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Abstract

We study the D-optimal design problem for the common weighted univariate poly-
nomial regression model with e�ciency function λ. We characterize the e�ciency
functions for which an explicit solution of the D-optimal design problem is avail-
able based on a di�erential equation for the logarithmic derivative of the e�ciency
function. In contrast to the common approach which starts with a given e�ciency
function and derives a di�erential equation for the supporting polynomial of the
D-optimal design, we derive a di�erential equation for the e�ciency function, such
that an explicit solution of the D-optimal design problem is possible. The approach
is illustrated for various convex design spaces and is depicted in several new exam-
ples. Also, this concept incorporates all classical e�ciency functions discussed in the
literature so far.

Keywords and Phrases: polynomial regression, heteroscedasticity, optimal design,
Sturm-Liouville problem
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1 INTRODUCTION

1 Introduction
Consider the common univariate polynomial regression model

Y (x) = αT f(x) +
ε√
λ(x)

, (1.1)

where fT (x) = (1, x, x2, . . . , xn) is the vector of regression functions, αT = (α0, . . . , αn)
is the vector of unknown parameters and ε denotes a centered random variable with
constant variance, say σ2 > 0. The design space is denoted by X ⊂ R and we assume
that in principle for each value of the explanatory variable x ∈ X an observation Y (x)
can be made with mean αT f(x) and variance σ2/λ(x), where di�erent observations are
uncorrelated. Throughout this paper λ : X → R+

0 denotes a continuously di�erentiable
function which is positive in the interior of X . The function λ is called e�ciency function
in the design literature and is used to model heteroscedasticity in the data. We call an
e�ciency function λ admissible if it is positive on the interior of the design space X and
if the induced design space

G = {
√

λ(x)f(x) | x ∈ X} ⊂ Rn+1

is bounded.
Optimal designs for the polynomial regression models have been studied by numerous
authors in the literature. Most authors investigate D-optimal designs which minimize
the volume of the con�dence ellipsoid for the vector of unknown parameters. Smith [36]
was among the �rst who studied optimal design problems for polynomial regression. Hoel
[24] and Guest [22] investigated D- and G-optimal designs, respectively and showed that
these designs are identical in the polynomial regression model. These results motivated
Kiefer and Wolfowitz [30] to prove the famous equivalence theorem which establishes the
equivalence between D- and G-optimal designs. This result is a very powerful tool to
verify D-optimality of a given design. Karlin and Studden [28] investigated D-optimal
designs for weighted polynomial regression. Other interesting results can be found in
Antille et al. [1], Chang and Lin [10], Dette [12], Dette et al. [13, 15], Dette and Studden
[16], Dette and Wong [18], Fang [20], Federov [21], He et al. [23], Hoel [24], Huang et al.
[25], Imho� et al. [26], Karlin and Studden [27], Kiefer [29], Lau and Studden [32], Oritz
and Rodrigues [33], Pukelsheim [34] or Studden [37] among others.
It is the purpose of this paper to present a review and uni�ed treatment of the D-optimal
design problem in the weighted, univariate polynomial regression model (1.1) for a broad
class of e�ciency functions. After a brief introduction into the terminology of optimal
design theory we study the situation of D-optimal designs in the weighted polynomial
regression. We consider the case where the logarithmic derivative of the e�ciency function
is a rational function and show that in our setting the D-optimal designs always have
(n + 1) support points. For su�cient conditions such that the D-optimal design for a
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2 D-OPTIMAL DESIGNS FOR WEIGHTED POLYNOMIAL REGRESSION

given e�ciency function and design space X is supported at exactly (n + 1)-points we
refer to Karlin and Studden [27], Chap. X, Theorem 3.6.
In contrast to previous work which starts with a given e�ciency function and derives a
di�erential equation for the supporting polynomial of the D-optimal design, we solve the
di�erential equation with respect to the e�ciency function λ such that the D-optimal
design can be explicitly identi�ed. This allows us to give a rather complete description
of all e�ciency functions for which an analytic solution of the D-optimal design problem
is possible. Roughly speaking, the methodology presented in this paper is applicable
to weighted polynomial regression models with convex design space and any e�ciency
function for which the logarithmic derivative λ′(x)/λ(x) is a rational function, where
the degree of the polynomial in the numerator and denominator is at most 2 and 3,
respectively. As a consequence, our results contain - on the one hand - all solutions of
D-optimal design problems for weighed polynomial regression which have been considered
in the literature so far. On the other hand, numerous new results for D-optimal designs
in the weighted polynomial regression model can be derived from our methodology, where
the e�ciency functions have not been investigated up to now.
The remaining part of this paper is organized as follows. We start to elaborate the main
requirements in Section 2. In the following Sections 3, 4 and 5 we investigate the in�uence
of the design space X on D-optimal designs considering admissible e�ciency functions.
Throughout these sections we also illustrate how D-optimal designs for admissible e�-
ciency functions can be derived using di�erent techniques. Technical details and proofs
of our results can be found in the Appendix.

2 D-optimal designs for weighted polynomial regression
Consider the model (1.1) with mean E[Y (x)] = αT f(x) and (heteroscedastic) variance

V ar(Y (x)) =
σ2

λ(x)
.

An approximate design is a probability measure ξ on the design space X with �nite
support (see e.g. Kiefer [29]). The support points of the design ξ give the locations
where observations are taken, while the weights give the corresponding proportions of
total observations to be taken at these points. For uncorrelated observations (obtained
from an approximate design) the covariance matrix of the least squares estimator for the
parameter vector α is approximately proportional to the matrix

M(ξ) =

ˆ

X
λ(x)f(x)fT (x)dξ(x) ∈ Rn+1×n+1 , (2.1)
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2 D-OPTIMAL DESIGNS FOR WEIGHTED POLYNOMIAL REGRESSION

which is called Fisher information matrix in design literature (see Atkinson and Cook
[3], Atkinson and Donev [4], Federov [21], Pukelsheim [34] or Silvey [35] among many
others).
Throughout this paper we assume that the form of the e�ciency function λ(x) is known
and that the parameters in the variance function are nuisance parameters, which are not of
primary interest for the construction of optimal designs (see Silvey [35]). An approximate
design ξ∗ is called D-optimal for the weighted polynomial regression (1.1) of degree n, if
it maximizes the determinant |M(ξ)|1/(n+1) over all approximate designs. Note that the
D-optimal design does not depend on the scaling of the e�ciency function λ, i.e. the
D-optimal design for the weighted polynomial regression model with e�ciency function λ
and c · λ, c ∈ R+ coincide. If a design, say ξ, is given, its D-optimality can be checked by
the celebrated Kiefer and Wolfowitz equivalence theorem (see Kiefer and Wolfowitz [30]),
which characterizes the D-optimality of ξ by the inequality

d(x, ξ) = λ(x)fT (x)M−1(ξ)f(x) ≤ n + 1 for all x ∈ X . (2.2)
Moreover, if the design ξ is D-optimal, there is equality in (2.2) at its support points.
As a fundamental assumption we suppose that the logarithmic derivative of the e�ciency
function λ(x) is of the form

d

dx
log λ(x) =

λ′(x)

λ(x)
=

Pp1(x)

Qp2(x)
, (2.3)

where Pp1(x) and Qp2(x) are two real valued polynomials of degree p1 and p2, respectively,
with greatest common divisor gcd(Pp1 , Qp2) = 1. We may also assume without loss of
generality that one of the coe�cients of the polynomials is normalized (meaning it equals
1). We note that all e�ciency functions which have been considered in the literature so
far ful�ll assumption (2.3). Some classical and new e�ciency functions satisfying this
assumption can be found in Table 1.
Because of the assumption of a convex design space there are essentially three di�erent
types of designs spaces X , namely

1) X = R if supp(ξ∗) ⊂ R
2) X = R+

0 if supp(ξ∗) ⊂ R+
0

3) X = [0, b] if supp(ξ∗) ⊂ [0, b]

Here supp(ξ∗) denotes the support points of the D-optimal design ξ∗. These design spaces
are discussed in the sections 3, 4 and 5, respectively. Note that all other possible choices
of design spaces on the real axis can be reduced to one of these three situations by
means of linear transformation. The following result shows that for these design spaces,
the D-optimal designs for the weighted polynomial regression model (1.1) with e�ciency
functions satisfying (2.3) with p1 ≤ 2 and p2 ≤ 3 are always supported at n + 1 points.
The proof is given in the Appendix.
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3 DESIGN SPACE X = R

Lemma 2.1. Let λ be an e�ciency function satisfying (2.3) with p = max{p1−1, p2−2} ≤ 1
and assume that the design space is a convex subset of R. Then the D-optimal design for
the weighted polynomial regression model is unique and supported at n + 1 points.

