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ABSTRACT

Symbolic inductive learning systems thatluceconcept descriptionsom examples are
valuable tools in the task of knowledgequisition forexpert systemsSince inductive
learning methods produahstinct concept descriptiomghen given identical trainindata,
guestions arise as the quality of the different rule setproduced. This work provides
several techniques for comparing amhlyzingrule sets. Theskgchniques measure the
accuracy, generalization, time and space complexity, and domanage\s rule sets. Based

on these metrics, the performance of four different inductive learning systems is compared.
These systemare Michalski et al.’'s AQ151986a; 1986b; Hong, Mozetic, aMichalski,
1986; Wnek et al., 1995), Quinlan’s C4.5 (1993), Clark ancettibICN2 (Clark and Niblett,
1989;Clark and Boswell1991), andlanikow’s Genetic-based Inductive Learning system
(GIL) (1991; 1993). The comparisonliased on rule sets generated by these algorithms for
six real worlddata setsncludingdata set$rom medical, botanic, economic, and political

domains.
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ABSTRACT:

Symbolicinductive learning systems that indumencept descriptions from
examples argaluabletools in the task of knowledgeequisition for expert
systems. Since inductive learning methqu®duce distinct concept
descriptions when given identical trainid@ta, questionsrise as to the
quality of thedifferent rulesets produced.This work provides several
techniques for comparing and analyzing rule sets. These techniques measure
the accuracy, generalization, time and space caitypleand domain coverage

of rule sets. Based on these metrics, the performance odierent
inductive learning systems is compared. These systems are Michalski et al.’s
AQ15 (1986a; 1986bHong, Mozetic, andMichalski 1986; Wnek et al.,
1995),Quinlan’sC4.5 (1993)Clark and Niblett's CN2 (Clark and Niblett,
1989; Clark and Boswell1991), andJanikow's Genetic-based Inductive
Learning systenGIL) (1991; 1993). The comparison is based on rule sets
generated by these algorithms for six real world data sets including data sets

from medical, botanic, economic, and political domains.



INTRODUCTION

Symbolic inductive learning algorithms learn class descriptions from examples. All
information about an example must be expressible in terms of a fixed collection of properties
or attributes where the value domain of each attribute is either discrete symbolic, discrete or
continuous numeric, or partially ordered. Each exampsance is described by a vector

of attribute values and belongs to one of a set of mutually exclilasses Since the class

of each training instance has tokm®wn to the learning algorithm before-hand, this form of
learning is calledsupervised learningas opposed tansupervised learning iwhich
appropriate groupings of training cases are found by the learning algorithm itself by analyzing
and clusteringhe training data. Theanductiontask is to develop aet ofrules that can
determine the class of an instance from its attribute values.

Since inductive learning methodenerate distinct sets of rules whgiven identical
training data, questiorarise concerninghe quality ofthese different rulsets. For most
applications, foexample, it is desirable to have rgletswhich have a high classification
accuracy on previously unseen casesvalnidh aresmallenough to be comprehensible for
human experts. Father applications, different criteria may be relevant. The objective of
this research is to develop techniques for comparing and analyzing rule sets and to apply these
techniques to compare the performance of four inductive learning systems on six real world
data sets. These techniques measure the accuracyligatenatime and space complexity,
and domain coverage of rule sets.

The inductive learning systems compared here are Michalski et al.'s AQ15 (1986a; 1986b;
Hong, Mozetic, and Michalski, 1986; Wnek et al., 1995), Quinlan’s C4.5 (1993), Clark and
Niblett's CN2 (Clark and Niblett, 1989; Clark and Boswell, 1991), and Janikow’'s Genetic-
based Inductive Learning systgi@IL) (1991; 1993). Thesalgorithmswere chosen,
because they are well known in the machine leatitergture. They generate different types
of rule sets, i.e. unordered rule sets, ordered rule sets, also known as decision lists (Rivest,
1987), andlecision trees respectively. The rule set quality measures proposed in this work
allow the comparison of the rule sets of these different types and thereby make a comparison
of a broad class of learning algorithms possiflae variety of these measures allows the
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users to base their evaluation of a particular rule set or learning algorithm on the criteria that

are most relevant for their application.

DESCRIPTION OF THE DIFFERENT LEARNING ALGORITHMS AND THE
TYPES OF RULE SETS THEY GENERATE

This chaptedescribeshe basicconcepts of thenductive learning algorithmssed for the
comparison and the different types of rules sets they produce. As described in further detail
below, AQ15 generates either ordered or unordered rule sets, C4.5 produces either decision
trees or orderedules sets, CN2builds eitherordered or un-orderedile sets, and GIL
generates unordered rule sets.

AQ15
The inductive learning system AQ15 was developed by Michalski et al. (1986a; 1986b; Hong,
Mozetic, andMichalski 1986). In AQ15decision rulesire represented as expressions in
Variable-valued Logic System 1 (VL )notation, a multi-valued logic propositional calculus
with typed variables (Michalski and Larson, 1975). The representations of decision rules in
CN2 and GIL are very similar to AQ15's represeataind can be viewed as subsets of VL .
In VL, aselectorrelates a variable or attribute to a value or a disjunction of values using one
of the relational operators <, =, #, >, or >. A conjunction of selectors formgsamplex
The following complex built of two selectors states that the outlook has to be rainy or cloudy
and that the temperature has to be less than 60 degrees for a particular weather condition:
(Outlook = rainy or cloudy) and (Temperature < 60)
For anyclass, the examples given for that class in the training set pasitse events
and theexampledor all otherclassesare itsnegative events A coveris a disjunction of
complexes describing all positive examples and none of the negative examples of a class. In
AQ15, a cover is formed for eadtass separately and defind® conditionpart of a
corresponding decision rule for that class. The following is an example of a decision rule:
(Outlook = sunny or cloudy) and (Temperature > 60)
or (Windy = true) and (Temperature > 70) => Class (Nice)
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The AQ15 system is based dhe AQalgorithm as originallydescribed in (Michalski,
1969; Michalski and McCormick, 1971) anmnplementsthe STAR method oinductive
learning (Michalski and.arson, 1983). Wen building a decisiorule, AQ performs a
heuristic search through a space of logiegiressions to determine those that account for all
positive and no negative examples. Becdahsee areusually manysuchcompleteand
consistenexpressions, the goal of AQ is to find the most preferred one, according to flexible
extra-logical criteria. These criterare defined bythe user to reflect the needs of the
application domain. Figure 1 showspaeudo-coddisting of the AQ15 and STAR
algorithms, which form rules from the set of all available selectors.

For each clas§, the AQ15 algorithm is applied in steps to generate a cove, fach
step producing one complex of the cover, until all positive examples are covered. Each step
startswith one selected positivexample, aeed The STAR algorithm generatestar, a

Let POS be a set of positive examples of class C.
Let NEG be a set of negative examples of class C.

Procedure AQ15 (POS, NEG) : // Find a cover for class C
Let COVER be the empty cover.
While COVER does not cover all positive examples in POS :
Select a SEED, a positive example previously not covered by COVER.
Let STAR be STAR (SEED, NEG), a set of maximally general complexes that
cover SEED but no negative example in NEG.
Let BEST be the best complex in STAR according to the user-defined preference
criteria.
Add BEST as an extra disjunct to COVER.
Return COVER.

Procedure STAR (SEED, NEG) : /l Find maximally general complexes covering
/l SEED but no negative example in NEG
Let STAR be the set containing the empty complex, which covers the whole domain.
While any complex in STAR covers some negative examples in NEG :
Select a negative example E,; covered by a complex in STAR.
Specialize complexes in STAR to exclude Eygg by :
Let EXTENSION be the set of all selectors that cover SEED but not Ey.
Let STAR be theset{x N\ y | x € STAR, y € EXTENSION}.
Remove all complexes in STAR subsumed by other (more general) complexes.
While size of STAR > maxstar, the user-defined maximum star size:
Remove the worst complex from STAR according to the user-defined preference
criteria.
Return STAR.

Figure 1: The AQ15 And STAR Algorithms (Clark and Niblett, 1989;
Whnek et al., 1995).
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set of all maximallygeneral complexes, whiotover the seed but none of thegative
examples, anthen selects the besbmplex fromthe star according to the usgefined

criteria. The STAR procedure starts with the entire event space as initial star. As long as a
complex in the star covers a negative eventctmplexes irthe star arespecialized to
exclude this negative event by adding one or several selectors. If the number of complexes
kept in the star exceedsaxstar a user-defined parameter, the star is trimmed according to
the user-definedriteria. For this study,the criterion was tdmaximize the number of
positive examples covered” first and then, in case of a timitwmize the number of
selectors.”

The AQ15 system can generate unordered and ordered rules. In cedered rules,
the rules for class assume that the rules for the class&sn-1 are not satisfied. Hence the
rule for the last class is a default rule and the rules constructed for the other classes may be
less complex than in case wiordered rules, because the rulescfassn do notneed to
exclude the instances of the clask&sn-1. To classify an instance in case of ordered rules,
the orderedist of rules is examined ténd the first whose complex is satisfied by the
instance. The predicted class is then the one nominated by this rule. If no rule’s complex is
satisfied, the instance is predicted to belong to the default class.

In case ounordered rules, each complex is associated with a pair of weidlasdu,
representing theotal number of events explained by this complex and the number of events
explaineduniquely by this complex, respectively. Thaveight may beinterpreted as a
measure of the representativeness of a complex as a concept description. The complex with
the highestt-weight may beinterpreted aslescribingthe mosttypical examples of the
concept. The complex with the lowestveight can be viewed as describing rare, exceptional
cases. If the learning events from which rules are derived are noisy, such “light” complexes
may be indicative of errors in the data.

Two methods of recogniziriipe concepmembership of an instaneeedistinguished:
thestrict match and thanalogicalmatch. In the strict match, one tests whether an instance
satisfiesthe condition part of a rule. In the analogical match, one determines the degree of
similarity or conceptual closess between the instance and the condition part. Suppose one
has at-weight ordereddisjunction of complexes anohe removedrom it the lightest
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complex, i.e. the complex with the smallesteight. The so truncated description will not
strictly match events that uniquely satisfy the truncated complex. However, by applying the
analogical match, these events may still come out to be the mibest &inthe correct concept

and thus be correctlglassified. Atruncated description is of course slerpbut carries a
potentially higher risk of recognition error and requires a more sophisticated evaluation. One
can proceedurther and remove the neftight” complex fromthe cover and observe the
performance. Each such step produces a trade-off between the complexity of the description
on one side and the risk factor and the evaluation complexity on the other.

When strictly matching a new instance against a set of unordered rules, three outcomes
are possible: there may be only one exact matngle matchmore than one exact match,
multiple matchor no exact match. Each category requires a different method of determining
the concept of the new event. In case of a single exact match, the event is simply classified
according to the matched rule.

If there areseveral exact matches, a resolution of the conflict becomes necessary and a
heuristic callecEstimate of Probabilit{EP) is used to predict tlobass of an event. This
estimate is described in Figure 2. If there is no exact match, a heuristicMalisdre of Fit
(MF) as shown in Figure 3 is used. In this case the event belongs to a part of the decision
space that is natovered byany decisiorrule and thicallsfor analogical matching. The
measure of best fit of a class can be interpreted as a combination of “closeness” of the events
to a class and an estimatetloé prior probability of the class. The AQ15c implementation

Estimate of Probability (EP) to predict the class of an event covered by different rules
of several classes:
Let C,, ..., C,denote decision classes and e an event to be classified. For each
decision class C;one has a rule that consists of a disjunction of complexes (Cpx),
which in turn are conjunctions of selectors (Sel).
* EP of a complex Cpx; :
Ratio of the weight of the complex (the number of learning examples covered by it)
by the total number of learning examples, if the complex is satisfied by the event e,
and 0 otherwise.
* EPofaclass C;:
Probabilistic sum of EPs of its complexes.
The most probable class is the one with the largest EP, i.e. the one whose satisfied
complexes cover the largest number of training examples.

Figure 2: Estimate Of Probability (Michalski et al., 1986a; 1986b).



Measure of Fit (MF) to predict uncovered events:

* The MF of a selector is one, if the selector is satisfied. Otherwise, this measure is
proportional to the amount of the decision space covered by the selector (number of
disjunctively linked attribute values in the selector divided by the total number of the
attribute’s possible values).

* The MF of a complex is defined of the product of MFs for a conjunction of its
constituent selectors, weighted by the proportion of learning examples covered by
the complex.

* The MF of a class is obtained as a probabilistic sum for a disjunction of complexes.

Figure 3: Measure Of Fit (Michalski et al., 1986a; 1986b).

(Wnek et al., 1995) used for tlsgidy can only handle discrete or discretized attribute value
domains with finitely many attribute values and treats continuous numeric attribute values as

discrete values.

C4.5

Quinlan’s inductive learning syster@4.5 (Quinlan, 1993) evolved fromthe top-down

decision tree induction program ID3 (Quinlan, 1986). Like ID3, C4.5 generates a classifier

in the form of alecision trega structure that is eitheldeaf, indicating a class, ordecision

nodethat specifies some test to be carried out on a single attribute value, with one branch and
subtree for each possible outcome of the test. The test at a decision node is very similar to
a selector in alecision rule as described abolet may have more thatwo outcomes.

Figure 1.4 shows a decision tree with a continuous numeric attribytar{d several discrete
symbolic attributesA,, A;, A) for the tests. Thaon-leaf nodes dahe decisiontree are

labeled with the names of the attributes whose values are tested at these nodes. The branches
starting at an inner node are labeled with the possible outcomes of such a test. The leaf nodes
are labeled with the predicted class.

A decision tree can be used to classify a case by starting at the root of the tree and moving
through it until a leaf is encountered. At each non-leaf node, the case’s outcome for the test
at this node is determined and attention shifts to the root of the subtree corresponding to the
outcome of this test. Weén thisprocesdfinally leads to a leafthe class ofthe case is
predicted to be that recorded at the leaf.



Figure 4: Example Of A Decision Tree.

Let T be a set of training cases and let the classes be denoted {C,, C,, ..., C/}.

Procedure BuildTree (T):

There are three possible situations at a node where T is given during the tree building

process:

* T contains one or more cases, all belonging to a single class C;
The decision tree for Tis a leaf identifying class C.

* T contains no cases:
The decision tree is again a leaf, but the class to be associated with the leaf most
be determined from information other than T. C4.5 uses the most frequent class at
the parent of this node to label this leaf node.

* T contains cases that belong to a mixture of classes:
According to the gain ratio criterion, a test based on a single attribute is chosen
that has one or more mutually exclusive outcomes {O,,0,,...,0,}. Tis partitioned
into subsets T,,T,,...,T,, where T, contains all the cases in T that have outcome O,
of the chosen test. The decision tree for T consists of a decision node identifying
the test, and one branch for each possible outcome. The same tree-building
method is applied recursively to each subset of training cases, so that the /-th
branch leads to the decision tree constructed from the subset T, of training cases.

Figure 5: Skeleton Of The Decision Tree Building Method Employed By C4.5
(Quinlan, 1993).
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The skeleton of the divide and conquer method employed by C4.5 to build a decision tree
from a sefT of trainingcases is shown in Figure SVhile ID3 used thenformation gain
criterion to select the best attribute at a particular node to keep the decision tree as shallow
as possible, C4.5 employs tyein ratio criterion because the information gain criterion has
a strong bias in favor of attribute tests with many outcomes. Suppose a posskigitiest
n outcomes that partitions the setti@ining cases into subsélg T,, ..., T is given, let
freq(C,T)stand for the number of cases in als#tat belong to class,, and letT| denote
the number of cases in the 3et As explained in QuinlafiL993), the average amount of
informationneeded to identify the class of a case ia

Info(T)z—Xk: freq( G, T) 1o freq( G, T)

g bits.
= | T | ? | T |

This quantity is also known amntropy of the setT. After T has been partitioned in
accordance with the outcomes of a te®{, the expected information requirement is

nooT,
Info, (T) =) —— - Info(T,)
= | T
and hence the information gained by partitioning in accordance with the test X is measured

by
Gain( X ) = Info( T) - Info, ( T)

The gain criterion selectstast tomaximizethis information gainwhich is alscknown as
mutual informatiorbetween the test and the class.

