Stand-Alone Untrusted Application

Analyzing Run-time Behavior of Shared-Memory Extensions
Analyzing Future Behavior of Malware

Conclusions

On the Limits of Information Flow Techniques for

Malware Analysis and Containment

Lorenzo Cavallaro! Prateek Saxena® R. Sekar?
Department of Computer Science, UC Santa Barbara®

Department of Computer Science, UC Berkeley?
Department of Computer Science, Stony Brook University?

Gl SIG SIDAR Conference on
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA)

10-11 July, 2008

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 1/21

Stand-Alone Untrusted Application

Analyzing Run-time Behavior of Shared-Memory Extensions
Analyzing Future Behavior of Malware

Conclusions

Static Information Flow Analysis

@ Determines whether the value of a variable x is influenced by
the value of another variable y

@ Typically based on non-interference: Changes to a sensitive
variable y should not result in changes to a public variable x

@ Information flow literature dominated by static analysis

e Purely dynamic analysis techniques cannot capture
non-interference
e Operate on type-safe high-level languages

@ Static analysis is difficult on binaries — especially on malware,
which often employs obfuscation techniques

e Even disassembly is hard.

@ Result: techniques that operate on COTS software typically
use dynamic analysis

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 2/21

Stand-Alone Untrusted Application

Analyzing Run-time Behavior of Shared-Memory Extensions
Analyzing Future Behavior of Malware

Conclusions

Dynamic Information Flow Analysis

. or Taint Analysis in a Nutshell

Determines, at runtime, whether a variable x is influenced by
another variable y

@ Track how a program'’s untrusted data (input) flows into
security-sensitive sinks
o x := y (explicit data-dependent flow)
o if y = k then x = k' (explicit control-dependent flow)
e Implicit flows are not handled.
x=0;
ify=1thenx =1
Note: x has no control dependence on y when y =0

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques

3/21

Stand-Alone Untrusted Application

Analyzing Run-time Behavior of Shared-Memory Extensions
Analyzing Future Behavior of Malware

Conclusions

Dynamic Information Flow Analysis

. or Taint Analysis in a Nutshell

Determines, at runtime, whether a variable x is influenced by
another variable y

@ Track how a program'’s untrusted data (input) flows into
security-sensitive sinks
o x := y (explicit data-dependent flow)
o if y = k then x = k' (explicit control-dependent flow)
e Implicit flows are not handled.
x=0;
ify=1thenx =1
Note: x has no control dependence on y when y =0

T Enforce security policies on sinks to detect improper usage of
tainted data

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 3/21

Stand-Alone Untrusted Application

Analyzing Run-time Behavior of Shared-Memory Extensions
Analyzing Future Behavior of Malware

Conclusions

On the Limits of Information Flow Techniques

Motivation

Dynamic information-flow techniques have been used in the
context of

@ Benign applications
e Memory errors
e Command and SQL injection, Cross-Site Scripting, ...
e Untrusted (i.e., potentially malicious) applications. Examples:

e To detect remote control bot-like behavior
e To discover trigger-based (malicious) behaviors
e To detect plug-ins run-time violation of policies

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 4/21

Stand-Alone Untrusted Application

Analyzing Run-time Behavior of Shared-Memory Extensions
Analyzing Future Behavior of Malware

Conclusions

On the Limits of Information Flow Techniques

Motivation

Dynamic information-flow techniques have been used in the
context of

e Untrusted (i.e., potentially malicious) applications. Examples:

e To detect remote control bot-like behavior
e To discover trigger-based (malicious) behaviors
e To detect plug-ins run-time violation of policies
= Subjected to a slew of evasion techniques, as we'll show in this
talk

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 4 /21

Stand-Alone Untrusted Application

Analyzing Run-time Behavior of Shared-Memory Extensions
Analyzing Future Behavior of Malware

Conclusions

Information Flow for Malware Analysis/Containment |

Detecting remote control bot-like behavior

Stinson et al. suggested a dynamic information flow technique for
detecting “remote control” behavior

@ Bots receive commands from a central site and carry them out

= Manifestation of a flow of information from an input
operation to an output operation

@ Implementation relied on content-based tainting, which is
easily evaded (as noted by Stinson et al)

1 What we show: malware can easily defeat any dynamic
taint-tracking implementation

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 5/21

Stand-Alone Untrusted Application

Analyzing Run-time Behavior of Shared-Memory Extensions
Analyzing Future Behavior of Malware

