R is
the name of the relationship type, C1 through C), are concepts, and c¢; through ¢, are
cardinalities. Cardinalities are one of {one, zeroOrOne, zeroOr More, oneOrMore}. Let
Iy, ..., I, beinstances of the concepts in R. Since the instances are multisets, obtain sets
from them by applying the operator set, where set(M) := {z | M (x) > 0} for a multiset
M. A relationship r of relationship type R is then an element of the Cartesian product
set(I1) x ... x set(l,). A set S of relationships is an instance of the relationship type
R = (C1,...,Cp,cC1,...,cp) if each element of S is a relationship of relationship type
R that is based on the same concept instances, and S obeys the cardinalities of R as
specified in the following. (Note that for instances of relationship types, set semantics are
sufficient while bag semantics are needed for concepts.) Let 1 <4 < m and let S; be the
projection of S to all concepts except the i-th concept: that is, S; contains a tuple for all
combinations of entities e1,...,€;-1,€;41,...,€m (of concepts Cy,...,Ci—1,Cis1,...,Cpn,
respectively) that occur in S. If ¢; = one then for every tuple in S; exactly one matching
tuple must exist in S. If ¢; = zeroOrOne then S may contain atmost one matching tuple
for every tuple in S;. If ¢; = zeroOr More then any number of matching tuples can be in
S for every tuple in S;, and if ¢; = oneOrMore then atleast one matching tuple must be
in S for every tuple in ;. Like concepts, relationship types can have zero, one or more
instances.

Certain set notations are used for sequences in the following, as defined now. Given
two sequences V and W, V € W holds if and only if every element of V also occurs in
W. If then W has at least one additional element that is not in V', V < W holds. For
an element v, v € V means that v occurs in the sequence V and v ¢ V means it does
not occur in V. The union of two sequences V and W, denoted by V u W is found by
appending W to V and then removing double elements. The intersection of V' and W,
V n W, is the sequence all of whose elements occur both in V and in W. The difference
of two sequences V and W, denoted by V — W, is obtained by removing all elements

43

3. A Conceptual Data Model for KDD

that occur in W from V.

The following definition will be useful below for defining specialisation. For an entity
e € E¢ of a concept C' and a nonempty attribute sequence X € attr(C), e[X denotes the
restriction of e to the attributes in X. Thus (e[X) € Ex := X gcx dom(B). Similarly, for
an instance I of the concept C, let I[|X with X < attrib(C) denote the multiset that is
obtained from [as follows: I(e) = n = (I[|X)(e[X) = n. Thus I|X can be the instance
of a concept C" with attrib(C') = X.

Separations are given by a partial order <., on the set of concepts with instances.
Given instances [; and Iy of concepts C7 and C, C; <gp C2 holds if and only if
attr(Cy) = attr(Cy) and for every entity e € E¢, with I1(e) > 0, I2(e) > 0 holds.

Specialisations are given by a relation <, over the set of concepts with instances. Given
instances I1 and Iy of concepts C and Cy, C7 <4, C holds if and only if attr(Cy) <
attr(C1) and for every entity e € E¢, with I1(e) > 0, Ia(eattr(C2)) > 0 holds. The
relation <, is not a partial order because it is not reflexive. Note that if C; <, Co
holds, the instance of Cy may have more entities than the instance of Cy, because the
restriction of the entities of C7 to the attributes of Cy may “map” different entities of C;
to the same entity in the instance of Cy. The instance of Cy may also have fewer entities
than the instance of Co, because Cy may have several occurrences of an entity whose
correspondent occurs only once in (Y.

If a specialisation or separation holds between two concepts and their instances, a
relationship type with suitable cardinalities can also be set up between them. However, a
relationship type provides less semantic information than a separation or specialisation,
so only the most specific type of link between concepts is always considered in this work.

Mapping from relational data model to ER model

As discussed in use case 1 in chapter 1, one of the purposes of using the ER meta model
is to represent the initial data before preparation is started. This initial data is expected
to be stored in a relational database in the vast majority of KDD applications. Thus
it is briefly discussed in the following how an ER model can be automatically created
from a relational database schema. In general, this is a difficult task since the schema
may semantically be underspecified. For example, inclusion dependencies or primary keys
may not have been declared. Separations and specialisations are certainly not declared.
Reverse engineering an ER model from a given relational schema is discussed in depth
by Fahrner (1996), for example.

For the present work, it is assumed that the KDD system supports the user in setting up
an ER model, by importing as much information as possible from a relational database.
Section 6.3.1 takes up this idea. It is also assumed, however, that the user is able to add
missing information to the ER model. Since data understanding is an important task in
KDD anyway (compare section 2.1.2), adding such information manually can assist both
in understanding and documenting the data.

It is rather straightforward to represent each relation by a concept, and each attribute
of that relation by an attribute of that concept. However, some attributes of a relation
may be used only to refer to the primary keys of other relations, by way of an inclu-
sion dependency. If the dependency is declared in the database schema, a many-to-one-
relationship can be created for it, which links the two concepts involved. If the attributes

44

3.3. Additional KDD-specific information

refer to another relation, but not to a key of that relation, a many-to-many-relationship
should be created. Finally, if all attributes of a relation refer to other relations by in-
clusion dependencies, the relation can be considered a cross table. In this case it is not
represented by a concept, but by a many-to-many-relationship linking all the concepts
representing the relations referred to.

The creation of relationships in the ER model thus can only be done automatically
if the inclusion dependencies are declared in the relational database schema. If not, the
user of the KDD environment may have to add such information manually.

The names of the attributes and concepts are taken from the relational schema. It
is important that the user can edit these names afterwards, but only at the conceptual
level.

The KDD roles of attributes (see below, section 3.3.2) are not represented in the
schema, but have to be added by the KDD user, except for the Key role which can be
recognised from the inclusion dependencies and primary keys, if they are declared in the
schema. Similarly, separation and specialisation links are not declared in the schema, but
may be added by the user.

Every conceptual attribute must also be associated to one of the four conceptual do-
mains, or data types, called Binary, Discrete, Time and Continuous (see also sec-
tion 3.3.1). In a relational database schema, typically some technical data types like string
or number are used. For technical data types that represent sequences of alphanumeric
characters, typically called string, varchar etc., the Discrete type is used. For technical
types representing date or time information, Time is the most suitable conceptual type.
Attributes arising from numeric technical types should be declared Continuous. Some of
these assignments of conceptual types may be wrong; for example, a numeric technical
type may be used, via some encoding, for discrete values. Thus the conceptual types that
have been found by this procedure must also be editable by the user.

If the relational database has an instance, i.e. it is filled with some data, characteristics
of this data may also be used heuristically. For example, if only two values occur in some
relational attribute, then the Binary type may be given to its conceptual counterpart.
Again, the results of such heuristics must be editable by the user.

The implementation-dependent order of tuples in the given data does not influence the
ER model created in this way.

After this initial model is set up, elements representing the results of data transfor-
mations are added to it when the KDD process is developed. The general approach is
to transfer as much of the semantic information (like data types and roles) as possible
to such results of transformations. This is possible based on the specifications of the
operators that produce these results, as will become clear in chapter 4.

3.3. Additional KDD-specific information

Developing a KDD process is a complex endeavour involving much interaction with the
data to be analysed. The conceptual data model developed in the previous section can be
used to describe the data schema at a conceptual level. Another important factor are of
course the contents of the data and the particular role that parts of it play in the KDD
project. These issues are explained in this section. Section 3.3.1 discusses data types;

45

3. A Conceptual Data Model for KDD

KDD roles are introduced in section 3.3.2; in 3.3.3, statistical information about data
contents is considered. Such additional information on data sets must be administrated
by a KDD-supporting software, as will be discussed.

3.3.1. Data types

This subsection focuses on attribute domains. A domain is a set of values that an attribute
can take. Domains can be categorised along different dimensions. Pyle (1999) distin-
guishes three dimensions: measurement scale, discrete/continuous, and scalar/nonscalar.
The scale of measurement refers to the way the values of a domain are organised; there
are five scales: (i) nominal (for naming individual items without an inherent order), (ii)
categorical (for naming groups of items without an inherent order), (iii) ordinal (for nam-
ing items with an inherent order), (iv) interval (for integer numbers), and (v) ratio (for
real numbers). The first three are discrete, in that there is a finite set of values, the other
two are continuous (conceptually, there are infinitely many values on these scales). Dis-
crete domains can be further divided into constant domains, with only one value, binary
domains, with two different values, and sets, with more values. Scalar attributes bear a
single value while nonscalar ones, like vectors of numbers, combine several values.

Another important type of attribute domains serves to store time-related information.
Time indices, clock times, or calendar dates can be represented in different ways, but the
essential information they give is about the time-related order of data items.

Finally, some attribute domains exhibit an inner structure. A common example is hier-
archical organisation of values, such as in product information: individual product items,
for example green, red and yellow pepper, belong to product groups such as pepper and
yet to larger groups like vegetables and then food. Special data mining approaches can
directly exploit such hierarchical attributes (Srikant & Agrawal, 1995; Han & Fu, 1999;
Domingues & Rezende, 2005). Kohavi et al. (2004) suggest a way of “flattening out”
hierarchical structures into binary attributes, using an operation similar to DICHOTOMI-
SATION (see section A.3.1). They also report experience according to which this method
is recommendable. Knobbe (2004) transforms such hierarchies into a relationship to an
additional concept, following the same aim of flattening the structure?. A second example
is the cyclical nature of certain time attributes, such as the day of the week or the month
of the year; here it is important to derive such attributes if they are not present from the
outset, thus to ensure that this cyclical information is available for mining (Kohavi et al.,
2004); see also the template TimeSeriesAnalysis in section 6.5.3. To be aware of such in-
ner structures is of course important throughout the KDD process. Yet these structures
are not explicitly modelled in this work, as they can usefully be mapped to flat attribute
domains.

The different dimensions to describe domains are each useful, but using all of them
together would be confusing rather than helpful for the conceptual overview of a KDD
application. A software that supports KDD processes should allow to describe the data
in a clear but flexible way. Thus, a simple but useful conceptualisation of data domains
should be used which does not restrict the data preparation, but keeps it as clear as

2Such flattening operations can easily be specified as convenience operators in the framework of chap-
ter 4.

46

3.3. Additional KDD-specific information

possible. In this work, a choice of conceptual data types is suggested that is directed
by the requirements of learning algorithms as listed in table 2.1 on page 17, and by the
requirements of the data preparation tasks listed in chapter 4. Using the definitions from
above, the proposed types are:

o lime

e discrete

e binary

e continuous

It will turn out in chapter 4 that these data types allow to describe all data preparation
operations at the conceptual level: that is, they are specific enough to enable the formu-
lation of constraints which ensure the technical applicability of a preparation operator to
its input. Further, together with information about data characteristics, discussed below,
they allow to ensure the usability of a prepared data set by a mining algorithm. This
choice of data types explains the fixed set of domains D in the ER model, as summarised
in section 3.2.2.

At the technical level, data type restrictions are usually supported in databases, but
not in flat files. The common data types here are numbers (integer or real), strings, and
calendar dates/clock times. While all conceptual data types can be represented by these
technical ones, respecting the technical data types during all data preparation operations
is important, even if no database is used, because usage of a database may be introduced
at later stages of the project. Writing a data set to a database always requires type
correctness at the technical level. However, the technical data types can be hidden from
the conceptual level; as will be seen in chapter 4, the technical data type of any output
of a data preparation operation can easily be determined.

A conceptual domain type can often be realised by several technical data types. For
example, a discrete domain can be realised by strings or by numbers; calendar dates can
be represented by strings; and so on. Real-world data frequently exhibits such atypical
forms of data type usage. Thus for a KDD process a “messy” use of technical data types
must not pose a problem. Rather, the technical level should be hidden and a “cleaned”
conceptual view should be provided, as elsewhere in this work. To hide the technical
level, a flexible mapping is needed.

The distinction between the two levels is also used — for data types — by Romei et al.
(2006), where the two levels are called physical and logical, respectively. However, they
appear to mix attribute roles, introduced below, with conceptual or logical data types.

3.3.2. Attribute roles

As was explained in section 2.1.4, labelled data sets are needed to tackle predictive mining
problems. In a labelled data set, the label is contained in one or more attributes (usually
one). When a mining algorithm is trained on the data, the label attribute(s) must be
specified; when the resulting model is evaluated, its predictions are compared to the
actual label using the test set. During deployment no labels are available. Thus the label
attribute(s) play a special role in the KDD process. Most of the other attributes are

47

3. A Conceptual Data Model for KDD

used for prediction. In descriptive mining settings, there is no label attribute (with the
exception of subgroup discovery approaches; e.g. (Klosgen, 2000; Scholz, 2005)).

Sometimes not all attributes that are important during data preparation are actually
needed for mining. For example, keys are often necessary to integrate data tables and
to identify entities, but they are useless for mining because each learning example corre-
sponds to one entity, which has a unique value in the key attribute, so that no pattern
can be based on this attribute. Yet key attributes are important during data preparation,
to establish links between tables.

In sum, any attribute plays one of four conceptual roles in the preparation and mining
phases:

e Label

e Predictor
o Key

e No role

These roles are introduced as another special tag attached to attributes in the ER model.
They distinguish how attributes are used in the KDD process, so they are conceptual-
level elements. Even the special role no role is useful because it may be desired to “switch
off” attributes temporarily to see if mining is more successful without them. It would not
be convenient to introduce an attribute deletion operator every time this is tried. In this
way, the no role construct allows to work with the same set of attributes for training,
testing and deployment.

3.3.3. Data characteristics (metadata)

Setting up a data preparation process requires not only schema-related information
(which is given by the conceptual model) but also information on data contents. This
is explained shortly, but will also become apparent in chapter 4, which describes some
essential processing operations, and in chapter 8 where software support for these oper-
ations is analysed. Both kinds of information, schema- and content-related, are usually
referred to as metadata (data about data). Section 2.1.2 has listed some metadata that
should be collected during the data understanding phase. This section deals with the
content-related metadata (data characteristics) that can be employed during the mod-
elling of a KDD process. There are mainly three reasons why this kind of metadata is
useful.

The first reason is that this information helps to ensure the usability of the prepared
data set for mining; as table 2.1 on page 17 shows, the applicability of mining algorithms
can depend on certain characteristics of the data itself (rather than only its data type as
discussed above, in section 3.3.1). So when a user attempts to apply a mining algorithm to
a data set that violates some of the algorithm’s input constraints on data characteristics,
the KDD environment can prevent this if the characteristics are known.

The second reason is that the data characteristics provide useful information about in-
termediate results, and thus give some orientation to the user as to further development

48

3.3. Additional KDD-specific information

of the preparation process. Further, there are certain preparation operators, to be pre-
sented in chapter 4, whose instantiation in a KDD process depends on (is parameterised
by) characteristics of the input data set. For example, the operator VALUE MAPPING
(section A.5.3) maps the values of an input attribute to new values, thus these input val-
ues are a parameter of the operator. When the KDD environment provides these values,
the operator instantiation can be simplified.

The third reason is that knowing the data characteristics allows to estimate the storage
capacity required for the data sets that are created during preparation. The number of
attributes times the number of entities of a concept and its instance already gives a basic
estimate of the storage requirements. Knowing storage requirements is important because
on the one hand, storing all data sets created during a preparation process consumes too
much storage capacity in large applications (compare chapter 5), but on the other hand
some intermediate data sets have to be stored to allow the efficient execution of the
preparation process. This issue is discussed in more detail in section 7.3.

These three specific reasons for providing data characteristics are all motivated by
an important aim of this work, which is to specify how a data preparation process for
KDD can be developed declaratively without executing it. Separating the development
of a KDD process from its execution is useful because the execution on large data sets
takes a lot of time. Many currently available KDD environments (see chapter 8) force
their users to interrupt the development repeatedly in order to execute the part that
has been developed so far, since otherwise the further development is made impossible
by the environment because it does not know the data characteristics it needs to allow
the instantiation of certain operators. This situation can be compared to a programming
environment that forces a programmer to test their program whenever a few lines of
code have been added. Some existing data preparation systems, like Clio (Yan et al.,
2001) or Potter’s Wheel (Raman & Hellerstein, 2001), to be discussed in more detail in
section 4.1.1, execute each single data transformation step immediately, and thus also
suffer from inconvenient interruptions of the development process. These systems do not
use a conceptual data model. In contrast, KDD systems like MiningMart (chapter 6) allow
to set up a preparation process completely independently of its execution, by mechanisms
which are based on the conceptual data model, and which are explained below in this
section and in chapter 6.

In sum, certain data characteristics should be maintained by a KDD environment, and
should even be available to the user since they describe the data as transformed up to a
current point in the development. Computation and maintenance of such characteristics is
known from database management systems (DBMS), where they are often also called “the
statistics” (Haas et al., 2005). The statistics are used for several purposes in the DBMS,
including query optimisation. They pertain to values of an attribute. Mannino et al.
(1988) distinguish between four types of statistics or data characteristics: (i) descriptors of
central tendency, such as mean or median (of the values of an attribute); (ii) descriptors of
dispersion, such as minimum /maximum, variance or standard deviation; (iii) descriptors
of size, like the count of tuples (entities) or the number of distinct values (of an attribute);
and (iv) descriptors of frequency distribution, which include counts of the occurrence of
each value, or counts of the occurrence of values within certain intervals (for continuous
attributes).

49

3. A Conceptual Data Model for KDD

Since information about intermediate data sets must be made available to the user,
all descriptors from above could be useful for a KDD environment. But such descriptors
that can be used to ensure the applicability of a mining algorithm, or can be used for
the correct instantiation of an operator, are of particular importance. The following data
characteristics (coming from the last three descriptor groups) have been chosen for the
present work:

e the number of rows in every table (the size of the corresponding concept’s instance);
e the minimum and maximum values of each attribute with ordered values;
e the list of values each discrete attribute takes;

e a list of equidistant intervals into which the values of a continuous attribute fall,
for every continuous attribute;

e the number of occurrences of each value of each discrete attribute;

e the number of values that fall into each of the equidistant intervals, for each con-
tinuous attribute;

e the number of missing values in an attribute.

The characteristics of the initial, given data sets can be computed from them, though
on large data sets this may take a lot of time. The characteristics of the intermediate
data sets that result from some preparation operations, however, can only be computed
exactly after these data sets have been created, which is only after execution of the
process. Both execution and characteristics computation would consume a lot of time.
Fortunately, the framework of this work allows a different method of arriving at interme-
diate data characteristics. Data preparation is done by operators which are specified in
chapter 4. The specification includes how the data is transformed, but also often allows
some statements about how the characteristics of the data are changed. Some of these
changes cannot be given exactly for the output, but have to be estimated. Such estimates
describe the post-conditions of an operator, i.e. the characteristics of its output. The list
above also reflects which kinds of characteristics can be estimated comparatively easily,
given the operator specifications of chapter 4. The usefulness of the estimates is a main
reason why a KDD environment should maintain the data characteristics. Appendix A
gives detailed estimates for each processing operator, while some general guidelines are
given in the remainder of this subsection. Section 7.1.3 describes an implementation.

Characteristics (or metadata) of the initial data set (the input for the first processing
operator(s)) are both required and useful even if it takes much time to compute them,
though the computation can be done on a sample of the data, and some or all character-
istics might be provided by hand from someone who knows the data sets from previous
work. From then on, as much inference as possible should be performed to gain meta-
data about later data sets (results of intermediate processing operations). Inference here
means to evaluate the post-conditions of operators, to arrive at statements about the
characteristics of some particular output of an operator.

50

3.3. Additional KDD-specific information

Concerning estimation, one can distinguish between optimistic and pessimistic estima-
tion of metadata. For example, when a complex formula is used for the selection criterion
in an instantiation of the operator ROW SELECTION (see section A.1.2), it is difficult or
impossible to infer which values will occur in the output attributes without evaluating the
formula on the data, i.e. executing the operator. Pessimistic metadata estimation does
not deliver any values of the output attributes in such cases. However, in this example
it is clear that no values are added to the output attributes that have not been in the
input. So the list of values in the output can be optimistically assumed to be unchanged.

Pessimistic metadata administration makes the declarative set-up of a KDD process
model more tedious, as often intermediate steps will have to be executed in order to
analyse the data. Optimistic administration eases the development of the process, but
when the process is executed later, conflicts may occur between estimated and actual
metadata. The operators specified in chapter 4 must therefore be realised technically
such that they are robust against such conflicts. That is, replacing the estimated with
the actual (computed) metadata must not lead to problems. For instance, if the operator
VALUE MAPPING (section A.5.3) is applied to an actually non-occurring value because
this value was assumed to be in the data during the specification of the operator, it simply
does not map the value. Some data characteristics, such as the number of entities, and
the value distributions, are needed for size estimation only, anyway; misestimations of
data set sizes affect the storage strategy, but not the syntactic or semantic validity of the
developed process. Therefore optimistic administration of the value lists and data types
is suggested in this work, and chapter 4 details for every processing operator how this
can be achieved.

It should be noted that inferring and estimating characteristics will not give accurate
results over long chains of preparation steps. Most steps lose some of their input charac-
teristics information, so that the output information about characteristics is less detailed.
However, any piece of information about data characteristics of a concept helps the user
to make decisions, and the system to check the integrity of the process. Compared to
current KDD environments, which do not support metadata inference at all (see chap-
ter 8), providing optimistic metadata administration as presented in this work is a big
progress.

Methods for estimating data characteristics have been presented in the database lit-
erature, but are restricted to estimating the output size of data sets (number of tuples)
after application of relational operators. The reason is that the size is the major indicator
for the cost of processing the data set, and an estimate of this cost is needed during query
optimisation, which is the task of finding an effective way of executing a declarative query.
In contrast, estimating the other data characteristics above after an operator application
has not been addressed by database researchers. Such estimates become possible by the
detailed specifications of the preparation operators provided in chapter 4.

Size estimation also plays a role in the present work, as storage issues may depend on
it; compare chapter 8 and section 7.3. Research on size estimation has focused on the
relational operators selection and join, and indeed these are the two operators for which
size estimation is difficult (the other operators, at least in this work, leave the input size
unchanged, or the output size can be inferred from the value distribution of certain input
attributes). The term selectivity estimation is often used in the literature with respect to

ol

3. A Conceptual Data Model for KDD

these operators; the selectivity is the output size divided by the input size, or in the case
of joins: the output size divided by the product of the input sizes, because this product
is the largest possible output size of a join operation.

One can distinguish different approaches to selectivity estimation. A simple and cur-
rently widely used method is based on histograms (Poosala et al., 1996; Haas et al., 2005),
which are tables of the (frequently occurring) values of an attribute together with their
frequencies; for continuous attributes, value ranges are used. Many different methods of
building a histogram, in particular of finding the interval boundaries for continuous val-
ues, are surveyed by Poosala et al. (1996). The histograms provide (often approximate)
information about the distribution of the values of an attribute, and thus allow more pre-
cise estimates than some naive approaches based on a uniform distribution assumption.
As indicated in the list of metadata above, this work also proposes the use of histograms,
though they may be complemented by other methods for selectivity estimation. For sim-
ple selection operations based on equality or simple comparison to constants, and for
discrete attributes, the output size can be determined accurately based on histograms.
For example, when selecting all persons under the age of 18 from a concept that includes
an AGE attribute, all frequencies of values up to 18 must be added from the histogram.
If the attribute is considered continuous and the histogram uses value ranges, for exam-
ple containing only the total frequency of age values between 15 and 20, a simple linear
interpolation can be used to estimate the fraction of values within this range that are
smaller than 18. Boolean combinations of such simple selections can sometimes also be
evaluated accurately. However, when a comparison between attributes or a combination
across attributes is involved, the combined distributions of attribute values are needed,
which are usually not available. Estimates are usually based on the assumption that
the attribute values are distributed independently in such cases (Mannino et al., 1988),
because measuring the correlation of the values of different attributes is too expensive.

Another method of selectivity estimation uses the assumption that the data distri-
bution follows some parameterised function, like a uniform, Poisson or Zipf distribution
(Christodoulakis, 1983), or a polynomial (Sun et al., 1993). Then the parameters of the
function are estimated from the data. This approach cannot be used in the present work
because the data to which the parameters are to be tuned is not available before executing
the KDD process.

An important approach to size estimation is based on sampling the data, and executing
the operator in question on it in order to get estimates of the selectivity. There is a lot of
research on sampling for this purpose; see (Haas et al., 1996; Acharya et al., 1999; Ngu
et al., 2004) for overviews and current approaches. In the context of the present work,
the data is often not available for metadata estimation, therefore sampling approaches
cannot be used either (except for the few “first” operators that are applied to the initial
data sets). Another approach that cannot be used here is based on past experience about
queries and their output sizes; regression or other machine learning techniques are then
applied to learn the prediction of output sizes (Chen & Roussopoulos, 1994; Harangsri
et al., 1997).

For estimating join selectivity, Acharya et al. (1999) have presented a method that is
tailored to the special case of joins based on foreign key links, which correspond to rela-
tionships in the present work. Many data warehouses are organised in star or snowflake

52

3.4. Summary

schemas, which use such links exclusively; since data for KDD also frequently resides in
such warehouses, the method will often be applicable in KDD processes. Compare for ex-
ample the model application described in chapter 5. The simple basic idea for selectivity
estimation is that the result of a join of two concepts linked by a one-to-many relation-
ship will contain exactly as many entities as given in the concept on the “many-side” of
the relationship. Similarly, the result of a join of two concepts linked by a many-to-many
relationship will contain exactly as many entities as given in the database cross table
that stores the relationship keys. This assumes that the (foreign) keys that establish the
relationship are used for joining. Unfortunately, in a data preparation process, (exact)
information about relationships between data sets is lost when data transformations are
applied to the data sets. Although the operators in chapter 4 attempt to preserve as much
semantic information about the data sets as possible, the relationship links between pro-
cessed data sets usually cannot be recovered. However, they can be declared to exist by
the user, or created by a special operator, even for the transformed data sets, and thus
can be made available for applying joins, supporting the estimation of selectivity.

From the above it is clear that only some of the simpler methods that have been
developed for estimating selectivity can be applied in this work. Such estimates are used
for KDD for the first time in the present work. Section 7.1.3 describes which methods
were implemented; simple methods were implemented first, but more sophisticated ones
can be integrated into the framework at any time.

3.4. Summary

The structure of the data as it is given for analysis has been examined in section 3.1.
The relational data model (with bag semantics) has been identified as a suitable model
for this technical level. For the conceptual level, a number of abstraction constructs
have been presented in section 3.1.3, and a choice of constructs that are useful for the
purposes of this work has been made in section 3.2.1. The main criteria have been the
ability to structure the many intermediate results of the preparation process, and the
simplicity of the model. Based on these criteria, an entity-relationship model has been
suggested as the conceptual data model. In section 3.3, additional KDD-specific elements
for the conceptual data model have been discussed. In particular, conceptual data types,
attribute roles, and (estimated) data characteristics have been included in the conceptual
model, since they provide useful information for the control of the preparation process.
The following chapter examines this process in more detail.

93

4. A Conceptual Process Model for KDD

The previous chapter has developed a conceptual-level description framework of the data
to be analysed in a KDD project, including its mapping to the technical level. The
present chapter introduces data transformations that are specified in terms of these data
descriptions, i.e. in terms of ER models as given in section 3.2.2. The outputs of these
transformations are again elements of the ER model. The general idea is that an initial
conceptual data model can be constructed by the user, assisted by the system, to represent
the “raw” data sets before any processing has been applied. Then the transformations are
applied to process the data. Each transformation is an element of the conceptual process
model. The latter also shows how the transformations are linked (a link between two
transformations is given if the output of the first is the input of the second). Further,
each transformation adds a concept that represents its output to the conceptual data
model. It also adds a relationship type, a separation or a specialisation link connecting
the new concept to one or more of the previously given concepts. The new concept often
“inherits” many semantic elements of the concept the transformation was applied to (the
input concept), for example the roles and conceptual data types of attributes that do not
take part in the processing. Thus the transformations attempt to keep as much semantic
information from their input concepts as possible when creating an output concept. In
this way the KDD process produces a growing web of elements in the conceptual data
model which are linked in ways that indicate how they were created from each other.
This web provides a different view on the preparation process, as an alternative to the
process model itself; this is discussed in section 4.6.

The main part of this chapter is thus given by section 4.2 and the list in appendix A,
which introduce the data preparation operators for KDD; before that, related work is
given in section 4.1. The computational power of these preparation operators is examined
in section 4.3. Section 4.4 then briefly introduces an abstraction mechanism used for
combinations of preparation operators. Section 4.5 takes a short look at other phases
of the KDD process, discussing how the conceptual-level approach to KDD extends to
them. Finally, section 4.6 discusses two dual ways of developing a KDD process model,
one based on the data model and one on the process model.

4.1. Related work

The basic idea that is taken to the conceptual level in this chapter, of defining data
transformations in terms of operators that perform pre-programmed tasks on certain in-
puts, and yield certain outputs, shows up in numerous works both from KDD and from
research on databases. In the database world, data transformations have mainly been
examined in the context of federated databases and schema evolution. Section 4.1.1 dis-
cusses these approaches. Section 4.1.2 then turns to research on operators for knowledge

54

4.1. Related work

discovery.

4.1.1. Federated databases and schema evolution
Data integration

Today many institutions have more than one database. In various applications, of which
data mining is but one example, they are faced with the challenge of providing a single
interface to their distributed sources. Work on data integration addresses this challenge.
Quite a number of data integration systems have been described in the literature; for
overviews, see (Lenzerini, 2002; Halevy, 2001) and the systems listed there. The domi-
nant architectural model for data integration is the federated database, in which various
sources are mapped to a common mediated or global schema. The mediated schema uses
a Common Data Model (CDM) that must be able to accommodate all data models used
in the source databases. Users directly query the mediated schema without worrying
about how the data needed to answer the query is distributed to the various sources. For
each source database, a mapping or translation to the mediated schema must be found
in order to be able to answer such global queries. Such translations realise data transfor-
mations. Note that the mediated schema is constructed manually for a data integration
application (Halevy, 2001), and afterwards the mappings are constructed, also manually
or semi-automatically (Doan et al., 2001). Even when both schemas (local and mediated)
are given, finding mappings between them automatically is very difficult (Fiedler et al.,
2005); see also section 7.1.4. This contrasts with the more exploratory scenario of con-
structing data transformations to arrive at various new representations, where the target
schema is not defined in advanced, as in KDD processes. The latter scenario is taken
up again further below, but first some approaches for data transformations are discussed
that take both the source and the target data schema as given.

One may distinguish between data integration approaches that use a relational CDM
and others with a more complex common model. A well-known example for the latter
group is TSIMMIS (Garcia-Molina et al., 1997), a system that uses the specifically-
developed Object Exchange Model (OEM) (Papakonstantinou et al., 1995) as CDM.
This is an object-oriented data model. Other examples (Calvanese et al., 2000; Franconi
& Ng, 2000) use description logics. More complex data models allow, and require, to
use more complex mappings. Indeed, mappings between different ontologies are exam-
ined in a closely related research area see Kalfoglou and Schorlemmer (2003) for an
excellent survey. Such mappings allow to realise a variety of tasks that go beyond data
transformation, but are the subject of ongoing research; see (Melnik et al., 2005) for an
example. Below the focus is on aspects of data integration systems that involve actual
data transformations.

Many of the systems which require complex translations of source data are based
on the mediator paradigm (Wiederhold, 1992) (TSIMMIS is one example). The data
transformations are done by wrappers in such systems. A wrapper encapsulates the source
data and is able to answer queries on it that are formulated in the global query language.
Wrappers have to be created manually for each data source, by programming them. While
some research exists that attempts to simplify the creation of such wrappers (Hammer
et al., 1997), it remains a non-trivial task involving the specification of formal expressions.

95

4. A Conceptual Process Model for KDD

For example, Altenschmidt and Biskup (2002) present TYML, a formal language for
expressing mappings between schemas, which is used in their data integration system
called MMM. TYML allows to use OQL (Object Query Language) expressions (Cattell
et al., 2000) for mapping a number of source attributes to a target attribute. TYML
expressions must be developed by the integration administrator.

Davidson and Kosky (1997) describe another approach to data transformations based
on given source and target schemas, using a rule-based formalism to describe the transfor-
mations. Their rules apply to an object-oriented data model, and are expressed as Horn
logic rules; that is, they consist of a body and a head, with the body stating properties of
the source data (schema) and the head stating how elements of the target data (schema)
are built from the elements described by the body.

A remarkable contrast to these somewhat technical approaches to data transformations
is set by Yan et al. (2001), at least as far as the user’s view is concerned. These authors’
system (called Clio) provides an interactive interface by which the user constructs a
mapping from source to target elements step-by-step, without specifying the mapping
explicitly, but instead by relating data examples from source and target to each other.
The system attempts to always show the most illustrative, or distinctive, examples to
the user when ambiguities arise.

Relational extensions

In the following, approaches based on the simpler relational data model are discussed.
Using the relational model, or extensions of it, for all schemas involved in a data inte-
gration application means that the mappings from sources to mediated schema can be
simpler: often they consist only of a one-to-one or many-to-one correspondence between
elements of the two schemas. Such correspondences can sometimes be discovered auto-
matically, if there are enough syntactic clues in the two schemas; this is called schema
matching, see (Rahm & Bernstein, 2001) and section 7.1.4. The data in the schemas can
also provide clues, an idea which has been exploited in a schema matching approach that
involves machine learning (Doan et al., 2001). However, in a KDD setting the “target” or
mediated schema, the one with the prepared data, is not available in the beginning but
must be constructed, so schema matching approaches do not help.

Yet even with simple correspondences between schema elements, at first the task of
creating the mediated schema has to be solved, and it has to be done manually. One
distinguishes the two approaches of describing the mediated schema in terms of views over
the sources (“global-as-view”), and of describing the sources as views over the mediated
schema (“local-as-view”). Thus the correspondences between the schemas are given in the
view definitions. The TSIMMIS system mentioned above, like many others, follows the
global-as-view approach. Using local-as-view, the translation of queries on the mediated
schema to the sources can be seen as a query rewriting problem (Duschka et al., 2000;
Halevy, 2001). In contrast to query rewriting for query optimisation, for data integration
the goal is to rewrite a query such that it uses only the source relations, and returns
all tuples that the particular sources provide and that fulfil the query conditions. More
details can be found in the survey by Halevy (2001), who also discusses three algorithms
for query rewriting in the data integration context.

To draw an analogy to KDD (considering the data preparation phase), one might want

56

4.1. Related work

to see the schema of the initial, given data as a source schema, and the target schema of
prepared data, which is used directly for mining, as a mediated or global schema. The
discussion so far indicates that no methods exist to automatically find transformations
between the two schemas: the corresponding task is always solved manually in data
integration systems, either by programming wrappers or by finding view definitions that
express one of the schemas in terms of the other. So it is currently not possible to
have a user simply specify the desired target schema, and to discover the necessary
transformation from the sources automatically. Rather, the user will have to specify how
to transform the data in order to arrive at the desired target representation. To support
this at the conceptual level is the task that will be solved in this chapter. Fortunately,
there is some research that is involved with data transformations at the technical level,
to be discussed now.

Without specifically tailored formalisms, data transformations can be done using stan-
dard SQL, standard programming languages, stored procedures of the database man-
agement system used, or so-called ETL! tools (Carreira & Galhardas, 2004). The dis-
advantages of employing technical-level elements (mainly costly development and bad
maintainability, see section 2.2) apply here to SQL, programming languages, and stored
procedures. On the other hand, ETL tools (which usually offer a graphical interface
to data transformation, with many of the conceptual-level advantages) do not provide
enough functionality to create arbitrary transformations. For example, the computation
of new attributes is often restricted. Hence several researchers have proposed frameworks,
discussed in the following, in which data transformations are easy to express and realise.
In particular, one objective was to use declarative languages for data transformations,
in view of the success of the declarative query language SQL, and the independence of
implementation techniques it offers. Several proposed extensions to SQL are discussed
below. But first one different approached is mentioned.

Potter’s Wheel (Raman & Hellerstein, 2000; Raman & Hellerstein, 2001) is a system
that offers a graphical way (using menus) of applying data transformations to tabular
data. The input and output of a transformation are immediately visualised in spread-
sheets (thus without an abstract data model). The system provides many useful oper-
ators, including an operator that is similar to ATTRIBUTE DERIVATION (an operator
presented in section A.5.4) in that it adds an attribute to the input. In contrast to AT-
TRIBUTE DERIVATION, the new value of each entity may only depend on one particular
old value of the same entity. All operators available in Potter’'s Wheel can be specified
as convenience operators in the framework of this chapter (see section 4.2). The authors
of the system also analyse the computational power of their operators, establishing that
any mapping from one entity in the input to several entities in the output can be realised
using their operators. This result also holds for the operators of the present chapter, see
section 4.3.

Carreira and Galhardas (2004) have suggested an extension of the relational algebra
by a new, very general “data mapper” operator for computing new attributes and new
tuples for a relation. The operator ATTRIBUTE DERIVATION introduced in section A.5.4
is a specialised version of the data mapper: it produces a new attribute but no new tu-
ples. Introducing new tuples allows to add data to a data set which does not represent

"Data extraction, transformation and loading

o7

4. A Conceptual Process Model for KDD

real world entities or phenomena, and is therefore not useful for the data analysis pur-
poses of this work. The application example motivating the introduction of new tuples
in Carreira and Galhardas’ work can also be handled by the operators presented in this
chapter. Carreira and Galhardas’ report does not examine the computational power of
their operators, unlike the present work (section 4.3). But it contains algebraic rules that
involve their operator, to be used in the optimisation of query execution, of which many
apply also to ATTRIBUTE DERIVATION.

Another relational extension is proposed by Sattler and Schallehn (2001). They ob-
serve that approaches like the above rely on programmed scripts, provided by users, to
realise their transformations. Thus they introduce new SQL constructs for a few types
of data transformations, to avoid the need for programming such transformations. Their
constructs mainly allow to pivotise relations (see section A.3.2), or to sample from them.
For some other data preparation tasks like cleaning or specialised aggregations, the au-
thors also rely on programmed extensions of their framework, providing Java interfaces
that allow to insert user-defined functions into their language.

Schema evolution and schema independence

An important aspect for data integration and similar applications is schema evolution,
which refers to any changes to the schemas of the source databases. Schema evolution
is common in operational databases, as demands for data to be stored change with the
real-world phenomena that produce the data (Roddick et al., 2000). Any changes to the
schema of a source database have to be reflected in the transformations based on it. At the
same time, to perform a schema evolution in the first place is nothing else than construct-
ing a mapping, or transformation, from the old to the new schema. Thus the frameworks
for schema evolution are rather similar to the data transformation frameworks discussed
in this section. For example, Claypool et al. (1998) use “schema evolution primitives” for
an object-oriented data model. These primitives are taken from (Banerjee et al., 1987)
and apply to their object-oriented data model; they consist of simple atomic changes
like adding an attribute (compare the operator ATTRIBUTE DERIVATION, section A.5.4),
changing the name or domain of an attribute, changing the superclass of a class, and
others. Claypool et al. (1998) combine the primitives to “templates” that can perform
more complex tasks.

The necessity to adapt existing data transformations, or mappings in the data integra-
tion applications, to evolved schemas has led to the idea of designing data transformation
languages that are robust against schema changes. This can be achieved by designing
languages that allow to query and manipulate both data and schema elements, and in
particular, to translate data to schema elements and vice versa. An example for a data
transformation that involves such a translation is given in section A.3.2, and illustrated
in figure A.1 on page 205.

For a well-known example, Lakshmanan et al. (1996; 2001) have introduced SchemaSQL;,
a language that is downward compatible with SQL, but introduces variables that can not
only range over relations (like SQL’s tuple variables), but also over relation names, at-
tribute names, and values of a column. Thus the language treats data and metadata
alike. Among other things, SchemaSQL allows to restructure a data schema, to use “hor-
izontal” aggregation functions, or the creation of views whose structure changes when

58

4.1. Related work

the structure of the input data (the input schema) changes. SchemaSQL has an expres-
sive power that is independent of the schema by which a data set is organised (schema
independence). As an example, consider figure A.1 on page 205: in SQL a query asking
for all values of the attribute Week is possible, given the relation on the left, but not the
one on the right; in SchemaSQL, attribute names can be queried and thus the query is
possible on both relations.

A more algebraic view on data and metadata transformations is taken in (Wyss &
Robertson, 2005b). These authors propose an extended relational algebra called Feder-
ated Interoperable Relational Algebra (FIRA). It is schema independent, like SchemaSQL.
The naming stresses the possible application of an implementation of such an algebra
in federated databases, for data integration purposes. Wyss and Robertson introduce a
notion of “transformational completeness” which is explained below.

A brief discussion of the FIRA operators follows, because some of them are similar to
the operators introduced in this chapter (the latter have been proposed independently in
(Euler, 2005¢)), and because section 4.3 refers to them. The discussion is kept informal.

Besides the operators of the standard relational algebra, FIRA contains six further
operators. Drop projection is a modified projection operator whose parameters do not
contain the attributes to be projected, but the ones to be dropped (left out of the result-
ing projection). This allows to express certain queries without exact knowledge of the
attributes in the input or result. The Down operator allows to “pull down” relation names
or attribute names into the data; that is, these names become values of new attributes.
This is an operator that changes the status of metadata to data. Attribute dereference
is an operator used to interpret values of tuples as attribute names, so it can refer to
attributes whose names are listed as data values. The dereference operator accesses the
values of the so-referenced attribute(s). Thus this operator partly reads data as meta-
data. Generalised union is an operator that unifies all relations within a given database
(which is a set of relations), using an outer join. The result contains all the informa-
tion from the input relations in one single relation. Partitioning splits a relation into
several relations according to the values of a specified attribute, such that one output
relation corresponds to each distinct value of that attribute. The operator SEGMEN-
TATION (section A.6.1) from this chapter provides the same functionality. Finally, the
transpose operator changes data to metadata: each distinct value of a specified attribute
is transformed into a new attribute, whose values contain copies of the values of another
specified input attribute. This operator corresponds to PIVOTISATION (section A.3.2)
without aggregation.

The idea of designing schema independent languages has also been used for non-
relational data models. For one example, Su et al. (2000) have proposed MetaOQL as an
extension of the standard query language for object-oriented data, OQL.

Transformational completeness

Wyss and Robertson (2005b) do not justify their particular choice of operators for FIRA,
except that they introduce a rather informal notion of transformational completeness,
which basically involves standard relational completeness (for example through the avail-
ability of the standard relational algebra operators), plus the presence of operators that
can change the status of metadata to data and vice versa. The authors propose FIRA

99

4. A Conceptual Process Model for KDD

as a “formal archetype” of what it means to be transformationally complete, similar to
the way that standard relational algebra is a formal archetype of what it means to be
relationally complete. Section 4.3 will show that the operators presented in this chapter
provide transformational completeness in this sense.

A more powerful notion of transformational completeness is to require from a list of
operators that it can be used to transform any data schema, together with data, into a
new data schema, if the transformation is computable at all. This degree of completeness
is achieved by the tabular algebra introduced in Gyssens et al. (1996), which is based
on the tabular data model. The data model essentially models spreadsheet-like tables,
or matrices. The tabular algebra involves two special “tagging” operators and a looping
construct; they are necessary to achieve the indicated computational power. But they also
introduce a complexity which makes this algebra unsuitable for the present work, whose
purpose is to ease data transformations for end users. An interesting open question is
how precisely the non-looping part of the tabular algebra and FIRA are connected (Wyss
& Robertson, 2005b).

Summary

Research on data integration and schema evolution has shown that data transformations
are required in many applications, and that non-trivial challenges, such as schema in-
dependence, have to be met. The design of a declarative, easy-to-use but powerful data
transformation language has been a particular motivation for many researchers. With
respect to the two description levels used in the present work, elements of such languages
could be seen as conceptual because they are tailored towards the particular purpose of
data transformation, replacing specifically programmed constructs from general-purpose
languages. However, the proposed mechanisms are still somewhat technical in that they
require experience in dealing with formal languages. The aim of this chapter is to free
users from handling formal languages for data transformation. The only approaches that
also achieve this are (Raman & Hellerstein, 2001) and (Yan et al., 2001), but they do
not represent the transformation process; instead they visualise the results of each par-
ticular transformation, using no abstract data model, which makes it difficult to keep
an overview in the complex preparation processes that are needed for KDD (compare
chapter 5).

A common idea in many approaches discussed above (and below) is to implement data
transformations as sequences of previously specified operators, with well-defined inputs
and outputs to achieve compositionality. This approach is also followed in the present
work, as it provides a high degree of flexibility. The operators are represented graphically,
and nesting them is represented by forming directed acyclic graphs with the operators as
nodes. One of the proposed transformation languages could then be used to realise the
operators technically.

An important notion from this area of research is schema independence. Schema inde-
pendence is a property of a language, not of a particular query. It has not been defined
formally by the authors who introduced it (Lakshmanan et al., 2001), but it involves a
robustness against changes of the status from metadata to data and back between differ-
ent representations of (essentially) the same data set, so that a query can be formulated
on each representation that returns the same answer. This kind of robustness is provided

60

4.1. Related work

by the operators used in this chapter.

For a set of operators, the question of which types of transformations can be realised
with them is important. The notion of transformational completeness was developed to
handle it. The computational power of the operators presented in this work is briefly
examined in section 4.3.

4.1.2. Operators for knowledge discovery

The operator-based approach from data transformations has been transferred by KDD
researchers to the whole KDD process. Indeed, the importance of compositionality, as
a technique to construct complex analyses from basic building blocks, has only recently
been pointed out in a position paper on current challenges in KDD (Ramakrishnan et al.,
2005). In this respect the KDD world is clearly inspired by the success of the relational
algebra in the database world. However, as the following discussion will reveal, the pro-
posed approaches rely on formal languages, so that the conceptual level as conceived in
this work is missing in these approaches.

Note in the following that the discussion is not concerned with methods of data prepa-
ration, or the justification for these methods. Such issues can be found in the literature,
mainly in (Pyle, 1999), also in (Famili et al., 1997). Instead the focus here is on the

Y

operationalisation of preparation methods.

Mining operators

The first attempts in defining operators for KDD were made for the mining phase. Some
approaches concentrated on particular mining paradigms, while others tried to incor-
porate several types of mining algorithms. A particularly active area has focused on
frequent itemset or (association) rule mining (Han et al., 1996; Meo et al., 1998; Bouli-
caut et al., 1999; Imielinski & Virmani, 1999). Similar to some approaches mentioned in
section 4.1.1, these authors have proposed SQL extensions, that is, constructs to be used
in SQL queries which mine a data set (specified by parts of the query) for rules, and
which return such rules (as relations or in other output formats).

Another line of work has identified the SQL operator “group by” as a primitive op-
erator that is useful in efficient implementations of some mining algorithms (Freitas &
Lavington, 1996; John & Lent, 1997).

Operators for the whole KDD process

The SQL extensions are taken further by Kramer et al. (2005), whose operators provide
not only frequent itemset mining options, but also clustering, k-nearest neighbour pre-
diction, and some of the most common data preparation operators. Interestingly, their
language adds the results of mining algorithms as a new attribute to the relation from
which they were mined. They see it as a step towards integrating the preparation and
mining phases in a data-oriented view. The new attribute contains the predicted class or
value when the task was classification or regression, or a cluster identifier when clustering
was applied. In frequent itemset mining, a new pattern relation with boolean attributes
is created, with one attribute for each item and an entry (row) for each frequent itemset.

61

4. A Conceptual Process Model for KDD

But there is also an additional operator that joins the pattern relation to the relation
from which the patterns were mined, such that the data relation is extended by boolean
attributes indicating for each example whether it is covered by a particular pattern. This
approach demonstrates how data and patterns mined from the data can be viewed under
a single (data-oriented) framework, both during training and deployment. The operator
ATTRIBUTE DERIVATION, introduced in the present work in section A.5.4, exploits this
idea to accommodate mining algorithms in the KDD process. It is similar to the extend
operator used by Kramer et al. (2005) (it was proposed independently in (Euler, 2005c)).

The preparation operators that Kramer et al. (2005) have included in their frameworks
are sampling, automatic attribute selection, computation of distances between examples,
discretisation and transposition (exchange of rows and columns; refer to appendix A for
descriptions of the other preparation operators). Kramer et al.’s language could serve to
implement the technical level for the conceptual level elements introduced in this chapter.

The data preparation language by Sattler and Schallehn (2001), which was discussed in
section 4.1.1, has got some elements which are useful for KDD, as it includes constructs
for data cleaning, sampling, and discretisation, and is extensible by user-defined grouping
or aggregation functions.

Clear et al. (1999) have also extended a database query language with specific knowl-
edge discovery constructs. The language is SQL/MX, the query language of an object-
relational database management system (DBMS) called NonStop SQL/MX. The authors
point out that extending query languages offers the opportunity to implement the ex-
tensions at a low (system-near) level within the DBMS, to gain efficiency. They also
provide guidelines as to when a language extension should be directly supported by the
DBMS; particular issues are generality (applicability for many tasks), and potential for
performance improvement. The operators implemented for data preparation in SQL/MX
are: transposition, which is here a concise form of computing multiple data aggregations
at once; sampling; sequence functions, which provide access to previous tuples from a
current tuple when iterating through the tuples; and partitioning, whose functionality is
equal to that of SEGMENTATION (section A.6.1).

A special attention to data cleaning was given by Galhardas et al. (2001). They dis-
tinguish between a logical level of describing cleaning operations, where SQL together
with their proposed extensions is used (in a declarative way), and a physical level that
provides implementations of the operations, such that a logical operation (like clustering)
can be realised by various physical methods (clustering algorithms). However, even at
the SQL level these authors employ (call) a number of specifically programmed exter-
nal functions. These functions serve particular data cleaning purposes. The application
area considered in (Galhardas et al., 2001) is to sort and clean bibliographic references
extracted automatically from the web. A number of special functions are used by the
authors to describe a data cleaning process even at the logical level. Thus the distinction
of the two levels is not very precise in their work.

On the commercial side, Microsoft has included data mining functionality in its SQL
Server 2005 software (Tang & MacLennan, 2005). It comes with a query language called
DMX. Its focus is on prediction functions; some data preparation tasks can be performed,
but they are not always independent modules (discretisation and automatic attribute
selection are examples).

62

4.1. Related work

Particular preparation operators

Apart from query languages, there are also some research reports on particular prepara-
tion operators. One family of operations that has received much attention is the group of
aggregation functions. Apart from theoretical studies (e.g. (Cabibbo & Torlone, 1999)),
the use of aggregation in data mining applications has been examined. Aggregation is
a useful tool for propositionalisation, the process of combining information from several
data sets into one (Knobbe et al., 2001). Since data sets are often in a one-to-many rela-
tionship, adding information from the “many-side” to the “one-side” requires to aggregate
tuples?. Common aggregation functions are to take the maximum, minimum, count or
average of values on the “many-side”. Flexible, user-defined aggregation functions have
also been proposed, for example in (Schallehn et al., 2001); incidentally, aggregation func-
tions have been shown to be useful in the efficient implementation of mining algorithms
(Wang & Zaniolo, 1999).

Propositionalisation is used in order to get a single data table that can be mined,
as many mining algorithms deal only with single input tables (compare table 2.1 on
page 17). The alternative is to directly mine several data tables using multirelational
learning algorithms, see section 2.1.3. However, there are reports showing that proposi-
tionalisation does not lead to worse results, and can improve results, in terms of mining
quality (Krogel & Wrobel, 2001; Krogel et al., 2003), but it can speed up mining be-
cause the propositionalisation has to be done only once, while mining experiments are
typically run a number of times. Besides, rather intelligent forms of propositionalisation
can be used that expose previously hidden information to the mining algorithm. Such
intelligent ways of aggregation have been examined by Perlich and Provost (2003). As is
typical for propositionalisation, they suggest to automatically apply a variety of aggre-
gation methods, each of which adds an attribute to the central mining table, and then
to leave it to the mining algorithm or a feature selection method to weigh the relevance
of each added attribute. They propose aggregation methods that take the frequency dis-
tribution of values of an attribute of interest in the related table into account. As an
example, consider the mining of data about customers of a company who have bought
certain products; there is a concept for customer data and one for products, linked by the
relationship type “bought”. The attribute of interest from the product concept could be
the type of product, so that its frequency distribution (based on the relationship) shows
which types of products have been bought how often by any customers. Similarly the
frequency distribution of product types bought by particular customers can be found.
The aggregation methods then compare the particular distribution of each customer with
the general frequency distribution, deriving a sum of the differences as the aggregated
value, for example. They may also take the target attribute for mining into account (a
classification task is assumed), comparing the distribution of a particular class of cus-
tomers against the general distribution. A simpler variant of their methods, suggested
by the authors, is to compare not the frequency distributions but only the frequency of
the most frequent value (the most frequently bought product), for the different single
customers or for classes of customers. This simpler variant has been specified as a con-
venience operator below (section A.2.2), as a representative of this kind of aggregation.

2The same operation is called “reverse pivoting” in (Hereth & Stumme, 2001).

63

4. A Conceptual Process Model for KDD

The other variants can be specified in a similar way for the present framework.

Another important group of operators is given by pivotisation operators. For a de-
scription of pivotisation see section A.3.2. Such an operator changes the status of data to
metadata and vice versa, and has thus been included in FIRA see section 4.1.1. Cun-
ningham et al. (2004) have introduced an additional SQL statement for this operator,
and have studied algebraic optimisations that involve this operator. A more formal ac-
count is to be found in (Wyss & Robertson, 2005a). Pivotisation and reverse pivotisation
are called “fold” and “unfold” in (Raman & Hellerstein, 2001).

Computational power of operators

A question that has received little attention in the KDD literature so far is how to decide
on a good choice of preparation operators. Most of the reports discussed above simply
propose lists of operators without justifying them. This is also true for (Kietz et al.,
2000) and (Gimbel et al., 2004), which are two reports that are not centred on data
preparation but mention such lists in passing. In fact, a good choice of operators can
be characterised by a trade-off. On the one hand, there is the aim of allowing highly
complex data transformations. This leads to the requirement that the set of operators
be computationally complete, or Turing-complete. Many KDD tools offer proprietary
programming languages to manipulate the data, in order to provide this high degree of
flexibility. On the other hand, one important aim of this work is to facilitate the develop-
ment of KDD processes by abstracting from low-level programming, to a conceptual or
task-oriented level. This abstraction entails a simplification, rendering less powerful but
more understandable operations.

Many of the above approaches have started from the relational algebra (RA), or SQL.
RA is far from being computationally complete (Aho & Ullman, 1979), but includes some
important and useful operators. Nevertheless, the above approaches have all extended
SQL by specialised operators for various purposes. Thus the relational algebra alone does
not seem powerful enough to express the various data transformations that are needed
in practice. In particular, as pointed out in section 4.1.1, there is a need to manipulate
both data and schema elements, and to change their status from metadata to data and
back, which the relational algebra is inadequate for. Section 4.2 explains how the present
work arrives at a powerful list of preparation operators for KDD without requiring formal
programming from users.

Summary

While many researchers have proposed lists of operators for data preparation, few have
arrived at clean extensions of SQL (without mixing in specially programmed functions),
few have justified their choice of operators, few have examined the computational power
of their operators, and no approaches have taken data preparation operators to a con-
ceptual level by freeing users from dealing with formal languages. In contrast, this work
provides a list of operators that can be used, through a supporting system, without formal
programming, and that is found by a systematic examination of the major preparation
tasks in a data mining context. The following section explains this.

64

4.2. Data preparation operators

4.2. Data preparation operators

While section 2.1.3 has listed the reasons for data preparation and a number of high-
level tasks, this chapter concentrates on the operationalisation of preparation methods.
Appendix A lists many specific operations needed for data preparation for KDD; this
section gives an overview, and explains the schema of descriptions used in appendix A.
Thus this work provides an ontology of data preparation operations. When expressed in
a suitable formalism, such as the one presented in chapter 6, this ontology can support
existing approaches to offer KDD methodology over Web or Grid Services (Cannataro &
Comito, 2003); see also section 6.1.2.

Usually, data preparation is seen as the execution of basic steps, each of which applies
some predefined data transformation to the output of the previous step(s), resulting in
dependency graphs of data preparation (see also section 4.4). The data transformations
are defined through operators, which are specified by their input, their transformation
task and their output. It is important to note that these specifications are given in this
section using the conceptual data model from chapter 3 (section 3.2.2). Previous work
on data preparation operators is given in section 4.1.

The approach taken in this work to finding a suitable set of data preparation operators
has been as follows. In comparison with other fields where the representation of given
data sets must be changed or mapped to other representations, like data integration (see
section 4.1.1), there are two particularities of knowledge discovery that must be accounted
for. One is that background knowledge may have to be introduced, or information content
may have to be exposed more explicitly (section 2.1.3). The second is that the goal, the
final representation of the data, is not always known beforehand, nor does it necessarily
remain fixed in the course of a knowledge discovery project, due to the exploratory nature
of new KDD projects. The first aspect means that ways of adding new data values,
computed from the given data, must be available. Apart from a rather general operator
which can be used for arbitrary computations of such new values, some operators that
provide typical computations are included for convenience (section A.5). The second
aspect leads to the requirement that data preparation operations should be simple to
deploy and change, so that the human analysts can concentrate on actually mining the
data. Recall from section 2.1.3 that the data representation is one decisive factor for being
able to find interesting knowledge. Creating suitable data representations is in most cases
a matter of intuition that cannot be automated, thus it is an important goal to support
this task as far as possible.

For this reason, every operator specified in this work is associated to one of the high-
level preparation tasks that have been identified in section 2.1.3. These tasks are: data
reduction, propositionalisation, changing the organisation of the data, data cleaning,
and feature construction. One further task group is added in section A.6: it is used
to control the kind of pseudo-parallel processing that was motivated in section 1.1.1.
Since the high-level tasks reflect the typical structure of a KDD process (in which data
reduction is followed by propositionalisation and creating the right organisation of the
data, followed by data cleaning and feature construction), the association of operators to
high-level tasks is very useful for guiding less experienced users through the preparation
process. Further, for every operator, its relevance to data mining is briefly discussed, by

65

4. A Conceptual Process Model for KDD

explaining why and in which kinds of situations the operator might be useful. Some of
this latter type of information is based on (Pyle, 1999).

It should be noted, however, that this operator list is not closed, but is open for exten-
sion by further operators. The list of operators presented in appendix A includes all data
preparation operators that are mentioned in the literature on KDD (see section 6.1.2)
and on KDD tools (section 8.1.2), all operators that were needed when implementing
the model case (chapter 5), and all operators that any of the tools examined in chapter
8 (section 8.5) provides. It is based on the list given in (Morik et al., 2001), but the
specifications here are more detailed, and are adapted to the refined conceptual data
model from chapter 3. For instance, they include the semantic links between input and
output of the operators. Also, some additional operators, as well as the associations to
the high-level preparation tasks, are provided by the author of this work. The only major
data transformation from the literature that is not included is transposition. This is the
transformation that is analogous to exchanging rows and columns in a matrix. Kramer
et al. (2005) argue that this operator is needed in some applications. It can easily be
included in the list of operators below, but since it plays no role elsewhere in this work,
this was omitted. Nevertheless, it should be emphasised that it makes sense to encode a
certain functionality from data preparation in a specific operator, if this functionality is
frequently needed.

In appendix A, all operators are listed and grouped according to the tasks. The fol-
lowing paragraphs explain the schema of their presentation. For every operator, its input
and output in terms of the conceptual data model (section 3.2.2) are given. As noted
above, each operator produces a new output concept as well as links (relationship types,
specialisations or separations) between this output and its input concepts; as explained
in section 3.2.2, only the most specific type of link that the operator adds is given. The
new elements (concepts and links) are added to the semantic schema that represents the
shape of the data sets available so far in the preparation process.

The parameters of the operators specify the kind of information that a user has to
give when applying the operator to concrete input. For example, an operator that is
used to scale the values of a particular input attribute (SCALING, section A.5.2) has a
parameter to specify which concept it should be applied to, one parameter to specify the
input attribute, and two numeric parameters that specify the new range of the values. In
addition, a name for the newly constructed attribute must be given; a parameter for this
exists for every feature construction operator (see section A.5). The name of the output
concept is a parameter of all operators, thus this parameter is not listed specifically for
each operator. Minor variants of an operator are sometimes given as “special options”;
the reason for not introducing separate operators for such variants is that the input and
output are the same, and the transformation is very similar.

Further, for every operator, preconditions that specify when it is applicable and post-
conditions that further specify its output are given. For the preconditions, a distinction
is made between constraints, which represent schema-level input requirements that must
be met, and conditions, which represent data-level (instance-level) input requirements.
The constraints mainly concern type checks, based on the conceptual data types (which
are known for each attribute, see section 3.3.1). The conditions concern data character-
istics (section 3.3.3). Obeying the constraints and conditions ensures that an operator is

66

4.3. Computational power of the operators

technically applicable.

For the postconditions, assertions are distinguished from estimates. Assertions concern
the shape of the output, such as names, types and roles of attributes. Estimates concern
the data characteristics of the output, as discussed in section 3.3.3. Note that both
assertions and estimates give statements about the operator’s output that can be made
before the operator is actually executed on its input data. Thus these statements can
be made as soon as the operator’'s parameters are specified. Similarly, the constraints
(schema-level input requirements) can be checked as soon as the operator’s parameters
are specified; in contrast, the conditions (data-level requirements) cannot be checked
before executing the operator on actual data. While the estimates of data characteristics
could be used for checking the conditions before execution, they will in general be too
imprecise to allow enforcing the conditions: In a longer chunk of operators, usually some
of the information about data characteristics that is available about the input of the first
operator, will not be available at the output of the chunk due to incomplete estimates
(for some operators, some output estimates are generally unknown).

All descriptions of estimates assume that the information about the input data char-
acteristics is complete. In operator applications where this is not the case, some of the
described estimates may not be available even after specifying the parameters of the
operator.

The conceptual data model suggested in the previous chapter allows to represent several
data tables that share the same schema by a single concept. The operators in this chapter
must be able to handle this. The descriptions of the operators in appendix A are given
for single instances of the concepts, but when applied to a concept with several instances,
the operator simply applies to all instances and creates as many instances for the output
concept as are given with the input. A problem may arise for those operators that use
more than one input concept, if the input concepts have differing numbers of instances;
this situation is excluded in the preconditions of these operators.

4.3. Computational power of the operators

This section compares the kinds of transformations that can be done using the operators
from this chapter, with the transformations that other data transformation formalisms
that have been suggested in the literature are capable of.

Section 4.1.1 has introduced the notions of schema independence and transformational
completeness, which are two requirements proposed in the literature that data transfor-
mation operators should fulfil. Both concepts have not been precisely defined so far, but
Wyss and Robertson (2005b) have proposed the FIRA algebra as a formal archetype of
a transformationally complete language, which is also schema independent. They have
stressed that such a language must be able to perform transformations between data
and metadata; in particular, transformations must be possible in all directions between
relation names (for this work, concept names), attribute names, and data items.

The list of operators given in appendix A, which is based on (Morik et al., 2001)
and (Euler, 2005¢), includes operators that “promote” data items to attribute names, for
example PIVOTISATION. The reverse direction, introducing data items based on attribute
names, is possible with REVERSE PIVOTISATION. The operator ATTRIBUTE DERIVATION

67

4. A Conceptual Process Model for KDD

(section A.5.4) can be used to introduce data items based on the concept name. However,
promoting data items or attribute names to concept names is not done by any operator
in this chapter, because the names of the output concepts are always given by the user. In
FIRA, the partitioning operator introduces new relations that are named based on data
or attribute names. This operator is very similar to SEGMENTATION (section A.6.1),
but the latter only introduces new data tables at the technical level, in order to hide
the complexity introduced by this kind of operation from the user. Thus the present
framework keeps a stricter separation between schemas and instances (or metadata and
data) than FIRA, in particular from the view of the conceptual level, but allows essentially
the same operations as FIRA at the technical level (it is easy to see that the FIRA
operators can be realised with the operators of this work, the only exception being the
naming of concepts as just discussed). Separating the two description levels thus makes
the framework presented here more user-friendly than other approaches.

Among the operators of this work, ATTRIBUTE DERIVATION has a special status: it
does not provide standard functionality for KDD applications, but is needed to allow the
flexible addition of information for mining (feature construction, see section 2.1.3). Also,
it forces the user to work at the technical level, since the ways of adding information that
users might need for their application cannot be foreseen to be modelled at the conceptual
level. The operator allows to employ a computationally complete programming language
to access the data and compute new values for each entity, but it does not allow the
introduction of new entities, and it does not allow to access instances of concepts other
than the input concept.?

Computing new data values is a facility that enhances the computational power of the
language defined by the operators, compared to classical query languages, which may
transform the data but do not compute new data items (Abiteboul & Vianu, 1991). In
recent studies summarised in (Libkin, 2003), Libkin has examined the expressive power
of SQL (version 2, without recursion); the inclusion in SQL of aggregate and grouping
functions, and arithmetic operations on numerical values, deviates from relational theory
and makes SQL more powerful than relational algebra. These devices are also provided by
the operators considered here. It is well-known that reachability queries, like the transitive
closure of a directed graph, are not expressible in relational algebra and Libkin proves
that this is true also for SQL. Among others he considers a function application operator
which is somewhat similar to ATTRIBUTE DERIVATION, in that it adds an attribute to a
relation, but it applies only to functions on tuples (which correspond to entities here).
It corresponds to virtual columns in SQL. ATTRIBUTE DERIVATION is more powerful
as it can realise functions on whole concepts (with instances). It is easy to see that
this capability makes the list of operators from this chapter strictly more powerful than
the relational algebra, or SQL, or FIRA, for example. Indeed, computing the transitive
closure can be done by encoding the computation in a function that can be used by
ATTRIBUTE DERIVATION; the function would have to be applied to an argument concept
whose instance provides all combinations of nodes in the graph, so that ATTRIBUTE

*Because a computationally complete language is used, the output of this operator may depend on
the order in which the input data happens to be given due to implementational specificities. The
only other operator for which this is true is SAMPLING, because its exact output depends on the way
random selection is implemented. In any case, at the conceptual level, the order of entities does not
play any role for mining.