It follows by a standard argument from optimal design theory (see e.g. Silvey [35]) that
the D-optimal design ξ∗ with n+1 support points has equal weights at its support points
because the determinant of the Fisher information matrix can be represented as

|M(ξ∗)| =
( 1

n + 1

)n+1
n∏

j=0

λ(xj)
∏

0≤i<j≤n

(xj − xi)
2 (2.4)

where x0 < x1 < . . . < xn denote the support points of the design ξ∗. Combined with
Lemma 2.1 this yields the following Corollary.

Corollary 2.2. If the assumptions of Lemma 2.1 are satis�ed, the unique D-optimal
design for the weighted polynomial regression model has equal mass at its n + 1 support
points.

The n + 1 support points can in principle be determined by di�erentiating the function
de�ned by (2.4) with respect to the points x0, . . . , xn. However, some care is necessary
using this argument for at least three reasons. First, the gradient of the function (2.4) with
respect to the support points may vanish at several points, and it is not instantly clear
which of these critical points correspond to the support points of the D-optimal design.
Secondly, di�erentiating the function (2.4) yields to a system of nonlinear equations, which
is not easy to handle. Third, if the design space is bounded, di�erentiating with respect
to the extreme support points may not be reasonable. More precisely, the function (2.4)
can always be di�erentiated with respect to points x1, . . . , xn−1, which are located in the
interior of the design space X . On the other hand, the two extreme support points x0 and
xn of the D-optimal design ξ∗ may be located at the left or right boundary of the design
space, provided that the boundary points exist. Consequently, we have to distinguish
between di�erent structures of the design space X and di�erent shapes of the e�ciency
function λ simultaneously.

3 Design space X = R

In the case X = R all support points are interior points of the design space and di�er-
entiating the logarithm of (2.4) with respect to the support points xj, j = 0, . . . , n yields
the system of equations

∂

∂xj

log |M(ξ)| = λ′(xj)

λ(xj)
+

∑

i 6=j

2

xi − xj

= 0, j = 0, . . . , n . (3.1)
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3 DESIGN SPACE X = R

Let

f(x) =
n∏

j=0

(x− xj) =
n+1∑

k=0

skx
k (3.2)

denote the polynomial f which has its roots at the support of the design ξ (sk ∈ R, k = 0, . . . , n+1).
Since (see Pukelsheim [34], Chapter 9.5)

∑

i6=j

2

xi − xj

=
f ′′(xj)

f ′(xj)
,

the system of nonlinear equations (3.1) is then equivalent to
∂

∂xj

log |M(ξ)| = λ′(xj)

λ(xj)
+

f ′′(xj)

f ′(xj)
= 0, j = 0, . . . , n .

Observing the assumption (2.3) we obtain

Pp1(xj)f
′(xj) + Qp2(xj)f

′′(xj) = 0, j = 0, . . . , n .

The function Pp1(x)f ′(x)+Qp2(x)f ′′(x) is a polynomial of degree max{n+ p1, n− 1+ p2}
with roots x0, . . . , xn. With (3.2) it therefore follows for all x ∈ R

Pp1(x)f ′(x) + Qp2(x)f ′′(x) = αRp(x)f(x) . (3.3)

Here Rp(x) denotes a polynomial of degree

p = max{p1 − 1, p2 − 2} ≥ 0 (3.4)

with leading coe�cient 1 and α is a unique constant de�ned by comparing the leading
coe�cients on both sides.
Note that the assumptions on the e�ciency functions yield some conditions for the poly-
nomial in the denominator of (2.3) which will be important in the following discussion.
For example, if p1 > p2 the ratio of the two polynomials can be rewritten

Pp1(x)

Qp2(x)
= P̃p1−p2(x) +

P̂ (x)

Qp2(x)
,

where the degree of P̂ (x) is smaller than the degree of Qp2(x). In this case, all coe�cients
of even powers of the polynomial P̂ (x) have to vanish and the coe�cients corresponding
to odd powers must have negative signs. This follows from integrating (2.3) and the fact
that the induced design space G has to be bounded. It turns out that it is also important
to di�er between the di�erent types of roots of the polynomial Qp2(x). For example, if
p2 = 2, Q2 can have no roots, one root of multiplicity 2, or two di�erent roots. This
classi�cation will be important in the following analysis. Surprisingly, this classi�cation
is not necessary for the polynomial Pp1(x).
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3.1 p=0: "classical" orthogonal polynomials 3 DESIGN SPACE X = R

3.1 p=0: "classical" orthogonal polynomials
A very fundamental observation is that (3.3) de�nes a di�erential equation of second
order for the polynomial f which can be solved explicitly only for p = 0. This particular
case has attracted broad interest and has been studied intensively in literature (see e.g.
Federov [21], Karlin and Studden [27] and Antille et al. [1] among many others). In the
following we show that there exist precisely 2 types of valid e�ciency functions for the
weighted polynomial regression model (1.1) on the design space X = R and p = 0 (this
implies either p1 = 1 or p2 = 2), for which the D-optimal design can be determined
explicitly via the di�erential equation (3.3). The analysis is done in a strict sequential
way and discusses all of the possible combinations of degrees of the polynomials Pp1(x)
and Qp2(x) depending on the value of p as de�ned in (3.4). For this, we �rst analyze the
possible shapes of the polynomials Pp1(x) and Qp2(x) satisfying p = 0. The condition
p = max{p1 − 1, p2 − 2} = 0 yields four cases for the degrees of the polynomials Pp1(x)
and Qp2(x), which are listed in Table 2 and are discussed in the following.

p1 p2 p
a) 1 2 0
b) 1 0 0
c) 1 1 0
d) 0 2 0

Table 2: Possible degrees of the polynomials Pp1 (x ) and Qp2 (x ) on the design space X = R
for p = max{p1 − 1 , p2 − 2} = 0

a) If both polynomials in (3.3) are present with their highest possible degrees - that
is p1 = 1 and p2 = 2 - and Q2(x) has no real root, one may state the di�erential
equation (2.3) as

(log λ(x))′ = 2
c + (a + 1)(x− z1)

1 + (x− z1)2
.

Integrating yields the solution

λ(x) = (1 + (x− z1)
2)a+1 exp

(
2c arctan(x− z1)

)
(3.5)

with z1 ∈ R, a < −n−1 and c ∈ R. Antille et al. [1] considered this e�ciency function for
the case z1 = 0. For arbitrary z1, the unique polynomial solution f(x) of the di�erential
equation (3.3) is given by the Jacobi polynomial

P
(a+ic,a−ic)
n+1 (i(x− z1)) , (3.6)
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3 DESIGN SPACE X = R 3.1 p=0: "classical" orthogonal polynomials

which has (n + 1) real roots (see Szegö [38]). The D-optimal design for the weighted
polynomial regression model with e�ciency (3.5) has equal mass at these points. It is
also worthwhile to mention that the condition a < −n − 1 yields to a bounded design
space G which guarantees the existence of the D-optimal design on X = R. An admissible
e�ciency function of the type (3.5) is shown in the left part of Figure 1. For the cubic
regression model (n = 3), the D-optimal design for e�ciency function (a) has equal
weights at the points 1.6912, 2.13, 2.5645 and 3.2143.

0 1 2 3 4 5
0

x

y

(a) λ(x) = (1 + (x− 2)2)−8 exp
(−4 arctan(x− 2)

)
0 2 4 6 8 10
0

x

y

(b) λ(x) = (x + 2)−15 exp
(− 50

x+2

)

Figure 1: Plot of e�ciency function (3.5) and (3.7)

Next we consider the case where Q2(x) has a root of multiplicity two at the point −z1.
Setting Q2(x) = (x + z1)

2 and P1(x) = α1 + α2(x + z1) yields

(log λ(x))′ =
α1 + α2(x + z1)

(x + z1)2

and results in the e�ciency function

λ(x) = (x + z1)
α2 exp

(
− α1

x + z1

)
. (3.7)

To avoid a pole or root at the point −z1 (recall that λ has to be bounded and strictly
positive) we must set α2 = 0 which contradicts the assumption p1 = 1. Thus, the e�ciency
function de�ned by (3.7) is not admissible on the design space X = R. We will show in
the following sections that it is admissible on other design spaces.
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3.1 p=0: "classical" orthogonal polynomials 3 DESIGN SPACE X = R

If Q2(x) has two di�erent roots, say −z1 and −z2, and p1 = 1, we derive by the same
technique as before

(log λ(x))′ =
−α1(x + z1) + α2(z2 − x))

(x + z1)(z2 − x)

and

λ(x) = (x + z1)
α1(z2 − x)α2 , (3.8)

which is not admissible because it has either roots or poles at the points −z1 and −z2, or
the induced design space G is not bounded.