Conclusions

Information Flow for Malware Analysis/Containment

Analyzing Run-time Behavior of Shared-Memory Extensions

Egele et al. suggested a dynamic information flow for tracking the

flow of confidential data as processed by web browser and Browser
Helper Objects (BHOs)

@ The actions of BHOs loaded in the address space (AS) of the
browser are monitored
@ Needs to distinguish the execution contexts, i.e., proper and
improper use of tainted or sensitive data
o As used by the browser itself
e As used by the BHOs on their own
e As used by the browser on behalf of the BHOs
| What we show: New attacks that (a) involve BHO corruption
of browser data, (b) confuse attribution, or (c) evade
taint-tracking mechanisms

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques

6/21

Stand-Alone Untrusted Application

Analyzing Run-time Behavior of Shared-Memory Extensions
Analyzing Future Behavior of Malware

Conclusions

Information Flow for Malware Analysis/Containment Il

Analyzing Future Behavior of Malware

Moser et al. suggested a dynamic information flow technique to
discover malware behaviors by exploring execution paths

e Taints trigger-related inputs (e.g., calls to obtain time,
network reads)

@ Dynamic taint-tracking exploited to discover input-dependent
conditionals

@ Use a decision procedure to generate values for program
variables that can result in execution of untaken branch

| What we show: Memory errors can embedded in malware to
prevent discovery of input-dependent branches

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 7/21

Stand-Alone Untrusted Application
Evasions
Implications

Analyzing Run-time Behavior of Shared-Memory Extensions
Evasions

Analyzing Future Behavior of Malware
Evasions

Conclusions

Stand-Alone Untrusted Application
Evasions
Implications

Analyzing Run-time Behavior of Shared-Memory Extensions
Evasions

Analyzing Future Behavior of Malware
Evasions

Conclusions

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions Evasions
Analyzing Future Behavior of Malware Implications
Conclusions

Evasion Using Control Dependence

1 char y[256], x[2561;

2

3 int n = read(network, y, sizeof(y));
4 for (int i=0; i < nj; i++) {

5 switch (y[i]) {

6 case 0: x[i] = (char)13; break;
7 case 1: x[i] = (char)14; break;
8 ce

9 case 255: x[i] = (char)12; break;
10 default: break;

11 }

12}

@ y gets copied into x even though there is no explicit direct
assignment between them

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques

10 / 21

© X N U e W N

e e e =
T W N = O

void memcpy(u_char *dst, const u_char *src, size_t n) {
u_char tmp;

for (int i = 0; i < n; i++) {
for (u_char j = 0; j < 2566; j++) {

tmp = 1;

if (srclil != j) {
tmp = 0;

+

if (tmp == 1) {
dst[i] = j;

}

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions Evasions
Analyzing Future Behavior of Malware Implications
Conclusions

Implications

@ Increase of false positives if control-dependences are tracked

= Diminish the ability to distinguish between benign and
malicious behavior

@ Enhancement to resist against implicit-flows evasion

e Treat all data written by an untrusted application to be tainted
= Fine-grained taint-tracking does not provide a benefit over a
coarse-grained, conservative technique

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 12 /21

Stand-Alone Untrusted Application
Evasions
Implications

Analyzing Run-time Behavior of Shared-Memory Extensions
Evasions

Analyzing Future Behavior of Malware
Evasions

Conclusions

Stand-Alone Untrusted Application

Analyzing Run-time Behavior of Shared-Memory Extensions
Analyzing Future Behavior of Malware

Conclusions

Evasions

Evasions

@ Attacks by corrupting the shared address space
e Without touching “sensitive” data

e Corrupt a file descriptor rather than data that is written
o Corrupt domain name (rather than cookies) within a data
structure that keeps track of associations between them

@ Attacking attribution mechanisms

e Modify browser data so that it executes code paths chosen by
BHO

e Violate stack conventions, e.g., return-to-libc attack
e Violate ABI conventions

o Attacking meta-data integrity

e A BHO M races with a benign BHO or core browser to
operate on sensitive data having them marked as untainted

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 14 /21

Stand-Alone Untrusted Application
Evasions
Implications

Analyzing Run-time Behavior of Shared-Memory Extensions
Evasions

Analyzing Future Behavior of Malware
Evasions

Conclusions

Stand-Alone Untrusted Application

Analyzing Run-time Behavior of Shared-Memory Extensions
Analyzing Future Behavior of Malware

Conclusions

Evasions

Evasion

Known Evasions

@ The underlying problems faced by the analysis are undecidable
in general (as noted by the authors)

e A condition C based on one-way hash functions
e Exploration of unbounded number of branches

@ However, attacks that exploit these problems may trigger
suspicion and prompt a more detailed analysis by an expert.

