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Chapter 1

Introduction and motivation

The concept of stochastic dependence plays a major role in probability

theory and statistics. Its importance stems from the fact that without

an appropriate modelling of the dependence in a multivariate setting, no

meaningful statistical model can be developed. In particular, one often

encounters the problem of measuring, e.g., by a scalar value, the strength

of dependence between random variables.

In the following consider two random variables defined on a common

probability space. The nature of their dependence can take a variety of

forms, of which, undoubtedly, the most prominent one is actually a “lack

of dependence”, i.e., stochastic independence. Naturally, the question of

the “strongest” dependence arises. Since independence is equivalent to

complete unpredictability of either random variable from the other, the

strongest dependence should correspond to complete predictability, i.e., al-

most sure bijective functional dependence. This form of extreme depen-

dence, introduced by Lancaster (1982), is known as “mutual complete de-

pendence”. Since stochastic independence and mutual complete dependence

are, obviously, exactly opposite in character, it follows that a natural re-

quirement on a bivariate measure of dependence is to measure the degree of

mutual complete dependence, with extreme values of 0 if and only if the two

variables are independent and 1 if and only if they are mutually completely
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dependent.

However, despite abundant work on measures of dependence, especially

for the bivariate case, several fundamental issues are still unsettled. In par-

ticular, a measure of dependence which captures adequately the extremes

of stochastic dependence, in the above mentioned sense, does not exist.

In fact, even the question of the “strongest” possible dependence is highly

controversial in the literature. This is due to the counterintuitive fact that

the joint distribution function of any two continuous random variables can

be approximated uniformly by the joint distribution function of a pair of

mutually completely dependent random variables with the same marginal

distributions (Kimeldorf and Sampson, 1978; Mikusiński, Sherwood, and

Taylor, 1992; Vitale, 1990). In particular, this means that, regardless of the

type of the marginal distributions, one can find a sequence of pairs of mutu-

ally completely dependent random variables which converges in distribution

to a pair of independent random variables. Thus, in terms of convergence

in law, it would be impossible, experimentally, to distinguish between these

two dependence concepts, although intuitively they are most opposite in

character. This paradox led several authors to the conclusion that “mutual

complete dependence is too broad a concept to be an antithesis of indepen-

dence” (Kimeldorf and Sampson, 1978). The “defect” of mutual complete

dependence motivated Kimeldorf and Sampson (1978) to consider a new

concept of extreme dependence, called “monotone dependence”, which also

found considerable attention in the construction of measures of dependence.

In this dissertation, we argue that the inconsistency between mutual

complete dependence and convergence in distribution neither weakens the

concept of mutual complete dependence as the opposite of independence,

nor does it imply that a measure of dependence should be restricted to

monotone dependence. It rather suggests that convergence in law is an

inappropriate concept for the construction of measures of dependence.

The main contribution of the dissertation consists in a new method to
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detect and measure mutual complete dependence of arbitrary form. The

approach is based on copulas. As the next chapter provides an introduction

to the theory of copulas, we only mention here that, by virtue of a funda-

mental result known as Sklar’s theorem, the joint distribution function of

any two random variables, defined on a common probability space, can be

decomposed into the marginal distribution functions and a copula. If the

marginal distribution functions are continuous, the copula is unique. In this

case, it follows that the dependence between the random variables is fully

captured by their copula. For example, they are independent if and only

if their connecting copula is the so called product copula. Thus, a possible

approach to measuring their stochastic dependence consists in measuring

the distance between their copula and the product copula.

This method for constructing a measure of dependence is not new. We

argue, however, that it yields, in general, a measure of independence only.

While independence in the variables can be detected using any distance

function, the type of dependence detected depends heavily on the type of

the distance function employed. It follows that the choice of the distance

function cannot be arbitrary, but is predetermined by the desired properties

of the resulting measure of dependence.

We propose to measure the distance between two copulas by a (mod-

ified) Sobolev norm, introducing first a scalar product on the set of all

two-dimensional copulas. This norm exploits the differentiability proper-

ties of copulas and turns out extremely advantageous since the degree of

mutual complete dependence between two random variables with contin-

uous distribution functions can be determined by analytical and algebraic

properties of their copula. Furthermore, with respect to the Sobolev norm,

a sequence of copulas corresponding to mutual complete dependence can

only converge to a copula which itself links mutually completely dependent

random variables. Thus, mutual complete dependence cannot approximate

any other kind of stochastic dependence. This resolves the counterintuitive
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phenomenon described above and warrants the role of mutual complete

dependence as the opposite of independence.

Using this Sobolev norm we define the first bivariate measure of mutual

complete dependence for two random variables with continuous distribution

functions, which is given by the (normalized) Sobolev distance between their

unique copula and the product copula, corresponding to stochastic indepen-

dence. We show that this measure has several appealing properties, e.g., it

takes on its extreme values precisely at independence and mutual complete

dependence. Furthermore, since the measure is based on copulas, it is non-

parametric and remains invariant under strictly monotone transformations

of the random variables.

The dissertation consists of four chapters. After this motivation, Chap-

ter 2 provides an introduction to the theory of (bivariate) copulas, and thus

establishes the main tool for modelling dependence in all other chapters to

follow. The outline of that chapter is as follows. The first section intro-

duces some notation and focuses on the notion of a “two-increasing func-

tion”, which can be viewed as the two-dimensional analog of an increasing

function of one variable. These preliminary concepts and results are used

in the second section, where we define copulas and study their properties

from the perspective of calculus. The third section introduces a product

operation on the set of all copulas. The algebraic properties of copulas are

less intuitive and not necessarily present in the standard literature. As will

become clear in Chapter 4, however, they play a crucial role in establishing

the main results of this dissertation. Altogether the first three sections in

Chapter 2 introduce copulas and their properties from a purely mathemat-

ical perspective. The importance of copulas to statistics becomes clear in

Section 2.4, where Sklar’s theorem shows that a joint distribution function

with continuous margins can be decomposed into the margins and a unique

copula. Since distribution functions and random variables are interrelated,

it follows that a unique copula can be associated to any pair of random
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variables with continuous distribution functions. A special focus should be

laid upon the final Section 2.5, which clarifies the interpretation of copulas

as dependence functions and, thus, justifies the use of copulas as a tool for

modelling stochastic dependence.

Chapter 3 gives an overview of different dependence concepts and mea-

sures of dependence for the bivariate case. The exposition is based essen-

tially on the theory of copulas and, in particular, on Section 2.5. There is no

attempt to be exhaustive in mentioning all dependence concepts that have

ever been proposed in the literature. The first section in that chapter deals

with extreme stochastic dependence. On the one hand, it introduces the

concept of mutual complete dependence; on the other hand, it elucidates

the above mentioned counterintuitive phenomenon, which states that in the

sense of convergence in law mutual complete dependence is indistinguish-

able from any other kind of dependence relation. In Section 3.2 we present

and comment on the different axiomatic approaches for defining a bivariate

measure of dependence which has been proposed in the literature. The last

section in this chapter is concerned with different construction methods for

a bivariate measure of dependence. Special attention is given to the existing

measures defined in terms of copulas.

Chapter 4 contains the main results of the dissertation. It begins with

a short summary of the main ideas and open issues presented in the pre-

ceding chapter. We argue in favour of the concept of mutual complete

dependence as the opposite of stochastic independence and, thus, motivate

the need for a new measure of bivariate dependence, namely one measur-

ing the strength of mutual complete dependence. Section 4.2 establishes

the necessary mathematical framework by introducing the Sobolev scalar

product for copulas and its corresponding norm and metric. We show that

the scalar product allows a representation via the product operation on the

set of all copulas introduced in Section 2.3. In Section 4.3 we turn to the

statistical interpretation of the Sobolev norm for copulas, which allows to
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detect mutual complete dependence of arbitrary form. This leads naturally,

in Section 4.4, to a new nonparametric measure of dependence for two con-

tinuous random variables. The final Section 4.5 concludes the dissertation

with some examples and comparisons.



Chapter 2

Copulas

2.1 Preliminaries

The focus of this section is the notion of a “two-increasing function”, which

can be viewed as the two-dimensional analog of an increasing function of

one variable. We will see that, with some additional assumptions, this

class of functions possesses several appealing properties. These prelimi-

nary concepts and results, which can be found in, e.g., Cherubini, Luciano,

and Vecchiato (2004), Nelsen (2006) and Schweizer and Sklar (2005), will

prove essential in the next section, where we define copulas and study their

properties from the perspective of calculus.

First we need some notation. Let R denote the real line, R := R ∪
{−∞} ∪ {∞} denote the extended real line, and R2

:= R × R denote

the extended real plane. A (halfopen) rectangle R ⊆ R2
is the Cartesian

product of two (halfopen) intervals: R := (x1, x2] × (y1, y2]. The vertices

of R are the points (x1, y1), (x1, y2), (x2, y1), and (x2, y2).

Definition 2.1. Let S1, S2 ⊂ R be nonempty, and let H be a function such

that H : S1×S2 → R. Let R := (x1, x2]× (y1, y2] be a rectangle all of whose

vertices lie in S1 × S2. Then the H-volume of R is given by

VH(R) = H(x2, y2)−H(x2, y1)−H(x1, y2) + H(x1, y1). (2.1)

7
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Definition 2.2. Let S1, S2 ⊂ R be nonempty, and let H be a function such

that H : S1 × S2 → R. H is two-increasing if VH(R) ≥ 0 for all rectangles

R whose vertices lie in S1 × S2.

Note that the statement “H is two-increasing” neither implies nor is

implied by the statement “H is increasing1 in each argument.” For example,

let H : [0, 1]2 → R with (x, y) 7→ max(x, y). Then H is increasing in each

argument, however, VH([0, 1]2) = −1, so that H is not two-increasing. In

the other direction, let H : [0, 1]2 → R with (x, y) 7→ (2x−1)(2y−1). Then

H is two-increasing, but it is decreasing in x for y ∈ (0, 1/2).

The following lemmas will be very useful in the next section, which

establishes the continuity of copulas.

Lemma 2.3. Let S1, S2 ⊂ R, and let H : S1 × S2 → R be a two-increasing

function. Let x1, x2 ∈ S1 with x1 ≤ x2 and let y1, y2 ∈ S2 with y1 ≤ y2.

Then the functions

t 7→ H(t, y2)−H(t, y1)

t 7→ H(x2, t)−H(x1, t)

are increasing on S1 and S2, respectively.

Proof. Since H is two-increasing, it follows from Definition 2.2 that

H(x2, y2)−H(x2, y1)−H(x1, y2) + H(x1, y1) ≥ 0

⇔ H(x2, y2)−H(x2, y1) ≥ H(x1, y2)−H(x1, y1)

⇔ H(x2, y2)−H(x1, y2) ≥ H(x2, y1)−H(x1, y1) .

This proves the second statement. The first one follows analogously.

1We call a function f : M ⊂ R → R increasing [decreasing] if, for all x, y ∈ M ,
x < y implies f(x) ≤ f(y) [f(x) ≥ f(y)]. If strict inequalities hold, f is called strictly
increasing [strictly decreasing]. The terms “nondecreasing” and “nonincreasing” are not
used.
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As an immediate application of this lemma, we can show that with

an additional assumption a two-increasing function is increasing in each

argument.

Definition 2.4. Let S1, S2 ⊂ R such that minS1 =: a1 and minS2 =: a2

exist, and let H : S1 × S2 → R. H is grounded if

H(x, a2) = 0 = H(a1, y) for all (x, y) ∈ S1 × S2 . (2.2)

Lemma 2.5. Let S1, S2 ⊂ R, and let H : S1 × S2 → R be a grounded,

two-increasing function. Then H is increasing in each argument.

Proof. Let minS1 =: a1 and min S2 =: a2, and set x1 = a1, y1 = a2 in

Lemma 2.3.

Definition 2.6. Let S1, S2 ⊂ R, such that max S1 =: b1 and maxS2 =: b2

exist, and let H : S1 × S2 → R. Then H has margins, and the margins are

the functions F and G given by:

F : S1 → R with x 7→ H(x, b2) for all x ∈ S1

G : S2 → R with y 7→ H(b1, y) for all y ∈ S2 .

We close this section with an important lemma concerning grounded,

two-increasing functions with margins.

Lemma 2.7. Let S1, S2 ⊂ R, and let H : S1 × S2 → R be a grounded,

two-increasing function with margins. Then

|H(x2, y2)−H(x1, y1)| ≤ |F (x2)− F (x1)|+ |G(y2)−G(y1)|

for all (x1, y1), (x2, y2) ∈ S1 × S2.

Proof. From the triangle inequality, we have

|H(x2, y2)−H(x1, y1)| ≤ |H(x2, y2)−H(x1, y2)|+ |H(x1, y2)−H(x1, y1)| .
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Now assume that x1 ≤ x2. Lemma 2.3, Lemma 2.5 and Definition 2.6

imply 0 ≤ H(x2, y2)−H(x1, y2) ≤ F (x2)− F (x1). An analogous inequality

holds when x2 ≤ x1. Hence it follows that for any x1, x2 ∈ S1, we have

|H(x2, y2) − H(x1, y2)| ≤ |F (x2) − F (x1)|. Similarly, for any y1, y2 ∈ S2,

|H(x1, y2)−H(x1, y1)| ≤ |G(y2)−G(y1)|, which completes the proof.