68

4.3. Computational power of the operators

DERIVATION can mark for each combination whether an edge between them belongs to
the transitive closure or not. This argument concept can simply be created by joining
the concept that represents the original graph with itself.

The relational algebra essentially corresponds to first-order logic using Horn clauses
without recursion, negation or functions. Introducing recursion leads to a well-known
query language that is more expressive than the relational algebra, Datalog (Ullman,
1988)*. Since Datalog can use recursion, it can be used to compute functions without
requiring a bound on their output size. In contrast, there are only two operators in this
chapter, the join operator (section A.2.1) and REVERSE PIVOTISATION, that increase the
number of entities in the output with respect to the input. Join can produce a number of
entities up to the square of the input size, while the second operator produces a number
of entities that is bound by the product of the input size and the number of attributes.
A constant number of applications of these operators, like in a fixed expression from the
language that is formed by these operators, can only produce a number of entities that
is polynomial in the input size. This is a major difference to Datalog.

Another extension of first-order logic that was suggested to overcome some limitations
of the relational algebra is to introduce a least fixpoint operator (Aho & Ullman, 1979;
Chandra & Harel, 1982). The resulting logic is called fixpoint logic. In terms of relations,
a least fixpoint of an equation of the form R = f(R) is the smallest relation (with respect
to the subset hierarchy) that fulfils the equation. A unique least fixpoint always exists if
the function f is monotone, that is f(R;) € f(R2) holds if R; € Ry. Many interesting
queries can be formulated as least fixpoints of monotone functions. For example, the
transitive closure of a directed graph encoded in a binary relation Ry is the least fixpoint
of the equation R = f(R), if f is such that it computes the join of Ry with R using
different attributes as keys, projects the result onto the first and last attribute, and
unifies it with Ry (Aho & Ullman, 1979).

Datalog has been shown to be equivalent to the negation-free existential fragment
of fixpoint logic (Chandra & Harel, 1985; Kolaitis & Vardi, 1995). Indeed, queries like
the transitive closure of a graph are easy to express in Datalog using recursive Horn
clauses. However, non-monotone queries cannot be expressed in Datalog; for example,
the complement of the transitive closure of a graph is not expressible (Kolaitis & Vardi,
1995). In contrast, it is easy to see, based on the above computation of the transitive
closure by ATTRIBUTE DERIVATION, that the complement of the transitive closure can
also be computed by ATTRIBUTE DERIVATION.

In fact, it can be shown that most of the operators listed in appendix A can be
replaced by a combination of ATTRIBUTE DERIVATION with a few other operators. The
two other operators needed are the join operator, which is needed to combine concepts
and in order to create new entities (by self-joins), and ATTRIBUTE SELECTION. Since
ATTRIBUTE DERIVATION can be used to create the attributes that form the output of the
other operators, these three operators could suffice. One could see these three operators
as primitive operators; the other operators would be used for convenience. However,
the functions needed in ATTRIBUTE DERIVATION to replace a convenience operator by a
combination of the three primitives are not trivial. Also, the number of primitives needed

4The SQL standard version 3 also includes recursion, but not as part of the core standard, so that only
a few DBMS vendors support it.

69

4. A Conceptual Process Model for KDD

for replacing a convenience operator is not always constant, but depends on the number
of attributes in the output concept.

It follows that by using ATTRIBUTE DERIVATION and the other operators from ap-
pendix A, any concept that is computable from some given concepts (with instances) at
all, and whose instance size is polynomially bounded in terms of the input sizes, can be
created. However, the way to create it may depend on the number of output attributes.

4.4. Data preparation graphs

The remainder of this chapter now turns to a more global perspective on preparation.
As was said in section 4.2, a data preparation process consists of a number of steps, or
operator applications, executed in a particular order defined by the inputs and outputs
of the operators. That is, the output of any step can be used as input by another step.
This data flow induces a directed acyclic graph (DAG) on the steps (and also on the
input and output concepts, see section 4.6).

When modelling this DAG, the user can be supported by having the system allow
only connections that do not violate any of the constraints or conditions of operators, as
listed above. Since most of the constraints concern the conceptual data type of certain
input attributes, this amounts to a basic type checking mechanism. Apart from this type
checking, joining two concepts into one is safeguarded, in semantic terms, by requiring
a relationship to be declared between the concepts (see the remarks introducing sec-
tion A.2). The validity of parameters can also be checked. Thus the interplay of the data
model with the rather strongly specified operators can provide much more guidance to
human users than would be possible at the technical level. Invalid data preparation paths
are excluded. At the same time, the necessary freedom for exploring the possibilities of
data preparation remains. This freedom is indispensable during the first development of
a new KDD application, as explained in section 1.1 under “exploration”. It is a character-
istic of preparation for mining that this freedom exists. Little guidance about successful
paths of preparation can be given to new users, except by pointing to solutions that have
been published previously. This is the topic of chapter 6.

For large KDD applications (compare chapter 5), the graph of steps can be rather
complex. However, often some parts of the graph form a conceptual unit, in which a
specific task is completed using a certain number of steps. In fact, some such subtasks
tend to reoccur, given several KDD applications (see sections 6.5.3 and 6.6.2). Continuing
the approach of conceptual-level support to these larger units, it is useful to allow the
division of the graph into chunks of steps, to build conceptual units. These chunks can
be hierarchically organised, corresponding to tasks and subtasks that are solved in each
chunk. For example, the highest-level chunks could be organised to correspond to the
KDD process phases introduced in chapter 2, or to the high-level preparation tasks given
in section 2.1.3. This provides a clear overview of the complete process and helps to
organise both the development and the maintenance of the KDD application. There is
no correspondent at the technical level to these chunks.

From outside, a chunk can be seen as a special kind of operator; its input is the set
of concepts that the first step(s) of its inner steps take as input, and its output can be
the output of any of its inner steps. Internally, a chunk is again a directed acyclic graph.

70

4.5. Other phases of the KDD process

Often, chunks will have only one input and one output, as this is a conceptually simple
structure and chunks serve conceptual simplification, but this is by no means required. In
chapter 5, the use of chunks is demonstrated on a large KDD application, while section
6.6 underlines the conceptual importance of chunks for the re-use of KDD applications.

One might consider the introduction of new kinds of operations at the level of chunks
and graphs. Their arguments would not be concepts but chunks. This work provides such
operations indeed, they are discussed in sections 6.6 and 7.1.2; they adapt a chunk to a
changed model of its input data.

4.5. Other phases of the KDD process

In this section, a brief look is taken at other phases in the KDD process, before and after
data preparation, to see how conceptual support can be extended to them.

Like data preparation, both business and data understanding can benefit from the ex-
istence of a domain ontology (Cespivova et al., 2004). Given the ER framework suggested
in chapter 3, whose aptness for data preparation does not at all make it the first choice in
general to build domain ontologies, it may be necessary to map a given domain ontology
to an ER model. This process can at best be partially automated; however, doing it by
hand is actually advantageous, as it provides the necessary understanding of both the
domain and the data that represents it, without which the development of a successful
KDD process is hardly possible.

An important part of data understanding is working with a number of visualisation
tools. Often, visualisation and data preparation are integrated in a software; it makes
sense to use the same conceptual view of the data for both tasks see also section 4.6. The
same is true for the mining and deployment phases. Because data preparation usually
consumes the bulk of work dedicated to the development of a KDD task, support for
the process should be centred on this phase, and extended to the other phases where
possible.

During mining, conceptual-level support is mainly needed for training, testing (evalua-
tion of models), and parameter tuning, as well as the visualisation of models. Conceptual
support here means again to present solutions to these tasks in suitable terms; for ex-
ample, standard operations should be offered to split a data set into training set and
test set, to learn, evaluate and apply a model, to automatically find optimal parameter
settings, and so on. Since mining is in itself a complex process, in fact this often leads
to a separate graph of processing tasks. According to Mierswa et al. (2003), trees of
nestable operators are a suitable, conceptual representation for these tasks. The leaves of
the trees represent operations such as the learning or application of a model, while the
inner nodes correspond to more abstract, control-oriented tasks such as cross validation
or meta learning. This representation provides great flexibility for the design of complex
mining experiments, which are independent of the data preparation in that they take a
single, fixed data table as input.

Concerning deployment, section 2.1.6 has shown that it is closely linked to mining.
As discussed in section 4.1.2, many mining algorithms can be seen as special cases of
ATTRIBUTE DERIVATION; the same is true for the deployment of such algorithms to
new data. See section 7.2.5 where a realisation of these ideas is discussed technically.

71

4. A Conceptual Process Model for KDD

Correspondences between an instance of a mining operator and the instance used for
deployment must be clearly indicated. Further, a post-processing step for the predicted
label must be available if the original label was reversibly transformed (see sections 2.1.6
for an explanation and 7.2.6 for a technical solution). In descriptive settings, the model
itself must be presented to the user in an understandable way. This task, model visuali-
sation, is beyond the scope of the present work.

4.6. Two dual views of the preparation process

Traditionally, the KDD process has been thought of, and represented in software tools,
as a graph of operator applications. The graph represents the data flow. This is a useful
and intuitive approach. With the framework of the present work an alternative view is
possible, one that is centred on the data that is being processed. Table 4.1 shows that
every operator listed in the earlier sections produces exactly one of the three types of links
between concepts foreseen in the conceptual data model from chapter 3: relationship type,
separation or specialisation (recall that always the most specific type of link is produced).
It also shows that these links are always directed. This leads to the alternative view
which displays the KDD process as a web of concepts and links between the concepts;
the concepts represent initial and intermediate data sets, while the links reflect how the
concepts are related to each other. The graph in which these concepts are nodes and
their links are edges is again directed and acyclic.

A duality between the two views can be established. Whenever an operator is added
to the process-oriented view, its output concept can be automatically created and added
to the data-oriented view together with the corresponding link, which is possible due
to the well-defined semantics of operators. Conversely, whenever a new concept and a
directed link (either separation, specialisation or relationship type) are created in the
concept-oriented view, the system can offer the operators whose specification allows to
realise this link; when an operator is chosen and its parameters are specified, it can auto-
matically be added to the process-oriented view. Further, if an operator has n incoming
and m outgoing edges in the process view, then in the concept view its output concept
is connected to the output concepts of the n preceding operators by n edges, all of which
are either incoming or outgoing, and is connected to the output concepts of the m fol-
lowing operators by m edges which are again either all incoming or all outgoing®. This
means that the graph structures in the two views are very similar. The figures in chapter
5 illustrate this. Therefore a graphical user interface of a KDD system can be imagined
which offers to control the KDD process from both views. In addition to the traditional
interface, it would provide a concept editor that is used both to set up the initial ER
model, and to create further concepts with links to the present concepts. The attributes
and conceptual data types of the output concept can be determined automatically, just
like in the process-oriented view. The concept of chunking (section 4.4) can be applied
to both views; a chunk in the concept editor contains all concepts involved in the cor-
responding chunk in the process view, so that chunkings are easily transferred between
the views.

5The only exception are the initial concepts that represent the given data, since they are not output
concepts of any step.

72

4.6. Two dual views of the preparation process

Operator Relationship | Separation | Specialisation
Attribute selection I<,,0
Row selection O <gep 1

Sampling O <gep 1

Aggregation n:l

Discretisation O <1
Scaling O <41
Value mapping O<gpl
Attribute derivation O <51
Join by relationship O<gpl
Aggregate by relationship O<gpl
Union I <4ep O

Missing value replacement O<gpl
Filtering outliers O <gep I
Dichotomisation O <1
Pivotisation n:l

Reverse pivotisation 1:n

Windowing 1:0..1

Segmentation O <gep I
Unsegmentation I <4p O

Table 4.1.: Operators and the type of link between concepts they produce. I = input
concept(s), O — output concept(s), = : y — relationship type from input to output

Y Y

concept with given cardinality.

Developing a KDD process based on the data-centred view has the following advan-
tages, compared to the traditional process-oriented view:

e The (intermediate) data sets are important artifacts of the KDD process, as dis-
cussed in section 3.2.1. All these artifacts are directly represented in the concept
view in a structured way. If there is only a process-oriented view, the data sets
are hidden; when they are inspected using additional tools, they appear to be un-
structured. Only by consulting the process representation can they be related or
structured. This involves an inconvenient switch between tools or views.

e In the process-oriented view, important semantic information about intermediate
results gets lost easily. For example, consider two concepts A and B related by
a relationship type. Now A is used as input to a ROW SELECTION, resulting in a
concept C' that is a separation of A. C is in fact also linked to B by the relationship
type, because A is. By following the links in the concept web this can easily be seen
(one might display the relationship type between C' and B explicitly, but this would
clutter the graphical representation too much). In the process view this information
is not available, even if the relationship type between A and B was known and
explicitly represented in a different tool (say a database management tool).

73

4. A Conceptual Process Model for KDD

e An integration of data visualisation tools and data querying tools into the KDD
environment or system becomes much easier; these tools help to understand the
data and to discover new options for KDD approaches offered by intermediate
results. The concept view can thus become a single interface to all development
tasks needed for a KDD project.

e Data sets are the natural interfaces to other tools, like additional implementations of
mining algorithms. From the concept view this interface can easily be controlled or
shaped. Data sets have already been suggested as the “bridge” between preparation
and mining (Ramakrishnan et al., 2005; Kramer et al., 2005); see section 4.1.2. The
concept view supports this important role directly.

e When creating a link in the concept view, both input and output concept are imme-
diately fixed. In the process-oriented view, creating a link from a source operator
to another operator does not prescribe which concept that was produced in the
graph leading to the source operator is to be used as input, so the user may have
to choose from a large number of concepts.

In sum, the concept view gives as much structure to the representation of the KDD
process as the process view, but offers better integration of the many data-centred tasks
needed during a KDD project. This does not leave the process-oriented view superfluous.
Both the process editor and the concept editor alone are a sufficient means to develop and
execute KDD processes, but together they provide a maximum amount of information
and flexibility to the user. Chapter 5 gives examples for both views and illustrates their
complementarity and the correspondence of chunks in both views. Chapters 6 and 7
introduce the MiningMart system which is the first system to support both views.

4.7. Summary

The transformation of data plays a role in other application contexts besides KDD, such
as data integration. In a KDD context, the necessity to compute new values based on the
given data, and the exploratory nature of data preparation, are important issues that
must be accounted for. By providing many pre-specified operators (appendix A) that
can be combined to complex preparation processes, users can avoid formal programming
and can concentrate on their main task, which is the development of a representation
that allows successful learning. For the computation of new values, a general operator
is available, but several frequently occurring ways of computing such new values are
provided by specific “convenience” operators (section A.5).

Parts of a preparation process can be “chunked” together to form own units, with the
same kind of input and output as single operator applications (section 4.4). These prepa-
ration chunks, which can be organised hierarchically, help to organise large processes, for
example by designating solutions to specific subproblems (see section 6.5.3).

Each operator produces a particular type of semantic link between its input and output
concepts. In this way, a dual or orthogonal view on the transformation process arises in
the conceptual data model (section 4.6). Together these two views provide a high amount
of information and flexibility to KDD users.

74

5. An lllustrating Example: KDD for
Telecommunications

In this chapter, an example for a complex KDD process with extensive data preparation
is given. This example can also be examined online: see section 6.5. The KDD process
illustrates the concepts introduced in the previous chapters, in particular the data prepa-
ration operators from chapter 4 on the one hand and the dual data views they produce
on the other. Section 5.1 introduces the application domain and gives an overview; the
following sections each describe one chunk (compare 4.4) of the data preparation graph.
Section 5.8 draws some conclusions and discusses limitations of this model application.

Appendix D briefly explains some extracts of the technical level SQL program that
realises this model application. It was automatically created using the MiningMart soft-
ware described in chapter 6. It can be compared to the screenshots of the graphical
representation of the conceptual level given in this chapter, for a demonstration of the
advantages of the conceptual-level approach taken in this work.

5.1. Overview

This KDD application was modelled based on two real-world applications (Chudzian
et al., 2003; Richeldi & Perrucci, 2002a) (see also (Euler, 2005b; Euler, 2005d)) which
were developed in the European project MiningMart (Morik & Scholz, 2004). It has been
implemented on several KDD platforms (see chapter 8) using a large set (2 GB) of artifi-
cial, random data which was created based on the real data schemas used in the original
applications. More precisely, small data samples from the original applications were pro-
vided for the project and these samples were multiplied many times, and integrated using
newly created keys, to gain the artificial data sets.

The application is from the telecommunications domain. The business goal is the pre-
diction of churn, that is, predicting whether a customer is likely to discontinue the sub-
scription to the telecompany soon, and move to a competitor. In telecommunications,
churn behaviour is quite common and involves high costs; a small increase in the accu-
racy of churn prediction can therefore result in substantial cost savings. The companies
try to retain customers likely to churn by using specialised marketing campaigns.

The application uses information about customers who have left the company in the
past, to predict churn for customers who are still in contract with the company. Thus
the labelled data set that can be used for training and testing is limited by the amount
of data available for past customers. For deployment, all current customers can be used.
The model application demonstrates both training of models and their deployment; both
current and past customer data is prepared in the same way.

In general, churn behaviour is learned and predicted based on monthly information

6]

5. An IHlustrating Example: KDD for Telecommunications

Figure 5.1.: The six preparation chunks of this application and their dependencies.

from the past six months, given the month when the customer churned, or the current
month if the customer has not churned. The data in this model application covers two
years, or 24 months. From these two years, two months are chosen (called the churn
months below) and all customers who have left the company in one of those months are
taken as positive examples for churning. The negative examples are gathered by taking
all customers who have not left the company in the two years. During deployment, only
this last group is available. During training, adding the two groups of churners results
in three six-months-periods that provide past data for the customers. The model case is
designed such as two easily allow to change the two churn months. Thus it can happen
that the three periods overlap, since a given month may be the first month of one period
and the fifth, say, of another. Therefore some parts of the preparation graph must be
applied to the three periods separately, as detailed below.

The general goal of this data preparation process is to transform the given data such
that one entity describes one customer in the resulting mining table. Data from the past
six months is therefore given a representation that provides some attributes for each of
the six months, so that all the information for one customer is attached to a single entity.
Thus the resulting mining table has many attributes (98 to be precise) and the choice of
the relevant ones is left to the mining algorithm, a typical approach when there is little
intuition as to which attributes might be most important.

The data sets that are used in this KDD process are described in the following sections,
because each section deals with one chunk of the preparation graph, and in this appli-
cation each chunk corresponds to the preparation of one data table. In the final chunk,
the results of each chunk (their last output concepts) are joined and mining is applied
(section 5.7). Figure 5.1 shows the six chunks of the application and their dependencies,
which are given by the data flow. Each chunk corresponds to one section below.

Various parts of this example process exemplify the high-level data preparation tasks
introduced in section 2.1.3, as will be indicated.

76

5.2. Selection of data for preparation

Attribute Type | Explanation

Caller Key | Customer Identification

ServStart Date | Date when service started to operate for this customer
ServEnd Date | Date when service ended; missing if still operating
PayMethod | Set Method of payment used by this customer

Handset Set Type of device used by this customer

Tariff Type | Set Type of tariff booked by this customer
TariffPlan Set Type of tariff booked by this customer

Table 5.1.: The attributes of the Services concept, an input to the KDD process.

5.2. Selection of data for preparation

This part of the process exemplifies the high-level preparation task data reduction (see
section 2.1.3). The input data to this chunk is a table from the service department of
the telecommunications company that contains information for each customer about the
services offered to them. Table 5.1 explains the attributes of the corresponding concept.

Since this table provides the information whether a customer has left the company
or is still in contract, two tasks can be solved based on this data: the selection of a
suitable subset of customers for preparation, and the construction of the label for mining.
Figure 5.2 shows the process-oriented view of this chunk, that is, the graph of operator
applications, as realised in the MiningMart system which is described in the following
chapter. In MiningMart the nodes of the preparation graph are called steps; they can be
named, and represent the application of an operator.

The two steps MarkSomeChurnedCustomers and MarkNonChurners mark all customers
that belong to the first or second churn month or to the non-churners by a special value
of the new attribute. MarkSomeChurnedCustomers is realised by an operator that allows
to discretise attributes of the type date/time into discrete values, by giving time intervals.
MarkNonChurners uses a general ATTRIBUTE DERIVATION; it marks all customers who
have not left the company, as indicated by a missing value in the ServEnd attribute.
This extra marker is needed for later unification with the churned customers data set,
see below.

Note that in MiningMart, operators that create a new attribute do not also create a
new concept, but simply add the new attribute to the input concept, in contrast to the
discussion in section 4.2 where all operators are proposed to create a new output concept.
This exception produces fewer concepts in the concept web, allowing a clearer overview
of the process artifacts. At the same time it may require to update semantic links: if a
concept that is a separation of another concept is extended by an attribute, the semantic
link between them is changed to a specialisation. Such updates are not made when the
concept web is displayed in MiningMart’s concept editor, in order to reflect the creation
of concepts; a different approach is possible here, namely to adjust the semantic links
where necessary.

Since the two markers for the churners and non-churners are added to the same input
concept, they must have different names. After the two selection steps have created new

7

5. An IHlustrating Example: KDD for Telecommunications

- o [=z o[-
|ID} sl g Bl
MarkNonthurners SelectHonChurmars RenameAttribute AhdHonChurn

ol 22] ol -
£ it 1 i i1 -
MarkSomeChurnedCustamers SelectMarkedChurmers SelectKey hurnkonth Unify Eamples

Materialize DataSetKeys

Figure 5.2.: Selection of customers and construction of the label for training.

concepts, one of these attributes can be renamed which allows the unification of the
concepts. But before unification, the two attributes that provide the unique identifier for
each customer and the churn marker are selected, so that the result of this chunk is a
concept that maps customer identifiers to churn information. This concept will be joined
with the other input data sets in other chunks, using the customer identifier attribute
Caller as key, in order to provide the selection of customer data for the preparation
process. This is a modular design meaning that to get a different selection, only this
chunk (indeed only the first two steps) has to be changed, which makes it easy to re-
use the application on updated data on a regular basis. Finally the resulting concept is
materialised in the database, which is useful because MiningMart realises intermediate
concepts as database views, and the nesting of views should not be too deep.

Figure 5.3 shows the data-oriented view of this chunk. The two concepts Inactive-
Clients and ActiveClients are separations of the input concept InputServices, cre-
ated by the two steps SelectNonChurners and SelectMarkedChurners from figure 5.2;
at the moment of selection there are eight attributes (called BaseAttributes in Min-
ingMart) in the input concept, but one is different for the two separated concepts as
explained above. The ninth attribute in ActiveClients is the renamed attribute created
by the step RenameAttribute (figure 5.2). The two concepts Churners and NonChurners
are specialisations of InactiveClients and ActiveClients, respectively, as explained
above, and they are unified to get the concept TrainingSetKeysAndChurnInfo whose
materialisation is TrainingSetKeyAndLabel.

Comparing figures 5.2 and 5.3 illustrates the dual approach to KDD introduced in
section 4.6, and the complementarity of the process- and the data-oriented view. In the
following sections, usually only one view will be given as this suffices to understand the
application, but another comparison of both views will be given in 5.5. The complete
concept web of this KDD application is given in figure 5.10 on page 88.

78

5.3. Creation of the label

‘ TnpuiServices |

Ej 8 BaseAttributes
0 MultiColumnFeatures
1 ColumnBats.

s ~
- ~
s by
rd N
- ~
TRactiveClients AcTveCTents
f\ 8 BaseAttributes (\ 5 BaseAttributes.
0 MultiCalumnFeatures 0 MultiColumnFesatures
1 ColumnSets 1 ColumnSets.
Churners HonChurners
(\ 2 BaseAtiributes (\ 2 BaseAttributes
0 MultiColumnFeatures 0 MultiColumnFeatures
1 ColumnBats. 1 ColumnSets
~ -
~ -
~ -
~ -
rain eys urminfo

& 2 Basedttributes
O MultiGolumnFeatures.
1 ColumnSets

I
Taini Sy,

& 2 BaseAttributes
0 MultiColumnFeatures
1 ColumnSets

Figure 5.3.: The concept web created by the preparation graph in figure 5.2. Dashed
arrows represent separations, dotted arrows represent specialisations.

5.3. Creation of the label

This chunk is shown in the process view in figure 5.4. Like the previous chunk it also
handles the services data (see table 5.1). Mainly three new attributes are computed
which are useful for mining. The first step joins the services concept with the result of
the previous chunk which selected the customer data to be used for mining. As a result,
the churn marker attribute is available in the output concept, and its instance contains
only those customers that are in the selection for mining.

The next three steps serve to compute the number of years a customer has been with
the company (the service length), since this is hoped to be an indicator of customer
satisfaction. Two steps extract the year from the dates that mark the beginning and end
of service; the following step computes their difference, taking the current year instead
of the end-of-service year for those customers who are still with the company. After a
materialisation of the data set, the service length is discretised into three intervals using
DISCRETISATION (A.5.1). The next step constructs a binary label for training (positive or
negative) based on the churn marker attribute; this step is not needed during deployment.
Then some spelling errors in the TariffType attribute are corrected in the step Repair-
TariffType which employs an instance of VALUE MAPPING (section A.5.3). Finally some
attributes which are not needed for mining (for example those that were only used as
intermediate steps to compute the length of service) are removed using ATTRIBUTE
SELECTION (A.1.1) to get the final result of this chunk.

79

5. An IHlustrating Example: KDD for Telecommunications

join L H
' | fpu I o s
Select services data for preparation ComputeYear rviceEntry ComputeYea

e el = = =

Tt =n ol - = = =il

SiEED Pt H -
Hi Fi

Constripetlabel Discretize Le ngthOfService Materialize ComputeLengthOfService

RepairTariffTy pe SekctFeaturesForMiniryg

Figure 5.4.: The steps to prepare the services data.

Attribute | Type Explanation

Caller Key Customer Identification
Birthday | Date Date of birth of this customer
Gender Binary | Gender of this customer
Name Set Name of this customer
Address Set Address of this customer

Table 5.2.: The attributes of the Customers concept, an input to the KDD process.

5.4. Preparation of customer information

The input to this chunk is a table with personal customer information; table 5.2 explains
the attributes of the corresponding concept. Figure 5.5 shows the four steps of this chunk.

After the join to realise the data selection, this chunk only computes the age of the
customer (feature construction, see section 2.1.3), using the difference between the year
in which the analysis takes place and the year extracted from the Birthday attribute,
and removes the superfluous attributes Birthday (replaced by Age), Name and Address.

jain [LH f_1
'| EI-"I Lt % kY > it
Salect customer data for preparation Compute YearOfBirth Compute Age SelectCustFeaturesForbining

Figure 5.5.: The steps to prepare the customer data.

80

5.5. Preparation of revenue information

Attribute ‘ Type ‘ Explanation
Caller Key Customer Identification
Month Date Month for which revenue is given

Revenue | Continuous | Revenue generated by customer in given month

Table 5.3.: The attributes of the Revenues concept, an input to the KDD process.

5.5. Preparation of revenue information

This chunk prepares some information about the revenue (profit) made by the company
from each customer. The data set for it comes from the accounts department of the
company and provides the revenue that the company could generate for each customer
in each month of the two years under consideration. This data has already been processed
by the accounts department, but needs different preparation for the KDD process. Table
5.3 explains the attributes of the concept used as input for this chunk.

The figures 5.6 and 5.7 show the two views on this chunk, and provide a more com-
prehensive example of the duality discussed in section 4.6. The join that realises the
data selection for mining (step Select revenue data for preparation) results in the
concept RevenuesToPrepare, which is a specialisation of the input data (InputRevenues
and the customer selection result of the first chunk, TrainingSetKeyAndLabel. In the
concept web all join results can easily be recognised because they are the only concepts
with more than one outgoing specialisation.

The next step deletes some entities from the concept’s instance because the Revenue
value is missing. There are not many entities where this is the case, so replacement of
missing values was not deemed necessary by the analyst. This is data cleaning. The result-
ing concept RevenuesNoMissingValues is a separation of RevenuesToPrepare because
it includes fewer entities but the same attributes.

The following steps have to be applied separately for the three six-months-periods
that provide the past data for the three customer groups (from two churn months plus
the non-churners). The reason is that different months act as the first, second and so
on month of the three periods, and there might be some overlap. So the three groups
are selected; because the following steps create a new attribute (AbstractMonth) for the
resulting three separated concepts, they have an additional attribute but the link to
RevenuesNoMissingValues is a separation (see the remarks above in 5.2). The abstract
month attribute serves to give identical markers (numbers 1 to 6) to the six months in
the three periods. Then only these months are selected, resulting again in three separated
concepts.

The main aim in this chunk is to provide the revenue value for each customer in
six new attributes, corresponding to the relevant six months on which the prediction
of churn behaviour is to be based. This is an example for changing the organisation of
the data, one of the high-level preparation tasks identified in section 2.1.3. To this end,
P1vOTISATION (A.3.2) is now applied. The pivot attribute is Revenue, the index attribute
is AbstractMonth, and the Group By-attribute is Caller; the aggregation operator can
be summation or maximum, as there is only one entry per month and customer in the

81

5. An IHlustrating Example: KDD for Telecommunications

| jmin I
['-
Sekct revenue data for preparation

Select past revenue data 1 Select past révenue data 2 Salect past révenue data 3

FivatizeByMo PivotizeByMonth2 Pifotize By Manthd

UnifiyRgvenues

Materialize Hevenue Data

DiscreteeRevSum SekctMiningFeatures

Figure 5.6.: The steps to prepare the revenue data.

input. The outputs are three concepts with the key attribute Caller plus six attributes
containing the revenues for the six-months-periods. PIVOTISATION relates these concepts
to the inputs by one-to-many relationship types, represented by the solid lines in figure
5.7 (there are several entities, namely one for each month, for each customer in the input,
but only one per customer in the output).

Next, these three concepts are unified (operator UNION); the result is materialised; the
sum of revenues during the six months is computed (ATTRIBUTE DERIVATION) and this
sum is discretised (DISCRETISATION). Finally an ATTRIBUTE SELECTION removes the
undiscretised sum. The corresponding steps and resulting concepts can easily be found in
figures 5.6 and 5.7. The two views display a similar structure, demonstrating that both
are equally suitable to represent data preparation processes.

82

5.6. Preparation of phone call information

5 BaseAftributes.
0 MulliColumnFeatures
1 CalumnSets

S

0 MulliColumnFeatures
1 ColumnSets

0 MuliColumnFestures
1 GalumnSets

5 BaseAtiibutes J N

5 BaseAttributes J N

evenmaPvolzEa))
|7 BaseAtrioutes J <.

7 BaseAftributes.
0 MuliiGolumnFeatures
1 ColumnSets

0 MuliCalumnFestures.
1 ColumnSets

T P

|
1 -
~. | -7
A h 4 A W
7 BaseAfiributes U
~ 0 MulliColumnFeatures J< <

1 GolumnSets

] []

8 BaseAtrbutes J s)|,\ 8 BaseAttrbutes

0 MuliColumnFestures. 0 MuliColumnFeatures.
1 ColumnSets 1 ColumnSets

Figure 5.7.: The concept web created by preparing the revenue data. Solid lines represent
relationship types.

5.6. Preparation of phone call information

The most important table describes the telecommunication behaviour of customers by
storing features of each single phone call made by a customer, such as number called,
length, tariff used, etc. This table is called the Call Detail Records table (CDR). Table
5.4 explains the attributes of the corresponding concept.

This chunk is the most complex one; figure 5.8 on page 85 presents its steps. This chunk
also deals with the largest data set, as the CDR concept contains more than 61 million
rows, holding the phone call details of 20200 Customers over a period of 24 months. The
first step is therefore to join CDR with the concept representing the data selection for
mining, TrainingSetKeyAndLabel. About 40 million rows remain. To reduce the data
further, only the entities corresponding to any of the months in one of the three periods
are chosen; to this end an attribute Month is derived from Day to indicate in which month
each call took place. The step SelectRelevantMonths then selects only these months.
Further, a new attribute Peak indicating whether the call took place during daytime or
nighttime tariff is derived from Hour, using DISCRETISATION with user-defined interval
bounds. The different types of calls are subsumed in a few groups like internet calls,
mobile phone calls, abroad calls etc. by using VALUE MAPPING in the step GroupCall-
Classes. The result is materialised because it is the basis for several sub-chunks of further
preparation.

83

5. An IHlustrating Example: KDD for Telecommunications

Attribute | Type Explanation

Caller Key Customer Identification

Called Set Phone number called in this phone call

Day Date Date of phone call

Hour Date Time of phone call

Length Continuous | Length of phone call in minutes

Units Continuous | Number of tariff units used in the phone call

Class Set Type of call: call to internet provider, mobile phone etc.
State Set Indicates interruption of call due to malfunctions

Table 5.4.: The attributes of the CDR concept, an input to the KDD process.

Similar to the revenue chunk (section 5.5), unique numbers from 1 to 6 are given to the
six months of the three periods, using a similar structure of three parallel preparation
lines and their unification (in the step UnionOfPeriods). The steps CountDroppedCalls,
ComputeNumDiffCalledPersons and CountCallsPerClass are examples for feature con-
struction; they compute the number of calls that were dropped for technical reasons per
customer, the number of different phone numbers each customer has ever called, and
the number of calls to internet providers and free numbers; the latter are changed to
binary flags indicating whether any such calls have taken place in the two steps Check-
Occurrence. ...

The step ComputeLengthWholePeriod and its successors compute some important at-
tributes concerning the sum of minutes of call lengths customers have made in each of the
six months. The step itself computes the sum for each customer and month (using AG-
GREGATION); then PIVOTISATION is used to compute six attributes for the six months.
The sum of all call lengths in all months is computed in ComputeSumAllMonths and dis-
cretised afterwards. Some attributes that have turned out to be decisive for the success of
the mining algorithm in the original application are computed in the step ComputeUsage-
Change. This step applies ATTRIBUTE DERIVATION several times (a feature offered by
the MiningMart system), and computes differences in the phoning behaviour, measured
by the sum of call lengths, between the first and sixth month, the second and sixth and
so on. Thus these attributes can give an indication of any abrupt changes in the usage
of the telecommunication service.

The three steps PivotizeLengthBy. .. compute more detailed statistics based on the
lengths of phone calls. The sum of these lengths is derived not only per month but per
month and per type of call, where type of call includes: internet providers, distance calls,
local calls, calls to mobile phones, calls to free lines, calls abroad, calls disrupted for
technical reasons, calls during peak time and during nonpeak time. These nine types
lead to 54 new attributes (nine sums of call lengths for each of the six months) using
two-fold PIVOTISATION (see section A.3.2). Clearly, the availability of n-fold pivotisation
in the MiningMart system simplified the computation of these attributes drastically; in
another system where this application was implemented by the author, no pivotisation
was available so that 54 applications of ATTRIBUTE DERIVATION had to be set up. This

84

5.7. Mining and deployment

[im } [EE E
L s
Sekect calls data for preprocessing ComputebonthHumbers WarkRelevantMonths

GroupCaflClasses GompuieFeakTime SekctRelevantWonths

St
SekectPeriodl

CreateAbstracthiont

Materia|izk Data Fe K CreateAbstractManths2

PivatizeLengthByState AndManth oifFivotizations

o
SelectPeriodd

CreateAbstractMonthsd y

= PivotizeLengthBy Callty peAndManth
i
Computele halePeriod
h
PivmizeSu;sByMcmh
Y
Campule[é;gnllmomhs

DigcretizeDrappedt

(7]

Compute JsageChange DiscretzeSumaliMonths

FeatureSelectionByAttributes MaterializeAdditionalFeatures

Figure 5.8.: The steps preparing the call details data.

demonstrates the usefulness of more complex operators. Those systems that offer pivo-
tisation (compare table 8.3 on page 186) only support n = 1; in such systems, nine plus
six simple pivotisation operators are needed.

The two joining steps JoinAdditions and JoinPivotisations are not necessary,
strictly speaking, because their outputs are to be joined again in the following chunk
(their inputs might as well be joined there). But they help to get a clearer structure of
the chunk and a clearer connection to the following chunk.

5.7. Mining and deployment

The previous chunks have all produced several attributes with information about each
customer. For final mining, five output concepts of the previous chunks are combined
using a JOIN, using the customer identification as the key for joining. This is an example
for propositionalisation. The result is a concept with more than 90 predicting attributes,
one label and one key. Figure 5.9 shows the concept web produced in this chunk.

Two row selections then separate the positive from the negative examples; recall that
negative examples are customers that have not churned. During training, a number of

85

5. An IHlustrating Example: KDD for Telecommunications

) [)

o7 BaseRabs oo
5 N
 Celumners S

1
0 MuliColumnFestures.
ColumnSets.

o SeecAes S Beecibes
S iCompeasss N
1 Coumnies v

| - - L {
I,\,;a BaseAtrbutes J l,\ ‘ 5o Saaepures J .)[M 57 BaseAtibutes - T\} w7

58 BaseAttibutes.
0 MuliColumnFestures.

ColumnSets 1 Columnels |0 Columrisets
T A

[98 BaseAttributes. = ’W I B8 BaseAttributes. W [98 BaseAttributes. W
{&\m J l&’? J {&\m J

[e Calirens [P et

Figure 5.9.: The data view produced during training and deployment.

negative examples that is roughly equal to the number of positive examples is used,
selected by a sampling row selection (the concept TrainingSample. During deployment
there are only negative examples and there is no label; the label attribute is therefore
removed from NegativeExamples for this phase.

The positive and negative training examples are unified, resulting in the concept
MyTrainingSet, and used to train a decision tree. More precisely, the KDD analysts
who developed the original applications got best results when splitting the training set
into three parts according to three groups of customers according to how much revenue
they generated for the company. Thus three row selection operators are applied to split
the training set, and three copies of these row selection operators are used to split the
deployment set in the same way; the resulting concepts have names ending in ...Train
or ...Deploy, respectively.

The actual machine learning experiments consist simply of a 10-fold cross validation
for each of the three decision trees, to evaluate their generalisation performance using the
accuracy measure. In the original telecommunication application that this KDD example
is based on, this performance was used to guide the creation and selection of the pre-
dicting attributes described above. Here only the resulting process is modelled, which led
to good performance in the original application but whose performance on the random
artificial data used here is uninteresting. The mining experiments were executed with
the YALE system (Mierswa et al., 2006) to which MiningMart offers two interfaces, one
operator for creating a YALE experiment that loads a data set created with MiningMart
into YALE, and one operator for applying a YALE-learned model to a concept in Min-
ingMart. The first operator is used on the three training concepts and the second on the
three deployment concepts here. This second operator adds an attribute with the pre-
dicted value to the input. Note that its input must provide exactly the same predicting
attributes as are used for training, otherwise the learned model cannot be evaluated. The
three concepts resulting from prediction, named Prediction. . .Profit, are thus special-

86

5.8. Discussion

isations of the deployment concepts. They are unified to collect all results. Finally, to ease
the use of the predictions in arbitrary business processes (compare section 2.1.6), only

the customer identifier and its prediction are selected and materialised in the database
(the final concept DeploymentResult).

5.8. Discussion

The total number of steps used in all chunks of this model application is 98. Although
some design decisions (such as when to materialise) are not determined exactly by the
tasks that were performed, but can be varied, this application example clearly demon-
strates the complexity of a longer KDD data preparation phase. Figure 5.10 shows the
complete concept web from all chunks. While the chunks are not explicitly visualised in
this figure, it is easy to recognise the general structure of the application: at the top are
the four initial concepts (bearing a special database icon) with the typical star structure
given by three connecting relationships; in the top left corner the concepts involved in
the selection of data (section 5.2) can be seen, with the final result of a concept with
the keys and labels in the top centre. Then the four chunks that prepare the four initial
data tables begin by joining this central concept to each of the four initial concepts. In
the bottom of the figure the five output concepts of the four chunks are joined and the
resulting mining concept is further processed for training and deployment. Without the
use of the two views and of chunking, it would be very difficult to keep an overview of
the whole process; without the provided operators this would not be much simpler than
with direct programming. The latter situation is demonstrated in appendix D.

However, some issues that may arise in real applications are not addressed in this
model scenario. For example, the data for it was artificially generated; though some
missing values and misspellings occur, real data is notorious for including other surprises.
Another point is that no representativeness issue arises, while in real applications, the
question whether the available data is representative of the phenomenon to be examined
needs to be addressed. Also, the data for this use case was generated using consistent key
relationships between the tables, whereas it may in reality be a problem to achieve this, or
to get the data into relational tables in the first place. Further, this model application is
used for the prediction of a binary label on unseen data, and the KDD process ends there.
Thus no post processing of the label is needed (see sections 2.1.6 and 4.5). For example,
if the label attribute had been scaled during data preparation, this scaling would have to
be reversed for the predicted value before it can be used. Compare section 7.2.6 where
an operator for this is discussed.

The mining phase is not included in this demonstration, in spite of its importance,
because it is not in the focus of this work. Interfaces to the YALE mining tool box are
given. Finally, the actual use of the predicted label, for example in a marketing campaign,
is not modelled, though software support might well be useful here as well, for example
for the generation of marketing letters using the addresses of customers predicted to
churn soon.

In spite of these limitations, the model application served to collect relevant and signif-
icant experiences by realising it in different software tools. Chapter 8 contains evaluation
criteria based on these experiences.

87

5. An IHlustrating Example: KDD for Telecommunications

Figure 5.10.: The complete concept web of the model application.

88

6. Publishing Operational KDD Process
Models

Chapters 3 and 4 have introduced a conceptual or task-oriented description of KDD
processes and argued that modern KDD software should support this level explicitly.
As chapter 8 will show, some elements of this level are supported by several modern
KDD tools (if to a limited degree). This eases the daily work of KDD experts and allows
a growing number of non-experts to attempt at developing challenging KDD projects.
Though both experts and inexperienced users can find guidelines for their work in the
CrisP-DM model, they are still faced with some essential problems, in particular those of
finding a suitable data representation and of choosing and tuning a learning algorithm to
give acceptable results. As mentioned in section 2.1.3, data preparation, as the subprocess
that leads to the desired data representation, still consumes the largest part of the overall
work. The main reason is that what is a good data representation depends on the mining
task and data at hand, which poses a challenging problem. Knowledge Discovery is still
more an art than a science (Pyle, 1999) as it involves many decisions that only humans
can take (Brachman & Anand, 1996), so that inexperienced users need a lot of training
(Kohavi et al., 2004). Such users would benefit greatly from sources of knowledge about
how experts have solved past KDD problems, especially from exemplary, executable
KDD solutions. Even the experts might find inspirations in solutions from other business
domains if these were available to them. The need for an environment to exchange and
reuse KDD processes has long been recognised in the literature on KDD, see section 6.1.2.

This chapter presents such an environment, called MiningMart. A brief overview is
given in section 6.2. It is based on a meta model which is described in section 6.3, and
which realises the two levels of description for all aspects of the KDD process as developed
in previous chapters. Thus this chapter relies strongly on the concepts of the previous
ones. An implemented system that directly translates KDD process models expressed in
this meta model to executable SQL code is available. This system is mainly described
in chapter 7. The present chapter concentrates on the aspects of MiningMart that are
related to modelling and exchange of models. Thus, a web platform to publicly display the
KDD process models in a structured way, together with descriptions about their business
domains, goals, methods and results, is described in section 6.5 (based on (Haustein, 2002;
Euler, 2005d)). The models are downloadable from the web platform and can be imported
into the system which executes them (in this case, on a relational database). To support
the claim that this web platform is useful for the exchange of knowledge about successful
KDD processes, section 6.5.3 and appendix B provide implemented, publicly available,
and reusable solutions of frequently occurring problems; further, the issues of reuse and
adaptation, which are important for this exchange, are discussed in detail in section 6.6.

89

6. Publishing Operational KDD Process Models

6.1. Related work

6.1.1. Related fields

To solve a problem by remembering a previous similar situation, and by reusing knowl-
edge from that situation, is the core idea of case-based reasoning (CBR, e.g. (Aamodt &
Plaza, 1994)). CBR approaches require (at least) to model previous problems with their
solutions, and to match new problems to the collection of previous ones. In this work, a
problem corresponds to a business question and given data, to which a KDD process is
the solution. Section 6.3 describes how the data and the KDD process are represented,
while section 6.5 explains how such representations are linked to descriptions of the busi-
ness tasks and collected in a public, web-accessible repository. For problem matching,
the system described in this and the following chapter includes basic schema-matching
algorithms (Rahm & Bernstein, 2001) that map the data representation of an existing
KDD process (from the public collection) to a new data schema. Matching of business
task descriptions is not automatically supported yet, but left to the user of the web
repository.

The idea that conceptual models of an application are easier to reuse than low-level
implementations is an important motivation for the KADS project (Schreiber et al.,
1993c). A particular idea from KADS is to make control knowledge (knowledge on how
to control processes in a system) reusable by providing explicit models of it without the
domain knowledge models that usually accompany it in the KADS framework. These
templates are called interpretation models in KADS, because they can be used to guide
the interpretation of new domains (Wielinga et al., 1993). Control knowledge in KADS
corresponds to preparation graphs in the present work while domain knowledge mirrors
data models. Thus there is a clear relation to work in knowledge representation.

Being an integrated environment for the creation, collection, retrieval and reuse of
knowledge about KDD processes, and since it offers web access and is based on meta-
data, the web repository described in section 6.5 can be seen as a knowledge portal (Staab,
2002) to successful KDD processes, which broadly relates this work with knowledge man-
agement (e.g. (Holsapple, 2003)). The latter aims to make the right knowledge available
to the right processors in the right representation (Holsapple & Joshi, 2003). It com-
prises the identification, acquisition or creation, distribution, utilisation, and preservation
of knowledge (Probst et al., 1999), usually but not necessarily within an organisation,
where knowledge is structured information, for example based on an ontology. In this
work, an ontology of essential steps in KDD processes is given in chapter 4. The meta
model explained in section 6.3 identifies the information that is used here to preserve,
utilise and distribute knowledge about KDD processes.

A different area which is somewhat related to the present work is data warehousing,
which deals with the collection, storage and non-learning based analysis of large volumes
of data (Inmon, 1996; Meyer & Cannon, 1998). Clearly, knowledge discovery projects
benefit from the presence of well-maintained data warehouses since the raw data can
be expected to be cleaner and more complete. Also data warehouses tend to use inter-
nal data models, often under the term “metadata” (Vaduva & Dittrich, 2001). Metadata
frameworks in data warehousing allow to model relational and object-oriented data (Vet-
terli et al., 2000); detailed, but slightly outdated surveys can be found in (Staudt et al.,

90

6.1. Related work

1999a; Staudt et al., 1999b). Standardisation efforts described in those references have
led to the Common Warehouse Metamodel (CWM) defined by the Object Management
Group'. An interesting idea would be to reuse data models expressed in such standard
formalisms for KDD projects on the technical level. This idea suggests to extend these
formalisms by the means to express a (KDD-specific) conceptual level. Unfortunately, at
the time when the meta model described in section 6.3 was conceived, the standardisation
of warehouse metadata modelling had not yet been mature enough to choose a widely
used meta model that would ensure a high degree of usability, as Staudt et al. explain
in the references above. Therefore the meta model to be presented here includes its own
devices to document the data to be analysed on the technical level.

6.1.2. Related work in KDD
Reusing KDD solutions

The idea of collecting KDD solutions to enable their adaptation and reuse was already
mentioned, as a plan for future work, by Wirth et al. (1997). However, no publications
describing a working environment based on this approach seem to be available. The same
is true for (Kerber et al., 1998), where an interesting methodology for the documentation
and reuse of successful KDD projects is presented whose motivation is identical to the one
for this work. So-called active templates are proposed there to link actions, results and
documentations related to a KDD process, which is very similar to the web repository
realised for this work (section 6.5). The importance of the reusability of KDD models is
also stressed in (Zhong et al., 2001) and (Bernstein et al., 2005) (see below). Sections 6.5.3
and 6.6 cover templates and reusability in this chapter.

One reason why using existing KDD solutions as a template for new applications can be
advantageous is that it is difficult to select a suitable machine learning algorithm for the
mining step. It is a well-known theoretical result that no learning algorithm exists that
can generally outperform any other learning algorithm on arbitrary data sets (Wolpert
& Macready, 1995). Machine Learning research has experimentally confirmed that the
choice of the learning algorithm to use depends highly on the data set at hand; see, for
example, (Michie et al., 1994). Indeed, as was already mentioned in section 2.1.3, the
representation of the learning problem (using the given data) is crucial for the success
of a mining algorithm (Langley & Simon, 1995; Morik, 2000). Finding a representation
on which a particular algorithm is successful usually involves much trial and error. This
has motivated research on meta learning, as reported in (Pfahringer et al., 2000; Brazdil
et al., 2003; Vilalta et al., 2004) for example. Meta learning attempts to generalise from
characteristics of data sets and the respective performances of learning algorithms on
these data sets, with the aim of providing advice on the choice of a learning algorithm
given a new data set. Meta learning thus uses data characteristics and past solutions
to assist in the development of new data mining and KDD applications; see (Giraud-
Carrier & Provost, 2005) for a theoretical analysis of the soundness of this approach.
Meta learning focuses on the mining step, in contrast to the present work which aims to
support the whole KDD process.

"http://www.omg.org/cwm/

91

6. Publishing Operational KDD Process Models

It has been argued that the accumulated results of the “first-level” Machine Learning
research (on finding successful combinations of representations and mining algorithms)
enable implicit meta learning by the Machine Learning research community (Giraud-
Carrier & Provost, 2005). The framework presented in this chapter allows to document
in detail which representation was used in a particular application, and also how it
was created. It can thus help to make this implicit meta learning more explicit, by
collecting detailed, operational models of successful pairs of data representations and
mining algorithms.

KDD modelling languages

To document and store KDD processes requires a modelling language, or meta model. A
well-known standard to model the KDD process is CRISP-DM (Chapman et al., 2000).
While it gives an overview of different, interdependent phases in a KDD process and
defines some terminology (see chapter 2), it is not formalised, nor detailed enough to
model concrete instances of data preparation and mining operations based on it, and
does not include a data model. An early sketch of a formal model of the KDD process
was presented by Williams and Huang (1996); the process is represented by a four-tuple
(D, L, F,S), where D represents the data sets, L is a knowledge representation language,
F' is an evaluation function that scores the interestingness of discovered patters, and S
is a set of operations executed on the data. D and S are relevant here, but D is not
developed to any detail in (Williams & Huang, 1996) while S provides only a rough
classification of necessary operations without specifying the operations to any detail.

The new PMML version 3.02, a standard to describe machine-learned models in XML
(Raspl, 2004), includes facilities to model the data set and data transformations executed
on it before mining. However, it is not process-oriented, thus it does not allow to model a
data flow through a complex KDD process, and the data model is restricted to one table.
Other standards around data mining are Java Data Mining (JDM (Hornick et al., 2004)),
which includes web service definitions, and SQL/MM Data Mining. Though extensible,
they currently provide interfaces to mining algorithms rather than to complete KDD
processes. Similarly, Cannataro and Comito (2003) present a data mining ontology to
enable grid-based services, but it is currently restricted to the mining phase of the KDD
process.

Recently, some new research attempts to employ grid infrastructures for knowledge
discovery. A good overview is given in (Cannataro et al., 2004). To enable the execution
of KDD processes on a grid, these processes have to be modelled independently from
the machines that execute them, and heterogeneous data schemas and sources have to
be modelled. In (AlSairafi et al., 2003), a Discovery Process Markup Language (DPML)
is used, based on XML, to model the complete KDD process. Unfortunately, from the
available publications it is not clear how comprehensive and detailed DPML is. In the
GRIDMINER project (Brezany et al., 2003; Brezany et al., 2004), each step of the KDD
process is provided by Grid services which can be dynamically composed into execution
plans using a Dynamic Service Composition Engine (DSCE). The input for this engine is
also an XML derivation called Dynamic Service Composition Language (DSCL), which is

*http://www.dmg. org/pmml-v3-0.html

92

6.1. Related work

used to specify the activities to execute together with their parameters. The meta model
presented in section 6.3 could serve as a basis for grid-based processing in a similar way,
as it declaratively models complete KDD processes independently of their realisation.

KDD process models are also useful in distributed data mining scenarios (see e.g. (Park
& Kargupta, 2002)), where one often decides to realise parts of the KDD process, in
particular data preparation, at each local site that stores parts of the data. Assuming
homogeneous data schemas (Park & Kargupta, 2002), the same subprocess will be applied
at each site, so that modelling it once while executing it at all sites can save a lot of efforts.

Recently, an XML-based middleware language, called KDDML, for the support of
KDD applications has been developed (Romei et al., 2005; Romei et al., 2006). Middle-
ware languages are used to exchange data between different applications, hence KDDML
is designed to allow the description of KDD processes independently of their realisation.
Elements in KDDML are operators, with functional semantics; this allows to nest oper-
ators like in Yale (Mierswa et al., 2006). Some operators return data tables while others
return learned models, scalar values, or generic XML strings. For data access, special
KDDML elements store the actual data location as well as metadata, including concep-
tual data types and data characteristics (see section 3.3.3). These elements are returned
by data-reading operators. For both SQL data sources and flat files in the ARFF format,
KDDML operators exist to read the data. Elements to model data preparation operators
are also available; the current list is not long but easily extensible. Learned models are
represented based on PMML (see above). Some other KDDML elements allow to apply,
evaluate and post-process certain models, and to specify that some operations can be ex-
ecuted in parallel if this is possible in the interpreting environment. In sum, KDDML is
a recent, rather powerful and extensible declarative language to describe KDD processes,
with functional semantics. The approach shows some similarities to the Yale approach
(Mierswa et al., 2006), but uses an explicit data representation. This is similar to M4,
the declarative meta model used in MiningMart (see below). Thus KDDML uses many
ideas that are also present in MiningMart, but has been developed and published several
years later. Also, MiningMart comes with a complete system that includes a user-friendly
interface, while KDDML provides a middleware that may be used by other applications,
similar to a library of functions. To this end, a KDDML interpreter system is available,
but no system that supports conceptual-level access to KDD applications modelled in
KDDML has been developed. As another major difference to MiningMart, the interpreter
system can access relational databases but does not leave the data inside the database,
as MiningMart does. Instead, the data is read into main memory. Thus MiningMart can
process much larger data sets.

Systems for KDD processes

Early knowledge discovery systems (see e.g. (Matheus et al., 1993)) were focused on the
mining step, in that they provided mainly a set of learning algorithms without much
support for other phases. Brachman and Anand (1996) saw the need for more support
early on, and proposed to use the term knowledge discovery support environment for
systems that would provide at least a closer integration with databases and support for
other phases (they included requirements on the mining phase that need not be detailed
here). This chapter presents such an environment; other attempts to construct such

93

6. Publishing Operational KDD Process Models

environments are discussed in the following.

There have been two approaches that provide some intelligent assistance to KDD users
in setting up their processes. Such approaches also require some model of the KDD process
(see above). Basic steps in a KDD process are realised by agents in the work of Zhong et al.
(2001); meta-agents (planners) organise them to a valid process using their input and
output specifications. The authors provide an ontology of KDD agents that distinguishes
between three phases of the process, namely preprocessing, knowledge elicitation (mining)
and knowledge refinement (which corresponds to post-processing as explained in section
2.1.4). Another distinction is that between automatic agents and agents that need some
human assistance (interactor agents). Concerning data preparation (preprocessing), data
collection, cleaning and selection are mentioned as interactor agents. Automatic data
preparation agents are restricted to discretisation and several segmentation algorithms
(in the terminology from chapter 4). This particular choice of agents is not explicitly
justified in the published articles.

Zhong et al. (2001) also provide a data model, which is rather different from the one
described in this work (section 6.3.1) in that it stores the stage of the KDD process that
a data set results from. Thus their data model distinguishes between raw data, clean
data, selected data (a subset of the whole data set), changed data, and segments of a
data set (e.g. clusters). However, it does not model tables or columns. Similar to the way
in which the input and output of the operators of chapter 3 is specified in terms of the
semantic data model given in section 3.2.2, the operating agents in (Zhong et al., 2001)
have input and output specifications that use the data model given there. The limited
data model thus translates to limitations on the possible processes, which is probably
necessary to enable the automatic planning of such processes.

The authors stress the aspects of reusability and adaptability (compare section 6.6).
Instead of including facilities to publicly collect and exchange process models, however,
their approach relies on the planner to adapt an existing process to changed circum-
stances. This approach to adaptation is similar in (Bernstein et al., 2005), where a system
to systematically enumerate and rank possible KDD processes is presented, given some
input data and a mining goal. These authors have also developed a meta model for KDD
processes, but it does not include a meta model for data which makes reusing their pro-
cesses more difficult. The only type of information concerning the data that they model
seems to be the continuous/discrete distinction, whether a column contains missing val-
ues or not, and a qualitative (binary) indication of whether the number of records or the
number of attributes of the data set is large. Similar to Zhong et al. (2001), this model
limits the possible, valid KDD processes because each operator specifies conditions on
its input and output. For example, a logistic regression mining operator does not take
discrete attributes as input.

Concerning the KDD process, Bernstein et al. (2005) also use the distinction into
preparation, mining and post-processing (of models). Their list of preparation operators,
which they do not claim to be complete in any sense, includes sampling, discretisation,
dichotomisation, attribute selection and principal component analysis. At a higher level,
their ontology of the KDD process includes schemata for complex processes which allow
to constrain the search for valid processes by providing a template structure for the
operator graph that the final process must have. The idea of such schemata is related to

94

6.1. Related work

the subgraphs that solve particular KDD tasks introduced in sections 6.5.3 and 6.6.

It was already noted in section 1.1.1 that the planning-based approaches cited above
suffer from scalability problems: larger, real-world KDD projects are unlikely to be suc-
cessful if their data preparation is limited to meeting the technical restrictions imposed
by a mining algorithm, rather than also creating “meaningful” mining input, i.e. input
that allows to discover interesting patterns. However, little has been done in the planning
approaches to account for this.

A special focus on data preparation is taken in the SUMATRA project (Aubrecht et al.,
2002), which developed a special scripting language called Sumatra which is designed
for data transformation. There is also a tool called SumatraTT (Sumatra Transforma-
tion Tool) that interprets data preparation tasks written in this language. SumatraTT
uses abstract data objects to represent various data sources, resembling the M4 data
model (section 6.3.1) in that this mechanism allows to formulate the data transforma-
tions uniformly (independently of the concrete data sources). These data transformations
are programmed in the Sumatra language; however, SumatraTT provides an extensible
library of templates of Sumatra code that can be reused on new applications by chang-
ing some template parameters. There is also a graphical user interface to connect data
sources to abstract data objects, and to set up data preparation chains using the template
library.

Knobbe (2004) has developed a tool called ProSafarii that supports preparation tasks
with a focus on multirelational data mining. The tool is based on relational database
technology, but uses an abstract data model where the foreign key relations are enriched
by multiplicity (cardinality) information. The specialisation and subconcept relations
proposed in chapter 3 are missing, though. The tool provides a few preparation oper-
ators that support data transformations of multiple concepts, in particular aggregation
by relationships (section A.2.2), pivotisation (A.3.2), and joins. An additional operator
available in ProSafarii, not described in the present work (but easily specifiable as a fur-
ther operator), is normalisation, an operation that is well-known from database design.
It splits an input concept into two concepts if the input concept contains a functional de-
pendency between two attributes (see section 3.1.2), “sourcing out” the dependency into
a second concept. Details can be found in (Knobbe, 2004) or any database textbook. Inci-
dentally, Knobbe also describes a rudimentary methodology for data preparation, which
is tailored to his focus on multirelational mining; it basically lists some high-level steps
for selecting relevant information, adding derived attributes, discretisation of continuous
attributes, joins, aggregation and propositionalisation (see also section 4.1.2).

Yale (Mierswa et al., 2006) is a system whose focus is on the mining phase; it supports
the subprocess of mining experiments which are executed on a fixed input data table,
and thus do not belong to the data preparation phase. Nonetheless Yale includes some
data preparation operators, like discretisation or dichotomisation, which can be applied
to single data tables.

Commercial systems that support the development of KDD processes are listed in
section 8.5.

95

6. Publishing Operational KDD Process Models

Integrating data and patterns

The present work attempts to model complete KDD processes, including many admin-
istrational issues, but does not focus on the central mining step. However, there have
recently been some attempts to integrate preparation and mining aspects in a single,
data-oriented view. The work by Kramer et al. (2005) has already been discussed in
section 4.1.2; results of mining are seen as an additional attribute of the mining table.
The operator ATTRIBUTE DERIVATION (A.5.4) proposed in this work allows this kind of
integration.

The idea of offering unifying views on both the data and the mined patterns in the data
is a little older, though. Most famously, inductive databases have been proposed as a single
environment for the two (Boulicaut, 2004). This research concentrates on the frequent
itemset mining paradigm. Within this paradigm, both data and patterns can be accessed
by the same query language (Boulicaut et al., 1999), which allows to view a complete KDD
process as a sequence of such queries an appealingly compositional approach, though
no conceptual-level counterpart has been developed for it yet. A declarative framework
for inductive databases called XDM is available (Meo & Psaila, 2003), which is based on
XML and related standards. It can represent the data, the process and mined patterns
in the data. However, XDM is independent of specific formats for modelling the data or
patterns: it provides a generic and flexible framework which needs to be filled. Currently,
there do not seem to exist comprehensive realisations of the framework, nor systems to
support it, and the framework does not employ a conceptual level.

A different interesting contribution in this area is (Johnson et al., 2000), where data
regions are proposed as a single formalism to describe relational data, including various
stages of its preparation, and the results of mining it. For example, the operator Row
SELECTION (section A.1.2) can be seen as cutting a region out of a given data set; and
similarly, decision trees partition the input data into a number of regions. This framework
is appealing conceptually but has never been implemented.

MiningMart

This chapter describes some results of the MiningMart project, whose earliest stages
have been described in (Kietz et al., 2000). An early design of the meta model presented
in section 6.3 has been given in (Kietz et al., 2001), a more complete documentation
can be found in (Morik et al., 2001) while the final version is (Scholz & Euler, 2002).
The compiler, which operationalises the KDD models (section 6.4), has been presented
in (Morik & Scholz, 2004) and in more detail in (Scholz, 2007). Details on the web
repository have been presented in (Haustein, 2002), and on the current version in (Euler,
2005d). Compared to the Sumatra project, MiningMart uses SQL as the low-level data
access and transformation interface, instead of the newly invented scripting language
Sumatra. While the Sumatra language perhaps allows easier and richer manipulations
at the technical level, it seems less apt to hiding the technical level from the user even
considering the templates. Data resides inside the database under MiningMart, instead
of being read into main memory like in SumatraTT or in the KDDML system.

This chapter contributes MiningMart’s public repository of KDD process models and
its technology (section 6.5), based on (Euler, 2005d), after explaining the basics of Min-

96

6.2. MiningMart overview

Tser devel ops or adapts process TTzer models initial data
T ¥ ¥
Process editor I . Concept editor
Dmial wiews
MLfor |, |M4 P
“ ¥ defines cutput ¥
exchange
export O%)—)O D‘ﬁlj_r‘v =E|
HTML for | [
case base M4 Steps M4 Concepts
h
conceptual Eepresent
technical ¥
"\—_.___'_'_,_o—"'
- Compiler Eelational data
Compiler >
creates output f|
"\—___\—'_'_,_'—F'

Figure 6.1.: Overview of the main components of MiningMart.

ingMart, especially the meta model M4. Further, it focuses on the reuse of KDD processes
and the kinds of adaptation that may be necessary (section 6.6).

6.2. MiningMart overview

Figure 6.1 provides an overview of the main MiningMart components. The meta model,
M4, is used to model both the data, via concepts, attributes, etc., and the preparation
process, which consists of a directed acyclic graph of steps. Every step represents the
application of one specific operator to one or more concepts. As the figure illustrates, the
user’s work at the conceptual level defines the steps of a KDD process model, and the
conceptual data model of the output of each step is created by the system as soon as the
step itself is created. When the MiningMart compiler is executed, it creates the actual
output at the technical level (the actual views or tables in the database).

To give a clearer picture of how MiningMart’s components interact, the following para-
graphs sketch the two main use cases that MiningMart supports, the development of a
new KDD application and the reuse of an existing one.

97

6. Publishing Operational KDD Process Models

Use case 1: Developing a new KDD process

The given data, which must reside in a relational database, is imported into MiningMart,
where it is represented using elements of the conceptual data model. During import,
all the information in the relational source is exploited, in order to get an adequate
representation; see section 3.2.2 where mappings between the technical and conceptual
data models are discussed. Another way of modelling the initial data (at the conceptual
level) is to do it manually, and connect the resulting model to actual data. In any case
the conceptual model can be extended, by the user, with information that is not present
in the database, such as the mining-related attribute roles, the conceptual data types,
or any missing semantic links between concepts. All these tasks are performed using the
concept editor.