b) If p1 = 1 and p2 = 0 , we obtain by integrating (2.3) with P1(x) = −2α1(α1x+z1)
and Q0(x) = 1 the solution

λ(x) = exp
(
−(α1x + z1)

2
)

(3.9)

with α1 > 0 and z1 ∈ R. The polynomial solution of the di�erential equation (3.3) with
e�ciency function (3.9) is given by the (n + 1)th (scaled) Hermite polynomial

Hn+1(α1x + z1) . (3.10)

The D-optimal design for the weighted polynomial regression model (1.1) with e�ciency
function (3.9) has equal mass at the roots of this polynomial (see e.g. Federov [21],
Theorem 2.3.3 or Karlin and Studden [27], Theorem 3.5). For the cubic regression model
(n = 3) , the D-optimal design for e�ciency function (3.9) with α1 = 0.5, z1 = 0 has
equal weights at the points −3.30136,−1.0493, 1.0493 and 3.30136.

c) If p2 = 1 and p1 = 1 we obtain by integrating (2.3) with P1(x) = −c(x+z1)+a
and Q1(x) = (x + z1) the e�ciency function

λ(x) = (x + z1)
α exp(−cx) (3.11)

for some constants α, c ∈ R. In this case the induced design space G is not bounded for
any choice c 6= 0. On the other hand, if c = 0, the polynomial degree of P (x) in (2.3)
changes. Thus, this e�ciency function is not admissible on X = R.
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3 DESIGN SPACE X = R 3.2 p=1: no solutions on X = R

d) A similar argument holds in the case p1 = 0 and p2 = 2 with Q2(x) having
no real roots. Integrating (2.3) with P0(x) = −a and Q2(x) = 1 + (x + z1)

2 yields the
e�ciency function

λ(x) = exp
(
a arctan(x + z1)

)
, (3.12)

while a polynomial Q2(x) with two di�erent real roots, say −z1 and −z2, yields

λ(x) =
(x + z1

x + z2

) 1
z2−z1 . (3.13)

If Q2(x) has a real root at −z1 of multiplicity 2, integration of (2.3) gives

λ(x) = exp
( α

x + z1

)
(3.14)

for some α ∈ R. In all three cases the e�ciency functions are not admissible because the
induced design space G is not bounded.
Note that there may exist linear transformations of these e�ciency functions, which might
also yield polynomials satisfying (2.3) with p = 0. Subject to these transformations,
there exist only two admissible e�ciency functions on the design space X = R which
ful�ll assumption (2.3) with p = 0 for which the D-optimal design problem in regression
model (1.1) can be solved explicitly: the e�ciency functions de�ned by (3.5) and (3.9).

3.2 p=1: no solutions on X = R

In contrast to the case p = 0, much less is known about solutions of the di�erential
equation (3.3) with p ≥ 1 (see e.g. Chang [7], Chang and Jiang [8, 9], Chang and Lin
[10], Huang et al. [25]). Note that one has to determine a polynomial solution f of the
equation (3.3), which de�nes the support points of the D-optimal design by its roots.
However, in the case p ≥ 1 there may exist many solutions and it is not instantly clear
which solution corresponds to the D-optimal design. In the following discussion we try
to present a complete description of the structure of the e�ciency functions for which a
solution is possible. In particular we demonstrate that on the design space X = R there
does not exist any admissible e�ciency function for which conditions (2.3) and (3.3) with
p = 1 are satis�ed. On the other hand, if the design space X is of the form [0,∞) or
[0, b], some of the e�ciency functions described here will be admissible and these cases
are investigated in Section 4 and 5. Therefore, the discussion in this section is also useful
for the determination of D-optimal designs on the other design spaces.
Note that in the current case p = max (p1 − 1, p2 − 2) = 1, the di�erential equation (3.3)
takes the form

Pp1(x)f ′(x) + Qp2(x)f ′′(x) = α (x− γ) · f(x), (3.15)

11
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with unknown constant γ ∈ R and the constant α is de�ned by comparing the leading
coe�cients on both sides. From the last equation it follows that Pp1(x) and Qp2(x) are
polynomials of degree at most 2 and 3, respectively. We again have to distinguish between
possible degrees, roots and multiplicities of roots of each of the polynomials Pp1(x) and
Qp2(x). These cases are listed in Table 3 and are carefully discussed in the following
paragraph.

p1 p2 p
a) 2 2 1
b) 2 1 1
c) 2 0 1
d) 2 3 1
e) {0,1} 3 1

Table 3: Possible degrees of the polynomials Pp1 (x ) and Qp2 (x ) on the design space X = R
for p = max{p1 − 1 , p2 − 2} = 1

a) If p1 = 2 and p2 = 2 and the polynomial Q2(x) is positive, we may assume
without loss of generality that Q2(x) = e + (z1 + x)2 with z1 ∈ R (note that the highest
coe�cient is normalized, i.e. equals 1 ). Integrating the logarithmic derivative (2.3) with
P2(x) = a + cx + dx2 yields after some simpli�cations

λ(x) = exp
(
dx + α1 arctan

(x + z1√
e

))
(e + (x + z1)

2)α2 ,

which implies that d = 0 because the induced design space G has to be bounded (note
that X = R). This contradicts the assumption p = 1 and thus the polynomial Q2(x)
must have at least one real root. If Q2(x) has a root of multiplicity 2, say −z1, then
integrating (2.3) yields

λ(x) = (x + z1)
α1 exp

(
dx +

α2

x + z1

)
. (3.16)

Again, the assumption of a bounded induced design space G implies d = 0 which con-
tradicts the assumption p = 1. If Q2(x) has two real roots, say −z1 and −z2, similar
arguments give

λ(x) = (x + z1)
α1(x + z2)

α2 exp(dx) . (3.17)

Once again, we must set d = 0 to ensure a bounded induced design space G which
contradicts the assumption p = 1. Therefore the choice p1 = p2 = 2 does not yield an
admissible e�ciency function on the design space X = R.

12
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b) If Q1(x) has exactly one real root, say z1 ∈ R, then p1 = 2 and p2 = 1 and
this yields with P2(x) = (α1 + 2α2x)(x + z1) + α3 and Q1(x) = (x + z1) the e�ciency

λ(x) = exp
(
α1x + α2x

2
)
(x + z1)

α3 . (3.18)

This e�ciency is only admissible if α3 = 0 in order to avoid either a pole or a root of the
e�ciency λ at the point −z1. A simple calculation shows that this is a contradiction to
gcd(Pp1 , Qp2) = 1 and thus λ is not an admissible e�ciency function on the design space
X = R.

c) If p1 = 2 and p2 = 0 , i.e. Q0(x) is constant, integrating the logarithmic
derivative (2.3) with P2(x) = α1 + x(2α2 + 3α3x) yields

λ(x) = exp
(
α1x + α2x

2 + α3x
3
)

, (3.19)

and the boundedness of the induced design space G yields α3 = 0. This is a contradiction
to p1 = 2 and thus this e�ciency function is not admissible on the design space X = R.

d) The same reasoning applies to the case p1 = 2 and p2 = 3 where Q3(x)
has exactly one real root. We assume Q3(x) = (x + z1)

(
1 + (x + z2)

2
)
with z1, z2 ∈ R

and P2(x) = (x + z1)(α2 + 2(x + z2)) + α1(1 + (x + z2)
2). Integrating the logarithmic

derivative (2.3) gives

λ(x) = (x + z1)
α1 exp

(
α2 arctan(x + z2)

)
(1 + (x + z2)

2)α3 (3.20)

for some constants α1, α2, α3 ∈ R. Because λ(x) is strictly positive on the design space
X = R, it follows that α1 = 0. This choice reduces the degree of the polynomials Pp1(x)
and Qp2(x) in the the logarithmic derivative (2.3) to p1 = 1 and p2 = 2, contradicting the
assumption p = 1. Thus, this e�ciency function is not admissible on the design space
X = R.
Using similar arguments it is easy to see that none of the following choices yield admissible
e�ciency functions for the design space X = R. Nevertheless, we will brie�y state the
resulting e�ciency functions of the remaining cases, since they will be important later
in Section 4 where di�erent design spaces are considered. If the polynomial Q3(x) has a
simple root of multiplicity 3 at −z1, integration of (2.3) yields

λ(x) = (x + z1)
α1 exp

( a2x

(x + z1)2

)
. (3.21)

If Q3(x) has three simple roots, say −z1,−z2,−z3, the resulting e�ciency function λ(x)
is

λ(x) = (x + z1)
α1(x + z2)

α2(x + z3)
α3 (3.22)
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0

The remaining case Q3(x) with a simple root at −z1, and a root of multiplicity 2 at −z2

yields after integration

λ(x) = (x + z1)
α1(x + z2)

α2 exp
( α3

x + z2

)
. (3.23)

e) The same reasoning can be applied for the remaining cases p1 ∈ {0, 1} and
p2 = 3 to show that none of the e�ciency functions is admissible in this case. The
details are omitted for the sake of brevity.
Summarizing the discussion of this section leads the conclusion that on the design space
X = R there does not exist any e�ciency function ful�lling (2.3) with p = 1 in (3.3). In
the following sections we will show that some of these e�ciency functions are admissible
on the design spaces [0,∞) and [0, b].