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 16 / 21

Stand-Alone Untrusted Application

Analyzing Run-time Behavior of Shared-Memory Extensions
Analyzing Future Behavior of Malware

Conclusions

Evasions

Evasion

Known Evasions

@ The underlying problems faced by the analysis are undecidable
in general (as noted by the authors)

e A condition C based on one-way hash functions
e Exploration of unbounded number of branches

@ However, attacks that exploit these problems may trigger
suspicion and prompt a more detailed analysis by an expert.

Our goal: develop attacks that are unlikely to raise suspicion)

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 16 / 21

Analyzing Run-time Behavior of Shared-Memory Extensions

Stand-Alone Untrusted Application

Analyzing Future Behavior of Malware (EeEEmiE
Conclusions

Evasion
Using Memory Errors for Evasion
1 int trigger; . 7
2 void procInput(void) { *p = 1; 8
3 int *p = &buf[0]; - 9
4 char buf [4096]; if (trigger) 10
5 e malcode(); 11
6 gets(buf) ; } 12

@ trigger has to be marked tainted, to disclose malcode
@ trigger is never tainted unless p points to it

@ Deciding whether p could point to trigger is undecidable
@ ... but the analysis proposed by Moser et al. could
potentially detect the overflow of buf is possible
= not stealthy-enough ...

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques

17 / 21

int trigger=0;

void procInput(void) {
int pad, n, 1;
char buf [4096+256] ;
int *p = &pad; char *dst;

n = read(s, buf, sizeof (buf));
1 = computespace(buf, n);

dst = alloca(l + 128);
decode(buf, 1, dst);

*p = 1;

if (trigger)
malcode();

Stand-Alone Untrusted Application

Analyzing Run-time Behavior of Shared-Memory Extensions
Analyzing Future Behavior of Malware

Conclusions

Evasions

Evasion
Making Harder to Infer Functions’ Properties

int computespace(char *src, int nread) {
int i, k = 0;
for (i = 0; i < nread; i++) {
switch(src[i]) {
case 0: k++; break;

case 255: k++; break;
}
}
return k;

}

@ computespace is easy to compute

@ ... but it's hard to automatically understand that, at the end
of the computation, k is equal to the length of buf

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 19 /21

Stand-Alone Untrusted Application

Analyzing Run-time Behavior of Shared-Memory Extensions Evasions
Analyzing Future Behavior of Malware
Conclusions

Evasion
Introducing the Vulnerable Condition

void decode(char *src, int nread, char *dst) {
int i, j;
for (i =0, j = 0; i < nread; i++, j++) {
switch(src[il) {
case 0: dst[j] = srcl[il; break;

case 113: dst[j++] = src[il;
dst[j] = srclil;
break;

case 114: dst[j] = src[il; break;

é;ée 255: dst[j] = srclil; break;
¥
}
}

@ decode introduces the condition for an overflow to occur
= dst overflows into p under certain conditions
o The overflow detection requires 25627 tests on the average
e Detection alone, however, does not disclose the malicious code

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques

20 / 21

Stand-Alone Untrusted Application

Analyzing Run-time Behavior of Shared-Memory Extensions
Analyzing Future Behavior of Malware

Conclusions

Conclusions

@ Information flow techniques have been studied for decades

@ Dynamic tainting techniques are quite robust in the context of
software from trusted sources

@ Promising results have been achieved by using these
techniques for malware containment and analysis
e However, malware writers can easily adapt their code to evade
dynamic taint analysis

Utility of taint analysis is rather limited in the context of today’s
binary-based software deployment models

@ Need to develop additional analysis techniques that
complement information flow

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 21 /21

	Stand-Alone Untrusted Application
	Evasions
	Implications

	Analyzing Run-time Behavior of Shared-Memory Extensions
	Evasions

	Analyzing Future Behavior of Malware
	Evasions

	Conclusions