2.2 Definition and analytic properties

Equipped with the concepts and results from the preceding section, we

are now in a position to define copulas. The approach presented here is

essentially the same as in Nelsen (2006) and Schweizer and Sklar (2005).

Let I denote the closed unit interval [0, 1]; analogously I2 denotes the

closed unit square [0, 1]× [0, 1].

Definition 2.8. A two-dimensional copula (or briefly, a copula) is a func-

tion C : I2 → I satisfying the conditions:

(i) C is grounded.

(ii) C has margins given by C(u, 1) = u and C(1, v) = v for all u, v ∈ I.

(iii) C is two-increasing.

The following definition is equivalent. It emphasizes, however, the three

main properties characterizing a copula.

Definition 2.9. A copula is a function C : I2 → I satisfying the conditions:

(i) C(u, 0) = C(0, v) = 0 for all u, v ∈ I.

(ii) C(u, 1) = u and C(1, v) = v for all u, v ∈ I.

(iii) C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0 for all rectangles

(u1, u2]× (v1, v2] ⊂ I2.
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Let C denote the set of all (two-dimensional) copulas. The conditions in

Definition 2.8 or, alternatively, Definition 2.9 together with the preliminary

results presented in Section 2.1 imply directly the following properties of

copulas.

Theorem 2.10. The set C is closed under convex combinations, i.e., for

all A,B ∈ C and for all a, b ∈ I with a + b = 1, aA + bB ∈ C.

The next theorem, which establishes the continuity of copulas, is an

immediate consequence of Lemma 2.7.

Theorem 2.11. Copulas are Lipschitz (and hence uniformly) continuous

and satisfy

|C(u2, v2)− C(u1, v1)| ≤ |u2 − u1|+ |v2 − v1|

for all u1, u2, v1, v2 ∈ I.

Definition 2.12. Let C be a copula and let a be any number in I. The

horizontal section of C at a is the function from I to I given by t 7→ C(t, a);

the vertical section of C at a is the function from I to I given by t 7→ C(a, t);

and the diagonal section of C is the function from I to I given by t 7→ C(t, t)

Since copulas are grounded, two increasing functions, it follows imme-

diately from Lemma 2.5 that they are increasing in each argument. More

formally, we have the following result, which is readily verified using Theo-

rem 2.11.

Theorem 2.13. The horizontal, vertical, and diagonal sections of a copula

C are all increasing and Lipschitz continuous on I.

Corollary 2.14. The horizontal and vertical sections of a copula C are all

absolutely continuous on I.
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Proof. Set ε > 0 arbitrary. Choose δ = ε and let {(xi, yi) : i = 1, . . . , n}
be a finite collection of non overlapping bounded open intervals for which
∑n

i=1(yi − xi) < δ. Then
∑n

i=1(yi − xi) < ε, which immediately implies

that
∑n

i=1 |f(yi)− f(xi)| < ε since the horizontal and vertical sections of a

copula are Lipschitz continuous with a Lipschitz constant equal to 1.

The next theorem concerns the differentiability properties of copulas.

While these are well known, they are often not exploited. The main results

of this dissertation, however, exploit the differentiability properties. For

instance, they will prove essential in Chapter 4, where we introduce the

Sobolev scalar product for copulas and its corresponding norm and distance.

Let ∂iC, for i = 1, 2, denote the partial derivative of a copula C with

respect to the i-th variable.

Theorem 2.15. Let C be a copula. For any v ∈ I, ∂1C(u, v) exists for

almost all u, and for such u and v,

0 ≤ ∂1C(u, v) ≤ 1 .

Similarly, for any u ∈ I, ∂2C(u, v) exists for almost all v, and for such u

and v,

0 ≤ ∂2C(u, v) ≤ 1 .

Furthermore, the functions v 7→ ∂1C(u, v) and u 7→ ∂2C(u, v) are defined

and increasing almost everywhere on I.

Proof. The existence of the partial derivatives ∂1C(u, v) and ∂2C(u, v) fol-

lows immediately from Theorem 2.13 because monotone functions are dif-

ferentiable almost everywhere. The two inequalities follow from Theo-

rem 2.11 by setting v1 = v2 and u1 = u2, respectively. If v1 ≤ v2, then,

by Lemma 2.3 the function u 7→ C(u, v2) − C(u, v1) is increasing. Hence,

∂1(C(u, v2)−C(u, v1)) is defined and nonnegative almost everywhere on I,

from which it follows that v 7→ ∂1C(u, v) is defined and increasing almost

everywhere on I. A similar result holds for u 7→ ∂2C(u, v).
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The next result shows that any copula C can be recovered from either

of its first partial derivatives by integration. It follows immediately from

the fact that, by Corollary 2.14, the horizontal and vertical sections of a

copula are absolutely continuous.

Theorem 2.16. Let C be a copula. For all u, v ∈ I, we have

C(u, v) =

∫ u

0

∂1C(t, v) dt =

∫ v

0

∂2C(u, s) ds

Theorem 2.17. In C, pointwise and L∞-convergence are equivalent.

Proof. The set C is a compact and convex subset of the space of all contin-

uous real valued functions defined on the unit square I2 under the topology

of uniform convergence. It follows that, in C, pointwise convergence implies

uniform convergence. This yields the desired result.

Theorem 2.18. In C, L∞-convergence implies Lp-convergence for each

p ∈ [1,∞).

Proof. Let (Cn)n∈N be a sequence in C with limn→∞ ‖Cn − C‖L∞ = 0 for

some C ∈ C. Now observe that for any L∞-function f on I2 with ‖f‖L∞ ≤ 1

we have

‖f‖p
Lp =

∫

I2

|f |p dλ ≤
∫

I2

‖f‖p
L∞ dλ ≤

∫

I2

‖f‖L∞ dλ = ‖f‖L∞

where λ denotes the two-dimensional Lebesgue measure. It follows that, for

all n ∈ N, ‖Cn−C‖p
Lp ≤ ‖Cn−C‖L∞ , from which we immediately conclude

that limn→∞ ‖Cn − C‖Lp = 0.

Three copulas arise repeatedly:

C−(u, v) = max(u + v − 1, 0), (2.3)

C+(u, v) = min(u, v), (2.4)

P (u, v) = uv. (2.5)
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A common property of these three copulas is that they all have im-

portant stochastic interpretation, as will become clear in Section 2.5. For

now, we only mention that P is called the product copula and C+ and C−

are called the Fréchet-Hoeffding upper and lower bound, respectively, as

indicated by the following result.

Theorem 2.19. For any copula C and any (u, v) ∈ I2

C−(u, v) ≤ C(u, v) ≤ C+(u, v).

Proof. For any (u, v) ∈ I2, C(u, v) ≤ C(u, 1) = u and C(u, v) ≤ C(1, v) = v

which yields C(u, v) ≤ min(u, v). The first inequality follows from condi-

tion (iii) in Definition 2.9, taking the rectangle (u, 1]× (v, 1] ⊂ I2.

Theorem 2.19 suggests a pointwise partial ordering on the set of all

copulas C.

Definition 2.20. For two copulas A and B, we say that A is smaller than

B (or B is larger than A), and write A ≺ B (or B Â A) if A(u, v) ≤ B(u, v)

for all (u, v) ∈ I2.

It follows from Theorem 2.19 that the Fréchet-Hoeffding lower bound

C− is smaller than every copula, and the Fréchet-Hoeffding upper bound

C+ is larger than every copula. This pointwise partial ordering on C is called

the concordance ordering. Note that the ordering is not total because there

are copulas which are not comparable.

2.3 Algebraic properties

In the previous section we introduced copulas and studied their properties

from the perspective of calculus alone. The present section deals with the

algebraic properties of the set of copulas C. These concepts, introduced

by Darsow, Nguyen, and Olsen (1992), are less intuitive and not necessar-

ily present in the standard literature. As will become clear in Chapter 4,
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however, they play a crucial role in establishing the main results of this

dissertation. The presentation given here is essentially the same as the

one in Darsow, Nguyen, and Olsen (1992), although some of the proofs

are slightly modified and more detailed, while others are left out since they

require additional concepts irrelevant for our purposes. We also refer to Dar-

sow and Olsen (1995) and Olsen, Darsow, and Nguyen (1996).

Definition 2.21. For any A,B ∈ C and any (u, v) ∈ I2, define

(A ∗B)(u, v) =

∫ 1

0

∂2A(u, t) ∂1B(t, v) dt.

First of all, the fact that the partial derivatives are bounded by The-

orem 2.15 and integrable by Theorem 2.16 ensures that the integral in

Definition 2.21 exists. The next theorem shows that ∗ defines a product

operation on C.

Theorem 2.22. Let A and B be in C. Then A ∗B is in C.

Proof. Properties (i) and (ii) in Definition 2.9 are easily verified. To show (iii)

consider any rectangle (u1, u2]× (v1, v2] ⊂ I2.

A ∗B(u1, v1) + A ∗B(u2, v2)− A ∗B(u1, v2)− A ∗B(u2, v1)

=

∫ 1

0

∂2A(u1, t) ∂1B(t, v1) + ∂2A(u2, t) ∂1B(t, v2)

− ∂2A(u1, t) ∂1B(t, v2)− ∂2A(u2, t) ∂1B(t, v1) dt

=

∫ 1

0

∂2(A(u2, t)− A(u1, t)) ∂1(B(t, v2)−B(t, v1)) dt

≥ 0

The last estimate follows from the fact that u1 ≤ u2 and v1 ≤ v2. Then, from

Lemma 2.3 the functions t 7→ A(u2, t)−A(u1, t) and t 7→ B(t, v2)−C(B, v1)

are increasing. Hence, ∂2(A(u2, t)−A(u1, t)) and ∂1(B(t, v2)−B(t, v1)) are

defined and nonnegative almost everywhere on I.
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Let C be any copula. By direct calculation, the ∗-products of C with C+

and P are as follows:

C+ ∗ C = C ∗ C+ = C, (2.6)

P ∗ C = C ∗ P = P. (2.7)

Thus, C+ and P are unit and null elements with respect to the product

operation.

It can be shown that the ∗-product is associative, i.e., for any copulas

A,B, C, we have (A∗B)∗C = A∗(B∗C). In algebraic terms, Theorem 2.22

together with the associativity property and (2.6) states that, under the ∗-
product, the set C becomes a monoid, i.e., a semi-group with a unit element.

Although C is not a group, some of its elements do possess inverses, which,

however, are not necessarily commutative. It will turn out in Section 2.5

that the invertible elements of C have important probabilistic interpretation

and, thus, will play a key role in Chapter 4. Therefore, the rest of this

section focuses on them, but first we need two definitions.

Definition 2.23. For any copula C, the copula C> defined by

C>(u, v) = C(v, u),

for all (u, v) ∈ I2, is called the transposed copula of C.

Definition 2.24. Let C be a copula. C is called symmetric if C = C>.

It is readily verified that for any A,B ∈ C the following holds

(A ∗B)> = B> ∗ A>. (2.8)

Definition 2.25. Let C be in C.

(i) C is called left invertible if there is a copula A, called a left inverse,

such that A ∗ C = C+.
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(ii) C is called right invertible if there is a copula B, called a right inverse,

such that C ∗B = C+.

(iii) C is called invertible if it is both left and right invertible and, in this

case, A = B is called the inverse of C.

On analyzing Definition 2.25, several questions arise. First of all, part (iii)

implicitly assumes that the left and right inverses of an invertible copula

necessarily coincide. We will address this issue at the end of this section.

Another point is the existence of invertible copulas. A simple calculation

yields C+ ∗C+ = C+, which shows that the Fréchet-Hoeffding upper bound

C+, defined in (2.4), is invertible. The next result yields a necessary and

sufficient condition for invertibility.

Theorem 2.26. Let C be in C.

(i) C is left invertible if and only if for each v ∈ I, ∂1C(u, v) ∈ {0, 1} for

almost all u ∈ I.

(ii) C is right invertible if and only if for each u ∈ I, ∂2C(u, v) ∈ {0, 1}
for almost all v ∈ I.

(iii) C is invertible if and only if for each v ∈ I, ∂1C(u, v) ∈ {0, 1} for

almost all u ∈ I and for each u ∈ I, ∂2C(u, v) ∈ {0, 1} for almost all

v ∈ I.

Proof. We prove (i) only, since (ii) follows from (i) by taking transposes,

and (iii) follows per definition from (i) and (ii). Suppose that for each

v ∈ I, ∂1C ∈ {0, 1} for almost all u ∈ I. Since by, Theorem 2.15, for almost

all u the function v 7→ ∂1C(u, v) is increasing, it follows that for u ≤ v,
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∂1C(u, u)∂1C(u, v) = ∂1C(u, u) for almost all u. Hence

C> ∗ C(u, v) =

∫ 1

0

∂2C
>(u, t) ∂1C(t, v) dt

=

∫ 1

0

∂1C(t, u) ∂1C(t, v) dt

=

∫ 1

0

∂1C(t,min(u, v)) dt

= min(u, v)

= C+(u, v)

Thus, C is left invertible, and C> is a left inverse of C.

In the other direction, suppose L ∗ C = C+. Then for all v

v =

∫ 1

0

∂2L(v, t) ∂1C(t, v) dt

≤
(∫ 1

0

∂2L(v, t)2 dt

)1/2 (∫ 1

0

∂1C(t, v)2 dt

)1/2

≤ v1/2

(∫ 1

0

∂1C(t, v)2 dt

)1/2

≤ v1/2

(∫ 1

0

∂1C(t, v) dt

)1/2

= v1/2v1/2

= v.