4 Design space X = R+
0

If the design space X is bounded from below, say X = R+
0 , a similar approach can be

adopted, but some more care is necessary here. One may not be able to di�erentiate (2.4)
with respect to the point x0 if that point is located at the boundary of the design space,
i.e. x0 = 0. Therefore, we must distinguish between the cases of D-optimal designs ξ∗

with smallest support point at x0 = 0 and smallest support point x0 > 0: these two cases
will be investigated separately in Section 4.1 and Section 4.2. Before we discuss these in
detail, we present two auxiliary results, which allow a partial classi�cation of the di�erent
cases. The proofs can be found in the Appendix.

Lemma 4.1. If the e�ciency function λ ful�lls arg maxx∈R+
0

λ(x) = 0, the D-optimal
design ξ∗R+

0

for the regression model (1.1) on the design space X = R+
0 has positive weight

at the point x = 0.

Lemma 4.2. Let λ be an admissible e�ciency function on X = R satisfying (2.3),
p = max{p1− 1, p2− 2} ≤ 1, and let supp(ξ∗R) denote the support of the D-optimal design
ξ∗R on the design space X = R.
If min(supp(ξ∗R)) < 0, the D-optimal design ξ∗R+

0

on X = R+
0 has x0 = 0 as its smallest

support point.

4.1 D-optimal designs with positive support points

We will �rst investigate the case where 0 is not a support point of the D-optimal design,
that is x0 > 0. One necessary - but not su�cient - condition is that the e�ciency
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function λ(x) on the design space X = R+
0 has no global maximum at the point x = 0,

that is arg maxx∈R+
0

λ(x) 6= 0 (see Lemma 4.1). We have to analyze similar problems as
considered in the previous subsections. Because we assume that x0 > 0, we can use the
same calculations as presented in Section 3.1 with the di�erential equation (3.3), where
two di�erences caused by the restricted design space have to be taken into account:

• The admissibility of the e�ciency function has now to be checked under the assump-
tion X = R+

0 . As a consequence, some of the non admissible e�ciency functions for
the design space X = R are now admissible.

• An admissible e�ciency function for the design space X = R is obviously also
admissible in the case X = R+

0 . However, it is not clear if the corresponding
D-optimal design is supported on R+

0 . If this is not the case Lemma 4.2 shows
that x0 = 0 is a support point of the D-optimal design. This case is discussed in
Section 4.2.

4.1.1 p=0: more "classical" orthogonal polynomials

The case p = 0 admits an explicit characterization of the D-optimal designs in terms of
roots of classical orthogonal polynomials. Note that p = max{p1 − 1, p2 − 2} = 0 in (3.3)
implies p1 = 1 or p2 = 2.
In the following paragraph we discuss the cases for p = 0 on the design space X = R+

0 .
All possible combinations for the degrees of the polynomials Pp1(x) and Qp2(x) for p = 0
are listed in Table 2 and have already been discussed in Section 3.1. To see the in�uence
of the design space X on D-optimal designs for certain e�ciency functions, we would like
to point out that the two e�ciency functions (3.7) and (3.11) are both not admissible on
the design space X = R. The situation is di�erent on the design space X = R+

0 .

a) If p1 = 1 and p2 = 2 and the polynomial Q2(x) has no real roots, the corre-
sponding e�ciency function has been derived in Section 3.1 and is shown in (3.5). The
solution of the di�erential equation (3.3) is given by the Jacobi polynomial stated in (3.6).
If jn+1 denotes the largest root of the Jacobi polynomial P

(a+ic,a−ic)
n+1 (ix), and z1 > jn+1,

then it follows that the D-optimal design for the weighted polynomial regression model
is located in X = [0,∞) and puts equal mass at the roots of the Jacobi polynomial de-
�ned in (3.6). The choice z1 ≤ jn+1 is considered in Section4.2.2 because in this case
Lemma 4.2 implies x0 = 0. An admissible e�ciency function of the type (3.5) with
the parameter z1 = 2, a = −9, c = −2 is shown in the left part of in Figure 1. Note
that for the cubic regression model the D-optimal design has equal weights at the points
1.6912, 2.13, 2.5645, 3.2143 and is D-optimal on the design space X = R+

0 and X = R.
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If Q2(x) has a root of multiplicity 2 - that is Q2(x) = (x + z1)
2 - the solution of the

di�erential equation (2.3) has been derived in (3.7). Because the induced design space
has to be bounded it follows that α2 < −2n. Moreover, we also obtain that z1 ≥ 0 and
α1 > −α2z1 because otherwise the e�ciency λ would have a maximum at the point 0
contradicting Lemma 4.1 and the assumption x0 > 0. The polynomial solution of the
di�erential equation (3.3) is derived using the generalized Rodrigues' formula (see Cryer
[11], Erdélyi et al. [19]) and is given by the generalized Bessel polynomial (see Krall and
Frink [31])

Yn+1 (x− z1, α2, α1) =
n+1∑

k=0

(
n + 1

k

)
(n + k + α2 + 1)(k)

(
x− z1

α1

)k

, (4.1)

where z(0) := 1 and z(k) := z(z − 1) . . . (z − k + 1) if k ≥ 1. The support points of the
D-optimal design for the corresponding weighted polynomial regression model (1.1) on
the design space X = R+

0 are given by the roots of the polynomial (4.1) (see Antille et al.
[1]). For example in the cubic regression model the e�ciency function

λ(x) = (x + 2)−15 exp
(− 50

x + 2

)

ful�lls the above condition and the resulting D-optimal design has equal weights at the
points 0.39854, 1.6521, 3.779 and 8.3926. A plot of this e�ciency function is depicted in
the right part of Figure 1.
If Q2(x) has two di�erent roots, the solution of the di�erential equation (2.3) has been
derived in (3.8). This e�ciency is admissible on the design space X = R+

0 if α2 is even,
α1 + α2 < −2n, z1 > 0 and z2 < 0. In this case the e�ciency function λ(x) is decreasing
in X = R+

0 which gives arg maxx∈X λ(x) = 0. By Lemma 4.1 we have for the smallest
support point of the D-optimal design x0 = 0, which is discussed in Section 4.2.2 with a
di�erent technique.

b) Next consider the case p1 = 1 and p2 = 0 , where we obtain the e�ciency
de�ned in (3.9). We may chose α1 6= 0, but to assure that the support of the design
is contained in X = R+

0 , the parameter z1 has to be smaller than the smallest root of
the Hermite polynomial Hn+1(x) because otherwise Lemma 4.2 implies that x0 = 0 (this
case is discussed in Section 4.2.2). Under this assumption the resulting D-optimal design
for the weighted polynomial regression model on the design space X = [0,∞) has equal
weights at the roots of the (n + 1)th Hermite polynomial

Hn+1(α1x + z1) ,

see e.g. Federov [21], Theorem 2.3.3 or Karlin and Studden [27], Theorem 3.5. For exam-
ple, we consider the cubic regression model with e�ciency function λ(x) = exp(−(x−z1)

2)
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(α1 = 1). The smallest root of H4(x) is h1 = −1.65068 and if we set z1 = −3, the e�-
ciency function λ(x) = exp(−(x− 3)2) ful�lls the above condition. The D-optimal design
for the weighted polynomial regression model on the design space X = [0,∞) has equal
weights at the points 1.34932, 2.47535, 3.52465 and 4.65068.

c) Assume p1 = 1 and p2 = 1 and that Q1(x) has a root at the point −z1.
This case has been analyzed in (3.11). To obtain a bounded induced design space G, the
parameters have to ful�ll z1 > 0 and c > 0. Furthermore, α > cz1, because otherwise
the e�ciency λ would have a maximum at the point 0, which would yield x0 = 0 as a
support point as seen in Lemma 4.1 . It is well known that the polynomial solution of
the di�erential equation (3.3) is given by the Laguerre polynomial

L
(α−1)
n+1

(
c(x + z1)

)
, (4.2)

see i.e. Karlin and Studden [27], Theorem 3.4 or Federov [21], Theorem 2.3.3. Conse-
quently, if z1 is smaller than the smallest root of L

(α−1)
n+1 (cx), say l1, then the D-optimal

design is supported at the roots of this polynomial. For the cubic regression model on the
design space X = R+

0 with e�ciency function λ(x) = (x + 2)15 exp(−2x) (z1 = 2, α = 15
and c = 2), we have l1 = 4.488 and the D-optimal design has equal weights at the points
2.488, 5.03455, 8.14108 and 12.3364.

d) For the case p1 = 0 and p2 = 2 we have to distinguish between the di�erent
multiplicities of the roots of the polynomial Q2(x) again. All possible options have been
derived in Section 3.1, see (3.12), (3.13) and (3.14). Similar arguments as given in Sec-
tion 3.1 show that these e�ciency functions are also not admissible on the design space
X = R+

0 .