The information content of a message pertaining to a case that indicates not the class but
the outcome of the test is defined as

n T
Splitinfo{ X ) = Z — - log, ——
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This represents the potential information generated by dividingp n subsets, whereas the
information gain measures the information relevant to classification that arises from the same
division. The proportion of information generated by the split that is useful, i.e. that appears
helpful for classification is computed as

Gain( X )

GainRatid X ) = ————~—
Splitinfal X )

The gainratio criterion selects gest tomaximizethe ratio above, subject to the constraint
that the information gain must be at least as large as the average gain over all tests examined.

After generating a decision tree as described above, C4.5 wisegpauningmethod to
simplify the tree bydiscardingone or more subtrees and replacing them with leaves or one
of their branches. Assuming that it is possibletedict the error rate of a tremd its
subtreegincluding leaves)thefollowing pruningapproach can be applie&tartfrom the
root node of the tree and examine each non-leaf subtree. If replacement of this subtree with
a leaf or with its most frequently used branch leads to a lower predicted error rate, then prune
the tree accordingly. Since the error rate fovthele tree decreases as the error rate of any
of its subtrees is reduced, this process will lead to avinese predicted error rate is minimal
with respect to the allowable forms of pruning.

The C4.5 system employs the following pessimistic estimate to predict the error. When
N training cases are covered by a |&aff them incorrectly, theesubstitution errorate for
this leaf isE/N. Naively regarding this as observiggvents inN trials and regarding thd
training cases as a sampiich it is not,the probability of such an evefitesubstitution
error) over the entire population of cases is estimated using the posterior distribution of this
probability usually summarized bypair of confidence limits. For a user-defined confidence
level CF, the uppefimit on this probability can be found from the confidence limits for the
binomial distribution, here denoted by (E,N). Appendix A show$ow this confidence
interval can be computed. The C4ystem simplytakesthis upperlimit as the predicted
error rate at éeaf. Tosimplify the accountingerrorestimates for leaves and subtrees are
computed assuming that they were used to classify a set of unseen cases of the same size as
the training set. So, a leaf covering N training cases with a predicted error UatgBN)
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Procedure TransformTreeToRules (T7):

* Every path from the root of the unpruned tree T to a leaf gives one initial rule.

* Each such rule is simplified by removing conditions that do not seem helpful for
discriminating the nominated class from other classes, using a pessimistic estimate
of the accuracy of the rule.

* For each class in turn, all the simplified rules for that class are sifted to remove rules
that do not contribute to the accuracy of the set of rules as a whole.

* The sets of rules for the classes are then ordered to minimize the number of false
positive errors, that is the number of cases falsely classified to belong to a particular
class by the set of rules for that class.

* Finally, the majority class in the set of cases covered by no rule is chosen as default
class.

Figure 6: Steps In The Transformation Of A Decision Tree Into An Ordered Rule List.

would give rise to a predicteN - U.- (E,N) errors. Similarly, th@umber of predicted errors

associated with a tree or a subtree is just the sum of the predicted errors of its branches.
The C4.5 inductive learning system can also transform the generated decision tete to a

of ordered rulesncluding adefault rule Figure 6 shows a summary of the steps in the rule

transformation process. For the transformation to a rule set, every path from the root of the

unpruned tree to a leaf gives one initial rule, whose left-hand side is the conjuoctigrie(}

of all attribute-based testsdlector} established byhe path and whose right-hand side

specifiesthe class predicted dheleaf. Thehighlightedpathfrom theroot ofthe decision

tree in Figure 1.4 to the leaf node labeled clags C , for example, can be interpreted as the rule

(Ar<x)and (A =ys)and (A = ) => Class{C)

If the path to eacleaf node was transformed into a production rule, risulting
collection of rules would classify cases exactly as the tree and, as a consequence of their tree
origin, the rules would benutually exclusiveand hence theiorder wouldnot matter.
Antecedents of individual rules may contain irrelevant conditiseke¢tory. Let ruleR be
of the form ‘A=>ClassC)” and a more general rukg, “A, => Class C )", whereA, is
obtained fromA by deletingone selectoX from the complexA. Each training case that
satisfies the shorter anteced@geither does or does not belong to cldsnd either does
or does not satisfgelectorX. The number of cases in each of thiese groupscan be
organized into a 2 x Zontingency tabte
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ClassC Other Classes
Satisfies selectoX Y, E,
Does not satisfy selectr Y, E,

The C4.5 system predidise error rate ofules usinghe same pessimistierror estimate
already employeébr decision tree pruning. The estimate of the error rate oRaén be
set toU{ E,, Y, +E )and that of ruld}, to U ( E,+E,, Y, +Y, +E +E, ). If the pessimistic
error rate of ruldR, is not greatethan that of theriginal ruleR, the selectorX can be
deleted.

While one or more selectors in a rule can be deleted as above, that selector is removed
that produces the lowest pessimistic error rate of the generalized rule and the error rates for
the other conditions are recalculated. This is done until no mectasel can be deleted from
the rule. Theule generalization process repeated for each path in thesimplified
decision tree. The resulting rules are no longer exhaustive and mutually exclusive. Therefore
a simple form otonflict resolutions implemented: The rules are ordered addfault rule
is introduced for otherwise uncovered events. First, all rules for each single class are grouped
togetherand the rulesvithin these rule subsets aoedered according to th&inimum
Description Lengti{MDL) principle (Rissaner983). The MDLprinciple states that the
best theory derivable froitie training data wll minimize the number of bits required to
encode the totahessage consisting tfe classificationtheory (rule setjogetherwith its
associated exceptions. For each class in turn, C4sideos all possible subsets of simplified
rules for this class, if there are not too many of them, and uses simulated annealing to find a
goodsubset otherwise. Thereby rules thaindbcontribute to the accuracy of teet of
rules as a whole are removed. The sets of rules for the classes are then ordered to minimize
the number of false positive errors, that is the number of cases falsely classified to belong to
the particular class by itet of rules.This isdone by ordering the rule sets ingreasing
number of their false positive errors. As default class for uncovered events the majority class
in the set of uncovered training cases is chosen. Finally, if there are one or more rules whose
omission would actually reduce the number of classification errors of the total rule set on the
training cases, the first such rule is discarded and the set checked again.
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CN2

The inductive learning syste@N2 was developed by Clark and Niblett (1987; 1989) and
later modified by Clark and Boswell (1991). The objective behind the design of CN2 was to
modify the AQalgorithm by retaining its beam search through the space of complexes, but
removing its dependency on specific training instances during search. While the AQ algorithm
searches onlthe space ofomplexes thaarecompletely consistent with the training data,
CN2 extends its search space to rules thatat@erform perfectly on the training data by
broadening the specialization process to examine all specializations of a complex, in much the
same way that ID3 and C4.5 respectively consider all attribute tests when growing a node in
atree. A cutoff method similar to decisivee pruning is applied to halt specialization when

no further specializations are statistically significant. The modified version of CN2 produces
either anordered set of if-therules of theform “If <complex> then predict <class>" like

the originalCN2 version or amnordered set of if-then ruleBoth including a default rule.

The <complex> in the condition part of the rule is 3 VL complex.

The control procedure of theN2 algorithm for ordered rules, shown in Figure 7,
iteratively calls the beam search procedure, shown in Figure 8, to find the best complex until
no more best complexes are found and appends a rule to the rule set with this best complex
as condition and the mosbmmon class amortheinstances covered by theemplex as

Procedure CN2_ordered (EXAMPLES, CLASSES): /I Control procedure for
// ordered rules
Let RULE_LIST be the empty list.
Repeat
Let BEST_COMPLEX be FindBestComplex (EXAMPLES).
If BEST_COMPLEX is not null
then let CLASS be the most common class of examples covered by
BEST_COMPLEX,
add rule “If BEST_COMPLEX then predict CLASS” to the end of
RULE_LIST, and
remove from EXAMPLES all examples covered by BEST_COMPLEX.
Until BEST_COMPLEX is null.
If there are any examples left in EXAMPLES
then let CLASS be the most common class in EXAMPLES and
add the default rule “Predict CLASS” to the end of RULE_LIST.
Return RULE_LIST.

Figure 7: The CN2 Ordered Rules Algorithm (Clark and Boswell, 1991).
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Procedure FindBestComplex (EXAMPLES [, CLASS]'): /I Find the best complex
Il (search procedure)
Let MGC be the most general complex (= “true”).
Let STAR be the set of containing only MGC (= {MGC}).
Let NEW_STAR be the empty set (= {}).
Let BEST_COMPLEX be null.
While STAR is not empty:
For each COMPLEX in STAR:
For each possible attribute test TEST not already tested on in COMPLEX:
Let NEW_COMPLEX be a specialization of COMPLEX, formed by adding
TEST as an extra conjunction to COMPLEX
(i.,e. NEW_COMPLEX = COMPLEX & TEST).
If NEW_COMPLEX is better than BEST_COMPLEX
and NEW_COMPLEX is statistically significant
then let BEST_COMPLEX be COMPLEX
(i.e. BEST_COMPLEX = COMPLEX).
Add NEW_COMPLEX to NEW_STAR.
If size of NEW_STAR > maxstar (a user-defined constant)
then remove the worst complex in NEW_STAR.
Let STAR = NEW_STAR.
Return BEST_COMPLEX.

L CLASS is only required for generating unordered rules.

Figure 8: The CN2 Rule Search Algorithm (Clark and Boswell, 1991).

Procedure CN2_unordered (ALL_EXAMPLES, CLASSES): // Control procedure
/I for unordered rules
Let RULE_SET be the empty set.
For each CLASS in CLASSES:
Let RULES be CN2_ForOneClass (ALL_EXAMPLES, CLASS).
Add RULES to RULE_SET
Return RULE_SET.

Procedure CN2_ForOneClass (EXAMPLES, CLASS): // Control procedure
/l for one class
Let RULES be the empty set.
Repeat
Let BEST_COMPLEX be FindBestComplex (EXAMPLES, CLASS).
If BEST_COMPLEX is not null
then add the rule “If BEST_COMPLEX then predict CLASS” to RULES
and remove from EXAMPLES all examples in CLASS covered by
BEST_COMPLEX.
Until BEST_COMPLEX is null.
Return RULES.

Figure 9: The CN2 Unordered Rules Algorithm (Clark and Boswell, 1991).
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prediction. The instances covered by a rule are removed from the training set. The last rule
in CN2's rule list is a default rule predictitige mostcommon class amortge uncovered
training examples.

The beam search procedureto find the bestcomplex corresponds to the STAR
procedure of the AQ algorithm. The pruned general-to-specific search retains a size-limited
set or star of “best complexes found so far.” The system examines only specializations of this
set, carrying out a beam search of the space of coespléd complex is specialized by either
adding a nevselector to the conjunction or by removing a disjunctive element in one of its
selectors. To use theduced ordered rules to classify a new example, CN2 tries each rule
in order until one is found whose conditions are satisfied by the example and assigns the class
predicted by this rule to the example.

The control procedure for tl@&N2 algorithm for unordered rules is shown in Figure 9.

The CN2 algorithm can be easily modified to generate an unordered rule set by changing only
the control procedure and leaving the beam search procedure apart from its ranking function
for complexes unchanged. The main modification to the algorithm is to iterate the search for
each class in turn, removing oclyvered examples of the current class when a rule has been
found. Unlike for ordered rules, the negative examples remain because now each rule must
independentlystand againstll negatives. The covered positives must be removed to stop
CN2 from repeatedly finding the same rule. To effect this rule search for each class in turn,
the heuristic must be applied differently: with ordered rules the predicted class is simply taken
as the one with the most covered examples in it, but with unordered rules the predicted class
is fixed to bethe class selected to be farn by therevised controprocedure (parameter
CLASS of FindBestComplex in Figur®). To apply unordered rules telassify new
examples, all rules are tried and those whose conditions were all satisfied are collected. If a
clash occurs, i.e. more than odess is predicted bthe collected rules, probabilistic

method is employed to resolve the clash. Each rule is tagged with the distribution of covered
examples among classes and these distributions are summed to find the most probable class.

Two heuristic decisionsmust be made in FindBestComplex during the learning process.
First aranking function for theomplexess needed to determine wether a reamplex
should replace the currently besimplex and which complex has to t@noved if the
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maximum star size is exceeded. LIk, theoriginal CN2 version usetheinformation-
theoreticentropy measurgKalbfleish, 1979) forthis purpose (the lower the entropy the
better the complex). This function prefers complexes covering a large number of examples
of a single class and few exampletiferclasses, but it tends to select very specific rules
covering only a few training examples. The modified version of CN2 employsifhacian

error estimate(Clark and Boswell, 1991) instead. The expected accuracynions the
Laplace expected error estimate, is given by the formula:

n +1

_ class
) n

LaplaceAccuracfy n n

class ' " 'covered’

covered T 1

wheren is thenumber of classes,,. is thenumber of examples ithe predictectlass

covered by the rule, ang,...4iS the totahumber of examplesovered by the rule. This

estimate avoidshe downwardbias of the entropy measure dhvoring very specific

complexes in the general-to-specific search. A final check is included to ensure the expected

accuracy is at least better than that of a default rule predicting the class for all examples.
The second evaluation functitests wether @omplex is statisticallgignificant i.e.

wether it locates a regularity unlikely to have occurred by chance and thus reflects a genuine

correlation between attribute values and classes in the training data. To test significance, CN2

uses thdikelihood ratio statistiqKalbfleish, 1979). This is given by:

- . f;
LikelihoodRati¢ F, E) =2 - ) f -log —

n
i=1 i

where the distributiofr = (f,, ..., f, ) is the observettequency distribution oéxamples

among classesatisfying a given compleandE = ( e, ..., € )is the expectettequency
distribution of the same number of examples under the assumption that the complex selects
examples randomly from the training set. Under suitable assumptions, one can show that this
statistic is distributed approximately @&  (chi-squared) mittdegrees of freedom. Thus

the two functions Laplaciarerror estimate andignificanceserve to determine whether

complexes found during the search are both “good” (have high accuracy when predicting the
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majority class covered) and “reliable” (the high accuracy on the training data is not just due
to chance). The CN2 algorithm uses these functions repeatedly during search for the
“best” complex that also passes some minimum treshold of reliability until no more reliable

complexes can be found.

GIL

Janikow's Genetic-Based Inductive Learning system (GIL) is a knowledge-intensive genetic
algorithm approach for supervised learning (Janikow, 1991; 1@&)etic algorithmgGAS)

are adaptive methods of searching a solution space by applying operators modeled after the
natural genetic inheritance and simulating Darwinian stuggle for survival of the fittest.

In general, a genetic algorithm (GA) performs a multi-directional search and encourages
information formation and exchange between such directiordoek so bynaintaining a
population of poposed solutions for given problem ¢hromosomgs The population
undergoes aimulated evolution relatively“good” solutions are morkkely to produce
offsprings, which subsequently replabe “worse” ones. The estimate of tpaality of a
solution is based on avaluation functionwhich playshe role of arenvironment. Each
iteration, called aproduction cycleis performed in three steps (see Figure 10). During the
selection stepa new population is formed from stochastically beatmples (with
replacement). Then, during thecombination stepsome of themembers othe newly
selected population are altereBlinally, in the third stepall such alteredndividuals are
evaluated. The recombination is basedh@mapplication oftwo operatorsmutationand

Variable naming: Let t be the current point in time and P(t) population at time t.

Procedure Genetic Algorithm :

Let t=0.

Initialize P(1).

Evaluate P(t).

While (not Termination-Condition( P(t) )):
Let t=t+ 1.
Select P(t) from P(t-1).
Recombine P(t).
Evaluate P(t).

Return P(1).

Figure 10: The Core Of A Genetic Algorithm (Janikow, 1991).
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crossover Mutation introduces randomariability into the population, and crossover
exchanges random pieces of telwomosomes in the hope of propagating a partial solution.
Since both of these operators ar®ially defined on syntactic piecesthe underlying
representation, for example on bits in case of a binary representation, the search has domain-
independent properties. However, the applicability of a GA to a particular problem depends
on the representation emphasizing meaningful semantic pieces of informationh cadiezd

blocks to be used by the crossover operator, and on the evaluation function to properly guide
the search.