This uses Schwartz’s inequality and the fact that, by Theorem 2.15, the

first partial derivatives of a copula lie between 0 and 1 almost certainly. It

follows that equality must hold at each step in the foregoing chain, so that,

from lines 3 and 4, for all v > 0,
∫ 1

0

(
∂1C(t, v)− ∂1C(t, v)2

)
dt = 0 .

Since the integrand in this expression is almost certainly positive, it follows

that for all v > 0, ∂1C(u, v) ∈ {0, 1} for almost all u as required. When

v = 0, ∂1C(u, v) = 0 for all u, by the boundary condition satisfied by C.

This completes the proof.
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Remark 2.27. The proof of Theorem 2.26 shows that the statement “for

each v ∈ I, ∂1C(u, v) ∈ {0, 1} for almost all u ∈ I” in (i) could be replaced

by the weaker statement “∂1C(u, v) ∈ {0, 1} for almost all (u, v) ∈ I2”

without affecting the equivalence. Analogous simplifications hold for (ii)

and (iii), and we will take advantage of these in Chapter 4

The proof of Theorem 2.26 shows that if a copula C is left invertible,

right invertible, or invertible, the transposed copula C> (see Definition 2.23)

is a left inverse, a right inverse, or an inverse, respectively. More formally,

we have the following result, whose proof we omit in order to simplify

the exposition; instead, the reader is referred to Theorems 7.2 and 7.3

in Darsow, Nguyen, and Olsen (1992).

Theorem 2.28. Left and right inverses in C are unique and correspond to

the transposed copula.

Theorem 2.28 shows that if a copula has both left and right inverses,

they necessarily coincide, which proves the statement implicitly assumed

in Definition 2.25 (iii). Also note that the example C+ ∗ C+ = C+ given

above to show the existence of invertible copulas by no means contradicts

Theorem 2.28 since, by Definition 2.24, C+ is symmetric, i.e., C = C>.

Remark 2.29. A copula invertible on one side need not be invertible on

the other. Consider, for example, the following one-parameter family of

copulas with θ ∈ (0, 1), and let

C(u, v) =





u if u ≤ θv,

θv if θv < u < 1− (1− θ)v,

u + v − 1 if 1− (1− θ)v ≤ u.

It follows that, for any θ, ∂1C ∈ {0, 1} almost everywhere in I2 and therefore

by Theorem 2.26 (i) and Remark 2.27 C is left invertible. However, for

θv < u < 1 − (1 − θ)v, we have ∂2C(u, v) = θ /∈ {0, 1} and thus by

Theorem 2.26 (ii) C is not right invertible.
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2.4 Copulas and random variables

The preceding sections in this chapter introduced copulas and their proper-

ties from a purely mathematical perspective. The present section establishes

the connection between copulas and random variables. The importance of

copulas to the theory of statistics stems from a fundamental result known

as Sklar’s theorem. Sklar’s theorem is the foundation of many, if not al-

most all, of the statistical applications of copulas. It reveals the role which

copulas play in the relationship between multivariate distribution functions

and their univariate margins.

Theorem 2.30 (Sklar’s theorem). Let H be a joint distribution function

with margins F and G. Then there exists a copula C such that for all

(x, y) ∈ R2,

H(x, y) = C(F (x), G(y)). (2.9)

If F and G are continuous, then C is unique. Otherwise, C is uniquely

determined on Range F ×Range G.

Conversely, if C is a copula and F and G are distribution functions,

then the function H defined by (2.9) is a joint distribution function with

margins F and G.

This theorem first appeared in Sklar (1959). For a proof we refer also

to Nelsen (2006) and Schweizer and Sklar (1974).

Concisely put, a copula “couples” two univariate distribution functions

to a joint distribution function. Since distribution functions and random

variables are interrelated, it follows that a copula can be associated to

any pair of random variables. In particular, if the marginal distribution

functions of the random variables are continuous, then the corresponding

copula is unique. Therefore, in terms of random variables, Sklar’s theorem

can be restated as follows.
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Theorem 2.31. Let X and Y be two random variables, on the same proba-

bility space, with univariate distribution functions FX and FY , respectively,

and joint distribution function FX,Y . Then there exists a copula C such that

for all (x, y) ∈ R2,

FX,Y (x, y) = C(FX(x), FY (y)). (2.10)

If FX and FY are continuous, then C is unique. Otherwise, C is uniquely

determined on Range FX ×Range FY .

When FX and FY are continuous, the unique copula C in Theorem 2.31

will be called the copula of X and Y and sometimes denoted by CX,Y to

emphasize its identification with the random variables X and Y .

Sklar’s theorem, however, is not the only way in which copulas relate

to random variables. Observe that, with an appropriate extension of its

domain to R2, every copula can be associated with a joint distribution

function whose margins are uniform on I. More precisely, we can make the

following definition.

Definition 2.32. Let C be a copula. The function HC : R2 → I defined as

HC(u, v) =





0 if u < 0 or v < 0 ,

C(u, v) if (u, v) ∈ I2 ,

u if v > 1 and u ∈ I ,

v if u > 1 and v ∈ I ,

1 if u > 1 and v > 1 .

will be called the distribution function associated with C.

It is clear that a copula C defines the function HC uniquely, and vice

versa. It is also readily verified that HC is a bivariate distribution function

whose marginal distribution functions are uniform on I.

Observe that all distribution functions associated to copulas coincide

on the set R2 \ I2 and the probability of any Borel set which is contained
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in R2 \ I2 is 0. Thus, without loss of information, every copula can be

viewed as a restriction to I2 of a joint distribution function whose margins

are uniform on I. Therefore, in the sequel, we omit the word “restriction”

and simply refer to copulas as joint distribution functions with uniform

margins on I.

It follows that any copula C induces a probability measure PC on the

Borel subsets of I2 via

PC((u1, u2]× (v1, v2]) = VC((u1, u2]× (v1, v2]),

where VC((u1, u2]×(v1, v2]) is the C-volume of the rectangle (u1, u2]×(v1, v2];

see Definition 2.1. An extension of the PC-measure to arbitrary Borel sub-

sets of I2 can be achieved by standard measure-theoretic techniques. Note

that since copulas are continuous functions, the PC-measure of an individual

point in I2 is 0.

Remark 2.33. PC-measures are often called doubly stochastic measures,

as for any Borel subset S of I,

PC(S × I) = PC(I × S) = λ(S),

where λ denotes the one-dimensional Lebesgue measure.

The next theorem shows that the copula of two random variables with

continuous distribution functions is the joint distribution function of their

probability integral transformations.

Theorem 2.34. Let X and Y be two random variables on a probability

space (Ω,A,P), with continuous marginal distribution functions FX and

FY , respectively, joint distribution function FX,Y , and copula C. Then C

is the joint distribution function of the probability integral transformations

FX(X) and FY (Y ).
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Proof. From Theorem 2.31 we have the identity:

C(FX(x), FY (y)) = FX,Y (x, y)

= P [X ≤ x, Y ≤ y]

= P [FX(X) ≤ FX(x), FY (Y ) ≤ FY (y)] .

Since FX and FY are continuous, we have RangeFX = RangeFY = I, from

which the desired result follows.

As a joint distribution function, a copula admits a decomposition into

an absolutely continuous component and a singular component; see Nelsen

(2006). For any copula C, let

C(u, v) = AC(u, v) + SC(u, v),

where

AC(u, v) =

∫ u

0

∫ v

0

∂2

∂s∂t
C(s, t) dt ds

and

SC(u, v) = C(u, v)− AC(u, v).

Note that, by virtue of Theorem 2.15, ∂2C(s, t)/∂s∂t exists almost every-

where in I2 and is non-negative. If C = AC on I2, i.e., if considered as a

joint distribution function, C has a joint density given by ∂2C(s, t)/∂s∂t,

then C is absolutely continuous. If C = SC on I2, i.e., if ∂2C(s, t)/∂s∂t = 0

almost everywhere on I2, then C is singular. Otherwise, C has an absolutely

continuous component AC and a singular component SC .

The support of a copula is defined as the complement of the union of

all open Borel subsets of I2 whose C-measure is zero. When the support

of C is I2, we say that C has “full support”. In this case, C need not

be absolutely continuous. However, when C is singular, its support has

Lebesgue measure zero and conversely.
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Figure 2.1: The graphs of the product copula P (left) and its density

The rest of the section provides some examples. For instance, the prod-

uct copula P (u, v) = uv, whose graph and density are shown in Figure 2.1

is absolutely continuous, because for all (u, v) ∈ I2,

AP (u, v) =

∫ u

0

∫ v

0

∂2

∂s∂t
P (s, t) dt ds =

∫ u

0

∫ v

0

1 dt ds = P (u, v) . (2.11)

Another example of an absolutely continuous copula is the Gaussian

copulas CGa
ρ with parameter ρ ∈ [−1, 1]. The Gaussian copula is defined as

follows:

CGa
ρ (u, v) = Φρ(Φ

−1(u), Φ−1(v)) , (2.12)

where Φρ is the joint distribution function of a bivariate standard normal

vector, with linear correlation ρ, and Φ is the standard normal distribution

function. Therefore (Cherubini, Luciano, and Vecchiato, 2004),

CGa
ρ (u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1− ρ2
exp

(2ρst− s2 − t2

2(1− ρ2)

)
ds dt

(2.13)

=

∫ u

0

∫ v

0

1√
1− ρ2

exp
(2ρmn−m2 − n2

2(1− ρ2)
+

m2 + n2

2

)
ds dt ,

(2.14)
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Figure 2.2: The graphs of the Gaussian copula CGa
ρ with ρ = 0.5 (left) and

its density

where m = Φ−1(s) and n = Φ−1(t). The graph of the Gaussian copula

and its density, which is given by the integrand in (2.14), are plotted in

Figure 2.2. The next result relates the Gaussian copula to the normal

distribution.

Theorem 2.35. Let X and Y be two random variables defined on a common

probability space, with normal marginal distributions and copula C. Then

X and Y are jointly normal with correlation coefficient ρ if and only if

C = CGa
ρ .

Proof. If X and Y both have standard normal margins Φ, the result is an

immediate consequence of (2.10) and (2.12). For arbitrary normal margins,

it follows from (2.10) by (2.13) applying the transformation formula for the

Lebesgue integral.

The support of the Fréchet-Hoeffding upper bound C+(u, v) = min(u, v)

is the main diagonal of I2, i.e., the set {(u, u) |u ∈ I}, so that C+ is singular;

see Figure 2.3. Also note that ∂2C(s, t)/∂s∂t = 0 everywhere in I2 except

on the main diagonal. Similarly the support of the Fréchet-Hoeffding lower
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Figure 2.3: The graphs of the Fréchet-Hoeffding upper bound C+ (left) and
its support
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Figure 2.4: The graphs of the Fréchet-Hoeffding lower bound C− (left) and
its support

bound C−(u, v) = max(u + v − 1, 0) is the secondary diagonal of I2, i.e.,

the set {(u, 1− u) |u ∈ I}, so C− is singular as well; see Figure 2.4.

Other examples of singular copulas which are of special interest in this

dissertation are the class of copulas called “shuffles of Min” introduced
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Figure 2.5: The graphs of a shuffle of Min given by C(u, v) = C+(u, v)−0.2
if (u, v) ∈ [0.2, 0.8]2 and C−(u, v) otherwise (left) and its support

by Mikusiński, Sherwood, and Taylor (1992).

Definition 2.36. A copula is called a shuffle of Min if its support is ob-

tained by

(i) placing the support for C+(u, v) = min(u, v)(= Min) on I2,

(ii) cutting I2 vertically into a finite number of strips,

(iii) shuffling the strips with perhaps some of them flipped around their

vertical axes of symmetry, and then

(iv) reassembling them to form the square again.

Observe that by definition any shuffle of Min is a singular copula. The

graph of a shuffle of Min given by

C(u, v) =

{
C+(u, v)− 0.2 if (u, v) ∈ [0.2, 0.8]2

C−(u, v) if (u, v) ∈ I2\[0.2, 0.8]2

and its corresponding support are shown in Figure 2.5.
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In the next section, we will see that the preceding examples of copulas,

namely P, C+, C− and the class called shuffles of Min have very important

probabilistic interpretation.

2.5 Copulas as dependence functions

Let X and Y be two random variables on a common probability space, with

marginal distribution functions FX and FY , respectively, and joint distri-

bution function FX,Y . Then, FX,Y contains the whole information about

the distribution of the random vector (X, Y ). Intuitively, this information

consists of two parts – knowledge of the marginal distributions and knowl-

edge of the dependence structure. By Sklar’s theorem 2.31, if FX and FY

are continuous, there exists a unique copula CX,Y such that

FX,Y (x, y) = CX,Y (FX(x), FY (y)). (2.15)

Thus, in this case, the joint distribution function can be decomposed into

the marginal distribution functions and the (unique) copula. It follows that

the dependence between X and Y is fully captured by their copula. For

this reason, copulas can be interpreted as dependence functions.

For example, the next theorem shows that the product copula P (u, v) =

uv corresponds to stochastic independence.

Theorem 2.37. Let X and Y be two random variables on a common prob-

ability space with continuous marginal distribution functions and (unique)

copula C. Then C = P if and only if X and Y are independent.