4.1.2 p=1: "eigenvalue problems"

Note that in this case p = max (p1 − 1, p2 − 2) = 1, and we end up with the di�erential
equation (3.15) with unknown constant γ ∈ R. Since the di�erential equation is the same
as for the design space X = R, all possible candidates of e�ciency functions λ have been
derived in Section 3.2 already, where we showed that on the design space X = R there
does not exist an admissible e�ciency function if p = 1. However, some of these e�ciency
functions are admissible on the restricted design space X = R+

0 and will be discussed in
this section. The possible degrees of the polynomials Pp1(x) and Qp2(x) for p = 1 are
listed in Table 3.
To solve any of the new cases for p = 1 listed in Table 3 we adopt an interesting approach
of Huang et al. [25] and Chang and Lin [10] who identi�ed the support points of the
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D-optimal designs as the roots of a polynomial with coe�cients obtained from the entries
of an eigenvector of a special band matrix A. For this purpose we use the notation
f(x) =

∑n+1
k=0 skx

k for the supporting polynomial of the D-optimal design and rewrite the
di�erential equation (3.15) for the design space X = R+

0 as
(
a + cx + dx2

) n+1∑

k=1

k · skx
k−1 +

(
e + fx + gx2 + hx3

) n+1∑

k=2

(k − 1)k · skx
k−2

= (n + 1)(d + hn) (x− γ) ·
n+1∑

k=0

skx
k ,

where we have used the representation
Pp1(x) = a + cx + dx2

Qp2(x) = e + fx + gx2 + hx3

with some constants a, c, d, e, f, g, h ∈ R. Note that the value of α in (3.15) is determined
by a comparison of the leading coe�cient, i.e. α = (n + 1)(d + hn). Comparing the
coe�cients of xk, k = 0, . . . , n+1, we derive by straightforward (but tedious) calculations
the equation

A · s = γs ,

where the vector s = (s0, . . . , sn+1)
T is given by the coe�cients of the polynomial f(x),

and the matrix A is de�ned as

A =




τ0(0) τ+1(0) τ+2(0) 0 · · · 0
τ−1(1) τ0(1) τ+1(1) τ+2(1) · · · 0

0 τ−1(2) τ0(2) τ+1(2) · · · 0
... ... . . . . . . . . . ...
0 0 · · · τ−1(n) τ0(n) τ+1(n)
0 0 · · · 0 τ−1(n + 1) τ0(n + 1)



∈ R(n+2)×(n+2) . (4.3)

The corresponding entries of the matrix A for the design space X = R+
0 are

τ−1(k) = −
((k − 1) (h(k − 2) + d)

(n + 1)(d + hn)
− 1

)

τ0(k) = −k (c + g(k − 1))

(n + 1)(d + hn)

τ+1(k) = −(k + 1) (a + fk)

(n + 1)(d + hn)
(4.4)

τ+2(k) = − e(k + 1)(k + 2)

(n + 1)(d + hn)
.

Throughout this paper the matrix A plays an essential role in analyzing the case p = 1
and we assume
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Assumption 4.1. The dimension of the eigenspace for each eigenvalue γj, j = 1, . . . , r
of the matrix A de�ned in (4.3) is one. Hence, each of the eigenvector sj corresponding
to the eigenvalue γj, j = 1, . . . , r is unique (up to scalar multiplication).

The following Theorem identi�es the roots of the polynomial f(x) with coe�cients of
the eigenvector corresponding to the smallest eigenvalue of the band matrix A de�ned in
(4.3) as the D-optimal design. The proof is complicated and therefore deferred to the
Appendix.

Theorem 4.3. The D-optimal design for the weighted polynomial regression model (1.1)
on the design space X = R+

0 for an admissible e�ciency function λ satisfying

(log λ(x))′ =
a + cx + dx2

e + fx + gx2 + hx3

has equal mass at (n + 1) support points. If Assumption 4.1 is satis�ed and the smallest
support point of the D-optimal design is positive, then these points are given by the roots
of the polynomial f(x) =

∑n+1
j=0 sjx

j, where the vector of coe�cients sT = (s0, . . . , sn+1)
is the eigenvector corresponding to the smallest eigenvalue of the (n + 2) × (n + 2) band
matrix A de�ned in (4.3). The entries τ−1(k), τ0(k), τ+1(k) and τ+2(k) depend on the the
e�ciency function λ and are given in (4.4).

Remark 4.4. It should be mentioned that Assumption 4.1 is satis�ed in most cases. In
fact we are not aware of any case where it is not satis�ed. To explain this observation we
denote by In+2 the identity matrix of dimension (n + 2) and brie�y justify why

rank(A− γjIn+2) = n + 1

is usually satis�ed for all eigenvalues γj, j = 1, . . . , r. If τ−1(k) 6= 0, k = 1, . . . , n + 1
we are able to eliminate (τ0(0) − γj) by τ−1(1) applying row elimination to the matrix
(A− γjI). Then we eliminate elements above τ−1(2) of the resulting matrix by τ−1(2),
and continuing in this way we end up with the equivalent matrix




0 0 . . . 0 0

τ−1(1) 0
. . . ... ∗

0 τ−1(2)
. . . 0

...
... ... . . . 0 ∗
0 0 . . . τ−1(n + 1) τ0(n + 1)




which shows that rank(A− γjIn+2) = n + 1.
On the other hand, if τ−1(k) = 0 for some k it follows that τ−1(k) as de�ned in (5.2) (and
in all other cases considered in this paper) is strictly monotone in k. Thus, at most one of
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the elements τ−1(k) equals 0 and the matrix A splits in two blocks with the same structure
as A. With the same arguments we obtain that the rank of the matrix A − γjIn+2 is at
least n and at most n+1. Therefore in this case it is possible that the rank of the matrix
A− γjIn+2 is n and this property depends on the structure of the elements of the matrix
A

Remark 4.5. Note that the additional root γ in the di�erential equation (3.15) is always
real, i.e. γ ∈ R, since Lemma A.2 in the Appendix identi�es γ as an eigenvalue of a
Sturm-Liouville system (see e.g. Arfken and Weber [2], Chapter 10 or Birkho� and Rota
[6], Chapter 10).
Remark 4.6. It should be pointed out here that in general - although the polynomial solu-
tion corresponding to the eigenvector of the minimal eigenvalue can always be calculated -
the resulting design is not necessarily the D-optimal design on the design space X = R+

0 ,
because Theorem 4.3 does not guarantee that the roots of the calculated polynomial are
located in the given design space X = R+

0 . This problem mainly a�ects e�ciency func-
tions which have a root in R−. However, it can be shown (see Birkho� and Rota [6],
Chapter 10) that the support points of the design calculated by the method indicated in
Theorem 4.3 are always located in the interval (−z1, +∞), where z1 is the largest root of
the e�ciency function λ. If the smallest support point of the D-optimal design on the
design space X̄ = (−z1, +∞) is negative, Lemma 4.2 states that x0 = 0 on X = R+

0 . With
this knowledge, the polynomial Rp would be of degree p = 2, which yields a di�erential
equation not solvable with the presented approach. Recent research provides a functional
algebraic construction of D-optimal designs for the case p ≥ 2 on design spaces of the
type X = [a, b] where b− a is close to 0, see Chang [7], Chang and Jiang [9], Dette et al.
[17].

In the following, we derive all possible e�ciency functions which can be obtained by
our approach for p = 1. These are listed in Table 3. Since the discussion and imposed
conditions are somewhat intricate, we only elaborate one e�ciency function in detail. For
all other cases listed in Table 3, we only state the necessary properties for the e�ciency
function to be admissible. The detailed veri�cation is left to the reader.

a) The case which will be discussed in more detail is given by p1 = 2 and p2 = 2 ,
and it is additionally assumed that the polynomial Q2(x) has a root of multiplicity 2, say
z1. The corresponding e�ciency function has been derived in (3.16), that is

λ(x) = (x + z1)
α1 exp

(
dx +

α2

x + z1

)
. (4.5)

The assumption of a bounded induced design space G implies d < 0 and the assumptions
on the e�ciency function on the design space X = R+

0 yield z1 ≥ 0. To simplify the
discussion we set d = −1 without loss of generality. Let α1 ∈ R; the e�ciency function λ
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has two possible extrema at

r± =
1

2
(α1 − 2z1 ±

√
α2

1 − 4α2).