Users can then set up a model of the process in the process editor, using the concepts
and attributes of the data model as parameters of the steps. As soon as the input for
a step is defined, by the step’s operator it is determined what the output concept must
look like. Another way to put this is to say that the schema of the output is created as
soon as the user specifies the operator, but on the instance level, the actual data that
fills the output schema is created later, by the compiler. Thus, only when the process is
executed, the compiler creates the actual data that the process produces. This way of
development separates the modelling from the ezecution of a preparation process. This
is very useful for handling large data sets. It is enabled by employing the rather specific,
powerful operators from appendix A, whose output schema is determined by their input
schema and their actual parameter settings.

Throughout the process the user is supported by the administration of the concep-
tual data types of the attributes of the various concepts. The data types allow to ensure
the technical applicability of the preparation operators, by observing the operators’ con-
straints; this supports the explorative nature of the development, since it helps to avoid
invalid experiments. However, the constraints can only help to observe the technical re-
quirements of preparation operators and mining algorithms. Such issues as are related to
the “semantic” validity of the process would concern the question whether the achieved
representation has the potential to help the mining algorithm discover valid, novel and
useful patterns. As noted in chapter 1, human understanding is indispensable in this area,
and support can only be given by a case-based approach, as motivated in the beginning
of the present chapter. Use case 2 below deals with this approach.

Use case 2: Reusing a previously modelled KDD process

Complete models of preparation processes can be exported from and imported into Min-
ingMart. Only the conceptual level is concerned here. The web repository of such models
(section 6.5) is the central platform for the exchange of models between users. Importing
a KDD model into MiningMart means that the concept web representing the input data
and all intermediate data sets is available; further, of course the process model (operators
with their parameters) is available.

The next step is to choose a point in the modelled, imported process where the inter-
mediate result, in terms of the created data representation, is most similar to the user’s
own, local data. It can also be the model of the original input data. The concepts from

98

6.3. A meta model for KDD processes

this point can then be connected to the own data, and all operations after this point can
directly be executed. Details about these issues follow in section 6.6.

In the remainder of this chapter, section 6.3 explains MiningMart’s meta model M4 in
detail. Section 6.4 briefly discusses the compiler component, while section 6.5 explains the
export functionality of figure 6.1 and the web repository of KDD models. More dynamic
and technical aspects of the MiningMart system are discussed in chapter 7.

6.3. A meta model for KDD processes

This section explains the structure and some details of the meta model (called M4) used
in the MiningMart environment. More details can be found in the technical report (Scholz
& Euler, 2002). M4 is structured along two dimensions: the data vs. process dimension
as discussed in chapters 3 and 4, respectively, and the technical vs. conceptual dimension
that is introduced in section 2.2. Section 6.3.1 shows the data meta model, while section
6.3.2 explains the process part of the meta model. A data model and a process model
together describe an instance of a KDD process and are called a case.

The meta model provides a list of fypes of objects, and defines possible references
from one object to another. It can be expressed in various ways, for example a relational
database schema or an XML DTD. In a database schema, there is a database table
for each type, and the table entries represent objects of that type; possible references
between objects are expressed through foreign key constraints. In XML, an XML tag can
be provided for each M4 type, and special tags can represent the references between M4
objects if each object has a unique identifier, but the constraints on the references are
not so easy to express. Because of this, the MiningMart system currently uses a database
to store the case models while working with them, but uses XML for their import and
export as this eases their exchange between platforms. In this chapter, the M4 examples
are displayed using the more legible database representation of M4. A further possibility
to inspect (the conceptual level of) M4 is given in the web repository of successful KDD
cases, see section 6.5.

6.3.1. Modelling the data

The data model in M4 directly realises the application of the two description levels.
It provides specific types for the lower logical data model and further types for the
conceptual level. Also, data characteristics and data types as discussed in sections 3.3.3
and 3.3.1 are modelled.

At the technical level, the relational data is modelled exactly as it resides in the
database. The two basic types M4 offers for this are Columnset, which represents tables,
and Column. The term “columnset” is used as an abstraction for data tables and database
views. Figure 6.2 shows how a data table EmplData with columns EmplId, EmplName and
Salary is represented in M43, The technical data types are included for each column.
In M4, only the difference between numbers, strings and dates/times is made at the
technical level, to be able to decide whether certain operations on the data must involve

3Examples in this chapter are slightly simplified in that they show only those fields of the M4 tables
that are relevant for the example.

99

6. Publishing Operational KDD Process Models

Database table EmplData: Table Columnset:

EmplId ‘ EmplName ‘ Salary ID ‘ Name ‘ Concept
13 ‘ Smith ‘ 1300 41 | EmplData | 42

Table Column: Table Technical Type:

1D ‘ Name ‘ Columnset ‘ Feature ‘ Type 1D ‘ Name

43 Emplld 41 46 1 1 | Number

44 | EmplName 41 47 2 2 String

45 Salary 41 48 1 3 Date

Figure 6.2.: M4 data model, technical level example. See also figure 6.4.

inverted commas for strings, or special characters like colons for dates/times. A further
differentiation is not necessary, since the system that interprets the meta model deals
with the data source-specific details.

This list of technical data types that MiningMart supports is also stored declaratively
in M4, in what can be called the static part of M4. See the table in the lower right
part of figure 6.2. The static part provides the information that does not change across
KDD models (cases), in contrast to the dynamic part which stores the M4 objects that
together form cases. Figure 6.3 illustrates that the static part stores knowledge about
operators, data types, etc., and is read by the MiningMart system in order to correctly
instantiate the dynamic M4 objects. The types Column and Columnset above, for example,
are dynamic M4 types. Chapter 7 goes into more detail concerning how the MiningMart
system and the two parts of M4 interact.

Not shown in figure 6.2 is the storage of (dynamic) information about the data char-
acteristics of each column. This kind of metadata is needed at several places in a KDD
process, as section 3.3.3 argues. In M4, the count of data records for a table can be stored
as well as the minimum, maximum, average and median value for continuous columns,
the number of unique and missing values for any column, and the number of occurrences
of each value of a column. The MiningMart system computes this information on request
by the user.

Another type of (dynamic) technical-level information that can be stored in M4, also
not shown in figure 6.2, is information about primary and foreign key references that may
be declared in the database. This information is needed to support the representation of
relationship types at the conceptual level.

This lower data level of M4 is not exported, and thus not exchanged between users.

The higher level types in M4, which implement the conceptual data model from sec-
tion 3.2.2, are Concept, Feature, ConceptualType, Role, Relation, Projection and Subcon-
cept. The first four form the higher level correspondence to data tables, the concepts.
Figure 6.4 exemplifies (dynamic) M4 objects of these types. The latter three M4 types
model the three types of links between concepts used in the conceptual data model, by
simply linking IDs of M4 concepts. The names are different for historical reasons, but the
type Relation is used for relationships, Projection for specialisation and Subconcept for sep-

100

6.3. A meta model for KDD processes

e 1111
. Ilininghdart M4
static patt mystem dynamic part
Dreclarative knowledge Dynamic M4 objects
about operators, ¢ onstraints, (Bteps Concepts, eto)

data types, et

Figure 6.3.: [llustration of the way MiningMart makes use of declarative knowledge about
its operators, stored in the static part of M4, to create dynamic M4 objects that
together provide an actual KDD model. See also chapter 7.

aration. Cardinalities of relationships are not yet supported in M4. The conceptual data
type of each Feature is stored as a reference to the static M4 type ConceptualType. The
mapping between the levels is represented by the link between Columnsets and Concepts
shown in figure 6.2 (field ConceptID of the Columnset table).

The conceptual-level elements can also be annotated using free text; such annotations
are stored as objects of another M4 type, Docu. These documentation objects refer to
the M4 object they annotate by the ID of that object (M4 IDs are globally unique; see
(Scholz, 2007) for more details).

This realisation of the two-level approach in the data model allows to reuse the higher
level elements, on new data, by simply changing the mapping (and perhaps adding or re-
moving elements as discussed in section 6.6). For the mapping, each Concept corresponds
to one table or view*, a Feature corresponds to one column, and Relations correspond to
foreign key links between tables. Not all Features of a Concept must be connected to a
Column and not all Columns must have a Feature. This enables a more flexible use of the
conceptual level. Subconcept links and Projections do not have a correspondence at the
technical level, as they realise separations and specialisations, respectively.

The mapping between the levels is in general provided by the user. The concept editor
supports the creation and manipulation of higher level elements and their mapping to
given data. Further, as in use case 2 in section 6.2, concepts and relationships can be
automatically created from a selection of database objects. This enables a quick set-up
of the model that represents the initial data to be prepared. When this functionality is
used, the system creates a concept for each database object (table or view), unless a
table consists only of columns that refer to other tables by foreign keys, in which case
the table is considered a cross table, i.e. one that realises a relationship. Such tables
are not represented by concepts, but by many-to-many relationships. Similarly, many-to-
one relationships are automatically created to represent direct foreign key links between
tables. The conceptual data type of each feature is guessed from the technical types of

“To enable the kind of pseudo-parallel processing motivated in section 1.1.1, in fact a Concept can
represent several tables or views of the same schema. Section 6.4 explains this, but here it is not
discussed for clarity of presentation.

101

6. Publishing Operational KDD Process Models

Table Concept: Table Conceptual Type:
ID ‘ Name ‘ Type ID ‘ Name
42 ‘ Employees ‘ DB 4 Discrete

5 | Continuous
6 Time
7 Binary
Table Feature:
ID | Name | Concept | Type | Role Table Role:
46 IdNum 42 4 8 D ‘ Name
47 | LastName 42 4 11 3 Key
48 Salary 42 5} 9 9 Predictor
10 Label
11 | No Role

Figure 6.4.: M4 data model, conceptual level example. The example relates to figure 6.2.
In the example, the names of the concept and the features have been edited by a user
to be more explanatory.

the corresponding column. All conceptual-level elements can be edited by the user at any
time.

Once the mapping is done, all user work on the KDD process continues using the
conceptual level, as can be seen in section 6.3.2.

6.3.2. Modelling processing steps

The difference between the static and the dynamic part of M4 (see above, figure 6.3) is
more salient in the process model, to be discussed now. First the static part is explained,
then the dynamic instantiation of operators.

The static part of M4 includes a schematic specification of all operators that are avail-
able in the system. The specification of an operator lists its name, its parameters, con-
straints, conditions, assertions, and a semantic link between input and output concept(s).
This information is found in appendix A for each operator.

The M4 type Operator defines the name of an operator while the type Op Param is
used to define the allowed input and output parameters for each operator (compare the
parameter definitions in appendix A). Further, the type Op_Constr can be used to define
constraints on the instantiated parameters, and the type Op_Cond holds the conditions
(see section 4.2 for explanations of constraints, conditions and assertions). Figure 6.5
exemplifies this part of M4 with the operator DISCRETISATION (section A.5.1) (more
specifically, the operator shown here discretises a continuous attribute given only the
number of target intervals). The type Op_Param specifies for each parameter the name,
minimum and maximum number of instantiations, 10 type (input or output), and M4
type of the M4 object that can instantiate the parameter. In the example, the operator
must be given, among other things, the number of intervals that it creates. This is only
one value, thus the minimum and maximum number of instantiations are both 1. Another
possible input to the operator are symbolic names (“labels”) for the intervals it creates.

102

6.3. A meta model for KDD processes

Table Operator: Table Op_ Param:
OplD | Name OpID Name Min | Max | 10 | M4Type
96 ‘ Discretisation 96 InputConcept 1 1 In Con
96 TargetAttrib 1 1 In Fea
96 NoOfIntervals 1 1 In Value
96 Labels 0 In Value
96 OutputAttrib 1 1 Out Fea

Table Op Constr:

OpID | Type | Objl \ Obj2
96 IN TargetAttrib | InputConcept
96 TYPE | TargetAttrib Continuous
96 TYPE | OutputAttrib Discrete
96 GT NoOflIntervals 0

Figure 6.5.: M4 process model, operator specification example.

The number of these labels is not limited beforehand, and the operator can also create
its own labels, so that the parameter Labels is optional, thus its minimum number of
instantiations is 0 and no maximum number is given.

To check the validity of an operator instantiation, constraints on the parameters can be
specified. In the example in figure 6.5, for instance the conceptual data type of the target
attribute (the one to be discretised) is constrained to be continuous, or the number
of intervals is constrained to be greater than (“GT”) 0. This declarative feature helps
to ensure that only valid sequences of operators can be set up. It thus supports the
execution-independent development of KDD process models.

Some operators can be applied several times to the same input. For example, the
MiningMart versions of SCALING scale one attribute to a new range, but can also be set
up to scale several attributes simultaneously. This facility is called looping. Only certain
parameters of certain operators are loopable; a special constraint in the type Op_Constr
signals this. For more details refer to (Scholz, 2007).

M4 also provides the type OperatorGroup which is used to bundle operators that solve
a similar task. This feature is included for the convenience of the user, as the MiningMart
system currently offers more than 80 operators; by the OperatorGroup type a taxonomy
over these operators is defined, to provide a better overview. For example, the different
discretisation operators (discretising attributes based on, e.g., the number of intervals
to be created, the cardinality of the intervals, and other specifications) are grouped
under one heading. Groups can be hierarchically arranged (nested). For the top level, the
groups from chapter 4 that associate the operators to important high-level preparation
tasks could be used.

Finally, M4 includes the type Assertion that can be used to specify some assertions
that operators can make about their output. In particular, this type is used to declare
the separation and specialisation links (section 3.2.2) between input and output of an
operator. Section 7.1.1 explains how this information is used in the MiningMart system to
instantiate these links when the operator is instantiated. More details about constraints

103

6. Publishing Operational KDD Process Models

and assertions can be found in (Scholz, 2002) and (Scholz, 2007).

By adding specifications to the list of operators, M4 is easily extensible by new opera-
tors. The MiningMart project has filled the meta model with a large number of operators.
All operators from chapter 4 and some further operators, for several mining tasks and
some administrative data processing tasks (such as materialisation in the database, see
section 7.3), are modelled. A slightly outdated list of all MiningMart operators and their
parameters is given in (Euler, 2002c), the latest list is to be found in the MiningMart
user guide. However, the functionality, or actual processing behaviour of the operator,
is not declaratively specified in the meta model, but procedurally in the system that
interprets it. This is the compiler functionality of the system; see section 6.4. Whenever
a new operator is added declaratively, a new procedural module for the compiler must
be added, too. A Java API is available for this; for details, see (Euler, 2002b).

So far in this section, the static part of M4 has been described, which stores the
specification of an operator. For the instantiation of an operator in a concrete KDD
process model, the M4 type Step is offered. The KDD process is a directed acyclic graph
whose nodes can be Steps or Chains; the latter correspond to the chunks introduced in
section 4.4, and subsume one or more Steps. Each Step employs exactly one Operator and
uses the type Parameter to define the input and output of an operator. All parameters are
instantiated at the conceptual level. Therefore, the complete KDD process is modelled
using the conceptual level and can be applied to new data by changing the mapping to
the technical level; see section 6.6.

Figure 6.6 demonstrates the use of the discretisation operator in a concrete Step. The
parameters specify the input and output, the number of intervals, etc., following the
specification in figure 6.5. For instance, the input concept for this step is the Concept
with M4-ID 42, which is shown in figure 6.4. The parameter TargetAttrib is instantiated
by the Feature Salary with the M4-ID 48 (see figure 6.4). The parameter Labels is
not instantiated, which is allowed because it is an optional parameter. The parameter
NoOfIntervals refers to an M4 object (with ID 55) of the type Value, which is used to
store numeric or discrete values. The parameter OutputAttrib refers to a Feature that
is created automatically by the system, as soon as the step is created; this is explained
in section 7.1.

If the user instantiates a parameter in a way that violates one of the constraints
mentioned above, the Step object is invalid and cannot be compiled. This would happen,
for example, if the target attribute of this discretisation operator is already discrete, since
there is a constraint (shown in figure 6.5) that requires it to be continuous. The reason
for the invalidity is displayed in a message to the user whenever a constraint is violated.

6.4. Executing KDD models

In this section the MiningMart compiler (see figure 6.1) that produces the technical-level
SQL code from the conceptual-level description of KDD models is briefly explained, for
the sake of completeness. The MiningMart compiler was developed by Martin Scholz and
is described in detail in (Scholz, 2007). Several operators were also implemented by the
author of the present work, the more interesting of which are explained in section 7.2.
The compiler creates SQL code that can be used to execute the given KDD application.

104

6.4. Executing KDD models

Table Step: Table Parameter:
StepID | Name | OpID SteplD | Name | M40ObjectID
40 ‘ DiscretiseSalary ‘ 96 40 InputConcept 42
40 TargetAttrib 48
40 NoOfIntervals 55
40 OutputAttrib 51

Figure 6.6.: M4 process model, operator instantiation (step) example.

Some examples for compiler-created SQL code can be found in appendix D. A possible
future extension to MiningMart would be a system component that can process flat file
data, which would require no changes to M4 because the lower level of the data model
can model arbitrary data tables. However, to enable the management of large data sets,
the current version of the system requires all data to be in a relational database. Another
advantage of this is that many intermediate results (data sets) during the process can
be realised as database views, which consume virtually no extra storage. Issues about
materialising such views are discussed in section 7.3.

Continuing the example from figures 6.2, 6.4, 6.5 and 6.6, the compiler executes the
discretisation of the Salary attribute into, say, three intervals (of same width). To this
end the user has created the step DiscretiseSalary using the graphical editor of the
system, and has set its parameters. The system creates an additional Feature in the input
concept that represents the column with the discretised values, which as yet has not been
created. The name for the new Feature is given by the user as the value of the parameter
OutputAttrib. Details about this automatic creation of Features are given in section 7.1.

The user can now start the compiler, which will read the information about the step
and create SQL code for the output parameter. In this case, the higher-level output is
a Feature that the compiler connects to a virtual column. That is, the compiler creates
an M4 object of type Column which does not represent an existing database column, but
contains SQL code that computes its values based on an existing column, in this case the
Salary column. In succeeding steps, this virtual column plays the same role as any other
column; in particular, it can be used in database views on the original table EmplData.
In this example, the SQL code might be: (CASE WHEN EmplData.Salary < 1000 THEN
’Labell’ WHEN EmplData.Salary < 2000 THEN ’Label2’ ELSE ’Label3’ END).

In order to be independent from the underlying database management system (DBMS),
the compiler creates only standard SQL code. In fact, however, different DBMS offer
slightly deviating SQL dialects, especially where metadata is concerned. For example,
the numeric SQL data type is called NUMBER in Oracle systems, but NUMERIC in Postgres
databases. Therefore, all queries to the database that concern database metadata have
to be implemented for each DBMS separately. A Java API was created for this purpose
by the author of this work, and implemented for Postgres and MySql database systems
(while an implementation for Oracle was joint work with Martin Scholz).

The compiler is the system module that is responsible for administrating more than
one Columnset for a single Concept. This is needed to realise the pseudo-parallel process-
ing of different data sets with the same schema. All columnsets for the same concept

105

6. Publishing Operational KDD Process Models

(representing database tables or views) must have the same columns and types. Usually,
a concept has only one columnset, but the operator SEGMENTATION (section A.6.1) may
split a columnset into several ones which are all attached to the same concept. When
compiling a Step whose input concept has several columnsets, the compiler simply repeats
its compilation on each of them, and produces a columnset for the output concept for
each. Thus the number of columnsets attached to the output is the same as that in the
input. In this way, the preparation of several data sets of the same kind can be hidden
behind one conceptual model. This has been motivated in section 1.1.1, and is shown to
be very useful in (Euler, 2005d). Two particular operators are available in MiningMart
to control this, see section A.6. More details can be found in (Scholz, 2007).

6.5. A public repository of KDD models

This section describes the knowledge portal, called Case Base®, that serves to distribute
successful KDD models (cases) publicly without publishing the data they are based on.
Section 6.5.1 elaborates on the motivation for setting up the portal, while section 6.5.2
presents the technical realisation. Then section 6.5.4 presents an algorithm for detecting
common subprocesses in the case base, while 6.5.5 summarises issues related to the
retrieval of cases from the case base.

6.5.1. Motivation

The creation of the web platform, or the case base, is motivated in the beginning of this
chapter by the opportunities for knowledge flow that it offers. KDD experts can doc-
ument and publish their expensively developed solutions for later reuse by themselves
or by less experienced users, without having to publish the data sets their solutions are
based on. But in fact, once such a platform is available, further advantages can be ex-
pected. Section 6.6 discusses reusable elements of KDD processes. One detailed example
there concerns the reuse of subgraphs (chunks) of KDD steps which together solve a
particular subtask. This example leads to the idea that many KDD processes exhibit a
number of common patterns that can be collected as recipes for new KDD applications
in a central “cookbook”. In typical KDD applications, there is a number of reoccurring
subtasks whose solutions are often similar. One might also expect to recognise further
patterns for subtask solutions once a larger collection of successful KDD processes — the
cookbook is available. A pattern, then, is a part of some KDD process that occurs more
than once among the processes in the case base, and is defined by a number of connected
data preparation operators and the data flow between them. The problem of automati-
cally finding such patterns is that of frequent subgraph discovery. Thus the case base is
seen as a collection of graphs, where the nodes of the graphs are the steps (operators)
of the case while the edges represent the data flow. As said in section 4.4, the resulting
structure is called a DAG (directed acyclic graph). The graph nodes are labelled in this
application, each label corresponding to one operator. Section 6.5.4 presents a frequent
subgraph discovery algorithm for finding common KDD subprocesses in the case base. It
identifies candidates for reoccurring KDD subtasks. Such candidates can be added to the

*http://mmart.cs.uni-dortmund.de

106

6.5. A public repository of KDD models

web repository as blueprints for solving specific subtasks, thus extending the collection of
complete process models by a collection of sub-models for specific purposes (compare the
example in section 6.6). Here the explicit representation of chunks of processing steps,
as introduced in section 4.4, provides a useful tool to model subtasks.

Obviously such patterns, or solutions for frequently occurring subtasks, can also be
created by hand, and can be published as a collection of chunks with extensive docu-
mentation. This idea has been realised for this work, as described in section 6.5.3. The
manually created solutions can be seen as (part of a) tutorial on data preparation for
KDD. Due to the public nature of the web platform, new solutions can be easily added
by anyone, so that the tutorial can be assembled by collaborative efforts.

The technical framework described in the following (section 6.5.2) allows to download
KDD models from the case base, and use them as blueprints for local KDD solutions.
For example, the model application described in chapter 5 is available in the case base
in all its details, under “ModelCaseTelecom”. The framework supports KDD developers
by offering solutions to data preparation and algorithm selection problems which have
worked before in similar settings. Even if only parts of a case are reused, they can serve
as starting points for a new application. In this way, a more collaborative style of work
can be achieved once the collection of good case models reaches a critical size. More on
reusing cases is said in section 6.6.

A limitation to this idea might be that the coupling between the conceptual data model
and the actual data schema is rather close, since a concept corresponds directly to a data
table or a database view. Thus it is possible to guess what the data schema looks like
from a publicly available data model. Since some institutions would consider not only
their data, but also their data schema as sensitive information, such institutions are not
likely to publish complete data models in the public web repository. One remedy to this
problem is to publish only a part of a case, leaving out the initial steps that deal with
the original data tables, but still presenting the later steps which are more interesting in
terms of the KDD methods applied.

6.5.2. Realisation

In the following, the MiningMart Case Base is described in some detail. It consists of
a collection of HTML files that each represent an M4 object, and one top-level HTML
page that points to the different cases. By following the HTML links from a case to its
steps, concepts, and so on, the structure of the case can be explored.

Only the M4 types of the conceptual level are published, as the lower data level is
considered confidential in many institutions. Figure 6.7 shows a UML model of those M4
types that occur in the case base, and how they are linked (these links are the ones that
are realised at the object level by HTML links).

The first technical realisation of the case base is described in (Haustein, 2002). That
version directly accessed a database with an M4 schema to publish all cases in that
schema as HTML files, delivered on demand to a web server. This was possible using a
software called Infolayer (Haustein & Pleumann, 2002; Haustein, 2006). The advantage
was that once a case had been imported into that central M4 schema, it was publicly
available immediately, and any changes were immediately reflected in public. A disad-
vantage was that the central schema had to be administrated separately, so that all cases

107

6. Publishing Operational KDD Process Models

M40bject

+M4_DOCU

Operator
— Parameter +OP_NAME
ParameterObject
+PAR_NAME
- 0..1 |+PAR_OBJTYPE
L +PAR_TYPE
Step
0..* +ST_NAME
+ST_NR 0.
1 0..1
0..*% Chain
Value Feature Concept SCH_NAME
+V_NAME +FEA_NAME 1..x 1 +CON_NAME 1 +CH_PARENT
+V_VALUE +CON_TYPE
- - Case
0..% 0. . 0..* 1 0..*
0..*% o o +CA_NAME T
1 1 1
1 1
ConceptualDatatype Role
+CONDT_NAME +RO_NAME CaseDescription
0..1 0..1
+CD_BUSDATA
+CD_CONTACT ExportFile
+CD_GENERAL mifile
+CD_GOALS

+CD_METHODS

Figure 6.7.: A UML model showing the parts of M4 that are published in the Case Base.

to be published had to be exported into that schema. As another disadvantage, query-
ing the M4 database online before creating the corresponding HTML page turned out
to consume more time, before the page could be delivered, than users of web sites are
accustomed to. Thus a second version was realised by the author of this work.

In the second version, the HI'ML files are created offline, either simply by exporting
from MiningMart, or by a special program. A user selects the cases to be published from
their M4 schema. The HTML files for these cases are created by the program, and can
be stored directly in the public directory of the web server, so that they are immediately
available like standard web pages.

The HTML-creating program exploits a recurring structure in the M4 schema: certain
M4 types act as containers for others. For example, a Chain contains Steps, a Step contains
Parameters, and a Concept contains Features. The program treats all container types
alike, and creates a HI'ML file with links to the contained objects for each instance of a
container type. HTML links are realised through file names that identify each M4 object
uniquely; these file names are easily found by using the unique M4 id that is stored with
every M4 object in the database (for more details on the administration of M4 objects,
refer to (Scholz, 2007)). To ease navigation through a case, the path to the current M4
object is displayed at the top of the HTML page.

Figure 6.8 provides a screenshot of the case base as it displays the start page of a case,
together with links to the case’s properties, in particular to the concepts that represent
the data input to the case, and to the chains (chunks) of steps that model the process.

When setting up a case with the MiningMart system, every object from the case itself
to operators, parameters, concepts and features can be documented using free text. These

108

6.5. A public repository of KDD models

Your Navigation Path

Case Base
MiningMart

Case: ModelCaseTelecom

Has Chains DataMining
HandleCallsData
HandleCustomerData
HandleRevenueData
HandleServicesData
Select Client Ids For Mining

+ Exported into M4 file:

MaodelCaseTelecom.xml.zip Your Navigation Path
. Case Base Case Chain
+ Concepls used as input: MiningMart ModelCaseTelecom |HandleCustomerData

InputCallDetails
InputCustomers

InputRevenues .
faputRevene Step: ComputeAge
M4 Documentation: Name ComputeAge
Belongs to Case ModelCaseTelecom
A case with complex data preparation that demonstrates Uses Operator GenericFeatureConstruction

many useful operators and the two dual views on KDD :

processes. The data is from a telecommunications company, Belongs t.o Chalnwtoryer[)ata

providing mainly detailed information about telephoning Concepts of resulting Data InputCallDelails

behaviour of customers. After bringing this information into Model InputRevenues

a suitable representation, decision trees are learned to CustomerDataToMine

predict churning behaviour of customers. Has Parameters SQL_String
ThelnputConcept

. TheOutputAttribute0
Additional documentation for the Case Base: TheTarget Att ributed

* Overview M4 Documentation:

This case demonstrates a complex application based on

churn prediction in telecommunications. It exemplifies Computes the age of each customer as for 2001.

Figure 6.8.: Two screenshots of the Case Base as displayed in a web browser. Left: the
start page for a case. Right: a step.

comments serve users for their own orientation in complex models. They are stored in M4
and appear on the web pages when a case is published (see the field M4_DOCU in the class
M} Object in figure 6.7), so that other users browsing the case have a good orientation

as to the purpose of each step in the KDD model and the use of its parameters. If such
comments are missing, they can be added by the operators of the case base.

However, users who search for a case which they might use as an inspiration for their
own KDD problem, or even as a blueprint of a solution, need some additional, more
general information about each case. The most important types of information, following
the discussion in section 2.1.1, are (i) the business domain, (ii) the business problem that
was attempted to solve, (iii) the kind of data that was used, (iv) the mining task and other
KDD methods that were employed, and (v) the results, both in terms of KDD (e.g. the
quality of the model) and the original business problem (e.g. saved costs). Hence, exactly
this information is provided together with every case that is presented in the case base.
The program that creates the HITML pages asks the user to provide this information. It is
organised in five fields for free text, corresponding to the five types of information above
(a sixth field with contact information enables further inquiries by interested users). The
filled fields are displayed in the case base as the first page of information about each case
(see the left part of figure 6.8, under “Additional Documentation”). From there users who

109

6. Publishing Operational KDD Process Models

are motivated by the descriptions can start to browse the case model, beginning with the
chains of operators or the input data. In this way, the case model is linked with essential
information relating the case to the context in which it was set up, which allows potential
re-users of the case to judge its suitability for their own business problem.

Finally, each case is linked to the file into which the case was exported. It can be
downloaded using the web browser, and be imported into a MiningMart client. There
the conceptual level of the data model is available and can be mapped to local data sets
as described in section 6.3.1. All parts of the case can be edited and adjusted if necessary;
section 6.6 discusses the nature of likely adaptations. Once the adaptations are made,
the case can be directly executed in the MiningMart system.

6.5.3. Templates

Section 6.5.1 motivates the idea that some subtasks in KDD tend to reoccur. Section
6.5.4 discusses the automatic discovery of such subtasks. In fact a certain number of
small but general preparation problems, or subtasks, have been identified by the author
of this work and by Pyle (1999) and Rem and Trautwein (2002).5 These problems are
usually very simple and have a straightforward solution. They are particularly interesting
for inexperienced KDD users. The solutions are only informally described in the cited
literature; however, the framework of this chapter allows their formalisation and direct
publication for the first time. A collection of such formalisations can be seen as a (useful
element of a) tutorial for KDD. Using MiningMart, contributions to such a collection can
be made by anyone.

For this work the term template is used to refer to pairs (P, S) of problem descriptions
P (using free text) and solutions S which are chunks in a MiningMart case. A special
MiningMart case in which each chunk realises such a template has been set up by the
author, in order to provide a public collection of templates. Formally there is no difference
between a template and a complete KDD application together with a description of the
problems it solves, but the term “template” will be used here for small solutions which
typically involve one to three steps only. Templates are designed to be straightforwardly
reused even by inexperienced users. In this way they also help professional users in saving
development time. What is crucial for this purpose is an extensive documentation of the
steps and concepts involved in a template.

The templates are designed to capture the essence of solutions to a number of typical
preparation tasks, similar to the way design patterns are used in software engineering to
describe abstractions of approved solutions to typical problems (Gamma et al., 1995).
Like in software engineering, making profitable use of the templates requires their adap-
tation to concrete preparation problems by the user.

Since the templates are published in the case base, only their conceptual level is avail-
able. In particular no actual data comes with a template, in spite of its illustrative poten-
tial for how a template “works”. Instead, the conceptual data is well-documented, down to
the level of single attributes, so that small matching data sets can be easily constructed

6In addition, Knobbe et al. (2000) have proposed a few design patterns for typical mining tasks like
cross validation or boosting. However these patterns concern the subprocess of experiments within
the mining phase, and they are not developed to a formal description.

110

6.5. A public repository of KDD models

artificially using external tools. One might consider to modify the case base slightly, such
that small illustrating data sets can optionally be published together with every case.
However, this is not considered necessary to make successful use of the templates.

Appendix B lists short problem and solution descriptions under headings which are
equal to the name of the chunks in the special template case. To retrieve formal solu-
tions, please refer to the case “TemplateCase” in the MiningMart case base, and look
up the structure and documentation of the chunk corresponding to the solution. The
design of the templates followed a modular approach, attempting to isolate solutions to
small preparation problems within a chunk rather than combining the solutions of several
problems in larger chunks. For example, to prepare data before a support vector machine
(SVM) can be applied, discrete values must be changed to a numeric representation by
applying VALUE MAPPING or DICHOTOMISATION, and then all numeric values should be
normalised to the real interval between 0 and 1. Rather than exemplifying these prepa-
ration approaches together under an SVM heading, they are demonstrated separately in
different templates. This eases their retrieval in the case base. Larger preparation chunks
can easily be created by combining the various modules. For a KDD tutorial, the di-
rect availability of larger chunks is preferable, but the present work concentrates on the
identification of small preparation modules to demonstrate solutions for basic tasks.

The list of templates given here covers the major preparation problems and solution
methods to be found in the literature (see sections 4.1 and 6.1). Not all minor variants
could be included, but the list of templates is of course open and can be extended by
collaborative efforts. As it stands, it provides the first public collection of operational
solutions to all major preparation tasks, a major step towards a public KDD “cookbook”
or tutorial.

Each template description is structured as follows. The name refers to the chunk in
the template case in the case base. A brief description of the problem and its solution
is given. Then there is a list of ideas from the present work that are illustrated by
the template. Finally, any MiningMart-specific notions that the template illustrates in
addition to those general ideas are also listed. Pointers to other sections of this work are
given where possible.

6.5.4. Finding common subprocesses

As explained in section 6.5.1, the problem of finding reoccurring KDD sub-processes
in the case base automatically is that of finding frequent subgraphs in a database of
graphs. The problem can be restricted, for this application, to directed acyclic graphs.
A graph is a subgraph of another graph if all its nodes and edges can be embedded into
the other graph. A subgraph is called frequent if and only if it occurs in the case base
more than minsup times. minsup is called the minimum support threshold. Note that
a subgraph might occur several times in the same graph (here, the same case). Only
connected subgraphs are considered.

For general graphs, the problem is very hard because it involves solving at least the
subgraph isomorphism problem, which is NP-complete (the general graph isomorphism
problem is probably neither in P nor NP-complete) (Fortin, 1996). An additional con-
straint that makes the problem tractable for many practical applications is to require
labelled graphs, which assign a label to each node and edge. In the case base, a node

111

6. Publishing Operational KDD Process Models

label is easily found to be the type of operator the step employs. Edge labels are not
available (using the concept whose data flow is represented by the edge would result in
almost as many labels as edges), but edges are directed.

By using operator groups instead of operators as labels, a more abstract or approximate
matching of subgraphs to graphs is possible, which may allow to identify higher-level
substructures in the case base.

Frequent subgraph discovery algorithms are presented by Inokuchi et al. (2000), Ku-
ramochi and Karypis (2001) and Borgelt and Berthold (2002). They are based on the
Apriori paradigm (Agrawal et al., 1993) of level-wise bottom-up candidate generation and
support thresholding, exploiting the monotonicity of the minimum support constraint,
whereby a subgraph can only be frequent in the graph collection if all of its subgraphs, in
turn, are frequent. A major problem in frequent subgraph discovery is to store candidates
for frequent subgraphs efficiently, so that no redundant new candidates are created. To
tackle this problem, the first two approaches cited above expensively compute canonical
forms of graphs to uniquely identify subgraphs with the same structure. In contrast,
Borgelt and Berthold (2002) allow somewhat redundant storage of candidates to avoid
the computation of canonical forms. However, this requires to scan the output of the
algorithm for identical structures. Central to their approach is the use of data structures
that point from each candidate subgraph into positions in the graph database where it
can be embedded. These pointers are called embeddings.

For the problem at hand, a frequent subgraph discovery algorithm was developed that
is based on ideas from the work cited above, but incorporates some simplifications which
are possible because the graphs in the case base are directed and acyclic. Since these two
features reduce the search space, and since the number of graphs in the case base is not
high, efficiency issues are not as pressing as in other applications.

Similar to Apriori, the algorithm proceeds from candidate subgraphs of size 1 (the size
is the number of nodes) to larger subgraphs, filtering infrequent candidates at every level.
For every candidate subgraph a canonical representation is computed that is the same
for every graph with the same structure, regardless of the permutation of nodes. This
representation is explained below. It allows to index the set of candidates uniquely, so
that no two identically structured subgraphs are kept in the candidate set, which could
happen because the same subgraph can be grown from different candidates of lower size.
Together with every candidate subgraph, a list of all embeddings of this subgraph into
the graph database is maintained. Growing a candidate of size k to size k + 1 means
to explore all possible extensions of the subgraph by one node, in every embedding.
That is, every such possible extension from every embedding yields a new candidate. By
using the embeddings, candidate extension (or candidate generation) is constrained by
the structures that actually occur in the graph database. Filtering infrequent candidates
then means to count the number of embeddings that allow a given extension, and to
reject candidates that do not meet the minsup threshold. These two steps, growing and
filtering, are done at the same time in the presented algorithm because the maintained
embeddings allow this easily. Note that growing a candidate may mean to extend it by
an edge against the direction of this edge. This is necessary because some nodes (namely
those labelled with the operators JOIN and UNION) can have multiple incoming edges.
In other words, the DAGs are not trees.

112

6.5. A public repository of KDD models

Algorithm: Frequent Subgraph Discovery

Input: A collection of labelled graphs G and an integer threshold minsup
Output: A collection of subgraphs S that occur at least minsup times in G

1. Create all frequent subgraphs of size 1 and their embeddings;

2. S1 = canonically sorted list of the subgraphs of size 1;

3. k=1

4. While S # &:

5. For every subgraph g from Sj:

6. For every embedding e associated with g:

7. For every node n in e:

8. For every neighbour n' of n that is not in e:

9. sup = number of embeddings of g that allow an extension

by an edge between n and n' (respecting labels);

10. If sup = minsup Then insert extended g into Sk,1;
11. k=k+1;

12. return S = | J, Sk;

Figure 6.9.: An algorithm to find frequent subgraphs in a collection of directed acyclic
graphs with labelled nodes.

Figure 6.9 gives an overview of the algorithm. The first step is to create the frequent
subgraphs of size 1 and their embeddings into the cases (line 1). This step requires linear
runtime in the number of all nodes in the graph database. Note that there are atmost as
many subgraphs of size 1 as there are labels (here, each type of operator corresponds to
a label).

Secondly (line 2), these subgraphs are sorted canonically into the collection Sy as
explained below; Sy collects the candidate subgraphs of size k. Thirdly, the main loop of
the algorithm starts (line 4). It extends every node in every embedding of every candidate
subgraph, by following one of its edges that lead out of the embedding; then it counts the
number of embeddings in which this extension is also possible (line 9). If the minimum
support threshold is met (line 10), the newly extended candidate subgraph is frequent,
so it is sorted into the collection of subgraphs of the current level (line 10). This sorting
step requires to compute the canonical representation and to insert the representation
into an already sorted list (line 10). The algorithm terminates when no embedding of any
candidate subgraph allows an extension that meets the minsup threshold (line 4).

The computation of the canonical representation for graphs basically follows (Ku-
ramochi & Karypis, 2001). The basic idea is to use a string representation of the adja-
cency matrix. However, two graphs with the same structure can have different adjacency
matrices, because there is no global method by which one can sort the nodes of the graph
canonically. The problem exists even for labelled graphs because several nodes can have
the same label. To achieve a canonical representation one can compute all possible adja-
cency matrices for a graph, using all possible permutations of the nodes, and then choose

113

6. Publishing Operational KDD Process Models

Algorithm: Canonical Form

Input: A labelled graph g
Output: A string that is the same for all labelled graphs with the same structure as g

[a—y

For every node n of g:
Sort n into a bucket that corresponds to its
label, its input and its output degree;
Create all permutations of nodes within each bucket;
For every combination ¢ of the permutations from each bucket:
Let I be the list of nodes sorted according to ¢;
Compute the adjacency matrix m of g using node order [;
Compute the string representation of m;
insert m into a lexicographically sorted list s;
return the first element of s;

N

© 0N O W

Figure 6.10.: An algorithm to compute a canonical representation of a labelled graph.

the lexicographically first string representation. This is computationally expensive.

To reduce the computational demand, one can exploit the invariant properties of the
nodes: their label, their input degree (number of incoming edges) and their output degree.
To this end, all nodes of the graph are partitioned into sets representing the labels. Within
each set, nodes are further partitioned according to different input degrees (0,1,...), and
then again according to output degrees. Within these last sets, all permutations of nodes
are computed. Then every combination of local permutations gives an adjacency matrix,
and the lexicographically first string representation of them is a canonical representation
of the given graph. This method requires fewer adjacency matrices to be computed than
without the partitions. Figure 6.10 shows the algorithm that computes the canonical
representation.

6.5.5. Retrieval of public KDD process models

In this subsection, the case retrieval scenario is examined in some detail. Recall that a
case is a complete KDD process model in MiningMart. But as mentioned in section 6.5.1
and further discussed in section 6.6, parts of a case can also be interesting for other users
and thus worth publishing. Therefore the term case is used in this subsection to refer
to both complete and partial process models. Some ideas from this subsection have not
been implemented yet, but are suggested for future work.

The scenario for case retrieval is that a user in some institution has a number of
data sets, called local data hereafter, that they want to examine using data mining.
How can they get advice if no KDD expert is available? A suitable starting point is the
additional documentation published in the case base for every case. Assuming a small
case base (a low number of published cases), this information can be searched manually,
but as the case base grows, automatic search methods are needed. By restricting publicly

114

6.5. A public repository of KDD models

available search engines to the MiningMart web domain mmart.cs.uni-dortmund.de,
a service that at least Google” offers for free, the complete case base can be searched
for keywords, including the documentation annotations and the names of M4 objects.
Another useful way of approaching the case base can be offered by sorting the cases
according to various topics extracted from the additional case documentation. The five
slots of the documentation template provide five useful topics for indexing the case base.
Further topics (such as type of business/institution where the application was realised)
can be added by extracting this information from the free text descriptions in the slot.
While automatic keyword extraction methods from the area of text mining (like (Euler,
2002d)) might be used for this, the size of the case base will probably grow moderately
enough to allow a manual administration of such indexes. Other indexing methods are
described in the following.

The business-related information will often not be enough to determine whether a
published solution is suitable for adaptation to own data sets. A second method of ap-
proaching the case base is by looking for data models in it, called target models hereafter,
that are similar to the local data sets. Section 6.6 explains how an automatic schema
matcher may support this task. Currently, using this matcher requires downloading a
number of candidate data models and determining the degree to which they match the
local data, by applying the schema matcher, and comparing the results. In the future,
the case base could be extended by an online schema matcher that allows to upload a
local data schema and search among the target data models in the case base for similar
data models. (A simple schema matching approach that searches among several available
target schemas for the best match is described in (Shah & Syeda-Mahmood, 2004).)

This online matching scenario has an important advantage. All cases use a particular
data model as input, then preparation operations are applied to the data. Each prepara-
tion operation produces intermediate data collections. These intermediate models can be
included into the search for target models, so that the most suitable entry point into a
case can be found. Since preparation is actually a method to adapt data representations,
it would make no sense to restrict the search for target data models to the initial data
that the original KDD processes started out on. The entry point (in the blueprint case’s
preparation graph) is the data model that the user’s local data is mapped to; the data
transformations in the blueprint before the entry point are irrelevant for the local data.
The most suitable entry point, then, is the (intermediate) data representation that can
be mapped best to the local data schema. This “entry point” approach can be parame-
terised by considering various degrees of the exactness of matching (the schema matching
algorithms use a distance measure that can be used to rate the quality of the suggested
matching). Another possible extension is based on exploiting the possible connections
between a target data model and the operator that uses it as input: for example, some
operators require certain input attributes to have a specific conceptual data type. Section
6.3.2 explains how M4 includes constraints to model this. Such constraints could be in-
volved in a decision on suitable entry points, by excluding entry points whose constraints
are not fulfilled by the local data.

However, an important restriction of the schema matching approach is that it relies
on syntactic clues to discover similarities between the data sets. In contrast, similarities

"http://www.google.com

115

6. Publishing Operational KDD Process Models

in the way the data is prepared in the process to be reused, and the way the local data
should be prepared, cannot be captured. This is discussed further in section 6.6.

The search for suitable cases might also benefit from inspecting the last data model
in every case: in predictive learning, it includes the learned information (the predicted
label) that was decisive for the success of the case, while in both descriptive and predictive
settings it represents the form of the data that must be reached in order to be able to
benefit from learning. Having found a suitable data format to aim at (not disregarding
the business-related information, of course, see above), users can start backwards from
there to find suitable preparation methods that can also be applied to their own, local
data. The browsable case model on the web platform is very adequate for this type of
backward searching, as it displays chunks of steps in the order of the data flow.

A third possibility for indexing the case base is based on the mining algorithms applied
in each case, so that all cases that use a particular type of mining algorithm can easily
be found. The argumentation is similar to the one for looking at the last data model in
a case, as the type of mining algorithm determines technical requirements that the data
representation must meet. Currently an index of all operators used in any case is given
on the start page of the case base; it allows to find all applications of any operator by
pointing from an operator to the list of MiningMart steps that use it. This includes the
mining operators, of course.

A fourth index can be set up by applying the subgraph detection algorithm from
section 6.5.4, having the extracted common subgraphs inspected and commented on by
the administrator(s) of the case base, and using the resulting list of typical KDD tasks
as an index. Similarly, the manually created templates (section 6.5.3) can be linked to
cases in which they are employed. See also section 6.6.2. The list might be ranked by the
number of occurrences of each subgraph or template. Both the subgraphs themselves as
well as the cases in which they occur can be of interest. The explicit representation of
chunks (chains) in MiningMart helps to administrate subgraphs in the case base.

To sum up, several indexes or views of the case base are possible that reflect different
approaches to looking for suitable KDD solutions. Some indexes focus on the application
background while others focus on the technical details of a solution. These indexes provide
a flexible and powerful tool for case retrieval, which is one of the most important tasks
that the case base has been set up for. Once a case is retrieved, it can be reused as
discussed in the following section.

6.6. Reuse and adaptation of KDD processes

Section 2.2 has discussed several advantages of the availability of executable models of
KDD processes. Applications in distributed and grid or web services based data min-
ing were mentioned in section 6.1.2. In simpler settings, the documentation, storage and
retrieval of such processes is no less important, however. Considering that successful min-
ing projects are often integrated into other business processes, for example deployed on
a regular basis by nonexpert staff on updated data sets (see also section 2.1.6), docu-
mentation and ease of execution are prerequisites to value-adding deployment of KDD
within an institution. Wirth et al. (1997) describe wasted efforts in a situation without

them. Thus reusability of KDD processes is important even within an organisation or

116

6.6. Reuse and adaptation of KDD processes

for the same data miner. The knowledge about successful KDD projects should not only
flow from experts to non-experts, or from experts in one domain to those in a different
domain, but also from the past to the present, or from experienced staff to new staff in
the same organisation.

Section 6.5 has presented a technological framework to publish and reuse KDD mod-
els. But which aspects of a KDD process model are reusable, and when? Referring to
the six phases of a KDD process defined in the CRisp-DM standard (chapter 2), the
more “technical” phases data preparation, mining, and deployment can be modelled in a
standard way, as the previous sections have argued, which leverages their reusability (see
below). Business understanding seems less amenable to transfers from one KDD project
to the next. Yet, the general case information added to the MiningMart web platform
(section 6.5.2) serves the purpose of documenting examples of business problems and
their solution. Clearly experts of the business at hand will be indispensable, however,
when planning a new KDD project. Further, data understanding, as an important CRISP
phase, can not be reused across different data sets, but the documentation of the data
model in M4 stores all relevant metadata at least for future applications on the same data
set. This is very useful even if the new applications are quite different from the original
one, since M4 includes expensively computed data characteristics (compare section 3.3.3)
and expensively created human comments.

In the remainder of this section, mainly the reusability and adaptability of a prepara-
tion process is considered. If the process is applied regularly, for example as a basis of
monthly reports, one can expect the underlying data schema not to change from one run
to the next, so that the complete process is usable without adaptations. If the process is
applied in a new domain or a different institution, adaptations are likely to be necessary.
To examine the different types of adaptations, the model case described in chapter 5,
which had been implemented in a number of KDD tools for experiments described in
chapter 8, has been adapted to a similar but smaller application for this work (in more
than one tool). Since the new case was smaller, adaptation consisted a lot of cancelling
superfluous attributes and operators in the model case. However, there were also some
operators, concepts and attributes that had to be added to the model case.

This adaptation has been made towards a similar case, meaning that its input data
came from the same domain as in the reused application, and represented similar things,
though it was organised in a slightly different way. However, sometimes one would like
to reuse the “essence” of a preparation process on rather different data, for example
on data from a different application domain. In such cases, the data sets themselves
are not similar, but the way they have been/should be prepared for mining is similar.
In other words, certain elements from the local data and the data model to be reused
may be recognised, by experienced KDD analysts, as playing or having to play a similar
“role” for mining. For example, Morik and Kopcke (2005) describe a knowledge discovery
application on insurance data, in which an encoding of features that had until then
only been used on text data turned out to enable successful learning. Thus they have
transferred the role played by documents, in preparation for text analysis, to insurance
contract data. A preparation process from text analysis that computes this encoding can
easily be reused on this different kind of data, using the framework of this work, provided
that the conceptual data model is connected to the new data in the correct way, so that

117

6. Publishing Operational KDD Process Models

the right data columns are encoded. The main problem in this scenario is that the reused
data model is likely to use names for attributes and concepts that are based on the
original data, so that its names are misleading after the connection to different data has
been made. This is not a technical problem, but one that might confuse a user. Thus,
a third important operation for reuse is consistent renaming at the conceptual level.
Finally, also conceptual data types of attributes may have to be consistently changed.

So the main operations needed for adaptations, or reuse, are the deletion, addition,
renaming and retyping of elements of the conceptual level, under the constraint that
the models remain consistent. Consistent means, in particular, to change all dependent
copies of a changed element. For example, if an attribute of some concept is renamed or
deleted, and the original process has applied a SAMPLING operator to this concept, then
the output concept of the operator will have the same attribute, which therefore also has
to be renamed or deleted. This propagation of changes has to be done throughout the
graph that models the preparation process. For more details, see below and section 7.1.2.

The remainder of this section discusses more issues in reusing the data model (sec-
tion 6.6.1) and the process model (section 6.6.2) separately.

6.6.1. Reuse of the data model

Concerning the given data model, only the conceptual part (the higher level) is intended
to be reused. Note that this excludes the data characteristics (section 3.3.3), which must
be obtained anew from the local data. The conceptual data types used in the given model,
on the other hand, are to be reused, since the syntactic validity of the reused process
may depend on them. As noted in section 3.3.1, the mapping of conceptual to technical
data types can be rather flexible. Only a few combinations, like mapping a continuous
attribute to a string-based column, must be excluded.

The terms target model for a conceptual data model from the case base (to be reused),
and local model for the new data schema, are used here like in section 6.5.5. Recall from
that section that MiningMart can employ schema matching algorithms that attempt to
map the local model to the target, in order to support the reuse of the target model.
The schema matching uses the similarities of names and data types. Therefore, schema
matching is not useful if the data models represent different application domains, as in
the scenario sketched above. In such cases the user must provide an adequate mapping.
Whether given by schema matching or by the user, such a mapping may be incomplete
in general. Two cases are distinguished.

First. The target model may use attributes or concepts that are not present in the
local model. Then it has to be decided whether the role of these elements in the case to
be reused has been paramount to the success of the case. This should be easy to find
out from the documentation of the case. If the elements can be removed from the given
model, this can easily be done provided that the deletions are propagated through the
process model. That is, all conceptual outputs of processing operators that depend on the
reduced parts of the target data model have to be automatically updated to exclude the
additional attributes. If, instead, these elements are indispensable due to the important
role for mining they have played in the original application, one may be able to generate

118

6.6. Reuse and adaptation of KDD processes

attributes that can contribute similar information for mining as the missing attributes.
Adding attributes or concepts to the case is discussed below. Only if one cannot extract
similar information from the given data, the adaptation is impossible.

Second. The target model may lack attributes or concepts that are present in the
local model. In this case, it has to be decided whether the additional local data should
be added to the blueprint KDD process, for example as additional attributes in the
representation that is used for learning. If yes, additions should be made to the target
data model and these additions have to be propagated through the model again. So
all conceptual outputs of processing operators that depend on the enhanced parts of
the target data model are updated to include the additional attributes. To do this, the
operator-specific ways how input changes determine output changes must be known. In
M4, the constraints on parameters of an operator (section 6.3.1) model this. A constraint
can specify, for example, that the output concept must have the same attributes as the
input concept. When a new attribute is added to the input concept, the propagation
algorithm can infer that a corresponding attribute must be added to the output concept.
The propagation algorithm in MiningMart was implemented by the author of this work,
see section 7.1.2.

At this point a crucial advantage of conceptual modelling as discussed in this work
shows up again: the model can be updated to represent the new process without the
need to execute the process. The syntactic validity of the process can be checked ahead of
execution time, which saves the developers a lot of work. This situation can be compared
to its extreme opposite: programming all data processing in a language like Perl or SQL,
where adaptation to changed circumstances is a lot harder, especially by someone who has
not created the original code. The more of the high-level concepts discussed in previous
chapters a KDD tool supports explicitly, the easier the adaptation of a process model to
changed local data sets or new KDD tasks.

If the local model offers additional tables not represented in the target model, concepts
for these additional tables can be created. Then they can be joined to or unified with
the mining table (the input for data mining) in the given case, if there are key links
between the tables. Perhaps some additional preparation of each concept is necessary,
thus the availability of KDD operators can be exploited for the adaptation of the data
model (Euler & Scholz, 2004). See also below. Any new attributes that a join introduces
into the target data model can again be propagated to later steps. At last, the updated
model is executed as usual.

The discussion up to here assumes that the relationship between the additional local
attributes or tables and the target data model is semantically transparent to the user.
For example, the user must be able to decide whether a local concept and a target should
be linked by a separation, a specialisation, a relationship, or not at all. Some research
exists that attempts to support users in such tasks by providing more expressive onto-
logical formalisms that describe the data. This is called ontology integration, see (Wache
et al., 2001; Mena et al., 2000; Akahani et al., 2002; Tan et al., 2003) or (Kalfoglou &
Schorlemmer, 2003) and the systems cited there. But these methods also rely on man-
ually or semi-automatically built mappings between different ontologies (Fiedler et al.,
2005), even when the ontologies are built using the same formalism and model the same

119

6. Publishing Operational KDD Process Models

application domain. Though such manual mappings may not be too difficult to set up
with appropriate tools, there are arguably no less user efforts involved than in manual
concept matching. Section 3.2.1 explains other reasons why a rich ontology formalism
was not considered for MiningMart.

The use of ontologies is often advocated for in data integration in distributed or feder-
ated databases, see section 4.1.1. In such databases, a global schema exists that provides
a reconciled view of the individual databases (the sources). There are two distinct reali-
sations, the global-as-view scenario in which the global schema is expressed as views on
the sources, and the local-as-view scenario in which the sources are formulated as views
over the global schema (Lenzerini, 2002). The former approach is much more common in
federated databases. The methods developed in this research might be applied here as
follows. In MiningMart, one could see the target data model (from a case to be reused) as
the global, common data model. This data schema is expressed in M4. The local model
corresponds to a source database which has to mapped to the global model when it is to
be reused. As section 4.1.1 points out, the creation of such mappings remains a manual,
time-consuming task that does not appear to be suitable for the quick reuse of data
models.

The local-as-view scenario, applied to the reusing of cases, would mean that the lo-
cal data sets must be formulated as views over the given M4 target data model. For
example, the model case from chapter 5 includes two tables with information about
each customer of the telecommunications company. These two tables have been modelled
as Concepts Customers and Services in M4. Assume that another company wants to
reuse that case, but has all information about each of their customers in only one ta-
ble called CustData. The aim would then be, in this approach, to express CustData as
a view on Customers and Services. In the simplest case this could be done as fol-
lows (in SQL): Create View CustData_View As (Select * from customers_table,
services_table Where customers_table.caller = services_table.caller). This
re-formulation of data sets as views on the mediated schema has to be done by hand.
The problem of answering a query on the mediated schema then becomes the problem of
answering a query given only a number of views on the original sources; for this problem,
a number of approaches (query rewriting algorithms) exist (Halevy, 2001).

In sum, in both data integration scenarios, the mapping from local to global schemas
is crucial, but is difficult to construct, and cannot be found automatically (Fiedler et al.,
2005). However, if it is at all possible to re-express the local data sets as views on
the mediated schema (the target data model), then it is also possible to transform the
local data sets so that they match the target schema exactly, using only standard data
preparation operators. In other words, in a KDD tool such as MiningMart, this re-
formulation of data sources can be done at the conceptual level, rather than the technical
level as usual in the data integration approaches. In other words, the intelligent but costly
(in terms of human efforts) methods such as ontology integration or schema mediation
can be circumvented by an intelligent user interface.

In the case of adaptation of a process to similar data (representing the same applica-
tion domain), this idea can be extended to a partial matching of the local and target
model, which is the likeliest outcome of an automated schema matcher. Recall the “entry
point” approach suggested in the section on case retrieval (6.5.5). This approach can be

120

6.6. Reuse and adaptation of KDD processes

enhanced by some weak reasoning based on the available transformation operators. To
illustrate this idea, consider that the schema matcher might rate a possible entry point
P lower than another one, P’, based on its similarity to the local data, although a simple
transformation of the local data would make P the better entry point. Knowledge about
how the preparation operators affect their input is stored declaratively anyway in M4
(in the constraints, see section 6.3.2). This knowledge can be exploited by an algorithm
that examines a number of possible entry points that the schema matcher delivers, and
suggests data transformations to better match the local data to one or more entry points.
The reasoning is too weak to consider automatic application of these data transforma-
tions, but suggestions to the user can help to quickly adapt the local data. For details,
assume that the schema matcher has matched a local concept L to a target concept T,
and they have a number of similar attributes (as measured by the matcher) in common.
Based on the list of preparation operators in chapter 3, and depending on L’s and T"s
attributes as compared by the schema matcher, the following suggestions could be made
to the user:

e If L contains attributes not present in 7T, the operator ATTRIBUTE SELECTION
(section A.1.1) can be suggested to remove them.

o If L lacks an attribute that T offers, say ¢, an ATTRIBUTE DERIVATION (A.5.4)
might be suggested to the user. This should, however, only be done if an attribute [
with a suitable conceptual data type and a name similar to the name of ¢ is present
in L (so that the new attribute I’ can be derived from [to match ¢). Otherwise it
is unlikely that the derivation is possible. Name similarity is given by the schema
matcher.

o If two attributes [and t of L and T, respectively, match, but [is continuous while
t is discrete, a DISCRETISATION (A.5.1) of [can be suggested.

o If two attributes [and t of L and T, respectively, match, but [is discrete while
t is continuous, a VALUE MAPPING (A.5.3) can be suggested to transform the
categorical values into numbers (recall that the technical data type is adjusted
automatically).

e If some concepts L', L”, ... exist whose features match those of L exactly, a UNION
(A.2.3) of all these concepts can be suggested. Note that such unions do not help
if none of the involved concepts is matched to a concept from the target model.

e Based on foreign key-relationships in the local data, joins can be suggested if their
result matches a target concept better than any single local concept.

In sum, because only the concept level information is available in the case reusage
scenario, approaches based on richer ontologies or on mediation are waived in favour
of user-given mappings, or simple schema matching, extended with a recommendation
module that helps the user to find suitable adaptation operators. The main reason is that
in many reusage scenarios, the mapping between the target and local model will have
to be done based on abstract, mining-related principles that are not reflected directly in
the data model. This discussion extends the one in (Euler & Scholz, 2004).

121

6. Publishing Operational KDD Process Models

CallerNumber | CalledNumber | Length Date Tariff
7222277 2777722 194 12-02-2002:18:04:56 11
1881181 8118818 82 24-12-2002:11:44:23 2

Table 6.1.: A Call Details Table.

6.6.2. Reuse of the process model

Concerning the process model, reusable items range from attribute derivation formulas
or parameter settings of algorithms to complete processing chains. (The templates from
section 6.5.3 are of course short processing chains that were set up in the first place
only to be reused by others.) Again, adding and removing elements from the given case,
like single steps or chains of steps (chunks), is not a problem if the supporting system
propagates the conceptual changes through the dependent parts of the process model. An
important aspect is the robustness of the system that realises the propagation, because
propagation of such changes can invalidate the process model. For example, attributes
may be deleted that other attributes are derived from. Invalid states and the reasons for
them must be highlighted to the user, so that appropriate remedies can be undertaken.

Importantly, operators that “promote” data items to metadata, like the operators that
change the representation of the data (section A.3), must be handled: the “signature” of
their output, i.e. the list of attributes in their output concept, depends on their input
data, which is likely to change now that the process is reused. In MiningMart this means
that the parameters of the steps that employ such operators have to be set to new values.
This can be done by the system, based on the estimates of data characteristics, in order to
support reusing the process model. This is described in more detail in section 7.2.2. The
adaptions may entail a change in the number of output attributes, requiring propagation
to later steps like in section 6.6.1.

As argued in section 6.5.3, the reuse of chunks of operators that solve a particular,
typical data processing task is important. For illustration, consider the following example,
which demonstrates the use of AGGREGATION (see also the corresponding template in
section 6.5.3). In a telecommunications company, a database stores each telephone call
individually; see table 6.1. For each call, the column CallerNumber contains the caller’s
telephone number, CalledNumber is the telephone number that was called, Length is
the number of seconds the call took, Date gives the exact date and time of the call and
Tariff gives a code for the tariff used for billing the call.

Assume that for mining, a new attribute is introduced that aggregates the information
about individual phone calls into the amount of time per month that each client spends
calling somebody. One way to compute the desired result is to construct a new attribute
Month from Date, that contains a different value for each month of the time period under
consideration (using the operator ATTRIBUTE DERIVATION, section A.5.4). Then the
records can be grouped by the values of Month and CallerNumber, and finally the sum
can be computed and inserted into a new table that contains only one record for each
caller and month. This is done using AGGREGATION (section A.1.4).

This way of computing a monthly sum is a common subtask that can be reused in

122

6.7. Summary

other domains. Assume that a supermarket chain is interested in the monthly sales of
their products. In the above table, replace CallerNumber by Product and Length by
Sales; if the supermarket stores its data in this way, the same procedure as above can be
used to compute the monthly sales. Or assume that a road maintenance institution, which
maintains a number of weather sensors along their roads, is interested in the amount of
rain per month at different sites. Replace CallerNumber by Sensor and Length by Rain to
get exactly the same problem with the same solution. Appendix B describes many more
such solution patterns. As described in section 6.5.4, the recognition of such common
subtasks in a collection of process models can be partly automated.

To sum up the discussion on adaptation and reuse, adding or deleting elements to/from
a given KDD model, and renaming or retyping, are the central operations for this, and
they are easily realised if the system supports propagation of the conceptual changes,
for which in turn the conceptual level must be explicitly represented. A second way of
support for reuse is the option to use automatically estimated data characteristics to
update the operators whose output signature (attributes in the output concept) depends
on the input data characteristics. See section 7.2.2. With this kind of support, substantial
work efforts during reuse can be saved, even if only some parts of a given KDD process
are reused. However, obviously there are situations when adaptation of a given case is
not a suitable option. This can be true when a change of the mining task would be
needed (e.g. from classification to concept description), as this would usually require
rather different data representations as input for mining. The case descriptions explained
in section 6.5.2 help users to avoid attempting such difficult adaptations.

6.7. Summary

The need for public environments that enable the modelling and distribution of KDD
processes has long been recognised in the literature. MiningMart is based on a public
meta model that allows to model the conceptual level of KDD processes, as discussed
in chapters 3 and 4, as well as the necessary technical level notions. Section 6.3 has de-
scribed this meta model. It is the basis for the web repository which has been presented
in section 6.5. Providing this environment has enabled the formalisation of approved solu-
tions to common preparation problems; these solutions are listed in appendix B. Reusing
previously developed process models (solutions) on different data has been examined in
detail in section 6.6. Schema matching and propagation of changes have been identified as
two important supportive features that the environment should offer. Chapter 7 describes
technical solutions used in the MiningMart system for these and other issues.

123

7. Implementing the Conceptual Level

This chapter continues the discussion of the MiningMart framework and system as in-
troduced in chapter 6. While the focus in that chapter was on the meta model, the web
repository, and aspects of reuse, in the following a more dynamic view of the system is
given. In particular, the implementations contributed by the author of this thesis are ex-
plained. MiningMart’s implementation follows a metadata-driven approach: declarative,
static aspects of the meta model determine how the system instantiates and uses ele-
ments of the conceptual data and process model. Compare figure 6.3 on page 101. Thus
the implementation is generic, in the sense that changing or extending the meta model
appropriately automatically changes or extends the behaviour of the system, without a
need to change the implementation.

Section 7.1 explains how the output of an operator (at the conceptual level) can be
created based on the specification of the operator, and how changes to such elements
by the user are propagated through the whole application model. It also discusses the
implementation of the estimations of characteristics that are given for each operator
in appendix A, and explains how schema matching was realised to help in connecting
conceptual data elements to actual data sets.

Section 7.2 then presents details on the implementation of some MiningMart oper-
ators created by this author. The importance of these operators had been recognised
when developing the system of preparation operators described in chapter 4 and when
implementing the model application from chapter 5.

Section 7.3 discusses some issues of data storage and caching that complement the view-
based approach taken by the MiningMart compiler. Finally, section 7.4 briefly introduces
the main aspects of the implementation of the user interface.

