
TECHNISCHE UNIVERSITÄT DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

A Mix of Markov-Chain and Drift Analysis

Jens Jägersküpper

No. CI-250/08

Technical Report ISSN 1433-3325 June 2008

Secretary of the SFB 531 · Technische Universität Dortmund · Dept. of Computer
Science/LS 2 · 44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the Technische Universität Dortmund and was printed with financial
support of the Deutsche Forschungsgemeinschaft.

A Mix of Markov-Chain and Drift Analysis

Jens Jägersküpper⋆

Technische Universität Dortmund, Informatik 2, 44221 Dortmund, Germany

Abstract In their seminal article [Theo. Comp. Sci. 276(2002):51–82] Droste,

Jansen, and Wegener present the first theoretical analysis of the expected run-

time of a basic direct-search heuristic with a global search operator, namely the

(1+1) Evolutionary Algorithm ((1+1) EA), for the class of linear functions over

the search space {0, 1}n. In a rather long and involved proof they show that, for

any linear function, the expected runtime of the (1+1) EA is O(n log n), i. e., that

there are two constants c and n′ such that, for n ≥ n′, the expected number

of iterations until a global optimum is generated is bound above by c · n log n.

However, neither c nor n′ are specified – they would be pretty large. Here we re-

consider this optimization scenario to demonstrate the potential of an analytical

method that makes use not only of the drift (w. r. t. a potential function, here the

number of bits set correctly), but also of the distribution of the evolving candidate

solution over the search space {0, 1}n: An invariance property of this distribu-

tion is proved, which is then used to derive a significantly better lower bound on

the drift. Finally, this better estimate of the drift results in an upper bound on the

expected number of iterations of 3.8 n log2 n + 7.6 log2 n for n ≥ 2.

1 Introduction

We consider the optimization of a pseudo-Boolean function f : {0, 1}n → R which is

given by a black box. That is, knowledge about f can solely be gathered by evaluating

f at a number of search points. Black-box optimization is also commonly referred to

as direct search. Randomized neighborhood search is a commonly used heuristic for

direct search in {0, 1}n. It is an iterative method which tries (in each iteration) to pick

a better solution from the neighborhood of the current candidate solution by choosing

one of the neighbors uniformly at random. Usually, the neighborhood of x ∈ {0, 1}n

consists of the Hamming neighbors of x, i. e. of all y ∈ {0, 1}n with a Hamming

distance H(x, y) = 1 (number of bits that differ). This heuristic is often called random-

ized local search (RLS). Obviously, RLS cannot escape a local optimum x∗ that is not

globally optimal and for which all neighbors have a worse function value. Naturally, a

different neighborhood could be chosen. As nothing is known about f , however, this is

hard choice to make. A different approach is to consider the complete search space as

the neighborhood, but to not sample uniformly at random any longer. One of these so-

called global methods is the (1+1) EA. It starts with a search point (called individual)

which is uniformly chosen from {0, 1}n. Then, in each iteration, a new candidate solu-

tion is generated by mutation, namely by independently flipping each bit of the current

⋆ supported by the German Research Foundation (DFG) through the collaborative research cen-

ter „Computational Intelligence” (SFB 531)

candidate solution with a predefined probability p. Usually, p := 1/n is chosen, and this

mutation rate will also be considered here in the following. Iff the f -value of the mutant

is at least as good, then the mutant becomes the next iterate (otherwise the mutant is

discarded, so that the search stays where it was), which is called elitist selection.

Note that global convergence is trivially proved for the (1+1) EA: Since in each

iteration a global optimum is sampled with probability at least pn, the expected number

of steps until a global optimum is generated is bounded above by p−n, namely by nn

for p = 1/n. So (global) convergence is not the point. The point is: How long does

it actually take? That is: What is the expected number of steps until a global optimum

is generated? It turned out that, because of its global search operator, the (1+1) EA is

often much harder to analyze than RLS. After first analyses (for simple functions like

ONEMAX) using Markov chain theory, cf. [1], a different analytical approach from

the field of classical algorithmics enabled a bunch of results for less trivial function

scenarios: the potential method. Instead of considering the f -value (of the evolving

individual), a potential function is defined (w. r. t. the process), which takes its maximum

value if and only if the f -value is best. In many such analyses of the (1+1) EA, the

number of bits set correctly is considered as the potential (of a search point). This

technique was used by Droste, Jansen, and Wegener [2] to prove, among other results,

that the expected number of iterations the (1+1) EA needs to generate the optimum

of a linear function is O(n log n). The expected change in the potential (per iteration)

is commonly called drift. Drift analysis has been put forward by He and Yao [3], for

instance. Unfortunately, the application of their quite general approach to the scenario

considered here, namely the (1+1) EA using the standard mutation rate p = 1/n to

maximize a linear function, contains a flaw [4], so that this fundamental scenario is not

covered. Here we reconsider this scenario and show how to prove a significantly better

lower bound on the potential’s drift using an invariance property of the distribution of

the evolving individual over the search space {0, 1}n during the optimization process.