If the discriminant is not real or equals zero, the basic shape of λ is controlled by the
exponential term in (4.5) which implies arg maxx∈Xλ(x) = 0 and by Lemma 4.1 x0 = 0.
Consequently, because this case is excluded here, the discriminant has to be positive and
a simple calculation shows that r− always corresponds to a minimum, and r+ always to
a maximum. Furthermore, to avoid arg maxx∈Xλ(x) = 0 a necessary condition is that
the maximum r+ is attained in R+

0 . A straightforward calculation yields the equivalent
condition

α2 < −1

4
(α1 − 2z1)

2 − α1 (4.6)

which also implies r− < 0. This assures arg maxx∈Xλ(x) > 0, and the e�ciency function
λ is admissible if the conditions (4.6), d = −1, z1 > 0 and α1 ∈ R are satis�ed. Only
minor modi�cations are necessary to derive the result for arbitrary d < 0.
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(a) λ(x) = (x + 3)10 exp(−x + 11
x+3 )
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0

x

y

(b) λ(x) = (x + 4)10 exp(−x + 26
x+4 )

Figure 2: Plots of e�ciency function (4.5)

Two possible shapes of the e�ciency function (4.5) are listed in Figure 2. Even though
both e�ciency functions are admissible on the design space X = R+

0 , only the e�ciency
function (a) satis�es condition (4.6). For the e�ciency function (b) the D-optimal design
has x0 = 0 as a support point. The polynomials of the logarithmic derivative of the
e�ciency function (a) are given by

P2(x) = 10 + 4x− x2

Q2(x) = 9 + 6x + x2 = (3 + x)2 .
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0

The D-optimal design for the cubic regression model with e�ciency function (a) is now de-
rived by applying Theorem 4.3. It has equal weights at the points 1.0143, 5.19204, 10.4839
and 17.8842.
If the polynomial Q2(x) is positive integrating the logarithmic derivative (2.3) gives

λ(x) = exp
(
dx + α1 arctan

(x + z1√
e

))
(e + (x + z1)

2)α2 . (4.7)

The corresponding induced design space G is bounded if d < 0 and the non-negativity of
the e�ciency function implies e > 0. The remaining variables may be chosen arbitrary
in R\0 as long as the condition arg maxx∈Xλ(x) 6= 0 is ful�lled. Two typical e�ciency

0 2 4 6 8 10 12 14 16
0

x

y

(a) λ(x) = exp
(
−x+25 arctan

(
x+2

))
(1+(x+2)2)2

0 0.5 1 1.5 2 2.5 3 3.5 4
0

x

y

(b) λ(x) = exp
(
5x+−25 arctan

(
x+2

))
(1+(x+2)2)−5

Figure 3: Plots of e�ciency function (4.7)

functions of the type (4.7) are plotted in Figure 3. Only the e�ciency function (a) is
admissible on the design space X = R+

0 , since the induced design space G corresponding
to e�ciency function (b) is not bounded. For the cubic regression model, the D-optimal
design for e�ciency function (a) has equal mass at the points 2.3458, 5.2517, 9.2767 and
15.2925.
If Q2(x) has two di�erent real roots, we derive the e�ciency function (3.17), that is

λ(x) = (x + z1)
α1(x + z2)

α2 exp(dx) . (4.8)
The assumption of a bounded induced design space G implies d < 0 and z2 > z1 > 0.
We may chose α2 ∈ R arbitrarily, but for the choice of the value of α1 we have to assure
that arg maxx∈Xλ(x) 6= 0. Two typical e�ciency functions of the type (4.8) are plotted
in Figure 4. Note that the e�ciency function (b) is not admissible on the design space
X = R+

0 since it is partly negative. For the cubic regression model, the D-optimal design
for e�ciency function (a) has equal weights at the points 0.486102, 2.26174, 5.40687 and
10.6237.
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(a) λ(x) = x(x + 1) exp(−x)
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(b) λ(x) = (x + 1)(x− 1) exp(−x)

Figure 4: Plots of e�ciency function (4.8)

b) If p1 = 2 and p2 = 1 and the polynomial Q1(x) has exactly one real root, say
−z1, we derive by integrating equation (2.3) the e�ciency function (3.18), i.e.

λ(x) = exp
(
α1x + α2x

2
)
(x + z1)

α3 . (4.9)

The assumption of a bounded induced design space yields α2 < 0 and z1 > 0. No
conditions are necessary for α1 ∈ R but α3 has to be chosen such that the resulting
D-optimal design positive support points.
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(a) λ(x) = exp(2x− 0.5x2)(x + 2)2
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(b) λ(x) = exp(−2x +−x2)(x + 1)−3

Figure 5: Plots of e�ciency function (4.9)
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0

Two e�ciency functions of the type (4.9) are plotted in Figure 5. Both e�ciency functions
are admissible on the design space X = R+

0 . For the cubic regression model, the D-optimal
design for e�ciency function (a) has equal weights at the points 0.486102, 2.26174, 5.40687
and 10.6237. For the e�ciency function (b) the D-optimal design for the weighted poly-
nomial regression has a support point at x0 = 0 because of Lemma 4.1.

c) If p1 = 2 and p2 = 0 and Q0(x) is constant, integrating the logarithmic
derivative (2.3) yields the e�ciency function (3.19), that is

λ(x) = exp
(
α1x + α2x

2 + α3x
3
)

. (4.10)

This function is admissible if α3 < 0. The other variable α1 may be chosen arbitrarily in
R, whereas the constant α2 is restricted by the condition that the smallest support point
of the resulting D-optimal design is not given by x0 = 0. A necessary condition for this
property is arg maxx∈Xλ(x) 6= 0 (see Lemma 4.1).
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(a) λ(x) = exp(2x + 5x2 − 2x3)
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(b) λ(x) = exp(−x− 4x2 − x3)

Figure 6: Plots of e�ciency function (4.10)

Two typical e�ciency functions of the type (4.9) are plotted in Figure 6. For the cubic
regression model, the D-optimal design for e�ciency function (a) has equal mass at the
points 0.8455, 1.4972, 1.9585 and 2.3839. The e�ciency function (b) would yield to a
D-optimal design with x0 = 0 as a support point.

d) The possible e�ciency functions for the choice p1 = 2 and p2 = 3 as a solu-
tion of the di�erential equation (2.3) have been derived in Section 3.2, see the equa-
tions (3.20), (3.21), (3.22), and (3.23). If Q3(x) has a single real root at −z1, i.e.
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0 4.1 D-optimal designs with positive support points

Q3(x) = (x + z1)(1 + (x + z2)
2, we obtain the e�ciency (3.20), that is

λ(x) = (x + z1)
α1 exp

(
α2 arctan(x + z2)

)
(1 + (x + z2)

2)α3 . (4.11)

This function is admissible for α2 ∈ R, z1 ≥ 0, z2 ∈ R and α1 + 2α3 < −2n. Further
conditions on the parameter α1 are needed such that x0 = 0 is not the smallest support
point of the resulting D-optimal design. The detailed (but straightforward) discussion
is left to the reader. Two typical e�ciency functions of the type (4.11) are shown in
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0
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y

(a) λ(x) = x−1 exp(4 arctan(x−2))(1+(x−2)2)−5

0 1 2 3 4 5 6 7
0

x

y

(b) λ(x) = (x+0.1)−2 exp(3 arctan(x−1))(1+(x−1)2)−2

Figure 7: Plots of e�ciency function (4.11)

Figure 7. For the cubic regression model, the D-optimal design for e�ciency function (a)
has equal mass at the points 2.2131, 2.7696, 3.5869 and 5.5037. On the other hand, the
D-optimal design for the polynomial regression model (1.1) with e�ciency function (b)
has a support point at x0 = 0 because of Lemma 4.1.

If Q3(x) has a real root of multiplicity 3, say −z1, we derive the e�ciency (3.21), i.e.