The most praised characteristic of a classical GA, its domain-independent search, is at the
same time its problem, becaukestmay make the algorithm unmanageably complex in some
domains. The search is unguided and does not make use of any knowledge about the domain
or itsstructure that could make the search more efficient. To overcome this problem, GIL
incorporategask specific knowledgato the algorithm to guide the search and provide for
a faster convergence to a desired solution. The traditional domain-independent operators are
replaced byspecial forms of mutation ardossover thaimplementthe specific problem
solving methodology of inductive learning.

The chromosomes are represented in VL , but GIL only considers VL formulas using the
equality relation, ‘=’, and internal disjunctions of attribute values. If all attributes only take
a finite number of symbolic or numeric values, this is no lack of generality, because selectors
using other relational operators can be rewritten using the equality operator. For continuous
numeric attributes, however, this imposesgnificantrestriction,since a finite number of
intervals or discretized values has toiteoduced to represemll possible values. For
further simplification, it is assumed that only a single concept description has to be learned.

GIL’s genetic operatorsare based omichalski's description of various inductive
operators that constitute the process of inductive inference (Michalski, 1983). According to
the three syntactitevels ofthe rule-based framework (conditions, rules, rule sets), the
operatorscan be divided intdhree corresponding groups. In additieachoperator is
classified as having either generalizing, specializing, or unspecified or independent behavior.
Figures 11 to 13 listhe genetimperators for the thregyntactic levelslong with short
descriptions.
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Genetic Operators on Rule Set Level (VL, set of complexes), operators act on whole

rule sets:

* Rules exchange (independent operator):
This operator exchanges random rules between two parent rule sets.

* Rules copy (generalization operator):
This operator requires two parent rule sets and copies a random rule from each of
the sets to the other.

* New event (generalization operator):
If there is a positive event not covered yet by the current rule set, this event’s
description is added to the set as a new rule.

* Rules generalization (generalization operator):
This operator acts on a single rules set taking two random rules and replacing them
by their most specific generalization, which is not necessarily consistent with
respect to previously excluded negative events.

* Rules drop (specialization operator):
This operator drops a random rule from the current set.

* Rules specialization (specialization operator):
This operator replaces two random rules from the current rule set by their most
general specialization.

Figure 11: Genetic Operators On Rule Set Level (Janikow, 1991).

Genetic Operators on Rule Level (VL, complex), operators act on rules:

* Rule split (independent operator):
This operator splits a single rule into a number of rules, according to a partition of
values of a condition, according to each value individually (nominal data types) or
according to two disjoint subsets of values by cutting the ordered set of values at
a random place (linear data types).

* Condition drop (generalization operator):
This operator removes a present condition from a single rule.

* Turning conjunction into disjunction (generalization operator):
This operator splits the complex of the current rule into a disjunction, where the
complex’s separation into n and m selectors is random and position independent.

* Condition introduce (specialization operator):
This operator introduces a random condition with an unconditioned attribute to the
current rule. The new selector is a random choice from among all of its possible
internal disjunctions.

* Rule directed split (specialization operator):
This operator takes a single rule. If this rule covers a negative event, it is split into
a set of maximally general rules that are still consistent with that event, i.e. that do
not cover that event anymore.

Figure 12: Genetic Operators On Rule Level (Janikow, 1991).
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Genetic Operators on Condition Level (VL, selector), operators act on conditions:

* Reference change (independent operator):
This operator acts on a single condition (selector) randomly removing or adding a
single domain value to this condition.

* Reference extension (generalization operator):
This operator extends the domain of a single condition by allowing a number of
additional random values (nominal data type) or by selecting a single value or
closing a range between two current values (linear data type).

* Reference restriction (specialization operator):
This operator removes some domain values from a single condition and implements
the opposite action of the reference extension operator.

Figure 13: Genetic Operators On Condition Level (Janikow, 1991).

Theevaluation functiomust reflect the learning criteria, he@mpletenesgonsistency
and possiblycomplexity Completeness and consistency are defined as:

number of positive training events covered by a rule set
total number of positive training events

Completeness:

number of negative training events covered by a rule set

Consistency= 1 - - —
total number of negative training events

The completeness and consistency measures are replaced mglke angiasure aforrectness
using two weightsy; andw, related to theelative frequency of positive and negative
examples in the training set:

w, - Completeness- w, - Consistency
Correctness=

W, + W,

Thecostof a description is measured byatsmplexity which combines the number of rules
and conditions in the following way:

Complexity= 2 - number of rules+ number of conditions
Finally, correctness and cost are combined to the single evaluation function:

Evaluation = Correctness (1 + w, - (1 - Complexity)
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wherew, determines the influence of complexity (which itself is normalized on [0,1]), and
grows very slowly orj0,1] as the population ages. For thgeriments described later, a
very loww, weight was used. A dynamic approach is used to adjust the effect of the cost as
the population ages. The effect of a very slowly raifisghat initially the influence of the

cost is very light irorder to promote deeper spaogloration, ananly increases at later
stages in order to minimize the descriptions’ complexity.

The individuals inthe initial population are sets of a randomumber of randomly
generated complexes or random positive training events. Each operator is givémtsme
probabilitiesfrom two separate groups: application probabilities and selection probabilities.
Application probabilitiedescribe how likely it is that the individual operators are applied to
their corresponding structures (rule sets, rules, conditions) and have a dynamic character with
respect to the current context, to both the current coverage and the qonoblem-
dependent size dhe average chromosome. The a prmobabilities of generalizing
operators are increased for applications to structures that are incomplete, and decreased for
those inconsistent. On the other hand, the a priori probabilities of specializing operators are
increased for applications to structures that are inconsistent, and decreased for those that are
incomplete. The measures of inconsistency /incompleteness serve as additional heuristic
guiding the selection of appropriatgperators(in addition to fithess). The application
probabilities are adjusted linearly to those measures according to the following formulas

Generalizing operators p’ = p - (g - Completeness: (% + Consistency

Specializing operators p’ = p - (% + Completenegs: (g - Consistency

where the new valye is the adjusted probability, apds the actual probability. The value
of p’ is computed for each chromosome separately and riduegplace the a prionp.
Selection probabilitieserve as a mean of selectmge of anumber of possiblactions or
substructures to participate in the operation to be applied. They are static.

TheGIL algorithm uses the above components within the genetic algorithm framework
as shown in Figure 10. At each iteration all rule sets of the population are evaluated, and a
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new population is formed by drawimgembers formhe original population in such a way
that more fit individuals have a higher chance of belgcted. Then theperators are
applied tothe new population iorder tomove these partial solutions closer to a desired
solution. Eacloperator acts on structursem its level,applying itself to some randomly
selected structures. Tlapplication depends athe initial probabilities,the consistency
/completeness of sudtructures, and thgze ofthe currently average chromosome. The
cycle repeats until a desired description is found or some resources are exhausted.

RULE SET QUALITY MEASURES

This chapter proposes several metrics for comparing rule sets generated by inductive learning
algorithms. These rule set quality measures include metrics for the accuracy, generalization,
time and space complexity, and domain coverage of rule sets.

Predictive Accuracy

The most widely used rule set quality measure is the predictive accuracy of a rule set on a set
of previously unseen instances. Bherall accuracyof a rule set is the number of correctly
classified test instances divided by the total number of test instances. Instances not covered
by the rule set are not counted as correctly classified but are nevertheless counted for the total

number of instances:

number of correctly classified test instances
number of test instances

Overall accuracy=

Often not only the overall accuracy of a rule set is of interest, bactheacies for the
prediction of the distinct classas well. Sometimes it is desirable to have a similar accuracy
on instances of all classes, while in other cases misclassifications of instances of a certain class
are more costly than misclassifications of instances of another class. An example for such a
case is thelassification of patients intthhose who need medication and those who do not.
In case of dife threateningliness it isoften more serious not to treat a patient that should
be treated than treating a patient who is not sick. The accuracy of a rule set for a particular
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class is the fraction of thastances of that class classifisatrectly amongill instances of

that class in the test set:

number of correctly classified test instances of class C
number of test instances of class C

Accuracy for class C=

While orderedrules and decisiorirees allow to classify each coverednstance
unambiguously, several rules of amordered rule set predicting distinct classes may cover
an instance at the same time. The question of which class to predict for this instance has to
be resolved. For the following experiments, the same instance classification procedure was
applied to all rule sets. L&denote the number of rules in an unordered set of rules. Each
unordered rulé was associated with a weightrepresenting the number of training instances
correctly classified by this rule. If a test instaXo@as matched by several unordered rules
predicting different classes, the weights of these rules were added for each class and the class
with the highest count was predicted:

R
Predicted clas§) = C; with n, = max{ nc | ng = YP(@C X w}
i=1

where P (C,_, X) =1 ,if ruleicovers X A rule i predicts class C, and
P(C,. X

0 , otherwise.

The results of this classification heuristic do not always correspond to the heuristic of the
learningalgorithms,but the use othis uniform heuristidor the rule sets ddll algorithms
allowed a better comparison of the rule sets independent of their algorithms. The accuracies
obtained by the learning algorithms using their own heuristics are given in the description of
the experimental results as well, but only as additional information.

Let | denote theaumber of instances the test set, |éR denote the number of rules in
an ordered or unordered rule set, an&gletenote the number of selectors of the rule with
the most selectors in thatle set, then theredictive accuracies of the rutetcan be
computed inO(l * R * S,) time. IfS, denotes the number of selectors in the longest path
of a decision treeQ(l * S;) is an upper bound for the computation of the accuracies of this
tree.
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Generalization

Thegeneralizatiormeasure was previously used by Gallion et al. (1993). The generalization
of a rule set describes how well the rule set generalizes from the set of training instances and
is defined as

number of rules
number of training instances

Generalization= 1 -

Thinking of the original traininglata as a set of rules, tigeneralization of a rule set
produced by dearning algorithnpresents the reduction produced by #itgorithm as a
percentage. Usintpe same notation as above, this metric cacdraputed inO(l + R)

time.

Space Complexity
For many real world applications, the number of training instances available is very large and
the space complexity of a rule set becomestadr relevant aspect as it is necessary to store
the rule set and as it is desirable to have rule sets that are small enough to be intelligible for
humans. The space complexity measures considered hererammbier of selectons a rule
set, thenumber of complexes a rule set, and thmumber of rulesn a rule. The number of
rules includes the default rule in case the rule set has such a rule.
In case of a decisiamee, thenumber of leahodes corresponds to the number of rules
and the attribute tests at then-leaf nodesorrespond to selectors, although decision
trees these selectors can be more complex than in the case of a rule set. Attribute tests with
two outcomes directly correspond to selectors, while attribute testeaxdtbutcomes are
transformed into a chain of1 selectors in such a way that the first selector represents the
first outcome of the test, trs=cond selector the second, an@dspso thatach non-leaf
node in the trebecomes a binary decisioode. Figure 14 shows tleederedrule set
obtained from the decision tree shown in Figure 4 after it has been transformed as described.
The attribute tesh, in Figure 4, for example, is transformed into the two selector nodes
(A, =Vv,,)and(A, = v,,). Going down the transformed tree from the root nsd&ong the
highlighted path to the leaf nod to classify an instance that has the valuye v  for attribute
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If (A, < x,) then
if (A, =v,,) then predict class C;
elseif (A, = v,,) then predictclass C,

else
if (A, =v,,) then predictclass C,
else predict class C,

else
if (A; = v,,) then predict class C,

else predict class C,

Figure 14: Ordered Rule Set Obtained From The Decision Tree In Figure 4.

A,, first the selecto(A, = v, , ) is testedand found to b&ot satisfied, hencéhe second
selector(A, = v,,) is testecand found to b&ot satisfied either, so th#le classification
procedure therollows the remaining branctior A, = v,, Each attribute testwith n
outcomes counts &sl selectors. The number of selectors in a transformed decision tree is
the sum ofthe number of selector®or each of its attribut¢éests. Sincethere is no real
complex involved along path in a tree, thaumber of complexes intaee is set to the
number of its paths, i.e. the number of its leaf nodes.

If R denotes the number of rules in the €ghe number of complexes, a8dhe number
of selectors, then the spacemplexity measures dhe rulesetcan be computed in
O(R + C + S)time. Sometimes, like for example for the internal rule set quality evaluation
in GIL (Janikow, 1991), the number of complez®s! the number of rules are combined into

one complexity measure. Since the amount of memory or disk space needed to store a rule

set and the correlation of this need to the space complexity measures introduced in this work

depend on the particular implementation, combined measures like weighted sums of the space

complexity measures haveot been usedor this study. For some implementations, the
amount of memory or disk space needeay simply be pportional to thenumber of
selectors and independent of the number of complexes. It is sensible to let the users define

combined complexity measures according to their applications, if such measures are needed

at all. Based on the metrics presented here, this can be done easily.



26

Time Complexity

For some applications, it is relevant how long it takes to classify previously unseen instances
using a particular rule set. The time complexity measures proposed here cawetrdye
number of selector testnd theaverage number of complex tests needed to classify a
previously unseen instance.

In an unordered rulset,all rules always have to be evaluated to determine which are
satisfied by an instance to be classified and hence all complexes are counted for the number
of complex tests. In an ordered rule set, all rules after the first rule that matches an instance
do not have to be evaluated and hence are not counted for the number of complex tests and
selector tests. If amstance satisfies a complex ittested againsall selectors of this
complex are counted, since they all have to be evaluated for the instance. If an instance does
not satisfy such a complex, the selectors of this complex after the first unsatisfied selector are
not counted, since they do not need to be evaluated.

In case of a decisiotree, thenon-leaf nodes with more thawo outcomes are
transformed into a chain of several binary decisiodes as described above. The number
of selectors needed to classify a particular test instance is the number of selector tests along
the path in tree followed to classify this instance. The computational complexity of the time
complexity measures is equivalent to the computational complexity of the predictive accuracy,
because, to compute these measwaes)stances have to be classifizad thenumber of
tested selectors and complexes has to be counted.

Domain Coverage

Thedomain coveragef a rule set is defined as the percentage of the instances in the domain

it covers, no matter whether tirestancesare correctlyclassified or not. This metric is
computed as the number of test instances covered by the rule set divided by the total number
of test instances. Like for the computation of the predictive accuracy and the time complexity
measures, it is assumed thia tesinstancesre representative for the particutemain,
because otherwidbe valuescomputed for these measures would not be predictive for the

performance of the rule set on previously unseen instances.
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If a rule set has a low coverage, there are many instances whose class cannot be predicted
by the rulesetand hencehe overall quality of this ruleset cannot begery high. A low
coverage automatically results in a low predictive accuracy, because uncovered instances are
counted as not correctly classified. Therefore a high coverage is desirable, although it is no
guarantee of &igh accuracy. Rule setscluding a default ruland decisiontreesalways
have a coverage of 100%, because they always cover akestéut they do not necessarily
have a high predictive accuracy. The computatiotheflomaincoverage of a rule set
requires thelassification of altestinstances and hence it has the same time complexity as
the computation of the predictive accuracy.

EXPERIMENTS

This chapter describes the application of the proposed quality measures to compare the rule
sets generated by AQ15c, C4.5, CN2, and GIL for six real world data sets. The experiments
show how thevariety ofthe proposednetrics can be used &nalyze andcompare the
different types of rule sets generated by these learning algorithms.

Data Sets Used In The Experiments

For the comparisorsix real worlddata sets were selected mostdfich are known as
standard data sets in theachine learningiterature andwvhich are all available from the
University of California atrvine (UCI) Repository of Machine Learning Databases (Merz,
Murphy, and Aha, 1994). The data sets for the comparison were chosen from a wide range
of domains includinghreemedical,one botanic, one economic, and quoditical domain.

They are notfree of noise, for somexamplesattributevaluesmay be missingand the
description of the instances by the given collection of attributes may be incomplete in that two
instances of distinct classes may have identical values for all attributes. These are problems
that inductive learning systems havectapewith in most real world applications. The
domains have symboland continuous or discrete numeric attributes. Structured domains
with partially ordered values are not considered in this comparison. Table 1 summarizes the
characteristics of these data sets.