The scenario: We consider the class of linear functions over {0, 1}n consisting of all

f : {0, 1}n → R with f(x) := c +
∑n

i=1 ci · xi, where x = xn · · ·x1. We assume

that f depends essentially on all n bits, i. e., we assume ci ∈ R \ {0}. The coefficient

ci will also be called the weight of the ith bit. Solely for better legibility, we assume

cn ≥ cn−1 ≥ · · · ≥ c1 > c = 0. Obviously, the ordering of the bits is irrelevant.

Moreover, because of the uniformly random initialization and the invariance property

of the mutation operator of the (1+1) EA (it does not care about whether a bit is 1 or 0),

these assumptions can be made without a loss of generality: The (1+1) EA behaves

identically on f and f⊕y(x) := f(x ⊕ y) for any fixed y ∈ {0, 1}n, in particular for y
the complement of the optimum (“⊕” denotes the bitwise XOR operation).

Two linear functions which are frequently considered are ONEMAX, where ci := 1
for each weight, and BINVALUE, where the bit-string is taken as the binary represen-

tation, i. e., ci := 2i−1. These are two extremes in the class of linear functions: In

ONEMAX all bits have the same weight, whereas in BINVALUE the weight of a single

bit (namely the nth) is larger than the total weight of the other n − 1 bits.

Unless stated differently, we consider the maximization of a linear function with

positive weights (non-decreasing from left to right; as described above) by the (1+1) EA

(as described above) using the standard mutation rate (bit-flip probability) p := 1/n.

2

2 Invariance property of the individual’s distribution over {0, 1}n

In this section a particular – actually intuitive – property of the distribution of the evolv-

ing individual x over the search space {0, 1}n will be proved. This will be used in the

following Section 3 to prove that bad mutations, namely mutations that would result

in a loss of 1-bits if they were accepted, are likely to be such that they are discarded

by elitist selection. In Section 4 this observation will enable us to prove a significantly

better lower bound on the drift (expected change of the number of 1-bits), which is then

used to obtain our main result, a better upper bound on the expected optimization time.

Now, consider two bits xi and xj in x with j > i (not necessarily adjacent), so that

cj ≥ ci for their weights. First consider the case xjxi = 00. Assume that a mutation

flips xi, but not xj , and maybe some more bits. If this mutation is accepted, then the

mutation that flips the same bits except for xj instead of xi would also be accepted.

Note that the latter mutation occurs with the same probability. Now consider the case

xjxi = 11 and assume that a mutation flips xj , but not xi, and maybe some more bits. If

this mutation is accepted, then the mutation that flips the same bits except for xi instead

of xj would also be accepted. And again, the latter mutation occurs with exactly the

same probability. Thus, since cj ≥ ci, for xj a change from 0 to 1 is at least as probable

as for xi, whereas a change from 1 to 0 is at most as probable. All in, observing xj = 1
seems at least as probable as observing xi = 1 during the optimization – whatever the

number of iterations. This can be formulated more formally:

Theorem 1. Let x[t] denote the random individual (distributed over {0, 1}n) after t

iterations in our scenario. Then Prob(x
[t]
n = 1) ≥ . . . ≥ Prob(x

[t]
1 = 1) for t ≥ 0.

This invariance property of the distribution of the evolving individual over {0, 1}n will

be proved in the remainder of this section. The superscript in “x[t]” will be dropped

(unless necessary). Note that „Prob(xj = 1) ≥ Prob(xi = 1)“ is equivalent to

„Prob(xjxi = 10) ≥ Prob(xjxi = 01)“ since

Prob(xj = 1) = Prob(xjxi = 10) + Prob(xjxi = 11)

Prob(xi = 1) = Prob(xjxi = 01) + Prob(xjxi = 11)

Thus, to prove our conjecture we merely have to show that for any pair of adjacent bits

in x ∈ {0, 1}n , i. e. for i ∈ {0, . . . , n − 2}
∑

X∈{0,1}i,Y ∈{0,1}n−2−i

Prob(x = X10Y) ≥
∑

X∈{0,1}i,Y ∈{0,1}n−2−i

Prob(x = X01Y)