Proof. This is an immediate consequence of Theorem 2.31 and the observa-

tion that X and Y are independent if and only if FX,Y (x, y) = FX(x)FY (y),

i.e., the joint distribution function FX,Y is equal to the product of the

marginal distribution functions FX and FY .
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Theorem 2.37 motivates the question of the probabilistic interpretations

of other copulas, for example, the Fréchet-Hoeffding bounds, C+ and C−,

or the shuffles of Min, which we encountered in Section 2.4.

Theorem 2.38. Let X and Y be two random variables on a common prob-

ability space (Ω,A,P) with continuous marginal distribution functions and

copula C. Then the following assertions hold:

(i) C = C+ if and only if P [Y = f(X)] = 1, where f is a strictly

increasing Borel-measurable function.

(ii) C = C− if and only if P [Y = f(X)] = 1, where f is a strictly

decreasing Borel-measurable function.

Theorem 2.39. Let X and Y be two random variables on a common prob-

ability space (Ω,A,P) with continuous marginal distribution functions and

copula C. Then C is a shuffle of Min if and only if P [Y = f(X)] = 1,

where f is an invertible Borel-measurable function with a finite number of

discontinuities.

Theorem 2.38 is due to Hoeffding (1994) and Fréchet (1951). For a proof

we also refer to Mikusiński, Sherwood, and Taylor (1991/92) and Nelsen

(2006). The result in Theorem 2.39 is proved in Mikusiński, Sherwood, and

Taylor (1992). We omit both proofs since the verifications are long and

rather technical.

Remark 2.40. Mikusiński, Sherwood, and Taylor (1992) refer to the Borel-

measurable function f in Theorem 2.38 as strongly piecewise monotone.

This is clear because the finitely many discontinuity points of f form a

partition of its domain and since f is invertible, it follows that on each

of the partition intervals it has to be either strictly increasing or strictly

decreasing.
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The preceding examples justify the interpretation of copulas as depen-

dence functions. Representation (2.15) also makes clear that the study of

stochastic dependence via copulas has the advantage of being independent

of the particular type of marginal distributions. Thus, copulas provide

a nonparametric tool for assessing and measuring dependence, allowing a

direct comparison of two random vectors with arbitrary marginal distribu-

tions.

Furthermore, much of the usefulness of copulas in nonparametric statis-

tics derives from the fact that for strictly monotone transformations of the

random variables, copulas are either invariant or change in a predictable

way. The next theorem shows that it is precisely the copula of a bivari-

ate random vector which captures those properties of the joint distribution

function which are invariant under strictly increasing transformations of the

univariate margins – so-called scale invariance (Schweizer and Wolff, 1981).

Theorem 2.41. Let X and Y be random variables on a common proba-

bility space (Ω,A,P) with continuous marginal distribution functions and

(unique) copula CX,Y , and let f and g be real-valued Borel-measurable func-

tions. Then, for all u, v ∈ I, the following statements are true:

(i) If f and g are strictly increasing, then

Cf(X),g(Y )(u, v) = CX,Y (u, v).

(ii) If f is strictly increasing and g is strictly decreasing, then

Cf(X),g(Y )(u, v) = u− CX,Y (u, 1− v).

(iii) If f is strictly decreasing and g is strictly increasing, then

Cf(X),g(Y )(u, v) = v − CX,Y (1− u, v).

(iv) If f and g are strictly decreasing, then

Cf(X),g(Y )(u, v) = u + v − 1 + CX,Y (1− u, 1− v).
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Proof. Let FX , FY , Ff(X) and Fg(Y ) denote the distribution functions of

X, Y, f(X) and g(Y ), respectively.

If f and g are strictly increasing,

Ff(X)(x) = P [f(X) ≤ x] = P [X ≤ f−1(x)] = FX(f−1(x))

and likewise Fg(Y )(y) = FY (g−1(y)). Thus, for any x, y ∈ R,

Cf(X),g(Y )(Ff(X)(x), Fg(Y )(y)) = P [f(X) ≤ x, g(Y ) ≤ y]

= P [X ≤ f−1(x), Y ≤ g−1(y)]

= CX,Y (FX(f−1(x)), FY (g−1(y)))

= CX,Y (Ff(X)(x), Fg(Y )(y)).

Because X and Y are continuous, Range Ff(X) = Range Fg(Y ) = I, whence

it follows that Cf(X),g(Y )(u, v) = CX,Y (u, v) on I2. This proves (i). (ii)-(iv)

can be proved in a similar way.



Chapter 3

Dependence properties and
measures

3.1 Extreme stochastic dependence

Dependence relations between random variables is one of the most widely

studied subjects in probability and statistics. The nature of the dependence

can take a variety of forms of which, undoubtedly, the most prominent

one is actually stochastic independence. Naturally, the question of the

“strongest” type of dependence arises. Concentrating on the bivariate case,

the following definition by Lancaster (1963) provides an answer.

Definition 3.1. Let X and Y be random variables on a common probability

space (Ω,A,P). Y is called completely dependent on X if there exists a

Borel-measurable function f such that

P [Y = f(X)] = 1. (3.1)

X and Y are called mutually completely dependent if Y is completely de-

pendent on X, and X is completely dependent on Y .

Remark 3.2. In other words, X and Y are mutually completely dependent

if and only if there is a Borel-measurable bijection f satisfying (3.1).

32
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Obviously, stochastic independence and mutual complete dependence

are most opposite in character. The former case entails complete unpre-

dictability of either random variable from the other, whereas the latter

corresponds to complete predictability.

It is also clear that if a sequence (Xn, Yn)n∈N of pairs of independent ran-

dom variables converges in distribution to a pair (X,Y ) of random variables,

then X and Y must be independent. However, if a sequence (Un, Vn)n∈N

of pairs of mutually completely dependent random variables converges in

distribution to a pair (U, V ) of random variables, then U and V need not

be mutually completely dependent. In fact, it is even possible to construct

a sequence of pairs of mutually completely dependent random variables, all

having uniform marginal distributions on I = [0, 1], which converges in law

to a pair of independent random variables, each having a uniform distribu-

tion on I; see Kimeldorf and Sampson (1978). This can be achieved in the

following way.

Partition the unit square into n2 congruent squares and denote by (i, j)

the square whose upper right corner is the point with coordinates x = i/n,

y = j/n. Similarly, partition each of these n2 squares into n2 subsquares and

let (i, j, p, q) denote subsquare (p, q) of square (i, j). Now let the bivariate

random variable (Un, Vn) distribute probability mass n−2 uniformly on ei-

ther one of the diagonals of each of the n2 subsquares of the form (i, j, j, i)

for 1 ≤ i ≤ n, 1 ≤ j ≤ n (Kimeldorf and Sampson, 1978). Figure 3.1

illustrates the cases n = 1, . . . , 6.

In particular, Kimeldorf and Sampson (1978) prove the following result.

Theorem 3.3. Each of the random variables Un, Vn has a uniform dis-

tribution on I. For each n the random variables Un and Vn are mutually

completely dependent. The sequence (Un, Vn)n∈N converges in law to a pair

(U, V ) of independent random variables with uniform distributions on I.

Proof. For each n, it is clear that Un and Vn are mutually completely depen-
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dent since the support of their joint distribution function is, by construction,

the graph of a bijection. Also, since Un and Vn each assign probability mass

n−1 uniformly to each interval ((i−1)/n, i/n), it is clear that Un and Vn have

uniform distributions on I. Finally, since (Un, Vn) assigns total probability

mass n−2 to each of the n2 large squares,

lim
n→∞

P (Un ≤ u, Vn ≤ v) = uv

for each point (u, v) ∈ I2.

In the following we will see that the phenomenon described by Kimeldorf

and Sampson (1978) can be expressed easily in terms of copulas. Recall from

Section 2.4 that copulas are bivariate distribution functions with uniform

marginal distributions on I. In fact, it is easy to show that, for all n ∈ N,

the support of the distribution of the random vector (Un, Vn), which, for

n = 1, . . . , 6, is shown in Figure 3.1, can be obtained by the procedure

described in Definition 2.36. It follows that, for all n, the joint distribution

of (Un, Vn) is a shuffle of Min. In view of Theorem 2.37, Kimeldorf and

Sampson (1978) prove essentially that the product copula, P (u, v) = uv,

can be approximated pointwise and therefore, by Corollary 2.17, uniformly

by certain shuffles of Min.

The next theorem shows that any copula, C ∈ C, can be approximated

uniformly, arbitrarily closely by shuffles of Min.

Theorem 3.4. Shuffles of Min are dense in C endowed with the L∞-norm.

For a proof see Theorem 3.1 in Mikusiński, Sherwood, and Taylor (1992).

Corollary 3.5. Shuffles of Min are dense in C endowed with any Lp-norm,

p ∈ [1,∞].

Proof. The result follows immediately from Corollary 2.18.
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Figure 3.1: Support of the distribution of (Un, Vn) for n = 1, . . . , 6.
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A similar result like the one in Theorem 3.4 was also proved by Vitale

(1990) and Vitale (1991) in the context of stochastic processes.

Recall from Theorem 2.39 that the copula of two random variables X

and Y with continuous marginal distribution functions is a shuffle of Min

if and only if P [Y = f(X)] = 1, where f is an invertible Borel-measurable

function with a finite number of discontinuities. In view of Definition 3.1

this results implies immediately the following theorem.

Theorem 3.6. Let X and Y be random variables on a common proba-

bility space (Ω,A,P) with continuous marginal distribution functions and

(unique) copula C and let C be a shuffle of Min. Then X and Y are

mutually completely dependent, i.e., P [Y = f(X)] = 1 for some Borel-

measurable bijection f .

Remark 3.7. As noted in Nelsen (2006), however, the converse implication

in Theorem 3.6 is not true – there are mutually completely dependent ran-

dom variables with more complex copulas. In Section 4.3 we will introduce

a necessary and sufficient condition for a copula to link mutually completely

dependent random variables.

Theorem 3.6 together with Theorem 3.4 yields the following result,

which is due to Mikusiński, Sherwood, and Taylor (1992).

Theorem 3.8. Let X and Y be random variables on a common probability

space (Ω,A,P) with continuous marginal distribution functions F and G,

respectively, and joint distribution function H. Then it is possible to find

a sequence (Xn, Yn)n∈N of pairs of mutually completely dependent random

variables with marginal distribution functions Fn = F and Gn = G, for all

n, and joint distribution functions Hn such that

lim
n→∞

‖Hn −H‖L∞ = 0.
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Proof. Let C be the connecting copula of X and Y . Then by Theorem 3.4

for any ε > 0 there exists a shuffle of Min, denoted by C
′
, which uniformly

approximates C, i.e.,

‖C(u, v)− C
′
(u, v)‖L∞ < ε. (3.2)

By Theorem 2.31 (Sklar’s theorem) the function H
′
defined on R2 via

H
′
(x, y) = C

′
(F (x), G(y)) (3.3)

is the joint distribution function of two random variables X
′
and Y

′
, with

marginal distribution functions F
′

= F and G
′

= G, respectively. More-

over, by Theorem 3.6, X
′

and Y
′

are mutually completely dependent. It

follows from (3.2) and (3.3) that

sup
x,y∈R

|H(x, y)−H
′
(x, y)| = sup

x,y∈R
|C(F (x), G(y))− C

′
(F (x), G(y))| < ε .

This completes the proof.

Theorem 3.8 expresses the astonishing fact that the joint distribution

function of any two continuous random variables can be approximated uni-

formly by the joint distribution function of a pair of mutually completely

dependent random variables with the same marginal distributions. In par-

ticular, this means that, regardless of the type of the marginal distributions,

one can pass continuously from mutual complete dependence to stochastic

independence in the sense of weak convergence of distribution functions.

Thus, in terms of convergence in law, it would be impossible, experimen-

tally, to distinguish between these two dependence concepts, although in-

tuitively they are most opposite in character.

This disturbing and counterintuitive phenomenon led several authors to

the conclusion that “mutual complete dependence is too broad a concept

to be an antithesis of independence” (Kimeldorf and Sampson, 1978). The

‘defect’ of mutual complete dependence motivated Kimeldorf and Sampson
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(1978) to consider a new concept of extreme dependence, called monotone

dependence.

Definition 3.9. Let X and Y be random variables on a common probability

space (Ω,A,P) with continuous marginal distribution functions. Then Y is

called monotone dependent on X if there exists a strictly monotone Borel-

measurable function g such that

P [Y = g(X)] = 1. (3.4)

It is obvious that Y is monotone dependent on X if and only if X

is monotone dependent on Y . Therefore, Kimeldorf and Sampson (1978)

make the following definition.

Definition 3.10. Two random variables X and Y on a common proba-

bility space (Ω,A,P) with continuous marginal distribution functions are

monotone dependent if there exists a strictly monotone Borel-measurable

function g for which

P [Y = g(X)] = 1. (3.5)

If g is strictly increasing, X and Y are said to be increasing monotone

dependent. If g is strictly decreasing, X and Y are said to be decreasing

monotone dependent.

Remark 3.11. In view of Definitions 3.1 and 3.10, monotone dependence

implies mutual complete dependence, but the converse implication is not

true since the Borel-measurable bijection f in (3.1) need not be continuous

and therefore monotone. For instance, if the copula of two random variables

X and Y with continuous distribution functions is a shuffle of Min, X and

Y are mutually completely dependent by Theorem 3.6, but it is clear that

they are not monotone dependent; see, for example, Figure 2.5.