28

Table 1: Summary of the data sets used in the experiments.

Database name: Br-cancer-loi Br-cancer-wi Lymph Iris Credit Vote 1984
No. of attributes: 9 9 18 4 15 16
Symbolic: 5 0 15 0 9 16
Discrete numeric: 4 9 3 0 3 0
Continuous numeric: 0 0 0 4 3 0
Average no. of
values per attribute: 4.56 9.89 3.28 30.75 77.93 2.00
No. of classes: 2 2 4 3 2 2
Class 1: 70.28 % 65.52 % 1.35% 33.33% 44.49 % 38.62 %
Class 2: 29.72 % 34.48 % 54.73 % 33.33% 55.51 % 61.38 %
Class3: - e 41.22% 3333% @ - e
Class4:. = e 270% - e e
No. of instances: 286 699 148 150 690 435
No. of attributes with
unknown values: 2 1 0 0 7 16
Average percentage
of instances with
unknown values
per attribute: 0.35% 0.25% 0.00 % 0.00 % 4.48 % 5.63 %

The first medical domain, tigreast Cancer Database from the Ljubljana Oncology
Institute (Br-cancer-loi), wa®riginally provided by M. Zwitter and M. Soklic from the
University MedicalCenter, Institute of Oncology,jubljana, Yugoslavia. Thislatabase
repeatedly appeared in theachine learningjterature, e.g. in Michalski et. al. (1986b) and
Clark and Niblett (1987). The goal ispeedict whether a cancer recurrence is likely or not.

The data set includes 201 instances classified as “no recurrence” and 85 instances classified
as “recurrence”. The data set was chosen, because it consists of real medical data, contains
noise and some unknown values, and is well known in the machine learning literature.

TheWisconsin Breast Cancer DatabaséBr-cancer-wi) is the second medical domain.

This database was originally obtained from the University of Wisconsin Hospitals, Madison,
Wisconsin from Dr. W. HWolberg (Wolberg and Mangasaria990). Each of the 699
instances is represented by tredues of 9attributes and iglassified as a “benign” or
“malignant” cancer tumor. Like the first data set, this set was chosen for being real medical
data with noise and some unknown attributes values.

The third medical domairthe Lymphography Domain (Lymph), was, likethe first
medical domain, originally provided by M. Zwitter and M. Soklic from the University Medical

Center, Institute of Oncology, Ljubljana, Yugoslavia and similarly it has often appeared in the
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machine learninditerature. This real-worlddata setoffers agood mix of 9 Boolean
attributes, Ghominalattributes, and Bumericattributes and an interestimgn-symmetric
distribution of the 148nstances amonghe four classes “normal’ with 2 instances,
“metastases” with 81 instances, “malign” with 61 instances, and “fibrosis” with 4 instances.

The Iris data set, developed by R. A. Fish¢l936), lists the measurements of four
characteristics of Iris flowers: petal length, petal width, sepal length, and sepal width. The
set includeshe measurements of 50 Iris flowers of each species Virginica, Versicolor, and
Setosa and the class to be predicted is the species of the Iris plant. The data set was selected,
because it is real, contains nosed is very well known in the pattern recognition literature.
While one class is linearly separable from the other two, the latter are not linearly separable
from each other.

The Credit Approval Database (Credit) concerns credit caapplications and was
submitted to the UCI Repository bfachine Learning Databases and previousgd by
J.R. Quinlan (1987; 1993). All attribute naraesl values have been changed to meaningless
symbols to protect theonfidentiality ofthe data. This real-worlddata set isnteresting,
because there is a good mix of 6 continuous nuraéiributes and 9 discrete-valued nominal
attributes having from 2 to 14 possible values. There are also a few missing values. The 690
cases are split 44 % to 56 % between the two classes.

The 1984 United States Congressional Voting Records Databa@éote 1984) was
compiled by Jeff Schlimmer from Washingt&tate University. It includesattributes
representingthe votes for each of the 435 Unit&lates House oRepresentatives
Congressmen on 16 key votes. The votes used in this data set were combined and simplified
to either “yea” or “nay.” The predicted class for this data sheiparty affiliation, Democrat
or Republican. This data set was chosen, because the two classes did not always vote along
party lines and there are unknown attribute values for each attribute because of congressmen
voting present or not voting all.

Experimental Setup
Thev-fold cross validationtechnique was used to generate pairs of training and test data sets
for each domain. This technique is preferable when the number of instances in the data set
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is a few hundred or less in total (Breiman et al., 1984 \-fatd cross validation, the original
data set isandomlypartitioned inv subsets, each containing approximatenumber of
instances. In each experiment, one subset is used for testing atlkethel subsets are
used for training. In this study,was chosen as four and the results were averaged for each
set of tests.

For AQ15c, the maximunstar size was set to 10 and the default criteria table was used,
which focuses omaximizingthe number of newly covered positive events, i.e. events that
are not covered by previous complexes, and minimizinguh&er of extended selectors, i.e.
selectors with single values or disjunctions of values. In additiotxith@nini) option was
invoked to specifithe generality ofthe resulting rulesspecifying thatules should be as
simple aspossible, involvingthe minimum number of extendedelectors, each with a
minimumnumber of values. Ambiguous examples were always taken as positive examples
for the current class, and were therefore possibly covered by more than one classification rule.
Unordered rules were induced in the “intersecting covers” mode, which produces rules which
may intersect over areas in tlearningspace irwhichthere are no events. Ordemedes
were produced in the “variable-valued logic” mode, which assumes for the rules for class
that the rules for the classk$o n-1 are not satisfied and hence uses a default rule for the last
class. The evaluation of the rules by AQ15c itself as listed in the accuracy result tables was
obtained by the evaluation method described in the section about AQ15 in the description of
the learning algorithms and in (Michalski et al., 1986b).

For most data sets, ti@.5 decisiontrees and ordered rules were generated using the
defaultconfidence levadf 25 % Only for the Credit data set, the confidence level was set
to 10 %in order to use heavier pruning on trees induced for this domain. The decision trees
were built with an option to avoid near-trivial tests in which almost all training cases have the
same outcome, which can lead to odd trees with little predictive power. This option requires
that any test used in the treist have at leasivo outcomes with aninimumnumber of
cases or, to be more precise, sl ofthe weights of the cases for at leasd of the
subsetd; must attain some minimum. The default minimur@ wfas used for all data sets
but the credit data set, where thenimum was set tol5 in order to prevent an

overspecialization of the induced trees.
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The unordered and order&@N2 rules forall data sets were createdth the same
parameter setting. The maximwtar size was set th0, the Laplacian error estimate was
employed as ranking function ftine complexes, anthe confidence tresholavas set to
10 % Similarly, allGIL rules were induced with the same parameters. The weights used for
the evaluation function, the application probabilities of the genetic operators, and the other
relevant parameters are listed in Appendix B.

The implementation of the GIL algorithm used for this study can only learn rulesdor
class at a timexnd it cannohandleunknown attribute valuesin order toobtain rule sets
able to predict several classese unordered rulset wasnduced for eaclelass and the
union of these rule sets was considered for further evaluation. The unknown attribute values
for a particular attribute were replaced by the mostraon value of that attribute in the data
set. This was only done for GIL, but not for the other learning algorithms, which can handle
unknown attribute values.

For the Iris and the Creditata sets, the Glsystem wasot able to complete the
induction of a single ruleet on a SUN SPARC 2forkstation with 98 MB main memory
within 12 hours. Both data satentain severatontinuous numeric attributesThe GIL
system does not explicitly handle continuous attribute values, but internally represents each
encountered attributealue as a discrete value. This increabesize oftheinternal re-
presentation of each instance and eachplex significantly, because for each possible value
of each attribute onbit is reserved in this representation. The problem was solved by
introducing intervaldor each attribute with more than possible numeric values. The
intervalswere based on tHe% quantilesy,, ¢, d,, ---» & » R Of the particular attribute,
where eacly; is the smallest encountered value of the attribute greater than or equal to the
attribute value of at leab®6 of the instances in the data set. Each value of the attribute was
mapped to the srlast g, greater orequal this value. As a resulie attributes witls %
guantile-based intervals have at most 21 distinct values. This interval introduction means a
potential loss of information, but it enabled the GIL system to handle the Iris and the Credit
data sets and therefore was considered acceptableint€hal introductiorreduced the
average number of valugser attribute for the Iris data set from 30.75 to 21.25 and for the
Credit data set from 77.93 to 9.33.
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All rule sets ofall learningalgorithmswere transformed into anified format and
evaluated by theameevaluation programwhichcomputedall measures pposed in the
previous section. For this evaluation program, unknown attribute values were handled like
for GIL, i.e. the unknownvalueswere replaced by the mosbmmon value of the
corresponding attribute.

Predictive Accuracy Results
The average predictive accuracy results of all@oations of learning algorithm and data set
are summarized in Table 2. For each combination, the av@tageacy of the corresponding
learning algorithm according to its own evaluation method is presented in brackets (', ‘T),
but the following comparison only considers the results of the evaluation method described
in the previous chapter, which is uniformly applied to all rule sets. Since the implementation
of the GlLalgorithmdoes notllow the evaluation of a separatest set buautomatically
picks a fraction of thérainingset forits computation of the accuracy, th&ues given in
brackets for GIL, are not comparable with the other accuracy values.

Table 2 lists the average accuracy of each rule set on each class separately as well as the
average overall accuracy tme test setand its standard deviation. Sincg@odrule set
should be better than a default rule always predicting the majority class in the training set, the
average accuracy valugs such a default rule are presented as well. The accuracy values
in the default rule column are computed as the average of the four experiments. The default
rule in a particular experiment always preditts majority class othe trainingset in this
experiment, which is not necessarily identical to the majority class of the whole data set. The
number in brackets represents the percentage ofistences othe majority class in the
whole data set. Table 2 ordhhows the average result of thed experiments for each
combination of learning algorithm and data set. The detailed results of each experiment are
listed in Appendix C.

Unlike the instance classification procedure of AQ15c, the uniform evaluation procedure
does nouseanalogical matching toover otherwise uncovered instanc&&r some data
sets, its accuracy values therefore d#fgnificantly from those obtained by AQ15c. For the
Credit and the Vote 1984 data s¢tss leads to very low accuracy results, especially for the
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Table 2: Average predictive accuracy results [in %].

Algorithm: AQ1l5c AQ15c C45 Cc4.5 CN2 CN2 GIL Default
ordered unordered decision ordered ordered unordered  unordered rule
rules rules tree rules rules rules rules
Br-cancer-loi: [37.76] [70.28] [74.10] [71.68] [66.09] [71.65] [66.08] [70.28]
No recurr.: 75.36 74.33 94.89 84.63 90.46 92.98 81.15 100.00
Recurrence: 44,05 28.07 24.81 44,59 13.24 21.43 25.33 0.00
Overall mean: 66.10 60.50 74.10 71.68 66.09 72.02 64.32 70.26
Std. deviation: 4.20 2.08 5.23 3.04 4.04 2.66 4.95 3.92
Br-cancer-wi: [95.42] [95.99] [93.85] [94.14] [94.14] [94.00] [98.30] [65.52]
Begnin: 95.23 95.23 95.42 96.30 91.90 98.03 94.73 100.00
Malignant: 96.24 87.86 90.94 90.11 98.30 86.41 93.38 0.00
Overall mean: 95.57 91.28 93.85 94.14 94.14 93.99 94.42 65.52
Std. deviation: 1.36 1.77 0.86 0.64 1.04 143 1.12 1.50
Lymph: [58.11] [81.08] [79.05] [76.35] [72.30] [79.05] [84.55] [54.73]
Normal: 100.00 0.00 0.00 0.00 0.00 50.00 0.00 0.00
Metastases: 79.03 80.08 83.65 80.18 88.35 90.98 72.55 100.00
Malign: 69.14 65.43 75.08 74.37 71.07 69.99 66.11 0.00
Fibrosis: 83.33 50.00 83.33 83.33 50.00 33.33 0.00 0.00
Overall mean: 76.35 71.62 79.05 76.35 79.05 79.73 66.89 54.78
Std. deviation: 8.41 6.76 5.19 4.00 11.21 7.99 9.81 10.20
Iris: [50.13] [95.34] [94.03] [94.03] [96.68] [96.68] [94.54] [33.33]
Setosa: 92.50 92.50 100.00 100.00 100.00 100.00 97.22 50.00
Versicolor: 81.16 81.16 93.30 93.30 91.38 91.38 80.34 25.00
Virginica: 98.21 81.25 87.90 87.90 98.08 98.08 86.46 25.00
Overall mean: 89.94 84.62 94.03 94.03 96.68 96.68 89.37 25.34
Std. deviation: 7.02 5.29 3.92 3.92 2.21 2.21 7.22 2.97
Credit: [55.51] [56.81] [85.07] [85.38] [80.14] [81.60] [81.34] [55.51]
+: 12.71 12.71 84.28 80.89 78.68 70.81 86.03 0.00
- 98.96 20.21 85.93 88.74 81.17 89.97 82.44 100.00
Overall mean: 60.59 16.83 85.07 85.21 80.14 81.59 84.06 55.10
Std. deviation: 421 7.05 2.95 3.02 1.14 0.62 1.91 1.63
Vote 1984: [61.38] [88.51] [95.86] [95.63] [93.79] [93.79] [94.92] [61.38]
Republican: 0.00 0.00 94.04 94.04 92.56 87.04 91.33 0.00
Democrat: 100.00 0.00 97.30 97.30 93.76 96.21 93.99 100.00
Overall mean: 61.40 0.00 95.86 95.86 93.10 93.56 92.88 61.40
Std. deviation: 4.95 0.00 2.79 2.79 1.04 2.97 1.76 4.95

unordered rules, where no default rule keeps the accuracy from decreasing below a certain
level as it happens for the ordered rule sets. The Credit data set contains continuous numeric
attribute values, which AQ15c interprets as discrete values. This could result in a very low
coverage on theest setpbecause the attributelues ofthe testinstancesnay not have
occurred in the training data, and hence this could be an alternative explanation for the low
accuracy rsults of the AQ15c rules fahis data set. This way of handling aatinuous
attribute values, howevealpes noexplainthe poor performance of the unordered AQ15c
rules on the Vote 198databasewhich has onlyBoolean attributes.Not a single test
instance is matched by a rule. This is obviously a case where the analogical matching method
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of the AQ15c instance classification procedure would have been necessary to use the rules.
The accuracy ofhe orderedules for thisdata set looksimilarly poor, but through the
default rule these rule sets still achieve the default accuracy.

While on most data sets the accuracy values for the rule sets of all algorithms exceed the
default accurey, fourout of the seven rule sets fdhe breast cancer database from the
Ljubljana Oncology Institute performvorse than alefault rule,which indicates that this
domain is very noisy andifficult to learn. The lymphographydatabase fronthe same
institute shows that thalgorithms have problems handling very unsymmetric class
distributions and hence have a very low accuracy on the minority classes.

Complexity, Generalization, And Coverage Results
The average results for the space and time complexity of the rule sets are shown in Table 3
and Table 4, respectively. The detailed space andcomplexity results ofhev=4 test
runs for each algorithm and databesebination are listed in Appendix D. Table 3 lists the
space complexity measures, i.e. the average numbers of rules, complexes, and selectors for
each combination dearning algorithm andata sets. Thaumber of rules includes the
default rule if a rulesethas such a rule. Hentee number of rules equatee number of
complexes for the unordered AQ15c rule sets and the unordered GIL rule sets, which do not
have a default rule, and is one higher than the number of complexes for all ordered rule sets
and the unordered CN2 rule sets, which have default rules. The C4.5 decision trees always
cover the full domairwithout any need for a default rule. Table 4 contathe time
complexityresults, i.e. the averageimbers of complexes and selectors that needed to be
tested to classify a test instance. The most significant result visible in these two tables is the
high space and time complexity of the GIL rules compared to all other rule sets.

Table 5shows the averaggeneralization and coverage results. The detailed results of
thev=4 test runs foeach algorithm and database combinatiorlisted in Appendix D.
Usually a higlgeneralizatiorrate is desirable, but it does not automatically imply that the rule
set has a high quality. For example, a rule set consisting of a default rule only has a very high
generalization rate, but of course it cannot be considered to be a good rule set.
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Table 3: Average space complexity results [in number of rules, complexes, and
selectors respectively].