λ(x) = (x + z1)
α1 exp

( a2x

(x + z1)2

)
, (4.12)

which is admissible for z1 > 0, α1 < −2n and α2 > −α1z1. Two typical e�ciency functions
of the type (4.12) are plotted in Figure 8. The e�ciency function (a) is admissible on the
design space X = R+

0 and for the cubic regression model, the D-optimal design has equal
mass at the points 0.23369, 0.57781, 1.1218 and 2.3172. The e�ciency function (b) is not
admissible.
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Figure 8: Plots of e�ciency function (4.12)

The e�ciency function

λ(x) = (x + z1)
α1(x + z2)

α2(x + z3)
α3 (4.13)

is derived if Q3(x) has three di�erent real roots, say −z1,−z2,−z3 (see the discussion
before equation (3.22)). The assumption of a bounded induced design space yields
0 ≤ z3 < z2 < z1, α3 + α2 + α1 < −2n. However, some care is necessary, because
there exist combinations of the parameters αi, i = 1, 2, 3 such that the D-optimal design
is supported at the point x0 = 0.
Two admissible e�ciency functions of the type (4.13) are plotted in Figure 9. For the
cubic regression model, the D-optimal design for e�ciency function (a) has equal mass
at the points 1.51837, 4.21625, 12.8156 and 74.9104. Note that the largest support point
of the D-optimal design is placed at a location with a very low e�ciency, which contra-
dicts intuition. The D-optimal design for the polynomial regression (1.1) with e�ciency
function (b) has positive weight at x0 = 0 because of Lemma 4.1.

Finally, if the polynomial Q3(x) has a simple root at −z1, and a root of multiplicity 2 at
−z2, the e�ciency is given by

λ(x) = (x + z1)
α1(x + z2)

α2 exp
( α3

x + z2

)
(4.14)

(see the discussion before equation (3.22)). This is an admissible e�ciency function if
α1 + α2 < −2n, α3 ∈ R and z1 > z2 > 0. Again, there exist combinations of the
parameters such that the D-optimal design is supported at x0 = 0. The details are
omitted for the sake of brevity.
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Figure 9: Plots of e�ciency function (4.13)

Two admissible e�ciency functions of the type (4.14) are plotted in Figure 10. For the
cubic regression model, the D-optimal design for e�ciency function (a) has equal mass
at the points 0.3956, 0.8256, 1.9952 and 7.3477. The e�ciency function (b) would have
support at the point x0 = 0 because of Lemma 4.1.

e) The resulting e�ciency functions for p1 ∈ {0, 1} and p2 = 3 yield more
restricted versions of the above e�ciency functions. We only illustrate this for the case
where Q3(x) has exactly one real root and p1 = 1. Integrating (2.3) gives

λ(x) = exp
(a1(z1 − z2) + a2(1− z1z2 + z2

2)

1 + (z1 − z2)2
arctan(x + z2)

)( x + z1√
(1 + (x + z2)2)

) a1−a2z1
1+(z1−z2)2

The basic shape of this e�ciency resembles the e�ciency function (4.12) and a similar
discussion yields conditions such that this function is admissible.

4.2 D-optimal designs supported at the boundary
If the D-optimal design has a support point at the boundary of X = [0,∞), it is not
possible to di�erentiate (2.4) with respect to the point x0 = 0 and the arguments used
in Section 3 have to be modi�ed. A similar argument as in the previous section yields in
this case the di�erential equation

x[Pp1(x)f ′(x) + Qp2(x)f ′′(x)] = αRp(x) · f(x) , ∀x ∈ R+ (4.15)

27



4.2 D-optimal designs supported at the boundary 4 DESIGN SPACE X = R+
0

0 1 2 3 4 5 6 7 8 9
0

x

y

(a) λ(x) = (x + 1)−4x−4 exp(− 3
x )

0 1 2 3 4 5
0

x

y
(b) λ(x) = (x + 2)−2(x + 1)−4 exp(− 3

x+2 )

Figure 10: Plots of e�ciency function (4.14)

for the supporting polynomial f(x) =
∏n

j=0(x−xj) of the D-optimal design, where Rp(x)
is a polynomial of degree p = max{p1, p2 − 1}. All possible combinations for the degree
of the polynomials Pp1 and Qp2 are listed in Table 4 for the case p = 0 and Table 5 for
the case p = 1.
There are various reasons why the smallest support point equals 0, for example:

• If arg maxx∈[0,∞) λ(x) = 0, Lemma 4.1 yields that the smallest support point of the
D-optimal design is given by x = 0.

• If the D-optimal design on the design space X = R has negative support, Lemma 4.2
yields that the smallest support point of the D-optimal design is given by x = 0.

Throughout this section we assume that x0 = 0 is a support point of the D-optimal design
and additionally that arg maxx∈[0,∞) λ(x) = 0. It is worthwhile to mention that we may
neglect possible shapes of e�ciency functions by doing so, but due to the generality of
our approach, no other option is available.

4.2.1 p=0: more explicit solutions

We start with the case p = 0, that is max{p1, p2 − 1} = 0. The two possible choices for
the di�erent combinations of the degrees of the polynomials Pp1 and Qp2 in Table 4 lead
to D-optimal designs characterized by roots of classical orthogonal polynomials.
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4 DESIGN SPACE X = R+
0 4.2 D-optimal designs supported at the boundary

p1 p2 p
4.2.1 a) 0 0 0
4.2.1 b) 0 1 0

Table 4: Possible degrees of the polynomials Pp1 (x ) and Qp2 (x ) on the design space
X = R+

0 for p = 0 and x0 = 0

a) If p1 = 0 and p2 = 0 , we obtain by integrating (2.3) the e�ciency function

λ(x) = exp(−ax) , (4.16)

which is admissible for a > 0. The D-optimal design for the weighted polynomial regres-
sion model with e�ciency function (4.16) has equal mass at the roots of the polynomial

xL(1)
n (ax) ,

where L
(1)
n (x) denotes the n-th Laguerre polynomial, see e.g. Federov [21], Theorem 2.3.3

or Karlin and Studden [27], Theorem 3.3. A classical example in the cubic regression
model on the design space X = R+

0 with this e�ciency function is the choice a = 1,
which yields λ(x) = exp(−x). The D-optimal design puts equal mass at the points
0, 0.93582, 3.3054 and 7.7588.

b) In the case p1 = 0 and p2 = 1 , it follows by integrating (2.3)

λ(x) = (x + z1)
a, (4.17)

where −z1 is the root of the polynomial Q1(x). This e�ciency function is admissible if
a < −2n and z1 > 0. The D-optimal design for the weighted polynomial regression model
has equal mass at the roots of the Jacobi polynomial

xP (1,a−1)
n

( 2

z1

x + 1
)

,

see Dette et al. [14]. For the cubic regression model on the design space X = R+
0 , the D-

optimal design for the polynomial regression model with e�ciency function λ(x) = (x+3)−8

has equal mass at the points 0, 0.626136, 3 and 14.3739.

4.2.2 p=1: more "eigenvalue problems"

For p = 1, we restate the di�erential equation (4.15) as

x · [Pp1(x)f ′(x) + Qp2(x)f ′′(x)] = α (x− γ) · f(x), ∀x ∈ X (4.18)
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4.2 D-optimal designs supported at the boundary 4 DESIGN SPACE X = R+
0

p1 p2 p
a) 1 0 1
b) 1 1 1
c) {0,1} 2 1

Table 5: Possible degrees of the polynomials Pp1 (x ) and Qp2 (x ) on the design space
X = R+

0 for p = 1 and x0 = 0

where γ ∈ R is the unknown root of R1(x), p = max (p1, p2 − 1) = 1 and f(x) =
∑n+1

k=0 skx
k

is the unknown polynomial solution. The di�erent combinations for the degrees of the
polynomials Pp1(x) and Qp2(x) are listed in Table 5. All cases have been discussed in
Section 3.1 for the design space X = R and p = 0 already. We will cross-reference the
corresponding e�ciency functions to stress the in�uence of the design space X .
To derive D-optimal designs ξ∗ for an admissible e�ciency function λ(x) with

(log λ(x))′ =
a + cx

d + ex + fx2
(4.19)

one may apply the following Theorem with

τ−1(k) = −
(

(k − 1) (f(k − 2) + c)

(n + 1)(c + fn)
− 1

)
(4.20)

τ0(k) = −k (a + e(k − 1))

(n + 1)(c + fn)

τ+1(k) = − d(k + 1)k

(n + 1)(c + fn)

τ+2(k) = 0 .

as entries of the band matrix A de�ned in (4.3).