⇐⇒
∑

X∈{0,1}i,Y ∈{0,1}n−2−i

(

Prob(x = X10Y) − Prob(x = X01Y)
)

≥ 0 (1)

“XY ∈ {0, 1}j ” abbreviates “X, Y ∈ {0, 1}∗∧|X | + |Y | = j ” in the following. Then

(∀XY ∈ {0, 1}n−2) Prob(x = X10Y) − Prob(x = X01Y) ≥ 0

is sufficient for each of the n − 1 sums in Eqn. (1) to be non-negative. Thus, our inter-

mediate objective is to prove that for the evolving individual x

(∀XY ∈ {0, 1}n−2) Prob(x[t] = X10Y) ≥ Prob(x[t] = X01Y) (2)

3

throughout the complete optimization process, i. e. for t ≥ 0. We will use induction

on the number t of iterations to prove Eqn. (2). For the induction step, recall that the

optimization of the (1+1) EA is a Markov chain with state space {0, 1}n. The transition

probabilities obviously depend on the function f to be maximized. Let H(·, ·) denote

the Hamming distance between two bit-strings and let p(h) = ph(1−p)n−h denote the

probability that a mutation flips exactly h bits at particlar positions in the string. Then

after iteration t ≥ 1 the Markov chain is in state y ∈ {0, 1}n with probability

Prob(x[t] = y) = Prob(x[t−1] = y) ·
∑

w∈{0,1}n : f(w)<f(y)

p(H(y, w)) (3)

+
∑

z∈{0,1}n : f(z)≤f(y)

Prob(x[t−1] = z) · p(H(z, y))

The first sum, weighted by Prob(x[t−1] = y), equals the probability to generate a worse

mutant from y, whereas the second sum equals the probability that the mutant of the

current state z in the ith step is y, where z can be any state not better than y. This

identity will be used in the induction step of the proof of Eqn. (2). Before we do so,

however, we take a closer look at the probability to generate a worse mutant.

Lemma 1. Let Mut : {0, 1}n → {0, 1}n denote the random mapping induced by the

mutation operator. Then in our scenario for all XYZ ∈ {0, 1}n−2:

Prob
(

f(Mut(X1Y 0Z)) < f(X1Y 0Z)
)

≥ Prob
(

f(Mut(X0Y 1Z)) < f(X0Y 1Z)
)

.

This is almost obvious since X1Y 0Z and X0Y 1Z have the same number of 1-bits and

f(X1Y 0Y) ≥ f(X0Y 1Z). Nevertheless, a proof can be found in the appendix. This

result is now used to estimate the transition probabilities in Eqn. (3) within the proof of

the following lemma (which implies Theorem 1, the invariance property).

Lemma 2. In our scenario, after any number of iterations, i. e. for t ≥ 0, the distribu-

tion of the evolving individual x[t] over {0, 1}n is such that for all XYZ ∈ {0, 1}n−2

Prob(x[t] = X1Y 0Z) ≥ Prob(x[t] = X0Y 1Z).

Proof. The induction basis is trivial: Since x[0] is uniformly distributed over {0, 1}n,

X1Y 0Z and X0Y 1Z are equiprobable after initialization. For the induction step let

XY Z ∈ {0, 1}n−2 be arbitrary, but fixed. Now consider Eqn. (3) for y := X0Y 1Z
and for y := X1Y 0Z , telling us the probabilities of the Markov chain being in state

X1Y 0Z resp. in state X0Y 1Z after t iterations (where p(h) = ph(1 − p)n−h is the

probability that a mutation flips exactly h particular bits, where p ∈ (0, 1/2) is the

bit-flip probability of the mutation operator). For the induction step we need to show

Prob(x[t] = X1Y 0Z) ≥ Prob(x[t] = X0Y 1Z). Lemma 1 actually tells us
∑

u∈{0,1}n : f(u)<f(X1Y 0Z)

p
(

H(X1Y 0Z, u)
)

≥
∑

w∈{0,1}n : f(w)<f(X0Y 1Z)

p
(

H(X0Y 1Z, w)
)

,

the induction hypothesis Prob(x[t−1] = X1Y 0Z) ≥ Prob(x[t−1] = X0Y 1Z), so that

Prob(x[t−1] = X1Y 0Z) ·
∑

u∈{0,1}n : f(X1Y 0Z)>f(u)

p
(

H(X1Y 0Z, u)
)

≥ Prob(x[t−1] = X0Y 1Z) ·
∑

w∈{0,1}n : f(X0Y 1Z)>f(w)

p
(

H(X0Y 1Z, w)
)

.