Algorithm: AQ15¢c AQ15c¢c Cca5 C4.5 CN2 CN2 GIL
ordered unordered decision ordered ordered unordered unordered
rules rules tree rules rules rules rules

Br-cancer-loi:

No. of rules: 15.75 31.00 9.00 7.25 3.00 4.75 56.75
No. of complexes: 14.75 31.00 9.00 6.25 2.00 3.75 56.75
No. of selectors: 63.50 134.00 11.25 12.25 5.00 11.25 294.25

Br-cancer-wi:

No. of rules: 7.50 16.25 8.75 8.50 5.50 7.75 36.50
No. of complexes: 6.50 16.25 8.75 7.50 4.50 6.75 36.50
No. of selectors: 30.50 64.25 15.50 16.25 12.25 18.75 177.25

Lymph:

No. of rules: 10.00 15.00 13.00 10.00 7.00 9.25 19.25
No. of complexes: 9.00 15.00 13.00 9.00 6.00 8.25 19.25
No. of selectors: 27.75 47.75 24.00 24.50 17.75 21.00 100.00

Iris:

No. of rules: 4.50 6.75 3.50 4.75 3.00 4.75 9.00
No. of complexes: 3.50 6.75 3.50 3.75 2.00 3.75 9.00
No. of selectors: 5.75 11.50 5.00 5.00 3.25 6.25 17.00

Credit:

No. of rules: 18.75 35.50 7.00 6.50 11.75 11.50 116.75
No. of complexes: 17.75 35.50 7.00 5.50 10.75 10.25 116.75
No. of selectors: 93.50 195.75 10.25 11.75 36.75 36.25 965.50

Vote 1984:

No. of rules: 2.75 12.25 5.75 6.00 5.00 6.50 16.25
No. of complexes: 1.75 12.25 5.75 5.00 4.00 5.50 16.25
No. of selectors: 6.25 37.75 9.50 11.00 13.00 18.00 64.75

The unordered AQ15c rule sets for thet® 1984 data set show, that a high
generalization96.25 %, can go alongith a very lowcoverage, 0.00 %, andvary low
accuracy, 0.00 %. d¢d in addition to other metrics, the generalization measure describes a
further characteristic of a rulget. A reduction of theomplexity ofthe knowledge
representation is desirable nmnydomains andne of the motivations to useductive
learning techniquesFurthermore a low generalizatiomay indicate amver-specialization
of a rule set and hence point out a potential reason for a low predictive accuracy.

Like the generalization metric, tid@main coverageneasure should only be considered
in conjunction withothermeasures. A low coverage automaticatiplies alow accuracy
and the corresponding rule set can be viewed as not correctly capturing the regularities of the
domain. While dow coveragemay indicate arover-specialization of a ruleet, a high
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Table 4: Average time complexity results [as average number of tests per

instance].

Algorithm: AQ1l5c AQ15c C45 C45 CN2 CN2 GIL
ordered unordered decision ordered ordered unordered unordered
rules rules tree rules rules rules rules

Br-cancer-loi:

Complex tests: 7.19 31.00 1.00 5.03 1.86 3.75 56.75
Selector tests: 15.43 56.52 2.23 6.41 2.64 5.19 117.09

Br-cancer-wi:

Complex tests: 3.04 16.25 1.00 2.44 2.03 6.75 36.50
Selector tests: 6.57 26.90 3.35 3.90 457 11.66 76.85

Lymph:

Complex tests: 5.61 15.00 1.00 5.10 3.16 8.25 19.25
Selector tests: 10.48 26.46 7.53 8.45 6.78 12.74 43.55

Iris:

Complex tests: 2.30 6.75 1.00 2.28 1.73 3.75 9.00
Selector tests: 2.66 7.45 2.89 2.63 2.36 5.08 12.40

Credit:

Complex tests: 16.81 35.50 1.00 3.02 5.58 10.25 116.75
Selector tests: 20.10 42.86 2.93 4.47 12.57 21.80 359.70

Vote 1984:

Complex tests: 1.75 12.25 1.00 2.18 1.89 5.50 16.25
Selector tests: 1.75 12.25 2.18 2.96 4.40 10.24 29.45

Table 5: Average generalization and coverage results [in %].

Algorithm: AQ15c¢c AQ15¢c C4.5 C4.5 CN2 CN2 GIL
ordered unordered decision ordered ordered unordered unordered
rules rules tree rules rules rules rules

Br-cancer-loi:

Generalization: 92.66 85.55 95.80 96.62 98.60 97.79 73.54
Coverage: 100.00 84.63 100.00 100.00 100.00 100.00 90.89

Br-cancer-wi:

Generalization: 98.57 96.90 98.33 98.76 98.70 98.52 93.04
Coverage: 100.00 93.71 100.00 100.00 100.00 100.00 98.14

Lymph:

Generalization: 90.99 86.49 88.29 90.99 93.69 91.67 82.66
Coverage: 100.00 87.16 100.00 100.00 100.00 100.00 81.76

Iris:

Generalization: 96.60 94.00 96.89 95.78 97.33 95.78 92.00
Coverage: 100.00 86.63 100.00 100.00 100.00 100.00 96.68

Credit:

Generalization: 96.38 93.14 98.65 98.74 97.73 97.83 77.45

Coverage: 100.00 18.13 100.00 100.00 100.00 100.00 96.82
Vote 1984

Generalization: 99.16 96.25 98.24 98.16 98.47 98.01 95.02

Coverage: 100.00 0.00 100.00 100.00 100.00 100.00 98.16
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coverage does not guarantee a high accui@eygision trees and rule sets with a default rule
automatically cover the full domain without necessarily having a high accuracy.

The low accuracy results of the unordered AQ15c ruléseredit and Vote 1984 data
sets shown in Table 2 were obviously due to the low coverage of the rule sets, 18.13 % and
0.00 %respectively, as listed in Table 5. Rufeayhave a high accuracy on the instances
they cover, if their coverage is low, their overall accuracy will be low, too. Hence a look at
the coverage value my help to find a possible reason for the low accuracy of a rule set.

Comparison Of The Learning Algorithms

The experiments described above only allow a limited comparison of the learning algorithms
used in this work. A really representative comparison should be based on more than six data
sets. Furthermore one should take into consideration, that some rules, for example the ones
generated by AQ15c, were developed for a different instance classification method. But the
experiments can nevertheless serve for a demonstration of how the rule set quality measures

can be applied to distinct types of rule sets with distinct rules.

Table 6: Rule set quality metrics averaged over all data sets (with standard

deviations).
Algorithm: AQ15c¢c AQ15¢c C4.5 C4.5 CN2 CN2 GIL Default
ordered unordered decision ordered ordered unordered unordered rule
rules rules tree rules rules rules rules

Predictive

accuracy: 7499% 54.14% 86.99%  86.21 % 84.87%  86.26 % 81.99 % 55.40 %
Std. deviation: (13.66 %) (34.10 %) (825%) (9.37%) (10.82%) (9.03 %) (12.05 %) (14.51 %)
No. of rules: 9.88 19.46 7.83 7.17 5.88 7.42 4242 -
Std. deviation: (5.75) (10.28) (2.96) (1.72) (2.98) (2.42) (36.75) -
No. of complexes: 8.88 19.46 7.83 6.17 4.88 6.42 4242 -
Std. deviation: (5.75) (10.28) (2.96) (1.72) (2.98) (2.42) (36.75) -
No. of selectors: 37.88 81.83 12.58 12.17 14.67 18.58 269.79 -
Std. deviation: (31.50) (63.32) (5.96) (6.03) (11.03) (9.35) (323.51) -
Complex tests: 6.12 19.46 1.00 3.34 2.71 6.38 4242 -
Std. deviation: (5.15) (10.28) (0.00) (1.25) (1.37) (2.35) (36.75) -
Selector tests: 9.50 28.74 3.52 4.80 5.55 11.12 10651 -
Std. deviation: (6.63) (16.86) (1.84) (2.04) (3.46) (5.62) (118.22) -
Generalization: 95.63%  92.06 % 96.03%  96.51 % 97.42 % 96.60 % 85.62% -
Std. deviation: (2.95%)  (4.46 %) (3.60%) (2.70 %) 1.74%) (2.37 %) (8.22%) -
Coverage: 100.00% 61.71% 100.00% 100.00%  100.00 % 100.00 % 93.74 % 100.00 %

Std. deviation: (0.00 %) (37.69%) (0.00%) (0.00%)  (0.00%)  (0.00 %) (5.90 %) (0.00 %)
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Table 6 shows the values of all rule set quality metrics for the rule sets of each algorithm
averaged over all data sets. In general, the decision trees generated by the C4.5 system had
a slightly higher predictive accuracy than the other rule sets, bimpas sn Appendix F, this
finding is not statistically significant (at the 95 % significance level). The comparatively low
accuacy of the AQ15c rule sets is mainly due to the rule sets for the Credit and Vote 1984
data sets. On these two data sets, all other algorithms induced significantly better rule sets.

The space complexity amgeneralization measures show that AQ15c and especially GIL
tend to produce more complex rule sets than C4.5 and CN2. For most data sets the size of
the GIL rule sets is a rtiiple of the size ofthe otherrule sets, bubbviously this has no
significant impact orthe accuracy of these rule sets. For humans, however, these rule sets
are less understandable due to their size. Furthermore the average numbers of complex and
selector tests indicate that ordemeides andespecially decisiotrees lave a b#er time
complexity than unordered rules. The results for the space complexity metrics show that the
orderedrules induced by an algorithm producing ordered and unordered rules alternatively
are less complex than the unordered rules generated by the same algorithm.

Comments On Some Additional Observations
As described in the secti@bout theexperimentaketup, the GlLsystem had problems
handling the Credit and the Iris data sets due to the large number of distinct values for some
of their attributes. For the comparison of the learning algorithms presented in this work, the
problem was solved for GIL by introducing 5 % quantiles for numeric attributes with more
than 25 distinct values and thereby artificially reducing the complexity of these data sets. For
a learning algorithm to be usalfte applications withdata sets of aeasonable size, it is
important to be scalable, i.e. to &ele to handle large numbersatfributes, of values per
attributes, and of instanceglgorithms employedor Knowledge Discovery in Databases
(KDD) (Simoudis, Han, and Fayyatl996), forexample, have t@ope this scalability
problem, in order to be able to find regularities in huge databases within a reasonable amount
of time.

Obviouslythere ard@wo types of complexity to be considerexhe associated with the
generation of rules and tlther associatedith the use of rulesWhile the latter type is
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captured by the space atmhe complexity metric$or rule sets pposed irthiswork, the

first type, the space and time complexity of the learning algorithms, is not captured by these
metrics, whose objective it is to describe properties of rule sets and not of learning algorithms.
Hence thescalability problem, which isot related to the produced rule sets butheir
generation only, inotaddressed by the proposedtnes. If notonly rule setshave to be
compared, but dearning algorithm has to be selected a particular application, the
computational complexity of the available algorithms has to be considered as well, because
some algorithms may not be able to handle the complexity of the data set of this application.

A further data setwhich islarger and more complex théme six data sets used in the
comparison, was taken to examine the scalability of the four learning algorithms used for this
study. TheEmployment 1992 (Employ92)ata set for females is a subset of the National
Longitudinal Survey off¥outh (NLSY) data set for 1992yhich was obtained from the
National Longitudinal Survey (NLS), Youth Cohort, and distributed by the Center of Human
Resource Research at OldtateUniversity, Columbus, Ohio. The objective is to predict
whether a femal@erson wasemployed in1992 or notbased on value®r a set of 49
socio-economic variables including information about previous employment, age, education,
test scoreggeographical location, consumed amounts of drugs and alcohol, marital status,
number of young children. The 2882 instances of this data set are described by 22 Boolean,
14 discrete numeric, and 13 continuous numeric attributes. Each of these attributes has an
average of 336.92 distinct values. There are no unkatiwibute values in this subset of the
NLSY data set for 1992. Out of the 2882 instances in the data set, 2078 (72.10 %) belong
to one class and 804 (27.90 %) to the other class.

Neither the GIL nor the AQ15c system were able to handle this data set in a reasonable
amount of time (if at all), i.e. the programs did not terminate within 12 hours for a single test
run on a SUN SPARC 20 with 98 MB main memory when ugifaid cross validation with
v=4. The C4.5 and CN2 learning systems could both handle the data set. After introducing
5% quantiles tdhe numericattributes with more 2%alues in thisdata set, th@average
number of distinct values per attribute was reduced to 8.35. While AQ15c could process the
data set in this less complex form, the GIL system was still not able to learn from this data in
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the given time frame of 12 hours. Even the use of 10% and 20% quantiles did not enable GIL
to handle this data within the given time frame.

Sometimes preprocessitite data byntroducing quantiles and /or reducing the size of
the data set by reducing the number of instances and /or the number of attributes may enable
a particular algorithm to handle an otherwise unmanageably complex data set, but of course
it is preferable to have an algorithm able to hatitbedata withoutinyneed for a user to
reduce the complexity of the data. From this point of view, the GIL and the AQ15c systems

cannot be recommend for use in large scale applications.

CONCLUSIONS

This work proposed a set ofeasures to evaluate theality of a rulesetand to compare
several rule setgenerated by inductiviearning algorithms. These measures include the
widely used predictive accuracy metric, space and time complexity metrics, and two metrics
called generalization and coverage. The application of these measuhesrtde sets
generated by four different learning algorithms for six real world data sets showed that these
measures allow the comparison of rule sets of distinct types, i.e. decision trees, ordered rule
sets, and unordered rule sets.

Some applications impose constraints on the rules that can be applied for predictions. In
some domains, decisions have to be made fast and hence the average amount of time needed
to classify a previouslynseen instance should &mall. The timecomplexity measures
presented in this work can be employed to take care of that need. Other applications require
their knowledge representation not to be too complex, which motivated the space complexity
metrics proposed in this work.

The variety of measures allows the users to pick the metrics relevant for their particular
applications. The additional measures do not only reveal further characteristics of a rule set,
but in some cases allow to find an explanation for the low predictive accuracy of a rule set.
A low coverage, for example, indicates that the rule set is not representative for the particular

domain, and a low generalization indicates over-specialization.
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APPENDIX A

Computation Of The Upper Boundary Of A Confidence Interval
For The Probability In A Binomial Probability Distribution

The probability ok succesful trials im independent trials with an equal probabiptef a
success for each trial is obtained from bylilm®mial distribution

P(X=K) = Wp (1-p)"*

Thecumulative binomial probability distribution functialescribes the probability of at least

a succesful trials im trials:

n

P(X>a) = Z pk (1-p)"k
&k k)'

For theproblem considered herthe parametep is unknown and the upper bound
U.<(E,N) of a confidence intervdbr the probability p at confidence leveCF has to be
computed given the number of successful trials (errBrsdnd the total number of trialN,

In order to compute the confidence interval, the inverse of the cumulative binomial probability
distribution function has to be computed or at least approximated.

In the implementation of his C4.5 system, Quinlan (1993) uses a modified version of the
approximation folJ-(E,N) described in (Documentaeigy Scientific Tables). Hahn and
Mekker (1980)describe an alternative way of computing tingger bound of &inomial
confidence interval, which, for small valuespfis based on theé distribution and, for large
values ofn, is based on the normal distribution, respectively.

For E successful trials in a sample of sitethe upper boundary of a conservative one-
sided100(1-#)% confidence intervdor p, the true proportion of successful trials, is given

by :



a7

1
(N-E)

(1-o; 2E+2, 2N-2E)

Uy oEN) =

1 +

(E+1) F

whereF,., ., is thel00yth percentile of thé distribution withr, andr, degrees of freedom.

For samples of smallize, thecritical values ofthe F distribution can be obtained by
interpolating from tabulated values of that distribution. For large samples a(&h) and
n(1-E/N)exceedlO, the upper bound of the confidence interval can be approximated uisng
tabulations of the normal distribution percentiles:

Po(1-Py)
Ug oEN) = Py + 24 4 % where p =

and where(y) is the100yth percentile of the standard normal distribution.