7.1. The concept editor

Recall from section 4.6 the duality of the data- and process-oriented views on the KDD
process, which was illustrated in chapter 5. MiningMart is the first KDD tool that im-
plements the data-oriented view. Whenever a step (employing a processing operator) is
added to the preparation graph in the process view, the user must specify its input and
output parameters. From these parameters, elements of the data-oriented view (the con-
cepts and links between them) are automatically generated, as explained in section 7.1.1.
If the output of a step exists already but the parameters are changed by the user, parts
of the output may have to be changed, too, and this may have effects on later, dependent
steps. Propagation of such changes was already discussed in section 6.6.1; section 7.1.2
discusses its implementation in MiningMart. Section 7.1.3 explains the implementation
of the metadata inferences, or data characteristics estimations, as introduced in sec-
tion 3.3.3. Finally section 7.1.4 presents the use of schema matching in MiningMart.

124

7.1. The concept editor

7.1.1. Automatic creation of conceptual-level data elements
Overview

As was explained in section 6.3, MiningMart is largely based on a declarative meta
model called M4. M4 provides means to store KDD process and data models. Recall
that M4 can be divided into a static part, which stores information about the available
operators, and a dynamic part, which stores elements of the KDD models that users
edit. The MiningMart system is designed such as to allow the extension of the static
part easily without having to change the implementation. In order to add an operator to
MiningMart, its input and output parameter specifications, as well as the way output is
created from given input parameters, have to be described using the expressions available
in the static part of M4. Then the system can automatically instantiate the operator at
runtime.

In the following, these mechanisms are explained in detail, in particular the M4 el-
ements that allow to create output concepts of steps automatically, and thus link the
two dual views discussed in section 4.6. Recall that an instance of the M4 type Step
represents the application of an operator at a particular point in the preparation graph.
Which parameters an operator has is given in the static M4 type Op_Param (compare
figure 6.5 on page 103). For example, the fact that a certain discretisation operator ex-
pects a single, non-optional, input parameter (giving the number of intervals into which
the input attribute is to discretise) is stored as one M4 object of the type Op Param. The
input attribute itself, and the name of the output attribute that the operator will create,
are two further parameters of this operator. As already discussed in section 6.3.2, the M4
type Constraint is used to further specify such parameters, for example to indicate their
data type, or that they cannot be negative, and similar constraints. These constraints
help to develop a process model without executing it, since they can be used to check
the syntactic validity of all user-specified parameters.

The M4 Constraints are also crucial for the automatic creation of output elements of
the data model (at the conceptual level), because they are used to specify how to do this
for each operator. Thus they serve the double purpose of specifying possible instances
for input and output parameters, and dependencies between them, for both the user
and the system. Table 7.1 on page 162 lists all types of constraints used for the latter
purpose, the creation of output data model-elements by the system. Each constraint
has two “slots”, or parameters, that specify to which step parameters it applies. Most
of the constraints from table 7.1 were added by the author when implementing the
mechanism for output creation; the M4 constraint formalism itself has been developed by
Scholz (2002). The constraints from table 7.1 will be explained in the following, including
examples. Afterwards, the creation of semantic links between concepts is explained.

To understand the output creation, a design decision that was taken for MiningMart
must be mentioned. Chapter 4 explains the growing web of concepts in the data-oriented
view, as each operator’s output concept is added to the representation of the initial data.
In MiningMart there is one exception to the rule that each operator produces an output
concept: the operators based on ATTRIBUTE DERIVATION (the feature construction oper-
ators of section A.5) only produce an output attribute that is added to the input concept.
This has the advantage that the resulting concept web is less complex, since there are

125

7. Implementing the Conceptual Level

fewer concepts. The disadvantage is that it may change the semantics of concept links.
For example, if a concept C' is the separation of another concept D because, say, a Row
SELECTION created it from D, then adding an attribute to C' changes the separation to
a specialisation. One might choose to automatically update these links in the concept
web; but it may also make sense to leave the original links in place, since they reflect the
creation of the concepts. MiningMart currently takes the latter approach.

The constraints for creating output elements

Input parameters of a Step refer to M4 objects that exist already at the time of creating
the step. For example, the input concept of the step represents the data set that it is
applied to, and thus it must exist already in the data model. Thus the user should only
be able to use existing objects for input parameters. In fact, the sets of available objects
for an input parameter can be further constrained:

For input concepts, only concepts representing initial data sets, plus all concepts created
by steps that precede the current step in the preparation graph, can be used. When the
user wants to specify an input concept, the GUI therefore calls a method that provides
this set.

Input attributes must always belong to (one of) the input concept(s); a Constraint
specifies which input concept it is for each operator and input attribute. It can also be
a concept that is not an input parameter itself, but is attached to an input relationship.
The constraints IN_ RELFROM and IN RELTO serve this purpose. The Java class for
Steps provides a method that tells the GUI which input concepts an attribute may be
selected from. If the input concept(s) of the step have not been set yet at the time of
calling this method, an error message is produced.

Output parameters are treated rather differently. Their objects do not exist yet at
the time the user creates a step, but are created when the user tells the GUI to save
the current step parameter settings. The user only provides the names for the output
objects.

The following paragraphs explain how objects for output parameters are created, based
on the constraints. The creation of the output concept, if there is any, is done first. In the
simplest case, its attributes can be simply copied from the single input concept; this is
the case if a Constraint of type SAME _FEAT holds for the operator of the current step
(see table 7.1). An example for an operator that uses this constraint is ROW SELECTION.
Similarly, the constraints FEAT RFR and FEAT RTO specify that the attributes of
the output concept should be copied from one of the two concepts attached to an input
relationship. If, instead, there is a constraint of type ALL EXCEPT, then all attributes
of the input concept, except those specified by an input attribute parameter given by
the constraint, are copied to the output concept. The constraint types SAME FEAT,
FEAT RFR, FEAT RTO and ALL EXCEPT are mutually exclusive.

In many cases, additional constraints specify output attributes to be added to those
created based on an ALL EXCEPT constraint. Such output attributes may be based on
input attributes, as is the case if any of the constraints RENAME OUT, CR_SUFFIX,
or CREATE_BY hold. For example, a constraint CR_ SUFFIX holds for the MiningMart
version of AGGREGATION, and specifies that for those attributes of the input concept
whose minimum value will be available in the output concept, an attribute in the output

126

7.1. The concept editor

concept must be created that takes the same name but with a suffix © MIN” (the suffix
is specified by the constraint). A similar constraint holds for output attributes with
the maximum, average, and so on, values. The CREATE BY constraint is used for
P1vOoTISATION, for example, and allows to create output attributes based on the name
of an input attribute (the index attribute, see section A.3.2), with added suffixes based
on values given by another parameter. Note that there can be more than one such input
attribute, in which case combinations of single values given by the other parameter
are used to create suffixes and thus output attributes; this is used to implement the
generalised, n-fold pivotisation, and is described in more detail in section 7.2.2. For
output attributes constructed in this way, the constraint OUT TYPE may be used to
specify a fixed conceptual data type; if no such constraint exists, the data type from
the input attribute is copied. The RENAME OUT constraint is used to specify that
certain input attributes should be used as a template for output attributes, but the
output attributes should have different names; the names are given by a parameter that
the constraint specifies. This constraint is used in the JOIN operator to provide a way
of dealing with like-named attributes in the concepts that are joined. (An additional
constraint of type NO _COMMON, not shown in table 7.1, ensures that an exception is
thrown if concepts to be joined have like-name attributes and the step does not use the
provided parameters to resolve the conflict.)

The MATCHBYCON constraint is also used by JOIN in order to copy only one set
of the joining key attributes into the output concept (these attributes are specified by a
parameter of JOIN, and the constraint refers to this parameter).

As mentioned above, in MiningMart not all operators create an output concept, but
some only add an output attribute to their input concept. This is the case if the constraint
type IN is used for an input concept and an output attribute. The name of the output
attribute is given as the parameter, and its conceptual data type is specified by a TYPE
or SAME TYPE constraint.

While most MiningMart operators create a concept or an attribute, some create a rela-
tionship as their only conceptual level output (this is a difference to creating relationships
as a by-product, namely as semantic links between the output and input concepts of an
operator). Such operators can be used to restore relationships between intermediate con-
cepts, since valid foreign key links between the initial data sets may not be valid after
applying data transformations. For example, when a ROW SELECTION has been applied
to the many-side of a many-to-one relationship, the output concept is still in a many-to-
one relationship to the original one-side, but a corresponding link is not automatically
created in the data model since too many links would clutter the web of concepts then.
But if the link is desired, then a MiningMart operator that creates a one-to-many rela-
tionship between its two input concepts can be used to create it. The operator produces
an error at execution time if the relationship is not valid in the actual data (e.g. if there
are entities on the many-side for which there is no correspondent on the one-side). The
last set of constraints in table 7.1 is used to specify which parameters of such opera-
tors give the concepts and keys involved in the relationship (the two concepts involved
in a relationship are called the From-concept and the To-concept in MiningMart). Like
other elements of the conceptual-level data model, relationships (created by operators
directly or as a link between an operator’s output and the other data sets) are realised in

127

7. Implementing the Conceptual Level

SQL statements on the technical level by the MiningMart compiler when the preparation
process is executed. For relationships, these SQL statements create the corresponding
primary and foreign key constraints in the underlying database.

The assertions for creating links between concepts

Finally, the automatic creation of semantic links between input and output concepts of an
operator is described in the following. Recall that there are three types of links that show
how concepts are created from each other, providing a structured view on the concept
web. The type and direction of each link is specified by objects of the M4 type Assertion
for each operator: the presence and the validity of the given link are a post-condition
of applying the operator. Like constraints, assertions have two slots or parameters that
determine what step parameters they refer to. Both for separations and specialisations,
a specific type of assertion exists. The order in which the input and output concept are
specified in the assertion determines the direction of the link. The creation of a one-to-
many relationship is more complex since the key attributes that constitute the link must
be specified. Therefore a particular type of assertion, REL N 1, indicates the presence
and direction of the relationship, and two other assertions, REL N K and REL 1 K,
determine which input or output attribute parameter gives the attributes that function
as the keys on the many-side or the one-side, respectively, of the relationship. Many-to-
many relationships are never created in this assertion-based way, since no operator from
appendix A produces such links.

An example

As a simple example, consider the MiningMart operator REMOVEFEATURES, which re-
alises the variant of ATTRIBUTE SELECTION in which the user selects a number of at-
tributes (features) to be removed from the input (in a different variant, the attributes to
retain are selected). The following items of information are each given by one object of
the type Constraint in the static part of M4:

e There must be exactly one input concept.
e There must be exactly one output concept.

e There must be a parameter “FeaturesToRemove” which refers to a non-empty list
of objects of the M4 type Feature.

e The list of features given by the previous parameter must be present in the input
concept. This is specified by an IN constraint.

e All features from the input concept, except those given by “FeaturesToRemove”,
must be created as a copy in the output concept. This is specified by an ALL EXCEPT
constraint.

e The input concept is a specialisation of the output concept.

When creating an object of type Step that uses this operator, users select an input
concept from those that are available at this point in the preparation graph. Afterwards

128

7.1. The concept editor

Scaling Dizscretization Attr.Selection
OO
Concepts kB B |s E |s .

A

Figure 7.1.: Illustration of the preparation scenario discussed in the text. Arrows pointing
upwards mean “used as input by”. Arrows pointing downwards mean “creates”. The
three steps must be executed from left to right, since each step’s input is created by
the previous step.

they select the “FeaturesToRemove” from that input concept; there must be at least one
feature. Finally they give a name for the new output concept. The system then uses
the last two constraints mentioned above to create the output concept, including its
attributes, and link it to the input concept.

7.1.2. Propagation of data model changes
Motivation

The parameter settings of any step can be edited by the user at any time. If the step has
successor steps in the preparation graph, changes to its output may affect one or more of
the successors, too. It is central to supporting the conceptual level that these changes to
its elements are performed automatically by the system. To see what is involved in the
problem, a motivating example is discussed.

Consider a preparation graph in which the first step is a SCALING application, the
second step applies DISCRETISATION to the scaled attribute, and the third step involves
an ATTRIBUTE SELECTION. The scenario is depicted in figure 7.1. Each step takes the
output of the previous step as input, but recall that SCALING and DISCRETISATION only
add a new attribute to their input concept (B), so that the third step is the only one
that produces a new output concept (C). The first step creates the attribute s while the
second creates d; both steps add their output attribute to B.

Now suppose the user changes the input concept of the first step from B to A, for
example because they decided to insert an additional preparation step (which creates A).
The system now has to delete s from B (thus “cleaning” the old input object), and must
create it instead in A. The second step, however, used s as one of its input parameters
(the scaled attribute was the one to be discretised). It is clear in this case that the second
step is now also supposed to be applied to the new input concept A, otherwise one of its
input parameters would not be available. This change of parameters of the second step is

129

7. Implementing the Conceptual Level

determined by the changes to the first step, and can be done automatically. If the second
step had been used to discretise not the scaled attribute s, but some other attribute, then
changing the input concept of the first step (from B to A) would not necessarily mean
that the input concept of the second step should also be changed. However, any of these
changes can lead to a change of C| since its attributes are copied from B (respectively,
A). This change can again be performed automatically. If there are further steps that
depend on the third step (i.e. take its output concept C as input), their output objects
may also require adaptation.

It may happen that a step becomes invalid during the course of these adaptations,
meaning that one or more of its input objects is nonexistent. The simplest scenario is
that the user wants to delete an attribute from a concept, but the attribute (or a copy of
it in a dependent concept) is used as an input parameter of some step. Another example
is that the selection of attributes made by an ATTRIBUTE SELECTION operator changes,
and some attribute that is no longer in the selection is supposed to be used by a later
step.

Scenarios such as these lead to the following requirements that the system must meet
in order to allow safe edits by the user:

e deletion of attributes from a concept must be propagated to (modified) copies of
that concept;

e adding new attributes, and renaming of attributes, must be propagated in the same
way;

e when input parameters are changed, the objects previously used for them may have
to be “cleaned”;

e input parameters of following steps may have to be adapted;
e before steps become invalid, the user should confirm the action;

e when the input concept of a step that does not create an output concept changes,
and following steps use the same input concept, the user must decide whether the
following steps should also change their input concept (which is usually what is
desired, but this cannot be presupposed safely).

Overview of the propagation scheme

Propagation is done based on the process-oriented view, that is, the graph of preparation
steps; the reason why the data-oriented view cannot be used, despite the fact that it
models dependencies between concepts directly, is that the local changes depend on the
parameters of the operators.

The propagation involves a graph traversal. The two classic schemes of traversal, depth-
first (DFS) and breadth-first (BFS), cannot be used here because of the requirement that
any node can only be processed after all its predecessors have been processed. Figure 7.2
illustrates this. Fulfilling this requirement ensures that all updates of previous steps are
accounted for when the current step is updated. Breadth-first search can be organised
using a queue of nodes which is filled level-wise with the nodes of each search level.

130

7.1. The concept editor

(c)—(p)
e \
(i) —

Figure 7.2.: Both standard graph traversal schemes, breadth-first and depth-first search,
could result in node E being processed before D has been processed. This is desired,
for the propagation task in this section, if the traversal starts at B (since D should not
be visited at all then) but not if it starts at A.

The following modification is needed to fulfil the requirement. By noting for each node
whether it has been processed, the predecessors of any current node can be checked as
to whether they have all been processed; if not, the node can simply be ignored, since
it will be reached again on a different path. In figure 7.2, assuming that propagation
starts at node A, node E can be ignored when it is visited on the path from B but has
not been visited yet from D, as the visit from D will follow later. In this way the node
is only processed when it is visited for the last time. However, if E is visited from B
when B was the starting point of the propagation, then E should be processed without
visiting D at all. Yet at node E, no local information is available to decide between the
two possibilities. To solve this, only those predecessors of a node are considered (when
deciding whether to ignore it) that are “relevant” for the current traversal, meaning they
can be reached from the starting point of the traversal. The set of nodes reachable from
the starting point can be found previous to propagation, by either of the two standard
schemes.

Despite these modifications, the propagation of changes through the preparation graph
should proceed mainly in a breadth-first manner, so that it can stop at the first level where
no changes to the output concepts of any step are performed. The levels of this modified
breadth-first search are to be defined such that each level consists only of concept-creating
steps; any intermediate steps that only add output attributes to their input concepts are
also dealt with in passing. The reason for this modification of the search scheme is that
the concept-creating steps have a property that the “attribute-creating” steps do not
have, which is that changes to later steps will not occur if changes to the output of the
current step have not occurred. For example, suppose a concept is modified by deleting
one of its attributes. If the concept is used as input by a step that adds some other
attribute to it, no changes to this step’s output are done, but a later step that creates
a copy of the concept is affected (the copy of the deleted attribute must be deleted). In
contrast, if an output concept of some step remains unchanged during the propagation,
it is safe to conclude that following steps and parameters also remain unchanged, so the
propagation can stop on this path.

131

7. Implementing the Conceptual Level

Realisation in MiningMart

In MiningMart, whenever the user performs parameter changes in the GUI, first the
output of that particular step is updated if required. Second, previous input of that
step is cleaned if necessary, and third, propagation of changes to successors is started.
The method updateOutput(Collection names) of the class representing Step objects
realises the first task; it is called by the GUI with the names of the new output objects. It
shares most of its code with the constraint-based method for output creation explained in
section 7.1.1. The big advantage of this is that the propagation algorithm does not have
to be changed when any operators are added to the system, or change their specification.
Secondly, the method handle0ldInput() of the same class is called. It only applies
to input concepts that have become replaced by a different concept. It has two tasks:
one is removing output attributes that have become invalid from such replaced input
concepts. The other is to check if any successors of the current step also use the replaced
input concept. For this, any path starting from the current step is only followed until
the first output concept is created; steps that occur yet later can still use the replaced
input concept without problems. If there are any successor steps with the replaced input
concept, the user is asked if these steps should change their input concept, too, like the
current step. If yes, the replaced input concept is also cleaned from output by these steps,
and the output of these steps is instead added to the new input concept.

Thirdly, propagation can be started. The method propagateQutputChanges() of the
class representing steps does this. It uses the graph traversal scheme explained above.
The method adaptOutputToChangedInput(), which again shares code with the output
creation as explained in the previous section, is called for every step on the current BFS
level; it returns a boolean flag indicating whether any output has changed. This flag can
be used to stop the search if no changes have occurred on the current level.

The level-wise search is necessary since the preparation graph cannot be assumed to
be a tree. However, this search scheme is slightly complicated by the fact that changes
to one level can affect not only the next level but also arbitrary higher levels, since any
successor step might explicitly access the output of the current step through one of its
input parameters. For example, renaming an attribute during a propagation may entail
updates of some step that happens to use this attribute as an input parameter, even
if that step is located elsewhere in the graph. The old attribute must be known when
the later step that uses it is dealt with. Such dependencies are long dependencies in the
process view, with any number of intermediate steps. Though some such dependencies
may appear as direct dependencies in the data view, the direct dependencies cannot be
exploited by the algorithm, since the intermediate steps in the long dependency may
affect the data representations, too. To understand how the propagation algorithm deals
with such long dependencies, recall from section 6.3.2 that the M4 type Parameter stores
the links between a step and the M4 objects that it uses as parameters. The M4 interface
module allows to retrieve all such links an M4 object is involved in from that object.
Thus, whenever the algorithm modifies an object used by the current step, it can follow
the links from that object to any later steps that also use it. However, those later steps
should not be modified before they are visited in the breadth-first scheme, because the
need for further changes might arise during the search (after the current step has been
dealt with). Therefore the algorithm stores the links in a global data structure that maps

132

7.1. The concept editor

each link to the previous and the new name of the modified parameter object. When the
later steps are visited during the search, the global map can be used to find out which
of their input objects has been modified, and how.

As an example consider the scenario discussed above, depicted in figure 7.1, in which a
SCALING step creates an output attribute that is used as input parameter by a following
DISCRETISATION step, but at some point in time the first step changes its input concept.
The attribute s that the first step creates must be deleted from concept B. Instead, a new
attribute object is created in the new input concept A, but its name remains the same.
Thus when the algorithm handles the second step, it can use the old name, s, stored in
the global map, to find out which of the attributes in the new input concept (A) of that
step is the one that the step had used for discretisation. This information would be lost
without the global map. Similarly, had the user not changed the input concept of the
first step from B to A, but just decided to change the name of the attribute it creates,
say from s to t, then the new name ¢ would also be stored in the global map, allowing
the algorithm to update the second step accordingly. This becomes relevant when there
are other steps between the first and second one, so that the second step operates on a
copy of the attribute created by the first one.

This algorithm is important for making the conceptual level easily and robustly reusable
on changed data schemas, as discussed in section 6.6.1. Figure 7.3 shows the algorithm
in pseudo code, as realised in the above-mentioned method propagateOutputChanges().
The algorithm uses a queue to organise a traversal that is similar to the breadth-first
scheme. As motivated above, a step is ignored when one of its relevant predecessors has
not been processed yet (lines 10 to 12; the set of “relevant” steps is computed in line 3).
The boolean variable f is used to indicate whether any step of the current BFS level [
has changed its output; if not, the algorithm stops (line 16). The changes to the current
step are made in line 20, so that f can be set to true (in line 22) if any changes have
occurred. Note that “concept successors” in line 23 includes all steps on any path that (i)
starts from the current step, (ii) ends in a step that produces an output concept, and (iii)
has no output concept-producing steps other than this last step. This has been explained
above. Restoring inputs of the current step from the global map (line 19) only concerns
those inputs for which there is an entry in the global map that matches the current step;
such entries are added to the map in line 20: if any long dependencies from the output of
the current step to later steps, as explained above, are discovered, the corresponding links
to the dependent steps are stored in the map. When the propagation ends, the global
map is emptied (line 24) so that the next call to the algorithm starts with a cleaned map.

7.1.3. Estimation of data characteristics

This section presents the MiningMart implementation of the estimation mechanisms that
section 3.3.3 introduces and chapter 4 specifies for each preparation operator. Why it is
useful to provide (estimated) data characteristics at the time of creating a KDD process
model is explained in section 3.3.3. The list of which characteristics to estimate is also
given there. The estimations are based on actual characteristics computed from the initial
data sets.

133

7. Implementing the Conceptual Level

Algorithm: Propagation of conceptual data changes

Input: A preparation graph modelled in M4, and an object Sy of type Step whose
parameters have changed
Output: A possibly modified version of the preparation graph

Initialisations:

1.

NSOtk W

Set the BFS level of all steps in the preparation graph to 0;

Initialise @ to be an empty queue;

Find R, the set of “relevant” steps that are reachable from Sy, by a DFS from Sp;
Set the BFS level of the start step Sp to 1;

Enqueue the start step Sp into Q;

Set the boolean flag f to false;

Set the current search level [to 1;

Graph traversal:

8.
9.

10.
11.
12.

13.
14.
15.
16.
17.

18.
19.

20.

21.

22.

23.

While @ is not empty:

Dequeue @ into step S;
Check if all predecessors of current step S have been processed:
If any predecessor of S is in R, and has BFS level 0 or is in Q:
Set the BFS level of S to 0;
Continue at line 8;
Check if new BFS level has been reached:
If BES level of S is strictly greater than (:
Set [to BFS level of S
If f is false and global map is empty:
return;
Else: set f to false;
Update the input parameters of S:
If global map contains entries for S:
restore input of S from global map;
Update the output parameters of S:
Adapt output of S to (possibly) changed input,
adding any links to dependent steps to the map;
Check if any changes are made at current BFS level:
If output of S has changed:
Set f to true;
Continue the search with the successors of S:
Enqueue all “concept successors” of S whose BFS level is 0 into @,
setting their new BFS level to | + 1;

Final clean-up:

24.

Empty the global map;

Figure 7.3.: An algorithm to propagate changes to the current parameter settings of a
Step object to all dependent Step objects. Comments are in italics. See text for further

explanations.

134

7.1. The concept editor

Overview

In MiningMart, (estimated) characteristics (also called statistics) can be displayed in
the concept editor for any concept, but also in the process editor when the input of an
operator is specified, because some operator parameters are based on such characteristics
(compare criterion 20 on page 232 and section 7.2.2). The estimations and inferences are
done on the fly, whenever the user wants to display the characteristics. MiningMart
can store actual data characteristics of any data set, to avoid their re-computation, but
M4 currently does not provide means to store the inferred or estimated characteristics;
since the latter can be computed in linear time in the number of operators, concepts and
attributes of a process model, on the fly computation suffices. If the actual statistics have
already been computed, or stored in M4, for a concept whose estimated statistics a user
wants to display, these actual statistics are shown. MiningMart provides the option of
declaring the inferred /estimated statistics as actual statistics, so that they can be stored.
In this way users can avoid expensive computations if their background knowledge tells
them that the inferred or estimated statistics are accurate enough for the current purpose.
Also, any estimated values of data characteristics can be edited by the user, and are then
kept in main memory as long as the user’s MiningMart session lasts (and as long as
the concept for which they hold does not change). This enables to integrate background
knowledge when the inferences or estimations do not provide enough information, and
conforms to criterion 19 (see page 232).

While estimated statistics are presented to the user in a way that is clearly different
from actual statistics, the quality of the estimations is not easy to judge for users. Future
work could enhance the estimation framework presented here by methods that differ-
entiate results of inferences, or safe knowledge, from estimations or unsafe knowledge.
However, it should be noted that even using the rather optimistic estimation methods
presented here, only little information about the characteristics can be expected at the
end of long chains of preparation operators. Safe inferences would render even less infor-
mation, so that a distinction between these types of knowledge quality may not be very
useful in practice.

To get a feeling for the usefulness of MiningMart’s estimations, the model applica-
tion from chapter 5 can be considered. This application is characterised by early joins
of detailed information with selected customers in every chunk. The output size of these
joins cannot be estimated since they are not based on valid foreign key links (the keys
are not created before execution time). However, for all attributes that are not used as
joining keys, the list of distinct values is retained. Thus there are rather useful estimated
characteristics available in every chain until the first aggregation operator is applied,
which occurs several times in the main chunks, but not early on in each chunk (pivoti-
sation usually involves aggregation, too). Aggregation does not allow to estimate much
information about its output data characteristics. However, this still means that useful
(if not always accurate) data characteristics of the input of a step can be displayed for
51 of the less than 100 steps in this application, so a substantial part of the application
could have been developed easily without actually performing the time-consuming data
processing. To perform at least partial data processing when developing such a large
application, for testing purposes, is unavoidable, though.

Operators in a system that uses characteristics estimation must be robust against input

135

7. Implementing the Conceptual Level

specifications that do not accurately reflect the technical level, because misestimations
may occur at the conceptual level. The MiningMart operators are robust in this sense
simply by the fact that they are implemented using standard SQL views: SQL queries
may be invalid if they refer to non-existing tables or columns, but the invalidities that
can arise from misestimations only concern values of a column. For example, the operator
VALUE MAPPING maps input values of a particular attribute to new values in the output.
Estimations of value lists help the user to specify such a mapping. At the technical level
the mapping is realised by the SQL CASE WHEN ... THEN statement. Thus, if the specified
mapping uses input values that actually do not exist on the technical level, the SQL
statement simply does not apply. Conversely, if there are input values at the technical
level that do not occur in the user-specified mapping, they are ignored or mapped to a
default value, since it may well be that the user only wanted a few values mapped. See
also section 7.2 where the robustness of other operators is explained.

Inferences and estimations of the data characteristics are based on the operator spec-
ifications. Therefore, following the general MiningMart approach of using declaratively
specified knowledge to drive the system, the kinds of inferences and estimations that are
possible for each operator are stored in the static part of M4, and are interpreted by the
system at runtime. Again this enables the simple extension of the system by new opera-
tors without changing the implementation. The M4 type Assertion is used here. Table 7.2
on page 163 lists the various types of assertions that can be specified for an operator;
they are briefly explained below. A given operator uses a combination of these types.

Estimated statistics always concern a particular concept. When they are to be dis-
played, the system decides whether the concept represents an initial data set for which
actual statistics are available or can be computed. If yes, they are displayed. If no, the
step that creates this concept is found, and estimations are done by modifying the in-
put estimation(s) that hold for the input concept(s) of this step according to this step’s
assertions; the input estimation(s) are computed recursively in the same way. Some in-
put statistics can simply be copied. When a step only adds an attribute to a concept,
the estimations for that attribute are simply added to the statistics. When a step has
more than one input concept (this concerns the JOIN and UNION operators), the estima-
tions are merged according to particular assertions that apply to several inputs. There is
one global characteristic per concept, the number of entities in it; the other estimations
concern single attributes. To create its output characteristics, a step copies its input esti-
mations (for those attributes that are present in the output concept), and then modifies
them according to the assertions, so that assertions are only needed where copying input
estimations is not appropriate.

Assertions for estimating data characteristics

The remainder of this subsection briefly explains each assertion type related to statistics
estimation and gives examples for their use in operator specifications, so that the Mining-
Mart implementation of this functionality becomes more transparent. Refer to table 7.2
on page 163 for an overview of these assertions. Recall that an assertion comes with two
“slots” or parameters that determine the step parameters it applies to. These slots will
be dealt with implicitly in the explanations below.

The simplest assertion is NO _CHANGE, which says that for any attribute in the out-

136

7.1. The concept editor

put concept, its estimated statistics can be copied from its corresponding input attribute,
and the number of entities can also be copied. This assertion is used in the attribute se-
lection and materialisation operators, and also some operators whose output concept is
largely a copy of the input, but has additional attributes; additional assertions are used
for these extra attributes.

A number of assertions concern the estimation of the output size. SZ_ ADD is an
assertion that is used for UNION, specifying that the sizes of the input concepts are
added to get the output estimation. SZ_ BY VAL gives the output size directly, by
referring to a parameter whose value in an instantiated step gives either the size or the
fraction of the input size. This is used for the sampling operator. SZ_ BY VL can be
used by aggregation operators to compute the output size from the numbers of distinct
values in the grouping attributes. SZ_MIN MYV subtracts the number of missing values
of a particular input attribute from the input size, useful for the operator that deletes
entities that have missing values in that attribute. SZ DIV BY divides the input size by
the value of some parameter; this assertion holds for the WINDOWING (divide by window
width) and SEGMENTATION (divide by number of segments) operators. SZ MULT NO
multiplies the input size by some factor given as the number of attributes in the parameter
specified by this assertion. It is only used for reverse pivotisation: the number of attributes
to be “folded” into one determines the integer factor by which the data set grows (see
section A.3.2). Finally, SZ BY REL is used for JOIN; see section 3.3.3 for an explanation
of how the output size of joins can be determined if the input concepts are linked by a
relationship. Note also that MiningMart provides operators that allow the creation of a
relationship, on both levels, between two data sets, so that relationships can be made
available to join operations whenever they are needed (and valid).

The other estimations concern the minimum and maximum bounds, list of distinct
values, number of missing values, and value frequencies, of attributes. For continuous
attributes, the list of distinct values gives interval means instead; the interval bounds are
chosen so that there are 10 bounds (thus 11 intervals) in the range of values the attribute
takes. The frequency of a value is then the number of values within that interval.

Some assertions simply state that these attribute-specific characteristics can be copied
from a certain input attribute (MM _FROM, VL FROM, VF FROM and MV _FROM);
they are mainly used for attribute-creating operators that do not create their own out-
put concept. A similar assertion states to copy these properties from the input for all
attributes in the output concept (MM _UNCH, VL. UNCH). Some operators can directly
specify minimum or maximum bounds of their output attribute, like SCALING, so they
can use MIN FROM or MAX FROM to make the system exploit this. The VL COMB
and MM _COMB assertions are used for UNTON, where output attributes have combined,
or merged, value lists and bounds from their corresponding input attributes.

Adding a value to an input value list can be done with VL. ADD: for example, the
operator that replaces missing values by a default value uses this assertion. For the
value mapping operators, the new value list is known from the specified mapping; the
VL BY PAR assertion can be used here. The VL BY LIST assertion is very similar,
but is used when there are several entries with output values in a given value parameter
object (see section 7.2.2 for an example). Finally, the VL. BY SYM assertion states that
a particular symbol (which is globally fixed in MiningMart) is used, with number suffixes,

137

7. Implementing the Conceptual Level

for the output values. Such default symbols are used for value mapping or discretisation
operators when the user does not specify the new discrete output values. The second
“slot” of this assertion provides the number of output symbols (or the step parameter
that gives this number); by convention the number suffixes start with 1, so this determines
the output value list.

Some operators even allow estimations of the frequencies of the values in the output,
provided that these frequencies are given in the input. The VF ADD assertion is used
for UNION, and says to add the frequencies of a particular value from all corresponding
attributes in the input concepts. The VFREPL MYV says to add the number of missing
values from the input attribute to the frequency of the value determined by the second
slot of this assertion. This is used for the operator that replaces the missing values in the
input by a default value: obviously the frequency of the default value increases by the
previous number of missing values.

Sometimes the selectivity of the operator application, meaning the ratio of output size
to input size, can be optimistically assumed to apply to value frequencies and numbers of
missing values. Such operators can use the VF_BY SEL and MV _BY SEL assertions
to state this. In MiningMart this concerns the ROW SELECTION and SEGMENTATION
operators.

The VF_BY AGG assertion is used for the grouping attributes of aggregation opera-
tors; their frequencies are determined by the possible combinations of grouping values. For
example, if there is only one grouping attribute, each of its values occurs with frequency
1 in the output. Finally, the VF_ MULT NO assertion is based on similar reasoning as
SZ MULT _NO, and is applied by the same operator (reverse pivotisation).

The missing values estimation assertions parallel those already explained.

The last estimation assertion is ES SELECT. It tells MiningMart to apply some
operator-specific reasoning to estimate output characteristics of ROW SELECTION. As
discussed in section 3.3.3, rather complex reasoning can be applied for selection opera-
tors. Currently MiningMart supports a simple histogram-based method, since the input
value list and value frequencies together provide the needed histogram. More complex
methods can be added here at any time, but this will not change the system of estimation
assertions. This particular assertion is obviously of a different nature than the others, as
it does not specify directly how to do inferences or estimations based on input charac-
teristics, but is operator-specific. While this is a slight violation of MiningMart’s design
principles, following these principles here would have meant to design rather complex as-
sertions that specify the histogram-based method of selectivity estimation, which would
be no less operator-specific but probably somewhat over-engineered.

7.1.4. Schema matching between the two levels

When developing a KDD application from scratch in MiningMart, the first step is to
model the initial data sets. The system can create concepts directly from database tables
or views. The results can and should be edited by the user by giving explanatory names
to the concept and its attributes, or by removing superfluous attributes from the con-
cept. This functionality, creating concepts directly from database tables, depends on the
information about the table or view that is stored in the system tables of the underlying
DBMS; this is one point where MiningMart cannot rely on standard SQL statements,

138

7.1. The concept editor

since such meta queries are not standardised in SQL. Within the MiningMart code, such
meta queries are done through an abstract Java class which is implemented differently
for different DBMS systems; the author has implemented it for the PostgreSQL' and
MySQL? database systems.

In contrast, when an existing KDD model is to be reused, an existing conceptual data
model has to be mapped to existing technical-level data sets, as discussed in section 6.6.1.
MiningMart can support finding this mapping by employing simple schema matching al-
gorithms, which is documented in this section. A preliminary study by Wagner (2005) has
identified and implemented suitable matching algorithms, on which the schema match-
ing approach implemented by the author of this work is based. It should be noted that
schema matching relies on syntactic clues to judge the similarity of two data schemas,
and thus is only useful if the application domains that the two schemas model are similar.
Where this is not the case, the user can attempt to find some mapping that takes the
role that the various schema elements play in the KDD process into account, as discussed
in section 6.6. In this scenario, schema matching should not be used.

Task description

Schema matching attempts to find mappings between elements of two given data schemas
(compare (Rahm & Bernstein, 2001)). The elements are concepts, attributes or relation-
ships (in this application). Mappings can be 1 : 1, 1 : n or n : m; each mapping comes
with a similarity value from the real interval [0..1]. The mappings are simple pairs of
elements, without further structure. In this respect, schema matching can be differenti-
ated from ontology mapping or alignment, where mappings are sought that also provide
the precise translations between expressions in each ontology; see (Kalfoglou & Schor-
lemmer, 2003) for an overview. In general, a mapping can be suggested between different
types of elements, for example between an attribute and a concept, since different data
schemas can represent the universe of discourse (which is assumed to be the same in the
two schemas) in different ways. As noted by Madhavan et al. (2001), schema matching
is an inherently subjective task, since there may be several plausible mappings between
elements of two schemas. Thus it makes sense to suggest the mappings whose similarity
value exceeds a certain threshold to users as candidate matches, but to enable them to
choose other mappings or to edit the given ones.

The specific matching task in this section is to suggest a connection from a MiningMart
data model to local data sets. Note that in order to get valid connections, mappings
between different types of elements (like mapping a concept to a column rather than a
table) are not allowed. The MiningMart data model to be mapped will usually consist
of the initial concepts of a previously modelled KDD application, i.e. the concepts that
represent the raw data, and the relationships between them. Such concepts are marked
by a DB flag in M4. However, in the “entry point” approach explained in section 6.5.5,
any intermediate data model of a modelled preparation process is also examined for its
similarity to the technical data sets. The set of intermediate data models is defined by
the set of “current data views” of each step in the preparation process. For each step, the

"http://www.postgresql.org
*http://www.mysql.com

139

7. Implementing the Conceptual Level

Algorithm: Computation of Resulting Data Model for a Step

Input: An object S of type Step (possibly connected to a preparation graph)
Output: A collection of objects of type Concept that represents the data view created
by S and its predecessors

1. Let I be the collection of all initial concepts (type DB) used as input
of the preparation graph attached to S;
Initialise global collections conceptsToBeReplaced and wvisitedSteps to be empty;
Let Concept r := get ReplacingConcept(S);
Remove all concepts in conceptsToBeReplaced from I;
If r is not null then add r to I;
6. return I;

AN

Function getReplacingConcept(Step S) returns a Concept:

Add S to visitedSteps;
Set Concept r to null;
For all predecessors P of S:

If P is not contained in visitedSteps:

Let r := getReplacingConcept(R);

Add all input concepts of S that are of type DB to conceptsToBeReplaced;
If S has an output concept o:

return o;
Else: return r;

—_

© 0N OtE W

Figure 7.4.: An algorithm to compute the data view created by a step and its predecessors.

current data view consists of all initial concepts, but replaces those that were used in the
graph preceding the step by the step’s output concept. In other words the current data
view shows the results of the current path of data preparation. Displaying the current
data view is a MiningMart feature implemented by this author to help the user keep
track of the current preparation path. Figure 7.4 shows the simple algorithm used to
compute the current data view of a given step. The algorithm starts with the input data
model. A step can “consume” one or more concepts and replace them with its output
concept, so the algorithm follows the path to the current step and collects all concepts of
the input data model that must be replaced (in the collection conceptsToBeReplaced).
They are removed from the input data model (line 4 of the main algorithm), and instead
the output of the current step is added to it (line 5). The result is the current data view.
In the schema matching task, any intermediate data view is a possible entry point for
starting data preparation, if the local data sets to which the preparation is to be applied
are similar enough. In sum, the MiningMart schema matcher is able to find the best
matching of the initial concepts to new data sets, or to find the intermediate data view
that achieves the best matching among all intermediate data views. The user can choose
to execute either of these two tasks.

140

7.1. The concept editor

Basic elements of the schema matching algorithm

The only types of information that the matching algorithms can use for the envisioned
task are (i) the names and (ii) data types of attributes and concepts, or columns and
tables, respectively, (iii) which attribute/column belongs to which concept/table, and
(iv) the relationship links between concepts (one-to-many or many-to-many relationships;
separation and specialisation links are only available in the conceptual model, and thus
cannot be used for matching). This level of information is called the schema level by
Rahm and Bernstein (2001), who give a survey on schema matching approaches. As
noted by these authors and others, schema matching approaches exist that use further
information, such as the data (at the instance level), but when the conceptual level is to
be mapped to actual data sets, information about data contents is only available on one
side, so that it cannot help in the task at hand.

To match names, the system must be able to map a pair of strings to a real value
between 0 and 1 that reflects the similarity of the two strings. There are four methods
available to do so: a simple one that uses boolean full match of the strings (ignoring
case); one that is based on the edit distance between the strings; one that compares
the “soundex” representation of the strings; and one that compares all n-grams of the
two strings. The last method seems to work best for the task here. These methods are
described in (Wagner, 2005). They result in a name similarity value between 0 and 1.

To match data types of attributes and columns, the same mechanism that is used
elsewhere in MiningMart to “guess” the conceptual data type from the technical type
is employed. It simply maps string-based technical data types to discrete and numeric
types to continuous; key columns that are declared as such on the technical level are also
recognised. When the conceptual data types of two attributes match, their type similarity
is 1, otherwise it is 0.

Structural information, such as relationships between concepts, can be available at both
levels and is therefore also used. Some schema matching approaches express the structural
properties locally, as features of the schema elements to be matched, like (Euzenat &
Valtchev, 2004); this allows the representation of the elements by feature vectors, with
standard metrics as similarity measures. More advanced methods consider the given
schemas as graphs, and incorporate the similarity of neighboured nodes when finding
the similarity of two nodes in the respective schemas. By representing relationships,
concepts and attributes as nodes in the graph, such methods allow flexible mappings
between different types of nodes. One example for this approach is Cupid (Madhavan
et al., 2001). Cupid also exploits relationships (foreign key links) between data sets in a
second way: such links indicate possible valid joins of data sets, and the result of a join
might match a given element of the other schema more closely than any original element.
Another graph-based approach is presented in (Melnik et al., 2002).

Since mappings between different types should be excluded in the present task, a
simpler matching scheme was developed which is explained in the following. It also adds
the results of joins as possible elements to be matched to the local data schema, but not
to the conceptual model which is to be reused, because adding a join there would mean
to modify the conceptual model during the process of matching, which appears to make
the task of editing the suggested mappings rather complex for users. So the following
method for schema matching is tailored towards the specific task outlined above, in that

141

7. Implementing the Conceptual Level

it respects element types and allows joins only in one data schema. It proceeds in a
top-down fashion, attempting to match relationships before concepts, but it does not
preclude the matching of concepts if their relationships do not match. Thus it does not
introduce a top-down bias (Madhavan et al., 2001).

To simplify the implementation, the local data sets are internally represented as con-
cepts with attributes and relationships, like the conceptual data model of the given
MiningMart Case. Thus in the following, it suffices to speak about comparisons between
these types of elements. All possible results of valid join operations on the local data sets,
indicated by foreign key constraints in the database, are also represented by concepts in
this schema. This allows to map a concept of the given data model to a join result if the
similarity is higher than for the original database objects.

A recurring subtask in this schema matching scheme is to find the best mapping
between two sets of elements of the same type. This is needed for matching the attributes
of two concepts, or matching the relationships of two data models, or matching the
concepts of two data models. The solution taken here is a simple greedy method. A
matrix of similarity values is computed. The highest similarity value in the matrix, if it
exceeds a similarity threshold which is a global parameter of the whole scheme, gives the
first pair of elements to be mapped. Then the corresponding row and column are deleted
from the matrix and the procedure is repeated, until no columns or rows remain or until
no similarity value exceeds the threshold.

There is also the recurring subtask of computing a global similarity value from such
a matrix, which gives the attribute-based similarity of two concepts, for example. This
is done by finding the mappings that exceed the threshold in the same greedy fashion.
Obviously there cannot be more mappings than the smaller number of elements in the two
sets to be compared indicates. The latter number is the maximum number of possible
mappings. Therefore the sum of similarity values in the mappings is divided by this
number to get the global similarity. However, this means that a concept C' with one
attribute matches another concept D with a larger number of attributes perfectly, if only
that single attribute matches any one attribute of D perfectly. But another concept C’
with more attributes might also match D perfectly, in which case the mapping of C' to
D should be preferred over the mapping of C' to D. The analogous problem holds for
other element types. Therefore the global similarity value is decreased with the differing
number of elements in the two given sets to be matched. If this number is d then the
penalty factor is 0.95%. This allows matchings that map more elements to reach a higher
similarity?.

The computation of similarity values between elements of the same type is as follows.
Attribute names are compared using the name matching methods described by Wagner
(2005). The best results are provided by an n-gram matcher, which again uses the greedy,
similarity matrix-based method above, where the elements compared in the matrix are
the n-grams of the two names to be compared. The default value of n is 3. The conceptual
data types of the attributes are used to decrease the name-based similarity by a certain
penalty factor (currently 0.75) if they do not match. Note that the conceptual data types

3The fact that the penalty factor is the same if two of the attributes of a concept have not been matched,
regardless of whether the concept has 4 or 20 attributes, is irrelevant because such concepts are never
compared to each other, but only to match candidates from the other schema.

142

7.1. The concept editor

of the local data sets are automatically inferred from their technical data types, which
may give inappropriate results.

Concepts are compared by computing their attribute-based similarity using the greedy,
matrix-based method outlined above. If the name similarity of the concepts’ names does
not exceed the global similarity threshold, the attribute-based similarity is reduced by
the penalty factor.

Relationships are compared by computing the mean of the similarities of the two con-
cepts of each relationship. For one-to-many relationships, the direction of the relationship
is respected; for many-to-many relationships, the better result of comparing the first (sec-
ond) concept of one relation with the first (second) of the other, or comparing the first
of one with the second of the other and vice versa, is taken.

Overall schema matching algorithm

Now that the matching of individual elements, the method for finding the best match-
ings among several candidates, and the method for computing a global similarity from
individual similarities have been explained, the process of matching two data models can
be presented. It starts by examining the “stars” of each data model, which are concepts
involved in more than one relationship. This heuristic of considering the stars first is
chosen in order to take the global structures of the two schemas, which are given by the
relationships, into account. Two stars of the two schemas are compared by applying the
greedy method from above to all concepts involved in each star. This gives the similarity
values for the cells of the matrix that compares the two sets of stars. From this matrix,
again using the greedy method and the global threshold, all matching stars are found.

In the second step of matching two data models, the remaining relationships that have
not been matched based on the stars are matched, using the greedy method.

Thirdly, all concepts that have not been matched in any previous step are matched.

In each step the result is a set of pairs of concepts of the two schemas, such that the
similarity of the two concepts in each pair exceeds the global similarity threshold; only
the method for finding the pairs is different in the three steps. The three sets are disjunct
by construction. Their union gives all mappings from a given data model to local data
sets that can be suggested to the user. If the task was to match the initial data model
of a Case, or to match the resulting data model of a particular step, a solution has been
found. If the task was to find the best intermediate data model in a Case, then the
above method for finding a global similarity of the two current data models is applied,
and the search continues with the next intermediate data model. The intermediate data
model with the highest global similarity to the target data sets finally gives the mappings
suggested to the user.

The user then has the option of modifying the suggested mappings of concepts as
desired. Additional mappings can be specified for concepts that could not be matched
automatically, and suggested mappings can be changed. Where a suggested mapping
involves the result of a join on the local data sets, this is indicated to the user; if such a
mapping is confirmed, a view that realises the join is added to the database.

Finally, the individual concepts are connected to the local data sets as specified in the
mapping after possible user modifications. For matching attributes to columns, again the
greedy approach is used, but without using the global similarity threshold in order to

143

7. Implementing the Conceptual Level

match as many attributes as possible. Again, the user has the option of modifying the
attribute connections; this is part of the main functionality of the MiningMart concept
editor. Of course, the concept editor can also be used to match a particular single concept,
instead of a complete data model, to the best-matching local data set; the matching
methods for this are the same as above.

7.2. New operators in MiningMart

This section briefly describes the implementation of some operators that have been added
to MiningMart by the author, in reaction to the analyses from previous chapters. Cre-
ating the conceptual-level output for these operators is explained in section 7.1.1; the
implementations below concern the MiningMart compiler modules for these operators.
An overview of the compiler is given in section 6.4, while details can be found in (Scholz,
2007).

7.2.1. Attribute derivation

This general operator (see section A.5.4) must support an open part, to be programmed
by the user, which returns the values of the new attribute. Since MiningMart is imple-
mented in Java, a Java interface was set up for this purpose. It prescribes to implement
a certain method which is given a data set and returns values to be added as a new
column to that data set; see figure 7.5. Users can create Java classes that implement this
interface, and add a Java archive file with their classes to the class path when starting
MiningMart. Then, for any step that employs the MiningMart operator ATTRIBUTED-
ERIVATION, a string parameter specifies the name of the class that is to be used for this
step.

The operator reads the data from the data set represented by its input concept, and
provides it as a two-dimensional string array when calling the user-implemented method
deriveAttribute(...). It also provides the names of the columns of the data set. The
operator has an optional parameter called TheTargetAttributes, which can be used to
specify some particular columns of the input data set for whatever purpose. For example,
if the operator is supposed to compute the product of two attributes, for each entity, these
two attributes can be specified here. The names of the columns that are represented by
these attributes are then provided in the string array names0fTargetColumns when the
method is called. The method must return the values for the new attribute in the order
that matches the order of rows in the given data set, so that the operator can create the
correct new data set with the new attribute added.

The operator then creates a table in the database, which is filled with the new data
set. It is connected to the output concept of this operator. The output concept is a copy
of the input concept, but with one attribute added. The conceptual data type of the new
attribute is given by a parameter of this step (i.e. it is specified by the user).

It can be seen that this operator is exceptional in the MiningMart framework, in that it
does not process the data inside the database. Also the operator is executed immediately
when the compiler runs it (most other operators only create SQL views, so that actual
data processing can be done later). Both issues could be resolved by having the user

144

7.2. New operators in MiningMart

package edu.udo.cs.miningmart.operator;
public interface AttrDerivInterface {

/*%
The method expected by the MiningMart operator ’AttributeDerivation’.

*
*
* Q@param columnNames Names of the columns of the input data set

* Q@param namesOfTargetColumns names of target columns, can be NULL
* QOparam dataset the input data set (columns in the first dimension,
* rows in the second dimension)

*
*

Oreturn a String[] with the values of the newly derived attribute
*/

public String[] deriveAttribute(String[] columnNames,

String[] namesOfTargetColumns,
String[][] dataset);

Figure 7.5.: The Java Interface that all classes to be used by the MiningMart operator
ATTRIBUTEDERIVATION must implement.

create stored procedures instead of Java code. Such procedures are programmed in a
proprietary language like PL/SQL, which is provided by database system vendors. They
can be used (called) in view definitions. As a simple example, one might implement a
function that returns the square of its single argument. If that function is called SQ, it
can be used in a database view definition as follows: CREATE VIEW example AS (SELECT
a, b, SQ(c) AS d FROM some_table). When reading data from the view example, its
column d appears as any other column to the caller, but provides the squared values of c.
However, the language needed to encode them differs between various database systems,
and these languages are less well-known than Java. The current implementation of this
operator serves as a proof of concept, but can easily be changed to use stored procedures.
Automatically (rather than manually) created stored procedures are used by the operator
discussed in section 7.2.5.

7.2.2. Pivotisation and reverse pivotisation

These two operators are explained in section A.3.2. They are among the operators that
change the status from data to metadata and back, as discussed in section 4.1.1: piv-
otisation is an operation that transforms the distinct values of a certain attribute into
new attributes, while reverse pivotisation transforms a set of attributes into one attribute
whose values reflect the original attributes. Such changes between data and metadata are
necessary to allow transformations between different representations of the same data,
but unfortunately they conflict with the aim of allowing to set up a KDD process model

145

7. Implementing the Conceptual Level

without executing it (compare section 3.3.3), because the data is not available before
execution. In other words, the shape or signature of the conceptual output depends on
the actual data contents of the input, which are unknown before executing the operator.
Clearly, this property also undermines the reusability of preparation models involving
such operators. The solution used in MiningMart is to let the user specify the necessary
parts of the data as input parameters. The data characteristics estimations explained
in section 7.1.3 can be used for this directly, so that the user does not need to type in
distinct data items by hand. For example, the list of values that occur in a certain input
attribute is needed for DICHOTOMISATION (section A.3.1), since this operator creates a
new attribute for each such value. Since the list of these values may be available through
estimation, the corresponding parameter of DICHOTOMISATION can be instantiated auto-
matically. Since the estimated characteristics are available without executing the process,
the sketched conflict is avoided to the extent that the estimations are accurate. There is
also the option, of course, to execute the process up to the point where the data is needed;
then the estimated characteristics can be made accurate by computing them from the
actual data. In any case, the user has the option to edit the parameters manually, too.
This approach means that the operators must be robust against clashes between the in-
put parameters, which may be estimated or manually given, and the actually used input
data. The robustness of the two operators from this section is discussed below.

In order to signal the possibility of using estimated input values as parameters to the
MiningMart system, a new M4 constraint (compare section 7.1.1) called USE_ VALUES
has been introduced. Its two “slots” are the attribute parameter that provides the list
of values, and the value parameter where they have to be listed. This allows the system
to provide its estimated values automatically to the user for all operators that use this
constraint.

To realise n-fold pivotisation, the MiningMart operator PIVOTIZE takes a list of index
attributes as input parameter. For each index attributes, its distinct data values must
be specified in a second parameter; the MiningMart system can insert the estimated
value lists of the index attributes automatically here. A third parameter specifies the
pivot attribute, whose values are to be distributed into new attributes based on the
index values. The new attributes are created automatically at the conceptual level, as
section 7.1.1 explains; note that there is one new attribute for each combination of index
values from different index attributes. For example, if there are two index attributes
Colour and Size, with distinct values red, green and big, small respectively, then
there are four new attributes in the output concept for the combinations red-big, red-
small, green-big, and green-small. Each of the four new attributes takes the value
of the pivot attribute, say Weight, for those entities that take the combination of index
values corresponding to the new attribute, and 0 or the empty value for the other entities.
The operator also allows to specify an optional aggregation operator like SUM or MAX,
and attributes to group by.

Technically, when the operator is executed, the compiler creates a database view that
is represented by the output concept. Continuing the above example, and assuming for
ease of reading that the database columns have the same names as the attributes, the
compiler would create an SQL statement like the following:

CREATE VIEW output AS

146

7.2. New operators in MiningMart

SELECT
id,
SUM(CASE WHEN colour = ’green’ AND size = ’big’ THEN weight ELSE O END)
AS weight_green_big,
SUM(CASE WHEN colour = ’green’ AND size
AS weight_green_small,
SUM(CASE WHEN colour = ’red’ AND size
AS weight_red_big,
SUM(CASE WHEN colour = ’red’ AND size
AS weight_red_small
FROM input
GROUP BY 1id;

’small’ THEN weight ELSE O END)

’big’ THEN weight ELSE O END)

’big’ THEN weight ELSE O END)

This example includes aggregation by summation and grouping by some key attribute id.

As mentioned above, PIVOTIZE must be robust against actual data that is different
from its specification, for example because the KDD model is reused on different data.
There might be additional index values, say blue, in its actual input data. This only
means that entities that take this value are not represented in the output data set, but
the operator does not produce invalid output. On the other hand, a value like green
which is specified as a parameter might not be present in the actual input data. Then
the corresponding output attributes always take the value 0, or the empty value. In both
cases the operator’s output is syntactically valid, but it might not represent what was
originally intended by the designer of the KDD model. Therefore the compiler issues a
warning to the user whenever it encounters such mismatches between specified and actual
data.

The MiningMart operator REVERSEPIVOTIZE has the following parameters. It takes
a list of attributes to be “folded” into one. For each attribute it takes a value or a
combination of data values that holds for all values in that attribute. As an example,
consider a data set in which car prices are stored in several attributes, depending on
the type of car. Assume that the prices of the basic variants of each car are stored
in an attribute BasicPrice, and the prices of the luxury variants are stored in the
attribute LuxuryPrice. These two attributes together with the values basic and luxury
are input to the operator. Now the operator creates two output attributes whose names
are given as input parameters; one of the attribute takes the pivot values, here the
prices, and the other takes the index values, here the variants (luxury or basic). When
Pivorize is applied without aggregation, then REVERSEPIVOTIZE exactly reverses the
transformation performed by PIvOoTIZE.

Technically, this operator is a little more complex because it creates temporary views
which it then unifies. Continuing the car prices example, there would be two temporary
views:

CREATE VIEW templ AS
SELECT
car,
colour,
BasicPrice AS price,

147

7. Implementing the Conceptual Level

’basic’ AS variant

FROM input;
CREATE VIEW temp2 AS

SELECT

car,

colour,

LuxuryPrice AS price,

’luxury’ AS variant
FROM input;

Thus each temporary view holds the entities of one variant, with a constant value for
the variant in that view. Then the views are unified. It would be possible to integrate all
this into one SQL statement, but with temporary views it is easier to read:

CREATE VIEW output AS
SELECT car, colour, price, variant
FROM
(SELECT car, colour, price, variant FROM templ
UNION
SELECT car, colour, price, variant FROM temp2);

Unlike PivoTizE, REVERSEPIVOTIZE is not dependent on actual input data, but cre-
ates data from its input metadata.

7.2.3. Aggregate by relationship

This operator is described in section A.2.2. It adds a new attribute to a concept. The
new attribute takes aggregated values from a different concept which is linked to the
first one by a relationship. Each entity in the first concept is linked, via the relationship,
to several entities in the second; the aggregation is done over those entities, and the
aggregated value is added as the value of the new attribute to the entity of the first
concept. As a further restriction, the aggregation is only done over those entities of the
second concept that take the value that is most frequent in the relationship.

To illustrate the technical realisation of this operator, the example from section A.2.2
is used again. There are two concepts, one with customer data and one with product
data; they are linked by a relationship that stores which product has been bought by
which customer.

The first step in the execution of this operator is to find the product that has been
bought most often by customers. Assuming that the relationship is stored in the database
cross table bought, this can be done as follows:

SELECT
product.pid,
COUNT (product.pid)
FROM product, bought
WHERE product.pid = bought.pid
GROUP BY product.name;

148

7.2. New operators in MiningMart

The result returned by this query is searched for the most frequent product. Assume
that its pid value is 1004. In the second step, a view doing the actual aggregation can
be created. The number of times a customer has bought the most frequent product is
calculated for each customer in this view. Note that this information comes from the
relationship:

CREATE VIEW temp AS
SELECT
customer.cid,
COUNT (CASE WHEN product.pid = 1004 THEN product.pid ELSE NULL END)
AS tempcol
FROM customers, bought, product
WHERE customers.cid = bought.cid AND bought.pid = product.pid
GROUP BY customer.cid;

Finally, to attach the information stored in tempcol (how often the product 1004 was
bought) to the concept representing the customer data, the above view is joined to it:

CREATE VIEW output AS

SELECT
customer.cid,
customer.name,
customer.address,
tempcol

FROM customer, temp

WHERE customer.cid = temp.cid;

The operator uses the information about the relationship, which is stored in M4 and
which includes the primary and foreign key columns that make up the relationship (here
pid and cid), to create these views.

7.2.4. Dichotomisation

This operator is described in section A.3.1; it creates a binary indicator attribute for
each value of a particular input attribute. The realisation of this operator in MiningMart
is faced with the same problem as the pivotisation operators (compare 7.2.2; also sec-
tion 4.3): the shape or signature of the conceptual output depends on the actual data
contents of the input, which are unknown before executing the operator. The same solu-
tion as for pivotisation is used here. Thus the user specifies one particular input attribute
(say Colour), its values (like red, green, blue) and for each of these values the name of
the output attribute to be created (perhaps isRed, isGreen and isBlue). The user can
decide to directly use the values of the input attribute that are estimated to be present
by the methods explained in section 7.1.3. This eases the parameter specification when
there are many different values in the input attribute. The constraint USE_VALUES
explained in section 7.2.2 is used by this operator, too. Since these estimations can be
made to reflect the actual data, the user has the two options of using the estimated

149

7. Implementing the Conceptual Level

values, without the need to execute the preparation graph up to the point where this
operator is used, or of using the actual values, after an execution of the graph so far. See
below for an explanation why the operator is robust against misestimated values. Names
for the new output attributes are suggested automatically when the estimated values are
used directly, but can also be specified manually. The output attributes are added to the
input concept when the parameter specification is saved (compare section 7.1.1).

When the operator is executed by the compiler, a simple SQL statement creates a
virtual column for each output attribute. In the example, three SQL statements would
be created as follows:

(CASE WHEN colour = ’red’ THEN 1 ELSE 0 END)
(CASE WHEN colour = ’green’ THEN 1 ELSE O END)
(CASE WHEN colour ’blue’ THEN 1 ELSE O END)

The names of these virtual columns (isRed etc.) are stored in M4. Then such state-
ments can be used by following operators to read the binary indicators, like in the fol-
lowing example:

CREATE VIEW new_data AS
SELECT ..., (CASE WHEN colour = ’red’ THEN 1 ELSE O END) AS isRed,
FROM ...;

When the input data changes because the case is reused on new or updated data,
and the parameters of this step are not adjusted, then still valid SQL is created. For
example, if the actually occurring values of Colour are now red and yellow, then the
output attribute isGreen still indicates the absence of the value green by only taking
the value 0. To create an indicator attribute for yellow the user would have to update
the conceptual parameters of the step. To make the user aware of such a situation when
it arises, the compiler issues a warning if the actual input values of the input attribute
differ from the specified parameters.

7.2.5. Results of mining as new attributes

The idea of integrating the results of applying a machine learning algorithm with the
data on which it was applied was discussed in section 4.1.2. In MiningMart a few ma-
chine learning operators have been included to demonstrate the capability of modelling
the whole KDD process in one framework. At the same time MiningMart lacks some im-
portant operators that allow to model the experiments around machine learning, in the
way exemplified by the YALE system (Mierswa et al., 2006). The reason is that Mining-
Mart puts its focus on data processing inside the underlying database system, but mining
algorithms with their superlinear runtime are usually too slow to process the large data
sets for which databases are used. Even for smaller data sets, running mining algorithms
inside the database is usually inefficient due to the complex ways in which the same data
is accessed repeatedly during mining; see the report by Riiping (2002), for example.

An example for a compromise are the support vector machine (SVM) operators in Min-
ingMart. An external implementation of an SVM algorithm is called on data extracted
from the database for training. The operator includes a sampling parameter that allows
to trim the input data to a size that fits into the client’s main memory, which is where
the algorithm runs. The result of training the SVM is a prediction function that can be
applied to new data. The MiningMart operator translates this prediction function to a

150

7.2. New operators in MiningMart

database function that can be called on new data. In this way the deployment of the SVM
results can be performed on large data sets inside the database. This demonstrates the
capability of the developed framework to include both the mining and the deployment
phase (see sections 2.1.4 and 2.1.6) in its models. Although mining is technically not done
inside the database, at the conceptual level an integrated view of all phases is available.
By integrating the results of mining as an attribute, this also holds for the data-centred
view.

This section documents the SVM operators in MiningMart, as they were implemented
by the author of this work, using a previously available external implementation of the
training algorithm, but translating the application of the learned function to a database
function. In order to understand how the learned function is realised, a little background
on SVMs is given.

As usual in machine learning, a training set S with IV examples is represented by N
vectors from X = R together with their label from a set Y

S = {(fl,yl)y---’(jvaN)}

For classification tasks, the binary case Y = {—1, 1} is considered here. For regression (see
section 2.1.4), Y = R. The training set is drawn from an unknown distribution Pr(Z,y)
which determines the learning task: a function h : X — Y (the hypothesis) is sought
which assigns an element from Y to any element from X and minimises the error rate,
which is the probability of making a wrong prediction on an example drawn randomly
according to Pr(Z1,y1):

Err(h) = Pr(h(Z) # y|h) = JL(h(:f:),y) dPr(Z,y)

where L is a loss function L : Y x Y — R that compares the predicted and the actual
label.

Since the hypothesis h is unknown and must be found, the space H from which it is
taken must be defined. One guideline for defining H is its complexity, because it can
be used to bound Err(h), based on Erry.(h), which is the error rate of h on S. The
complexity of H is given by its Vapnik-Chervonenkis (VC) dimension d, defined as the
maximum number of examples that a function from H can separate, if the examples
are labelled arbitrarily. As an illustration, consider the real plane R? and three linearly
independent points in it, and consider H to be the class of straight lines. It is easy to
see that for any binary classification (or partition into two sets) of the three points, a
straight line exists that separates the points in one class from those of the other. Since
this is not possible for four points, the VC dimension is 3 in this case. In general, the VC
dimension of hyperplanes in R" is n + 1.

The bound on Err(h) that is based on d is as follows (Vapnik, 1998; Joachims, 2001),
where 1 — 7 is the probability that the bound holds:

Err(h) < Erry.(h) + O (dln (%J)\f ln(n)) (7.1)

Thus the true error Err(h) is dependent on the training error and on the complexity of
the hypotheses. Intuitively, simple functions would not typically give low training errors,

151

7. Implementing the Conceptual Level

since they often cannot separate the examples. On the other hand, very complex functions
can give low training error, but also a high value for the right part of equation (7.1). This
can be interpreted as a low generalisation capacity of the learned function, a situation
denoted by the term owverfitting. In both cases the bound is loose. Thus the choice of an
appropriate hypothesis space H is crucial.