4

In other words, the probability of being in state X1Y 0Z and staying there (during the

tth iteration) is at least as large as it is for X0Y 1Z . It remains to be shown that getting

into state X1Y 0Z in the tth iteration is at at least as probable as getting into X0Y 1Z
in that step. Therefore note that flipping a set of i particular bits is more probable than

flipping a set of i + 2 particular bits when using a bit-flip probability of p ∈ (0, 1/2)
because 0 < p < 1/2 =⇒ (1−p)j−i > pj−i ⇐⇒ pi(1−p)n−i > pj(1−p)n−j for

0 ≤ i < j ≤ n. We focus on the rest of the summands, namely we are going to show

the following sufficient inequality:

∑

u∈{0,1}n : f(u)≤f(X1Y 0Z)

Prob(x[t−1] = u) · p
(

H(u, X1Y 0Z)
)

=: S10

≥
∑

w∈{0,1}n : f(w)≤f(X0Y 1Z)

Prob(x[t−1] = w) · p
(

H(w, X0Y 1Z)
)

=: S01

Note that any index w in S01 occurs also as u in S10 since f(w) ≤ f(X0Y 1Z) ≤
f(X1Y 0Z). In the following A ∈ {0, 1}|X|, B ∈ {0, 1}|Y |, C ∈ {0, 1}|Z| and
h := H(ABC, XY Z). We consider different cases for the summation index w in S01:
w = A0B0C: Since ABC ∈ {0, 1}n−2 such that f(A0B0C) ≤ f(X0Y 1Z), and
since f(X0Y 1Z) ≤ f(X1Y 0Z), also f(A0B0C) ≤ f(X1Y 0Z), so that u = A0B0C
is an index in S10, too. Finally, the Hamming distance of A0B0C from X0Y 1Z as well
as from X1Y 0Z equals h + 1, respectively, so that the summand associated with the
index A0B0C in S10 equals the summand associated with A0B0C in S10.
w = A1B1C: This case is analogous to the case w = A0B0C above.
w = A1B0C: This implies that w = A0B1C is also an index in S01. Furthermore,
recall that these two indices necessarily occur in S10, too. Thus, in this case

Prob(x[t] = X0Y 1Z | x[t−1] ∈ {A0B1C, A1B0C})

≤ Prob(x[t] = X1Y 0Z | x
[t−1] ∈ {A0B1C, A1B0C})

⇔
Prob(x[t−1] = A0B1C) · p(h) +

Prob(x[t−1] = A1B0C) · p(h + 2)

ff

≤



Prob(x[t−1] = A0B1C) · p(h + 2) +

Prob(x[t−1] = A1B0C) · p(h)

⇔ Prob(x[t−1]=A0B1C) · (p(h) − p(h+2)) ≤ Prob(x[t−1]=A1B0C) · (p(h) − p(h+2))

where the last inequality holds because of the induction hypothesis and p(h) > p(h+2),
i. e., p(h) − p(h + 2) > 0 as seen above. In other words, the two summands associated

with the indices A0B1C and A1B0C result in a total value in S10 that is at least as

large as the value of the two summands corresponding to these two indices in S01.

w = A0B1C and f(A1B0C) > f(X0Y 1Z): In this case, A0B1C is an index in S01,

but A1B0C is not. As f(A0B1C) ≤ f(X0Y 1Z) ⇒ f(A1B0C) ≤ f(X1Y 0Z),
however, in S10 not only u = A0B1C is an index, but also u = A1B0C is an index. As

H(A0B1C, X0Y 1Z) = H(A1B0C, X1Y 0Z) and, due to the induction hypothesis,

Prob(x[t−1] = A0B1C) ≤ Prob(x[t−1] = A1B0C), the summand in S10 associated

with u = A1B0C is at least as large as the summand in S01 associated with w =
A0B1C. (Even more, in contrast to S01 where A1B0C is not an index, in S10 there is

an additional summand associated with u = A0B1C.)

All in all, in S10 there are as many summands as in S01 and they sum to an over-all

value at least as large as the value of S01. As seen above, this finishes the induction. ⊓⊔

5

It is easily seen (using the argument given right after Theorem 1) that this result directly

implies Theorem 1, the invariance property of the evolving individual’s distribution.

3 On the probability of bad mutations

Now, this result on the distribution of the ones in the evolving individual allows us

to obtain better bounds on the drift in the potential, namely the number of 1-bits in

the individual. For instance, in the case when a mutation flips two bits xi and xj ,

where j > i (so that cj ≥ ci > 0 for their weights), then Prob(xj = 1 ∧ xi = 0) ≥
Prob(xj = 0 ∧ xi = 1). This holds for arbitrarily chosen i, j such that n ≥ j > i ≥ 1.