Definition 3.10 and Theorem 2.38 immediately yield a necessary and

sufficient condition that two continuous random variables be monotone de-
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pendent. The result emphasizes again the role of copulas as dependence

functions and provides a statistical interpretation of the Fréchet-Hoeffding

bounds, C+(u, v) = min(u, v) and C−(u, v) = max(u + v − 1, 0).

Theorem 3.12. Let X and Y be random variables on a common proba-

bility space (Ω,A,P) with continuous marginal distribution functions and

(unique) copula C. Then the following assertions hold:

(i) X and Y are increasing monotone dependent if and only if C = C+.

(ii) X and Y are decreasing monotone dependent if and only if C = C−.

Kimeldorf and Sampson (1978) argue that monotone dependence could

be interpreted as the opposite of stochastic independence because, in con-

trast to mutual complete dependence, the property of monotone dependence

is preserved under weak convergence. In particular they prove the following

result.

Theorem 3.13. If (Xn, Yn)n∈N is a sequence of pairs of monotone depen-

dent continuous random variables which converges in law to a pair (X,Y )

of continuous random variables, then X and Y are monotone dependent.

Proof. Denote by Hn and H the respective joint distribution functions of

(Xn, Yn) and (X,Y ), and denote by Fn, Gn, F , and G the marginal distribu-

tion functions of Xn, Yn, X and Y , respectively. Since (Xn, Yn)n∈N converges

in law to (X, Y ), it follows that, for all x, y ∈ R, limn→∞ Hn(x, y) = H(x, y),

limn→∞ Fn(x) = F (x), and limn→∞ Gn(y) = G(y). Furthermore, there

exists a subsequence (Xnk
, Ynk

) such that either Xnk
and Ynk

are increas-

ing monotone dependent for all k or decreasing monotone dependent for

all k. It follows in the former case by Theorem 3.12 and Sklar’s theo-

rem that Hnk
(x, y) = min(Fnk

(x), Gnk
(y)), which converges to H(x, y) =

min(F (x), G(y)) where we have used the continuity of the min-function.
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Therefore, X and Y are increasing monotone dependent. A similar argu-

ment holds if Xnk
and Ynk

are decreasing monotone dependent for all k.

Summarizing the main results of this section it turns out that, in the lit-

erature, the question of the “strongest” possible type of dependence is highly

controversial. On the one hand, it is intuitively clear that if two random

variables are mutually completely dependent, then there exists complete de-

termination of either random variable from the other, due to the almost sure

bijective functional relation between them. Consequently, mutual complete

dependence can be considered most opposite to stochastic independence.

On the other hand, the phenomenon discovered by Kimeldorf and Samp-

son (1978) and studied among others by Mikusiński, Sherwood, and Taylor

(1992) and Vitale (1990) shows that, in the sense of weak convergence of dis-

tribution functions, mutual complete dependence is indistinguishable from

any other kind of dependence relation, in particular from independence. In

the words of Vitale (1990), “this obviously weakens complete dependence as

a foil for independence”. The search for a solution to this counterintuitive

phenomenon led to the concept of monotone dependence, which, as we will

see in the next section, also found considerable attention in the construction

of measures of dependence.

We argue that the inconsistency between mutual complete dependence

and weak convergence by no means weakens the concept of mutual com-

plete dependence as the opposite of independence. In Chapter 4 we intro-

duce a new method which allows to detect mutual complete dependence

of arbitrary form. This leads naturally to a measure of mutual complete

dependence, but before that the next section provides an overview of the

existing scalar measures of dependence.



CHAPTER 3. DEPENDENCE PROPERTIES AND MEASURES 41

3.2 Definitions and properties of measures

of dependence

In almost every field of application of statistics one often encounters the

problem of characterizing by a scalar value the strength of dependence be-

tween two random variables X and Y defined on a common probability

space. Here, as is often done in the literature, such a scalar value will be

referred to as a measure of dependence for X and Y . Obviously, measures of

dependence and dependence properties are interrelated and, consequently,

it is not surprising that the problem of determining the extremes of stochas-

tic dependence, discussed in the preceding section, is also reflected in the

question of how to measure stochastic dependence. In fact, many different

measures of dependence have been proposed in the literature, although it

is not even clear what a measure of dependence is.

One possible approach to define a measure of dependence is to state a

set of desirable properties which the measure should satisfy. For the first

time, this was done by Rényi (1959), who proposed a set of seven axioms

for an appropriate measure of dependence.

Definition 3.14 (Rényi (1959)). Let X and Y be random variables on a

common probability space (Ω,A,P). A scalar quantity δ(X, Y ) is a measure

of dependence for X and Y if it satisfies the following conditions:

(i) δ(X,Y ) is defined for any X and Y , neither of them being constant

with probability 1.

(ii) δ(X,Y ) = δ(Y, X).

(iii) 0 ≤ δ(X, Y ) ≤ 1.

(iv) δ(X,Y ) = 0 if and only if X and Y are independent.
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(v) δ(X,Y ) = 1 if either Y is completely dependent on X or X is com-

pletely dependent on Y , i.e., P [Y = f(X)] = 1 or P [X = g(Y )] = 1

where f and g are Borel-measurable functions.

(vi) If α : R → R and β : R → R are Borel-measurable bijections, then

δ(α(X), β(Y )) = δ(X, Y ).

(vii) If X and Y are jointly normal with correlation coefficient ρ, then

δ(X,Y ) = |ρ|.

In the following, we present some comments on the above conditions.

• Condition (i) is to avoid trivialities (Lancaster, 1982).

• Condition (ii) requires that the measure δ is symmetric in X and Y .

Lancaster (1982) points out that although independence is a symmet-

rical property, complete dependence (see Definition 3.1) is not. For

example, X could be completely dependent on Y , but, certainly, Y

need not be completely dependent on X. In our view, that does not

pose a problem since it is impossible to construct a single quantity

which measures both the overall dependence and the dependence of ei-

ther random variable on the other, as alluded to by Lancaster (1982).

Therefore, (ii) seems rather intuitive.

• With respect to (iii), Rényi (1959) argued that it is natural to choose

the range [0, 1]. However, it is clear that if (iv) and (v) are suitably

modified, any interval [a, b] ⊂ [0,∞] would serve equally well. There-

fore, we point out that the true importance of this condition lies in

the implication that one is interested in the “strength” rather than

the “sign” of dependence. This suggests that the most widely known

indices such as Pearson’s linear correlation, Spearman’s rank correla-

tion, or Kendall’s rank correlation, whose range is the interval [−1, 1],



CHAPTER 3. DEPENDENCE PROPERTIES AND MEASURES 43

do not qualify as measures of dependence, unless their absolute value

is taken.

In fact, Spearman’s and Kendall’s rank correlations measure the de-

gree of concordance between X and Y , a concept introduced by Scarsini

(1984) and discussed, e.g., by Joe (1997) and Nelsen (1991, 2002,

2006). Therefore, they are called measures of concordance. We refer

to Scarsini (1984) for an axiomatic definition of a measure of con-

cordance. Informally, two random variables are concordant if “large”

values of one tend to be associated with “large” values of the other

and “small” values of one with “small” values of the other.

• Condition (iv) states that a measure of dependence should reach its

lower bound 0 if and only if the random variables are independent.

This condition has two important implications. First, the absolute

values of all three correlation coefficients mentioned above cannot

serve as measures of dependence since it is well-known that if X and Y

are independent, their correlation is 0, but that the converse, in gen-

eral, is not true. Second, postulate (iv) hints at the definition of a

measure of dependence in terms of a measure of distance between the

joint distribution and the distribution representing independence of

the random variables.

• While there is hardly any disagreement in the literature on desider-

ata (i)-(iv), (v) is probably the most controversial one. It states that

a measure of dependence should reach its highest value 1 if X is com-

pletely dependent on Y or vice versa. This postulate has been consid-

ered as too strong (Schweizer and Wolff, 1981). Even Renyi himself

said that it seems at first sight natural to require that δ(X, Y ) = 1 if

and only if X is completely dependent on Y or vice versa, but that

this condition was rather restrictive, “and it is better to leave it out”.



CHAPTER 3. DEPENDENCE PROPERTIES AND MEASURES 44

We argue that, even with the converse implication, (v) is not strong

enough and even counterintuitive. It hints at complete dependence

between X and Y as the strongest type of dependence, although

Definition 3.1 makes clear that mutual complete dependence is a

much stronger requirement. Therefore, in our view, (v) should read,

δ(X, Y ) = 1 if and only if X and Y are mutually completely depen-

dent.

• Condition (vi) requires that δ remain invariant under measure-preserving

transformations of either or both variables, so δ is a function of Ω.

• (vii) states that if δ is to have general validity, it should coincide in

absolute value with Pearson’s linear correlation coefficient ρ, when X

and Y are jointly normal. This postulate is, obviously, motivated by

the fact that the strength of the dependence in a bivariate normal dis-

tribution is completely captured by |ρ|. However, it is clear, that any

strictly increasing function of |ρ| would serve equally well. Therefore,

in our view, (vii) is unnecessarily restrictive since it suffices that δ is

a strictly increasing function of |ρ|.

The axiomatic framework introduced by Rényi (1959) has enjoyed the

utmost attention of researchers, e.g., Schweizer and Wolff (1981), Lancaster

(1982), Joe (1989), Mikusiński, Sherwood, and Taylor (1992), Zografos

(2000), Micheas and Zografos (2006). Several authors have criticized his

postulates and tried to extend and enrich them, e.g., Schweizer and Wolff

(1981) and Lancaster (1982). One of the major criticisms is that these

axioms are too strong. In fact, Rényi himself showed that among various

well-known measures of dependence, the only one which satisfies all of his

axioms is the maximal correlation coefficient introduced by Gebelein (1941).

The maximal correlation is defined by

ρ̃(X, Y ) = sup
g,h

ρ(g(X), h(Y )), (3.6)
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where the supremum is taken over all Borel-measurable functions g, h such

that Var g(X), Var h(Y ) ∈ (0,∞), and ρ denotes Pearson’s correlation co-

efficient.

However, as pointed out by Hall (1970), the maximal correlation has a

number of major drawbacks. For example, it is not effectively computable

unless certain regularity conditions are assumed; otherwise nothing is known

about the evaluation of ρ̃, and it need not even be attained, i.e., it may

exceed the correlation between every pair of random variables g(X) and

h(Y ). Another drawback of the maximal correlation is that it too easily

equals unity, as it suffices that some function g(X) equals some function

h(Y ) with probability 1.

As already mentioned, we argue that it is a natural desideratum for a

measure of dependence between X and Y to measure the strength of mutual

complete dependence, with extreme values of 0 if and only if X and Y

are independent, and 1 if and only if X and Y are mutually completely

dependent. Therefore, in our view, the main drawback of the maximal

correlation, ρ̃, is that it does not measure the strength of mutual complete

dependence. ρ̃ equals 1 too easily since two random variables with maximum

correlation 1 need not be mutually completely dependent.

However, it must be said that for the majority of researchers this does

not pose a problem. On the contrary, recall from Theorem 3.8 the as-

tonishing fact that the joint distribution function of any two continuous

random variables can be approximated uniformly by the joint distribution

function of a pair of mutually completely dependent random variables with

the same marginal distributions. This counterintuitive phenomenon led to

the concept of monotone dependence (see Definition 3.10), which was sug-

gested as the opposite of stochastic independence, since, by Theorem 3.13,

it is preserved under weak convergence; see Kimeldorf and Sampson (1978);

Schweizer and Wolff (1981); Vitale (1990, 1991); Mikusiński, Sherwood, and

Taylor (1992).
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As a natural consequence of these considerations, it was argued that a

measure of dependence should measure the strength of monotone depen-

dence. For the first time, this was done by Kimeldorf and Sampson (1978),

who proposed the monotone correlation, given by

ρ∗(X,Y ) = sup
g,h

ρ(g(X), h(Y )), (3.7)

where the supremum is taken only over strictly monotone Borel-measurable

functions g, h such that Var g(X), Var h(Y ) ∈ (0,∞). As noted in Kimeldorf

and Sampson (1978), however, two random variables which are monotone

dependent have monotone correlation 1, but the converse implication fails.

As a further step in this direction, Schweizer and Wolff (1981) modified

Rényi’s postulates and proposed a new set of reasonable properties for a

measure of dependence. Their definition, which was restricted to continu-

ous random variables, explicitly makes clear that a measure of dependence

should measure the strength of monotone dependence.

Definition 3.15 (Schweizer and Wolff (1981)). Let X and Y be two contin-

uous random variables on a common probability space (Ω,A,P). A scalar

quantity δ(X,Y ) is a measure of dependence for X and Y if it satisfies the

following conditions:

(i) δ(X,Y ) is defined for any X and Y .

(ii) δ(X,Y ) = δ(Y, X).

(iii) 0 ≤ δ(X, Y ) ≤ 1.

(iv) δ(X,Y ) = 0 if and only if X and Y are independent.

(v) δ(X,Y ) = 1 if and only if X and Y are monotone dependent, i.e.,

P [X = f(Y )] = 1 where f is a strictly monotone Borel-measurable

function.
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(vi) If f and g are strictly monotone Borel-measurable functions, then

δ(f(X), g(Y )) = δ(X,Y ).

(vii) If X and Y are jointly normal with correlation coefficient ρ, then

δ(X,Y ) is a strictly increasing function φ of |ρ|.

(viii) If (Xn, Yn)n∈N is a sequence of pairs of continuous random variables

and if (Xn, Yn)n∈N converges in distribution to the pair (X, Y ), then

limn→∞ δ(Xn, Yn) = δ(X,Y ).