Support vector machines (Cortes & Vapnik, 1995; Burges, 1998; Joachims, 2001) are
based on the principle of structural risk minimisation. The general idea of this principle
is to choose nested hypothesis spaces of increasing complexity:

HicHyc...cH,c... with Vi:d;<d;1

Then the task is to find the index i such that equation (7.1) is minimised. In the case of
support vector machines, the risk minimisation works slightly differently. SVMs attempt
to find a hyperplane in X that separates the positive (y; = 1) from the negative (y; = —1)
examples. The separating hyperplane has the form @ - Z + b = 0 with norm vector w
and distance to the origin b/||w|. A separating hyperplane is called optimal if it has the
maximum distance to all examples. Intuitively, a bigger distance of the hyperplane to all
examples, the so-called margin, corresponds to a better generalisation; and in fact it has
been shown that a bigger margin corresponds to a lower VC dimension (see (Vapnik, 1982)
or (Joachims, 2001)). Thus by finding an optimal hyperplane, the margin is maximised
and the right part of equation (7.1) is minimised, and if the hyperplane separates the
examples, the training error is also minimised.

It can be shown that finding an optimal hyperplane is equivalent to finding a vector @
and a constant by, such that ||«| is minimal and y;(@-Z; +bp) = 1 holds for all 1 <i < N.
Minimising ||| or, equivalently, %wz, under the given constraints, is the problem solved
by SVM algorithms.

In general, it may not be the case that a separating hyperplane exists. For such cases,
errors are allowed by introducing slack variables & for each training example, which
correspond to the classification error, i.e. they are positive if the example is wrongly
classified, and measure the distance to the hyperplane. Now to minimise the global error,
the function to be minimised is no longer %wz but %wQ + C’va &, under the same
constraints and additionally & > 0 for all 1 < ¢ < NV, and with a parameter C used to
balance the influence of wrongly classified examples.

To solve this optimisation problem, the saddle point of its Lagrange functional must
be found; without going into details, the Wolfe dual form of the equation to be minimised
can be given as:

1 N N N
W(&) = *5 Z Z oziajyiyjfi : fj + Z [e%;
i=1j=1 i=1
The scalar product is represented by “-” here. This form must be maximised under the

constraints Zf\il a;; = 0 and 0 < o < C. It depends only on &. When & has been
found during training, it can be used to predict the label of an unlabelled example & by
computing

N
F(Z) = sign (Z YT - T — b) .

1=1

152

7.2. New operators in MiningMart

The constant b can be computed from the training examples. Note that the prediction
function F' depends on the training examples for which a; # 0. These examples are called
support vectors, they are the closest training points to the found hyperplane, and the
only points that determine the position of the hyperplane. The SVM-based MiningMart
operators must implement this function F' in the database, which means that a table
with the support vectors must be available in the database.

In the case of regression, the real values to be predicted are approximated by a linear
function, and the SVM minimises the sum of errors made by this approximating function.
Both for classification and regression, an extension to non-linear functions is possible by
transforming the input space X into some other space X', by a non-linear transformation
® : X — X. The training equation and F' can then be restated as follows:

NN N
w(a) = -3 D12 iy () - D(E) + Y
i=1j=1 i=1

and

N

ﬂ®:$@<2awﬂ@yﬂﬂ—0.

i=1
In other words, only the scalar product in X is needed to solve the problem as before. This
allows to employ the “kernel trick”: the transformation function @ is chosen such that a
kernel function K : X x X — R exists with K(Z1,Z2) = ®(71) - P(¥2) for all ¥1,75 € X.

Then all scalar products involving ®(-) above can be replaced by K(:,-). Some known
suitable kernel functions, which are also used by the MiningMart SVM operators, are:

e The linear kernel (corresponding to ® = id): K(Z1,%2) = Z1 - T2

—

e Polynomial kernels: K (&, Z2) = (&1 - T2 + 1)P for pe N
e Radial basis kernels: K (%1, Z2) = exp(—|Z1 — #3|?) with v € R=0
e Sigmoid kernels: K(&1,Z2) = tanh(s(Z] - ¥2) + ¢) for certain s,c € R.

The decision function F' can then be written as

N
ﬂ®=$@<2awK@j}w>. (7.2)

1=1

A final aspect of SVMs that is needed in this section is their ability to estimate their
generalisation error without using a test set. Usually, after training a predictive learner,
its performance can only be determined on a separate set of examples that were not
used for training, but whose labels are known. By comparing the known labels to the
predicted ones, an empirical error is found and taken as an approximation of the true error
of the learned model. The closest approximation possible is obtained by using all labelled
examples for training except for one, then testing on this one example, and repeating
this for all examples. Averaging over the single errors renders the so-called leave-one-out
error. The problem is that for N training examples, this requires N learning runs which
is usually not feasible. In practice, the number of examples held out for testing is often

153

7. Implementing the Conceptual Level

increased to N/j, and this is repeated j times with disjunct test sets. So the number of
learning runs is reduced to j, where often j = 10 is chosen. This process is called cross
validation.

This scenario is applicable to any predictive learner. However, SVMs provide a different,
unique method for estimating the empirical error. The method is called {a-estimation
because its inputs are the two vectors E and @ described above. It was introduced by
Joachims (2000). Let £ and @ be the vectors computed during a training run of an SVM
as described above. The Ea-estimator of the error rate* for a hyperplane h is

Erreq(h) = % with d = |{i| (s R? + &) > 1}| (7.3)

where N is the number of training examples and R? is an upper bound on the kernel
function evaluated on any pair of examples.

The key measure in definition (7.3) is obviously d. It counts the number of examples
for which the inequality (a;R? + &) = 1 holds. There is a connection between this
inequality and those examples that can produce a leave-one-out error if they are not
used for training, but for testing. More precisely, if an example (Z;,y;) is not classified
correctly by an SVM trained on a sample without it, then for this example the inequality
must hold for an SVM trained on the sample with it. Therefore, all examples for which
the inequality does not hold cannot produce a leave-one-out error. So the £a-estimator
is an approximation to the leave-one-out error which is never too low, i.e. never too
optimistic. It can be computed during the training run of an SVM at virtually no extra
cost. Empirical tests have shown that the estimator is often, but not always, tight enough
to be useful in practical applications. In particular for text data it works well (Joachims,
2001).

To sum up this discussion with respect to the MiningMart SVM operators, they must
be able to implement the decision function F' in the database, using a certain kernel
function and its parameters, and incorporating the support vectors, their labels y, their
« and & coefficients, and the constant b. The last five are the output of the external SVM
training algorithm that the operators call, while the kernel function and its parameters
are input parameters of the operators which they pass to the training algorithm and
also use for implementing the decision function F. An additional input parameter is the
error-bounding constant C.

There are four MiningMart operators that involve the support vector machine: one
for classification, one for regression, one for replacing missing values by predicting the
missing values using a regression SVM (trained on the data rows where the value of the
attribute in question is not missing), and one for automatic feature selection based on
the £a-estimation method. All these operators use the SVM wrapper that controls the
external algorithm and provides the learned decision function as a database function. The
external algorithm that MiningMart uses is MYSVM?, implemented by Stefan Riiping
for his thesis (Riiping, 1999). The tasks of the wrapper are to read the input data from
the database table or view that is represented by the input concept of the MiningMart
operator, to read C' and the kernel parameters from the operator, to run the external

“The definition here is slightly simplified.
http://www-ai.cs.uni-dortmund.de/ SOFTWARE/MYSVM //index.html

154

7.2. New operators in MiningMart

algorithm on this data with those parameter settings, to create a temporary table in
the database that stores the support vectors and their « values, and to implement the
decision function in the database (except for the feature selection operator). The a values
that MYSVM provides for its support vectors have already been multiplied by their label
1/, so there is no need to store the label in the temporary table as well.

As explained in section 7.2.1, today’s major database systems provide the option to
include calls to stored procedures, which are functions and procedures programmed in a
proprietary language, in database views. An SVM decision function implemented in this
way must access the temporary table of support vectors internally; compare equation
7.2. Alternatively, the support vector values could be hard-coded in the function, but
since there can be rather many support vectors for large data sets, the solution with
a temporary table is more elegant. Both the temporary table and the decision function
remain in the database until the step with the SVM operator that created them is deleted,
or is compiled again (the MiningMart compiler keeps a list of such temporary objects
that have been created during compilation; see (Scholz, 2007) for details).

The feature selection operator that involves the SVM does not require to use the
decision function, as it only uses the a-estimator after training to guide the search for
a set of features (attributes) of the input data set on which the SVM achieves the best
result, or a similar result as with all features but in less time. This operator is described
in more detail in (Euler, 2002a). The computation of the £« result is done by the external
algorithm automatically, and is read by the operator. The operator provides two simple
feature selection strategies, but uses a simple interface to the SVM wrapper so that other
strategies can easily be realised.

Figure 7.6 shows an example of a decision function as created by the MiningMart
operator that employs an SVM for classification. The version shown compiles on Oracle
database systems; under Postgres there are some slight differences in the syntax, but the
operator can also create Postgres versions. The name of the function reflects the internal
identifier of the step that applies the operator. The input parameters of the function are
the database columns with the data row on which the function is applied; the four input
parameters are named after the four columns that have been used for training, although
the function can of course also be applied to four different columns. In this example the
four training columns represent a time window of width four, to which a scaling operator
has been applied. These column names are also used in the model table with the support
vectors, called CS_100110056_MODEL, to identify the entries of each support vector. There
is a declaration part that is used to declare all internal variables used by the function.
The “cursor” variable supportvectors provides the contents of CS_100110056_MODEL.
The “row type” variable currentrow iterates through these contents. The variable inner
contains the scalar product of one support vector and the incoming example. The variable
kernel evaluates the kernel function, in this example a polynomial kernel of degree 2,
and multiplies the result with the a value of the support vector. The variable retValue
computes the sum over the support vectors, to which the constant b is added. The sign
of the final value of this variable is returned by the function. Compare equation (7.2)
above.

155

7. Implementing the Conceptual Level

CREATE OR REPLACE function CS_100110056_F (
IN_SCALED_WINDOW1 IN NUMBER,
IN_SCALED_WINDOW2 IN NUMBER,
IN_SCALED_WINDOW3 IN NUMBER,
IN_SCALED_WINDOW4 IN NUMBER

)

RETURN NUMBER

AS
BEGIN
DECLARE
retValue NUMBER;
CURSOR supportvectors IS
SELECT SCALED_WINDOW1,
SCALED_WINDOW2,
SCALED_WINDOW3,
SCALED_WINDOW4,
Alpha
FROM CS_100110056_MODEL;
currentrow supportvectors\%ROWIYPE;
kernel NUMBER;
inner NUMBER;
BEGIN
retValue := 0;
FOR currentrow IN supportvectors
LOOP
inner := (currentrow.SCALED_WINDOW1 * IN_SCALED_WINDQOW1)
+ (currentrow.SCALED_WINDOW2 * IN_SCALED_WINDOW2)
+ (currentrow.SCALED_WINDOW3 * IN_SCALED_WINDOW3)
+ (currentrow.SCALED_WINDOW4 * IN_SCALED_WINDOW4) ;
kernel := POWER(inner + 1, 2) * currentrow.Alpha;
retValue := retValue + kernel;
END LOOP;
retValue := retValue + (-0.2233839308663433);
IF (retValue >= 0)
THEN RETURN 1;
ENDIF;
RETURN -1;
END;
END;

Figure 7.6.: A stored function in PL/SQL (Oracle), automatically created by a Mining-
Mart operator, that realises the decision function of an SVM trained with a polynomial
kernel.

156

7.3. Materialisation recommendations

7.2.6. ReverseFeatureConstruction

This operator supports the deployment phase of the KDD process. It reverses certain
transformations that have been applied to an attribute. As explained in section 2.1.6, a
prediction function learned by a mining algorithm predicts values of the kind that have
been used as labels during training. However, if the label attribute had been transformed
before training, then the predicted values have to be transformed back in order to get
predictions in the original domain of the attribute. This has been referred to as post
processing in this work. Criterion 52 (appendix C) therefore requires that a reversing op-
erator be automatically available whenever an attribute is transformed in a reversible way.
The MiningMart operator “ReverseFeatureConstruction” has been provided for this pur-
pose. It can reverse any application of SCALING and VALUE MAPPING, since these are the
only reversible transformations currently provided by other MiningMart operators (the
mappings performed by an application of VALUE MAPPING may also be non-reversible if
several values have been mapped to one).

Because this operator is not useful if there is no step whose transformations can be
reversed, a step that employs this operator cannot be created in the usual way in Mining-
Mart, but has to be created using a “wizard” that requires the user to select an existing
step to be reversed. If the selected step does not employ a reversible operator, the wizard
prevents the creation of the new step.

When compiled, an instance of this operator must read the parameters of the original
transformation in order to be able to reverse it. Therefore the step to be reversed must
be linked to the reversing step (which employs this operator). This type of link between
steps is stored by an additional M4 type, whose objects simply refer to the two steps
involved. The link is created by the wizard. One of the parameters of the reversing step
refers to the originally transformed output attribute of the step to be reversed. When the
reversing step (with this operator) is compiled, the compiler module thus knows which
transformation to reverse. The other scaling or value mapping parameters of the step to
be reversed provide the information needed to set up the reverse transformation; it is
encoded in SQL and used for the output of the reversing step.

7.3. Materialisation recommendations

As explained in section 6.4, the MiningMart compiler uses database views (at the tech-
nical level) to create the new representations of the data resulting from operator applica-
tions. A chain of operators, when compiled, thus leads to a stack of views, each of which
depends on the previous view. More generally, the view dependencies parallel the struc-
ture of the DAG of MiningMart steps given at the conceptual level. In larger applications,
such as the one described in chapter 5, the nesting of views can become rather complex.
At the technical level, the problem arises that reading data from a view that depends on
other, deeply nested views can be rather inefficient, because every tuple in the original
data table(s) has to be accessed and possibly re-represented by each intermediate view.

An obvious solution is to materialise some of the intermediate views, so that they be-
come tables. Now the question is which views should be materialised. Considering data
preparation for KDD, which usually leads to a single final data set to be used for mining,

157

7. Implementing the Conceptual Level

reading data from this final set must be efficient, as it is the interface to data mining
algorithms, so this final set ought to exist as a table after preparation. Clearly, then, the
final view of a data preparation process has to be materialised, and intermediate views
should also be materialised if this can reduce the overall time needed for all materialisa-
tions. This section discusses when this might be the case. The ideas discussed below lead
to an automatic method of identifying suitable places for materialisation in the prepara-
tion graph, which is needed for hiding the technical level. Although materialisation can
be done automatically, in MiningMart the adopted solution is to recommend places for
materialisation to the user, and to include a materialisation operator at the respective
place in the preparation graph only if confirmed by the user. While this weakens the sep-
aration of the two levels slightly, it gives more control of the system’s storage behaviour
to the user.

The issue of selecting views to materialise is known from data warehousing, but with
a somewhat different problem setting. The scenario is that there are a number of base
tables in an operational database system, and a set of views on these base tables that
make up the data warehouse. To enable efficient retrieval in the warehouse, the views
in it are materialised. The problem of selecting the views to materialise thus arises in
the design phase of the warehouse (Gupta, 1997; Gupta & Mumick, 2005), and involves
considering average querying and update costs. The latter occur whenever the contents
of the base tables change so that the views have to be updated (though often, updates
are done in regular intervals, rather than being triggered by any change to the base ta-
bles). The usual approach to this problem considers a set of given queries, together with
expected query frequencies, that the warehouse will have to answer. Equalling queries
with views, the set of views to materialise can be chosen from this set, although ap-
proaches that consider additional views have also been proposed; see for example (Ross
et al., 1996; Theodoratos & Xu, 2004). Typically, the set of given queries is examined for
common subexpressions which might be worth materialising; this is called multiple query
optimisation (Sellis, 1988; Mistry et al., 2001). But this alone does not take updates into
account. Update frequencies are usually also modelled for each given query, reflecting
how often a materialised view that realises this query would have to be updated. The
view selection problem is then to minimise the sum of querying and updating costs, un-
der a global maximum space constraint. Querying costs are minimal when all views are
materialised, updating costs are minimal when no views are materialised. The problem
is NP-hard (Gupta, 1997).

Fortunately, for the present purposes the issue is less complex. There is no question of
optimising response time over a set of queries; rather, there is only a single query (the
final data set for mining), which should be materialised anyway. As said above, what
is to minimise here is the overall time needed for materialising the final data set and
any intermediate sets. The costs for materialising the latter are analogous to the update
costs in the warehousing scenario. In spite of this analogy, the optimal solution is not to
materialise no intermediate view, because the unavoidable “update” cost of materialising
the final data set could be too high (it is unavoidable because otherwise the querying
cost for querying this data set, at the interface to data mining, would be very high).
Materialising all views, on the other hand, consumes a lot of space, and is unnecessary
because the cost of reading from views that are not deeply nested is not high. In other

158

7.3. Materialisation recommendations

words, it would certainly be enough, for example, to materialise every third or fourth
view on any path through the preparation graph. But can the number of materialisations
be reduced further?

To answer this question, the costs of reading data from a view are examined more
closely. If the view depends on a single base table, then even if there are intermediate
views it is justified to approximate the processing costs for reading from the view by
the number of tuples in the base table (this is done, for example, by Harinarayan et al.
(1996), who consider the materialisation of nested aggregation views). Suppose there is
a base table T" and a sequence of k views Vi, ..., Vi such that V; is based on T, and V; is
expressed over V;_; for 2 < i < k. If Vj, is to be materialised, every tuple from 7T must be
processed, even if not many tuples belong to Vj, due to some selectivity in the sequence.
Materialising one or more of V;, ..., Vi1 does not change this situation and thus will not
reduce the overall materialisation costs. It is easy to confirm this experimentally. However,
there is one exception if the preparation operators from chapter 4 are considered, rather
than only standard relational operators: since ATTRIBUTE DERIVATION (section A.5.4)
may use its complete input in rather arbitrary ways to create the values of its new
attribute, it might read its input several times, possibly resulting in tuples from 7" being
processed more than once. This exception is discussed again below.

A view can be dependent on more than one base table, of course, if it represents
the output of a JOIN or UNION operation, which are the only operators in chapter 4
that apply to more than one input data set. For joins, the processing time for reading
from the output view can only be bounded by the product of the sizes of the base
tables. Nevertheless, the output views of these operators are not more suitable places for
materialisation than other views, since the number of base table tuples to be processed
would not change if materialisation were used.

However, what does change the number of base table tuples to be processed is any
view over which more than one other view is expressed. Suppose the views V5 and V3
are both expressed in terms of V. It can be assumed that both V5 and V3 will be read
from when the final mining table is materialised, since otherwise one of V5 or V3 or both
would be useless for the preparation. Reading from V5 means processing the base table
that V; is based on, and the same holds for V3. So the tuples from this base table are
processed twice. If Vi or its predecessors involve some selectivity, the overall processing
can be made more efficient if V] is materialised.

This leads to the idea that all steps in a preparation graph whose output is consumed
by more than one other step should materialise their output (these are the nodes with
outgoing degree bigger than 1). Note that this method is independent of given data
contents, and can thus be applied at the conceptual level alone. What is avoided by this
method is reading tuples from a base table more than once. Returning to the exception
mentioned above, namely the possibility that ATTRIBUTE DERIVATION processes its input
more than once, one can argue by the same token to materialise all inputs of steps that
involve this operator.

These ideas were experimentally validated using different materialisation schemes in
the model application described in chapter 5. As noted there, this application involves
more than 90 steps, not counting the materialisation operators. The total time for com-
piling this application in MiningMart, which includes materialisation if any operator uses

159

7. Implementing the Conceptual Level

it, has been measured on artificially created data sets with 100000 tuples representing
customers, and more than five million tuples with call details for these customers. Due to
aggregation and some selectivity, the final mining table (with one tuple per customer),
which is materialised in all experiments, contains 97052 tuples.

Using no intermediate materialisation at all, the materialisation of the final table was
stopped without having finished after more than 24 hours. Using materialisation of the
outputs of the steps with outgoing degree higher than 1, the total execution time was 1
hour and 44 minutes. Four such steps exist in the application; an experiment with four
materialisations inserted at random places also was stopped without a result after 24
hours.

While no steps in that application involve a complex attribute derivation in the sense
discussed above, there are a few operators that are special cases of ATTRIBUTE DERIVA-
TION, and that must read their input indeed more than once. An important example is
DISCRETISATION with an automatic generation of discretisation intervals: the minimum
and maximum values of the attribute to be discretised must be read before the output
column can be defined; then reading from the output inevitably involves the second or
third scan of the input data. After adding materialisation of the input of such operators,
the total execution time fell to 1 hour and 12 minutes. Adding still more materialisations
did not lower the total execution time, which confirms the approach discussed above. It
should be noted that for technical reasons, some MiningMart operators always materi-
alise their output, of which one operator (the MiningMart version of AGGREGATION) is
employed twice in the application used for the experiments.

Although materialisation is a technical concept, recommending suitable places for it is
then based solely on information from the conceptual level, and can be done without hav-
ing processed any data. This property supports the reusability of conceptual models on
new data, as discussed in section 6.6. A MiningMart module that performs such recom-
mendations, and inserts materialisation operators automatically when confirmed by the
user, was therefore added to the system by the author. Conforming to criterion 11 from
appendix C, it is automatically checked if any recommendations should be given when-
ever the user compiles a complete application on large input data (using a configurable
threshold for input data size).

7.4. The user interface

This section briefly introduces a few aspects of the implementation of MiningMart’s
graphical user interface (GUI). The GUI provides the two dual views on the KDD pro-
cess, and allows to edit and annotate elements of it. Compare figure 1.4, or the figures
in chapter 5. The implementation of the GUI is based on LiMo, a modelling framework
developed at the University of Dortmund by Pleumann (2007). While the framework was
intended to support the graphical representation of (models of) software architectures,
it turned out to be useful for the graphical representation of KDD models as well. Min-
ingMart has thus been one of the applications that confirmed the usefulness and validity
of LiMo (Pleumann, 2007).

LiMo is used to represent the M4 model elements graphically. In LiMo, a “core meta
model” is available that provides abstract Java classes for models and model elements.

160

7.5. Summary

There are two types of model elements, those for figures and those for connections. Model
elements for figures can be nested. For the implementation of the MiningMart GUI,
classes that represent the M4 types have been made to inherit from classes of LiMo’s core
meta model. Figure model elements were used for steps, chunks, concepts and attributes;
connection model elements were used for semantic links and step dependencies (the latter
represent the data flow in the process view). Nesting of figure model elements was useful
for the chunks of preparation graphs, which can be nested, too (compare section 4.4).

The graphical representation of the M4 objects (or in LiMo terms, of the model that
is specified by extending the core meta model) is then realised by drawing elements for
figures and connections that “observe” the model elements: as soon as the latter change,
the former are updated, too, effectively updating the graphical display. The observation
mechanism is a well-known design pattern from object-oriented programming (Gamma
et al., 1995). LiMo’s drawing elements provide almost the full graphical interface, includ-
ing the observation and update mechanism, leaving only small specifications about what
the figures and connections should look like to the developer. The main part of the GUI
implementation thus concerns threading and specific dialogs with the user.

LiMo also allows to annotate any model element using HI'ML text. These annotations
could easily be mapped to the annotations that M4 provides.

In sum, LiMo has been a very suitable graphical framework for the MiningMart system,
thanks to the fact that MiningMart uses an explicit model of the KDD process, which
LiMo’s graphical tools can directly represent. This is another advantage of the declarative
modelling approach used in MiningMart.

7.5. Summary

This chapter has provided a more dynamic view of the MiningMart system than chap-
ter 6. Section 7.1 has explained how elements of the data view are created automatically
and in a generic way as soon as elements of the process view are created. The propa-
gation of changes in both views, the estimation of data characteristics, and the schema
matching algorithm have also been presented. Section 7.2 has explained the realisation of
some important operators, including the deployment of the function learned by a mining
algorithm inside a database. Section 7.3 has extended the view-based compiler approach
by a strategy for materialisation, in order to speed up the execution of complex prepa-
ration graphs. Finally, section 7.4 has taken a short look at the graphical user interface
and its implementation based on an existing framework for the graphical representation
of structured models.

161

7. Implementing the Conceptual Level

| Name | Applies to | Meaning
Constraints indicating data type of output attribute
TYPE Output attribute Use given type
SAME_ TYPE An input and an output Copy type to output
attribute
OUT_ TYPE Input attribute Use given type for output
created from the attribute
Constraints indicating how to create output attributes
SAME FEAT Input and output concept Copy features (attributes) to output
ALL EXCEPT Output concept and input | Copy all features (attributes) from
attribute(s) input to output except given ones
RENAME OUT | An input attribute and an Copy input attribute to output
output name but use given name
MATCHBYCON | Input attribs from different | Copy only one of the given
input concepts input attributes to output
CREATE_BY Input attribute and Create one output attribute per given
input values value, based on given input attribute
CR_SUFFIX Input attributes Copy to output but add
suffix to name
FEAT RFR Input relationship and Use attributes of From-concept
output concept of given relationship for output
FEAT RTO Input relationship and Use attributes of To-concept
output concept of given relationship for output
Constraints indicating where to find input attributes
IN Attributes and concepts Given attribute must belong
to given concept
IN RELFROM Input attribute and Attribute must be in From-concept
input relationship of given relationship
IN RELTO Input attribute and Attribute must be in To-concept
input relationship of given relationship
Constraints used for creating output relationships
FROMCON Output relationship and Use given concept as From-concept
input concept of output relationship
TOCON Output relationship and Use given concept as To-concept
input concept of output relationship
CROSSCON Output relationship and Use given concept as cross table concept
input concept of output relationship
FROMKEY Output relationship and Use given attributes as keys of
input attributes From-concept
TOKEY Output relationship and Use given attributes as keys of
input attributes To-concept,
CR_FROMKEY | Output relationship and Use given attributes as keys of
input attributes cross concept to From-concept
CR_TOKEY Output relationship and Use given attributes as keys of
input attributes cross concept to To-concept

Table 7.1.: List of M4 constraints that can be used to specify how conceptual-level data
output can be automatically generated from given input parameters of an operator.

162

7.5. Summary

S7Z_MULT_NO

Name | Meaning
Assertions related to size of output concept:
SZ BY REL Compute size for Join based on relationship between inputs
SZ BY VAL Size is given by a specified constant
SZ MIN MV Output size is input size minus no of MVs of specified attribute
SZ DIV _BY Output size is input size divided by value of specified parameter
SZ BY VL Get size from combinations of distinct values of specified attributes
SZ ADD Input sizes are added to give output size

Output size is input size times no of attribs in specified parameter

Assertions related to the list of values of an output attribute:

VL FROM Take value list from specified attribute

VL UNCH Copy value list from corresponding input attribute

VL _ADD Add value given by specified parameter to input value list
VL BY PAR Take value list from specified parameter

VL _BY_SYM Value list is given by particular symbols

VL COMB Combine (merge) value lists of corresponding input attributes
VL BY LIST Value list is given directly or by specified parameter

Assertions related to the minimum and maximum bounds of an output attribute:

VF_MULT_NO

MM FROM Take bounds from specified attribute

MM UNCH Copy bounds from corresponding input attribute

MIN FROM Take minimum from specified value or parameter

MAX FROM Take maximum from specified value or parameter

MM COMB Combine (merge) bounds of corresponding input attributes
Assertions related to the value frequencies (VF) of an output attribute:

VF_ FROM Take VFs from specified attribute

VF ADD Add VFs from corresponding input attributes

VF REPL MYV | Take VF of specified value from no of MV

VF_ BY_ SEL Multiply VFs of input attribute by selectivity factor

VF BY AGG Get VFs from combinations of distinct values of specified attributes

Multiply VFs of input attrib by no of attribs in specified parameter

Assertions related to the number of missing values:

MV_BY_SEL Multiply no of MVs of input attribute by selectivity factor

MV FROM Take no of MVs from specified attribute

MV ADD Add no of MVs from corresponding input attributes
General assertions:

NO_ CHANGE Copy all relevant estimations from input to output

ES SELECT Apply special selectivity estimation for ROW SELECTION

Table 7.2.: List of M4 assertions that can be used to specify which inferences and esti-
mations of data characteristics are possible for an operator. MV — missing value, no
= number, VF = value frequency.

163

8. Evaluating KDD Tools

The previous chapters have set the background to understand many important issues
during data preparation and other phases of the KDD process. This chapter applies
this background to develop detailed criteria which serve to evaluate software packages
that support KDD. Generally, this work argues that KDD software should be evaluated
according to the extent to which it supports the conceptual description level discussed in
previous chapters. Measures for this extent are given in the shape of concrete, objective
and quantifiable criteria in section 8.3 and appendix C, as a slightly extended version of
(Euler, 2005a). But first some related work is reviewed (section 8.1) and the methodology
used is discussed in section 8.2. A small test case that can be easily used in practice to
determine the degree to which a given tool fulfils each criterion is presented in section
8.4. Section 8.5 describes a number of software packages which have been evaluated under
the criteria from section 8.3; the results are presented in section 8.6.

8.1. Related work

8.1.1. General software evaluation

There are many aspects of software which can be evaluated. A useful distinction is that
between the development of a software and its actual use as a product. The main evalu-
ations concerning the development of software assess the quality and correctness of the
source code; this is usually called testing. Testing is a complex issue, but this work does
not involve testing a software. A good overview of software testing methods is given in
(Riedemann, 1997). A higher-level type of evaluation assesses the development process in
an institution, to see whether it follows certain standards that make the process control-
lable and repeatable. The software capability and maturity model (CAMM) is a major
evaluation framework for development processes (Paulk et al., 1995).

The present work is concerned with software product evaluation, which addresses the
central notion of software quality, and is defined as the assessment of software quality
characteristics according to specified procedures (Punter et al., 1997). The characteris-
tics of software quality are defined in an international standard, ISO/IEC 9126, entitled
“Information Technology Software Product Evaluation Quality Characteristics and
Guidelines for their Use”, developed in 1991 and slightly modified several times after-
wards. It defines six main characteristics of software quality, each with several subchar-
acteristics, as listed in figure 8.1. These characteristics can be the subject of an evaluation
of a software product. The standard is a result of a decade of research that is mainly
based on Boehm et al. (1978) and Cavano and McCall (1978). While the ISO standard
9126 aims at comprehensiveness, Kusters et al. (1997) and others have pointed out that
different users of a product may have rather different quality requirements, and that it

164

8.1. Related work

may be difficult for an organisation to determine the level and type of quality required
in a specific situation.

Most of the ISO 9126 characteristics refer to external quality attributes, that is, such
characteristics as can be examined when the software’s source code is not available.
However, at least the maintainability characteristic concerns internal aspects which are
related to the code. This work considers only external characteristics; this view of software
is often subsumed under the notion COTS (commercial off-the-shelf) software (Maiden
et al., 1997; Colombo & Guerra, 2002).

Importantly, the evaluation itself should also follow a standard procedure in order to
be as objective as possible, and in particular to be reproducible. To this end another stan-
dard was published in 1999, the ISO 14598 standard, entitled “Information Technology

Software Product Evaluation”. It introduces four phases that make up the evaluation
process:

1. Establish evaluation requirements: The purpose of the evaluation, and the types
of products to be evaluated, must be identified in this phase. Most importantly, a
quality model is set up, which lists the characteristics that are agreed to bear an in-
fluence on the quality. The ISO 9126 quality characteristics provide a useful guide,
or a checklist, for the identification of quality-related issues in a particular evalua-
tion, but the ISO 14598 standard also allows other categorisations of quality that
are more appropriate under the given circumstances. ISO 14598 explicitly states
that there are no established methods for producing software quality specifications.

2. Specification of the evaluation: Since the ISO 9126 characteristics are not directly
quantifiable, metrics that are correlated with them have to be established. The
term “metric” is used in ISO 14598 not in the usual mathematical sense, but refers
to a quantitative scale and a method which can be used for measurement. The
word “measure” is used to refer to the result of a measurement (the term “score”
is also used in this work). According to ISO 14598, every quantifiable feature of
software that correlates with a characteristic from the quality model can be used
as a metric. For every metric, a written procedure is needed that prescribes the
assignment of measured values to it, to achieve objectivity.

3. Design of the evaluation process: An evaluation plan is produced that specifies
the required resources, e.g. people, techniques or costs, and assigns them to the
activities to be performed in the last phase.

4. Execution of the evaluation: Measurements are taken and scores computed as fixed
in the evaluation plan.

In (Punter et al., 2004) a critical review and some refinements of this process can be found.
In particular, the importance of establishing and prioritising the goals of an evaluation,
and of involving all stakeholders of the evaluation in this, are stressed. Since the present
work involves only one evaluator and has a clear, simple objective (see section 8.2), these
refinements are not used here. Instead, section 8.2 describes the instantiation of the above
process in the present work. Other ideas from the literature below are also used.

165

8. Evaluating KDD Tools

e Functionality — the capability of the software to provide functions which meet stated and implied

needs when the software is used under specified conditions
— Suitability — the capability of the software to provide an appropriate set of functions for specified
tasks and user objectives
— Accuracy — the capability of the software to provide right or agreed results or effects
— Interoperability the capability of the software to interact with one or more specified systems

— Security the capability of the software to prevent unintended access and resist deliberate attacks
intended to gain unauthorised access to confidential information, or make unauthorised modifications
to information or to the program so as to provide the attacker with some advantage or as to deny
service to legitimate users

Reliability — the capability of the software to maintain the level of performance of the system
when used under specified conditions
— Maturity — the capability of the software to avoid failure as a result of faults in the software

— Fault tolerance — the capability of the software to maintain a specified level of performance in cases
of software faults or of infringement of its specified interface

— Recoverability the capability of the software to re-establish is level of performance and recover
the data directly affected in the case of a failure

Usability the capability of the software to be understood, learned, used and liked by the user,
when used under specified conditions

— Understandability — the capability of the software product to enable the user to understand whether
the software is suitable, and how it can be used for particular tasks and conditions of use

— Learnability the capability of the software product to enable the user to learn its application
— Operability the capability of the software product to enable the user to operate and control it
— Afttractiveness the capability of the software product to be liked by the user

Efficiency — the capability of the software to provide the required performance, relative to the
amount of resources used, under stated conditions

— Time behaviour — the capability of the software to provide appropriate response and processing
times and throughput rates when performing its function, under stated conditions

— Resource utilisation the capability of the software to use appropriate resources in an appropriate
time when the software performs its function under stated conditions

Maintainability — the capability of the software to be modified

— Analysability the capability of the software product to be diagnosed for deficiencies or causes of
failures in the software, or for the parts to be modified to be identified

— Changeability — the capability of the software product to enable a specified modification to be
implemented

— Stability the capability of the software to minimise unexpected effects from modifications of the
software

— Testability — the capability of the software product to enable modified software to be validated

e Portability the capability of the software to be transferred from one environment to another

— Adaptability — the capability of the software to be modified for different specified environments
without applying actions or means other than those provided for this purpose for the software
considered

— Installability — the capability of the software to be installed in a specified environment

— Co-existence — the capability of the software to co-exist with other independent software in a common
environment sharing common resources

— Replaceability the capability of the software to be used in place of other specified software in the
environment of that software

Figure 8.1.: The ISO 9126 software quality characteristics and subcharacteristics, taken
from (Punter et al., 1997).

166

8.1. Related work

A new standard, ISO 25000, entitled “SQuaRE — Software Product Quality Require-
ments and Evaluation” is currently being developed to combine ISO 9126 and ISO 14598
(Suryn et al., 2003).

Regarding evaluation techniques, Punter (1997) argues for the use of weighted check-
lists, where the presence or absence of a number of agreed features is indicated and
integrated into an overall score. Checklists are easy to customise and are a transparent,
reproducible method of evaluation. A problem is the choice of items on the list, that is,
the identification of the quality model. Punter argues that the only way to make this
choice less subjective is to document and justify it extensively. In particular, each item
on the list must be clearly related to the characteristic or aspect of the software whose
quality it is supposed to indicate.

For COTS software, Carvallo et al. (2004a) and Botella et al. (2002) have suggested
a process to refine the ISO 9126 standard characteristics, to arrive at a quality model
for evaluation. Even a tool has been developed which supports this process and provides
a formal model of the resulting quality attributes (Carvallo et al., 2004b). However, the
actual identification of basic attributes is still left to the evaluator in this process.

A more empirical approach of how to arrive at a quality model (thus at items on a
checklist, or at evaluation criteria) is given by Brown and Wallnau (1996). These authors
suggest to identify those features of a technology that distinguish it from existing tech-
nologies. The authors call such distinctive features “technology deltas”. Thus they stress
that a product should be evaluated with respect to competitive products. This method
ensures that no quality attributes are overlooked by the evaluators. It is particularly use-
ful for functional criteria. Secondly, Brown and Wallnau (1996) stress that the technology
deltas should be evaluated in well-defined, sharply focused usage contexts, because then
the extent to which a technology delta supports a given context can be evaluated. The
importance of distinctive features is supported by Maiden et al. (1997), who found that
they costly evaluated some requirements which were, in the end, met by all candidate
products among which they had to select. These authors also point to the usefulness of
test cases, in terms of which the requirements can be stated. The present work includes
a test case that can be used for that purpose, see section 8.4.

The distinction made at the beginning of this subsection, between the development of a
software and its use as a product, serves the clarity of description but does not imply that
there are no connections between these aspects. Obviously the quality of the source code
and the development process influences the quality of the finished product; hence, some
research exists that addresses these connections. For example, Punter (1997) stresses
that the results of a software product evaluation are interesting for the developers of
the software as well as for the potential buyers. Mayrand and Coallier (1996) and others
relate the internal design of software to some external quality attributes. Similarly, April
and Al-Shurougi (2000) map features that are based on the source code of a software to
the ISO 9126 characteristics.

As regards metrics (see the second phase of the standard evaluation process above), ob-
viously no internal, source-code related metrics can be used for COTS products (Colombo
& Guerra, 2002). Previous research on product metrics has mainly concentrated on such
internal metrics (e.g. (Mayrand & Coallier, 1996; Cartwright & Shepperd, 2000)). Re-
search on COTS evaluations has concentrated on process-oriented aspects (Maiden et al.,

167

8. Evaluating KDD Tools

1997; Carvallo et al., 2004a) but has not established quantitative metrics, except for Ran-
garajan et al. (2001) and Colombo and Guerra (2002). In (Rangarajan et al., 2001), rather
general metrics are given, only some of which are external, but require much effort to
measure (such as the percentage of design goals met by the finished product). In contrast,
Colombo and Guerra (2002) seem to use a metric similar to the one developed in the
present work (section 8.2.2), but no details are given, nor any examples from a concrete
evaluation project.

It can be seen that the goal in software product evaluation is not to arrive at one single
metric that indicates the quality of a software, as the notion of quality is too complex
for this; rather, the derivation of a detailed picture involving different aspects of quality,
some of which can be in conflict with each other (Barbacci et al., 1995), is recommended.
Though scores from a checklist can be integrated into a single value if desired, usually
this is not the goal of an evaluation. Instead, the complete checklist scores are needed to
arrive at an informed opinion about a product. Section 8.2 explains how the evaluation
of KDD software products was performed for the present work, in the light of the guides
cited above.

8.1.2. KDD product evaluations

The earliest comparison of KDD systems known to this author can be found in (Matheus
et al.,; 1993). It is a study that compares three systems with respect to an early model
of major components a KDD system should have. The components are: the interface to
a database, a domain knowledge base, a “focusing” component used for data selection
(the predecessor of data preparation), a pattern extraction component (providing the
mining algorithms), an evaluation component and a controller module for interaction
with the user. The three systems are analysed with respect to the extent to which they
include (the functionality of) these components, so only rather coarse criteria are used.
The evaluation is done by textual description.

One of the first attempts to evaluate KDD tools more systematically is (Abbott et al.,
1998). This evaluation is based on a given application purpose (fraud detection). In order
to handle the large number of tools then already available, the authors applied a three-
stage approach. In the first stage all tools were evaluated under rather broad and simple
criteria, such as support for the intended system environment, or range of algorithms
provided. This stage left 10 products for the second stage, which filtered 5 products
for the final examination using the additional criteria quality of technical support, and
exportability of models, for example to source code. The last criterion relates to the
deployment phase in KDD (compare chapter 2).

In the final stage, five tools remain and are examined under five well-discussed cri-
teria. These are: (i) support for client server settings, which the authors deem related
to scalability; (ii) automation of parameter search and documentation of experiments;
(iii) range of algorithms and options offered for each algorithm; (iv) ease of use in data
manipulation, mining, visualisation and technical support; and (v) accuracy of neural
nets and decision trees on a dataset from the authors’ application. Mainly points (ii)
and (iv) are of relevance for this work. Concerning data preparation, they distinguish
between loading the data and manipulating it. During data load, automatic recognition
of data types and naming of attributes is an issue. This criterion is taken up in section

168

8.1. Related work

8.3 (criteria 14 and 19). Data manipulation is not discussed to a great extent, only the
availability of built-in functions for attribute derivation is briefly discussed.

Among their lessons learned is the requirement to define what a tool is going to be
used for, in order to focus the evaluation. Reasonable though this is, it is not applicable
in this work, which attempts to find application-independent criteria. More relevant is
their suggestion to test a tool in the environment where it is going to be used; as all
the criteria listed in section 8.3 are based on the experiences made with the different
tools when implementing the model application described in chapter 5, this requirement
is fulfilled in the present work.

Another early attempt to give a systematic overview of different KDD software tools is
(Gaul & Sauberlich, 1999). They consider the whole KDD process insofar as they exam-
ine only tools that offer some data preparation and deployment facilities, not only mining
features. They list 16 tools and give the following features for them: manufacturer, avail-
able mining algorithms, system platform, price, year of first version, support for parallel
environments, and limitations on data set size. For 12 out of the 16 tools, they give
some further information in a second table with boolean entries indicating presence or
absence of certain features. Concerning data preparation, they only consider the presence
or absence of the operators MISSING VALUE REPLACEMENT, ATTRIBUTE DERIVATION,
ATTRIBUTE SELECTION and SCALING (see chapter 3), plus some unexplained operator
STANDARDISATION. Concerning deployment, they consider exportability and visualisabil-
ity of models. The closest they come to conceptual aspects is the presence or absence of
graphical user interfaces.

A more extensive list of classification features is provided by Goebel and Gruenwald
(1999). These authors discuss three groups of features: general product characteristics,
database connectivity, and data mining characteristics; they give tables with informa-
tion for each feature for 43 tools. Of certain interest for this work is their stress of the
importance of database connectivity. They claim that a KDD tool ought to be tightly
integrated with database or data warehouse systems. Indeed, the large volumes of data
typically involved in knowledge discovery make this issue paramount for modern KDD
software. Thus they consider the data formats a tool can access, in particular certain file
formats and databases, as well as data models (relational vs. single table), query options
(SQL for databases, or GUI support), data types supported, and size limitations on the
data set.

Concerning data mining characteristics, they distinguish between tasks such as clus-
tering or prediction, and methods to solve the tasks. Data preparation is only considered
by a single boolean flag indicating whether a tool has any preparation facilities at all.

A paper that considers data preparation features of software tools in some more detail
is (Collier et al., 1999). This paper is also interesting in that it suggests a simple method-
ology to choose a most suitable tool from a list of tools, using a weighting scheme. While
the authors do not relate their methodology to standard software product evaluation
methods, see section 8.1.1, it is easy to see that their weighting scheme corresponds to
the written procedure that prescribes the assignment of values for a metric, in phase 2
of the standard evaluation process according to ISO 14598. Though such a scheme is
not new, the authors applied it to knowledge discovery software for the first time. The
authors point out that the investigation of some effort into the choice of a suitable tool

169

8. Evaluating KDD Tools

will pay off easily, considering the work saved later in the application. Indeed, the total
costs of ownership (TCO) of KDD software are hardly influenced by the licence fees, but
much more by how much expert work the software can save.

Collier et al. (1999) also apply tool selection in two stages, filtering the bulk of tools
away in the first stage under simple but hard criteria, such as support for the intended
system environment. The second stage is more refined in their approach, however. Having
grouped selection criteria into five groups (performance, functionality, usability, data
preparation, other), they assign weights to the criteria in each group such that the sum
of weights within a group equals 1.0. The groups themselves are also assigned weights.
The authors then propose to choose one of the candidate tools as reference tool; one could
choose a personal favourite tool based on past experiences of some of the evaluators, but
any candidate can be used for reference. Then, each tool is given a score in each criterion
that measures its strength relative to the reference tool. The score is assigned by human
evaluators who have some experience with the tool. The reference tool gets a medium
score in all criteria. Finally, the weighted scores of all tools imply a ranking for tool
selection.

Focusing on these authors’ data preparation criteria, they use mainly the presence and
quality of the following data preparation operators: VALUE MAPPING, ROW SELECTION,
DISCRETISATION, ATTRIBUTE DERIVATION, and MISSING VALUE REPLACEMENT. The
brief discussion points out that an extensive list of functions is needed for ATTRIBUTE
DERIVATION. Also, exportability of models is a criterion. Finally, one interesting criterion
is called Metadata manipulation; it assigns a score based on the availability and manipu-
lability of data descriptions and data types. Section 8.3 will develop rather more detailed
criteria based on the ways of handling metadata supported by a tool.

A thorough study on data mining software solutions is the book by Gentsch et al.
(2000), which provides detailed descriptions of 12 tools. For direct comparison, this study
considers seven rather broad criteria that summarise the detailed descriptions. These are
data import, data transformation (preparation), mining methods, visualisation of data
and models, handling (usability), documentation, and special aspects (strengths of each
tool in areas not covered by the other criteria, such as integration with other tools,
code generation from models (criterion 3 below), etc.). Data import is related to the
support of data types as discussed in section 3.3.1. The authors stress the importance
of data preparation and mention the preparation operators that each tool provides in
their detailed descriptions. They consider ATTRIBUTE DERIVATION, VALUE MAPPING,
AGGREGATION, SCALING, and MISSING VALUE REPLACEMENT. However, the discussion
of preparation operators is not done in a systematic way, as it is not based on a (minimal)
list of operators. Because the study comprises the whole KDD process, data preparation
is just one aspect and is not discussed in any detail, though its importance is pointed

out clearly.

Another list of criteria is suggested by Giraud-Carrier and Povel (2003). While an
evaluation based on the criteria is not included in the paper, the criteria list is rather
extensive. This discussion focuses again on the criteria related to data preparation. Their
criteria include the presence or absence of facilities for: reading data from flat files,
databases or XML files; data characterisation by statistical measures; data visualisation;
row selection; attribute selection; and data transformation, under which point any other

170

8.2. Methodology

preparation operators seem to be subsumed. Data cleaning (outlier detection) is also
mentioned but not included in the final criteria list.

An example from a slightly different field is (Maier & Reinartz, 2004) which examines
web mining tools. When mining data from web server logs, special preprocessing oper-
ations are needed to bring the data into attribute-value format, which is the input for

data

preparation as discussed in this work. The availability of some such preprocessing

operations is included in the criteria list set up by Maier and Reinartz (2004).

8.2.

Methodology

Several methodological deficiencies can be recognised in the previous work as discussed
in section 8.1.2:

This

The evaluations do not follow an accepted, standard evaluation procedure, nor do
they use standard quality characteristics or concepts.

The list of evaluation criteria is not justified in a systematic fashion, and is often
rather short.

Many approaches use boolean criteria which, on the one hand, often subsume many
important aspects under one yes/no-flag, while on the other hand an overview is
hard to keep if there are many criteria.

No metric to flexibly quantify the degree to which a tool fulfils the criteria is given.
No detailed methods prescribing how to apply the criteria to new tools are given.
section explains the methodology used for tool evaluation in this chapter, which

employs the conceptual level introduced in section 2.2 to abstract from technical
details, thus allows to compare all criteria across tools and applications easily;

follows the ISO 14598 standard of a software product evaluation process, but adds
some aspects to it;

systematically develops a list of evaluation criteria by following the notion of “tech-
nology deltas” by Brown and Wallnau (1996), see section 8.1.1;

introduces m-of-m criteria as a concise, quantitative metric for complex quality
characteristics, where the assignment of values can be done objectively and repro-
ducibly;

is adaptable to various levels of detail, thus to various audiences;
uses all evaluation criteria found in previous work, and adds many more;
is independent of human subjective evaluation;

considers the complete KDD process;

171

8. Evaluating KDD Tools

e employs the list of operators from appendix A as another source for systematic
evaluation; and

e provides a test case that allows a step-by-step evaluation of all criteria on new
tools.

In the following, the methodology is developed following the four phases of the standard
product evaluation process introduced in section 8.1.1. See also (Euler, 2005a).

8.2.1. Establishing evaluation requirements

The ISO 14598 standard requires the specification of the purpose of the evaluation, the
type of products to be evaluated, and the quality model in this phase. The purpose of
the evaluations in this chapter is to provide a detailed, yet clear picture of the strengths
and weaknesses of currently available software tools that support KDD applications. It
is not the purpose to test any software, nor to evaluate the tools under general software
criteria such as reliability, portability or maintainability. Nor is it the purpose to select
a single best tool or to give recommendations about tools; rather, a general framework
is developed that allows the evaluation of further KDD tools easily.

The evaluation is restricted to such KDD products that include strong data preparation
facilities, but cover the complete KDD process, and provide at least some conceptual
support as discussed in previous chapters. Tools that offer only mining algorithms, with
little or no data preparation, are excluded.

The quality model used in this work follows the purpose of the evaluation. The strengths
and weaknesses of a tool are examined in the light of the conceptual aspects developed
in previous chapters, which are in fact KDD-specific. Thus only functional criteria are
applied. Hence, all the criteria used in the quality model here, which are listed in section
8.3, bear on the quality characteristic “Functionality”, in particular its subcharacteristic
“Suitability”, in that they are used to examine the capability of the software tools to
provide the set of functions that have been found to be appropriate for KDD tasks and
objectives in the previous chapters.

The development of the criteria list followed the idea of technology deltas introduced
in (Brown & Wallnau, 1996). This approach is particularly useful for functional crite-
ria. Though the present work does not use the history of a technology to identify new,
distinctive features, as Brown and Wallnau have done, it compares features of different
products in order to identify the distinctive ones. A feature is deemed distinctive if it is
present in one or more tools, absent in one or more other tools, and considered useful
in the sense that it supports some of the conceptual aspects developed in the previous
chapters. In this way a list of criteria is gained that provides a maximum amount of
information when comparing the tools based on them. In a few cases, the inspection of
distinctive features leads to the discovery of a few more desirable features that are not
present in any tool examined.

Choosing the granularity of features is an issue. In some cases, one tool may provide
a group of related functionalities that the other tools do not offer at all. For example,
MiningMart is the only tool that uses the estimation of data characteristics. In such cases
one could see a large number of distinctive features (estimation of value lists, estimation

172

8.2. Methodology

of output size, ...) that only this one tool exhibits. However, it is a better contribution
towards a clear comparison if only one distinctive feature that represents the whole group
of functionalities is introduced in such cases. In other words, the features should only be
as fine-grained as necessary to be distinctive.

In line with the conceptual approach of this work, the evaluation criteria address those
functionalities of a KDD tool that are explicitly supported in the user interface. For ex-
ample, some tools offer a scripting language that enables the execution of a graphically
modelled process from outside the tool. The power of the scripting language can some-
times be exploited to achieve some functionality that is not offered in the user interface,
for example the automatic testing of parameter settings (see section 2.1.4). However, in
such a case, the criterion is not considered fulfilled because no high-level support is given
for this functionality. The aim of this chapter is to provide measures for the conceptual
support in KDD, that is, for the potential of a tool to save user efforts, and low-level
programming is likely to require rather more than less user efforts.

8.2.2. Specification of the evaluation

Having found the quality model in the previous phase, each of its criteria is now assigned
a metric, in the sense defined in ISO 14598 (see section 8.1.1). During work with the
various KDD tools, most of the technology deltas identified corresponded to rather small,
specific features, which are present in some tools and absent in others. A simple metric
would assign a boolean value to each feature, indicating either its presence or absence.
This would lead to a very long list of criteria, counteracting the evaluation goal stated in
the previous phase of providing clear overviews of each tool’s strengths and weaknesses.
However, many small groups of features were found to be related in a rather natural way.
Therefore, such naturally related features are grouped together in this work, and each
group forms a criterion. The n-of-m metric is used to indicate the strength of a tool with
respect to such a criterion: m > 0 is the number of features grouped together for this
criterion, and n (0 < n < m) is the number of features that are present in the given tool.
Thus each n-of-m criterion could be transformed into m boolean criteria. A simple score
can be assigned to each tool under each criterion, which is the real value 0 < n/m < 1.

This method allows much flexibility concerning the groupings of the basic features.
For a quick overview or superficial comparison, only the more important features can
be used, or larger inherently related groups can be formed. This corresponds to larger
average values of m. For detailed surveys, like in this work, more fine-grained criteria can
be used, so that the list of criteria is longer but the average value of m is lower. Thus the
n-of-m method is adaptable to different granularities of detail, leading to different rep-
resentations of the same evaluation scores. The different representations can be used for
different audiences, like technicians or developers compared to decision makers. Section
8.6 provides two representations of the evaluation data collected for this work.

The measures for several single criteria can be combined to more integrated scores
by building weighted sums, where the sum of the weight coefficients should be 1.0. For
example, to assess the strength of a tool in data modelling, all criteria listed in section C.2
can be evaluated and combined to a single value. If desired, a single global score could
be computed for every tool to get a ranking of the tools, though such a ranking would
hide many aspects that the detailed score list can provide.

173

8. Evaluating KDD Tools

Some features could not be related to others and are listed as boolean criteria. These
features should take one of the values 0 or 1.0 in order to be integratable with other
criteria.

Though the above metrics are recommended for the type of criteria in this work because
they are simple, transparent, and easily combinable, other scoring methods are applicable
based on the given criteria list as well. For example, the method by Collier et al. (1999),
described in section 8.1.2, can be applied as well as a simpler scoring method described in
(Maier & Reinartz, 2004). Since each evaluator is likely to have their own priorities with
respect to their application, the choice of the scoring method is open in this methodology.
In section 8.6, which presents the results of some evaluations done for this work, the
recommended metrics above are used.

The methodology described here results in objective criteria, with a written procedure
that prescribes how to identify the presence or absence of each feature in a criterion. The
procedures are given with each criterion in section 8.3, fulfilling the demand of objectivity
and reproducibility. Further, a test case is provided in section 8.4 that provides clear
explanations about how to evaluate each criterion based on a concrete example.

Though the methodology sketched here relies on inter-product comparisons for the
development of criteria (see previous phase), it provides a set of criteria that can be
applied to single software products, in contrast to the method by Collier et al. (1999)
which is described in section 8.1.2, and which relies on inter-product scores.

A limitation to this methodology may be that, when applied to a different type of
software products, not all technology deltas might correspond to boolean features that
can easily be grouped. Some features, such as performance-related features, require a
real-valued, continuous scale. However, such metrics can be mapped to the real interval
[0..1] easily, which makes them easily combinable with n-of-m metrics. A more serious
limitation is that different n-of-m criteria can result in identical values when evaluated,
although the respective values of n and m are different. It is not clear whether the
fulfilment of 2 out of 4 features of a criterion “means” the same strength as the fulfilment of
4 out of 8 features. Further, the features within a criterion are not weighted or prioritised
here, though this could be added easily. However, to compare the tools under any given
criterion, the same value of m is always used, so that the metric is valid.

8.2.3. Design of the evaluation process

The initial experiments for this work were done by implementing the model application
described in chapter 5 in a number of tools. As the model application is based on two
complex real-world applications, profound experiences could be made about a large num-
ber of issues that typically arise when realising complicated KDD processes, and about
how different features of the tools support the implementation. This allowed to identify
the technology deltas and develop the criteria as explained above.

However, now that a list of criteria is available, a simpler evaluation plan can be given.
Section 8.4 describes a procedure to implement a test case in an arbitrary KDD tool
and check various criteria in every step of the procedure. All criteria are covered. This
corresponds to an evaluation plan, though elements like resource assignment are missing,
as they are not applicable: the evaluation can be done by a single evaluator, and does not
consume big computational resources. Hence, no team coordinations or fixed schedules

174

8.3. Criteria for KDD tool evaluation

are needed. The main costs are likely to be incurred if the evaluator is new to the tool
to be evaluated. In this case, the average time the evaluator needs to find out whether
and how the given tool supports a functionality that is examined in a certain step of
the test case will dominate the overall costs. This situation can be different, though, if
external stakeholders (paying clients, for instance, who impose deadlines or other resource
restrictions) need to be taken into account when executing the plan.

8.2.4. Execution of the evaluation

Executing the evaluation consists of following the execution plan, taking the measure-
ments required by the criteria, and documenting them. The results of several such eval-
uations performed for the present work are presented in section 8.6.

8.3. Criteria for KDD tool evaluation

This section presents the criteria that were developed following the methodology de-
scribed in section 8.2. As explained there, each criterion is accompanied by a precise
description of how to evaluate it in an arbitrary KDD tool. This serves not only tool
selection by end users but can also provide guidelines for developers of new tools. No
tool covers all aspects discussed in this section; rather, the elaborations here can be seen
as describing an “ideal” tool, towards which existing solutions should be developed.

This section first discusses some criteria whose detailed examination is excluded from
this work, in section 8.3.1. This is followed by a discussion of some more general criteria,
in section 8.3.2, which have been found in the literature on KDD evaluations (section
8.1.2), or have been mentioned in previous chapters. The relation of these criteria to the
more detailed criteria that are based on the methodology used here is explained. Those
more detailed criteria are listed in appendix C. They form a main contribution of this
work.

For ease of reference, every criterion receives a number. The order of presentation of
criteria is not significant. A list of all criteria with a reference to the page on which they
are described can be found in appendix C on page 228.

8.3.1. Excluded criteria

As section 8.2.1 explains, only functional criteria are used in this work. From the perspec-
tive of the KDD process, only criteria pertaining to the more technical KDD phases data
understanding, data preparation, mining and deployment are developed, as the concep-
tual support approach concentrates on these phases, while business understanding does
not lend itself so well to conceptual modelling (compare section 4.5, and also section 6.6).

One important aspect of KDD tools concerning the mining phase is obviously the range
of learning algorithms they provide, as well as the range of parameters that can be set for
each algorithm. Yet, no minimal or complete list of algorithms, or even parameters for one
algorithm, can be identified, because the sets of algorithms and parameters are open and
likely to be extended by research progress in the future. Even today no single tool offers
all varieties of algorithms that have already been described in the literature. Approaches
to include the range of mining algorithms could perhaps be based on an ontology of

175

8. Evaluating KDD Tools

mining tasks and algorithms, such as the one given in (Cannataro & Comito, 2003), but
there is no accepted standard ontology yet. Therefore, the range of learning algorithms
and parameters, which has often been used as an evaluation criterion in previous work
(see section 8.1.2), is not used as a criterion here.

In spite of this, the methodology developed in this chapter is also applicable to the
mining phase. The approach used here is to judge the extent to which a mining tool
supports basic, mining-related processing and control steps such as automated parameter
search, cross-validation, or ensemble learning with arbitrary base learners. These concepts
are explained in sections 2.1.4 and 4.5. However, it has to be said that not many tools
offer strong coverage of such conceptual aspects of both the data preparation and mining
phase. Therefore, separate evaluations might be appropriate for each phase.

Some studies from section 8.1.2 have used the accuracy of learned models on a given
data set as a criterion to compare KDD tools. However, a ranking of tools based on one
data set is not necessarily similar on a different data set, which is why model performance
related criteria are not used in this work.

An important criterion in practice is execution speed. Despite similar architectures,
different tools can reveal substantial differences in terms of processing speed. Since speed
is highly dependent on the hardware infrastructure used, actual performance times are
of little worth, but the ranking of tools that they imply can be expected to be consis-
tent across platforms. This criterion does not concern a conceptual, functionality-related
feature, but is directly related to the ISO 9126 subcharacteristic “Time behaviour” of
characteristic “Efficiency”. Therefore it is not used in this work.

Rather detailed criteria might be developed concerning the visualisation of data sets,
data characteristics and learned models or functions. Many tools that were examined
offer some visualisation features, but they are difficult to compare as each tool has its
particular emphasis on certain visualisation methods. Visualisations of models or learned
functions are not comparable if a tool lacks the mining algorithm whose visualisation is
the strength of another tool. For data sets with more than three attributes, any visual-
isation of the data must include a dimensionality reduction, which is useful for human
understanding but not necessarily helpful for mining. Further, visualisation of data sets
and data characteristics mainly belongs to the data understanding phase of the KDD
process, while this work focuses on aspects related to data processing. For these reasons,
visualisation issues are not included here. Similarly, reporting functionalities, which some
KDD tools offer to ease the production of documents reporting on the results of a KDD
process, are not examined in this work. This includes facilities to draw charts based on
mining performance or similar, statistical data produced during a KDD application.

A set of criteria that is left out from this section concerns the general software quality
characteristics which are not specific to KDD tools, in line with the purpose of this work
as described in section 8.2.1. This does not mean that general software quality issues are
irrelevant for KDD software, only that they are not in the focus of this work. Criteria
related to these issues can be found in the literature discussed in section 8.1.1.

Finally, as a related point, recall from section 8.2.1 that any functionality listed in the
criteria below can not be fulfilled by low-level constructs such as integrated programming
languages, but must be explicitly provided in the user interface in order to count as
conceptually supported.

176

8.3. Criteria for KDD tool evaluation

8.3.2. General criteria for KDD software

This subsection lists some criteria for KDD software that can be found in the literature
cited in section 8.1.2, or in the previous chapters, but are not directly included in the
list of detailed criteria developed in this work. The purpose of this subsection is to relate
these more general criteria to the detailed criteria where possible, in order to ease the
recognition of criteria known from the literature, or known from previous chapters, as the
terminology cannot always be identical. Note the remarks on excluded criteria in section
8.3.1, though. This work’s detailed criteria are given in appendix C.

1 Adaptability: The importance of this criterion has been stressed in chapter 6, in
particular section 6.6. As discussed in that section, mainly the addition and deletion of
conceptual metadata, as well as the propagation of such changes, must be supported. In
general, adaptation and reuse are easiest if the software follows the two levels approach
proposed in section 2.2 in the area of data sets. Therefore this criterion is related in
particular to criteria 15, 17, 18, 19, 25, and 27.

2 Scalability: KDD software has to be capable of handling large data sets. Some studies
in section 8.1.2 have included limits on the number of attributes or rows that a software
can process as a criterion. However, the tools examined for this work do not explicitly
state such limits, so that any such limitations depend on hardware resources. Other
studies have stressed the importance of support for parallelisation or for client-server
environments, where the server deals with large data sets and control is executed from
the client. Criterion 8 is the main related criterion in this work.

3 Interoperability: If users want to use special software for some subtask, such as re-
porting or mining, they should be able to do so easily. In KDD, the interface to other
systems is often a data set on the file system or in a database, so that this criterion
is related to the data formats a tool supports (criterion 7); yet if mining results (like
learned rules) are to be used outside the tool, integration with other software can be
more difficult. See criteria 50 and 55.

4 Guide to KDD process: The software should offer some support to guide the user
through the complex stages of a KDD process, and avoid erroneous user inputs. This
support should be offered for several levels of assumed previous experiences of users.
Related criteria are 26 and 54.

5 Documentation: It should be possible to add free text comments to every object
involved in the KDD process. As all tools examined for this work offer facilities for this,
it is not a technology delta but is obviously very important, especially for the reuse of
process models (see chapter 6).

6 Business problem: Some approaches have attempted to use the types of business
problems a tool can solve as a criterion. In the absence of a theory on how business
problems are related to mining tasks (see section 2.1.4), they have used very simple

177

8. Evaluating KDD Tools

mappings of stereotypical business problems to mining tasks, so that this criterion is
related to the range of mining algorithms, which is not discussed in this work as explained
in section 8.3.1.

8.3.3. Specific criteria for KDD software

Appendix C lists the criteria that were developed following the methodology described in
section 8.2. They are categorised into a number of areas. As section 8.2.2 explains, a crite-
rion consists of m boolean features (questions), but in principle the number (m) and the
exact grouping of questions for a criterion is flexible. Given all features, different group-
ings into criteria can be formed to reflect purpose-specific aspects. One may also choose
to leave out some features with low priority. Since priority is application-dependent, no
weights are given to features or criteria in this work, but the grouping of features into
criteria here is a recommendation based on experiences made during the implementation
of the model case. Further, this particular listing of criteria allows a quantitative, de-
tailed, yet clear comparison of KDD tools, as demonstrated in section 8.6. Finally, the
test case described in section 8.4 is designed to check exactly these criteria.

8.4. A test case to check all criteria

In this section a test case is provided that is as small as possible but still enables to check
all criteria from appendix C, given a KDD tool. The test case describes a small KDD
process. Its implementation is described step by step, with reference to every criterion
that is tested in each step. The case can be seen as a baseline scenario whose implemen-
tation should be possible in any KDD tool, but perhaps with varying difficulty. It can be
implemented in less than an hour, thus giving an effective method to objectively evalu-
ate a KDD tool in practice, under the criteria given here. It corresponds to a detailed
evaluation plan as explained in section 8.2.3. Since every step of the test case concerns
particular criteria which are given in the description below, some steps can be omitted
if the criteria tested there are known to be less important for the particular evaluation
purpose.

Appendix E (page 244) provides an SQL program that realises the test case, to give
a formal reference, while 8.2 shows a graphical overview of the case as realised with
MiningMart.

The order of steps in this test case is based on the data flow that is modelled, rather
than on the order of the criteria. An interesting alternative would be to order the test
case such that those criteria which appear to be most challenging are tested last. This
would render a single score for each tool that is evaluated, namely the point in the test
case at which it cannot support the tested functionality any longer. To capture the notion
of difficulty, or how challenging a criterion is, the number of tools evaluated in this work
that fulfil each criterion can be used for ordering the criteria. However, an implementation
of the test case that follows the data flow is easier to describe, understand and realise.