Thus, whenever a mutation flips exactly two bits, then the sub-string flipped is „10“ as

least as probable as it is „01.“ For shorter notation, we introduce the following notions:

Definition 1. Consider the mutation of a given individual x ∈ {0, 1}n.

B-mutation Let B ∈ {0, 1}∗ be the substring in/of x consisting of the bits chosen to

be mutated/flipped. Then we call the mutation of x a “B-mutation.”

z-zeros-k-ones mutation A mutation that flips exactly z zeros and exactly k ones in x.

z-zeros mutation A mutation that flips exactly z zeros (and possibly some ones) in x.

surely unacceptable mutation A mutation that flips more ones than zeros such that

each flipping 0-bit can be mapped one-to-one to a flipping 1-bit with a weight at

least as large as the weight of the associated zero, respectively.

potentially acceptable mutation A mutation that is not surely unacceptable.

In the example preceding the definition, we noticed that a 1-zero-1-one mutation is at

least as probable a 10-mutation as it is a 01-mutation. More general, since the random

choice of the bits to be flipped is independent of the individual (’s distribution over

{0, 1}n), we obtain for our scenario as a direct consequence of Lemma 2 the following:

Corollary 1. Let J, K, L ∈ {0, 1}∗. In our scenario the mutation observed in an arbi-

trary but fixed step is at least as probable a J1K0L-mutation as a J0K1L-mutation.

To make actual use of this result, consider the relation R ⊂ ∪k∈{2,...,n}{0, 1}k×{0, 1}k

defined by (A, B) ∈ R :⇔ (∃J, K, L ∈ {0, 1}∗) A = J0K1L ∧ B = J1K0L.

„(A, B) ∈ R“ is written as „A ≤R B.“ Furthermore, we let R∗ denote the transitive

hull of the relation R. Then the above corollary extends to the following:

Corollary 2. Let A, B ∈ {0, 1}k, 2 ≤ k ≤ n, such that A ≤R∗ B. In our scenario, in

an arbitrary but fixed step, a B-mutation occurs at least as probable as an A-mutation.

Our intermediate objective is to show that, whenever a mutation flips more ones than

zeros – which would result in a loss of ones if the mutation was accepted – then this

bad mutation is rather likely to be an unacceptable one, so that the loss of ones is not

accepted. By this, the drift w. r. t. the potential (#ones in the individual) is supposed to

become larger, hopefully Ω(1/# zeros). The following result will be utilized therefor.

Lemma 3. In our scenario for k ≥ 2: Whenever a 1-zero-k-ones mutation occurs in a

step, then this mutation is accepted at most with probability 1/(k + 1).

6

Proof. As the bits’ weights decrease from left to right, R∗ induces a total order on the

1-zero-k-ones mutations because 01k ≤R 101k−1 ≤R 1101k−2 ≤R . . . ≤R 1k0. For

k ≥ 2, a 1-zero-k-ones mutation is potentially acceptable only if it is an 01k-mutation.

The other k of the
(

k+1
1

)

= k + 1 different mutation types are surely unacceptable.

Using the preceding corollary, we know that each of these surely unacceptable types

occurs at least as probable as a 01k-mutation, so that the latter occurs at most with a

probability of 1/(k + 1) (given that a 1-zero-k-ones mutation occurs). ⊓⊔

Analogous results for mutations that flip two (or more) 0-bits can be obtained. For our

scenario, however, 1-zero mutations are the crucial ones, so that we focus on these.

4 Better estimate of the drift – better bound on the runtime

Let Γ denote the power-set of {1, . . . , n} and p(b) := pb(1−p)n−b the probability that

a mutation flips exactly b bits. Let Mut(x, I) denote the mutant obtained by flipping the

bits in x ∈ {0, 1}n that are determined by the index set I ∈ Γ . Then the drift equals

∑

I∈Γ

p(#I) ·
(

#{i ∈ I |xi = 0} − #{i ∈ I |xi = 1}
)

· [f(Mut(x, I)) ≥ f(x)] , (4)

where [·] is an indicator variable that resolves to 1 if the predicate is true, and to 0

otherwise. In the following, the summands will be grouped according to the number

z ∈ {0, . . . , n} of zeros that are flipped. If a z-zeros-k-ones mutation is accepted, the

number of ones changes by z − k. The probability that exactly z zeros and k ones

are flipped in x ∈ {0, 1}n equals Px,p(z, k) :=
(

|x|0
z

)

·
(

|x|1
k

)