Zlm



APPENDIX B

Parameter Setting For The GIL Algorithm



49

APPENDIX B

Parameter Setting For The GIL Algorithm

General parameters of the genetic algorithm:
Population size: 50 chromosomes;
Main iteration loop for rule induction: 300 iterations or until best chromo-
some is complete and consistent;
Final iteration loop for cost reduction: 100 iterations;
Elitism was used, i.e. the best chromosome of each generation was always kept and
left unchanged.

Weights and exponent used for the evaluation function:
w,=1.0
w,=1.0
w; = 0.002 in the main loop and,w = 0.03 in the final loop
f=14

Initial application probabilities of the genetic operators:

Note: The values specified here only reflect the ratio of the initial application
probabilities. The actual probabilities were scaled in such a way that 80%
of the selected chromosomes of a new generation were updated by the
application the genetic operators.

Genetic operators on rule set level:

Rules exchange: 20 (operand selection probability: 20%)
Rules copy: 10

New event: 40

Rules generalization: 40

Rules drop: 40



Rules specialization: 40

Rules multi generalization: 10 (operand selection probability: 10%)
Rules multi drop: 10 (operand selection probability: 10%)
Rules multi specialization: 10 (operand selection probability: 10%)

Rules dir. reference extension: 20
Rules dir. reference restriction: 20

Genetic operators on rule level:
Rule split: 4
Condition drop:
Turning conjunction into disjunction: 0
Condition introduce: 8
Rule directed split: 12

Genetic operators on condition level:

Reference change: 2
Reference extension: 3 (50% probability for whole range fill)
Reference restriction: 3  (50% probability for whole range removal)

Split of the data set and initial population:

The GIL system used 90% of the data set for training and 10% for testing to compute

the accureies of its rules. Hence only 90% of the training data presented to GIL in

each fold wereeally used for the rulsetinduction. Thanitial populations were

composed of positive training events (50%) and random chromosomes (50%). Each

random chromosome contained at least one complex. The probability for each further

complex was 60%, i.e. ca. 0.4*100%=40% of the randomly generated chromosomes
had one complex, ca. 0.4*60%=24% had two complexes, ca. 0.4*36%=14.4% had

three complexes, etc..
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APPENDIX C

Detailed Experimental Results: Predictive Accuracies

Tables 7 to 10 list the predictive accuracy results for each of#héolds separately. The
values in brackets (T, 1) represent the average accuracy values according to the evaluation
procedures of théearning algorithms.All othervalueswere computed by theniform

evaluation program used for the experiments described in this study.

Table 7: Predictive accuracy results for fold 1 [in %].

Algorithm: AQ15c¢c AQ15¢c C4.5 C4.5 CN2 CN2 GIL Default
ordered unordered  decision ordered ordered unordered unordered rule
rules rules tree rules rules rules rules

Br-cancer-loi: [34.72] [69.44] [75.00] [68.06] [70.83] [70.83] [78.60]

No recurr.: 68.63 66.67 92.16 74.51 100.00 86.27 70.59 100.00

Recurrence: 47.62 33.33 33.33 52.38 0.00 28.57 33.33 0.00
Overall: 62.50 56.94 75.00 68.06 70.83 69.44 59.72 70.83
Br-cancer-wi: [94.86] [96.57] [94.29] [94.29] [95.43] [91.43] [100.00]

Begnin: 94.74 94.74 93.86 97.37 93.86 99.12 95.61 100.00

Malignant: 95.08 77.05 95.08 88.52 98.36 78.69 93.44 0.00
Overall: 94.86 88.57 94.29 94.29 95.43 92.00 94.86 65.14
Lymph: [43.24] [81.08] [78.68] [70.72] [72.97] [67.57] [90.45]

Normal: 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Metastases: 57.14 64.29 78.57 78.57 85.71 85.71 71.43 100.00

Malign: 65.00 65.00 80.00 70.00 70.00 65.00 65.00 0.00

Fibrosis: 50.00 50.00 50.00 50.00 50.00 0.00 0.00 0.00
Overall: 61.62 61.62 75.68 70.27 72.97 67.57 62.16 37.84
Iris: [52.63] [94.74] [89.47] [89.47] [94.74] [94.74] [96.97]

Setosa: 88.24 88.24 100.00 100.00 100.00 100.00 100.00 0.00

Versicolor: 87.50 87.50 87.50 87.50 87.50 87.50 50.00 100.00

Virginica: 100.00 92.31 76.92 76.92 92.31 92.31 69.23 0.00
Overall: 92.11 89.47 89.47 89.47 94.74 94.74 78.95 21.05
Credit: [53.76] [56.65] [83.82] [83.82] [81.50] [81.50] [82.35]

+: 0.00 0.00 80.00 80.00 92.50 65.00 82.50 0.00

- 100.00 18.28 87.10 87.10 72.04 95.70 79.57 100.00
Overall: 53.76 9.83 83.82 83.82 81.50 81.50 80.92 53.76
Vote 1984: [58.00] [90.83] [93.58] [93.58] [94.50] [93.58] [95.85]

Republican: 0.00 0.00 91.30 91.30 95.65 86.96 91.30 0.00

Democrat: 100.00 0.00 95.24 95.24 93.65 96.83 93.65 100.00

Overall: 57.80 0.00 93.58 93.58 94.50 92.66 92.66 57.80




Table 8: Predictive accuracy results for fold 2 [in %].

Algorithm: AQ15c¢c AQ15¢c C4.5 C4.5 CN2 CN2 GIL Default
ordered unordered  decision ordered ordered unordered unordered rule
rules rules tree rules rules rules rules

Br-cancer-loi: [40.27] [75.00] [81.94] [76.39] [59.72] [75.00] [50.00]

No recurr.: 72.73 72.73 100.00 89.09 61.82 98.18 85.45 100.00

Recurrence: 35.29 23.53 23.53 35.29 52.94 5.88 29.41 0.00
Overall: 63.89 61.11 81.94 76.39 59.72 76.39 72.22 76.39
Br-cancer-wi: [93.71] [94.29] [94.86] [94.86] [94.29] [96.00] [99.00]

Begnin: 93.28 93.28 95.80 95.80 93.28 98.32 94.96 100.00

Malignant: 94.64 85.71 92.86 92.86 96.43 91.07 94.64 0.00
Overall: 93.71 90.86 94.86 94.86 94.29 96.00 94.86 68.00
Lymph: [67.57] [78.38] [81.08] [81.08] [97.30] [89.19] [75.00]

Normal:

Metastases: 91.67 79.17 79.17 79.17 95.83 87.50 79.17 100.00

Malign: 61.54 53.85 84.62 84.62 100.00 92.31 92.13 0.00

Fibrosis:
Overall: 81.08 70.27 81.08 81.08 97.03 89.19 83.78 64.86
Iris: [28.94] [94.74] [94.74] [94.74] [97.37] [97.37] [96.67]

Setosa: 92.86 92.86 100.00 100.00 100.00 100.00 100.00 0.00

Versicolor: 100.00 100.00 100.00 100.00 92.31 92.31 32.31 0.00

Virginica: 100.00 63.64 81.82 81.82 100.00 100.00 90.91 100.00
Overall: 97.37 86.84 94.74 94.74 97.37 97.37 94.74 28.95
Credit: [56.65] [56.65] [87.86] [89.02] [80.35] [81.50] [75.96]

+: 14.67 14.67 94.67 89.33 96.00 64.00 85.33 0.00

- 98.97 12.24 82.65 89.80 67.35 94.90 84.69 100.00
Overall: 62.43 13.29 87.86 89.60 79.77 81.50 84.97 56.65
Vote 1984: [61.47] [88.07] [98.17] [97.25] [94.50] [98.17] [93.80]

Republican: 0.00 0.00 97.62 97.62 80.95 97.62 92.86 0.00

Democrat: 100.00 0.00 98.51 98.51 98.51 98.51 89.55 100.00
Overall: 61.47 0.00 98.17 98.17 91.74 98.17 90.83 61.47




Table 9: Predictive accuracy results for fold 3 [in %].

Algorithm: AQ15c¢c AQ15¢c C4.5 C4.5 CN2 CN2 GIL Default
ordered unordered  decision ordered ordered unordered unordered rule
rules rules tree rules rules rules rules

Br-cancer-loi: [40.85] [60.91] [71.83] [71.83] [66.20] [71.83] [69.05]

No recurr.: 82.98 80.85 95.74 95.74 100.00 97.87 91.49 100.00

Recurrence: 54.17 25.00 25.00 25.00 0.00 20.83 12.50 0.00
Overall: 73.23 61.97 71.83 71.83 66.20 71.83 64.79 66.20
Br-cancer-wi: [96.57] [96.00] [93.71] [94.29] [94.29] [94.29] [97.05]

Begnin: 98.21 98.21 97.32 97.32 91.96 98.21 95.43 100.00

Malignant: 95.24 82.54 87.30 88.89 98.41 85.71 93.65 0.00
Overall: 97.14 92.57 93.71 94.29 94.29 93.71 95.43 64.00
Lymph: [59.46] [78.38] [72.97] [78.38] [78.38] [78.38] [82.50]

Normal: 0.00

Metastases: 86.36 86.36 83.65 77.27 90.91 95.45 68.18 100.00

Malign: 64.29 57.14 50.00 78.57 57.14 50.00 50.00 0.00

Fibrosis: 100.00 0.00 100.00 100.00 100.00 100.00 0.00 0.00
Overall: 78.38 72.97 72.97 78.38 78.38 78.38 59.46 59.46
Iris: [59.46] [100.00] [100.00] [100.00] [100.00] [100.00] [87.57]

Setosa: 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Versicolor: 80.00 80.00 100.00 100.00 100.00 100.00 93.33 0.00

Virginica: 100.00 83.33 100.00 100.00 100.00 100.00 100.00 0.00
Overall: 91.89 86.49 100.00 100.00 100.00 100.00 97.30 27.03
Credit: [57.56] [52.33] [87.79] [87.21] [80.23] [80.81] [81.62]

+: 9.59 9.59 89.04 80.82 61.64 64.38 87.67 0.00

- 98.99 20.20 86.87 89.90 94.95 92.93 84.85 100.00
Overall: 61.05 15.70 87.79 86.05 80.81 80.81 86.05 54.65
Vote 1984: [56.88] [89.91] [92.66] [92.66] [93.58] [89.91] [96.00]

Republican: 0.00 0.00 87.23 87.23 93.62 78.72 87.23 0.00

Democrat: 100.00 0.00 96.77 96.77 93.55 98.39 96.77 100.00
Overall: 56.88 0.00 92.66 92.66 93.58 89.91 92.66 56.88
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Table 10: Predictive accuracy results for fold 4 [in %].

Algorithm: AQ15c¢c AQ15¢c C4.5 C4.5 CN2 CN2 GIL Default
ordered unordered  decision ordered ordered unordered unordered rule
rules rules tree rules rules rules rules

Br-cancer-loi: [35.21] [67.61] [67.61] [70.42] [67.61] [69.01] [66.65]

No recurr.: 77.08 77.08 91.67 79.17 100.00 89.58 77.08 100.00

Recurrence: 39.13 30.43 17.39 65.67 0.00 30.43 26.09 0.00
Overall: 64.79 61.97 67.61 70.42 67.61 70.42 60.56 67.61
Br-cancer-wi: [96.55] [97.13] [92.53] [93.10] [92.53] [94.25] [97.15]

Begnin: 94.69 94.69 94.69 94.69 88.50 96.46 92.92 100.00

Malignant: 100.00 90.16 88.52 90.16 100.00 90.16 91.80 0.00
Overall: 96.55 93.10 92.53 93.10 92.53 94.25 92.53 64.94
Lymph: [62.16] [86.49] [86.49] [75.68] [67.57] [81.08] [90.23]

Normal: 100.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00

Metastases: 80.95 90.48 90.48 85.71 80.95 95.24 71.43 100.00

Malign: 85.71 85.71 85.71 64.29 57.14 71.43 57.14 0.00

Fibrosis: 100.00 100.00 100.00 100.00 0.00 0.00 0.00 0.00
Overall: 83.78 86.49 86.49 75.68 67.57 83.78 62.16 56.76
Iris: [59.46] [91.89] [91.89] [91.89] [94.59] [94.59] [96.97]

Setosa: 88.89 88.89 100.00 100.00 100.00 100.00 88.89 100.00

Versicolor: 57.14 57.14 85.71 85.71 85.71 85.71 85.71 0.00

Virginica: 92.86 85.71 92.86 92.86 100.00 100.00 85.71 0.00
Overall: 78.38 75.68 91.89 91.89 94.59 94.59 86.49 24.32
Credit: [54.07] [61.63] [80.81] [81.40] [78.49] [82.56] [85.45]

+: 26.58 26.58 73.42 73.42 64.56 89.87 88.61 0.00

- 97.85 30.11 87.10 88.17 90.32 76.34 80.64 100.00
Overall: 65.12 28.49 80.81 81.40 78.49 82.56 84.30 55.81
Vote 1984: [69.44] [85.19] [99.07] [99.07] [92.59] [93.52] [93.80]

Republican: 0.00 0.00 100.00 100.00 100.00 84.85 93.94 0.00

Democrat: 100.00 0.00 98.67 98.67 89.33 91.09 96.00 100.00
Overall: 69.44 0.00 99.07 99.07 92.59 93.52 95.73 69.44
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APPENDIX D

Detailed Experimental Results: Space And Time Complexity

Tables 11 to 14 list the spacengalexity and Tables 15 to 18 the time complexity results for
each of thes=4 folds separately.

Table 11: Space complexity results for fold 1 [in number of rules,
complexes, and selectors respectively].

Algorithm: AQ15c AQ15c C4.5 Cc4a5 CN2 CN2 GIL
ordered unordered decision ordered ordered unordered unordered
rules rules tree rules rules rules rules

Br-cancer-loi:

No. of rules: 16 31 10 6 4 6 67
No. of complexes: 15 31 10 5 3 5 67
No. of selectors: 68 133 13 8 8 14 364

Br-cancer-wi:

No. of rules: 8 16 9 8 6 8 52
No. of complexes: 7 16 9 7 5 7 52
No. of selectors: 34 67 16 18 13 17 294

Lymph:

No. of rules: 10 15 15 10 6 8 18
No. of complexes: 9 15 15 9 5 7 18
No. of selectors: 25 43 28 24 16 17 91

Iris:

No. of rules: 4 6 3 5 3 4 8
No. of complexes: 3 6 3 4 2 3 8
No. of selectors: 5 9 4 6 3 4 13

Credit:

No. of rules: 20 37 13 7 13 11 74
No. of complexes: 19 37 13 6 12 10 74
No. of selectors: 103 208 17 13 41 35 571

Vote 1984:

No. of rules: 8 19 5 6 5 7 16
No. of complexes: 7 19 5 5 4 6 16

No. of selectors: 25 61 8 10 12 19 57
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Table 12: Space complexity results for fold 2 [in number of rules,
complexes, and selectors respectively].

Algorithm: AQ15c AQ15c C4.5 Cc4a5 CN2 CN2 GIL
ordered unordered decision ordered ordered unordered unordered
rules rules tree rules rules rules rules

Br-cancer-loi:

No. of rules: 16 33 9 9 3 4 50
No. of complexes: 15 33 9 8 2 3 50
No. of selectors: 65 144 11 18 5 11 250

Br-cancer-wi:

No. of rules: 7 15 9 10 5 7 54
No. of complexes: 6 15 9 9 4 6 54
No. of selectors: 27 58 16 20 14 19 257

Lymph:

No. of rules: 10 15 13 9 7 11 20
No. of complexes: 9 15 13 8 6 10 20
No. of selectors: 28 52 24 22 17 24 104

Iris:

No. of rules: 5 8 3 4 3 5 10
No. of complexes: 4 8 3 3 2 4 10
No. of selectors: 7 15 4 4 3 8 18

Credit:

No. of rules: 19 38 2 6 9 12 82
No. of complexes: 18 38 2 5 8 11 82
No. of selectors: 97 213 2 10 25 42 653

Vote 1984:

No. of rules: 1 11 5 6 5 7 18
No. of complexes: 0 11 5 5 4 6 18
No. of selectors: 0 33 8 10 14 22 77
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Table 13: Space complexity results for fold 3 [in number of rules,
complexes, and selectors respectively].