The differences between Definition 3.15 and Rényi’s original postulates

given in Definition 3.14 can be summarized as follows.

• Conditions (i)-(iv) are identical, except that Rényi’s axioms were not

restricted to continuously distributed random variables.

• Condition (v) states that a measure of dependence should reach its

highest value 1 if and only if X and Y are monotone dependent. It

differs from the original condition, which was δ(X, Y ) = 1 if X com-

pletely dependent on Y or vice versa. In fact, as pointed out by

Mikusiński, Sherwood, and Taylor (1992), in the presence of condi-

tions (i) and (iv) and in light of Theorem 3.8 one must choose between

Rényi’s axiom (v) and condition (viii) in Definition 3.15; they cannot

both be true. To see this, let X and Y be independent. We may by

Theorem 3.8 construct a sequence (Xn, Yn)n∈N which converges in law

to the pair (X, Y ), such that, for all n, Xn and Yn are mutually com-

pletely dependent, i.e., P [Xn = f(Yn)] = 1 for a Borel-measurable

bijection f . If the measure satisfies both condition (iv) and Rényi’s

axiom (v), then δ(X, Y ) = 0 while, for each n, δ(Xn, Yn) = 1. This

contradicts (viii).

• Condition (vi) is much weaker than Rényi’s original postulate. It re-

quires the invariance of δ(X, Y ) to strictly monotone transformations
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of X and Y only and not to arbitrary ones, as required by Rényi.

In addition, Mikusiński, Sherwood, and Taylor (1992) show that if

a measure of dependence satisfies (i), (iv) and (v), then it cannot

remain invariant under arbitrary measure-preserving transformations

and satisfy condition (viii) simultaneously.

• (vii) is weaker than the original condition, but without loss of infor-

mation. Therefore, as mentioned previously, Rényi’s axiom is unnec-

essarily restrictive and thus (vii) is an improvement.

• Axiom (viii) is a new requirement, introduced probably to avoid in-

consistencies with respect to convergence in distribution. However,

while the property of monotone dependence is preserved under con-

vergence in law, the property of mutual complete dependence is not;

see Theorem 3.13 and Theorem 3.8. Thus, (viii) seems a natural

requirement for a measure of monotone dependence, but not for a

measure of mutual complete dependence.

An axiomatic approach for defining a measure of dependence has also

been suggested by Lancaster (1982). We do not list all of his axioms as they

are very similar to the ones suggested by Rényi (1959) with one important

exception. Namely, a measure of dependence for two random variables X

and Y should take on its highest value 1 if and only if X and Y are mutually

completely dependent.

In conclusion, several axiomatic definitions of a measure of dependence

for two random variables X and Y have been proposed in the literature,

the most prominent of which are the original one proposed by Rényi (1959)

and its modifications by Schweizer and Wolff (1981) and Lancaster (1982).

In all three definitions most of the conditions for a measure δ(X,Y ) to

be useful are identical or very similar. In particular, they all require that

a measure of dependence be symmetric and take on a value belonging to
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the interval [0, 1]. Thus, all these measures are nonnegative and do not

reveal whether the dependence is “positive” or “negative”. In other words

they aim at measuring the strength of functional relationship between two

random variables rather than their concordance. The latter property can

be assessed by a measure of concordance like Spearman’s or Kendall’s rank

correlation. Another property common for all definitions is that a measure

of dependence reach its lower bound 0 if and only if the random variables

are independent. However, with respect to the behavior of δ at the upper

bound 1, the three definitions differ substantially. Rényi’s axiom states that

δ(X, Y ) = 1 if X is completely dependent on Y or vice versa, Schweizer

and Wolff’s condition requires that δ(X,Y ) = 1 if and only if X and Y

are monotone dependent, and Lancaster postulates that δ(X,Y ) = 1 if and

only if X and Y are mutually completely dependent.

As discussed in Section 3.1, we argue that stochastic independence and

mutual complete dependence are exactly opposite in character. Therefore,

we claim that Lancaster’s axiom is a natural and, in fact, an indispensable

requirement for a measure of dependence to be able to capture adequately

the extremes of stochastic dependence.

3.3 Methods for constructing measures of

dependence

In the previous section we saw that a measure of dependence for two random

variables X and Y can be defined via a set of desirable properties which it

should satisfy. Although different sets of requirements have been proposed

in the literature a common axiom of all of them is that the measure equals

0 if and only if X and Y are stochastically independent. This requirement

hints at the construction of a measure of dependence in terms of a metrical

distance or, in a broad sense, dissimilarity between the joint distribution and

the distribution representing independence. Indeed, there is an extensive
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literature on measures of dependence based on this idea. We refer to Rényi

(1959), Joe (1989), Hoeffding (1994), Zografos (1998), Micheas and Zografos

(2006) and the references therein for an exhaustive list.

If X and Y have continuous marginal distributions functions FX and FY ,

respectively, and joint distribution function FX,Y , a similar approach to

construct a measure of dependence for X and Y is to measure the distance

between the joint distribution of their probability integral transformations

FX(X), FY (Y ) and the respective distribution representing independence.

By Theorem 2.34, the joint distribution function of FX(X) and FY (Y )

is given by the unique copula of X and Y denoted by CX,Y , where the

uniqueness of CX,Y follows from Sklar’s theorem 2.31. It follows that FX(X)

and FY (Y ) are independent if and only if CX,Y = P , where P (u, v) = uv is

the product copula. Thus, this modified method for the construction of a

measure of dependence, introduced by Schweizer and Wolff (1981) (see also

Schweizer (1991)), is tantamount to measuring the distance between CX,Y

and the product copula P .

In fact, the usefulness of this approach for constructing measures of de-

pendence derives primarily from the interpretation of copulas as dependence

functions, discussed in detail in Section 2.5. The main idea behind this in-

terpretation stems from Sklar’s theorem 2.31, which allows a decomposition

of the joint distribution function into the marginal distribution functions

and a copula. When the marginal distribution functions are continuous,

the copula is unique and it follows that the dependence between X and Y

is fully captured by their copula. In particular, Theorem 2.37 shows that

CX,Y = P is also equivalent to the stochastic independence of X and Y . It

turns out that for continuous random variables, the modified method for

the construction of measures of dependence is comparable with the direct

measuring of the distance between FX,Y and FX · FY .

Moreover, measures of dependence defined in terms of the distance be-

tween copulas have several advantages. For instance, they are nonparamet-
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ric since the particular type of the marginal distributions is irrelevant for

determining the dependence structure. This enables a direct comparison

between the dependence of two random vectors with arbitrary marginal

distributions. In addition, such measures benefit from the fact that un-

der strictly monotone transformations of the random variables, copulas are

either invariant or change in a predictable way (see Theorem 2.41).

Exploiting these facts, Schweizer and Wolff (1981) argued that any

suitably normalized distance between CX,Y and P , in particular, any Lp-

distance, should yield a symmetric nonparametric measure of dependence

for X and Y . Specifically, they studied the L1, L2 and L∞ distances and

denoted the resulting measures by σ(X, Y ), γ(X, Y ), and κ(X,Y ), respec-

tively. These are given by

σ(X,Y ) = 12‖CX,Y − P‖L1 , (3.8)

γ(X,Y ) =
√

90‖CX,Y − P‖L2 , (3.9)

κ(X,Y ) = 4‖CX,Y − P‖L∞ . (3.10)

In particular, Schweizer and Wolff (1981) prove the following result.

Theorem 3.16. Let X and Y be random variables with continuous marginal

distribution functions and copula CX,Y . Then the quantity σ(X,Y ) given

by (3.8) satisfies all conditions in Definition 3.15, with the function φ

in (vii) given by

φ(|ρ|) =
6

π
arcsin(|ρ|/2) . (3.11)

Proof. It is clear from (3.8) that σ(X, Y ) is well-defined.

Next, it follows from Theorem 2.34 that CX,Y (u, v) = CY,X(v, u) which

yields (ii).

(iii) follows from Theorem 2.19 and the fact that, for any copula C,

‖C − P‖L1 ≤ 1/12 . (3.12)
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(iv) follows from Theorem 2.37 and the fact that the set C of copulas,

which are continuous functions, endowed with any Lp-distance, p ∈ [1,∞],

is a metric space.

(v) follows from Theorem 2.38 and Theorem 3.12 and the fact that

equality holds in (3.12) if and only if CX,Y = C+ or CX,Y = C−, which is a

consequence of Theorem 2.19.

As regards (vi) we distinguish four cases. (a) If f and g are strictly

increasing, then by Theorem 2.41 (i) we have Cf(X),g(Y )(u, v) = CX,Y (u, v)

for all (u, v) ∈ I2, and thus σ(f(X), g(Y )) = σ(X, Y ). (b) If f is strictly

increasing and g is strictly decreasing, then, by Theorem 2.41 (ii), we have

Cf(X),g(Y )(u, v) = u − CX,Y (u, 1 − v) for all (u, v) ∈ I2. It follows that

(Cf(X),g(Y ) − P )(u, v) = (P − CX,Y )(u, 1− v) which, by the transformation

formula for the Lebesgue measure, implies σ(f(X), g(Y )) = σ(X, Y ). (c) If

f is strictly decreasing and g is strictly increasing, the result follows from (b)

and (ii). (d) If f and g are strictly decreasing, then, by Theorem 2.41 (iv),

we have Cf(X),g(Y )(u, v) = u + v − 1 + CX,Y (1− u, 1− v) for all (u, v) ∈ I2.

It follows that (Cf(X),g(Y ) − P )(u, v) = (CX,Y − P )(1 − u, 1 − v) which,

again by the transformation formula for the Lebesgue measure, implies

σ(f(X), g(Y )) = σ(X, Y ).

Turning to (vii), 3.11 can be established by exploiting the relationship

between σ and Spearman’s rank correlation ρS, which can be expressed in

terms of copulas as (Schweizer and Wolff, 1981)

ρS(X,Y ) = 12

∫

I2

(CX,Y − P ) dλ . (3.13)

As a first step in this direction, note that when X and Y are jointly normal

with correlation coefficient ρ, then by Theorem 2.35 CX,Y = CGa
ρ . As a

consequence of the fact that it is parametrized by ρ, which respects the

partial order on the set of copulas C (see Definition 2.20), CGa
ρ is positively

ordered with respect to ρ (Cherubini, Luciano, and Vecchiato, 2004):

CGa
ρ=−1 ≺ CGa

ρ<0 ≺ CGa
ρ=0 ≺ CGa

ρ>0 ≺ CGa
ρ=1 . (3.14)
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This implies immediately that when X and Y are jointly normal, then

CX,Y Â P , CX,Y = P or CX,Y ≺ P according as ρ > 0, ρ = 0 or ρ < 0.

Thus in this case, σ(X, Y ) = ρS(X,Y ). But it is well-known (McNeil,

Frey, and Embrechts, 2005, Theorem 5.31) that for the bivariate normal

distribution

ρS =
6

π
arcsin(|ρ|/2),

whence (vii) follows.

Lastly, let (Xn, Yn)n∈N be a sequence of pairs of continuous random vari-

ables with joint distribution functions Hn and copulas Cn. If (Hn)n∈N con-

verges pointwise to the joint distribution function HX,Y of the pair (X,Y ),

then (Cn)n∈N converges pointwise to CX,Y and, by Theorem 2.17 uniformly.

This establishes (viii) and completes the proof.

As noted in Schweizer and Wolff (1981), using completely analogous

arguments, it can be shown that the quantity γ defined in (3.9), as well

as any other normalized Lp-distance, p ∈ [1,∞), satisfies all conditions

in Definition 3.15. However, the explicit form of φ in (vii) remains to be

determined.

When one considers the normalized L∞-distance κ given by (3.10), the

situation changes slightly. The above arguments show that κ does not

satisfy condition (v). If X and Y are monotone dependent, i.e., by The-

orem 3.12 CX,Y = C+ or CX,Y = C−, then κ(X,Y ) = 1. However, the

converse is false since there exist other copulas C, distinct from C+ and

C−, for which ‖C − P‖L∞ = 1/4.



Chapter 4

A measure of mutual complete
dependence

4.1 Motivation

By Definition 3.1, two random variables X and Y , defined on a common

probability space, are mutually completely dependent if there exists an

invertible functional relation between them with probability 1. As argued

in Section 3.1, obviously, stochastic independence and mutual complete

dependence are exactly opposite in character. In the first case, neither

variable provides any information about the other, whereas in the second

case there is complete predictability. Therefore, we claim that a measure

of dependence for X and Y should measure the degree of mutual complete

dependence with extreme values satisfying the following: (i) the measure

equals 0 if and only if X and Y are independent, and (ii) it equals 1 if and

only if X and Y are mutually completely dependent.

On analyzing the implications of these requirements, several things be-

come apparent. Condition (i) is common for all three axiomatic definitions

of a measure of dependence, which were introduced and discussed in detail

in Section 3.2. Furthermore, as argued in Section 3.3, (i) hints at the con-

struction of a measure of dependence in terms of a metrical distance or, in

a broad sense, dissimilarity between the joint distribution and the distri-

54
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bution representing independence. If X and Y have continuous marginal

distribution functions, an alternative method for constructing measures of

dependence is to measure the distance between their (unique) copula CX,Y

and the product copula P , which corresponds to stochastic independence.