· pz+k · (1 − p)n−(z+k).
For k > z ≥ 1, let Ax,p(z, k) denote an upper bound on the probability that a z-zeros-

k-ones mutation of x ∈ {0, 1}n is accepted. Let z ≥ 1 be fixed. For k > z, the

summands in Eqn. (4) for which I corresponds to a z-zeros-k-ones mutation sum up to a

negative value not smaller than Px,p(z, k)·Ax,p(z, k)·(z−k). A z-zero-0-ones mutation

is always accepted and increases the number of ones by z (≥ 1). All summands for

which I corresponds to a z-zeros-0-ones mutation sum up to Px,p(z, 0) ·z. Thus, for the

fixed number z ≥ 1 of flipping zeros, the contribution of all possible z-zero mutations

to the drift (the expected change in the number of 1-bits) is at least

∆x,p(z) := Px,p(z, 0) · z +
∑

z<k≤|x|1
Px,p(z, k) · Ax,p(z, k) · (z − k) . (5)

Up to now, z ≥ 1 was assumed. For z = 0, note that in our scenario a mutation that does
not flip a 0-bit cannot change the individual, so that the total drift is bounded below by

∆x,p :=
∑|x|0

z=1 ∆x,p(z). For z ≥ 1 the formula for ∆x,p(z) can be transformed into

z ·
“

P (z, 0) +
X

z<k≤|x|1

P (z, k) · A(z, k) ·
z − k

z

”

= z ·

|x|0
z

!

·
“

p
z · (1 − p)n−z +

X

z<k≤|x|1

|x|1
k

!

· pz+k · (1 − p)n−(z+k) · A(z, k) ·
z − k

z

”

= z ·

|x|0
z

!

· pz(1 − p)n−z ·
“

1 +
X

z<k≤|x|1

`

|x|1
k

´

·

„

p

1 − p

«k

· A(z, k) ·
z − k

z

”

. (6)

7

The sign of ∆x,p(z) is determined by the sign of the rightmost factor (in big parenthe-

ses). We now show that ∆x(z) := ∆x,1/n(z) is non-negative for all z when p = 1/n.

Lemma 4. In our scenario, where the mutation rate p = 1/n is used, for any fixed

individual x ∈ {0, 1}n: ∆x(z) ≥ 0 for z ∈ {1, . . . , |x|0}.

Proof. Obviously, z ·
(

|x|0
z

)

· pz(1 − p)n−z ≥ 0, so that we have to show that the

rightmost factor (1 +
∑

. . .) in Eqn. (6) is non-negative. A(z, k) := 1 is a trivial upper

bound on the probability that a (bad) mutation is accepted, so that we concentrate on

∑

z<k≤|x|1

(

|x|1
k

)

·

(

p

1 − p

)k

·
−(z − k)

z
≤ 1. (7)

We take a closer look at the summands:
(

p
1−p

)k

=
(

1
n·(1−1/n)

)k

= (n − 1)−k and
(

|x|1
k

)

≤ (n−1)k

k! since |x|1 =≤ n − 1. Thus, the sum in Eqn. (7) is bounded above by

∑

z<k≤|x|1

(n − 1)k

k!
· (n − 1)−k ·

k − z

z
=

∑

z<k≤|x|1

k − z

k! · z
≤

∑

k≥2

k − 1

k!
(8)

since z ≥ 1 is assumed. The rightmost sum equals
∑

k≥2

(

1
(k−1)! −

1
k!

)

= 1
(2−1)! = 1,

which proves the inequality Eqn. (7) and with it the claimed inequality ∆x(z) ≥ 0. ⊓⊔

So, now we know that ∆x(z) is non-negative for any number z of zeros that may be

flipped by a mutation – whatever the mutated individual x. Consequently, we know that

throughout the optimization process the drift is non-negative in each iteration. For a

good upper bound on the runtime, however, we need a positive lower bound on the drift.

In fact, the larger the lower bound on the drift, the better. Since for p = 1/n the expected

number of bits that flip equals one, we take a second look at ∆x(1) to derive a better

estimation for the contribution of 1-zero mutations to the drift. In Eqn. (6) the sum over

k has been estimated for z = 1 using the trivial estimate Ax,p(z, k) = 1. Now, making

use of our knowledge about the distribution of the evolving individual x over {0, 1}n,

namely by Lemma 3, we know that for k ≥ 2 a 1-zero-k-ones mutation is accepted at

most with probability 1/(k + 1), so that for our scenario A(1, k) := 1/(k + 1) can be

used instead of the distribution-independent/trivial upper bound Ax,p(1, k) = 1.

Lemma 5. For p := 1/n, A(1, k) := 1/(k +1), z := 1 the following inequality holds:
∑

z<k≤n

(

|x|1
k

)

·
(

p
1−p

)k

· A(z, k) · k−z
z < 0.282.