178

8.4. A test case to check all criteria

St

Coarreacty Compute Ratia

Fivotizse RevenuesBy Month oin ComputeDifferences

Figure 8.2.: Overview of the steps of the test case.

Table SalesData: Table EmployeeData:

EmplId | Month | Sales | Profit EmplId‘ EntryDate | Position
1 1 3 40.5 1 02-12-1988 Senior
1 2 2 22.8 2 01-06-1998 | Trainee
1 3 -1 10.0 3 01-01-1990 Senior
2 1 5 54.2
2 2 7 58.6
2 3 4 41.0
3 1 -1 10.0
3 2 2 38.1
3 3 4 44.3

Figure 8.3.: Input data for the test case.

The data

Figure 8.3 shows two small data sets which are the input to the test case. These data
sets can be easily provided as flat files, with any file format that is deemed relevant, or as
database tables. To test criterion 7, the data sets are imported into the tool (to test the
output facilities, they can be written from the tool to different files/tables as well). At
this point, already a number of other criteria can be checked. An obvious and important
criterion is whether the tool models the data explicitly, in a graphical way (criterion 24).
If the data sets can be displayed inside the tool, criterion 13 is fulfilled. Criterion 14 lists
recommended facilities for attribute import. Also it can be seen whether conceptual data
types are used in the tool (criterion 15), and if they are correctly recognised (criterion
16); for example, is the column EntryDate automatically given a correct technical and
conceptual data type (e.g. Date)? Can the data types be changed? Can automatic recog-
nition of types be deferred to a later point in time? The recognition of data characteristics
can also be tested (criterion 19).

A different approach is to test criterion 34 by attempting to set up data models (con-
cepts) without actually importing data.

179

8. Evaluating KDD Tools

Data preparation

After these preliminaries, the first processing step is a ROw SELECTION, applied to Sales-
Data. Its output concept contains only the rows with Sales < 5. Is the output explicitly
modelled, and clearly related to the input, as demanded by criterion 247 Are the data
characteristics of the output concept available without executing the operator, in partic-
ular, is the highest value of Sales adjusted to 5 (criterion 25)? Changing the selection
condition to Sales < 0 can be used to test criterion 35 (empty data set recognition) after
executing the operator.

The next operator corrects the values of Sales by replacing all occurrences of —1
(taken to be missing values or typos) with 0. The operator VALUE MAPPING should
be available, but if it is not, ATTRIBUTE DERIVATION can be used with an if-then-else
type of derivation formula. The values of the Sales attribute must be available in the
graphical user interface when specifying the parameters for VALUE MAPPING (criterion
20), preferably without having executed the previous operator (criterion 25).

The next operator discretises the Profit attribute of SalesData into two categorical
values. The operator DISCRETISATION (using a given number of intervals) should be
available; otherwise ATTRIBUTE DERIVATION must be used. Criterion 28 tests whether
the discretisation formula used by DISCRETISATION is accessible and changeable (after
execution of the operator). The two categorical values created by DISCRETISATION should
also be changeable: if yes, they are set to 0 and 1 now, if no, an extra VALUE MAPPING
step is inserted to do so. The technical and conceptual data types of the discretised result
must be created by the system (criterion 23).

The fourth operator computes the ratio of the higher of the two intervals formed in
the previous step. This is realised by AGGREGATION, where the Group By attribute is
EmplId, and the average function is used as aggregation function, applied to the discre-
tised attribute. This tests criterion 18 (robustness of type mapping), as the categorical
values 0 and 1 created in the previous step are used as real numbers here. If this us-
age (and thus the criterion) fails, criterion 17 can be tested by attempting to explicitly
convert the data type.

These four operators can be executed in the order given here, as each operator’s input
is produced by the previous operator. The four operators could be collected in a chunk,
testing criterion 38 (chunking support). There should be an option to view the data
collection that results from this chunk (criterion 31). Criteria 40, 41, 42, and 43 (the
execution-related criteria) can be tested by executing the four operators together. It can
be attempted to vary the place of processing (criterion 8, data handling). Further, the
caching-related criteria 9, 10, 11 and 12 can be tested, for example by checking whether
the result of the execution is still available afterwards (11, automatic caching), or by
trying to find out where the intermediate data was stored (12, caching transparency).

With this short chain, also the important criterion 27 about the propagation of con-
ceptual changes can be tested. To this end, the second step is deleted. Is the attribute
it creates (with the corrected values of the Sales attribute) automatically removed from
the input and output of the following steps? If the step is added again, does the attribute
show up in later steps automatically?

For further tests, a new short chain of operators is set up. The data from the Sales-
Data table contains monthly information about the sales and profit that every employee

180

8.5. Evaluated KDD software

achieved. This data is converted to single-row information about each employee by a
P1vOoTISATION application, where the index attribute is Month, the pivotisation attribute
is Profit, the aggregation operator is summation and the Group By attribute is EmplId
(compare the example in section A.3.2). If this operator is missing, three ATTRIBUTE
DERIVATIONs can be used, one for each month, followed by an AGGREGATION. By using
the ATTRIBUTE DERIVATIONS, criterion 45 can be tested, as the three derivations are
very similar. For example, in SQL, the three derivations would be (CASE WHEN Month=¢
THEN Profit ELSE O END), with ¢ ranging from 1 to 3, resulting in three new attributes
which would be aggregated using summation.

The result of the previous step is now joined with the result of the first chunk (chain),
using JOIN BY RELATIONSHIP (or a simple join), and testing criterion 22 (attribute
matching) when setting up this operator. The key for joining is of course the attribute
EmplId; can its key status be stated explicitly (criterion 15 about conceptual data types)?

To test criteria 32 and 33 about the support for and iteratability of ATTRIBUTE
DERIVATIONS, a final operator is added which computes the differences between the
profit achieved in the third month and those achieved in the first and second month.
The derivation formula should iterate over the two fields with the profit for the first and
second month. A further test of criterion 27 about the propagation of changes can be
done now, by deleting the pivotisation step(s). The formula for the difference in this last
step should then not be automatically deleted; instead, the last step (or its derivation
formula) should be clearly marked as invalid (criterion 26, checking wellformedness).

Criteria 44 about the transparency of export files, and 46 about the arrangement of
operator applications in a processing graph, can be checked using the whole test case.

Criterion 39 about the unrestricted structure of the preparation graph is missing so
far; it can be tested by applying two ROW SELECTIONSs to the same input concept, and
then applying UNION to the two results. If this is possible, it follows — together with the
above that the tool allows any directed acyclic graph.

Mining

Finally, the criteria related to mining and deployment, which are all boolean, can be
tested. No particular scenario is needed to test them; in most cases, the help system
or the manual will be sufficient to decide whether the criteria are fulfilled. This is also
true for some “static” criteria like 29, 30, 36, 37 or 54. For example, the availability
of cross validation or model export facilities in a tool will surely be reflected in the
documentation. The same is true for facilities to publish process models in a detailed
way, based on criterion 53. One criterion to be included in this phase is criterion 21
about attribute roles; it should be possible to declare for each attribute that is present
in the concept used as input for mining whether it is label or predictor, or whether it
should not take part in the mining.

8.5. Evaluated KDD software

This section briefly describes the KDD software packages that were evaluated in this
work. These tools were chosen according to their general strength in the conceptual

181

8. Evaluating KDD Tools

support of data processing, and they serve well to exemplify different aspects of many
criteria.

8.5.1. MiningMart

MiningMart! is introduced in chapters 6 and 7 as a graphical front-end to relational
databases that offers a broad range of KDD-oriented data preparation operators (Morik
& Scholz, 2004). It leaves all processing to the underlying database system by translating
the preparation graph to SQL commands. Such graphs, called Cases in MiningMart, can
be exported and uploaded to a central web repository (section 6.5), where they are
browsable and downloadable by anyone looking for example KDD applications. This
is the only tool encountered during this work that uses an explicit representation of
concepts and their links. Version 1.1 was used in this evaluation, which includes all
features described in chapters 6 and 7.

8.5.2. SPSS Clementine

Clementine? is a tool intended to support all phases of the KDD process. It includes
many data preparation facilities. It was used for this examination in the standalone
version, thus entirely file system based, but a client server version is also available that
can delegate some data processing tasks to the database server. Version 8.1 was used in
this work.

Clementine allows to use abstract data types and attribute roles when dealing with the
data to be prepared, but it does not use an explicit model of the data tables and how they
are linked, as MiningMart does based on chapter 3. Clementine has many preparation
operators, but like the other tools below, it lacks most of the operators that change the
organisation of the data (section A.3). Without these operators the application from
chapter 5, for one example, is inconvenient to realise.

8.5.3. Prudsys Preminer

Preminer, sold by Prudsys®, is a specialised tool for data preparation that belongs to
a family of products supporting the complete KDD process. Its architecture is different
from the preceding two tools in that it uses an extra data server for intermediate storage
of data. This enables the user to process data from heterogeneous sources using the same
front end. For example, a data set from a text file can be joined with a database table (if
the keys match). The evaluation in this work was based on Version 1.3. For evaluating
the mining facilities the Discoverer module version 3.2 was used.

8.5.4. IBM Intelligent Miner

Intelligent Miner by IBM* is a group of products to cover data preparation, mining and
deployment based on IBM’s DB2 database. The graphical front-end is the Intelligent

"http://mmart.cs.uni-dortmund.de
Zhttp://wuw.spss.com/clementine
*http://www.prudsys.com
*http://www.ibm.com/software/data/iminer

182

8.6. Evaluation results

Miner for Data, whose version 8.1 was used for the evaluation in this work. While both
flat file data and database tables can be input to mining, the data preparation operators
can only be applied to database tables, as they are realised by SQL views, in a way
similar to MiningMart (8.5.1). Also, learned models are available as DB2 procedures,
which leverages their deployment on large data sets.

8.5.5. SAS Enterprise Miner

The Enterprise Miner is one of several analysis modules available in the SAS system?®.
The SAS environment is a powerful workbench for many aspects of data analysis. It offers
client-server processing distribution as well as data warehousing support. The Enterprise
Miner provides several mining algorithms and many data inspection facilities, though the
latter can be complemented by other SAS modules. The Enterprise Miner includes some
data preparation functionality, but its focus is on the mining step and on visualisations
of data sets and mining results. Therefore it lacks many of the essential operators. They
can be replaced by integrating small programs in the internal SAS language. However,
as explained in section 8.2.1, such programming constructs do not support conceptual,
high-level work, and the functionality they may offer is not seen as fulfilling any criterion.
Version 4.3 of the Enterprise Miner was used in this evaluation.

8.5.6. NCR Teradata Warehouse Miner

The Warehouse MinerS by Teradata, a division of NCR, is a tool specifically developed
to support mining Teradata databases. Apart from an ODBC interface, it can only be
used on Teradata databases, from a Windows client. It leaves as much data processing as
possible to the underlying database, issuing automatically created SQL statements in a
way similar to MiningMart and the Intelligent Miner. It offers a number of operators for
processing, but also relies heavily on SQL programming for some of the more complex
operators (in which it resembles the Enterprise Miner by SAS). It does not use an explicit
data model, nor does it display the data flow in a graph. Version 3.2 was used in this
evaluation.

8.6. Evaluation results

This section provides the evaluation of the tools described in 8.5 under the criteria from
appendix C. As explained in section 8.2.2, the list of criteria is amenable to several
methods of scoring and weighting. In the evaluation in this section, each tool receives
the score (measure) 0 < n/m < 1, where m > 0 is the number of boolean features that
make up a criterion, and 0 < n < m is the number of these features that the tools
fulfils. Thus the m boolean features of a criterion are not weighted (prioritised) here, as
a weighting would be very dependent on the intended application and environment for
the KDD tools. Similarly, no weighting of the criteria themselves is used here.

"http://www.sas.com
Shttp://www.teradata.com

183

8. Evaluating KDD Tools

No Name m | MM | Clem. | Prem. | IBM | SAS | NCR
1 | Data access 17 1 0.65 | 0.71 0.53 0.59 | 0.59 | 0.53
2 | Data modelling 31109 0.81 0.39 0.58 | 0.61 | 0.32
3 | Preparation process 65| 0.75 | 0.49 0.46 0.32 | 043 | 0.26
4 | Learning Control+Deployment 6083 0.5 0.33 0.67 | 0.5 0.33
5 | KDD standards 410.25 | 0.75 0.5 0.25 | 0.25 | 0.25
All features 123 | 0.76 | 0.61 0.45 0.44 | 0.5 0.32

Table 8.1.: A different representation of the data in table 8.2, using a coarser grouping
of the 123 boolean features into criteria.

Table 8.2 on page 185 contains the scores for each criterion based on the list of criteria
from appendix C. Table 8.1 provides scores which are computed based on the same
list of 123 boolean features, but a different grouping into criteria, namely into fewer
criteria using higher values of m. As section 8.2.2 explains, these alternative scores are a
different representation of the same data that may be more suitable for certain audiences,
for example for decision makers. The criteria in table 8.1 use the grouping into overview
criteria that is indicated by section headlines in appendix C, and by horizontal lines in
table 8.2.

A further table (table 8.3 on page 186) contains a detailed list of the preparation
operators listed in appendix A that are available in each tool. To illustrate the effect of the
availability of powerful operators, note that the test case described in section 8.4 required

without mining 7 operator applications in MiningMart and the Teradata Warehouse
Miner, 11 in Clementine, and 9 in Preminer and Intelligent Miner, respectively. In SAS
Enterprise Miner the test case was only partially implemented, as this tool lacks the join
operator.

8.7. Summary

This chapter has found a methodology for the comparison of software products that
is suitable for judging the extent to which a tool supports the conceptual level of an
application domain. The restriction to the conceptual level is done by taking only func-
tionality into account that is based on notions that are explicitly represented in the user
interface. This idea is part of the comparison methodology developed in section 8.2. A
main aspect of the methodology is that it renders metrics that are adaptable to different
evaluators or purposes. The methodology has been applied to the major current KDD
software packages that support data preparation. A detailed criteria list, presented in
appendix C, is one result. Section 8.4 shows how such criteria can be assembled into a
tight evaluation plan by providing a small test application, here a small KDD process.
The scores that the compared KDD tools receive under “neutral” (non-weighting) metrics
are given as another result, in section 8.6. While they serve mainly as an exemplification
of the methodology, they also indicate the different levels of maturity that the compared
tools have achieved, as far as support of the conceptual level is concerned.

184

No Name m | MM | Clem. | Prem. | IBM | SAS | NCR
7 | Data formats 61033 |0.83 0.5 0.5 0.66 | 0.33
8 | Data processing 31033 1.0 0.66 0.66 | 0.66 | 0.33
9 | Caching control 2|10 1.0 0.5 1.0 0 1.0

10 | Caching size estimation 1110 |0 0 0 0 0

11 | Automatic caching 2110 [0 0 0.5 0.5 | 0.5

12 | Caching transparency 2110 |05 1.0 1.0 1.0 1.0

13 | Data inspection 111.0 1.0 1.0 0 1.0 1.0

14 | Attribute import 31 0.66 | 0.66 0.66 0.33 | 0.33 | 0.33

15 | Conceptual data types 111.0 1.0 0 1.0 1.0 0

16 | Type recognition 51 0.8 1.0 0.4 0.8 0.8 0.2

17 | Flexibility of type mapping 311.0 1.0 0 0.66 | 1.0 0

18 | Robustness of type mapping 111.0 1.0 1.0 1.0 0 1.0

19 | Data char. recognition 6 1.0 | 0.66 0 0.66 | 0.66 | 0.33

20 | Data char. deployment 1] 1.0 1.0 1.0 0 1.0 0

21 | Attribute roles 41075 | 1.0 0.75 0.75 | 0.75 | 1.0

22 | Attribute matching 2 (1.0 1.0 1.0 0.5 0 0.5

23 | Data type inference 2 (1.0 1.0 0.5 0.5 1.0 0

24 | Abstract data model 2110 |0 0 0 0 0

25 | Characteristics estimation 111.0 0 0 0 0 0

26 | Syntactic validity checks 41075 105 0.75 0 0.25 | 0.25

27 | Propagation of changes 51 1.0 1.0 1.0 0.2 0.8 0.2

28 | Operator transparency 2105 0 0 0 1.0 0.5

29 | Availability of operators 19 | 0.95 | 0.58 0.42 0.53 | 0.37 | 0.47

30 | Assign operators to prep. tasks | 1| 1.0 0 0 0 0 0

31 | Intermediate views on data 1110 |0 0 0 0 0

32 | Attribute derivation support 210 1.0 1.0 0.5 0.5 0

33 | Iteration attribute derivation 310 0.33 0 0 0 0

34 | Independence from data 1] 1.0 1.0 0 0 0 0

35 | Empty data sets recognition 111.0 0 0 0 1.0 0

36 | Representation of data flow 111.0 1.0 1.0 0 1.0 0

37 | Pseudo-parallel processing 111.0 0 0 0 0 0

38 | Support for chunking 21 1.0 0.5 0 1.0 1.0 0

39 | Graph structure 111.0 1.0 0 1.0 1.0 1.0

40 | Execution transparency 71071]0.14 0.43 0.29 | 043 | 0.14

41 | Execution automation 310 0.33 0.66 0 0 0

42 | Execution administration 71071 |0.29 0.43 0.29 | 057 | 0

43 | Execution in background 1]1.0 1.0 1.0 1.0 0 1.0

44 | Export transparency 111.0 0 1.0 0 1.0 1.0

45 | Editing flexibility 110 1.0 0 1.0 0 1.0

46 | Visual graph arrangement 1]1.0 1.0 1.0 0 0 0

47 | Splitting training and test set 1110 |1.0 1.0 1.0 1.0 1.0

48 | Model evaluation 111.0 1.0 1.0 1.0 1.0 1.0

49 | Mining subprocess support 110 0 0 0 0 0

50 | Export of models 111.0 1.0 0 1.0 1.0 0

51 | Deployment in databases 111.0 0 0 1.0 0 0

52 | Post-processing 1110 |0 0 0 0 0

53 | Published meta model 1110 |0 0 0 0 0

54 | CRISP support 1]0 1.0 0 0 0 0

55 | PMML support 210 1.0 1.0 0.5 0.5 | 0.5

Table 8.2.: Evaluation table. m = 1 indicates boolean criteria.

8. Evaluating KDD Tools

| Operator | MM | Clem. | Prem. | IBM | SAS | NCR |
Attribute selection
Manual selection Yes Yes Yes Yes | Yes
— Automatic selection Yes Yes
Row selection Yes Yes Yes Yes
Sampling Yes Yes Yes Yes | Yes | Yes
Aggregation Yes Yes Yes Yes
Discretisation
— fixed no of intervals Yes Yes Yes | Yes | Yes
- fixed width Yes Yes Yes
fixed cardinality Yes Yes Yes
Scaling Yes Yes
Value mapping Yes Yes Yes Yes Yes
Attribute derivation
String processing Yes Yes Yes Yes
— Numeric arithmetics Yes Yes Yes Yes | Yes | Yes
Date/time arithmetics Yes Yes Yes Yes | Yes | Yes
— Model application Yes Yes Yes Yes | Yes | Yes
Join Yes Yes Yes Yes Yes
Join by relationship Yes
Aggregate by relationship | Yes
Union Yes Yes Yes
Missing value replacement
— By default value Yes Yes Yes | Yes
By average or median Yes Yes Yes
— By learned function Yes Yes
Filtering outliers Yes
Dichotomisation Yes Yes Yes
Pivotisation
normal Yes Yes
- n-fold Yes
Reverse pivotisation Yes Yes
Windowing Yes
Segmentation
By value Yes
Randomly Yes Yes
— By learned clusters Yes
Unsegmentation Yes

Table 8.3.: Availability of preparation operators from appendix A for each KDD tool. No
entry — not available.

186

9. Conclusions

This chapter summarises this thesis and points out its contributions to the state of the
art (section 9.1), before discussing some ideas for future work (section 9.2).

9.1. Summary of contributions

Easing user efforts in the development and reuse of data preparation for KDD has been
given as the overall goal of this work in section 1.2. Chapters 3 to 8 have contributed
both theoretical and practical steps towards this goal, which will be summarised below.
Almost all the contributions are centred on, or enabled by, the conceptual level that
has been described for KDD applications in this work. The MiningMart environment
provides the means to create, manipulate, exchange, and reuse KDD application models
by using a metamodel designed to support the conceptual level.

The following paragraphs clarify the particular contributions of the author of this
thesis, and point out the corresponding chapters of this work.

A data model for KDD

This work has defined an adequate way of conceptual data modelling for the area of
knowledge discovery. This idea is a rather natural one in view of the many data-centred
tasks during data preparation. It helps users in organising the mining process in domain-
related terms. It goes back to the common knowledge representation language (CKRL) of
the machine learning toolbox MLT (Morik et al., 1991), but today, abstract data models
are still not used in KDD software, except in MiningMart. The data model in MiningMart
is based on the work by Morik et al. (2001), and was refined by the author of this work
in order to create an alternative, dual view on the KDD process (see below).

For the present work, the requirements for a conceptual data model to be useful
for KDD have been analysed (section 3.2.1), and have led to the choice of the entity-
relationship model as the basic model. This choice represents a balance between usability,
which demands a clear and simple abstract data view, and the flexibility to model im-
portant semantic aspects explicitly. Another important requirement for the model was to
allow to structure the intermediate data representations, since rather a lot of them are
created during a typical preparation process, and it has been argued that they are useful
artifacts of this process. This requirement motivated the use of two particular types of
generalisation, namely specialisation and separation (section 3.2.1), because many prepa-
ration operators produce these links between their input and output, so that a web of
(representations of) data sets emerges whose links reflect how the data sets are created
from each other.

The author has implemented all functionality related to this data model in the Min-
ingMart system. In particular, this involves creating concepts (data representations) and

187

9. Conclusions

the semantic links between them automatically as soon as the operator that will create
the data is instantiated (section 7.1.1). This allows to switch to the data view at any
time.

In order to allow the convenient use of the conceptual data models, a propagation
algorithm has been designed to support the automatic adaption of dependent elements
of the above-mentioned web whenever a data representation is edited, for example to
reuse it on new data (section 7.1.2); a schema matching algorithm has been designed to
connect an abstract data model to concrete data sets (section 7.1.4); and the estimation
of data characteristics in the absence of actual data has been provided (section 7.1.3).
These technical contributions support re-using KDD process models, which has been an
important motivation for this work, as discussed in chapters 1 and 6.

Section 3.2.1 has also considered the idea of using more expressive ontology formalisms
for conceptual data modelling. It was waived in favour of a meta model that would render
clearer overviews of the web of data sets (compare figure 5.10 on page 88). However, more
powerful formalisms have other advantages. This is discussed further in section 9.2.

Preparation operators for KDD

This work has specified a range of important preparation operators for knowledge discov-
ery. The list includes all operators that have been used in the literature or in any KDD
software. This work has identified five major high-level preparation tasks (section 2.1.3)
and has associated each operator to one of them.

This list of preparation operators can serve as a reference standard for data preparation
in KDD, and forms a major component of the conceptual level. Using the conceptual data
model in the specifications of the operators allows to set up syntactically valid chains of
data transformations; the validity checks reduce the number of test cycles needed during
development. These validity checks are based on explicit pre- and postconditions of the
operators. The operator specifications also allow the estimation of data characteristics of
an operator’s output before it has actually been computed. Here the present work has
contributed ways of estimating not only the data size, as in previous work, but also other
characteristics (compare section 3.3.3).

Dual views on the KDD process

The conceptual data model and the list of operators have been designed such that two
views on the KDD preparation process arise, both of which provide the information
about the structure of the process, but from different angles. Each view puts the focus
on different types of additional information; one is data-centred, the other is based on the
chains of operators. Changes to one view can be made visible immediately in the other.
The MiningMart system currently offers complementary functionality in both views, but
there is no principle that prohibits extending the options in each view such that complete
control of the process can be offered in either of the views.

A single view with both types of information can be imagined, but would probably be
graphically overloaded in complex applications; nevertheless, this idea has some advan-
tages and is therefore discussed in section 9.2.

188

9.1. Summary of contributions

MiningMart

The MiningMart framework and system have been developed by a team of which the
author of this thesis is a member. The contributions of this author include the develop-
ment and implementation of all aspects related to the conceptual data model, see above.
MiningMart is thus now the first system that supports the dual views. Several impor-
tant operators have also been implemented by this author, the more interesting of which
are described in section 7.2. In particular, the automatic translation of the results of
mining algorithms into stored procedures for databases has been realised exemplarily for
one complex mining algorithm (section 7.2.5). The current version of MiningMart’s web
repository of KDD models, and its indexes for case retrieval, are also the work of this
author, see below. All in all, roughly 40% of the MiningMart code, as measured in lines
of code, have been implemented by this author.

The MiningMart compiler creates database views that represent the output of oper-
ators; it has been developed by Martin Scholz (Scholz, 2007). It is complemented by
a materialisation strategy developed by the author of the present work, which speeds
up the execution of longer processes significantly, as shown by experiments described in
section 7.3. This is important for handling large data sets.

Contributing towards the aim of reducing development time, especially on large data
sets, some measures have been suggested, and implemented in MiningMart, which sup-
port developing at least parts of a preparation process using only the conceptual level,
without requiring its immediate execution. Syntactic validity checks are possible because
the conceptual data model includes data type information, and because output repre-
sentations are immediately constructed when an operator is specified, as described in
section 7.1.1. The validity checks themselves are based on declarative constraints, most
of which have been developed by Martin Scholz. Also, online computation of estimated
data characteristics (section 7.1.3), solely the work of the author of this thesis and in-
dependent of data processing, supports the independence of modelling from execution,
by providing orientation as to the results of the path of preparation a user is currently
working on. Further, the estimations are useful for the instantiation of operators whose
output data schema depends on input data characteristics, see section 7.2.2.

Generally, MiningMart represents a general and advanced method of supporting KDD
developers, especially during data preparation. Several ways in which MiningMart ex-
tends the state of the art can be identified:

e No other KDD tool today uses a two-level data model, with semantic links between
intermediate data representations, to organise the data preparation. Thus no other
tool uses dual views on a preparation process, either.

e No web portal for the exchange of KDD solutions had existed before the one for
MiningMart was created (see below).

e MiningMart is the only KDD tool that is based on a public, freely available meta
model. Other tools use proprietary, intransparent formats.

e MiningMart is currently the most suitable environment for the specification and
reuse of general patterns among successful preparation processes, which can be
formalised as templates. See below.

189

9. Conclusions

e No other KDD software offers the kind of pseudo-parallel processing that is available
in MiningMart, whose usefulness is demonstrated by the example application from
section 1.1.1.

e MiningMart offers the most comprehensive list of preparation operators found in
any KDD software.

e No other KDD tool today includes specific measures for supporting the reuse of
KDD process models, such as mapping a given data model to new data.

An evaluation of MiningMart has been done by a third party, a service providing com-
pany for telecommunications, who performed one of their large data mining applications
by SQL programming, and then again using MiningMart (Richeldi & Perrucci, 2002b).
The authors report that developing their application took 12 days of SQL program-
ming, but only 2.5 days of modelling in MiningMart, for staff who was not familiar with
MiningMart. The results in terms of the discovered knowledge are the same. Additional
operators that can solve some of the tasks involved in this study more directly have been
added to MiningMart after the study was completed, so that the development time for
such applications can be expected to be even lower now. This is clear evidence support-
ing the claim that the goal of supporting human users during data preparation has been
achieved.

A reusable model of a real-world application

This thesis includes the first detailed documentation of a complex data preparation pro-
cess, modelled after two real-world knowledge discovery applications (chapter 5). An
annotated, operational model of this process is available in the MiningMart web reposi-
tory. Thus its technical details are easy to study for anyone. The model demonstrates the
two dual views, as well as the difference between a conceptual-level model and a technical
realisation in a formal language in terms of usability, maintainability and reusability.

Templates for data preparation

This thesis has argued that preparation processes from different KDD applications can
have common substructures (see sections 6.5.1 and 6.6.2) which are used to solve similar
or identical subproblems. Several such subproblems have been identified by the author
of this work, and solutions for them have been created with MiningMart, have been
documented and annotated comprehensively, and published as “templates” in the web
repository (section 6.5.3). Some of the templates are based on previous (informal) work
by other authors, but most were contributed by this author. The result is the first public
collection of directly usable data preparation solutions, which is both a useful library for
experts, saving the work to re-implement these solutions, and a helpful tutorial for less
experienced analysts.

This work is also the first to suggest the automatic discovery of preparation subprob-
lems that have been solved several times in a similar way. The basis for the proposed
method that can achieve this goal is a collection of KDD applications modelled in the

190

9.1. Summary of contributions

same framework. While this work has created the infrastructure to get such a collec-
tion (the case base, see below), there are not enough application models available yet.
Therefore, a frequent subgraph discovery algorithm tailored for this context has been de-
veloped and proposed in section 6.5.4, but has not been implemented yet. The algorithm
can work on the level of operators, or on the more abstract level of operator groups,
effectively using different similarity measures for defining the similarity of subsolutions.

Providing templates, whether automatically discovered or manually contributed, has
been compared to providing design patterns in software engineering in section 1.1.1.
An important difference is that the MiningMart templates are operational, so they can
be applied to new problems and executed in the MiningMart system directly, whereas
design patterns need to be translated to new problems by human experts, in a complex
and error-prone process.

The case base

MiningMart has provided the first public infrastructure for the documentation and ex-
change of KDD application models, the web repository of KDD cases, or case base. These
models can be closely inspected, in all technical details, using an ordinary web browser,
without having to download them or having to install MiningMart (see section 6.5). The
idea is that HTML pages represent elements of the conceptual level, such as concepts,
attributes, or steps, and links between the pages represent how these elements are re-
lated. Creating such HTML files offline for a KDD model is a MiningMart functionality
provided by this author, replacing an online version by Stefan Haustein. Only the direct
reuse of the application models requires the MiningMart system. This work has discussed
a number of ways to support users when searching for a suitable application model to
reuse on their own problem (section 6.5.5). The most important means to this end is
the documentation of each application with background information, organised into five
topics. This information can be searched using any internet search engine.

In section 6.6, the tasks involved in reusing a KDD application have been analysed in
more detail. It was noted that the deletion and addition of some elements from/to the
conceptual model are central tasks because they affect not only the element where they
are performed, but many dependent elements. For example, when an attribute is removed
from a concept, it has to be removed as well from any copy of this concept created by
operators anywhere in the process. The propagation algorithm for changes to a concept,
already mentioned above and presented in section 7.1.2, thus provides important support
for the reuse of KDD models.

For reusing a KDD application, its data representations have to be matched to the
actual new data sets. This work has argued that not only the data sets that the orig-
inal application used as input, but also any intermediate data view, are candidates for
matching. The intermediate data view of a step is the view on the data created by the
path up to and including that step. An algorithm for computing this view, given a step,
has been presented in section 7.1.4. The same section includes a schema matching al-
gorithm developed by this author, which finds the most similar candidate for matching
and makes suggestions for mapping it to the new data sets. Thus the algorithm finds the
best “entry point” for reusing an application model, based on syntactic and structural
information. Any such mapping can be automatically created in MiningMart, but can

191

9. Conclusions

also be manually edited. Finding such mappings automatically is only useful when the
data sets come from a similar application domain. Where only the ways of preparation
are similar, the mapping has to be provided by a KDD expert.

Software product evaluation

This work has presented the first adaptable methodology for finding and evaluating
objective criteria for software product evaluation (section 8.2). Previous work in this
area has not used systematic ways of finding the criteria for comparison, nor metrics
which are adaptable to different audiences or purposes. The methodology uses empirical
“technology deltas” for finding criteria; further criteria may be found by analysis of the
functional requirements of the domain. Detailed boolean features are collected into crite-
ria, where the average number of features in a criterion determines the granularity of the
evaluation. Different granularities are useful for different audiences. The n-of-m-metric
has been introduced as an objective way of scoring, which can integrate any scheme of
weighting /prioritising the criteria.

This methodology is independent of the KDD domain, but has been applied to get
the first objective, in-depth comparison of KDD software packages that support data
preparation. More than 50 criteria have been identified (see section 8.3). A test case that
allows to evaluate these criteria quickly has been designed, see section 8.4; it corresponds
to an evaluation plan, which helps to make further evaluations easier and more objective.
The results of the comparison of six KDD tools are given on two different levels of
granularity in section 8.6. The purpose of this evaluation was not to find a “best” tool,
since the suitability of a tool depends on the purposes for which it is used; this suitability
can be evaluated by applying corresponding weighting schemes to the scores in table 8.2
(page 185), putting more weight on those criteria that support the desired purpose.
Instead, the evaluation has been presented as an example for the strength of the general
methodology.

9.2. Future work

In this section some possibilities for extending the research presented in this thesis are
discussed. Keeping in mind that successful knowledge discovery can, at present, not be
fully automated, since much human intuition is needed, the goal of this thesis will remain
relevant in the near future, namely to support humans during development and reuse of
KDD application models. Although this thesis has achieved much progress towards this
goal, some alternative approaches are possible and should be examined, and developments
beyond what has been reached in this work should be pursued.

The most interesting opportunity, in the eyes of this author, is offered by integrating
approaches that model an application domain with the help of rich ontology formalisms,
with knowledge discovery. This idea is examined in section 9.2.2. But before that, some
extensions to the MiningMart framework are discussed which assume that the present
conceptual data model remains.

192

9.2. Future work

9.2.1. MiningMart extensions

A prominent feature in the current MiningMart framework is that it provides the two dual
views on the KDD process, the web of concepts and the graph of operator applications.
It is a natural idea to integrate these two views into one. The integrated view would still
present a directed acyclic graph, but a bipartite one, with two different types of nodes,
one for concepts and one for steps (operator applications). An edge in this graph would
never connect two steps or two concepts, but only go from concepts to a step, indicating
the inputs for the step, and from a step to one concept which represents the output data of
the step. An immediate consequence of this requirement is that the MiningMart option of
allowing operators to add only an attribute to a concept, without creating an own output
concept, should be dispensed with, otherwise the effects of such an operator would be
difficult to visualise. This design would make a few technical issues, like the propagation
of changes to a concept to dependent concepts, easier to realise. But would it offer a
clearer view of the process to the user? One the one hand, all information is available in
a single view; currently MiningMart sometimes enforces inconvenient switches between
the two views. On the other hand, an integrated view can quickly become graphically
cluttered. But there is a remedy for this, which is to make extensive use of chunking as
discussed in section 4.4. The contents of small chunks will remain clear to the user. So this
integration of the two views is an interesting option for KDD tools. Since in MiningMart
it would require to change many internal modules, this is left for future work.

An interesting recent development in the area of data transformations is the design of
formal languages that integrate metadata and data, like SchemaSQL and FIRA | discussed
in section 4.1.1. These languages natively include operators like PIVOTISATION, which
may change the status of metadata to data or back. Some theoretical work in this area
remains to be done; for example, the notion of transformational completeness is not yet a
mature or precisely defined concept. But, taking FIRA as the more advanced example, its
set of operators is small and well-defined, so it could also be used as the main component
of the process model, instead of the operators suggested in this thesis. This is a promising
option. There is a danger of confusing the user, however, because metadata and data are
not well separated in the FIRA framework. In the framework of this thesis, metadata is
a main component of the conceptual level while the data sets are located at the technical
level, a separation that has been defended extensively in this work. While the smooth
handling of operators like PIVOTISATION requires some additional efforts, nonetheless the
separation of the two levels can be kept up almost everywhere during the development
of a KDD application, as this work has shown. It remains to be examined how a similar
degree of conceptual user support and reusability can be achieved using a framework like
FIRA.

If FIRA implementations were widely available, they could be used at the technical
level for data processing; they could realise the operators from this work without conflict.

A simpler extension at the technical level would be to allow the processing of flat file
data (in tabular format), in addition to the processing inside a relational database. This
would confirm the advantages of introducing a separate conceptual level. However, it
seems simpler to include an operator that loads flat file data into the database, then
perform the processing as before and write the results back into a flat file. In this way
the virtual data representations offered by database views can be kept.

193

9. Conclusions

From an engineering point of view, reconsidering the way some of the declarative
knowledge about operator applicability constraints is stored in M4, MiningMart’s meta
model, could offer some advantages. Currently the constraints that link the input and
output data representations of an operator (see table 7.1 on page 162) are specifically
designed for their respective purposes, which gives some of them an unintuitive meaning.
One might be tempted to use a general-purpose formal language here, which would allow
to formulate the constraints directly. This would remove the need for a system to interpret
them (see also below, section 9.2.2). Another advantage would be that the constraints
are directly readable, and unambiguous, where they are declared (assuming the reader is
familiar with the language used). A disadvantage is that more complex constraints could
introduce errors, simply by misdesign or by complex interactions with other operators
(since the output of one operator is the input of another). The current constraints ensure
at least that those who use them to specify an operator do not introduce inadequate side
effects.

Regarding the case base, some interesting approaches can be realised as soon as more
models of successful KDD applications have been collected in it. Experience has shown
that research can benefit greatly from publicly available collections of algorithms, or
benchmark data sets, or similar infrastructures. Besides offering an open modelling stan-
dard for KDD, a richer case base can be examined for frequently occurring subproblems,
and can be used for collaborative work and for education purposes. It will be interesting
to see results of applying the frequent subgraph discovery algorithm that has been pro-
posed in this thesis. One might also be able to develop larger blueprints, for specialised
application domains like telecommunications or banking, than are given by the current
templates, based on collected experiences from such a domain.

The explicitly modelled conceptual level also allows to explore the options of dis-
tributed computing for KDD, or grid-based data processing. This would require more
complex solutions at the technical level, but it should be possible to use the conceptual
level without any changes. Distributed computing requires to model an application in-
dependent of where and when it is executed, exactly what this work enables for KDD.
Current research efforts in this area (see section 6.1.2) should thus be able to benefit
from the conceptual analyses contributed by this thesis.

9.2.2. Using ontologies in the knowledge discovery process

Concerning a conceptual model of the data and the data schemas to be used in a KDD
application, this work has proposed to use a clear and not too sophisticated conceptual
data model, the ER model from section 3.2.2. It only models metadata, allowing a rather
strict separation from the actual data. This strict separation is violated by only a few
operators which transform data to metadata or the other way round. In this work this
separation has been defended extensively, in order to ease reusability, which is a prereg-
uisite for the case-based approach described in chapter 6. The ER-based meta model has
enabled a clear and legible view on the complex graph of data set representations created
in a typical KDD application.

A price for using this rather understandable model is that formal reasoning based on
it had to be defined and implemented separately. This reasoning concerns the “signature”
of output concepts (their attributes and conceptual data types), in order to get valid

194

9.2. Future work

operator chains, and characteristics of the data these concepts represent.

One promising direction for future research is to use description logics (Baader et al.,
2003) for conceptual data modelling, because this formalism allows reasoning directly, so
that existing implementations of reasoners could be employed. Descriptions logics are a
family of modern, powerful, logic-based knowledge representation formalisms (ontology
formalisms) which allow reasoning. A description logic language corresponds to some
fragment of first-order predicate logic, but uses a more concise syntax. Description logics
have already been used for conceptual data modelling, including the abstract modelling
of relational databases, so that one can build on existing research, see (Borgida et al.,
2003).

Using description logics can allow additional reasoning beyond the tasks mentioned
above. For example, inconsistencies in a data model that lead to a concept whose ex-
tension must always be empty can be recognised automatically. Such a case could be
introduced, in a data preparation context, by a join over key attributes known to be
disjunct, for example. In general, however, to support such reasoning, the data must
be modelled to more detail, yielding more complex conceptual views. Suitable graphical
representations would have to be developed.

A good example for this, and in general for the opportunities that description logics
may offer for data preparation, is the work by Franconi and Ng (2000). These authors
present a tool that supports the integration of a number of information systems, using
description logics-based conceptual models of their data schemas. The relationship be-
tween data integration and data preparation has been discussed in section 4.1.1. The tool
can express connections between different schemas with inclusion dependencies, which
are native elements of the employed description logic language, and whose semantics are
similar to those of the separation links used in the present work. Thus the tool can be
used to create a global, integrated data schema and show its dependencies on the source
schemas.

But for this section another aspect of the tool is more interesting. It includes an ex-
tended data model, described in (Franconi & Sattler, 1999), that can be used to model
dimensions of aggregation functions. For example, to compute the average length of
phone calls for different types of calls (e.g. calls to mobiles, internet providers, free call
numbers etc.), the dimension type of call is explicitly modelled by including the different
types as elements into the conceptual data model. This allows to explicitly represent an
aggregated view in terms of what it aggregates (linking the element that represents the
aggregation with the elements that represent the types of calls, for example). Interest-
ingly, the authors have first defined the conceptual model as an extension of the ER
model, adding elements representing dimensions to those representing entity types and
relationships, and have then defined a translation into a description logic language. The
ER model serves the graphical representation while the logic is used for inferences in
the background. Franconi and Ng (2000) describe an example for reasoning, in which a
certain aggregation is concluded to be necessarily empty because it involves aggregation
over non-occurring value combinations. Translated to data preparation, this means that
an interesting property of the output of a preparation operator could be inferred without
executing the operator. The same inference would be possible in the framework of the
present work, under certain circumstances, based on the data characteristics, but this

195

9. Conclusions

particular check for emptiness of the output has not been examined in this work while it
comes for free with description logic reasoners. Emptiness of output is also an issue for
the JoIN and ROwW SELECTION operators. The price is that the ER model, which pro-
vides the user interface, is more complicated, and seems to lead to very complex graphs if
extended to a complete KDD process. Allowing other types of inference for other prepa-
ration operators requires even more explicitly modelled aspects of the data. Nevertheless,
this is an interesting direction for future research if the clarity of the visualisation can
be kept.

Using ontological formalisms in KDD might be even more worthwhile if more data
mining algorithms were able to directly exploit structures in their input data. However,
currently almost all algorithms are applied to “flat”, tabular inputs. For example, gen-
eralised association rule mining is used for finding sets of items that are frequent in a
given database, when the items are ordered by a taxonomy; nevertheless the algorithm
is applied to input in which the taxonomy structure is flattened, by simply adding all
parent items to each item set in the database (Srikant & Agrawal, 1995). Even the re-
cent approaches for learning in structured output spaces (Tsochantaridis et al., 2005)
employ a flattened, vector-based “joint feature representation”. Thus, exploiting ontolog-
ical structures is currently more an issue for data preparation than for mining, and has
therefore been discussed above. Future work on mining algorithms might bring up ideas
to incorporate taxonomies etc. directly into the algorithm, which could stimulate more
research on using ontologies in all phases of the KDD process.

196

Appendix A: Preparation operators

This appendix lists all data preparation operators. Their choice and the schema of de-
scription is discussed in section 4.2. They are organised into sections (groups) according
to the high-level preparation tasks identified in section 2.1.3.

A.1. Data reduction operators

A.1.1. Attribute selection

Description This operator creates an output concept which is a copy of the input
concept, but has some attributes removed. Two versions of this operator are considered,
depending on how the selection of attributes to be removed is done. In the first version
the user simply specifies a list of attributes to be removed (or to be retained). In this
version the shape of the output concept does not depend on the input data. However, for
advanced applications, automatic attribute selection is needed, using redundancy criteria
with respect to the input data, or the performance of a mining algorithm on different
attribute sets. So in this version the selection of attributes to be removed may depend on
the data. No restrictions on the algorithms for automatic attribute selection are imposed.

Relevance to mining Manual selection of attributes can remove information that is
obviously useless for finding patterns in the data, such as telephone numbers. Automatic
selection can be used for the same purpose when the usefulness of attributes is difficult to
judge for humans (Liu & Motoda, 1998). Fewer attributes for learning enable the learning
algorithm to find the relevant patterns faster.

Input and output The input is any concept C' with at least two attributes, |attr(C)| =
2. The output is a concept C’ of which the input concept is a specialisation: attr(C’) c
attr(C) so that C' <, C".

Parameters The input concept, and the list of attributes to be removed, or the method
how to select such attributes automatically (see below). Another variant of this operator
receives the list of attributes to be retained, rather than removed.

Constraints The input concept must have at least two attributes.
Conditions None.

Assertions The data types and roles of the selected attributes are copied from the
corresponding input attributes.

197

Appendix A: Preparation operators

Estimates The characteristics of the selected attributes are unchanged.

Special options

e Removal of attributes according to criteria which are computable from the at-
tribute’s values, such as ratio of missing values.

e Automatic attribute selection according to criteria such as correlation of attributes,
or information gain with respect to a given class attribute.

e Automatic attribute selection by training and evaluating a mining algorithm on
different attribute sets; various search methods among the attribute sets (Liu &
Motoda, 1998).

Application example Removal of the birthday attribute after a derived age attribute
is computed.

A.1.2. Row selection

Description This operator creates an output concept which is a copy of the input
concept, but has certain entities removed from its instance. It is sufficient if the operator
can select entities according to the values of a binary attribute in the input concept; then
arbitrary selections are possible by deriving this binary attribute first, using the operator
ATTRIBUTE DERIVATION (A.5.4). However it may be more convenient to allow arbitrary
selection formulas for this operator directly.

Relevance to mining The operator can be used to select subgroups of the data for
particular analysis or preparation.

Input and output The input is any concept C. The output is a concept C’ that is a
separation of the input concept: attr(C) = attr(C’) and C’ <4 C.

Parameters The input concept and a selection criterion.

Constraints None.

Conditions None.

Assertions The data types and roles of the output attributes are copied from the input
attributes.

198

A.1. Data reduction operators

Estimates Refer to section 3.3.3 for a general discussion of how histograms (the value
distribution statistics) can be used to estimate the output size of the selection operator.
Many simple entity selection operations are based on value selections for one attribute,
like selecting all entities where the attribute colour takes the value green, or similar.
Here the value list and distribution of the corresponding attribute in the output concept
can easily be adjusted. When the condition for selection is composed by simple conditions
on several single attributes using the logical AND-operator, the value distributions can
similarly be computed. When OR is the logical operator, this is not possible anymore;
applying optimistic estimation, the list of values in the output does not change (though
estimating their distribution would be too optimistic).

Application example Removal of entities whose value of a certain attribute is missing.

A.1.3. Sampling

Description This operator is a specialisation of ROwW SELECTION that chooses the out-
put entities according to some random function.

Relevance to mining The main purpose of sampling is data reduction, but changing
the distribution of the data can also be useful for mining (see the special options below).
More advanced sampling approaches are described by Scholz (2007), for example; such

approaches integrate sampling with mining, and would require separate operators.

Input and output The input is any concept C. The output is a concept C’ that is a
separation of the input concept: attr(C) = attr(C’) and C’ g, C.

Parameters The input concept, and a sampling rate or a target sample size.
Constraints None.
Conditions None.

Assertions The data types and roles of the output attributes are copied from the input
attributes.

Estimates The value lists of the input attributes can optimistically be assumed to be
unchanged. The output size can be estimated rather accurately from the sampling rate
and the input size, or from the target sample size. From the output size and input size,
the sample rate can be estimated if only the target sample size is given as a paramter;
then the value distribution for the output attributes can be estimated by multiplying the
input frequencies of each value with the sample rate.

199

Appendix A: Preparation operators

Special options

e Uniform sampling: each entity from the input has the same probability of being
selected.

e Stratified sampling: uniform sampling is done separately from a number of mutu-
ally exclusive subgroups in the data, in order to keep the distribution among the
subgroups. An additional parameter must identify the subgroups (for example by
the distinct values of a discrete attribute).

e Label-based under-sampling: entities identified by a certain value of an attribute
with the label role (see section 3.3.2 for attribute roles) have a lower probability to
be selected than others. Additional parameters must specify this lower probability
and the label value. See (Chawla et al., 2002) for reasons why this is useful in data
mining.

Application example Sampling a training set from a set of labelled data.

A.1.4. Aggregation

Description This operator aggregates values of the input concept according to the val-
ues of given Group By-attributes. Aggregation attributes are chosen in the input concept;
in the output concept, values that are aggregated over an aggregation attribute appear
for each combination of values of the Group By-attributes.

Relevance to mining Besides data reduction, aggregation can also be used to represent
data at different levels of granularity. The most suitable level of granularity depends on
the application domain and the capabilities of the mining algorithm.

Input and output The input is any concept C' with at least two attributes (|attr(C)| =
2). The output is a new concept C’ that is linked to C' by a relationship type R =
(C,C", oneOrMore,one). The keys of the technical realisation of the relationship are
given by the Group By-attributes.

Parameters The input concept, the Group By-attributes, the aggregation attributes
and the aggregation operator for each aggregation attribute.

Constraints The Group By-attributes must be discrete. The aggregation attributes
must be numeric, except if the aggregation operator is count or countdistinct.

Conditions The Group By-attributes must not have only missing values.

Assertions The data types and roles of the Group By-attributes in the output are copied
from the corresponding input attributes. The data type of the aggregation attributes in
the output is continuous. Only the Group By- and aggregation attributes are available
in the output.

200

A.2. Propositionalisation operators

Estimates The value lists of the Group By-attributes remain unchanged. The value
frequencies of the Group By-attributes can be determined (for example, if there is only
one Group By-attribute, all its values will occur exactly once). Similarly, the size of the
output can be computed. The value lists of the other output attributes are unknown.
There may be missing values in the output.

Special options Aggregation functions include minimum, mazimum, average, median,
sum, count, and countdistinct.

Application example Given a concept containing employee information, including the
department where the employee works, compute the number of employees for each de-
partment.

A.2. Propositionalisation operators

These operators exploit the presence of relationship types between concepts to safely
integrate the concepts. “Safely” means here that the relationships signify the semantic
compatibility of the concepts to be joined, so that two concepts whose entities denote
incompatible things cannot be joined because no relationship would exist between them.
Of course, users could set up such semantically flawed relationships, but the probability
that they do so erroneously is certainly lower than that of erroneously joining incompati-
ble concepts. In order to be able to join concepts wherever needed, a system that provides
these operators must allow to create relationships between concepts at any time.

The operator UNION in this section is an exception, as it does not require a relationship
between its input concepts, but since it is only applicable on concepts with equal signature
(sets of attributes), the chances of applying it erroneously are also low.

A.2.1. Join by relationship

Description This operator joins two concepts that are linked by a relationship type.
All attributes from the input concepts occur in the output concept, except that the join
attributes are not duplicated in the output but occur only once. The join attributes are
specified by the relationship type. The operator realises the well-known natural (equi-
)join from the relational algebra.

Relevance to mining Propositionalisation of data is needed for most mining algorithms,
as they expect a single data table as input.

Input and output The input are 2 concepts Cq,Co which are linked by a relationship
types.
The output is a concept C’ for which the following holds: attr(Cy) < attr(C"), attr(Cs) <
attr(C"). Exactly one representative of each join attribute occurs in the output concept.
The operator produces specialisation links from the output to each input concept:

C' <p C1,C" <gp O

201

Appendix A: Preparation operators

Parameters The relationship type by which to join the two concepts that it links.

Constraints The two concepts that are linked by the relationship type must not contain
like-named attributes, unless they are the keys used in the relationship.

Conditions The two concepts and the relationship type must have the same number of
instances.

Assertions The data types and roles of the output attributes are copied from the input
attributes.

Estimates The lists of the values of the output attributes, as well as minimum and
maximum bounds, can be optimistically estimated, i.e. left unchanged. Their value dis-
tributions cannot be inferred nor estimated. The number of entities in the output concept
can be inferred from the details of the relationship (see section 3.3.3).

Application example Joining customer contract data with data about what products
the customers ordered.

A.2.2. Aggregate by relationship

Description This operator extends its input concept by an attribute that contains ag-
gregated values computed from a concept linked to the input concept by a relationship.
The particular version of this aggregation operator was introduced by Perlich and Provost
(2003), whose work is discussed in section 4.1.2. They discuss a few other, similar op-
erators, for which this one is exemplarily included in this chapter. The computation of
aggregated values is done only for those entities of the input concept for which related
entities are available in the linked concept (the latter are then aggregated). What is more,
the aggregation is specified to range only over particular entities (of the linked concept),
namely those whose value of a given target attribute matches the value of that target
attribute that is most frequent in the relationship. See the application example below. So
this operator relies on the information given in a relationship between the input concepts.

Relevance to mining Propositionalisation of data is needed for most mining algorithms,
as they expect a single data table as input. This operator can add information from a
different concept to the concept whose instance holds the examples for learning, extending
the representation of the data that is used as input for mining.

Input and output The output is a concept that is a specialisation of the concept to
which the aggregated value is added.

Parameters The relationship, the aggregation operator, and the target attribute of the
second concept (whose values are going to be aggregated).

202

A.2. Propositionalisation operators

Constraints The attribute to be aggregated must be continuous unless the aggregation
operator is count.

Conditions The two concepts and the relationship type must have the same number of
instances.

Assertions The data type of the newly created attribute is continuous. The data types
and roles of the other output attributes are copied from the input attributes.

Estimates The size of the output is equal to that of the input.

Special option If the input concept contains a discrete attribute whose role is label, the
aggregation can be done with respect to the classes given in the label attribute. See the
application example.

Application example Two concepts with data about customers and products of a com-
pany might be linked by a relationship that indicates which product has been bought by
which customer. Taking the customers concept as the input concept and the products as
linked concept, this operator can compute the number of times a customer has bought the
product that has been bought most often by any customer. Thus the operator computes
a single new aggregated value for each entity in the customer concept (the value may be
empty if the customer has not bought the frequent product). If the special option above
is realised, the operator would compute the difference between the number of times a
customer from a particular class has bought the most frequent product (on average) and
the number of times other customers have bought this product.

A.2.3. Union

Description This operator unifies two or more concepts that have the same attributes.
The instance of the output concept contains all entities of all instances of the input
concepts. If entities occur multiple times, they do so in the output, too. If an entity
occurs in more than one input concept, its numbers of occurrences in the input concepts
are added to get the number of occurrences in the output.

Relevance to mining This operator is mainly useful for unifying two or more subsets
of some data that have been prepared in different ways.

Input and output Every input concept C4,...,C, is a separation of the output concept
C": C1 <sep O, ..., Oy <ep C.

Parameters The input concepts (at least two).
Constraints All input concepts must have the same signature (the same attributes).

Conditions All input concepts must have the same number of instances.

203

Appendix A: Preparation operators

Assertions The data types and roles of the output attributes are copied from the input
attributes.

Estimates The lists of values can be unified for matching attributes. Optimistic esti-
mates for the value distributions are gained by adding the number of occurrences of each
value or interval, and the number of entities in the output is the sum of the number
of entities in the inputs. Minimum and maximum bounds, and the number of missing
values, can also be gained from combining the corresponding input characteristics.

Special options Allows to include or exclude duplicate entities in the output (bag or
set semantics).

Application example Unify data sets with different target labels (for example the pos-
itive and negative examples), in a classification task, after they have been prepared
differently.

A.3. Operators changing the data organisation

A.3.1. Dichotomisation

Description This operator takes a discrete attribute and produces one new attribute
for each of its values. Each new attribute indicates the presence or absence of the value
associated with it by a binary flag.

Relevance to mining This operator can be used to create continuous attributes from
discrete ones, by using the numbers 0 and 1 for the binary flag. This is useful for mining
algorithms that only handle continuous input. The operator is also useful for association
rule discovery algorithms that expect a boolean matrix for representing transactions.
Compare the template “PrepareAssociationRulesDiscovery” in section 6.5.3.

Input and output The output concept C’ is a specialisation of the input concept C:
C' <4 C.

Parameters The input concept and a discrete attribute in it.

Constraints The target attribute must be discrete. (It can be binary, too, but then this
operator only copies the attribute.)

Conditions None.

Assertions The data type of the new attributes is binary. The number of newly created
attributes is known if the value list of the attribute to be dichotomised is known. The
data types and roles of the other output attributes are copied from the input attributes.

204

A.3. Operators changing the data organisation

Salesperson | Week | Sales

Smith 1 3 Salesperson ‘ SalesWeek1 ‘ SalesWeek?2
Smith 2 4 Smith 3 4
Marks 1 7 Marks 7 6
Marks 2 6

Figure A.1.: Example input (left) and output concept, with instances, of a PIVOTISATION
application, explained in the text.

Estimates The value list of each new attribute is clear from the symbols that are used
for the binary flag. The value distribution can be inferred if (and only if) it is known for
the input (for example, the number of occurrences of 1s for a new attribute corresponds
to the number of occurrences of the value it represents in the input attribute). If numeric
symbols (like 0 and 1) are used for the binary flags, they also specify the minimum and
maximum values of the output. The number of missing values of each new attribute can
be optimistically taken from the dichotomised input attribute, divided by the number of
values in that attribute.

Application example Change of representation of discrete attributes to technically nu-
meric attributes if 0 and 1 are used for the flag values. This is useful for some mining
algorithms that cannot handle discrete attributes.

A.3.2. Pivotisation

Description Pivotisation means to take the values that occur in an indez attribute (of
discrete conceptual data type) and to create a new attribute for each of these values
(Cunningham et al., 2004). Each new attribute contains the (aggregated) values of a
pivot attribute for those entities (or aggregated over those entities) that contain the index
value associated with the new attribute. Thus the pivot values are distributed over the
new attributes which correspond to the index value (compare the application example).
Aggregation is optional; it is done by the values of Group By-attributes.

Relevance to mining This operator is useful for re-representing some information that
is stored in walues of a single attribute, as attributes for learning. The operator thus also
supports propositionalisation, as it allows to represent the information as attributes of
single examples for learning, rather than having several entities with the different values.
Compare the application example.

Input and output The input is any concept C' with the required attributes. The output
is a new concept C” that is linked to C by a relationship type R = (C,C’, oneOrMore, one).
The keys of the technical realisation of the relationship are given by the Group By-
attributes.

205

Appendix A: Preparation operators

Parameters Input concept, index attributes, Group By-attributes (optional), pivot at-
tribute, and an aggregation operator (none if no Group By-attributes are given).

Constraints The index attribute must be discrete. The Group By-attributes, if there
are any, must also be discrete.

Conditions Neither the Group By-attributes nor the index attribute must contain only
missing values.

Assertions The number of newly created attributes is known if the value list of the index
attribute is known. The conceptual data type of the new attributes is given by that of
the pivot attribute. The type of the Group By-attributes is discrete in the output, too.

Estimates When aggregation is used, the estimates for the Group By-attributes and
the output size are the same as for AGGREGATION. The value list and value distribution
of the new attributes are unknown then. When no aggregation is used, the value lists of
the new attributes can optimistically be copied from the pivot attribute.

Special option Generalisation to n-fold pivotisation: there are n index attributes (n >
1), and one pivot attribute. All combinations of values of the index attributes lead to a
new attribute in the output.

Application example Figure A.1 shows input and output concept, with extensions, of an
example application of this operator. The input concept contains weekly sales performed
by some salespersons of a company. The output lists the sales for each salesperson in
new attributes. Here, the index attribute is Week and the pivot attribute is Sales. In the
example, no aggregation is necessary, but Salesperson is used as a Group By-attribute;
if more than one Sales entry was available per Week, they could be aggregated using
summation, for instance.

A.3.3. Reverse pivotisation

Description This operator is the reverse operator to pivotisation without aggregation.
Certain attributes of compatible technical data type are folded into one attribute, such
that the output contains more records than the input; in the remaining attributes, the
values are filled up. See the application example of PIVOTISATION (figure A.1), but
exchange input and output.

Relevance to mining This operator allows to re-represent information by creating val-
ues from different attributes. Thus it creates a set of examples (entities) from one example
(entity). This can be used to create more examples for learning which are differentiated
by the values of a single attribute, rather than by several attributes.

206

A.3. Operators changing the data organisation

Input and output The input is any concept C' with at least two attributes of the same
conceptual data type. The output is a new concept C’. It is linked to C' by a relationship
type R = (C',C,oneOrMore,one) if C has additional attributes not involved in the
reverse pivotisation. The keys of the technical realisation of the relationship are given by
these additional attributes.

Parameters Input concept, two or more pivot attributes of the same type, and the
index values these pivot attributes represent.

Constraints The pivot attributes must have the same conceptual data type.

Conditions The technical realisations (e.g. database columns) of the pivot attributes
must have the same technical data type.

Assertions The newly created attribute with the index values is discrete. The newly
created single attribute with the pivot values is of the same type as the input pivot
attributes.

Estimates The output size is the input size times the number of index values. The value
list of the index attribute is given by the parameter with the index values. The index
attribute does not have missing values. The value list of the pivot attribute in the output
is the union of the value lists of the pivot attributes in the input.

A.3.4. Windowing

Description This operator is useful for value series data. It changes the representation of
a value series to a representation based on sliding a window of fixed width over the series.
The input concept must contain an index attribute and a value attribute. The output
concept will contain one entity for each window. It includes two attributes indicating the
start and end index for each window, and as many further attributes as given by the
window width; these contain the values of the value attribute for each window, and are
therefore called window attributes. See the example in figure A.2.

Relevance to mining This operator is paramount for handling time-stamped data. It
makes a time or value series accessible for a mining algorithm by representing it as a set
of examples of the same kind.

Input and output The input is any concept C with the required attributes. The output
is a new concept C’ that is linked to C by a relationship type R = (C,C’, one, zeroOrOne).
The keys of the technical realisation of the relationship are given by the index attribute
for C and the start or end index attribute for C’.

Parameters The input concept, an attribute of type Time for the index, the window
width, and an attribute for the value series.

207

Appendix A: Preparation operators

Time | Pressure

95

97 Start ‘ End ‘ Pressurel ‘ Pressure2 ‘ Pressure3
96 1 3 95 97 96
96 4 ‘ ‘ 96 ‘ 97 ‘ 95
97

95

O Ut s W N =

Figure A.2.: Example input (left) and output concept, with instances, of a WINDOWING
application. The window width is 3. Time is the index attribute and Pressure the
value attribute in the input. Start and End are the start and end index attributes,
while Pressurel, Pressure2 and Pressure3 are the window attributes.

Constraints The index attribute must be of type Time. The window width must be
positive.

Conditions None.

Assertions The conceptual data type of the start and end index attributes in the output
is Time. The conceptual data type of the window attributes in the output is given by
that of the value attribute. The number of window attributes is given by the window
width.

Estimates The number of entities in the output is given by that of the input divided by
the window width. The value list of the start and end index attribute can be optimistically
estimated to be the same as the value list of the index attribute in the input. Similarly,
the value lists of the window attributes can be optimistically estimated to be equal
to the value list of the value attribute, unless aggregation is used. Finally, the value
frequencies, and the number of missing values, of the window attributes can also be
copied optimistically, but divided by the window width.

Special options Another version of this operator computes an aggregated value for each
window, so that only one window attribute is created.

Application example This operator might be used to compute the moving average of a
time series, for example a series of blood pressure measurements of a single patient at an
intensive care unit, resulting in average blood pressure values per time unit, where the
time unit corresponds to the window width.

208

A.4. Data cleaning operators

A.4. Data cleaning operators

A.4.1. Missing value replacement

Description This operator fills missing or empty values (see section 2.1.3) in a specified
input attribute.

Relevance to mining Most mining algorithms cannot handle missing values. Instead of
deleting entities with missing values, which can also be a useful strategy, this operator
attempts to fill the gaps. The operator must be used with care so that the representa-
tiveness of the data is not impaired. For more information, see (Pyle, 1999).

Input and output See ATTRIBUTE DERIVATION (A.5.4).
Parameters Input concept and an attribute in it (the target attribute for replacement).

Constraints If replacement is done by an average value, the attribute whose values are
replaced must be continuous.

Conditions None (if there are no missing values in the input, the operator does not
change this).

Assertions The data types and roles of the output attributes are copied from the input
attributes. The new attribute has the same data type as the one whose values are replaced,
and it does not have missing values.

Estimates The number of missing values can be set to zero for the output attribute.
The list of values for this attribute can be updated to exclude the special value that
represents a missing entry (if the target attribute is discrete). If a default value is used
for replacement it can be included in the value list. For continuous target attributes,
the minimum and maximum values are not changed (unless the default value is the new
minimum or maximum). The value distribution of the output attribute can be updated
if a default, median or average value is used for replacement (for example, the number of
occurrences of the default value in the output can be increased by the number of missing
values in the input). In the other cases, the value frequencies of the output attribute after
replacement can be optimistically assumed to be uniformly increased (by the number of
missing values in the input, divided by the number of occurring other values).

Special options The value for replacement can be determined by using
e one default value; or
e the median or average of existing values; or

e values selected randomly with a bias that does not change the statistical distribu-
tion of the values of the attribute; or

209

Appendix A: Preparation operators

e a predictive model trained on the remaining attributes. This option should be
integrated into this operator, because otherwise a non-trivial set of operators for
selecting entities with and without missing values, training a model, applying it, and
combining the predicted values with the non-missing values into a single attribute
would be necessary to realise this option.

A.4.2. Filtering outliers

Description This operator offers various statistical measures that indicate “outliers”,
i.e. entities with extreme values that are expected to disturb the mining results more
than making them generalisable. Such outliers are not copied to the output.

Relevance to mining Outliers can deterioate the mining result of distance-based algo-
rithms due to their extreme values. In most cases, outliers are simply input errors of the
data collecting process, and thus should be removed.

Input and output The input is any concept C, the output is a new concept C’ that is
a separation of the input: C" <y, C.

Parameters Input concept and an attribute in it (the target attribute in which outliers
are searched).

Constraints None.
Conditions None.

Assertions The data types and roles of the output attributes are copied from the input
attributes.