This modified approach, introduced by Schweizer and Wolff (1981), has two

important advantages. First, since the resulting measure of dependence is

a function of the copula only, it is nonparametric as it does not depend on

the particular type of the marginal distributions. Second, under strictly in-

creasing transformations of the random variables, the copula, and therefore

the dependence measure, are either invariant or change in predictable ways.

Exploiting these facts, Schweizer and Wolff (1981) argued that any suitably

normalized distance between CX,Y and P , in particular, any Lp-distance,

p ∈ [1,∞], should yield a symmetric nonparametric measure of dependence.

It should be noted, however, that both construction methods described

above yield, in general, a measure of independence only, since the mea-

sure always satisfies (i), but not necessarily (ii). In other words, while any

distance guarantees that, at its lower bound, such a measure can capture

independence in the variables, the type of the “highest” dependence, de-

tected at the upper bound, depends crucially on the type of the distance

function employed. Therefore, the choice of the distance function cannot

be arbitrary, but is predetermined by the desired properties of the resulting

measure of dependence.

Since mutual complete dependence is the opposite of stochastic inde-

pendence, a measure of dependence should take this into account by sat-

isfying (ii). This condition, which is also required by Lancaster (1982),

is much stronger than both Renyi’s original postulate formulated in Def-

inition 3.14 (v) and its modification by Schweizer and Wolff in Defini-

tion 3.15 (v). Actually, no measure exists satisfying (ii), probably due

to the disturbing fact that mutual complete dependence seems incompati-

ble with the concept of convergence in distribution; see Section 3.1 and, in
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particular, Theorem 3.8. Instead Kimeldorf and Sampson (1978) suggested

monotone dependence as the opposite of stochastic independence because

it is preserved under convergence in law.

In fact, the quantities σ(X,Y ) and γ(X,Y ) given by (3.8) and (3.9), re-

spectively, as well as any other normalized Lp-distance, p ∈ [1,∞), between

CX,Y and the independence copula P are examples of measures of monotone

dependence. By Theorem 3.16 they satisfy all conditions of Definition 3.15

and, thus, attain their maximum of 1 if and only if X and Y are monotone

dependent. However, if X and Y are mutually completely dependent, the

measures can attain any value in (0, 1]. This follows from the fact that,

by Corollary 3.5, the set of copulas linking mutually completely dependent

random variables is dense in the set of all copulas C with respect to any

Lp-distance. Thus, none of the Lp-distances is capable of detecting mu-

tual complete dependence, which substantiates our claim that the choice

of the metrical distance function used in the construction of a measure of

dependence is crucial for its resulting properties.

We argue that the inconsistency between mutual complete dependence

and convergence in distribution neither weakens the concept of mutual com-

plete dependence as the opposite of independence, nor does it imply that

a measure of dependence should be restricted to monotone dependence. It

rather suggests that convergence in law, or, alternatively, Lp-convergence of

the corresponding copulas, is an inappropriate concept for the construction

of measures of dependence.

Instead of the Lp-norm, we propose to measure the distance between

two copulas by a modified Sobolev norm ‖ ‖ given by

‖C‖ =
( ∫

I2

|∇C|2 dλ
)1/2

. (4.1)

This norm derives from a scalar product which, among other things, allows

a straightforward representation via the ∗-product for copulas, introduced

in Definition 2.21. Furthermore, this Sobolev norm turns out extremely ad-
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vantageous since the degree of dependence between two continuous random

variables X and Y , and, in particular, mutual complete dependence, can be

determined by analytical properties of their copula. It follows that, in con-

trast to the Lp-distance, with respect to the Sobolev norm, mutual complete

dependence cannot approximate any other kind of stochastic dependence.

Using this Sobolev norm we define a new nonparametric measure of

dependence for two continuous random variables X and Y with copula C

by

ω(X,Y ) =
(
3‖C‖2 − 2

)1/2
=
√

3‖C − P‖ , (4.2)

which represents the normalized Sobolev distance between C and the inde-

pendence copula P . We show that ω(X,Y ) has several appealing proper-

ties, e.g., its extremes are precisely at independence and mutual complete

dependence.

4.2 The Sobolev scalar product for copulas

Denote by · the Euclidean scalar product, and by | | the Euclidean norm

on R2. As in the previous sections, λ denotes the two-dimensional Lebesgue

measure, I2 the closed unit square, and C the set of copulas. Let span(C)

be the vector space generated by the linear span of C, i.e., the set of all

finite real linear combinations of copulas.

Lemma 4.1 (Darsow and Olsen (1995)). Any element S ∈ span(C) can be

written in the form

S = aA− bB

where a and b are nonnegative real numbers, and A and B are copulas.

Proof. Observe that if

S =
n∑

k=1

ckCk
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where, for all k, Ck ∈ C and ck ∈ R, then we can write

S = a
∑
ck≥0

ck

a
Ck − b

∑
ck≤0

−ck

b
Ck = aA− bB

where the last equality defines A and B and

a =
∑
ck≥0

ck and b = −
∑
ck≤0

ck .

(In both of the foregoing equations, the sum is taken to be zero if the set

summed is empty.) Observe that A and B are copulas, since, by Theo-

rem 2.10, C is closed under convex combinations.

Remark 4.2. It follows immediately from Lemma 4.1 and Theorem 2.15

that if S ∈ span(C), then for any v ∈ I, ∂1S(u, v) exists for almost all u,

and for any u ∈ I, ∂2S(u, v) exists for almost all v. For such u and v, where

S is partially differentiable, we have

∇S = a∇A− b∇B, (4.3)

where a, b, A and B are as in Lemma 4.1 and ∇A denotes the gradient of A.

For S, T ∈ span(C), set

〈S, T 〉 =

∫

I2

∇S · ∇T dλ, (4.4)

‖S‖ =
( ∫

I2

|∇S|2 dλ
)1/2

, (4.5)

d(S, T ) =
( ∫

I2

|∇S −∇T |2 dλ
)1/2

. (4.6)

Theorem 4.3. 〈 , 〉, ‖ ‖ and d define a scalar product, a norm and a metric

on span(C), respectively.

Proof. We need only prove the first statement. Clearly, by definition we

have 〈S, T 〉 = 〈T, S〉.
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To show that 〈 , 〉 is bilinear, let R, S, T ∈ span(C) and r, s ∈ R. Then

〈rR + sS, T 〉 =

∫

I2

∇(rR + sS) · ∇T dλ

=

∫

I2

(r∇R + s∇S) · ∇T dλ

=

∫

I2

r(∇R · ∇T ) + s(∇S · ∇T ) dλ

= r

∫

I2

∇R · ∇T + s

∫

I2

∇S · ∇T dλ

= r〈R, T 〉+ s〈S, T 〉 .

Furthermore, 〈S, S〉 =
∫

I2 |∇S|2 dλ ≥ 0.

Lastly, if S(u, v) = 0 for all (u, v) ∈ I2, then 〈S, S〉 = 0. For the converse

implication, observe that 〈S, S〉 = 0 is equivalent to
∫

I2 |∇S|2 dλ = 0 which

implies that for each v ∈ I, ∂1S(u, v) = 0 for almost all u. This in turn

implies, by Theorem 2.16, that for each v ∈ I, S(u, v) is constant for

almost all u, but since S is continuous (S is a finite linear combination

of copulas) this means for all u. Finally, since any element S ∈ span(C)

satisfies S(0, 0) = 0, the continuity of S implies that S(u, v) = 0 for all

(u, v) ∈ I2. This shows that 〈 , 〉 is nondegenerate and completes the proof.

Thus, with a slight abuse of notation (because C is not a vector space

itself), we can make the following definition.

Definition 4.4. The restrictions of 〈 , 〉, ‖ ‖ and d to C are called the

Sobolev scalar product, the Sobolev norm and the Sobolev distance function

on C, respectively.

Remark 4.5. The designation “Sobolev” derives from the fact that the

set of copulas C ⊂ W 1,p(I2,R) for every p ∈ [1,∞] where W 1,p(I2,R) is

the standard Sobolev space. This fact has also been noticed in Darsow

and Olsen (1995). However, it has not been exploited in this context that
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W 1,2(I2,R) is a Hilbert space with respect to the usual W 1,2-scalar product

〈f, g〉W 1,2 =

∫

I2

fg dλ +

∫

I2

∇f · ∇g dλ

so that C comes equipped with a scalar product structure. Thus, our def-

initions of the Sobolev scalar product, the Sobolev norm and the Sobolev

distance in (4.4), (4.5) and (4.6), respectively, can be viewed as modifica-

tions deriving from the W 1,2-scalar product.

Remark 4.6. Darsow and Olsen (1995) show that (C, d) is a complete

metric space, and that the ∗-product is jointly continuous with respect

to d.

We have seen that the Sobolev scalar product for copulas appears very

naturally from an analytical point of view. However, it also allows a repre-

sentation via the ∗-product given in Definition 2.21.

Theorem 4.7. For all A,B ∈ C we have the identity

〈A,B〉 =

∫ 1

0

(A> ∗B + A ∗B>)(t, t) dt

=

∫ 1

0

(A> ∗B + B ∗ A>)(t, t) dt.

Proof. It follows from Definition 2.23 that

∂1A
>(u, v) = ∂2A(v, u)

∂2A
>(u, v) = ∂1A(v, u)

(4.7)

Using Definition 2.23 and (4.7) we can write
∫ 1

0

∫ 1

0

∂1A(u, v) ∂1B(u, v) du dv =

∫ 1

0

( ∫ 1

0

∂2A
>(v, u) ∂1B(u, v) du

)
dv

=

∫ 1

0

(A> ∗B)(v, v) dv

∫ 1

0

∫ 1

0

∂2A(u, v) ∂2B(u, v) du dv =

∫ 1

0

( ∫ 1

0

∂2A(u, v) ∂1B
>(v, u) dv

)
du

=

∫ 1

0

(A ∗B>)(u, u) du.
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Adding up both terms we obtain the first identity.

The second equation in Theorem 4.7 is equivalent to

∫ 1

0

(A ∗B>)(t, t) dt =

∫ 1

0

(B ∗ A>)(t, t) dt

which follows from (A ∗ B>)(t, t) = (A ∗ B>)>(t, t) = (B ∗ A>)(t, t), where

we have used (2.8).

The representation in Theorem 4.7 becomes particularly simple for sym-

metric copulas.

Corollary 4.8. If A,B ∈ C are symmetric, then

〈A,B〉 = 2

∫ 1

0

(A ∗B)(t, t) dt.

Theorem 4.7 yields upper and lower bounds for the scalar product of

two copulas. More precisely, we have the following result:

Theorem 4.9. Let A,B ∈ C. Then

1

2
≤ 〈A,B〉 ≤ 1,

where both bounds are sharp.

Proof. Theorem 4.7, in connection with Theorem 2.19, implies that

2

∫ 1

0

C−(t, t) dt ≤ 〈A,B〉 ≤ 2

∫ 1

0

C+(t, t) dt .

Simple calculations yield
∫ 1

0
C−(t, t) dt = 1/4 and

∫ 1

0
C+(t, t) dt = 1/2.

Finally, one easily computes that

〈C−, C−〉 = 〈C+, C+〉 = 1

〈C−, C+〉 =
1

2
.

(4.8)

This shows that the bounds in the statement are sharp, and the proof is

complete.
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Remark 4.10. The diameter of (C, d) is 1. To prove this, consider the

identity

d(A,B)2 = ‖A−B‖2 = ‖A‖2 + ‖B‖2 − 2 〈A,B〉. (4.9)

It follows from Theorem 4.9 and (4.8) that d(A,B) ≤ 1 = d(C−, C+), which

proves our claim.

Theorem 4.11. For all C ∈ C, the following hold:

〈C,P 〉 = 2/3, (4.10)

‖C − P‖2 = ‖C‖2 − 2

3
. (4.11)

Proof. For (4.10), we remark that P = P>, so Theorem 4.7 and (2.7) imply

〈P,C〉 =

∫ 1

0

(P ∗ C + C ∗ P )(t, t) dt

= 2

∫ 1

0

P (t, t) dt

=
2

3
.

To show (4.11), observe that by (4.9)

‖C − P‖2 = ‖C‖2 + ‖P‖2 − 2〈C, P 〉
= ‖C‖2 − 2

3

where we have used (4.10).

4.3 Statistical interpretation of the Sobolev

norm for copulas

We now turn to the probabilistic interpretation of the Sobolev norm for

copulas.

Lemma 4.12. Let X and Y be random variables on the same probability

space with continuous distribution functions and (unique) copula C. The

following statements are equivalent:
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(i) Y is completely dependent on X.

(ii) C is left invertible.

(iii) ∂1C ∈ {0, 1} almost everywhere.

Consequently, the following are also equivalent:

(i) X and Y are mutually completely dependent.

(ii) C is invertible.

(iii) ∂1C, ∂2C ∈ {0, 1} almost everywhere.

Proof. Darsow, Nguyen, and Olsen (1992) prove in Theorem 11.1 that Y

is completely dependent on X if and only if C is left invertible. Moreover,

Theorem 2.26 states that C has a left inverse if and only if for each v ∈ I,

∂1C(u, v) ∈ {0, 1} for almost all u ∈ I. Actually, as noted in Remark 2.27

the latter is tantamount to assuming that ∂1C(u, v) ∈ {0, 1} almost every-

where. This proves the first part.

Analogous statements hold for right invertible copulas, from which the

second part of the lemma follows.