Proof. As in proof of the previous lemma, the sum to be bounded from above is at most
∑

z<k≤n
1
k! · A(z, k) · k−z

z . For the settings of the lemma we obtain

∑

z<k≤n

1

k!
· A(z, k) ·

k − z

z
≤

∑

k≥2

1

k!
·

1

k + 1
· (k − 1) =

∑

k≥2

k − 1

(k + 1)!

=
∑

k≥3

k − 2

k!
=

∑

k≥2

1

k!
−

∑

k≥3

2

k!
= (e − 2) − 2(e − 2.5)

using
∑

k≥1 1/k! = e − 1. Finally, (e − 2) − 2(e − 2.5) = 3 − e < 0.282. ⊓⊔

8

Plugging the estimate of the preceding Lemma 5 into Eqn. (6) for z := 1, we obtain

∆(1) ≥ |x|0 ·
1

n

(

1 −
1

n

)n−1

· (1 − 0.282) ≥
|x|0
n

·
0.718

e
>

|x|0
n

· 0.264

(Recall that ∆(z) ≥ 0 for all z.) This better estimation of the contribution of 1-zero mu-

tations to the drift utilizing the individual’s distribution over the search space {0, 1}n is

crucial: Now the lower bound on the drift is ∆ ≥ ∆(1) ≥ |x|0
n ·0.264 = Ω(#zeros/n).

When we consider the number of zeros as the approximation error (the Hamming dis-

tance from the optimum), then the result on the drift reads: As long as there are zeros

in x, in each step we expect the approximation error to decrease by a factor smaller (i. e.

better) than 1 − 0.264/n. Since (1− 0.264/n)(n/0.264)·ln2 . 1/2, the number of steps

until we expect the progress to be such that the approximation error is halved is less

than (n/0.264) · ln 2 < 2.63n. The actual question is, however: What is the expected

number of steps to actually halve the approximation error? The following lemma helps

us to turn our lower bound on the drift into an upper bound on the expected runtime:

Lemma 6. Let X1, X2, . . . denote random variables with bounded support and S the

random variable defined by S := min{ t | X1 + · · · + Xt ≥ g} for a given g > 0.

Given that S is a stopping time (i. e., the event {S = k} depends solely on X1, . . . , Xk),

if E[S] < ∞ and E[Xi | S ≥ i] ≥ ℓ > 0 for all i, then E[S] ≤ E[X1 + · · · + XS]/ℓ.

Proof. Note that the Xi need not be independent and that, since the Xi are bounded,

the precondition E[S] < ∞ implies E[X1 + · · · + XS] < ∞. We use

E[X1 + · · · + XS] =

∞
∑

i=1

Prob{S ≥ i }·E[Xi|S ≥ i] ≥

∞
∑

i=1

Prob{S ≥ i }·ℓ = E[S]·ℓ

where the first equation is the major part of the proof of Wald’s equation (a proof can

be found in [5, Apx. B] for instance). ⊓⊔

We concentrate on the expected number of steps to halve the approximation error, and

thus, in the application of the preceding lemma we let Xi denote the increase in the

number of ones in the ith iteration and choose g := z/2 and ℓ := (z/2) · 0.264/n,

where we use that 0 ≤ Xi ≤ n in our scenario, and that the condition {S ≥ i} merely

means that the approximation error has not been halved within the first i− 1 iterations.

Finally, we use E[X1 + · · · + XS] ≤ z/2 + z/n, where “+z/n” is a rough general

upper bound on the expected increase in the number of ones (in a step), namely the

expected number of flipping zeros, which is z · p = z/n since p = 1/n. Thus, the

application of the previous lemma yields the following upper bound on the expectation

of the number S of steps to halve the approximation error, i. e. the number of 0-bits:

E[S] ≤
E[X1 + · · · + XS]

ℓ
≤

z/2 + z/n

(z/2) · 0.264/n
≤ 3.79n + 7.58.

With this bound on the zeros’ expected half-life we can finally derive our main result.

9

Theorem 2. Let the (1+1) EA using the mutation rate (bit-flip probability) 1/n maxi-

mize a linear function f : {0, 1}n → R, n ≥ 2. Then the expected number of steps until

the evolving individual has maximum f -value is smaller than 3.8 n log2 n + 7.6 log2 n.