Estimates Optimistic estimation leaves the value list or the value distribution of the
output attribute unchanged, in the hope that there are no or only a few outliers.

A.5. Feature construction operators

All operators in this section have one additional parameter in common which specifies
the name of the newly constructed attribute/feature.

A.5.1. Discretisation

Description This operator discretises a continuous attribute. That is, the range of values
of the continuous attribute is divided into intervals, and a discrete value is given to every
entity according to the interval into which the continuous value falls.

210

A.5. Feature construction operators

Relevance to mining Some mining algorithms only handle discrete input. Others dis-
cretise continuous input internally, in which case the KDD expert may want to keep
control by doing it explicitly beforehand. Like aggregation, discretisation also changes
the level of granularity of information.

Input and output The input is any concept C. The output is a concept C’ that is a
specialisation of the input concept: attr(C') = attr(C) u o’ with @’ € A but a’ ¢ attr(C).
Thus C’ <y, C. The instance i’ of C’ contains exactly the entities of the instance i of C,
extended by the value for the new attribute a’.

Parameters Input concept and a continuous attribute in it.
Constraints The attribute to be discretised must be continuous.
Conditions None.

Assertions The data type of the additional attribute is discrete. If only two discreti-
sation intervals are chosen, it is binary. The data types and roles of the other output
attributes are copied from the input attributes.

Estimates The number of constructed intervals is known (for most of the discretisation
methods), as well as the symbols to be used for each interval in the output; this determines
the list of values in the newly created attribute. If the option below to specify interval
construction by the number of entities to fall into each interval is used, even the value
distribution of the output attribute is known. The number of missing values in the new
attribute equals that of the undiscretised input attribute.

Special options Interval construction can be determined by specifying
e the interval bounds; or

e the number of intervals; or

the width of the intervals; or

e the number of entities to fall into each interval; and

whether the so constructed intervals should be of equal width or equal cardinality.

Application example Forming age groups (like child, young adult, adult, pensioner)
from an age attribute.

A.5.2. Scaling

Description This operator rescales a continuous attribute to a new given range. Dif-
ferent ways of scaling, like linear or logarithmic scaling, are offered. Scaling values of
different attributes to a common range is sometimes also called normalisation.

211

Appendix A: Preparation operators

Relevance to mining The scale of continuous attributes can be important for distance-
based mining algorithms, like clustering or the support vector machine (SVM): attributes
with larger values can have more influence on the result than those with a smaller range.
Scaling can be used to normalise all attributes to the same value range.

Input and output The input is any concept C. The output is a concept C’ that is a
specialisation of the input concept: attr(C') = attr(C) u a’ with @’ € A but da’ ¢ attr(C).
Thus C’ <4, C. The instance 7' of C’ contains exactly the entities of the instance i of C,
extended by the value for the new attribute a’.

Parameters Input concept, a continuous attribute in it, and the minimum and maxi-
mum value of the new range for the values of that attribute.

Constraints The attribute to be scaled must be continuous. The minimum value of the
new range must be lower than the maximum.

Conditions For logarithmic scaling, all values in the attribute to be scaled must be
positive.

Assertions The data type of the additional attribute is continuous. The data types and
roles of the other output attributes are copied from the input attributes.

Estimates The minimum and maximum of the values in the newly created output
attribute are given by the corresponding parameters of this operator.

Application example Scaling the income of customers to the normal range [0..1].

A.5.3. Value mapping

Description This operator maps values of a discrete attribute to new values. In this
way, different values can be mapped to a single value, thus be grouped together, if they
should not be distinguished later in the process.

Relevance to mining This operator can be used for different purposes. A typical ap-
plication is to correct wrong input, such as misspellings. But it may also be used to
change the level of granularity of information, like DISCRETISATION does for continuous
attributes. For example, the operator can introduce a category for single items, like a
product group for single products.

Input and output The input is any concept C. The output is a concept C’ that is a
specialisation of the input concept: attr(C’) = attr(C) u a’ with a’ € A but o’ ¢ attr(C).
Thus C' <4, C. The instance i’ of C' contains exactly the entities of the instance ¢ of C,

extended by the value for the new attribute a’.

Parameters Input concept and a discrete attribute in it.

212

A.5. Feature construction operators

Constraints The attribute whose values are to be mapped must be discrete or binary.
Conditions None.

Assertions The data type and role of the additional attribute are the data type and
role of the input attribute whose values are mapped. The data types and roles of the
other output attributes are copied from the input attributes.

Estimates From the specification of the operator, the list of values in the newly created
output attribute is known directly if the input value list is available (if not, there might be
input values that are not mapped, so they would appear in the output but are unknown).
The value frequencies can also be computed: for example, if two different input values
are mapped to the same output value, the output value’s frequency equals the sum of
the frequencies of the input values.

Application examples
e Assignment of meaningful names to discretised intervals (like age group names).

e Correction of misspellings or outliers in the input.

A.5.4. Attribute derivation

Description This is a very general operator to create a new attribute, and values of
this attribute for each entity in the input concept’s instance. The new values must be
computable based on values of existing attributes (though these values can of course
be ignored, for example to create random values for the new attribute). To allow this,
extensive date, string and numeric arithmetics must be offered by this operator. In fact,
a computationally complete formalism such as a programming language is needed. Note
that this operator, as the only one in this work, requires the user to access the technical
description level. Only the syntactic signature of this operator is fixed at the conceptual
level (it adds an attribute to its input concept). This operator can be used as a fallback
option for unusual preparation tasks, by the flexible computation of attributes whose
values are derived from the given data. Such flexible computations are indispensable for
supporting advanced preparation ideas by experienced users. In the data mining liter-
ature, this is called feature construction (Liu & Motoda, 1998). There are automatic
approaches to feature construction, but it is also an important tool for manual prepara-
tion. See also section 4.3.

Below under “Special options”, some suggestions for frequently needed functions for
attribute derivations are listed. They could be offered as special operators rather than as
options of this elementary operator. However, the combination of these options is often
useful, and is simpler if they are available in one operator.

The name of the new attribute can either be specified as a parameter, or it can be
computed from some values in the instance of the input concept, or it can be computed
from the name of the input concept or from the names of its attributes. This may be
necessary to enable the change of status from data to metadata, compare section 4.1.1.

213

Appendix A: Preparation operators

Further, the values of the new attribute may depend on the names of the input concept
or its attributes, to change metadata to data.

Relevance to mining This operator gives KDD experts the flexibility to realise new
ideas of representing and computing additional information. The operator can be used as
a fallback option for situations in which the other operators that compute new attributes
do not suffice. In particular, it can be used to combine values from different attributes.

Input and output The input is any concept C. The output is a concept C’ that is a
specialisation of the input concept: attr(C') = attr(C) u a’ with @’ € A but d’ ¢ attr(C).
Thus C’ <4, C. The instance 7' of C’ contains exactly the entities of the instance i of C,
extended by the value for the new attribute a’.

Parameters The input concept, the name of the new attribute (optional), and a formula
for its derivation.

Constraints None.
Conditions None.

Assertions The data types and roles of the output attributes are copied from the input
attributes, except for the newly created attribute.

Estimates The technical data type of the new attribute depends on, and is deducible
from, the operations that create the attribute. The conceptual data type can be guessed
from it.

In general, it is obviously impossible to predict the value distribution of the derived
attribute from the function used for the derivation, without computing the function on
all values. However, for optimistic metadata administration, partial information such
as the list of values without their distribution can also be helpful. For the special case
of constant functions, or logical functions returning one of a number of constants, the
possible values of the result are known. When random values from a given interval are
created, their minimum and maximum values are known beforehand; they may also be
known in other cases. The new attribute can be optimistically expected not to have any
missing values.

The number of entities in the output is equal to that in the input.

Special options

e Numeric arithmetics: basic mathematical operators, trigonometric functions, maths
library (absolute value, logarithms, exponentiations, roots, minimum /maximum/
mean/median etc.)

e Date/time arithmetics: extraction of year, month, day, weekday, hour, minute, sec-
ond from dates and times; addition and subtraction of dates and times; availability
of system time

214

A.6. Operators for pseudo-parallel processing

e String processing options: Substring extraction, concatenation function, case con-
version etc.

e Logical operations: and, or, not, if then else

e Bitwise operations: shift, and, or, not etc.

e Comparisons: equal to, less than etc. for each conceptual data type
e Type conversions of technical data types: string to number etc.

e Handling of missing/empty fields (e.g. Null values)

e Generation of values (for example, running integers, or random values from a given
set)

e Computation of principal components (each component resulting in one derived
attribute)

Application examples
e Computation of the age of a person given the birthday and the current system time
e Creation of a primary key for the input concept

e Creation of a binary indicator for the presence or absence of a certain value in a
certain attribute

e Renaming an attribute by creating a copy of it with a new name

A.6. Operators for pseudo-parallel processing

The two operators in this section help to process several tables with the same schema
behind a single conceptual representation. This was motivated in section 1.1.1. The first
operator splits a table into several parts, all represented by the single output concept;
the second operator unifies several tables that are attached to a single concept, so that
the output concept represents the union.

A.6.1. Segmentation

Description This operator segments the instance of the input concept into a number
of instances of the output concept, whose attributes are either the same as in the input
concept, or lack exactly one of the input attributes. The instances of the output concept
(the segments) are disjoint. Three methods of segmentation are distinguished: (i) the
values of a particular, discrete attribute of the input concept determine the segments
(each value corresponds to one segment); (ii) a fixed number of segments is created by
randomly assigning input entities to the segments; (iii) a fixed number of segments is
created by clustering the input segments according to some similarity measure, so that
each cluster corresponds to one segment. For the first method, the number of output

215

Appendix A: Preparation operators

instances depends on the input instance. When this method is used, the output concept
does not have the attribute by whose value the input instance is segmented. For the last
two methods, the number of output instances is known by an input parameter, and the
output concept has the same attributes as the input.

Relevance to mining This operator allows to split a data set into several parts that
can be processed alike. Thus this operator is one tool by which several identical processes
can be executed using one solution model.

Input and output The input is any concept C. The output is a concept C’ that is a
separation of the input concept: C' <g¢p C.

Parameters The input concept, a method of segmentation, and for the last two of the
segmentation methods: the number of output instances (segments).

Constraints For segmentation by the values of a particular attribute, this attribute
must be discrete or binary.

Conditions None. One may want to exclude the possibility of missing values in the
attribute by which the segments are found.

Assertions The types and roles of the output attributes are copied from the input.

Estimates Estimates are given as if for one instance. If the value distribution of the
segmentation attribute is given (referring to the first segmentation option above), the
number of entities in each segment is known. The other value lists are optimistically
estimated to remain the same, while the value frequencies may be estimated by dividing
them through the number of segments. When random segmentation is used, the number
of output instances (segments) is given as a parameter, and the number of entities of
a segment can be approximated from the known bias of random selection (usually a
uniform distribution will be used, meaning that roughly the same number of entities is
assigned to each segment). The situation is similar, based on optimistic assumptions,
when automatic clustering is used.

Application example Producing a random split of a concept into training and test set.

A.6.2. Unsegmentation

Description This operator reverses SEGMENTATION. Its input concept may represent
several data tables with the same schema. Its output concept will be attached to the data
table that contains the union of the input tables. If the segmentation had been done by
a segmentation attribute, this attribute is no longer present in the data; its name and
its values can be given by parameters. Its values can also be found by implementational
tricks if the operator SEGMENTATION attaches the values to the instances, for example
(a solution used in MiningMart).

216

A.6. Operators for pseudo-parallel processing

Relevance to mining Re-unifying separately processed data may be useful when only
the preparation, or only a part of the preparation process, but not the mining phase,
requires processing several identical data sets in the same way.

Input and output The input concept is a separation of the output concept. If the output
concept has the additional, reconstructed segmentation attribute that is missing in the
input, the output is a specialisation of the input.

Parameters The input concept, and the name and type of the segmentation attribute
if there was any.

Constraints None.
Conditions None.

Assertions The types and roles of the output attributes are copied from the input. If
there was a segmentation attribute, its type is known from a parameter of this operator.

Estimates The value lists of the input attributes can be copied to the output. The
number of entities in the output, and the value distributions for the output attributes,
are not known.

217

Appendix B: Templates

This appendix lists the templates that are explained in section 6.5.3.

B.1. Aggregation

Problem description Large data sets may provide too detailed, fine-grained information
for direct mining. A coarse-grained representation is desired. This template applies to
data about some products a company sells; the products are organised in a taxonomy of
product groups. Rather than looking at information about single products, information
about product groups is desired. Further, some statistical values describing the data set
are needed, such as the distribution of low-priced, medium-priced (etc.) products.

When several data sets are available, one may want to extend the information in one of
them using data from another one. In this template, customer information is available in a
data set to which the product data is related, by a many-to-many relationship indicating
which customer has bought which product. The customer data is going to be extended by
an attribute that contains, for each customer, the frequency of buying the most frequent
product.

Solution description The DISCRETISATION operator (A.5.1) is used to encode price
groups (low, medium, etc.) based on the detailed prices. Then AGGREGATION (A.1.4) is
applied, using the product group attribute for grouping. The operator computes the sum
of prices and the number of products per product group. In addition the distribution
over the price groups is computed based on the encoding computed in the previous step.

The aggregation over multiple concepts is solved by the operator AGGREGATE BY
RELATIONSHIP (A.2.2).

Preparation concepts demonstrated DISCRETISATION; generalising over a hierarchy
over data items (see section 3.3.1); aggregation of data over a single and multiple input
concepts.

MiningMart concepts demonstrated The MiningMart operator that corresponds to
AGGREGATION offers a facility for computing the distribution counts of the distinct
values of a given attribute. The output concept has one attribute per distinct value. This
is illustrated by this template.

B.2. ChangeDistributionOfValues

Problem description Sometimes a data set has an undesirable distribution with respect
to some attribute, for example the target attribute for mining. Before applying a mining

218

B.3. ChangeNominalAttribsToNumeric

algorithm, one may want to correct the distribution. In this template, the input data is
supposed to provide personal data, but 80% of the data applies to male people. For the
output an equal distribution of the data for each gender is desired.

Solution description The input is split into two data sets, one for each gender. From
both parts an equal number of entities is randomly sampled. The two samples are then
unified again.

Preparation concepts demonstrated SEGMENTATION (A.6.1); sampling (A.1.3); chang-
ing distributions (section 2.1.3, see also (Pyle, 1999)).

MiningMart concepts demonstrated Pseudo-parallel processing as briefly explained in
section 6.4. The output concept of the SEGMENTATION step represents both data sets,
for male and female persons. Since these data sets have the same structure, they can be
represented by the same concept. MiningMart applies all succeeding steps to all data sets
attached to an input concept, until the MiningMart operator UNSEGMENTATION unifies
all data sets attached to the input concepts, so that the output of that operator has
only one data set again. This facility can be very convenient in real applications (Euler,
2005d); it is demonstrated in this template.

B.3. ChangeNominalAttribsToNumeric

Problem description Some mining algorithms can only process numeric input data
(compare table 2.1 on page 17). When discrete attributes are present, they must be
converted.

Solution description The operator DICHOTOMISATION (section A.3.1) produces binary
output, but since the two output values are 1 and 0 in the MiningMart version of this
operator, they can also be interpreted as numbers. This demonstrates one method of
re-encoding discrete attributes. Another solution, also included in this template, is to
simply map discrete values to numbers. If any ordering can be found in the discrete
values, the numbers should reflect it. In this template the discrete values of the Wind
attribute of a weather data set, Stormy, Breezy and Still, describe wind conditions and
reflect decreasing wind strength. So there is an ordering, which is retained in the output
by mapping Stormy to 3, Breezy to 2 and Still to 1.

Preparation concepts demonstrated Changing conceptual data types from discrete
to continuous; respecting the ordering of discrete values; DICHOTOMISATION; VALUE
MAPPING.

MiningMart concepts demonstrated To change the old values to the new ones, the
parameters of (the MiningMart version of) VALUE MAPPING must provide a unique
mapping. The operator has two parameters for the old and new values; to establish the
mapping, these parameters are coordinated, which means that the first value of the first

219

Appendix B: Templates

parameter matches the first of the second, the second pair of values matches as well, and
so on. Parameter coordination is declared in the MiningMart framework by a specific
constraint, see section 6.3.2. It is signalled in the MiningMart GUI when the parameters
are edited.

B.4. ChangeUnitOfMeasurement

Problem description Sometimes continuous values of attributes are given on a different
scale, or a different unit of measurement, than desired for the final data representation.
Examples are currency values or physical measurements. In this template, rain values of
a weather data set are given in litres, but needed in millilitres.

Solution description The SCALING operator is not useful for this task, as it relies on
fixed upper and lower boundaries of the new scale. Instead, ATTRIBUTE DERIVATION can
be used with a simple formula for changing the input values.

Preparation concepts demonstrated ATTRIBUTE DERIVATION with a simple formula.

MiningMart concepts demonstrated There are two MiningMart operators correspond-
ing to ATTRIBUTE DERIVATION. The one used in this template can only take arithmetic
formulas which are expressible in SQL, and apply them on single entities, so that proper-
ties of other entities cannot be included. The operator takes the conceptual-level names
of attributes for its formula, and translates them to the technical level internally, as can
be seen in this template. A more general MiningMart operator that realises ATTRIBUTE
DERIVATION fully is described in section 7.2.1.

B.5. ComputeAgeFromBirthdate

Problem description This is a very common data preparation task. Personal data sets
usually contain people’s birth date rather than their age, since only the former is con-
stant over time. The current age at the time of mining, however, provides more relevant
information.

Solution description ATTRIBUTE DERIVATION can be used with a specific formula.
However, MiningMart provides a convenience operator that extracts years, months or
days of the week from date values, since the format of the latter varies with the underlying
database system. Thus the operator hides the technical level of storing dates. ATTRIBUTE
DERIVATION is therefore used as a second step that computes the current age (in the
example, as of August 2004) using the previously extracted year and month values.

Preparation concepts demonstrated Handling date and time related information; AT-
TRIBUTE DERIVATION.

220

B.6. CorrectTypos

MiningMart concepts demonstrated As discussed in section 5.2, MiningMart does not
produce a new output concept when ATTRIBUTE DERIVATION or one of its specialised
versions are applied. Instead, the system adds the new attribute to the input concept. The
template illustrates that the old (birth date) attribute, from which the desired attribute
is derived, as well as intermediate attributes, are still present in the concept that is being
prepared. Thus an ATTRIBUTE SELECTION operator is used to yield the version of the
input concept that has only the desired attributes. Such a final ATTRIBUTE SELECTION
operation shows up in several templates.

B.6. CorrectTypos

Problem description Another very common preparation task is to correct misspellings
in discrete values.

Solution description The operator VALUE MAPPING is used to map all recognised mis-
spellings of a discrete value to the correct value.

Preparation concepts demonstrated Data cleaning; VALUE MAPPING.

MiningMart concepts demonstrated Mapping several old values to one new value can
be done by listing the old values in a single parameter entry, which is coordinated (see
template ChangeNominalAttribsToNumeric) with the parameter entry for the single new
value.

B.7. Discretisation

Problem description Another very common preparation task concerns the discretisa-
tion of continuous attributes into discrete values. In this template the amount of rain
fallen at some location on some day is available in the input data. In the output, only
a few discrete values describing the amount of rain qualitatively are desired. How many
discrete values there should be is not necessarily known.

Solution description Different variants of DISCRETISATION (as introduced in section
A.5.1) are applied to demonstrate different solutions.

Preparation concepts demonstrated DISCRETISATION in several variants.

MiningMart concepts demonstrated In MiningMart, there is not a single discretisation
operator whose parameters determine the method of discretising, but there is a different
operator for each method. The most important ones are included in the template.

221

Appendix B: Templates

B.8. ExtractintegerTimelndexFromDate

Problem description A time series is given in the input data (here, weather data has
been collected over time). The time index is thus given by date entries. To simplify the
further analysis, a monotonically increasing integer time index is desired.

Solution description Since the weather data has been collected on a daily basis, the
number of days since a particular date provide a suitable integer time index. Rather
than using ATTRIBUTE DERIVATION with a complex formula, three versions of it with
simpler formulas are applied. The first is again the MiningMart convenience operator that
encapsulates the extraction of years or months from date values. The second computes
the number of days since the first of January from the month and day values. The third
computes the number of days since the particular start date, by using the result of the
second step.

Preparation concepts demonstrated Handling date and time related information; AT-
TRIBUTE DERIVATION.

MiningMart concepts demonstrated Like in the template ComputeAgeFromBirth-
date, the MiningMart operator that extracts simple representations for the year, month,
day, hour or minute occurring in a date or time attribute is demonstrated.

B.9. GeneralisationOfAnAttribute

Problem description Sometimes an attribute takes values over which a taxonomy can
be defined. The taxonomy may or may not be reflected in the data (by providing parent
values for every value). One may want to use the higher levels of the taxonomy rather
than the lower ones for analysis. In the template, data about cities is given, but the
interest is in data about their regions.

Solution description In this template the taxonomy is not in the data, but is explicitly
introduced in the template. VALUE MAPPING is suitable for this, as it can introduce a
new region value for all cities that belong to that region. The template demonstrates two
taxonomy levels by also mapping regions to states, in a second step. Further, the template
demonstrates AGGREGATION over the first level, similarly to the template Aggregation
(see above); here, the average number of inhabitants per region is computed, which
would not have been possible using the input data directly, since the region information
is missing there.

Preparation concepts demonstrated Introducing background domain knowledge; us-
ing taxonomies over domain values; VALUE MAPPING.

MiningMart concepts demonstrated MiningMart versions of VALUE MAPPING and
AGGREGATION.

222

B.10. InformationPreservingDataCompression

B.10. InformationPreservingDataCompression

Problem description Large data sets may be unwieldy for analysis. The desire is to
reduce the amount of data while losing as little information as possible.

Solution description One possible approach to the problem, demonstrated in this tem-
plate, is to apply automatic attribute selection using an information gain criterion for
attribute selection. This reduces the dimension of the data. Due to this first reduction,
the data may then contain duplicate entities, since some entities may have differed only
in values of attributes that are now removed. Therefore duplicate entities are removed in
the second step of this template, using a convenience version of ROW SELECTION that
MiningMart offers for this task. This may involve a considerable reduction of the data
volume, depending on the characteristics of the data set.

Preparation concepts demonstrated Automatic attribute selection; data compression;
duplicate entity removal.

MiningMart concepts demonstrated One of the operators of automatic attribute selec-
tion is demonstrated (see (Berka et al., 2002) for the full list), as well as the convenience
operator for duplicate entity removal. The first operator can use a sample of the whole
data if necessary. It applies a greedy search over the attributes, adding attributes as long
as the information gain with respect to a target class increases, and as long as the number
of attributes does not exceed the threshold specified as a parameter of this operator.

B.11. IntegrateDifferentDataSources

Problem description Data sets that are linked by a relationship have to be joined to
yield a single table, as desired for most data mining algorithms. But it is desired to
prepare the data sets separately before joining, in order to reduce the amount of data in
the expensive join operation.

Solution description The data sets are prepared separately. Then the relationship that
linked the original concepts is re-created between the output concepts of the separate
preparation processes. A special MiningMart operator is available for this. The relation-
ship is technically realised by a cross table, whose name is a parameter to the operator,
if it is a many-to-many relationship. The operator creates a new cross table on the tech-
nical level, ensuring that its references to the two concepts to be joined are valid. On
the conceptual level, the operator simply creates a relationship that links the two input
concepts.

The template also demonstrates two options to make use of the new relationship: a join
that uses the relationship for key specification (which is more convenient than having the
user specify the keys), and AGGREGATE BY RELATIONSHIP (see the template Aggregation
and sections A.2.2 and 7.2.3).

223

Appendix B: Templates

Preparation concepts demonstrated Use of relationships; creation of relationships;
joining data sets.

MiningMart concepts demonstrated To ensure the validity of the created relationship,
the two concepts between which it is created must be connected to a database table on
the technical level, because views cannot be constrained by primary keys. Therefore the
concepts resulting from the separate preparations must be materialised together with
their primary keys, for which a special MiningMart operator is available. The template
demonstrates the materialisation. This is a point where the strict separation between
conceptual and technical level is weakened. Compare section 7.3.

B.12. MaterialisationDemo

Problem description In longer preparation graphs, efficient data processing can become
a problem. On the one hand it is inefficient to store the output data of every preparation
step permanently, as this requires too much storage space (consider large data tables
prepared by dozens of steps as in chapter 5). Since many preparation steps make only
minor modifications, the storage would also be highly redundant. On the other hand,
processing all data in main memory can quickly become inefficient as well, if the chain
of preparation steps is not rather short. When the data is stored in databases, views are
a good solution to avoid redundant storage, but deeply nested views on views, resulting
from long preparation chains, are again inefficient to read data from.

Solution description A solution to this problem is to define certain points in the prepa-
ration graph where data should be stored permanently (this is called caching in chapter 8,
and materialisation in section 7.3). Inbetween these points, processing is done by views
or in main memory. One heuristic to determine suitable points is to consider steps whose
output is “consumed” by several following steps, since this means that data is read several
times from the considered output. The template demonstrates the use of the MiningMart
operator for materialisation of views in exactly such a situation. Section 7.3 describes how
such suitable materialisation points are automatically found and realised in MiningMart.

Preparation concepts demonstrated Materialisation or “caching”; efficient data han-
dling.

MiningMart concepts demonstrated Materialisation of database views.

B.13. MissingValueHandling

Problem description The problem of missing and empty values is introduced in sec-
tion 2.1.3.

224

B.14. Normalisation

Solution description The template illustrates four approaches to dealing with missing
values. One is to delete entities with missing values. The second is to fill the values with
a default value. The third is to fill them with values that are randomly selected, but
in such a way that the overall distribution of existing values of the attribute concerned
does not change. The last approach is to use entities where the value exists to train a
machine learning algorithm that can predict the value for entities where it is missing.
This last approach is implemented by a convenience operator, since it involves a complex
subprocess: selection of training and test set from the input, training the model, applying
the prediction function, and merging the predicted with the existing values.

Preparation concepts demonstrated Missing value handling, with simple and sophis-
ticated methods.

MiningMart concepts demonstrated The operator for replacing missing by predicted
values uses an external support vector machine (SVM) implementation. On the technical
level, the support vectors and the kernel function needed for prediction are stored in
database tables between learning and prediction. A PL/SQL function which is created
by the MiningMart compiler (see section 6.4) realises the prediction. For more details see
section 7.2.5.

B.14. Normalisation

Problem description Values of continuous attributes may have to be rescaled to lie
within given bounds. For example, before applying a support vector machine (SVM),
scaling all attributes to the range from 0 to 1 is advisable.

Solution description The operator SCALING provides the desired functionality. The
template demonstrates two ways of scaling, linear and logarithmic.

Preparation concepts demonstrated SCALING

MiningMart concepts demonstrated Two scaling operators.

B.15. PivotisationDemo

Problem description As mentioned in section 4.1, sometimes the organisation of a data
set needs to be changed such that meta data (or schema elements) become data, and vice
versa. The template illustrates such a case. It prepares a data set with weather condi-
tions measured by different sensors. In the input, there is one attribute with qualitative
(discrete) values for wind conditions, and another with qualitative values that describe
the overall weather tendency. The desired output is to have an attribute for each of the
occurring wind conditions, and also one for each of the weather tendencies. These new
attributes are filled with values from another sensor (amounts of rain in the template).

225

Appendix B: Templates

Solution description The operator PIVOTISATION (section A.3.2) provides the desired
functionality. The template illustrates 2-fold pivotisation (one new attribute for each
combination of weather tendency and wind condition; compare section A.3.2). It also
combines pivotisation with aggregation, as this is often desired, but the operator can
also omit aggregation.

The template further includes the reverse operation. Since the aggregation cannot
be reversed, the output of reverse pivotisation does not match the input to the first
pivotisation operator exactly. However, the structures of the data sets (their schema)
does match.

Preparation concepts demonstrated Exchanging schema and data elements; P1voTi-
SATION; n-fold pivotisation; reverse pivotisation.

MiningMart concepts demonstrated The slightly complex use of the MiningMart op-
erators PIVOTIZE and REVERSEPIVOTIZE is exemplified in this template. See also sec-
tion 7.2.2.

B.16. PrepareAssociationRulesDiscovery

Problem description For frequent itemset or association rule mining (for an introduc-
tion see (Agrawal et al., 1993) or others), specific data representations are needed. This
template considers a particular representation, which is directly suitable for the rule min-
ing operator in MiningMart. However, for other rule mining implementations, such as the
one in Yale, this representation has to be changed.

The given representation has one entity for each product in each transaction. The
input concept thus has one attribute each for customer ID, product ID and transaction
ID. The desired representation is to have one entity only per transaction, with boolean
flags indicating for each product whether it has taken part in the transaction.

Solution description The operator DICHOTOMISATION (section A.3.1) is applied first,
to create the boolean flags (1 or 0) indicating the presence of a product in a transaction.
Since the resulting concept still has one entity per product, instead of one entity per
transaction, AGGREGATION (A.1.4) is applied next, with the customer and transaction ID
as group-by attributes, and maximum as the aggregation operator. Whenever a product
occurs in any of the input entities that belong to the same transaction, the maximum
value is 1, otherwise 0. This is an example of interpreting a discrete (binary) conceptual
data type as numerical on the technical level. The output concept now has one entity
per transaction and per customer, and can be used as input for mining algorithms that
expect this representation.

Preparation concepts demonstrated DICHOTOMISATION; AGGREGATION; flexible map-
ping of conceptual to technical data types (see section 3.3.1 and criteria 17 and 18 in
appendix C).

226

B.17. TimeSeriesAnalysis

MiningMart concepts demonstrated Applying a mining operator (here APRIORI);
preparing the result of preparation to be used as input for a Yale experiment; using
loops in an operator (explained in section 6.3.2).

B.17. TimeSeriesAnalysis

Problem description Time series data (or, more generally, value series data (Mierswa
& Morik, 2005)), is usually not directly accessible for mining algorithms because of its
representation as a series rather than a collection of examples to learn from. An important
preparation task is therefore to create such a collection of examples.

Another common preparation task is to encode seasonality. The series may have a
monotonically increasing (time) index, such as dates, but may be based on real-world
phenomena that have a cyclic nature, such as the days of the week or the seasons of the
year. One often aims to encode the current phase of the cycle in the data.

Many other time series preparation problems exist, but these are the most common
and basic ones, and the ones that are currently supported by the MiningMart system.

Solution description WINDOWING (section A.3.4) is the operator that transforms a
linear series into a collection of examples. It is illustrated in this template on weather
data.

Based on a windowed representation, a weighted average of values in the window can be
computed; using a distance of 1 between the windows means to smooth the series values
(compare (Pyle, 1999)). This is also illustrated in this template, by a specific operator
that MiningMart provides for this purpose.

Seasonality encoding is exemplified based on the output of the template ExtractIn-
tegerTimelndexFromDate. The monotonically increasing integer time index modulo 7 is
computed (by ATTRIBUTE DERIVATION), in order to encode the weekly cycle (the time
index reflects daily measures in this data set, compare template ExtractIntegerTimeln-
dexFromDate).

Preparation concepts demonstrated WINDOWING; encoding markers for cyclic phases;
smoothing of series values.

MiningMart concepts demonstrated The slightly complex MiningMart operators for
windowing and computation of a weighted average over a window are demonstrated.

227

Appendix C: List of Criteria

This appendix presents all specific criteria that serve to compare KDD software packages,
as explained in section 8.3.3. The numbering of the criteria continues the numbering
started in section 8.3.2.

C.1. Data access

As was said in section 3.1.2, the two common types of data sources are flat files and
databases. Thus one criterion is the ability to load data from at least these sources:

7 Data formats: At the very least, flat files in various common formats, such as comma-
separated or sparse representations, and ODBC, the open database connection standard,
must be accessible. This applies to data input and output. More precisely, the following
boolean features form this criterion (m = 6):

possibility to read flat files at all;

possibility to specify any column-delimiting character when reading flat files;
— possibility to read the first line of a file as attribute names;

possibility to read tables via ODBC;
— possibility to read sparse representations;
— applicability of all of the above to both input and output of data.

However, once the data is loaded into the KDD software, every data transformation step
produces intermediate data tables. When handling large data sets, storing all interme-
diate tables would multiply the size needed by the original data set by a large factor
(roughly corresponding to the number of data preparation steps). Thus only some inter-
mediate results should be stored. The question of data storage is an important feature to
distinguish KDD software tools. Some leave all processing to the database, so that the
data never leaves the database. Others rely fully on the local file system.

Processing in databases has the advantage that structured search is possible on every
intermediate concept, and that the use of views allows this essentially without consuming
extra storage. Further, databases are usually installed on fast hardware with large storage
devices; see also (Musick & Critchlow, 1999). However, database management systems
include features such as transaction safety and concurrent access, which are not essential
for KDD but may slow down processing. In contrast, using the file system might be faster,
but does not allow structured search on intermediate results; further, the file system of
the workstation from which the KDD application is controlled may not be sufficient to
handle large volumes of data. As explained in section 2.1.4, this pertains more to data
preparation and deployment than to mining, as the latter should be performed in main
memory anyway.

228

C.1. Data access

Setting Time for short | Time for complete
processing chain | model application
in minutes in hours
DB to DB 129 39.4
DB to file 104
File to file 29 7.8
File to DB 68

Table C.1.: Comparison of execution times.

In order to compare the two data handling approaches, a few experiments were done
in the context of this work. A short data preparation chain with three attribute deriva-
tions and one attribute selection was applied to the CDR table with 61 million records
(described in section 5.6). This data preparation chain was executed using four settings:

1. inside the database, starting and ending with a materialised table (DB to DB);

2. reading from the database table, processing in main memory of the client (in batches
that fit into main memory) and writing to a result file (DB to file);

3. reading from and writing to a file, processing in batches in main memory of the
client (file to file); and

4. reading from a file, processing in batches in main memory of the client, and writing
to a database table (file to DB).

The last setting can be relevant when data is collected from different sites to a central
database, for example in distributed data mining scenarios. Depending on the application,
one may want to prepare the data before combining it with data from other sources, in
order to reduce the global amount of data. Thus there is some data preparation to be
done on the distributed clients’ file systems before loading the data to a central site.
Setting 1 was implemented in the KDD tool MiningMart which accessed an Oracle
database installed on a Sun Enterprise 250 server with 1.6 GB of main memory and two
400 Mhz CPUs. For the other three settings, Clementine (see section 8.5.2) was used in
the standalone version without a server, on a Windows client with 512 MB main memory
and a Pentium 1600 Mhz CPU which was connected to the Oracle database via ODBC
and a 100 Mbit /s Ethernet connection. The two KDD tools are described in section 8.5.
The data table that was processed takes more than 2 GB of storage space in the database,
so that processing could not take place completely in main memory in any setting.
Table C.1 shows the execution time for each setting. In setting 2 and 4, most of the
processing time is spent on reading or writing to the database, respectively. The purely
file system based processing (setting 3) is fastest. This finding is repeated when the
processing time of the complete data preparation part of the model use case (chapter
5) is compared for the first and third setting. It is also consistent with the experiments
reported in (Musick & Critchlow, 1999) for general data access, and (Sarawagi et al.,

229

Appendix C: List of Criteria

1998) in the data mining context, where rule mining was tested in a number of different
data handling scenarios, and caching data on the file system turned out to be the fastest
scenario. An interesting approach to remedy the database efficiency problem is presented
by Gimbel et al. (2004), who use pipelining and a management strategy to keep the
data sorted according to various indexes. This approach explicitly takes KDD-related
operations into account. However, it is not yet implemented in practically used database
management systems. In practice today, whether the advantages of structured search and
efficient storage that databases offer are worth the performance loss is dependent on the
application. So the next criterion is obtained.

8 Data processing: Ideally, the KDD software should be able to process data both inside
a given database and on the file system. If both places of processing are possible, the
user must be able to specify which one to use at any point in the processing graph. This
allows to distribute the computing load to the appropriate hardware. Hence, m = 3.

In databases, views can be employed for intermediate results, which take essentially
no extra storage space. However, processing deeply nested views as resulting from a long
sequence of data preparation operators is slow, so that a materialisation should take
place at regular points in the data flow. Most suitable are those points in the operator
dependency graph (section 4.4) where the output of one operator is consumed by several
other operators. A similar argument holds for flat file based processing: here it must
be possible to state which intermediate tables of a preparation chain should be stored
on the file system. There should be a mechanism for this which is independent from
dedicated data output operators, since such operators cannot be connected to further
processing steps, and thus interrupt the preparation graph inconveniently. This leads to
the following criterion.

9 Caching control (m = 2):

possibility to specify the points of materialisation/data storage during processing;
independence of this option from dedicated output nodes.

10 Caching size estimation: The size needed for storing an intermediate table to a file,
or for materialising a table, should be estimated, at least roughly, by the software before
the execution of the preparation graph. How such estimations can be done based on
metadata is discussed in section 3.3.3. See also criterion 25. This criterion is boolean.

11 Automatic caching: For long preparation chains or at end points of the data flow,
caching of results should be automatically done, or at least offered, by the software, so
that no resource-intensive process is started whose results are inadvertently not stored.
Moreover, sometimes caching is required by specific circumstances of which the user may
not be aware. In two tools examined for this work, long preparation chains on big data
sets had to be separated into several parts, each storing the output in a specific file for
the next part to read from, because otherwise some hidden temporary files that the tools
employed to store the several intermediate results (rather than only one result as when

230

C.2. Data modelling

caching) would have got too large for the available disk space. Thus the need for caching
must be recognised by the software. So m = 2:

— automatic caching at end points of a process is done;
automatic recognition of the need for caching is done.

12 Caching transparency: The files used for caching, or the materialised tables, must be
accessible, and must be clearly linked (e.g. by name) to their concept or to the operator
which outputs the data stored in them. This enables the user to follow the data storage
processes and arrive at own estimations of resource consumption. So m = 2 (accessibility
and linkedness).

13 Data inspection: Intermediate data tables (the extensions of the concepts) must be
inspectable from the tool. This facilitates the control of the ongoing work by the user.
This criterion is boolean.

C.2. Data modelling

14 Attribute import: The names of attributes must be automatically recognised from
database sources. For flat files, it is common to reserve the first line of the file for attribute
names; if such files are read, this must be recognised by the software. Also, common for-
mats storing attribute information in a separate file, such as ARFF, should be supported.
However, attribute names must not be fixed. Thus m = 3:

— automatic recognition of column names, to be used as attribute names;
possibility to edit attribute names;
— support for reading attribute information from a separate file.

15 Conceptual data types: The distinction between the actual storage type of data and
the way it is used conceptually should be made. This criterion is boolean.

16 Type recognition: A strong mechanism to automatically recognise the technical as
well as the conceptual data types of all attributes when importing data is a must. For
large data sets, recognition can take quite some time; thus recognition based on a sample
of the data, or recognition at a later point in the preparation graph, must be supported,
and this must be controllable by the user. The user must have the option to specify
the types by hand, to avoid long recognition processes on large data sets, or to correct
wrongly recognised conceptual types. Hence m = 5:

— automatic recognition of technical data types;
automatic guessing of conceptual data types;
possibility for the user to specify when recognition takes place;
— availability of recognition based on a data sample;
possibility to specify and change the conceptual data type by hand (at any time).

231

Appendix C: List of Criteria

17 Flexibility of type mapping: The relation between the conceptual data type of an
attribute and its technical counterpart must be transparent, flexible and controllable by
the user. It must be changeable at any point in the preparation graph, not only at the
beginning when data is imported. Thus m = 3 (transparency of mapping, changeability
by user, and independence from import).

18 Robustness of type mapping: If a preparation operator uses a technical data type
in a way not consistent with the conceptual data type it is currently mapped to, the
mapping ought to be changed, perhaps with a warning to the user, but this should not
lead to an error as it is a rather common situation (see section 3.3.1). This criterion is
boolean.

19 Data characteristics recognition: Similarly to type recognition (criterion 16), the set
and distribution of values occurring in the data must be recognised by the software during
import or at a later point, based on the entire data or on a sample, and control over this
must be given to the user. For continuous attributes, the range of occurring values instead
of the set of all values should be stored. Again, it must be possible to specify all of this
information manually. See also criterion 34. This criterion can be extended by boolean
features concerning further data characteristics, such as average values, number of unique
values in an attribute, and so on. Here, m = 6:

recognition of range of values of a continuous attribute;
— recognition of distribution of values of a discrete attribute;
— recognition of the number/percentage of missing values;
possibility for the user to specify when recognition takes place;
— availability of recognition based on a data sample;
possibility to specify and edit data characteristics by hand (at any time).

20 Data characteristics deployment: The data characteristics from criterion 19 must
be available during the declaration of the KDD process in the tool. For example, for
the operator VALUE MAPPING, the values of the selected input attribute (to be mapped
to other values) must be selectable during operator specification. For this functionality,
the availability of data characteristics in separate charts or tables is not enough. This
functionality is the boolean criterion.

21 Attribute roles: Support for the four roles identified in section 3.3.2 must be given.
That is, the user must be able to specify a role for each attribute. Thus m = 4 for the
three roles label, predictor, key and no role.

22 Attribute matching: On some occasions, attributes of different concepts are mapped
to each other. For example, when joining concepts, no duplicate attributes must occur in
the output concept, even if the same attribute is present in more than one input concept,
a situation that should be recognised by the software; at the same time the keys of the
input concepts must be matched. Similarly, the UNION operator requires a matching of
all attributes of the input concepts. As another example, when importing learned models

232

C.3. Preparation process

that were exported using PMML (see criterion 55), the attributes on which the model is
applicable must be matched to the attributes in the concept to which it is going to be
applied. The KDD software can save work by recognising matchable attributes by name
and conceptual or technical data type, especially as hundreds of attributes per concept
are not uncommon in some applications (more than 90 attributes are used for mining in
the model use case, in chapter 5). However, of course the matching must be editable by
the user. Hence m = 2 (automatic matching and editability).

23 Data type inference: When deriving a new attribute, its technical data type must be
inferred. The conceptual type is never uniquely determinable but can be guessed; default
types often suffice. So m = 2:

inference of technical data type of derived attributes;
— guessing of conceptual data type of derived attributes.

24 Abstract data model: Chapter 3 has argued that the intermediate data represen-
tations created during the KDD process are an important source of information, and
that they should be structured as clearly as possible. The two most important aspects of
abstract data modelling for KDD are used as features here (m = 2):

representation of data at a conceptual level;
— structuring of data at conceptual level, reflecting the KDD process and how it
produces intermediate results.

25 Characteristics estimation: Inference and optimistic estimation of data characteris-
tics are introduced in section 3.3.3. How and when data characteristics can be estimated
is specified for each preparation operator in chapter 4.

The importance of this criterion can be seen when noting that some operators, like P1v-
OTISATION (section A.3.2), rely on knowledge of which values occur in an input attribute
(for pivotisation, the index attribute). Tools in which this information is neither inferred
nor manually editable force the user to execute all steps that lead to the operator where
this information is needed, in order to then recognise the available values automatically
in the input. This situation was actually encountered by the author when implementing
the model use case in some tools. However, the execution may take a long time, which
is unacceptable during the development of an application, when the usefulness of any
preparation operation has not been established yet.

Many boolean features can be identified for this criterion based on the estimates in the
operator specifications in chapter 4. However, in the tools examined here they are not
distinctive. Therefore this criterion is boolean, and is fulfilled if a tool offers any inference
or estimation of data characteristics.

C.3. Preparation process

26 Syntactic validity checks: The software must differentiate between syntactically valid
and invalid preparation graphs, and support the user in finding reasons for invalidity.

233

Appendix C: List of Criteria

Invalid graphs can result from, for example, deleting attributes at one point which are
needed at another point, or by changing data characteristics, through recognition or
manually, which some operator’s specification depends on. The boolean features are (m =

4):

indication of invalid nodes in the graphical representation of the processing graph;
— indication of ill-formed derivation formulas;

indication of well-formed derivation formulas that use non-existing attributes;
— clear error messages to hint at the reasons for invalidity.

27 Propagation of changes: This is one of the most important criteria for large ap-
plications. In complex preparation graphs, many dependencies exist between attributes
and concepts at different locations in the graph. A simple example is a derivation of an
attribute early in the data flow; this attribute is available in every following step. If the
user decides to rename the derived attribute, the new name must be propagated through
the graph. Similarly, if the step deriving that attribute is deleted from the graph, all later
steps and concepts must be adjusted. Some steps may become invalid in the process; this
should be displayed. These adjustments must be done automatically, as they may be
rather complex. Compare section 6.6.

While such propagation of metadata through the graph should be as robust as possible,
it must not destroy invalid metadata. For example, if the deleted attribute is used as an
input to a complex derivation of another attribute, the formula for derivation must not
be deleted but kept in an invalid state, as the user might wish to modify the formula to
a different input attribute, for example.

The importance of this criterion, as well as that of criterion 25, was also independently
recognised by AlSairafi et al. (2003).

Propagation concerns attributes and concepts, as well as their names and types. As
section 6.6 argues, the operations that must be supported by propagation are addition,
deletion, renaming and retyping, so there are four boolean features that a KDD tool must
fulfil. A fifth feature checks the cautious deletion of dependent information, as explained
above. Thus m = 5.

28 Operator transparency: The reason for using pre-programmed operators is to save
the work of detailed specifications of data transformations. For example, using a dis-
cretisation operator whose input is simply the number of intervals spares the user the
computation of suitable interval boundaries, because the operator does this automati-
cally. Nevertheless, the results of such automatic specifications must be inspectable and
manipulable by the user. Besides giving more control to the user, this is also very im-
portant considering that some transformations have to be reversed for deployment (see
section 2.1.6), which is only possible for the user if all details of the transformation are
accessible (but see criterion 52). So m = 2 (inspectability and changeability of derivation
or selection formulas that are set up by the tool rather than the user).

29 Availability of operators: All operators listed in appendix A must be available in
the tool. This criterion could be extended to use all special options of the operators, but

234

C.3. Preparation process

this would result in a high value of m and the criterion would subsume too many details.
Section 8.6 provides a detailed table about the presence or absence of each operator and
many of their special options in every tool examined for this work. Thus m = 19 is chosen
here.

30 Grouping operators in preparation tasks: The association of preparation operators
to high-level preparation tasks, as done in chapter 4, is an important guideline for in-
experienced users. It helps to find suitable operations for solving particular tasks. This
criterion is boolean.

31 Intermediate views on data: The input to a KDD process is a number of tables. In
a given line of processing, one or more of these tables are changed. Every processing step
produces a new view on the data. To enable the user to view this current set of tables
after a given processing step, there should be an option to display only this set. This
criterion is boolean.

32 Attribute derivation support: For attribute derivation, it must be possible to set
up any formula, using basic functions, some of which are listed in section A.5.4. The
availability and meaning of these functions must be displayed to the user during set-
up of a formula. If such features are lacking, the user cannot know which functions are
available and what they compute, leading to frustrating trial-and-error procedures to
arrive at correct formulas. So m = 2 for the availability of a choice list of provided
functions, and for their documentation in the interface where the formula is set up.

33 [Iteration of attribute derivation: The operator ATTRIBUTE DERIVATION (section
A.5.4) must be configurable to derive more than one attribute based on the same for-
mula, using automatically a specified change in the derivation formula for each derived
attribute. For example, given an attribute that contains the months of a year, one new
attribute for each month might be created that contains derived values of another at-
tribute. The KDD tool should offer to set up the formula once, with a variable that
iterates over the values of the month attribute. This iteration process should create as
many attributes as there are values in the month attribute. But the derivation might
also iterate over several input attributes, rather than the values of one attribute, or over
values outside the data, for example an increasing counter. If an own attribute deriva-
tion operator for each new attribute had to be used instead, this would require much
more work to set up the operators, and the graph structure would become unnecessarily
complex. Thus m = 3:

possibility to use iteration over attribute values of a given attribute, to achieve
“parallel” derivation of several attributes;

— possibility to use iteration over attribute names of a given concept, for the same
purpose;

— possibility to use iteration over a given value list, again for the same purpose.

235

Appendix C: List of Criteria

34 Independence from data: An operator chain is declarative, thus it ought to be pos-
sible to set it up in the absence of input data. This is required, for example, when the
data has not been processed far enough yet, so that metadata inference (criterion 25) is
not possible. Another scenario is grid-based data mining, in which the allocation of com-
putational resources is independent from the declaration of the KDD process (compare
section 2.2 and (AlSairafi et al., 2003), where this criterion is also discussed). Though
many operator specifications depend on metadata (see criterion 27), it was also stressed
in criterion 19 that it must be possible to provide metadata by hand. This criterion is
boolean.

35 FEmpty data sets recognition: Sometimes operators produce concepts that have an
empty extension. This can happen after a join or a row selection. Not all tools recognise
this but it can be the source for errors. An error message should be given when this
happens. This criterion is boolean.

36 Representation of data flow: The interdependencies of operator instances can become
rather complex in big applications, so that they must be graphically displayed. If this
feature is lacking, the user has to rely on intermediate data set names to understand the
connection between steps. This criterion is boolean.

37 Pseudo-parallel processing: Representing several data tables of the same schema with
one element only, in order to allow the pseudo-parallel processing of data as motivated in
section 1.1.1, allows to save much user efforts during modelling. This criterion is boolean.

38 Support for chunking: As discussed in section 4.4, it contributes to keeping an
overview of complex preparation graphs if they can be partitioned into chunks. The
structure of chunks should be most flexible. More precisely, m = 2:

chunks must not be restricted to atmost one input and one output concept;
— chunks must be nestable into hierarchies.

39 Graph structure: The preparation graph (see section 4.4) is, in general, a directed
acyclic graph (DAG) without further restrictions. One tool evaluated for this work im-
poses the restriction that there can be no two different paths from a given operator to a
second one. Yet such a situation is rather common and occurs several times in the model
use case (chapter 5). This criterion is boolean, and is fulfilled if the DAG is unrestricted.

40 Execution transparency: When a data preparation graph is executed, progress should
be clearly indicated to the user. This includes (m = 7):

displaying information which step is currently being executed;
displaying the number of data rows already processed in this step;
— displaying the number of data rows yet to process in this step;
displaying the storage space consumed for the current execution;
— displaying the storage space expected to be required for the current execution;

236

C.3. Preparation process

— displaying the time the execution has consumed so far;
- displaying an estimation of the total execution time required.

41 Execution automation: An automatic execution of preparation graphs must be pos-
sible, to automate long-time consecutive or conceptually parallel experiments. More pre-
cisely, there are three aspects to be considered (m = 3):

— scheduling of execution runs to particular points in time;

— the option to automatically change parameters of the processing graph for each
execution, so that the same graph can be run on batches of data sets, or with some
specific parameter looping through its range for each execution;
the possibility to specify the order of execution for different parts of the graph.

42 Execution administration: An execution run of a KDD process is an experiment.
Information pertaining to this experiment must be automatically stored. This helps to
organise the user’s work when a lot of experiments are run, or when the execution times
exceed the user’s memory span. In particular (m = 7):

information which steps were executed in an experiment must be stored;
— the number of rows in input and output must be stored;

start and end time and date must be stored;

the names of any involved files or database tables must be stored;
— each experiment must be given a unique 1D, which must be stored;

each experiment must be commentable with free text;
— this information about stored experiments must be searchable.

43 Execution in background: Editing parts of the processing graph must be possible
during an execution of the graph. That is, the execution should run in the background,
without blocking the system. Yet edits should not pertain to the running execution. This
criterion is boolean.

44 Export transparency: Obviously, a way of storing and reloading the data preparation
graph with all its parameters is needed. A particular point is that the storage format
should be transparent, preferably based on an XML formalism. This gives extra flexibility
to the user for complex ways of editing the graphs which are not foreseen by the graphical
user interface. But more importantly, it makes the graphs at least readable when the
KDD tool that produced them is no longer available, making old applications usable to
some degree even when the computing environment changes. This criterion is boolean
(transparent storage format).

45 Editing flexibility: On each level of the KDD model (data types, parameters, opera-
tors, and chunks), copy and paste functions must be provided. All KDD tools examined
in this work offer this. However, flexible editing must also be possible for formulas in
attribute derivation or row selection, especially if more than one attribute is going to be

237

Appendix C: List of Criteria

derived in unsystematic ways not supported by the derivation operator (compare crite-
rion 33). Some tools examined for this work lacked this option, resulting in tedious extra
work in the situation of deriving many attributes. This criterion is boolean (availability
of copy and paste functions for all formulas).

46 Visual graph arrangement: As some applications require complex processing graphs,
the KDD software should be able to automatically arrange the nodes of the graph, the
operators, on the screen in a clear fashion, for example on a grid. This criterion is boolean.

C.4. Learning control

As explained in section 8.3.1, the criteria for the mining phase in this work concern
typical processing and control tasks. The main concepts are introduced in sections 2.1.4
and 2.1.6.

47 Splitting training and test set: A facility to randomly split a data table into a training
and a test set, according to a given ratio, must be available. This can be realised by the
operator SEGMENTATION (section A.6.1). This criterion is boolean.

48 Model evaluation: A facility to evaluate the performance of any model learned in the
tool on a test set must be available, using typical performance measures. Such measures
are not listed here because they depend on the type of mining task (examples are accuracy,
support, intra-cluster density etc.). But at least one application-independent performance
measure must be offered for every type of model. This criterion is boolean.

49 Mining subprocess support: The experiments around the application of the data
mining algorithm can be usefully modelled by nested control operators such as cross
validation or parameter tuning (Mierswa et al., 2003). Since the tools examined for this
work offer virtually no support for this, only a single boolean criterion is used. It is
fulfilled if direct support for experiments around mining is present. Although no tool
here fulfils the criterion, it is included in order to stress the importance of support for
mining experiments.

C.5. Deployment

50 Export of models: For deployment in an actual technical or business process, func-
tions that are learned by the tool must be exportable into source code, to be usable
outside the tool in arbitrary environments. This criterion is boolean.

51 Deployment in databases: It is very useful if a learned function can be used directly
in a relational database, since operational data is likely to be stored in such databases.
The learned function should be modelled in SQL or PL/SQL in order to enable this. This
criterion is boolean.

238

C.6. KDD standards

52 Post-processing: To enable the post-processing of data that was “encoded” for min-
ing (see section 2.1.6), the tool should offer an automatically created operator for any
reversible transformation that was applied during data preparation. This automatically
created operator can be applied to the predictions of a model and reverses the transfor-
mation, in order to get predictions from the original domain of the label attribute. This
criterion is boolean.

C.6. KDD standards

53 Published meta model: Modelling processes based on a public meta model allows
their system-independent publication, like in MiningMart’s case base. The various ad-
vantages for reuse and education of other users are discussed in depth in chapter 6. One
might introduce many boolean features based on this fundamental approach, but they
would not be distinctive among the tools examined here. Thus this whole criterion is
boolean.

54 CRISP support: The software should support the distinction between the different
phases of a KDD process, for example by providing different graphical environments
for data understanding (visualisation, characteristics computation), data preparation,
mining and deployment. This criterion is boolean.

55 PMML support: Models learned by the software should be exportable to files us-
ing the PMML standard (Grossman et al., 2002). Conversely, PMML files should be
importable and applicable. See also criterion 22. So m = 2 for import and export.

There are other standards around KDD, see (Grossman et al., 2002), but they are

more oriented towards KDD developers. From the conceptual point of view of a user, the
two standards above are the most relevant ones.

239

Appendix D: Technical level of model
application

The model application presented in chapter 5 was implemented in a few KDD tools to
gather experiences with their functionality, their strengths and weaknesses as discussed
in chapter 8. One implementation, from which the figures in chapter 5 are taken, was
done in the MiningMart system which automatically translates the conceptual data and
process models to SQL, the well-known standard language used in relational database
management systems today. In this section the automatically created SQL code for one
chunk of the model application, the revenue data preparation chunk (section 5.5), is given
and briefly explained, to provide an impression of the technical level and a contrast with
the conceptual level. For better readability, the SQL code is presented here using inden-
tations, and one type of abbreviation: column names are used instead of fully qualified
column names with their paths.

The first steps join the revenue data table (called IN_WINNINGS) with the data selection,
then remove missing values:

CREATE OR REPLACE
VIEW CS_100107354 AS

(SELECT PROFIT AS Revenue,
CALLER AS Caller,
CHURNMARK AS ChurnMark,
MONTH AS Month

FROM IN_WINNINGS, TrainingSetMaterialised

WHERE IN_WINNINGS.CALLER = TrainingSetMaterialised.CALLER)

CREATE OR REPLACE
VIEW CS_100107347 AS

(SELECT Revenue,
ChurnMark,
Caller,
Month

FROM CS_100107354

WHERE Revenue IS NOT NULL)

The following three listings are created three times, once for each of the three parallel
lines of preparation (see figure 5.6 on page 82).

240

CREATE OR REPLACE
VIEW CS_100107329 AS

(SELECT Caller,
Month,
ChurnMark,
Revenue

FROM CS_100107347

WHERE (ChurnMark = 1))

The step creating the abstract month attribute creates an SQL string defining a virtual
column; this string is used again in the view definition produced by the following step,
which is given below.

CREATE OR REPLACE
VIEW CS_100107321 AS
(SELECT Revenue,
((CASE WHEN Month IN (’Jul 2000’) THEN ’1°
WHEN Month IN (’Aug 2000°’) THEN ’2°
WHEN Month IN (’Sep 2000°) THEN ’3’
WHEN Month IN (°’0kt 2000°) THEN °4°
WHEN Month IN (’Nov 2000°) THEN °5°
WHEN Month IN (’Dez 2000°) THEN °’6°
ELSE (°0’) END))
AS Monthl_6,
ChurnMark,
Caller,
Month
FROM CS_100107329
WHERE Monthl_6 in (1,2,3,4,5,6))

Pivotisation produces:

CREATE OR REPLACE
VIEW CS_100107305 AS
(SELECT Caller,
SUM (CASE WHEN Monthl_6 = ’6’
THEN Revenue ELSE O END)
AS Revenue_6,
SUM (CASE WHEN Monthl_6 = °1°
THEN Revenue ELSE O END)
AS Revenue_1,
SUM (CASE WHEN Monthl_6 = ’4°
THEN Revenue ELSE O END)
AS Revenue_4,
SUM (CASE WHEN Monthl_6 = 2’
THEN Revenue ELSE O END)

241

Appendix D: Technical level of model application

AS Revenue_2,
SUM (CASE WHEN Monthl_6 = ’5’
THEN Revenue ELSE O END)
AS Revenue_5,
SUM (CASE WHEN Monthl_6 = ’3?
THEN Revenue ELSE O END)
AS Revenue_3
FROM CS_100107321
GROUP BY Caller)

Then the three parallel data sets are unified again:

CREATE OR REPLACE
VIEW CS_100107285 AS
((SELECT Revenue_6,
Revenue_1,
Revenue_4,
Revenue_2,
Caller,
Revenue_5,
Revenue_3
FROM CS_100107305)
UNION
(SELECT Revenue_6,
Revenue_1,
Revenue_4,
Revenue_2,
Caller,
Revenue_5,
Revenue_3
FROM CS_100107299)
UNION
(SELECT Revenue_6,
Revenue_1,
Revenue_4,
Revenue_2,
Caller,
Revenue_5,
Revenue_3
FROM CS_100107303))

242

Materialisation:

CREATE TABLE Revenues6Months AS

(SELECT Revenue_6,
Revenue_1,
Revenue_4,
Revenue_2,
Caller,
Revenue_5,
Revenue_3

FROM CS_100107285)

The two following attribute derivations are again reflected in the final view that is the
result of this chain, and that realises the attribute selection step.

CREATE OR REPLACE
VIEW CS_100107213 AS
(SELECT Caller,
Revenue_6,
Revenue_3,
Revenue_4,
Revenue_1,
Revenue_2,
Revenue_5,
((CASE WHEN (Revenue_l+Revenue_2+Revenue_3+
Revenue_4+Revenue_b+Revenue_6)
< 300.0 THEN (’low?)
WHEN (Revenue_1l+Revenue_2+Revenue_3+
Revenue_4+Revenue_b5+Revenue_6)
< 600.0 THEN (’medium’)
ELSE (’high’) END))
AS RevSumClass
FROM Revenues6Months)

243

Appendix E: SQL Implementation of
Test Case

This appendix lists an SQL program that realises the test case described in section 8.4.
The program can serve as a reference for an evaluation of a KDD tool.

-- This SQL script creates two small tables and realises
-- some data preparation operations on them.
-- Author: Timm Euler, University of Dortmund (April 2005)

-- create tables:

DROP TABLE Saleinfo;
CREATE TABLE Saleinfo
(Employee NUMBER(2),
Month NUMBER(2),
Sales NUMBER(4),
Revenue NUMBER
);

DROP TABLE Employeeinfo;
CREATE TABLE Employeeinfo
(Employee NUMBER(2),
Entry DATE,
Position VARCHAR2(10),
CONSTRAINT EmployeePk PRIMARY KEY (Employee)
)3

-- insert some values:

DELETE FROM Saleinfo;

INSERT INTO Saleinfo VALUES (1, 1, 3, 40.5);
INSERT INTO Saleinfo VALUES (1, 2, 2, 22.8);
INSERT INTO Saleinfo VALUES (1, 3, -1, 10.0);
INSERT INTO Saleinfo VALUES (2, 1, 5, 54.2);
INSERT INTO Saleinfo VALUES (2, 2, 7, 58.6);
INSERT INTO Saleinfo VALUES (2, 3, 4, 41.0);
INSERT INTO Saleinfo VALUES (3, 1, -1, 10.0);
INSERT INTO Saleinfo VALUES (3, 2, 2, 38.1);
INSERT INTO Saleinfo VALUES (3, 3, 4, 44.3);

244

DELETE FROM Employeeinfo;
INSERT INTO Employeeinfo VALUES (1, to_date(’02-12-1988’,°DD-MM-YYYY?’),

’Senior?);

INSERT INTO Employeeinfo VALUES (2, to_date(’01-06-1998°,°DD-MM-YYYY’),
’Trainee’) ;

INSERT INTO Employeeinfo VALUES (3, to_date(’01-01-1990°,°DD-MM-YYYY’),
’Senior?);

-- chain A:
-- step Al: select rows with Sales < 5

CREATE OR REPLACE VIEW Smallsales AS
(SELECT * FROM Saleinfo WHERE Sales < 5);

-- step A2: map -1 to O for the Sales column

CREATE OR REPLACE VIEW Smallsales_Corrected AS
(SELECT Employee,
Month,
(CASE WHEN Sales = -1 THEN O ELSE Sales END) AS Sales,
Revenue
FROM Smallsales
);

-- step A3: discretise Revenue column into 2 bins

CREATE OR REPLACE VIEW Binned_Revenue AS
(SELECT Employee,
Month,
(CASE WHEN Revenue < 40 THEN O ELSE 1 END) AS Bin
FROM Smallsales_Corrected
);

-- step A4: compute ratio of high revenue months per employee

CREATE OR REPLACE VIEW High_Revenues_Ratio AS
(SELECT Employee,
AVG(Bin) AS Ratio
FROM Binned_Revenue
GROUP BY Employee
)3

245

Appendix E: SQL Implementation of Test Case

-- chain B:

-- step Bl: pivotise revenues (create 3 new columns,
one per month)

CREATE OR REPLACE VIEW Pivotised_Data AS
(SELECT Employee,
SUM(CASE WHEN Month = 1 THEN Revenue ELSE O END)
AS Revenue_Monthl,
SUM(CASE WHEN Month = 2 THEN Revenue ELSE O END)
AS Revenue_Month2,
SUM(CASE WHEN Month = 3 THEN Revenue ELSE O END)
AS Revenue_Month3
FROM Saleinfo
GROUP BY employee
);

-- step B2: join

CREATE OR REPLACE VIEW Alldata AS
(SELECT Employeeinfo.Employee,
Revenue_Monthl,
Revenue_Month?2,
Revenue_Month3,
Entry,
Position
FROM Pivotised_Data, Employeeinfo
WHERE Pivotised_Data.Employee = Employeeinfo.Employee
)3

-- step B3: compute changes in the revenues per month

CREATE OR REPLACE VIEW Revenue_Changes AS
(SELECT Employee,
(Revenue_Month3 - Revenue_Monthl) AS DiffM3M1,
(Revenue_Month3 - Revenue_Month2) AS DiffM3M2,
Revenue_Monthl,
Revenue_Month2,
Revenue_Month3,
Entry,
Position
FROM Alldata
);

246

Bibliography

Aamodt, A., & Plaza, E. (1994). Case-Based Reasoning: Foundational Issues, Method-
ological Variations, and System Approaches. AI Communications, 7, 39 59.

Abbott, D. W., Matkovsky, I. P., & Elder IV, J. F. (1998). An Evaluation of High-end
Data Mining Tools for Fraud Detection. IEEE International Conference on Systems,
Man, and Cybernetics. San Diego, CA.

Abiteboul, S., & Vianu, V. (1991). Generic Computation and its Complexity. Proceedings
of the 23rd ACM Symposium on the Theory of Computing (pp. 209-219).

Abrial, J.-R. (1974). Data Semantics. In J. Klimbie and K. Koffeman (Eds.), Data Base
Management, 1-59. Amsterdam: North Holland.

Acharya, S., Gibbons, P. B., Poosala, V., & Ramaswamy, S. (1999). Join Synopses
for Approximate Query Answering. Proceedings of the ACM SIGMOD International
Conference on Management of Data (pp. 275 286). New York, NY, USA: ACM Press.

Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining Association Rules between
Sets of Items in Large Databases. Proceedings of the ACM SIGMOD Conference on
Management of Data (pp. 207-216). Washington, D. C.

Aho, A. V., & Ullman, J. D. (1979). Universality of Data Retrieval Languages. Pro-
ceedings of the 6th ACM Symposium on Principles of Programming Languages (pp.
110-117). San Antonio, Texas.

Akahani, J., Hiramatsu, K., & Kogure, K. (2002). Coordinating Heterogeneous Informa-
tion Services Based on Approximate Ontology Translation. Proceedings of the AAMAS-
2002 Workshop on Agentcities: Challenges in Open Agent Systems.

AlSairafi, S., Emmanouil, F.-S., Ghanem, M., Giannadakis, N., Guo, Y., Kalaitzopoulos,
D., Osmond, M., Rowe, A., Syed, J., & Wendel, P. (2003). The Design of Discovery Net:
Towards Open Grid Services for Knowledge Discovery. High-Performance Computing
Applications, 17, 297 315.

Altenschmidt, C., & Biskup, J. (2002). Explicit Representation of Constrained Schema
Mappings for Mediated Data Integration. Proceedings of the Second International
Workshop on Databases in Networked Information Systems (DNIS) (pp. 103-132). Lon-
don, UK: Springer.

April, A, A, & Al-Shurougi, D. (2000). Software Product Measurement for Supplier
Evaluation. Proceedings of the FESMA-AEMES Software Measurement Conference.
Madrid, Spain.

247

BIBLIOGRAPHY

Aubrecht, P., Zelezny, F., Miksovsky, P., & Stepankova, O. (2002). SumatraTT: To-
wards a Universal Data Preprocessor. Cybernetics and Systems (pp. 818 823). Vienna:
Austrian Society for Cybernetics Studies.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., & Patel-Schneider, P. (2003). The
Description Logic Handbook. Cambridge (UK): Cambridge University Press.

Babcock, B., Babu, S., Datar, M., Motwani, R., & Widom, J. (2002). Models and Issues in
Data Stream Systems. Proceedings of 21st ACM Symposium on Principles of Database
Systems (PODS) (pp. 1 16).

Banerjee, J., Kim, W., Kim, H.-J., & Korth, H. F. (1987). Semantics and Implementation
of Schema Evolution in Object-Oriented Databases. Proceedings of the 1987 ACM
SIGMOD International Conference on Management of Data (pp. 311 322). New York,
NY, USA: ACM Press.

Barbacci, M., Klein, M. H., Longstaff, T. A., & Weinstock, C. B. (1995). Quality At-
tributes (Technical Report CMU/SEI-95-TR-021). Software Engineering Institute.

Batini, C., Ceri, S., & Navathe, S. B. (1992). Conceptual Database Design: An Entity-
Relationship Approach. Redwood City: Benjamin/Cummings.

Berka, P., Jirousek, R., & Pudil, P. (2002). Feature Selection Operators Based on In-
formation Theoretical Measures (Technical Report Deliverable D14.4). IST Project
MiningMart, IST-11993.

Bernstein, A., Hill, S.; & Provost, F. (2005). Toward Intelligent Assistance for a Data
Mining Process: An Ontology-Based Approach for Cost-Sensitive Classification. IEEE
Transactions on Knowledge and Data Engineering, 17, 503-518.

Biskup, J. (1995). Grundlagen von Informationssystemen. Vieweg.

Boehm, B. W., Brown, J., Kaspar, H., Lipow, M., McLeod, G., & Merritt, M. (1978).
Characteristics of Software Quality. Amsterdam: North-Holland.

Bogorny, V., Engel, P. M., & Alvares, L. O. C. (2005). Towards the Reduction of Spatial
Joins for Knowledge Discovery in Geographic Databases Using Geo-Ontologies and
Spatial Integrity Constraints. Proceedings of the Workshop on Knowledge Discovery
and Ontologies (KDO) at the 9th European Conference on Principles and Practice in
Knowledge Discovery in Databases (PKDD) (pp. 51 58). Porto, Portugal.

Borgelt, C., & Berthold, M. R. (2002). Mining Molecular Fragments: Finding Relevant
Substructures of Molecules. Proceedings of the 2002 IEEE International Conference on
Data Mining (ICDM) (pp. 51-58). Washington, DC, USA: IEEE Computer Society.

Borgida, A., Lenzerini, M., & Rosati, R. (2003). Description Logics for Databases. In
F. Baader, D. Calvanese, D. McGuinness, D. Nardi and P. Patel-Schneider (Eds.), The
Description Logic Handbook, chapter 16. Cambridge University Press.

248

BIBLIOGRAPHY

Borgida, A., & Mylopoulos, J. (2004). Data Semantics Revisited. Proceedings of the
VLDB workshop on The Semantic Web and Databases (SWDB). Toronto: Springer.

Botella, P., Illa, X. B., Carvallo, J. P., Franch, X., & Quer, C. (2002). Using Quality
Models for Assessing COTS Selection. Anais do WER02 - Workshop em Engenharia
de Requisitos (pp. 263-277). Valencia, Spain.

Boulicaut, J.-F. (2004). Inductive Databases and Multiple Uses of Frequent Itemsets: the
cInQ Approach. In R. Meo, P. L. Lanzi and M. Klemettinen (Eds.), Database Support
for Data Mining Applications (LNCS 2682). Springer.

Boulicaut, J.-F., Klemettinen, M., & Mannila, H. (1999). Modeling KDD Processes
within the Inductive Database Framework. Proceedings of the First International Con-
ference on Data Warehousing and Knowledge Discovery (DaWaK) (pp. 293 302). Lon-
don, UK: Springer-Verlag.

Brachman, R. J. (1979). On the Epistomological Status of Semantic Networks. In
N. Findler (Ed.), Associative Networks: Representation and Use of Knowledge by Com-
puters, 3 50. New York: Academic Press.

Brachman, R. J., & Anand, T. (1996). The Process of Knowledge Discovery in Databases:
A Human-Centered Approach. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and
R. Uthurusamy (Eds.), Advances in Knowledge Discovery and Data Mining, AAAI
Press Series in Computer Science. Cambridge Massachusetts, London England: A Brad-
ford Book, The MIT Press.

Brachman, R. J., & Schmolze, J. (1985). An Overview of the KL-ONE Knowledge
Representation System. Cognitive Science, 9, 171 216.

Brazdil, P., Soares, C., & da Costa, J. P. (2003). Ranking Learning Algorithms: Using IBL
and Meta-Learning on Accuracy and Time Results. Machine Learning, 50, 251 277.

Brezany, P., Hofer, J., Tjoa, A. M., & Wohrer, A. (2003). GridMiner: An Infrastructure
for Data Mining on Computational Grids. Proceedings of the APAC Conference and
Exhibition on Advanced Computing, Grid Applications and eResearch. Queensland.

Brezany, P., Janciak, I., Wohrer, A.; & Tjoa, A. M. (2004). GridMiner: A Framework
for Knowledge Discovery on the Grid from a Vision to Design and Implementation.
Proceedings of the Cracow Grid Workshop. Cracow, Poland.

Brisson, L., Collard, M., LeBrigand, K., & Barbry, P. (2004). KTA: A Framework for
Integrating Expert Knowledge and Experiment Memory in Transcriptome Analysis.
Workshop on Knowledge Discovery and Ontologies at ECML/PKDD 04 (pp. 85 90).
Pisa, Italy.

Brodie, M. L. (1984). On the Development of Data Models. In M. L. Brodie, J. Mylopou-
los and J. W. Schmidt (Eds.), On Conceptual Modelling, Perspectives from Artificial
Intelligence, Databases, and Programming Languages, 19-48. New York: Springer.

249

BIBLIOGRAPHY

Brown, A. W., & Wallnau, K. C. (1996). A Framework for Systematic Evaluation of
Software Technologies. IEEE Software, 13, 39 49.

Burges, C. (1998). A Tutorial on Support Vector Machines for Pattern Recognition.
Data Mining and Knowledge Discovery, 2, 121 167.

Cabibbo, L., & Torlone, R. (1999). A Framework for the Investigation of Aggregate
Functions in Database Queries. Proceedings of the 7th International Conference on
Database Theory (ICDT) (pp. 383 397). Springer.

Calvanese, D., Giacomo, G. D., & Lenzerini, M. (2000). Answering Queries Using Views
over Description Logics Knowledge Bases. Proceedings of the Seventeenth National
Conference on Artificial Intelligence and Twelfth Conference on Innovative Applica-
tions of Artificial Intelligence (AAAI/TAAI) (pp. 386-391). AAAI Press / The MIT
Press.

Cannataro, M., & Comito, C. (2003). A Data Mining Ontology for Grid Programming.
1st Workshop on Semantics in Peer-to-Peer and Grid Computing at the 12th Int. World
Wide Web Conference. Budapest, Hungary.

Cannataro, M., Congiusta, A., Mastroianni, C., Pugliese, A., Talia, D., & Trunfio, P.
(2004). Grid-Based Data Mining and Knowledge Discovery. In N. Zhong and J. Liu
(Eds.), Intelligent Technologies for Information Analysis. Springer.

Carreira, P., & Galhardas, H. (2004). Execution of Data Mappers. Proceedings of the
International Workshop on Information quality in Information Systems (IQIS) (pp.
2 9). New York, NY, USA: ACM Press.

Cartwright, M., & Shepperd, M. (2000). An Empirical Investigation of an Object-
Oriented Software System. IEEE Transactions on Software Engineering, 26, 786—796.

Carvallo, J. P., Franch, X., Grau, G., & Quer, C. (2004a). On the Use of Quality Mod-
els for COTS Evaluation. Proceedings of the International Workshop on Models and
Processes for the Evaluation of COTS Components (MPEC). Edinburgh, UK.

Carvallo, J. P., Franch, X., Grau, G., & Quer, C. (2004b). QM: A Tool for Building
Software Quality Models. Proceedings of the 12th IEEE International Conference on
Requirements Engineering (RE 2004) (pp. 358 359). Kyoto, Japan: IEEE Computer
Society.

Cattell, R. G. G., Barry, D. K., Berler, M., Eastman, J., Jordan, D., Russell, C., Schadow,
O., Stanienda, T., & Velez, F. (2000). The Object Data Standard: ODMG 3.0. Morgan
Kaufmann.

Cavano, J. P.; & McCall, J. A. (1978). A Framework for the Measurement of Software
Quality. Proceedings of the Software Quality Assurance Workshop on Functional and
Performance Issues (pp. 133-139).

250

BIBLIOGRAPHY

Cespivova, H., Rauch, J., Svatek, V., Kejkula, M., & Tomeckova, M. (2004). Roles of
Medical Ontology in Association Mining CRISP-DM Cycle. Workshop on Knowledge
Discovery and Ontologies at ECML/PKDD.

Chandra, A. K., & Harel, D. (1982). Structure and Complexity of Relational Queries.
Journal of Computer and System Sciences, 25, 99—-128.

Chandra, A. K., & Harel, D. (1985). Horn Clause Queries and Generalizations. Journal
of Logic Programming, 2, 1-15.

Chapman, P.; Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth,
R. (2000). CRISP-DM 1.0 (Technical Report). The CRISP-DM Consortium.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Syn-
thetic Minority Over-Sampling Technique. Journal of Artificial Intelligence Research
(JAIR), 16, 321 357.

Chen, C. M., & Roussopoulos, N. (1994). Adaptive Selectivity Estimation Using Query
Feedback. Proceedings of the ACM SIGMOD International Conference on Management
of Data (pp. 161-172). New York, NY, USA: ACM Press.

Chen, P. P. (1976). The Entity Relationship Model: Towards an Integrated View of Data.
ACM Transactions on Database Systems, 1, 9-36.

Christodoulakis, S. (1983). Estimating Block Transfers and Join Sizes. Proceedings of the
ACM SIGMOD International Conference on Management of Data (pp. 40-54). New
York, NY, USA: ACM Press.

Chudzian, C., Granat, J., & Traczyk, W. (2003). Call Center Case (Technical Report
Deliverable D17.2b). IST Project MiningMart, IST-11993.

Clancey, W. J. (1983). The Epistomology of a Rule-Based Expert System a Framework
for Explanation. Artificial Intelligence, 20, 215-251.

Claypool, K. T., Jin, J., & Rundensteiner, E. A. (1998). SERF: Schema Evalution
through an Extensible, Re-usable and Flexible Framework. Proceedings of the ACM
International Conference on Information and Knowledge Management (CIKM) (pp.
314-321).

Clear, J., Dunn, D., Harvey, B., Heytens, M. L., Lohman, P., Mehta, A., Melton, M.,
Rohrberg, L., Savasere, A., Wehrmeister, R. M., & Xu, M. (1999). NonStop SQL/MX
Primitives for Knowledge Discovery. Proceedings of the Fifth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD) (pp. 425-429).
San Diego, CA, USA.

Codd, E. F. (1970). A Relational Model of Data for Large Shared Data Banks. Commu-
nications of the ACM, 13, 377 387.

Collier, K. W., Sautter, D., Marjaniemi, C., & Carey, B. (1999). A Methodology for
Evaluating and Selecting Data Mining Software. Proceedings of the 32nd Hawaii Int.
Conference on System Sciences.

251

BIBLIOGRAPHY

Colombo, R., & Guerra, A. (2002). The Evaluation Method for Software Products.
Proceedings of the International Conference on Software and Systems Engineering and
Their Applications (ICSSEA). Paris, France.

Coppock, D. S. (2003). Data Mining and Modeling: So You Have a Model, Now What?
DM Review Magazine.

Cortes, C., & Vapnik, V. N. (1995). Support—Vector Networks. Machine Learning Jour-
nal, 20, 273-297.

Cunningham, C., Graefe, G., & Galindo-Legaria, C. A. (2004). PIVOT and UNPIVOT:
Optimization and Execution Strategies in an RDBMS. Proceedings of the Thirtieth
International Conference on Very Large Data Bases (VLDB) (pp. 998-1009). Morgan
Kaufmann.

Davidson, S. B., & Kosky, A. (1997). WOL: A Language for Database Transforma-
tions and Constraints. Proceedings of the Thirteenth International Conference on Data
Engineering (ICDE) (pp. 55—65). Washington, DC, USA: IEEE Computer Society.

Doan, A., Domingos, P., & Halevy, A. Y. (2001). Reconciling Schemas of Disparate Data
Sources: A Machine-Learning Approach. Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data (pp. 509-520). New York, NY, USA: ACM
Press.

Domingos, P., & Hulten, G. (2000). Mining High Speed Data Streams. Proceedings of
the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’00) (pp. 71-80).

Domingues, M. A.; & Rezende, S. O. (2005). Using Taxonomies to Facilitate the Anal-
ysis of the Association Rules. Proceedings of the Workshop on Knowledge Discovery

and Ontologies (KDO) at the 9th European Conference on Principles and Practice in
Knowledge Discovery in Databases (PKDD) (pp. 59-66). Porto, Portugal.

Duschka, O. M., Genesereth, M. R., & Levy, A. Y. (2000). Recursive Query Plans for
Data Integration. Journal of Logic Programming, 43, 49 73.

Euler, T. (2002a). Feature Selection with Support Vector Machines (Technical Report
Deliverable D14.3). IST Project MiningMart, IST-11993.

Euler, T. (2002b). How to Implement M} Operators (Technical Report TR12-04). IST
Project MiningMart, IST-11993.

Euler, T. (2002¢). Operator Specifications (Technical Report TR12-02). IST Project
MiningMart, IST-11993.

Euler, T. (2002d). Tailoring Text Using Topic Words: Selection and Compression. Pro-

ceedings of the 13th International Workshop on Database and Expert Systems Applica-
tions (DEXA) (pp. 215-219). Los Alamitos, CA: IEEE Computer Society Press.

252

BIBLIOGRAPHY

Euler, T. (2005a). An Adaptable Software Product Evaluation Metric. Proceedings of
the 9th IASTED International Conference on Software Engineering and Applications
(SEA). Phoenix, Arizona, USA.

Euler, T. (2005b). Churn Prediction in Telecommunications Using MiningMart. Pro-
ceedings of the Workshop on Data Mining and Business (DMBiz) at the 9th European
Conference on Principles and Practice in Knowledge Discovery in Databases (PKDD).
Porto, Portugal.

Euler, T. (2005¢). Modelling Data Mining Processes on a Conceptual Level. Proceedings
of the 5th International Conference on Decision Support for Telecommunications and
Information Society. Warsaw, Poland.

Euler, T. (2005d). Publishing Operational Models of Data Mining Case Studies. Pro-
ceedings of the Workshop on Data Mining Case Studies at the 5th IEEE International
Conference on Data Mining (ICDM) (pp. 99 106). Houston, Texas, USA.

Euler, T. (2006). Modeling Preparation for Data Mining Processes. Journal of Telecom-
munications and Information Technology, 81 87.

Euler, T., Morik, K., & Scholz, M. (2003). MiningMart: Sharing Successful KDD Pro-
cesses. LLWA 2003 — Tagungsband der GI-Workshop- Woche Lehren — Lernen — Wissen
Adaptivitat (pp. 121 122).

Euler, T., & Scholz, M. (2004). Using Ontologies in a KDD Workbench. Workshop on
Knowledge Discovery and Ontologies at ECML/PKDD 04 (pp. 103 108). Pisa, Italy.

Euzenat, J., & Valtchev, P. (2004). Similarity-Based Ontology Alignment in OWL-Lite.
Proceedings of the 16th European Conference on Artificial Intelligence (ECAI) (pp.
333-337).

Fahrner, C. (1996). Schematransformationen in Datenbanken. Doctoral dissertation,
Westfalische Wilhelms-Universitat Munster.

Famili, F., Shen, W.-M., Weber, R., & Simoudis, E. (1997). Data Preprocessing and
Intelligent Data Analysis. Intelligent Data Analysis, 1.

Fayyad, U. M., Piatetsky-Shapiro, G., & Smyth, P. (1996). From Data Mining to Knowl-
edge Discovery: An Overview. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and
R. Uthurusamy (Eds.), Advances in Knowledge Discovery and Data Mining, chapter 1,
1-34. AAAI/MIT Press.

Fiedler, G., Raak, T., & Thalheim, B. (2005). Database Collaboration Instead of In-
tegration. Proceedings of the 2nd Asia-Pacific Conference on Conceptual Modelling
(APCCM) (pp. 49 58). Darlinghurst, Australia: Australian Computer Society, Inc.

Formica, A., & Missikoff, M. (2004). Inheritance Processing and Conflicts in Structural
Generalization Hierarchies. ACM Computing Surveys, 36, 263-290.

253

BIBLIOGRAPHY

Fortin, S. (1996). The Graph Isomorphism Problem (Technical Report 96-20). University
of Alberta, Canada.

Franconi, E., & Ng, G. (2000). The i.com Tool for Intelligent Conceptual Modelling.
Proceedings of the 7th International Workshop on Knowledge Representation meets
Databases (KRDB) (pp. 45-53). CEUR-WS.org.

Franconi, E., & Sattler, U. (1999). A Data Warehouse Conceptual Data Model for
Multidimensional Aggregation. Proceedings of the International Workshop on Design
and Management of Data Warehouses (DMDW) (p. 13). CEUR-WS.org.

Freeman, E., & Melli, G. (2005). Championing LTV at LTC. Proceedings of the Workshop
on Data Mining Case Studies at the 5th IEEE International Conference on Data Mining
(ICDM) (pp. 107 113). Houston, Texas, USA.

Freitas, A. A., & Lavington, S. H. (1996). Using SQL Primitives and Parallel DB Servers
to Speed up Knowledge Discovery in Large Relational Databases. Cybernetics and Sys-
tems: Proceedings of the 13th Furopean Meeting on Cybernetics and Systems Research
(EMCSR) (pp. 955 960). Vienna, Austria: Austrian Society for Cybernetic Studies.

Galhardas, H., Florescu, D., Shasha, D., Simon, E., & Saita, C.-A. (2001). Declarative
Data Cleaning: Language, Model, and Algorithms. Proceedings of 27th International
Conference on Very Large Data Bases (VLDB) (pp. 371 380). Morgan Kaufmann.

Gamma, E., Helm, R., Johnson, R. E., & Vlissides, J. (1995). Design Patterns. Elements
of Reusable Object-Oriented Software. Amsterdam: Addison-Wesley Longman.

Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman,
J., Vassalos, V., & Widom, J. (1997). The TSIMMIS Approach to Mediation: Data
Models and Languages. Journal of Intelligent Information Systems, 8, 117-132.

Garcia-Molina, H., Ullman, J. D., & Widom, J. (2002). Database Systems: The Complete
Book. Upper Saddle River, New Jersey: Prentice Hall.

Gaul, W., & Sauberlich, F. (1999). Classification and Positioning of Data Mining Tools.
Classification in the Information Age (pp. 145 154). Springer.

Gentsch, P.; Niemann, C., & Roth, M. (2000). Data Mining: 12 Software-Losungen im
Vergleich. Oxygon-Verlag. In German.

Gimbel, M., Klein, M., & Lockemann, P. C. (2004). Interactivity, Scalability and Re-
source Control for Efficient KDD Support in DBMS. In R. Meo, P. L. Lanzi and
M. Klemettinen (Eds.), Database Support for Data Mining Applications (LNAI 2682),
174-193. Berlin, Heidelberg: Springer.

Giraud-Carrier, C., & Provost, F. (2005). Toward a Justification of Meta-Learning: Is
the No Free Lunch Theorem a Show-Stopper? Proceedings of the Workshop on Meta-
Learning at the International Conference on Machine Learning (ICML) (pp. 12-19).

254

BIBLIOGRAPHY

Giraud-Carrier, C. G., & Povel, O. (2003). Characterising Data Mining Software. Intel-
ligent Data Analysis, 7, 181 192.

Goebel, M., & Gruenwald, L. (1999). A Survey of Data Mining and Knowledge Discovery
Software Tools. ACM SIGKDD Ezxplorations, 1, 20 33.

Grossman, R. L., Hornick, M. F., & Meyer, G. (2002). Data Mining Standards Initiatives.
Communications of the ACM, /5, 59-61.

Gruber, T. R. (1993). Towards Principles for the Design of Ontologies Used for Knowl-
edge Sharing. Formal Ontology in Conceptual Analysis and Knowledge Representation.
Deventer, The Netherlands: Kluwer Academic Publishers.

Gupta, H. (1997). Selection of Views to Materialize in a Data Warehouse. Proceedings of
the 6th International Conference on Database Theory (ICDT) (pp. 98 112). London,
UK: Springer-Verlag.

Gupta, H., & Mumick, I. S. (2005). Selection of Views to Materialize in a Data Ware-
house. IEEE Transactions on Knowledge and Data Engineering, 17, 24 43.

Gyssens, M., Lakshmanan, L. V. S., & Subramanian, I. N. (1996). Tables as a Paradigm
for Querying and Restructuring. Proceedings of the Fifteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS) (pp. 93-103). New
York, NY, USA: ACM Press.

Haas, P., Kandil, M., Lerner, A., Markl, V., Popivanov, I., Raman, V., & Zilio, D. (2005).
Automated Statistics Collection in Action. Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data (pp. 933 935). New York, NY,
USA: ACM Press.

Haas, P. J., Naughton, J. F., Seshadri, S., & Swami, A. N. (1996). Selectivity and Cost
Estimation for Joins Based on Random Sampling. Journal of Computer and System
Sciences, 52, 550 569.

Halevy, A. Y. (2001). Answering Queries Using Views: A Survey. VLDB Journal, 10,
270 294.

Hammer, J., Garcia-Molina, H., Nestorov, S., Yerneni, R., Breunig, M., & Vassalos, V.
(1997). Template-Based Wrappers in the TSIMMIS System. Proceedings of the ACM
SIGMOD Conference on Management of Data (pp. 532 535). Tucson, Arizona.

Han, J., & Fu, Y. (1999). Mining Multiple-Level Association Rules in Large Databases.
IEEE Transactions of Knowledge and Data Engineering, 11, 798 804.

Han, J., Fu, Y., Wang, W., Koperski, K., & Zaiane, O. (1996). DMQL: A Data Mining
Query Language for Relational Databases. Proceedings of the SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery (DMKD). Montreal,
Canada.

255

BIBLIOGRAPHY

Harangsri, B., Shepherd, J., & Ngu, A. H. H. (1997). Query Size Estimation Using Ma-
chine Learning. Proceedings of the Fifth International Conference on Database Systems

for Advanced Applications (DASFAA) (pp. 97 106). World Scientific.

Harinarayan, V., Rajaraman, A., & Ullman, J. D. (1996). Implementing Data Cubes
Efficiently. Proceedings of the 1996 ACM SIGMOD International Conference on Man-
agement of Data (pp. 205-216). New York, NY, USA: ACM Press.

Haustein, S. (2002). Internet Presentation of MiningMart Cases (Technical Report De-
liverable D9). IST Project MiningMart, IST-11993.

Haustein, S. (2006). An interpretative approach to the model-driven development of web
applications. Doctoral dissertation, University Dortmund.

Haustein, S., & Pleumann, J. (2002). Easing participation in the semantic web. Inter-
national Workshop on the Semantic Web at WWW2002.

Hereth, J., & Stumme, G. (2001). Reverse Pivoting in Conceptual Information Systems.
Proceedings of the 9th International Conference on Conceptual Structures (ICCS) (pp.
202 215). London, UK: Springer-Verlag.

Hermiz, K. B. (1999). Critical Success Factors for Data Mining Projects. DM Review
Magazine.

Holsapple, C. W. (2003). Handbook on Knowledge Management. Springer.

Holsapple, C. W., & Joshi, K. D. (2003). A Knowledge Management Ontology. In C. W.
Holsapple (Ed.), Handbook on Knowledge Management, 89—124. Springer.

Hornick, M. F., Yoon, H., & Venkayala, S. (2004). Java Data Mining (JSR-73): Status
and Overview. Proceedings of the Workshop on Data Mining Standards, Services and
Platforms at the 10th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining (KDD) (pp. 23-29).

Hull, R., & King, R. (1987). Semantic Database Modeling: Survey, Applications, and
Research Issues. ACM Computing Surveys, 19, 202 260.

Imielinski, T., & Virmani, A. (1999). MSQL: A Query Language for Database Mining.
Journal of Data Mining and Knowledge Discovery, 3, 373-408.

Inmon, W. H. (1996). Building the Data Warehouse. New York: J. Wiley & Sons. 2
edition.

Inokuchi, A., Washio, T., & Motoda, H. (2000). An Apriori-Based Algorithm for Mining
Frequent Substructures from Graph Data. Proceedings of the 4th European Conference
on Principles of Data Mining and Knowledge Discovery (PKDD) (pp. 13-23). London,
UK: Springer-Verlag.

Joachims, T. (2000). Estimating the Generalization Performance of a SVM Efficiently.
Proceedings of the International Conference on Machine Learning (ICML) (pp. 431
438). San Francisco, CA, USA: Morgan Kaufman.

256

BIBLIOGRAPHY

Joachims, T. (2001). The Mazimum-Margin Approach to Learning Text Classifiers: Meth-
ods, Theory, and Algorithms. Doctoral dissertation, Fachbereich Informatik, Univer-
sitdt Dortmund.

John, G. H., & Lent, B. (1997). SIPping from the Data Firehose. Proceedings of the Third
International Conference on Knowledge Discovery and Data Mining (KDD) (pp. 199
202). AAAI Press.

Johnson, T., Lakshmanan, L. V. S., & Ng, R. T. (2000). The 3W Model and Algebra
for Unified Data Mining. Proceedings of the 26th International Conference on Very
Large Data Bases (VLDB) (pp. 21 32). San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.

Kalfoglou, Y., & Schorlemmer, M. (2003). Ontology mapping: The state of the art. The
Knowledge Engineering Review, 18, 1 31.

Kerber, R., Beck, H., Anand, T., & Smart, B. (1998). Active Templates: Comprehensive
Support for the Knowledge Discovery Process. Proceedings of the Fourth International
Conference on Knowledge Discovery and Data Mining. New York.

Kietz, J.-U., Vaduva, A., & Zucker, R. (2000). Mining Mart: Combining Case-Based-
Reasoning and Multi-Strategy Learning into a Framework to reuse KDD-Application.
Proceedings of the fifth International Workshop on Multistrategy Learning (MSL2000).
Guimares, Portugal.

Kietz, J.-U., Vaduva, A., & Zucker, R. (2001). MiningMart: Metadata-Driven Prepro-
cessing. Proceedings of the ECML/PKDD Workshop on Database Support for KDD.

Kitts, B., Melli, G., & Rexer, K. (Eds.). (2005). Proceedings of the First International
Workshop on Data Mining Case Studies at the IEEE International Conference on Data
Mining (ICDM). Houston, Texas, USA.

Klinkenberg, R. (2004). Learning Drifting Concepts: Example Selection vs. Example
Weighting. Intelligent Data Analysis (IDA), Special Issue on Incremental Learning
Systems Capable of Dealing with Concept Drift, 8, 281 300.

Klosgen, W. (2000). Subgroup Patterns. In W. Klosgen and J. Zytkow (Eds.), Handbook
of Knowledge Discovery and Data Mining. London: Oxford University Press.

Knobbe, A. (2004). Multi-Relational Data Mining. Doctoral dissertation, Universiteit
Utrecht.

Knobbe, A., Schipper, A., & Brockhausen, P. (2000). Domain Knowledge and Data
Mining Process Decisions (Technical Report Deliverable D5). IST Project MiningMart,
IST-11993.

Knobbe, A. J., de Haas, M., & Siebes, A. (2001). Propositionalisation and Aggregates.
Proceedings of the 5th European Conference on Principles of Data Mining and Knowl-
edge Discovery (PKDD) (pp. 277-288). London, UK: Springer.

257

BIBLIOGRAPHY

Kohavi, R., Mason, L., Parekh, R., & Zheng, Z. (2004). Lessons and Challenges from
Mining Retail E-Commerce Data. Machine Learning, 57, 83 113.

Kolaitis, P. G., & Vardi, M. Y. (1995). On the Expressive Power of Datalog: Tools and
a Case Study. Journal of Computer and System Sciences, 51, 110-134.

Kosala, R., & Blockeel, H. (2000). Web Mining Research: A Survey. ACM SIGKDD
Ezplorations Newsletter, 2.

Kramer, S.; Aufschild, V., Hapfelmeier, A., Jarasch, A., Kessler, K., Reckow, S., Wicker,
J., & Richter, L. (2005). Inductive Databases in the Relational Model: The Data as
the Bridge. Proceedings of the jth International Workshop on Knowledge Discovery in
Inductive Databases (KDID) (pp. 124-138). Porto, Portugal: Springer.

Krogel, M.-A., Rawles, S., Zelezny, F., Flach, P. A., Lavrac, N., & Wrobel, S. (2003).
Comparative Evaluation of Approaches to Propositionalization. Proceedings of the
Thirteenth International Conference on Inductive Logic Programming (pp. 197-214).
Springer.

Krogel, M.-A., & Wrobel, S. (2001). Transformation-Based Learning Using Multire-
lational Aggregation. Proceedings of the 11th International Conference on Inductive
Logic Programming (ILP) (pp. 142 155). Springer.

Kuramochi, M., & Karypis, G. (2001). Frequent Subgraph Discovery. Proceedings of the
2001 IEEE International Conference on Data Mining (ICDM) (pp. 313-320). Wash-
ington, DC, USA: IEEE Computer Society.

Kusters, R., van Solingen, R., & Trienekens, J. (1997). User-Perceptions of Embedded
Software Quality. Proceedings of the STEP97 Conference. IEEE Computer Society
Press.

Lakshmanan, L. V. S.; Sadri, F., & Subramanian, I. N. (1996). SchemaSQL - A Lan-
guage for Interoperability in Relational Multi-Database Systems. Proceedings of the
22th International Conference on Very Large Data Bases (VLDB) (pp. 239 250). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Lakshmanan, L. V. S.,; Sadri, F., & Subramanian, S. N. (2001). SchemaSQL: An Ex-
tension to SQL for Multidatabase Interoperability. ACM Transactions on Database
Systems, 26, 476 519.

Langley, P., & Simon, H. A. (1995). Applications of Machine Learning and Rule Induc-
tion. Communications of the ACM, 38, 55 64.

Lenzerini, M. (2002). Data Integration: A Theoretical Perspective. Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS) (pp. 233 246). New York, NY, USA: ACM Press.

Libkin, L. (2003). Expressive Power of SQL. Journal of Theoretical Computer Science,
296, 379-404.

258

BIBLIOGRAPHY

Ling, C. X., Sheng, S., Bruckhaus, T., & Madhavji, N. H. (2005). Predicting Software
Escalations with Maximum ROI. Proceedings of the Fifth IEEE International Confer-
ence on Data Mining (ICDM) (pp. 717 720). Los Alamitos, CA, USA: IEEE Computer
Society.

Litvak, M., Last, M., & Kisilevich, S. (2005). Improving Classification of Multi-Lingual
Web Documents using Domain Ontologies. Proceedings of the Workshop on Knowledge
Discovery and Ontologies (KDO) at the 9th European Conference on Principles and
Practice in Knowledge Discovery in Databases (PKDD) (pp. 67 74). Porto, Portugal.

Liu, H., & Motoda, H. (1998). Feature Extraction, Construction, and Selection: A Data
Mining Perspective. Kluwer.

Loureiro, A., Torgo, L., & Soares, C. (2005). Outlier Detection Using Clustering Methods:
A Data Cleaning Application. Proceedings of the Workshop on Data Mining and Busi-
ness (DMBiz) at the 9th European Conference on Principles and Practice in Knowledge
Discovery in Databases (PKDD). Porto, Portugal.

Madhavan, J., Bernstein, P. A.; & Rahm, E. (2001). Generic Schema Matching with
Cupid. Proceedings of the 27th International Conference on Very Large Data Bases
(VLDB) (pp. 49 58). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Maiden, N. A.; Ncube, C., & Moore, A. (1997). Lessons Learned During Requirements
Acquisition for COTS Systems. Communications of the ACM, 40, 21-25.

Maier, T., & Reinartz, T. (2004). Evaluation of Web Usage Analysis Tools. Kunstliche
Intelligenz, 1, 65 68.

Mannino, M. V., Chu, P., & Sager, T. (1988). Statistical Profile Estimation in Database
Systems. ACM Computing Surveys, 20, 191 221.

Masolo, C., Borgo, S., Gangemi, A., Guarino, N., & Oltramari, A. (2003). Ontology
Library (Technical Report Deliverable D18). WonderWeb Project.

Matheus, C. J., Chan, P. K., & Piatetsky-Shapiro, G. (1993). Systems for Knowledge
Discovery in Databases. IEEE Transactions on Knowledge and Data Engineering, O,
903-913.

Mayrand, J., & Coallier, F. (1996). System Acquisition Based On Software Product As-
sessment. Proceedings of the International Conference on Software Engineering (ICSE).

Melnik, S., Bernstein, P. A., Halevy, A., & Rahm, E. (2005). Supporting Executable
Mappings in Model Management. Proceedings of the ACM SIGMOD International
Conference on Management of Data (pp. 167 178). New York, NY, USA: ACM Press.

Melnik, S., Garcia-Molina, H., & Rahm, E. (2002). Similarity Flooding: A Versatile
Graph Matching Algorithm and its Application to Schema Matching. Proceedings of
the 18th International Conference on Data Engineering (ICDE) (pp. 117 129). Wash-
ington, DC, USA: IEEE Computer Society.

259

BIBLIOGRAPHY

Mena, E., Illarramendi, A., Kashyap, V., & Sheth, A. P. (2000). OBSERVER: An Ap-
proach for Query Processing in Global Information Systems Based on Interoperation
Across Pre-Existing Ontologies. Distributed and Parallel Databases, 8, 223 271.

Meo, R., & Psaila, G. (2003). An XML-Based Definition of a Database for Knowledge
Discovery (Technical Report RT74-2003). Dipartimento di Informatica, Universita di
Torino.

Meo, R., Psaila, G., & Ceri, S. (1998). An Extension to SQL for Mining Association
Rules. Journal of Data Mining and Knowledge Discovery, 2, 194-224.

Meyer, D., & Cannon, C. (1998). Building a Better Data Warehouse. Prentice Hall.

Michie, D., Spiegelhalter, D. J., & Taylor, C. C. (1994). Machine Learning, Neural and
Statistical Classification. New York u.a.: Ellis Horwood.

Mierswa, 1., Klinkenberg, R., Fischer, S., & Ritthoff, O. (2003). A Flexible Platform
for Knowledge Discovery Experiments: YALE — Yet Another Learning Environment.
LLWA 08 - Tagungsband der GI-Workshop-Woche Lernen - Lehren - Wissen - Adap-
tivitat.

Mierswa, 1., & Morik, K. (2005). Automatic Feature Extraction for Classifying Audio
Data. Machine Learning Journal, 58, 127-149.

Mierswa, 1., Wurst, M., Klinkenberg, R., Scholz, M., & Euler, T. (2006). YALE: Rapid
Prototyping for Complex Data Mining Tasks. Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD 2006).
ACM Press.

Mistry, H., Roy, P., Sudarshan, S., & Ramamritham, K. (2001). Materialized View
Selection and Maintenance Using Multi-Query Optimization. Proceedings of the ACM
SIGMOD International Conference on Management of Data (pp. 307 318). New York,
NY, USA: ACM Press.

Mitchell, T. M. (1997). Machine Learning. New York: McGraw Hill.

Morik, K. (2000). The Representation Race - Preprocessing for Handling Time Phe-
nomena. Proceedings of the European Conference on Machine Learning 2000 (ECML
2000). Berlin, Heidelberg, New York: Springer Verlag Berlin.

Morik, K., Botta, M., Dittrich, K. R., Kietz, J.-U., Portinale, L., Vaduva, A., & Ziicker,
R. (2001). M4 — The MiningMart Meta Model (Technical Report Deliverable D8/9).
IST Project MiningMart, IST-11993.

Morik, K., Boulicaut, J.-F., & Siebes, A. (2005). Local Pattern Discovery, vol. 3539 of
Lecture Notes in Computer Science. Springer.

Morik, K., Causse, K., & Boswell, R. (1991). A common knowledge representation in-
tegrating learning tools. Proc. of the 1st International Workshop on Multistrategy
Learning. Harpers Ferry.

260

BIBLIOGRAPHY

Morik, K., & Kopcke, H. (2005). Features for Learning Local Patterns in Time-Stamped
Data. In K. Morik, J.-F. Boulicaut and A. Siebes (Eds.), Local pattern detection:
International seminar, dagstuhl castle, germany, april 12-16, 2004, revised selected
papers, chapter 7, 98-114. Springer.

Morik, K., & Scholz, M. (2004). The MiningMart Approach to Knowledge Discovery in
Databases. In N. Zhong and J. Liu (Eds.), Intelligent Technologies for Information
Analysis, chapter 3, 47 65. Springer.

Muggleton, S. (1995). Inverting Entailment and Progol. Machine Intelligence 14, 133
187.

Miinstermann, D. (2002). Wissensentdeckung in Datenbanken mit dynamischer Anpas-
sung des Hypothesentests. Master’s thesis, Fachbereich Informatik, Universitiat Dort-
mund. In German.

Musick, R., & Critchlow, T. (1999). Practical Lessons in Supporting Large-scale Com-
putational Science. ACM SIGMOD Record, 28, 49-57.

Newell, A. (1982). The Knowledge Level. Artificial Intelligence, 18, 87 127.

Ngu, A. H. H., Harangsri, B., & Shepherd, J. (2004). Query Size Estimation for Joins
Using Systematic Sampling. Distributed and Parallel Databases, 15, 237-275.

Y

Nijssen, G. (1977). Current Issues in Conceptual Schema Concepts. In G. Nijssen (Ed.)
Architecture and Models in Data Base Management Systems, 31-66. North-Holland.

Niles, I., & Pease, A. (2001). Towards a Standard Upper Ontology. Proceedings of
the International Conference on Formal Ontology in Information Systems (FOIS) (pp.
2-9). New York, NY, USA: ACM Press.

Papakonstantinou, Y., Garcia-Molina, H., & Widom, J. (1995). Object Exchange Across
Heterogeneous Information Sources. Proceedings of the Eleventh International Con-
ference on Data Engineering (ICDE) (pp. 251 260). Washington, DC, USA: IEEE
Computer Society.

Park, B.-H., & Kargupta, H. (2002). Distributed Data Mining: Algorithms, Systems, and
Applications. In N. Ye (Ed.), Data Mining Handbook, 341 358. IEA.

Paulk, M. C., Weber, C. V., Curtis, B., & Chrissis, M. B. (1995). The Capability Maturity
Model: Guidelines for Improving the Software Process. Addison-Wesley.

Pechenizkiy, M., Puuronen, S.; & Tsymbal, A. (2005). Competitive Advantage from
Data Mining: Some Lessons Learned in the Information Systems Field. IEEE Workshop
Proc. of DEXAQ5, 1st Int. Workshop on Philosophies and Methodologies for Knowledge
Discovery (PMKD) (pp. 733-737). IEEE CS Press.

Peckham, J., & Maryanski, F. (1988). Semantic Data Models. ACM Computing Surveys,
20, 153-189.

261

BIBLIOGRAPHY

Perlich, C., & Provost, F. (2003). Aggregation-Based Feature Invention and Relational
Concept Classes. Proceedings of the ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD) (pp. 167 176). New York, NY, USA:
ACM Press.

Pfahringer, B., Bensusan, H., & Giraud-Carrier, C. G. (2000). Meta-Learning by Land-
marking Various Learning Algorithms. Proceedings of the Seventeenth International
Conference on Machine Learning (ICML) (pp. 743-750). San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.

Pleumann, J. (2007). Ein Ansatz zur Entwicklung von Modellierungswerkzeugen fir die
softwaretechnische Lehre. Doctoral dissertation, Fachbereich Informatik, Universitét
Dortmund.

Poosala, V., Haas, P. J., Ioannidis, Y. E., & Shekita, E. J. (1996). Improved Histograms
for Selectivity Estimation of Range Predicates. Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data (pp. 294 305). New York, NY, USA:
ACM Press.

Probst, G., Raub, S., & Romhardt, K. (1999). Managing Knowledge. Berlin Heidelberg:
Springer.

Punter, T. (1997). Using Checklists to Evaluate Software Product Quality. Proceed-
ings of the 8th European Software Control and Metrics Conference (ESCOM). Berlin,
Germany.

Punter, T., Kusters, R., Trienekens, J., Bemelmans, T., & Brombacher, A. (2004). The W-
Process for Software Product Evaluation: A Method for Goal-Oriented Implementation
of the ISO 14598 Standard. Software Quality Journal, 12, 137-158.

Punter, T., van Solingen, R., & Trienekens, J. (1997). Software Product Evaluation.
Proceedings of the 4th Conference on Evaluation of Information Technology (EVIT).
Delft, The Netherlands.

Pyle, D. (1999). Data Preparation for Data Mining. Morgan Kaufmann Publishers.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Machine Learning. San
Mateo, CA: Morgan Kaufmann.

Rahm, E., & Bernstein, P. A. (2001). A Survey of Approaches to Automatic Schema
Matching. The VLDB Journal, 10, 334-350.

Ramakrishnan, R., Agrawal, R., Freytag, J.-C., Bollinger, T., Clifton, C. W., Dzeroski,
S., Hipp, J., Keim, D., Kramer, S., Kriegel, H.-P., Leser, U., Liu, B., Mannila, H.,
Meo, R., Morishita, S., Ng, R., Pei, J., Raghavan, P., Spiliopoulou, M., Srivastava, J.,
& Torra, V. (2005). Data Mining: The Next Generation. Perspectives Workshop: Data
Mining: The Next Generation. Internationales Begegnungs- und Forschungszentrum
(IBFI), Schloss Dagstuhl, Germany.

262

BIBLIOGRAPHY

Raman, V., & Hellerstein, J. M. (2000). An Interactive Framework for Data Cleaning
(Technical Report UCB/CSD-00-1110). Computer Science Division (EECS), University
of California at Berkeley.

Raman, V., & Hellerstein, J. M. (2001). Potter’s Wheel: An Interactive Data Cleaning
System. Proceedings of the 27th International Conference on Very Large Data Bases
(VLDB) (pp. 381 390). Morgan Kaufmann.

Rangarajan, K., Swaminathan, N., Hedge, V., & Jacob, J. (2001). Product Quality
Framework: A Vehicle for Focusing on Product Quality Goals. Software Engineering
Notes, 26, 77 82.

Raspl, S. (2004). PMML Version 3.0 — Overview and Status. Proceedings of the Workshop
on Data Mining Standards, Services and Platforms at the 10th ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining (KDD) (pp. 18 22).

Rem, O., & Trautwein, M. (2002). Best Practices Report (Technical Report Deliverable
D11.3). IST Project MiningMart, IST-11993.

Richeldi, M., & Perrucci, A. (2002a). Churn Analysis Case Study (Technical Report
Deliverable D17.2). IST Project MiningMart, IST-11993.

Richeldi, M., & Perrucci, A. (2002b). MiningMart Evaluation Report (Technical Report
Deliverable D17.3). IST Project MiningMart, IST-11993.

Riedemann, E. H. (1997). Testmethoden fur sequentielle und nebenlaufige Software-
Systeme. Stuttgart: Teubner.

Roddick, J. F., Al-Jadir, L., Bertossi, L. E., Dumas, M., Estrella, F., Gregersen, H.,
Hornsby, K., Lufter, J., Mandreoli, F., Mannisto, T., Mayol, E., & Wedemeijer, L.
(2000). Evolution and Change in Data Management — Issues and Directions. SIGMOD
Record, 29, 21 25.

Romei, A., Ruggieri, S., & Turini, F. (2005). KDDML: A Middleware Language and Sys-
tem for Knowledge Discovery in Databases. Proceedings of the 13th Italian Symposium
on Advanced Database Systems (SEBD).

Romei, A., Ruggieri, S., & Turini, F. (2006). KDDML: A Middleware Language and
System for Knowledge Discovery in Databases. Data and Knowledge Engineering, 57,
179 220.

Ross, K. A, Srivastava, D., & Sudarshan, S. (1996). Materialized View Maintenance and
Integrity Constraint Checking: Trading Space for Time. Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data (pp. 447 458). New York,
NY, USA: ACM Press.

Riiping, S. (1999). Zeitreihenprognose fiir Warenwirtschaftssysteme unter Beriicksichti-
gung asymmetrischer Kostenfunktionen. Master’s thesis, Universitdt Dortmund, Fach-
bereich Informatik. In German.

263

BIBLIOGRAPHY

Riiping, S. (2002). Support Vector Machines in Relational Databases. Pattern Recognition
with Support Vector Machines First International Workshop (SVM) (pp. 310 320).
Springer.

Salton, G., & Buckley, C. (1988). Term Weighting Approaches in Automatic Text Re-
trieval. Information Processing and Management, 24, 513 523.

Sarawagi, S., Thomas, S., & Agrawal, R. (1998). Integrating Association Rule Mining
with relational Database Systems: Alternatives and Implications. Proceedings of the
ACM SIGMOD, International Conference on Management of Data (pp. 343 354).

Sattler, K.-U., & Schallehn, E. (2001). A Data Preparation Framework Based on a
Multidatabase Language. Proceedings of the International Database Engineering €
Applications Symposium (IDEAS) (pp. 219 228). Grenoble, France: IEEE Computer
Society.

Schallehn, E., Sattler, K.-U., & Saake, G. (2001). Advanced Grouping and Aggregation
for Data Integration. Proceedings of the Tenth International Conference on Information
and Knowledge Management (CIKM) (pp. 547 549). New York, NY, USA: ACM Press.

Scholz, M. (2002). Representing Constraints, Conditions and Assertions in M (Technical
Report TR18-01). IST Project MiningMart, IST-11993.

Scholz, M. (2005). Knowledge-Based Sampling for Subgroup Discovery. In K. Morik, J.-
F. Boulicaut and A. Siebes (Eds.), Local pattern detection, vol. LNAI 3539 of Lecture
Notes in Artificial Intelligence, 171 189. Springer.

Scholz, M. (2007). Scalable and Accurate Knowledge Discovery in Real-World Databases.
Doctoral dissertation, Fachbereich Informatik, Universitdt Dortmund.

Scholz, M., & Euler, T. (2002). Documentation of the MiningMart Meta Model (M)
(Technical Report TR12-05). IST Project MiningMart, IST-11993.

Schreiber, G., Wielinga, B., & Akkermans, H. (1993a). Using KADS to Analyse Problem-
Solving Methods. In G. Schreiber, B. Wielinga and J. Breucker (Eds.), KADS - A
Principled Approach to Knowledge-Based System Development, vol. 11 of Knowledge
Based Systems, 415-430. London: Academic Press.

Schreiber, G., Wielinga, B., & Breucker, J. (1993b). Introduction and Overview. In
G. Schreiber, B. Wielinga and J. Breucker (Eds.), KADS A Principled Approach
to Knowledge-Based System Development, vol. 11 of Knowledge Based Systems, 1-18.
London: Academic Press.

Schreiber, G., Wielinga, B., & Breucker, J. (1993c). KADS A Principled Approach to
Knowledge-Based System Development, vol. 11 of Knowledge Based Systems. London:
Academic Press.

Sellis, T. K. (1988). Multiple-Query Optimization. ACM Transactions on Database
Systems, 13, 23-52.

264

BIBLIOGRAPHY

Shah, G., & Syeda-Mahmood, T. (2004). Searching Databases for Semantically-Related
Schemas. Proceedings of the 27th Annual International ACM Conference on Research
and Development in Information Retrieval (SIGIR) (pp. 504 505). New York, NY,
USA: ACM Press.

Singh, P., Choudur, L., Benson, A., & Mathew, M. (2005). External Search Term Mar-
keting Program: A Return on Investment Approach. Proceedings of the Workshop on
Data Mining Case Studies at the 5th IEEE International Conference on Data Mining
(ICDM) (pp. 60 72). Houston, Texas, USA.

Smith, J. M., & Smith, D. C. P. (1977). Database Abstractions: Aggregation and Gen-
eralization. ACM Transactions on Database Systems, 2, 105-133.

Soares, C., Moniz, L., & Duarte, C. (Eds.). (2005). Proceedings of the Workshop on
Data Mining and Business (DMBiz) at the 9th European Conference on Principles and
Practice in Knowledge Discovery in Databases (PKDD). Porto, Portugal.

Srikant, R., & Agrawal, R. (1995). Mining Generalized Association Rules. Proceedings
of 21th International Conference on Very Large Data Bases (pp. 407 419). Zurich,
Switzerland: Morgan Kaufmann.

Staab, S. (2002). Knowledge Portals. Kunstliche Intelligenz, 1, 38 39.
Staab, S., & Studer, R. (2004). Handbook on Ontologies. Berlin: Springer.

Staudt, M., Vaduva, A., & Vetterli, T. (1999a). Metadata Management and Data Ware-
housing (Technical Report). Swiss Life, Information Systems Research and University
of Zurich, Department of Computer Science.

Staudt, M., Vaduva, A., & Vetterli, T. (1999b). The Role of Metadata for Data Ware-
housing (Technical Report). Swiss Life, Information Systems Research and University
of Zurich, Department of Computer Science.

Storey, V. C. (1993). Understanding Semantic Relationships. The VLDB Journal, 2,
455-488.

Su, H., Claypool, K., & Rundensteiner, E. (2000). Extending the Object Query Language
for Transparent Metadata Access. Database Schema Evolution and Meta-Modeling

Proceedings of the International Workshop on Foundations of Models and Languages
for Data and Objects (FoMLaDO/DEMM).

Sun, W., Ling, Y., Rishe, N., & Deng, Y. (1993). An Instant and Accurate Size Estimation
Method for Joins and Selections in a Retrieval-Intensive Environment. Proceedings of
the ACM SIGMOD International Conference on Management of Data (pp. 79 88).
New York, NY, USA: ACM Press.

Suryn, W., Abran, A., & April, A. (2003). ISO/IEC SQuaRE. The Second Generation of
Standards for Software Product Quality. Proceedings of the 7th IASTED International
Conference on Software Engineering Applications. Marina del Rey, CA, USA.

265

BIBLIOGRAPHY

Svatek, V., Rauch, J., & Flek, M. (2005). Ontology-Based Explanation of Discovered As-
sociations in the Domain of Social Reality. Proceedings of the Workshop on Knowledge
Discovery and Ontologies (KDO) at the 9th European Conference on Principles and
Practice in Knowledge Discovery in Databases (PKDD) (pp. 75-86). Porto, Portugal.

Tan, J., Zaslavsky, A. B., Ewald, C. A., & Bond, A. (2003). Domain-Specific Metamodels
for Heterogeneous Information Systems. Proceedings of the 36th Hawaii International
Conference on System Sciences (HICSS).

Tang, Z., & MacLennan, J. (2005). Data Mining with SQL Server 2005. Wiley & Sons.

Teorey, T. J., Yang, D., & Fry, J. P. (1986). A Logical Design Methodology for Relational
Databases Using the Extended Entity-Relationship Model. ACM Computing Surveys,
18, 197-222.

Thalheim, B. (2000). Entity-Relationship Modeling. Foundations of Database Technology.
Springer.

Theodoratos, D., & Xu, W. (2004). Constructing Search Spaces for Materialized View
Selection. Proceedings of the 7th ACM International Workshop on Data Warehousing
and OLAP (DOLAP) (pp. 112 121). New York, NY, USA: ACM Press.

Tsichritzis, D., & Klug, A. C. (1978). The ANSI/X3/SPARC DBMS Framework Report
of the Study Group on Dabatase Management Systems. Information Systems, 3, 173
191.

Tsochantaridis, 1., Joachims, T., Hofmann, T., & Altun, Y. (2005). Large Margin Methods
for Structured and Interdependent Output Variables. Journal of Machine Learning
Research, 6, 1453 1484.

Ullman, J. D. (1988). Principles of Database and Knowledge-Base Systems, vol. 1.
Rockville, MD: Computer Science Press.

Vaduva, A., & Dittrich, K. R. (2001). Metadata Management for Data Warehousing:
Between Vision and Reality. Proceedings of the International Database Engineering €
Applications Symposium (IDEAS) (pp. 129 135). IEEE Computer Society.

Vapnik, V. (1982). Estimation of Dependencies Based on Empirical Data. Springer.
Vapnik, V. (1998). Statistical Learning Theory. Chichester, GB: Wiley.

Vetterli, T., Vaduva, A., & Staudt, M. (2000). Metadata Standards for Data Ware-
housing: Open Information Model vs. Common Warehouse Metamodel. ACM SigMod
Record, 29.

Vilalta, R., Giraud-Carrier, C., Brazdil, P., & Soares, C. (2004). Using Meta-Learning to
Support Data Mining. International Journal of Computer Science and Applications,
1, 31-45.

266

BIBLIOGRAPHY

Wache, H., Vogele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., &
Hubner, S. (2001). Ontology-Based Integration of Information A Survey of Existing
Approaches. Proceedings of the IJCAI 2001 Workshop on Ontologies and Information
Sharing.

Wagner, M. (2005). Schema-Abbildungen fur die Falladaption in MiningMart. Master’s
thesis, Fachbereich Informatik, Universitat Dortmund. In German.

Wang, H., & Zaniolo, C. (1999). User-Defined Aggregates for Datamining. Proceedings
of the ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge
Discovery.

Washio, T., & Motoda, H. (2003). State of the Art of Graph-Based Data Mining. ACM
SIGKDD Ezxplorations Newsletter, 5, 59 68.

Wiederhold, G. (1992). Mediators in the Architecture of Future Information Systems.
IEEE Computer, 25, 38—49.

Wielinga, B., Schreiber, G., & Breucker, J. (1993). Modelling Expertise. In G. Schreiber,
B. Wielinga and J. Breucker (Eds.), KADS A Principled Approach to Knowledge-
Based System Development, vol. 11 of Knowledge Based Systems, 21-46. London: Aca-
demic Press.

Williams, G. J., & Huang, Z. (1996). Modelling the KDD Process (Technical Report TR-
DM-96013). CSIRO (Commonwealth Scientific and Industrial Research Organisation),
DIT Data Mining.

Wirth, R., Shearer, C., Grimmer, U., Reinartz, T., Schlosser, J., Breitner, C., Engels, R.,
& Lindner, G. (1997). Towards Process-Oriented Tool Support for KDD. Proceedings of
the 1st European Symposium on Principles of Data Mining and Knowledge Discovery.

Witten, 1., & Frank, E. (2000). Data Mining Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann.

Wolpert, D., & Macready, W. (1995). No Free Lunch Theorems for Search (Technical
Report SFI-TR-95-02-010). Santa Fé Institute, Santa Fé, CA.

Wrobel, S. (1997). An Algorithm for Multi relational Discovery of Subgroups. Principles
of Data Mining and Knowledge Discovery: First European Symposium (PKDD 97) (pp.
78 87). Berlin, New York: Springer.

Wu, X., Yu, P. S., Piatetsky-Shapiro, G., Cercone, N., Lin, T. Y., Kotagiri, R., & Wah,
B. W. (2003). Data Mining: How Research Meets Practical Development? Knowledge
and Information Systems, 5, 248 261.

Wyss, C. M., & Robertson, E. L. (2005a). A Formal Characterization of
PIVOT/UNPIVOT. Proceedings of the 14th ACM International Conference on In-
formation and Knowledge Management (CIKM) (pp. 602 608). New York, NY, USA:
ACM Press.

267

BIBLIOGRAPHY

Wyss, C. M., & Robertson, E. L. (2005b). Relational Languages for Metadata Integration.
ACM Transactions on Database Systems, 30, 624 660.

Yan, L. L., Miller, R. J., Haas, L. M., & Fagin, R. (2001). Data-Driven Understanding and
Refinement of Schema Mappings. Proceedings of the 2001 ACM SIGMOD International
Conference on Management of Data (pp. 485-496). New York, NY, USA: ACM Press.

Zhang, T., Ramakrishnan, R., & Livny, M. (1996). BIRCH: An Efficient Data Clus-
tering Method for Very Large Databases. Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data (pp. 103 114).

Zhong, N., Liu, C., & Ohsuga, S. (2001). Dynamically Organizing KDD Processes.
International Journal of Pattern Recognition and Artificial Intelligence, 15, 451-473.

The URLs cited in this thesis were last visited on June 5th, 2007.

268

Index

Ea-estimator, 154

Aggregate by relationship, 202
Aggregation, 19, 37, 63, 200, 218
Arity, 36
Assertion, 67, 103
Association, 37
Association rules, 18, 61, 226
Atomic type, 36
Attribute, 32, 36

binary, 46

categorical, 46

continuous, 46

discrete, 46

nominal, 46

set type, 46
Attribute-value format, 19, 31
Attribute derivation, 57, 62, 144, 213
Attribute roles, 47, 100
Attribute selection, 197

Background knowledge, 17, 18
Bag of words, 35

Bag semantics, 34, 204
Boosting, 110

Caching, 224, 230
CAMM, 164
Cardinality, 36, 43
Case, 99

Case base, 106, 107
Case based reasoning, 90
Case retrieval, 114
Chain, 104
Characteristics, 48, 135
Chunk, 70, 106, 107
Churn, 75

CKRL, 187

Class, 36

Classification, 20
Clementine, 182, 229

Clio, 49, 56

Clustering, 20

Column, 16

Common Data Model, 55
Compiler, 98, 104
Component, 24
Compositionality, 60, 61
Computational completeness, 64, 213
Concept, 36, 43, 97, 100
Concept description, 20
Concept editor, 72

Concept signature, 43
Condition, 66, 102
Constraint, 66, 102, 103, 125
Convenience operator, 69
COTS software, 165
CRISP-DM, 14, 92, 239
Criterion, 173

Cross table, 45, 101

Cross validation, 71, 110, 154
Cupid, 141

CWM, 91

DAG, 70, 106, 157, 236

Data cleaning, 18

Data preparation, 17

Datalog, 69

Data characteristics, 48, 135

Data cleaning, 20, 81, 209

Data integration, 55, 120

Data mapper, 57

Data Mining, 1

Data model, 28
conceptual, 29, 38
logical, 28

269

Index

physical, 28

semantic, 29
Data preparation, 1, 5
Data reduction, 19, 77, 197
Data warehouse, 15, 52, 90, 158
DBMS, 29
Declarative development, 49
Dependency analysis, 20
Deployment, 22
Description levels

conceptual, 8, 24

technical, 24
Description logics, 39, 40, 55, 195
Descriptive mining, 21
Design patterns, 6
Dichotomisation, 46, 149, 204, 219
Discretisation, 79, 102, 104, 210, 218, 221
Distinctive feature, 172
Distributed data mining, 22, 93, 229
Distributed data mining, 16
Domain, 32, 36, 46
DPML, 92

Empty value, 18

Enterprise Miner, 183

Entity, 36, 43

Entity-Relationship (ER) model, 28, 30,
42

Entity type, 43

Entry point, 115, 120, 139

Epistemological level, 29

Epistemological primitive, 35

Equijoin, 201

Estimation of characteristics, 50, 67, 133

ETL, 57

Extension, 40

Feature, 19, 100

Feature construction, 19, 20, 68, 80, 210,
213

Federated database, 55, 120

FIRA, 59, 64, 193

Fixpoint logic, 69

Flat files, 31, 228

Frequent subgraph discovery, 106, 112

Functional dependency, 32, 95

270

Generalisation, 37

Generic implementation, 124
Granularity, 172

GridMiner, 92

Grids, 92

Grouping, 37

GUI, 160

Histogram, 52, 199
Horn clause, 69

IBM, 182

Inclusion dependency, 32
Infolayer, 107

Instance, 28, 32, 43
Intelligent Miner, 182
Intension, 40

Is-A relationship, 37
ISO 14598, 165

ISO 25000, 167

ISO 9126, 164

JDM, 92
Join by relationship, 201

KADS, 24
KDD, 1
KDDML, 93
Key, 32
Attribute role, 48
Kleene closure, 42
Knowledge Discovery in Databases, 1
Knowledge management, 90
Knowledge portal, 90, 106

Label, 21, 48

Learning, 20

Least fixpoint, 69
Leave-one-out error, 153
LiMo, 160

Looping, 103, 227

Loss function, 151

M4, 99, 125
dynamic part, 100
Object, 99
static part, 100

Index

Type, 99
Margin, 152
Materialisation, 104, 157, 224, 230
Mediated schema, 55
Mediator, 55
Medium, 24
Metadata, 48, 170
Metadata inference, 50
Meta learning, 91
Meta model, 29, 89, 99
Metric, 165
Mining, 20
MiningMart, 8, 75, 77, 89, 96, 124, 182,
229
Missing value, 16, 18, 224
replacement, 209
MLT, 187
MMM, 56
Modelling, 20
Multirelational learning, 18, 63

Named entity recognition, 35
Natural join, 201
NCR, 183
Negation, 69
Normalisation
in Database design, 95
of values, 211, 225
Normal form, 33

Object, 36

Object Exchange Model, 55
Ontology, 39, 55, 65, 71, 90, 119, 195
Operator, 54, 65, 102, 104, 144
Operator group, 103, 112

OQL, 56

Order, 34

Outlier, 210

Overfitting, 21, 152

Parameter, 66, 104

Pattern, 1

Pivotisation, 64, 81, 145, 205, 225
PL/SQL, 145, 156, 225

PMML, 92, 233, 239

Post processing, 22, 23, 72, 94, 157, 239

Potter’s Wheel, 49, 57

Prediction, 21

Predictive mining, 21

Predictor, 48

Preminer, 182

Preparation graph, 70, 234

Preparation tasks, 19, 65

Primary key, 32

Primitive operator, 69

Projection, 34

Propagation, 118, 129, 234

Propositionalisation, 2, 18, 19, 63, 85, 95,
201

ProSafarii, 95

Quality model, 165

Recursion, 69
Regression, 21

Relation, 32, 100
Relational algebra, 59, 64, 201
Relationship, 36, 43
Relationship type, 43
Relation schema, 32
Restriction, 44

Reverse pivotisation, 206
Role, 36

Row selection, 198

Sampling, 18, 19, 35, 52, 199
SAS, 183
Scaling, 211, 225
SchemaSQL, 58, 193
Schema evolution, 58
Schema independence, 59, 60, 67
Schema matching, 56, 90, 139
Segmentation
mining task, 20
preparation task, 215, 219
Selectivity, 51
Semantic abstraction, 35
Separation, 41, 44
Set semantics, 34, 204
Snowflake schema, 53
Software evaluation, 164
Software quality, 164

271

Index

Specialisation, 41, 44

SQL/MM, 92

Star schema, 52

Statistics, 49, 135

Step, 70, 77, 97, 104

Stored procedure, 145, 155

Stream mining, 31

Structural risk minimisation, 152

Subgraph, 111

Subgroup discovery, 20

Sumatra, 95

Support, 111

Support vector machine (SVM), 4, 111,
150, 225

Table, 16
Template, 110
Teradata, 183
Testing

Models, 21

Software, 164
Total costs of ownership, 170
Training, 21
Transformational completeness, 59, 67
Transitive closure, 68
Transposition, 66
TSIMMIS, 55
Tuple, 32
Turing-completeness, 64
TYML, 56

Union, 203
Unsegmentation, 216

Value mapping, 79, 136, 212, 219, 221,
222

VC dimension, 151

View, 56, 58, 99, 105, 120, 157, 224, 230

Virtual column, 150

Warehouse Miner, 183
Windowing, 35, 207
Wrapper, 55

XDM, 96
XML, 92, 99, 237

YALE, 86, 93, 95, 150, 226

272