The next theorem describes one of the main results of this dissertation.

Theorem 4.13. For any copula C, the Sobolev norm satisfies

2

3
≤ ‖C‖2 ≤ 1.

Moreover, if X and Y are random variables on the same probability space

with continuous marginal distribution functions and (unique) copula C, the

following statements hold:

(i) ‖C‖2 = 2/3 if and only if X and Y are independent.

(ii) ‖C‖2 ∈ [5/6, 1] if Y is completely dependent on X (or vice versa).
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(iii) ‖C‖2 = 1 if and only if X and Y are mutually completely dependent.

In terms of the algebraic properties of C, these statements read as follows:

(i) ‖C‖2 = 2/3 if and only if C = P .

(ii) ‖C‖2 ∈ [5/6, 1] if C is left (or right) invertible.

(iii) ‖C‖2 = 1 if and only if C is invertible.

Proof. The foremost statement follows from (4.11) and Theorem 4.9.

The assertion that ‖C‖2 = 2/3 if and only if C = P is an immediate

consequence of (4.11). Furthermore, by Theorem 2.37, C = P is equivalent

to the independence of X and Y .

As for statement (ii), it follows from the Definition of the Sobolev norm

in (4.5) that

‖C‖2 =

∫ 1

0

∫ 1

0

(∂1C(u, v))2 du dv +

∫ 1

0

∫ 1

0

(∂2C(u, v))2 du dv. (4.12)

If Y is completely dependent on X we know from Lemma 4.12 that ∂1C ∈
{0, 1} almost everywhere in I2, which implies that (∂1C)2 = ∂1C almost

everywhere in I2, so the first summand in (4.12) is equal to

∫ 1

0

∫ 1

0

∂1C(u, v) du dv =

∫ 1

0

v dv =
1

2
.

To estimate the second term in (4.12), consider the inequality

0 ≤
∫ 1

0

∫ 1

0

(∂2C(u, v)− u)2 du dv

=

∫ 1

0

∫ 1

0

(∂2C(u, v))2 du dv − 2

∫ 1

0

u

∫ 1

0

∂2C(u, v) dv du +

∫ 1

0

∫ 1

0

u2 du dv

=

∫ 1

0

∫ 1

0

(∂2C(u, v))2 du dv − 1

3
.

Hence, the second term in (4.12) is at least 1/3, which proves ‖C‖2 ≥
5/6. Equality holds if and only if ∂2C(u, v) = u almost everywhere in I2,
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which, by Theorem 2.16, is equivalent to C = P . But this contradicts the

assumption that Y is completely dependent on X since, by Lemma 4.12, the

latter is equivalent to C being left invertible. It follows that ‖C‖2 > 5/6.

Analogous arguments hold for right invertible copulas. This, together with

Lemma 4.12, proves the second pair of statements.

Finally, in view of Theorem 2.15, we have (∂iC)2 ≤ ∂iC, for i = 1, 2,

with equality if and only if ∂iC ∈ {0, 1}. Consequently, (4.12) implies that

‖C‖2 ≤
∫ 1

0

∫ 1

0

∂1C(u, v) du dv +

∫ 1

0

∫ 1

0

∂2C(u, v) du dv =
1

2
+

1

2
= 1

with equality if and only if ∂1C, ∂2C ∈ {0, 1} almost everywhere in I2. By

Lemma 4.12, the latter is equivalent to X and Y being mutually completely

dependent, which is also equivalent to C being invertible. This proves the

third pair of assertions and completes the proof.

Corollary 4.14. Let X and Y be continuous random variables on the same

probability space with copula C. The following are equivalent:

(i) X and Y are mutually completely dependent.

(ii) ‖C‖ = 1.

(iii) ∂1C, ∂2C ∈ {0, 1} almost everywhere in I2.

(iv) C is invertible, i.e., C ∗ C> = C> ∗ C = C+.

(v)
∫ 1

0
(C ∗ C> + C> ∗ C)(t, t) dt = 1.

Proof. This follows immediately from Lemma 4.12, Theorem 4.13 and The-

orem 4.7.

Theorem 4.13, together with the identity

d(C, P )2 = ‖C − P‖2 = ‖C‖2 − 2/3
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expresses the astonishing fact that the Sobolev norm itself measures stochas-

tic dependence, with extremes exactly at independence and mutual com-

plete dependence. In addition, the Sobolev norm is able to detect that two

random variables are not completely dependent.

Lemma 4.15. If (Ck)k∈N is a sequence of left invertible copulas in C with

lim
k→∞

‖Ck − C‖ = 0

for some C ∈ span(C), then C is in C and is left invertible. Analogous

statements hold for right invertible and invertible copulas.

Proof. By Remark 4.6, the Sobolev limit of a sequence of copulas is a copula

and the ∗-product on C is (jointly) continuous with respect to d. Moreover,

limk→∞ ‖Ck − C‖ = 0 implies limk→∞ ‖C>
k − C>‖ = 0. Thus, if each Ck is

left invertible, then

C> ∗ C = lim
k→∞

C>
k ∗ lim

k→∞
Ck = lim

k→∞
(C>

k ∗ Ck) = C+,

which proves that C is left invertible. The case where each Ck is right

invertible is shown analogously. Thus, it follows that the Sobolev limit of

a sequence of invertible copulas is again an invertible copula.

As an immediate consequence of Lemma 4.15 we have the following

result.

Theorem 4.16. Let (Xn, Yn)n∈N and (X, Y ) be, respectively, a sequence of

pairs and a pair of continuous random variables on a common probability

space with copulas (Cn)n∈N and C. Then the following assertions hold:

(i) If, for all n, Yn is completely dependent on Xn and

lim
n→∞

‖Cn − C‖ = 0,

then Y is completely dependent on X.
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(ii) If, for all n, Xn and Yn are mutually completely dependent and

lim
n→∞

‖Cn − C‖ = 0,

then X and Y are mutually completely dependent.

Theorem 4.16 emphasizes the advantage of the Sobolev distance over

any Lp-distance with p ∈ [1,∞], as mentioned in the Introduction. While,

with respect to any Lp-distance, any copula, in particular, the indepen-

dence copula P , can be approximated by copulas of mutually completely

dependent random variables, the Sobolev convergence preserves the prop-

erty of mutual complete dependence. Hence, with respect to the Sobolev

distance, mutual complete dependence cannot approximate any other kind

of stochastic dependence. In fact, the Sobolev convergence preserves even

the property of complete dependence.

In summary, measuring the distance between copulas with the Sobolev

norm resolves the disturbing phenomenon observed in Kimeldorf and Samp-

son (1978) and Mikusiński, Sherwood, and Taylor (1992).

4.4 The measure ω and its properties

The remarkable statistical properties of the Sobolev norm lead immediately

to the following definition:

Definition 4.17. Given two continuous random variables X, Y with copula

C, we define

ω(X,Y ) =
(
3‖C‖2 − 2

)1/2
.

In view of Theorem 4.11, the quantity ω(X,Y ) represents a normalized

Sobolev distance of C from the independence copula P :

ω(X, Y ) =
√

3 ‖C − P‖ =
‖C − P‖
‖Ĉ − P‖

, (4.13)
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where Ĉ is any copula of mutually completely dependent random variables.

The normalization guarantees that ω(X, Y ) ∈ [0, 1]. Definition 4.17, how-

ever, makes clear that the Sobolev norm of C itself serves as a measure of

dependence.

For symmetric C we may use Corollary 4.8 to write

ω(X, Y ) =
(
6

∫ 1

0

(C ∗ C)(t, t) dt− 2
)1/2

. (4.14)

Theorem 4.18. Let X and Y be continuous random variables on the same

probability space with copula C. The quantity ω(X, Y ) has the following

properties:

(i) ω(X, Y ) is defined for any X and Y .

(ii) ω(X, Y ) = ω(Y,X).

(iii) 0 ≤ ω(X,Y ) ≤ 1.

(iv) ω(X, Y ) = 0 if and only if X and Y are independent.

(v) ω(X, Y ) = 1 if and only if X and Y are mutually completely depen-

dent.

(vi) ω(X, Y ) ∈ [
√

1/2, 1] if Y is completely dependent on X (or vice

versa).

(vii) If f and g are strictly monotone functions on Range(X) and Range(Y ),

respectively, then ω(f(X), g(Y )) = ω(X, Y ).

(viii) If (Xn, Yn)n∈N is a sequence of pairs of continuous random variables

with copulas Cn, and if lim
n→∞

‖Cn − C‖ = 0, then lim
n→∞

ω(Xn, Yn) =

ω(X, Y ).

Proof. (i) is obvious since, by Sklar’s theorem 2.31, the copula C exists and

is unique.
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(ii) is clear by Definition 4.17 since the copula of Y and X is given by

the transposed copula C> (see Definition 2.23) and thus by (4.7) and (4.12)

we have ‖C‖ = ‖C>‖.
(iii) follows from Definition 4.17 and Theorem 4.11 (iii).

(iv) follows from Definition 4.17 and Theorem 4.13 (i).

(v) follows from Definition 4.17 and Theorem 4.13 (iii).

(vi) follows from Definition 4.17 and Theorem 4.13 (ii).

With respect to (vii) we distinguish four different cases. For the sake

of clarity, let CX,Y denote the copula of X and Y . If both f and g are

increasing it follows from Theorem 2.41 (i) that Cf(X),g(Y ) = CX,Y which

implies

ω(f(X), g(Y )) =
√

3 ‖Cf(X),g(Y ) − P‖ =
√

3 ‖CX,Y − P‖ = ω(X, Y ).

If f is increasing and g is decreasing then, by Theorem 2.41 (ii),

Cf(X),g(Y )(u, v) = u− CX,Y (u, 1− v).

Therefore,

(Cf(X),g(Y ) − P )(u, v) = (P − CX,Y )(u, 1− v)

which, by the transformation formula for the Lebesgue measure, again im-

plies ω(f(X), g(Y )) = ω(X, Y ). If f is decreasing and g is increasing, the

result follows from interchanging f and g in the previous case. The case

when f and g are both decreasing can be shown similarly.

Finally, (viii) follows immediately from Definition 4.17.

Remark 4.19. If X and Y are jointly normal with correlation coefficient ρ,

then ω(X, Y ) is a strictly increasing function of |ρ| whose graph is shown

in Figure 4.1.
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Figure 4.1: ω(X,Y ) as a function of ρ for jointly normal X,Y

4.5 Some examples

We conclude the dissertation with some examples clarifying the relationship

between the measure of dependence ω(X, Y ) and the quantity σ(X, Y ), as

defined in (3.8).

(1,0)

(0, )q(0, )q

(1,1)

0 1

1

q

Figure 4.2: The gradient ∇C of the copula C in Example 4.20
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Example 4.20. Let θ ∈ [0, 1], and consider the singular copula C whose

support consists of two line segments in I2, one joining (0, 0) and (θ, 1), and

the other joining (θ, 1) and (1, 0) (Nelsen, 2006, Example 3.3). It follows

that

C(u, v) =





u if u ≤ θv

θv if θv < u < 1− (1− θ)v

u + v − 1 if 1− (1− θ)v ≤ u.

Clearly, Y is completely dependent on X, but not vice versa. Since prob-

ability mass θ and 1 − θ is uniformly distributed on the first and second

line segments, respectively, it is heuristically clear that the value θ = 1/2

describes the least dependent situation, whereas the limiting cases θ = 0

and θ = 1, when C = C− and C = C+, respectively, correspond to mutual

complete dependence.

This is perfectly reflected in the behavior of ω(X,Y ). Indeed, a straight-

forward calculation (compare Fig. 4.2) shows that

‖C‖2 =
1

2

(
θ − 1

2

)2

+
7

8
∈

[7

8
, 1

]

with the lowest and highest values attained precisely for θ = 1/2 and

θ ∈ {0, 1}, respectively. Consequently, ω(X, Y ) takes on its smallest value√
10/4 ≈ .79 for θ = 1/2.

The quantity σ(X, Y ) shows the same qualitative behavior, however, its

minimal value is .5.

Example 4.21. Let θ ∈ [0, 1], and consider the singular copula C whose

support consists of the two segments {(u, 1− u) | u ∈ [0, θ]∪ [1− θ, 1]} and

the segment {(u, u) | u ∈ [θ, 1− θ]} (Nelsen, 2006, Exercise 3.15). It follows

that

C(u, v) =

{
C+(u, v)− θ if (u, v) ∈ [θ, 1− θ]2

C−(u, v) otherwise .

Now X and Y are mutually completely dependent, so ω(X,Y ) = 1, regard-

less of the value of θ.
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In contrast, σ(X, Y ) varies between 1 (for θ ∈ {0, 1}) and values around .46

(for θ ≈ .12), indicating a definite degree of independence when, actually,

there is none. Note that the copula from Example 4.20 with θ = 1/2 yields

almost the same value for σ.



Bibliography

Cherubini, U., E. Luciano, and W. Vecchiato (2004): Copula Meth-

ods in Finance. John Wiley & Sons Ltd., Chichester.

Darsow, W., B. Nguyen, and E. Olsen (1992): “Copulas and Markov

processes,” Illinois J. Math., 36(4), 600–642.

Darsow, W., and E. Olsen (1995): “Norms for copulas,” Int. J. Math.

and Math. Sci., 18(3), 417–436.
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Mikusiński, P., H. Sherwood, and M. Taylor (1992): “Shuffles of

min,” Stochastica, 13(1), 61–74.
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