Proof. Without loss of generality we may assume that all coefficients are positive, so

that the all-ones string has maximum function value. As the expected number of 0-bits

in the initial individual equals n/2, after ⌊log2(n/2)⌋+ 1 ≤ log2 n halvings (in expec-

tation w. r. t. the initialization) there is less than one 0-bit left, i. e., the optimal all-ones

bit-string has been generated. Since the expected number of iterations to halve the num-

ber of zeros is smaller than 3.8n + 7.6 (independently of the initialization), we obtain

an upper bound of (3.8n + 7.6) · log2 n on the expected number of iterations. ⊓⊔

5 Conclusions

We have exemplarily shown for the fundamental scenario “standard (1+1) EA on linear

functions” how knowledge about the distribution of the evolving individual over the

search space can significantly improve (upper) bounds on the expected runtime until an

optimum is generated. The invariance property of the individual’s distribution proved

and then utilized here is actually quite intuitive. Interestingly, its proof is quite straight-

forward and not that sophisticated. Nonetheless, it enables a remarkable improvement

of the estimation of the drift (and, thus, of the runtime). For other scenarios, a suit-

able invariance property may be harder to find – experiments may actually give useful

hints – and probably even harder to prove. But, as we have demonstrated here, these

efforts may indeed pay off. Actually, in some situations such knowledge is necessary

to obtain an asymptotically tight bound. Then the use of an invariance property of the

evolving individual’s distribution over the search space can actually be an elegant tool.

Naturally, for more advanced (evolutionary) algorithms that use a population, the

distribution of the population over the search space may be considered. In [6] a similar

approach is followed for the analysis of a (µ+1) evolution strategy, showing that this

technique can indeed make sense for the analysis of population-based algorithms.

References

1. Rudolph, G.: Finite Markov chain results in evolutionary computation: A tour d’horizon.

Fundamenta Informaticae 35 (1998) 67–89

2. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. The-

oretical Computer Science 276 (2002) 51–82

3. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Arti-

ficial Intelligence 127 (2001) 57–85

4. He, J., Yao, X.: Erratum to: Drift analysis and average time complexity of evolutionary algo-

rithms [3]. Artificial Intelligence 140 (2002) 245–248

5. Jägersküpper, J.: Algorithmic analysis of a basic evolutionary algorithm for continuous opti-

mization. Theoretical Computer Science 379 (2007) 329–347

6. Jägersküpper, J., Witt, C.: Rigorous runtime analysis of a (µ+1) ES for the Sphere function. In:

Proc. 2005 Genetic and Evolutionary Computation Conference (GECCO), ACM Press (2005)

849–856

10

A Proof of Lemma 1

We have to show that

S10 :=
∑

u∈{0,1}n :
f(u)<F (A1B0C)

p(H(X1Y 0Z, u)) ≥
∑

w∈{0,1}n :
f(w)<F (A0B1C)

p(H(X0Y 1Z, w)) =: S01

where H(·, ·) denotes the hamming distance and p(j) the probability that in a mutation

j particular bits are flipped. Note that any index w in S01 occurs also as u in S10 because

f(w) ≤ f(X0Y 1Z) ≤ F (X1Y 0Z). In the following A ∈ {0, 1}|X|, B ∈ {0, 1}|Y |,

C ∈ {0, 1}|Z| and h := H(ABC, XY Z).

– w = A0B0C: Since ABC ∈ {0, 1}n−2 such that f(A0B0C) ≤ f(X0Y 1Z)
(≤ f(X1Y 0Z)), u = A0B0C is an index in S10, too. The Hamming distance of

A0B0C from X0Y 1Z as well as from X1Y 0Z equals h + 1, respectively, so that

the summands associated with the index A0B0C in S01 resp. S10 have the same

value.

– w = A1B1C: This case is analogous to the case w = A0B0C above.

– w = A1B0C: Since f(A1B0C) ≥ f(A0B1C), in this case w = A0B1C is an

index in S01, too. Thus, both indices occur also in S10, and they contribute to each

of the sums p(h) + p(h+2), respectively.

– w = A0B1C and f(A1B0C) > f(X0Y 1Z): In this case, A0B1C is an index in

S01, but A1B0C is not. Since f(A0B1C) ≤ f(X0Y 1Z) implies f(A1B0C) ≤
f(X1Y 0Z), however, in S10 not only u = A0B1C is an index (contributing

p(h+2) to the sum), but also u = A1B0C is an index, contributing p(h) to S10,

which equals the contribution of w = A0B1C in S01.

Hence, each w in S01 can be mapped one-to-one to an u in S10 such that the contribution

of u to the value of the sum S10 equals the contribution of the corresponding w to the

value of S01. ⊓⊔

11

	CI25008.pdf
	25008.pdf
	A Mix of Markov-Chain and Drift Analysis
	Jens Jägersküpper