Algorithm: AQ15c AQ15c C4.5 Cc4a5 CN2 CN2 GIL
ordered unordered decision ordered ordered unordered unordered
rules rules tree rules rules rules rules

Br-cancer-loi:

No. of rules: 15 29 3 4 2 5 51
No. of complexes: 14 29 3 3 1 4 51
No. of selectors: 60 130 4 5 2 12 262

Br-cancer-wi:

No. of rules: 7 17 8 9 6 8 24
No. of complexes: 6 17 8 8 5 7 24
No. of selectors: 26 63 14 14 11 19 106

Lymph:

No. of rules: 10 15 12 10 8 9 22
No. of complexes: 9 15 12 9 7 8 22
No. of selectors: 31 49 22 23 20 22 130

Iris:

No. of rules: 5 8 4 5 3 5 12
No. of complexes: 4 8 4 4 2 4 12
No. of selectors: 7 15 6 5 4 7 29

Credit:

No. of rules: 18 33 6 7 12 12 63
No. of complexes: 17 33 6 6 11 11 63
No. of selectors: 92 186 10 14 37 40 489

Vote 1984:

No. of rules: 1 8 7 6 4 6 15
No. of complexes: 0 8 7 5 3 5 15
No. of selectors: 0 25 12 14 8 14 48
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Table 14: Space complexity results for fold 4 [in number of rules,
complexes, and selectors respectively].

Algorithm: AQ15c AQ15c C4.5 Cc4a5 CN2 CN2 GIL
ordered unordered decision ordered ordered unordered unordered
rules rules tree rules rules rules rules

Br-cancer-loi:

No. of rules: 16 31 14 10 3 4 59
No. of complexes: 15 31 14 9 2 3 59
No. of selectors: 61 129 17 18 5 8 301

Br-cancer-wi:

No. of rules: 8 17 9 7 5 8 16
No. of complexes: 7 17 9 6 4 7 16
No. of selectors: 35 69 16 13 11 20 52

Lymph:

No. of rules: 10 15 12 11 7 9 17
No. of complexes: 9 15 12 10 6 8 17
No. of selectors: 27 47 22 29 18 21 75

Iris:

No. of rules: 4 5 4 5 3 5 6
No. of complexes: 3 5 4 4 2 4 6
No. of selectors: 4 7 6 5 3 6 8

Credit:

No. of rules: 18 34 7 6 13 10 248
No. of complexes: 17 34 7 5 12 9 248
No. of selectors: 82 176 12 10 40 28 2149

Vote 1984:

No. of rules: 1 11 6 6 6 6 16
No. of complexes: 0 11 6 5 5 5 16
No. of selectors: 0 32 10 10 18 17 77
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Table 15: Time complexity results for fold 1 [as average number of tests
per instance].

Algorithm: AQ15c AQ15c C4.5 Cca5 CN2 CN2 GIL
ordered unordered decision ordered ordered unordered unordered
rules rules tree rules rules rules rules

Br-cancer-loi:

Complex tests: 7.93 31.00 1.00 3.22 2.61 5.00 67.00
Selector tests: 16.58 54.92 2.89 4.44 3.78 6.99 161.75

Br-cancer-wi:

Complex tests: 3.23 16.00 1.00 251 2.10 7.00 52.00
Selector tests: 6.81 27.00 3.34 461 4.32 10.71 115.74

Lymph:

Complex tests: 4.86 15.00 1.00 481 3.16 7.00 18.00
Selector tests: 8.81 25.11 7.49 8.38 6.92 10.19 43.65

Iris:

Complex tests: 2.03 6.00 1.00 2.13 1.79 3.00 8.00
Selector tests: 2.39 6.45 2.39 2.39 2.55 3.32 8.97

Credit:

Complex tests: 19.00 37.00 1.00 2.35 5.52 10.00 74.00
Selector tests: 22.19 44.58 3.23 3.66 12.56 18.73 190.36

Vote 1984:

Complex tests: 7.00 19.00 1.00 2.25 1.72 6.00 16.00
Selector tests: 7.00 19.00 2.11 2.81 4.00 11.07 28.59

Table 16: Time complexity results for fold 2 [as average number of tests
per instance].

Algorithm: AQ15c AQ15c C4.5 Cca5 CN2 CN2 GIL
ordered unordered decision ordered ordered unordered unordered
rules rules tree rules rules rules rules

Br-cancer-loi:

Complex tests: 7.11 33.00 1.00 7.26 1.90 3.00 50.00
Selector tests: 16.56 59.40 1.93 8.88 3.10 474 99.22

Br-cancer-wi:

Complex tests: 2.75 15.00 1.00 2.70 1.81 6.00 54.00
Selector tests: 6.07 24.81 3.32 3.99 5.26 11.69 119.83

Lymph:

Complex tests: 5.81 15.00 1.00 441 2.49 10.00 20.00
Selector tests: 11.84 28.19 7.97 7.32 6.11 14.97 41.95

Iris:

Complex tests: 2.29 8.00 1.00 2.03 1.63 4.00 10.00
Selector tests: 2.66 8.92 2.50 2.42 1.95 5.87 13.00

Credit:

Complex tests: 16.82 38.00 1.00 2.54 4.66 11.00 82.00
Selector tests: 19.52 44.20 1.49 3.96 10.31 24.54 256.46

Vote 1984:

Complex tests: 0.00 11.00 1.00 2.25 2.06 6.00 18.00

Selector tests: 0.00 11.00 2.16 2.83 4.98 12.04 33.12
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Table 17: Time complexity results for fold 3 [as average number of tests
per instance].

Algorithm: AQ15c AQ15c C4.5 Cca5 CN2 CN2 GIL
ordered unordered decision ordered ordered unordered unordered
rules rules tree rules rules rules rules

Br-cancer-loi:

Complex tests: 6.79 29.00 1.00 2.10 1.00 4.00 51.00
Selector tests: 13.85 54.18 1.76 2.42 1.10 5.04 91.58

Br-cancer-wi:

Complex tests: 2.83 17.00 1.00 2.58 2.24 7.00 24.00
Selector tests: 6.54 27.38 3.24 3.54 4.28 12.28 43.02

Lymph:

Complex tests: 6.08 15.00 1.00 6.62 3.97 8.00 22.00
Selector tests: 11.32 26.16 8.41 10.30 7.43 13.84 49.54

Iris:

Complex tests: 2.54 8.00 1.00 2.68 1.73 4.00 12.00
Selector tests: 2.97 8.78 3.27 3.08 2.81 5.78 20.05

Credit:

Complex tests: 16.40 33.00 1.00 3.92 6.17 11.00 63.00
Selector tests: 21.13 41.74 3.72 5.62 13.60 24.36 143.29

Vote 1984:

Complex tests: 0.00 8.00 1.00 2.17 1.77 5.00 15.00
Selector tests: 0.00 8.00 2.28 3.66 4.08 8.62 27.27

Table 18: Time complexity results for fold 4 [as average number of tests
per instance].

Algorithm: AQ15c AQ15c C4.5 Cca5 CN2 CN2 GIL
ordered unordered decision ordered ordered unordered unordered
rules rules tree rules rules rules rules

Br-cancer-loi:

Complex tests: 6.91 31.00 1.00 7.54 1.93 3.00 59.00
Selector tests: 14.75 57.59 2.34 9.90 2.59 4.00 117.09

Br-cancer-wi:

Complex tests: 3.35 17.00 1.00 1.95 1.95 7.00 16.00
Selector tests: 6.87 28.41 3.51 3.49 4.40 11.97 28.79

Lymph:

Complex tests: 5.68 15.00 1.00 4.54 3.00 8.00 17.00
Selector tests: 9.95 26.38 6.27 7.81 6.68 11.97 39.08

Iris:

Complex tests: 2.35 5.00 1.00 2.27 1.76 4.00 6.00
Selector tests: 2.59 5.65 3.38 2.62 2.11 5.35 7.57

Credit:

Complex tests: 15.00 34.00 1.00 3.26 5.95 9.00 248.00
Selector tests: 17.56 40.94 3.27 4.62 13.81 19.56 848.67

Vote 1984:

Complex tests: 0.00 11.00 1.00 2.04 1.98 5.00 16.00

Selector tests: 0.00 11.00 2.19 2.54 4.55 9.24 28.85
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APPENDIX E

Detailed Experimental Results: Generalization And Coverage

Tables 19 to 22 listhe generalization and coverage results for eacthefv=4 folds

separately.

Table 19: Generalization and coverage results for fold 1 [in %].

Algorithm: AQ15c AQ15c C4.5 Cc4a5 CN2 CN2 GIL
ordered unordered decision ordered ordered unordered unordered
rules rules tree rules rules rules rules

Br-cancer-loi:

Generalization: 92.52 85.51 95.33 97.20 98.13 97.20 68.69
Coverage: 100.00 83.33 100.00 100.00 100.00 100.00 88.89

Br-cancer-wi:

Generalization: 98.47 96.95 98.28 98.47 98.86 98.47 90.08
Coverage: 100.00 91.43 100.00 100.00 100.00 100.00 97.71

Lymph:

Generalization: 90.99 86.49 86.49 90.99 94.59 92.79 83.78
Coverage: 100.00 75.68 100.00 100.00 100.00 100.00 78.38

Iris:

Generalization: 96.43 94.64 97.32 95.54 97.32 96.43 92.86
Coverage: 100.00 92.11 100.00 100.00 100.00 100.00 92.11

Credit:

Generalization: 96.13 92.84 97.49 98.65 97.49 97.87 85.69
Coverage: 100.00 10.98 100.00 100.00 100.00 100.00 95.38

Vote 1984:

Generalization: 97.55 94.17 98.47 98.16 98.47 97.85 95.09

Coverage: 100.00 0.00 100.00 100.00 100.00 100.00 100.00




Table 20: Generalization and coverage results for fold 2 [in %].

Algorithm: AQ15¢c AQ15¢c Cc45 C4.5 CN2 CN2 GIL
ordered unordered decision ordered ordered unordered unordered
rules rules tree rules rules rules rules

Br-cancer-loi:

Generalization: 92.52 84.58 95.79 95.79 98.60 98.13 76.64
Coverage: 100.00 80.56 100.00 100.00 100.00 100.00 97.22

Br-cancer-wi:

Generalization: 98.66 97.14 98.28 98.09 99.05 98.66 89.69
Coverage: 100.00 94.86 100.00 100.00 100.00 100.00 98.29

Lymph:

Generalization: 90.99 86.49 88.29 91.89 93.69 90.09 81.98
Coverage: 100.00 83.78 100.00 100.00 100.00 100.00 94.59

Iris:

Generalization: 95.54 92.86 97.32 96.43 97.32 95.54 91.07
Coverage: 100.00 86.84 100.00 100.00 100.00 100.00 100.00

Credit:

Generalization: 96.33 92.65 99.61 98.84 98.26 97.68 84.14
Coverage: 100.00 15.03 100.00 100.00 100.00 100.00 95.95

Vote 1984:

Generalization: 99.69 96.63 98.47 98.16 98.47 97.85 94.48
Coverage: 100.00 0.00 100.00 100.00 100.00 100.00 96.33

Table 21: Generalization and coverage results for fold 3 [in %].

Algorithm: AQ15¢c AQ15¢c Cc45 C4.5 CN2 CN2 GIL
ordered unordered decision ordered ordered unordered unordered
rules rules tree rules rules rules rules

Br-cancer-loi:

Generalization: 93.02 86.51 98.60 98.14 99.07 97.67 76.28
Coverage: 100.00 84.51 100.00 100.00 100.00 100.00 90.14

Br-cancer-wi:

Generalization: 98.66 96.76 98.47 98.28 98.86 98.47 95.42
Coverage: 100.00 94.86 100.00 100.00 100.00 100.00 99.43

Lymph:

Generalization: 90.99 86.49 89.19 90.99 92.79 91.89 80.18
Coverage: 100.00 91.89 100.00 100.00 100.00 100.00 72.97

Iris:

Generalization: 95.58 92.92 96.46 95.58 97.35 95.58 89.38
Coverage: 100.00 86.49 100.00 100.00 100.00 100.00 97.30

Credit:

Generalization: 96.53 93.63 98.84 98.65 97.68 97.68 87.84
Coverage: 100.00 16.28 100.00 100.00 100.00 100.00 97.09

Vote 1984:

Generalization: 99.69 97.55 97.85 98.16 98.77 98.16 95.40
Coverage: 100.00 0.00 100.00 100.00 100.00 100.00 97.25




Table 22: Generalization and coverage results for fold 4 [in %].

Algorithm: AQ15c AQ15c C4.5 Cc4a5 CN2 CN2 GIL
ordered unordered decision ordered ordered unordered unordered
rules rules tree rules rules rules rules

Br-cancer-loi:

Generalization: 92.56 85.58 93.49 95.35 98.60 98.14 72.56
Coverage: 100.00 90.14 100.00 100.00 100.00 100.00 87.32

Br-cancer-wi:

Generalization: 98.48 96.76 98.29 98.67 99.05 98.48 96.95
Coverage: 100.00 93.68 100.00 100.00 100.00 100.00 97.13

Lymph:

Generalization: 90.99 86.49 89.19 90.09 93.69 91.89 84.68
Coverage: 100.00 75.68 100.00 100.00 100.00 100.00 81.08

Iris:

Generalization: 96.46 95.58 96.46 95.58 97.35 95.58 94.69
Coverage: 100.00 81.08 100.00 100.00 100.00 100.00 97.30

Credit:

Generalization: 96.53 93.44 98.65 98.84 97.49 98.07 52.12
Coverage: 100.00 30.23 100.00 100.00 100.00 100.00 98.84

Vote 1984:

Generalization: 99.69 96.64 98.17 98.17 98.17 98.17 95.11
Coverage: 100.00 0.00 100.00 100.00 100.00 100.00 99.07
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APPENDIX F

Significance Tests: Is The Most Accurate Learning Algorithm
Significantly More Accurate Than The Other Algorithms ?

In theexperiments described in this stutlye average predictive accuracy of teeision

trees generated by C4.5 was higher than the average predictive accuracy of any other learning
algorithm used in the comparison. Therefore this appendix addresses the question, whether
the C4.5decisiontrees aresignificantlymore accurate than the othiate set types (at the

95% confidence level). THellowing sections describéhe statisticatests performed and

their results.

First, the one-factor and two-factor models ofAidalysis Of VAriance (ANOVA) are
employed to determine wheth#fre choice of thealgorithm significantly influences the
predictive accuracy of theesulting ruleset (Hoel, 1984). Thersincethe fact of a
relationship alone is not specific enough to answer the question of intesesgsaof one-
tailed hypothesis tests based on Studentiglistribution is used to answer this question
(Spiegel, 1961; Hoel, 1984). Each sugipothesis test determines whether the difference of
the average accuracies of two algorithms is significant.

Both, the ANOVA testsind thetestbased on Student’s t distribution assume that the
underlyingdistributions are normal and that all distributions have the same variance. Since
there is no way to proof this assumptions here, it is sensible to use another test in addition that
does not make these assumptiabsut thedistributions. Thesign testis such a test
(Hoel, 1984). VHen comparindwo accuracy value samples, theéstonly looks which
sample has the higher value, i.e. only the sign of the difference of the two accuracy values is

considered, but not the amount of the difference.

One-factor ANalysis Of Variance (ANOVA)

The objective of the linear hypothesis model the ANOVA is based on is to separate the total
variance of the variable being studied into components that are of experimental interest. In
this case the variable being studied is the predictive accuracy of a rule set. When the total
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Table 23: Data table for the one-factor ANOVA [rows = rule set type,
columns = data set].

Dataset: 1 2 i b Row Mean
Algorithm:
1 Xll X12 Xli le 1.
2 X5 X5y X5 X5 X,
' Xo  Xp Xi Xin Xi
a X, X5 Xy X .
Overall Mean X

variation is split up this way, statistical methods can be utilizedirronatethe effects of
certain interfering variables. This increases the sensitivity of the experiment.

For theexperiments described in thisork, seven different types of rule sets were
generated fosix differentdata sets. Thproblem of interest then is to determine whether
varying the ruleset type irthis manner hadny effect orthe predictive accuracyror the
one-factor ANOVA, the use diifferentdata sets is regarded @&plications ofthe same
experiment. For this experiment, the accuracy values of all combinations of rule set type and
data setan be arranged in a rectangular array with seven rowsiaedlumns, or more
general witha rows and columns, as shown in Table 23. The entries in the right margin of
the table represent tmeans othe correspondingow entries. Thelot inthe subscript
indicates that the summation is with respect to the second of the two subscripts, that is with
respect to columns.

The linear hypothesis model underlying the one-factor ANOVA assumes that the random

variableX; has a meap; that can be written in the form
Hj = KU+ &

wherep denotes the expectediue of X andx denotes the expectedlue of X, - X .

This assumption states that the mean of the varkgbtethe sum of a general mearand a
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row effecte. In addition to this assumptiotihe linear hypothesis model assurntiest the
variablesX; are independently normally distributed with the same variamées

For theproblem of testing the hypothesis, that the theoretical row means p , which are
the expected values tfie ronmeansX, of Table F.Bre equal, théypothesis can be

written in the form

Ho W =B =. ... = Mie. the differences of the samples are not significant.
or equivalently in the form

Hy & =a,=. .. =a,=0,i.e. the differences of the samples are not significant.
The alternative hypothesis of this test is

H,: at least two of the means are not equal, i.e. the differences are significant.

Hypothesis i may beested byusingthe righttail of the F distribution asritical region,

where

a b

a(b-1) 2;213( X - X)
i=1 j=
a b

@1) > > ( )_(ij - %)

i-1j-1

F =

and wherev, =a -1 and v, = a (b - 1) are the degrees of freedom for ttagiable of
interest, in this case the choice of the learning algorithm, and for the error, respectively.

Two-factor ANalysis Of Variance (ANOVA)

The precedingnalysis of variance modefasrelatively simple irthe sense that there was
only one classified variable afterest. Incorporating additionghriables intahe analysis

leads to anore general iear hypothesis model. the two-factormodel one variable (A)

is classified inta categories and the other variable (B) intcategories and the results of the
experiments are displayed in a matrix format similar to Table 23. The difference here is that
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Table 24: Data table for the two-factor ANOVA [rows = rule set type,
columns = data set].

Dataset: 1 2 i b Row Mean
Algorithm:
1 Xll X12 Xli le 1.
2 X5 X5y X5 X5 X,
' Xo  Xp Xi Xin Xi
a X, X5 Xy X .
Column Mean X, X, X, . X, X

the various columns ithe matrix now represent varioudassificationcategories of the
second variable instead of repetitions of an experiment as in the earlier model.

Sincethe secondariable(B) is to beanalyzed in the same manner as the first variable,
it is necessary to include the column means as well as the row means in the analysis. For this
model, therefore, Table 23 is replacediiaple 24. The two-factor ANOVA model assumes
that the random variabk§ has a meap,; that can be written in the form

by =H+a+f

wherep denotes the expected valueXof ; denotes the expected valueXf - X, #hd
denotes the expected value>_(_)§ - X . This assumption states that the mean of the variable
X; is the sum of a general mgara row effects;, and a column effeg@®. In addition to this
assumption, therear hypothesis model assumes thatvariablesX; areindependently
normally distributed with the same varianegs

Now that there arewo variables to be classified, it is possibledst twohypotheses.
Just as in the one-factor model, it is possible to test for equality of the row mgans (H '), but
now it will also be possible to test for equality of column meags (H "):
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1. H"o=a,=..=a, =0
H,": at least one of the's is not equal to zero.
2.H" B=P= .=, =0

H,": at least one of tH¥'s is not equal to zero.

The hypothesesH ' ang H " may be tested by using the right tail of the F distribution as critical

region, where

b
Y (X )2

j=1

Mm

a b
(b-1) XX (X (a-1)
F/ — i=1 j=1 and F// _ i

a b a b
ZZ( X )_(.j+)_()2 ZZ( )_(.j+x)2

i=1 j=1 i=1 j=1

1
[

Xl

respectively, and wherg'=a-1,v,=(a-1)(b-1)andv,'=a-1,v,=(a-1)(b-1)
respectively are the degrees of freedom for the variable of interest, in this case the choice of
the learning algorithm and the choice of the data set respectively, and for the error.

Results of the one-factor ANOVA test
The one-factor classification model is used to determine if a relationship exists between the
variables ofinterest: the predictive accuracy and ithaductive learningnethod. Table 25

Table 25: Data table for the one-factor ANOVA [rows = rule set type,
columns = data set]: Average predictive accuracy [in %].

Data set: Br-cancer-loi  Br-cancer-wi Lymph Iris Credit Vote 1984  Row Mean
Algorithm:
AQ15c ordered rules 66.10 95.57 76.35 89.94 60.59 61.40 74.99
AQ15c unordered rules 60.50 91.28 71.62 84.62 16.83 0.00 54.14
C4.5 decision tree 74.10 93.85 79.05 94.03 85.07 95.86 86.99
CA4.5 ordered rules 71.68 94.14 76.35 94.03 85.21 95.86 86.21
CN2 ordered rules 66.09 94.14 79.05 96.68 80.14 93.10 84.87
CN2 unordered rules 72.02 93.99 79.73 96.68 81.59 93.56 86.26
GIL unordered rules 64.32 94.42 66.89 89.37 84.06 92.88 81.99

Overall Mean 79.35
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Table 26: One-factor ANOVA result table (for the 95% confidence level).

Source of Variation Sum of Degrees of Mean Computed Critical
Squares  Freedom Squares F Value F Value

Learning Algorithm: 5070.79 6 845.13 2.67 2.37

Error: 11095.24 35 317.01

Totals: 16166.04 41

shows the data the one-factor ANOVA is based on. The entties table are the predictive
accuracy valuetor each ruleset type oreachdata set, averaged over thed folds of the
cross-validation experiment described in Appendix C. The results shown in Table 26 indicate
that thehypothesis is rejected, becauke computed Falue isgreater than theritical F

value at the 95% confidence level (= 5% significance level). Hence the predictive accuracy
of a rule set depends on thaule set type, i.e. thereexists a relation
accuracy = f (learning algorithm)

Results of the two-factor ANOVA test
A more sensitive analysis is based on the two-factor classification model. It tests in parallel,
whether thalifferent learning algorithms aribe differentdata sets relate to the predictive
accuracy of a rulset. The data in Table 27 corresponds to the data in Table 25. Only the
column means have beadded. AsTable 28 showshoth, thechoice of thelearning
algorithm as well athe choice of thelata sethave a significant effect aime predictive
accuracy of a rule set at the 98@mfidence level (= 5% significance level), because the two
hypotheses, H ' and,H ", can both be rejected. Hencedkists a relation ofhe form
accuracy = f (learning algorithm, data set)

The one- and two-fact@nalysis of variance showed a significant relationship between
the accuracy of a rule set and the inductive leamiethod used to generate this rule set, but
it did not allow to answer the question, whether the most accurate inductive learning method
is significantly more accurate thafi other methods. The ANOVA tests only showed that
at least the accuracy of one of the methods significantly differsdnenof the other methods.
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Table 27: Data table for the two-factor ANOVA [rows = rule set type,
columns = data set]: Average predictive accuracy [in %].

Data set: Br-cancer-loi  Br-cancer-wi  Lymph Iris Credit Vote 1984  Row Mean
Algorithm:
AQ15c ordered rules 66.10 95.57 76.35 89.94 60.59 61.40 74.99
AQ15c unordered rules 60.50 91.28 71.62 84.62 16.83 0.00 54.14
C4.5 decision tree 74.10 93.85 79.05 94.03 85.07 95.86 86.99
CA4.5 ordered rules 71.68 94.14 76.35 94.03 85.21 95.86 86.21
CN2 ordered rules 66.09 94.14 79.05 96.68 80.14 93.10 84.87
CN2 unordered rules 72.02 93.99 79.73 96.68 81.59 93.56 86.26
GIL unordered rules 64.32 94.42 66.89 89.37 84.06 92.88 81.99
Column Mean 67.83 93.91 75.58 92.19 70.50 76.09 79.35

Table 28: Two-factor ANOVA result table (for the 95% confidence level).

Source of Variation Sum of Degrees of Mean Computed Critical
Squares Freedom Squares F Value F Value

Learning Algorithm: 5070.79 6 845.13 3.73 2.42

Data Set: 4290.36 5 858.07 3.78 2.53

Error: 6804.89 30 226.83

Totals: 16166.04 41

Significance test for the difference of the means of two small samples

In order toobtain a more precise answer to the question of interest, the average accuracy
values of each of thdifferent rule set types has to be compared to that of the C4.5 decision
trees, the rule set type with the highest average accuracy, separately. The comparison of the
learning algorithms in thistudy isonly based orsix datasets and hence a significance test

for small samples (sample si¥&30) has to be applied. Het8tudent's” t distributionhas

been used (Spiegel, 1961; Hoel, 1984).

The goal of the significance test for a particular pair of learning algorithms is to determine
whether or not the difference of the means of the corresponding two samples is significant,
i.e. whether one algorithm is significantly more accurate than the other one. Assuming that
the two random samples of sizds andN, are drawnform normal distributions whose
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standard deviations are equaj € o,) and that these two samples have means and standard
deviations given by_(1 2_(2 and s,, s respectively, the hypothgsis H that the samples come
from the same population (i), = |, as well asy, = ¢,) can be tested using the t score given

by

)_(1_)_(2
o ,/1/N1+1/N2

The distribution of t is Student’s distribution with= N, + N, - 2 degrees of freedom. Here

t = where o =

the sample sizesre determined by theumber ofdata sets, i.eN, =N, = 6. In order to

decide between the hypotheses

Ho M, = K, and the difference in the average accuracies is due to chance.
H,: 1, > K, and C4.5 decision tregs, ) are significantly more accurate than
the other rule set typey).

on the basis of a one-tails@ynificancetest at a 5%evel of significance (95%level of
confidence)H, can be rejected, ifcomputed as above is greater than the critical \tglye
which for v=N;+ N,-2=6 + 6 - 2 = 10degrees of freedom is,; = 1.81

Table 29: Results of the pair-wise significance tests based on
Student’s t distribution.

Algorithms X, s, X, s, t Result

1: C4.5 decision tree 86.99 8.25 74.99 13.66 168 1.68<1.81 => H, cannot be rejected.

2: AQ15c ordered rules The sample means do not differ significantly.
1: C4.5 decision tree 86.99 8.25 54.14 34.10 209 2.09>1.81 => H,can be rejected.

2: AQ15c unordered rules The sample means differ significantly.

1: C4.5 decision tree 86.99 8.25 86.21 9.37 0.14 0.14<1.81 => H, cannot be rejected.

2: CA4.5 ordered rules The sample means do not differ significantly.
1: C4.5 decision tree 86.99 8.25 84.87 10.82 0.35 0.35<1.81 => H, cannot be rejected.

2: CN2 ordered rules The sample means do not differ significantly.
1: C4.5 decision tree 86.99 8.25 86.26 9.03 0.13 0.13<1.81 => H, cannot be rejected.

2: CN2 unordered rules The sample means do not differ significantly.
1: C4.5 decision tree 86.99 8.25 81.99 12.05 0.77 0.77 <1.81 => H, cannot be rejected.

2: GIL unordered rules The sample means do not differ significantly.
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Results of the series of significance tests

The result of the comparison of the accuracy values of all rule set types with C4.5 decision
trees are listed iable29. These results can be summarizedhi® statement, that C4.5
decision trees are significantly more accurate than the AQ15c unordered rules, but they are
not significantly more accurate thafi other rule set types, because the improvement of C4.5
decisiontrees over AQ15c ordered rules, C4.5 ordered rules, CN2 ordered rules, CN2
unordered rules, and GIL unordered rules is not significant. Hence the answer to the question
posed irthis appendix is thaf4.5 decision trees are not significantly more accurate than

the other rule set typesrhe improvement is only significant for one of the six other rule set
types at the 5% significance level (= 95% confidence level)..

The sign test for testing the difference of two medians

The sign test is aon-parametric or distribution-free methoide. it doesot require any
knowledge about thdistributions of theunderlying basic variablesfFor non-parametric
problems related to continuous variables,rtteglianis a more natural measure of location

for a distribution than the mean. The median has the desirable property that the probability
IS % that a sample valueilivexceed the populatianedianregardless of the nature of the
distribution. The sign test can be used for testing the difference of two mediamsaricet

f, be the twocontinuous density functions under discussion an&|letX,, ..., X and

Y., Y, ..., Yrepresensamples of siza taken fromf, and, , respectively. For the purpose

of testing the hypothesis

Ho: f1(x) = f,(x)

the difference%; - Y for I=1,2,...,nare considered. When,H is tro€ andY; constitute a
random sample of size two from the same population. Since the probability that the first of
two sample values will exceed the second is the same as the probability that the second will
exceed thdirst and since, theoreticallyhie probability of a tie iszero, itfollows that the
probability thatX; - Y will be positive is% . Thus, ibnly the signs ofthe differences are
considered, a non-parametric test fgr H can be constructed based on the variable
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Z =1, if X-Y, >0

Z =0, if X-Y,<0

The variabIeZ IS a binomial variableorresponding to a single trial of an experiment for
which p—— Since th&, are independent, their sum=) ', Z wiII be a binomial variable
correspondlng to independent trials of an experiment for whp:h—

In order to use this fact for testing,H , consider as an alternative hypothesgjs to H the
hypothesis

f1(x) = fi(x - )

wherec is some positive constant., Btates that the secodénsity function is merely the

first density function shifted to the left a distance ohits. Under K , th& will tend to be

larger than th&; and the variable) will tend to exceed its expected value-g-af . One would
therefore choose as critical region the right tail of the binomial distributianwa negative,

the left tail would be chosen. IfH was the alternative that a translation of unknown direction
had occurred, both tails would be used.

For greatvalues ofn, thebinomialdistribution can bevell approximated by its normal
approximation,but for very small values ofn it is necessary to calculatke right tail
probabilities until &otal probability of approximately, the desiredignificance level, has
been obtained to obtain tleatical regionfor the test. The right tailprobability for given
sample size and probabilityp of a success in a single trial is computed as

n! p K
KI(n—K)!

n-k

i
P(X<j) = Y P(X=k) where P(X=kK) = q andg=1-p
k=0
X denotes the number of successful trials inals, P(X=k) is the probability ok successful

trials inn trials, andP(X<xj) is the probability of or less successful trials mtrials.

Results of the sign test
Table 30 lists the result of a pair-wise comparison of the predictive accuracy of C4.5 decision
trees withall otherrule set types. The results drsased on theigntestdescribed in the



Table 30: Results of the pair-wise comparison of C4.5 decision trees with the
other rule set types based on the sign tests.

Algorithms U P(X<U)

Result

AQ15c ordered rules 1 0.1094

H, cannot be rejected, i.e. the sample
medians do not differ significantly.

AQ15c unordered rules 0 0.0156

H, can be rejected, i.e. the sample
medians differ significantly.

C4.5 ordered rules 4 0.8906 H, cannot be rejected, i.e. the sample
medians do not differ significantly.
CN2 ordered rules 3 0.6563 H, cannot be rejected, i.e. the sample
medians do not differ significantly.
CN2 unordered rules 3 0.6563 H, cannot be rejected, i.e. the sample
medians do not differ significantly.
GIL unordered rules 1 0.1094 H, cannot be rejected, i.e. the sample

medians do not differ significantly.

previous section. The left tail critical value for a significance level of 5%, U
0 and 1, i.e. fotJ=0 H, can be rejected, while f&f>1 H, cannot be rejected. According to

the sign test, the C4.5 decision trees are only significantly more accurate than the unordered
AQ15c rules at the 59%ignificance level (=95% confidence level)but they are not
significantly more accurate than ordered AQ15c rules, ordered C4.5 rules, ordered and

unordered CN2 rules and unordered GIL rules

, IS between
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