Theorem 4.7. The D-optimal design for the weighted polynomial regression model (1.1)
on the design space X = R+

0 for an admissible e�ciency function λ satisfying (4.19)
has equal mass at (n + 1) support points. If Assumption 4.1 is satis�ed and the smallest
support point of the D-optimal design is 0, then these points are given by the roots of the
polynomial f(x) =

∑n+1
j=0 sjx

j, where the vector of coe�cients sT = (s0, . . . , sn+1) is the
eigenvector corresponding to the smallest eigenvalue of the (n + 2)×(n + 2) band matrix A
de�ned in (4.3). The entries τ−1(k), τ0(k), τ+1(k) and τ+2(k) depend on the the e�ciency
function λ and are given in (4.20).

a) If p1 = 1 and p2 = 0 , the corresponding e�ciency function was derived in (3.9)
and was admissible on the design space X = R with α1 > 0 and z1 ∈ R. The support of
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the D-optimal design on the design space X = R is located at the roots of the Hermite
polynomial Hn+1(α1x − z1), see (3.10). If z1 is smaller than the largest root hn+1 of the
(n + 1)th Hermite polynomial Hn+1(x) it follows from Lemma 4.2 that the D-optimal
design on the design space X = R+

0 is supported at x0 = 0 and Theorem 4.7 can be used
to determine the D-optimal design.
For example, if α1 = 5, z1 = 1 we have for the cubic regression model h4 = 1.65068, and
thus the D-optimal design with e�ciency function (a) can be derived by an application
of Theorem 4.7 with (log λ(x))′ = 10−50x

1
. The resulting support points of the D-optimal

design have equal mass at 0, 0.1524, 0.3419 and 0.5569.

b) The case p1 = 1 and p2 = 1 yields the e�ciency function (3.11). This func-
tion is admissible and the D-optimal design yields to a support point at x0 = 0 if the
parameters satisfy z1 > 0, c > 0 and α ≤ cz1. Two e�ciency functions of the type (3.11)
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(a) λ(x) = (x + 1)−5 exp(−x)

0 5 10 15
0

x

y

(b) λ(x) = (x + z1)−5 exp(x)

Figure 11: Plots of e�ciency function (3.11)

are plotted in Figure 11. The e�ciency function (a) is admissible while for e�ciency
function (b) the induced design space G is not bounded. For the cubic regression model,
the D-optimal design for e�ciency function (a) is derived by an application of Theorem
4.7 and has equal mass at the points 0, 0.2465, 1.065 and 3.2871.

c) For the choices p1 ∈ {0, 1} and p2 = 2 we have to distinguish three cases
corresponding to the possible real roots of the polynomial Q2(x) again. For the sake of
brevity we restrict the discussion to the case p1 = 1. It is worthwhile to mention that all
of the following cases yield admissible e�ciency functions on the design space X = R+

0 .
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If p1 = 1 and p2 = 2 , and if Q2(x) has two di�erent real roots, say −z1 and −z2,
we derive the e�ciency function (3.8) again. This e�ciency is admissible if the conditions
z1 > 0, z2 < 0, α2 even, α1 + α2 < −2n and −α2z1 + α1z2 > 0 are satis�ed. These
choices also assure a maximum of λ(x) at x = 0 and it follows from Lemma 4.1 that the
D-optimal design has positive weight at x = 0.
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(a) λ(x) = (x + 1)−5(−3− x)−4
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0
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(b) λ(x) = (x + 1)−5(−3− x)4

Figure 12: Plots of e�ciency function (3.8)

Two e�ciency functions of the type (3.8) are plotted in Figure 12. Even though both
e�ciencies functions look similar, only e�ciency function (a) is admissible for the cubic
regression model on the design space X = R+

0 ; the induced design space G of e�ciency
function (b) is not bounded. The D-optimal design for the cubic regression model with
e�ciency function (a) derived by an application of Theorem 4.7 has equal mass at the
points 0, 0.2609, 1.2287 and 5.1883.
The case where Q2(x) has a real root of multiplicity 2, say −z1, we derive the e�ciency
function (3.7). This function is admissible if α2 < −2n and z1 ≥ 0. Moreover, the
e�ciency function has a maximum at x = 0 if α1 ≤ α2z1.
Finally we consider consider the case where Q2(x) has no real roots. Here the e�ciency
is given in equation (3.5). Again, one may choose a < −n − 1, b ∈ R arbitrarily, but z1

must be smaller than the largest root of of the Jacobi polynomial P
(a+ic,a−ic)
n+1 (ix) to assure

support at x0 = 0.

5 A bounded design space X = [0, b]

A bounded convex design space like X = [0, b] with b > 0 can be treated in a similar
manner. As mentioned in Section 4, one may not be able to di�erentiate (2.4) with
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5 A BOUNDED DESIGN SPACE X = [0, B]

respect to the points x0 or xn if they are located at the boundary of the design space X ,
i.e. x0 = 0 or xn = b. Hence, we have to distinguish three main cases.

• Neither the point 0 nor b is a support point of the D-optimal design.

• The point b is and the point 0 is not a support point of the D-optimal design.

• The points 0 and b are both support points of the D-optimal design.

These three di�erent cases are discussed in Section 5.1, 5.2 and 5.3, respectively. Note
that the fourth case - where the point 0 is and the point b is not a support point of the
D-optimal design - can be reduced to the opposite situation by an application of the linear
transformation

y(x) = b− x

and the following result.

Lemma 5.1. Let x0, . . . , xn denote the support points of the D-optimal design ξ∗ for the
regression model (1.1) on the design space X . Consider the linear transformation

y(x) = α + βx, x ∈ X

with α ∈ R and β ∈ R\0. Then the design putting equal weights on
x0 − α

β
,
x1 − α

β
, . . . ,

xn − α

β

is D-optimal for the e�ciency λ ◦ y on the design space y−1(X ).

A boundary point of the design space X is a support point of the D-optimal design if there
exists a global maximum of the e�ciency function λ(x) at this point (see Lemma 4.1).
As noted before this is only a su�cient but not a necessary condition. In other words
there may exist e�ciency functions which do not have a maximum at one of the boundary
points, but the D-optimal design on the interval X = [0, b] is supported at x = 0 or x = b.
On the other hand, if the e�ciency function λ is admissible on X = R+

0 , and b is larger
than the largest support point of the D-optimal design on X = R+

0 , then this design is
also the D-optimal design on the interval X = [0, b]. We can then use the methodology
presented in the subsections of Section 4 to derive D-optimal designs.
Consequently, most of the possible e�ciency functions are already covered in the dis-
cussion of Section 4.1 and 4.2. For the admissible e�ciency functions presented in
Section 4.1.1 we derive in Section 5.2.2 D-optimal designs with one support point at the
boundary, and for the cases considered in Section 4.2.1 we derive in Section 5.3.2 D-
optimal designs with two support points at the boundary of the design space X = [0, b].
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5.1 No support points at the boundary

We �rst consider the case where neither x = 0 nor x = b are support points of the resulting
D-optimal design. Since all support points are assumed to be in the interior of the design
space, the di�erential equation is given by (3.3), that is

Pp1(x)f ′(x) + Qp2(x)f ′′(x) = αRp(x)f(x), ∀x ∈ X

where p = max(p1 − 1, p2 − 2). There are two major di�erences between admissible
e�ciency functions on the design space X = R+

0 and X = [0, b].

• The e�ciency function λ may have poles or may vanish in XC = [0, b]C .

• It is not required that the e�ciency function λ vanishes at in�nity.

In the following discussion we restrict ourselves to the new cases arising from a bounded
design space like X = [0, b].

5.1.1 p=0: more explicit polynomial solutions

The possible degrees of the polynomials Pp1(x) and Qp2(x) on the design space X = [0, b]
for p = 0 are listed in Table 2. Again, the case p = 0 admits an explicit characterization
of the D-optimal designs in terms of classical orthogonal polynomials.

a) If p1 = 1 and p2 = 2 , possible shapes of e�ciency functions λ(x) have been
discussed in (3.5), (3.7), (3.8). Recall that the D-optimal designs for (3.5) and (3.7) are
determined by the roots of the Jacobi polynomial (3.6) and by the roots of the generalized
Bessel polynomial (4.1), respectively. For the sake of brevity we only present details for
the situation corresponding to (3.8), since the conditions for the other two cases arise
naturally. For the special choice of z1 = 0 and z2 = b in (3.8), we derive for α1 > 0, α2 > 0
the e�ciency function

λ(x) = xα1(b− x)α2 .

This e�ciency function has been considered by numerous authors (e.g. Federov [21],
Theorem 2.3.3 or Karlin and Studden [27], Theorem 3.2). It is well known that the D-
optimal design is supported at the roots of the Jacobi polynomial P

(α1−1,α2−1)
n+1

(
2x−b

b

)
. For

z1 < 0 and z2 > b the D-optimal design has support at the roots of

P
(α1−1,α2−1)
n+1

(
2

x− z1

z2 − z1

− 1
)

,
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(a) λ(x) = (x + 1)3(6− x)4

Figure 13: Plot of e�ciency function (3.5)

provided that the largest and smallest root of this polynomial are contained in the interval
[0, b]. Note that choosing z1 (or z2) too small (or too large) leads to support points which
are not located in the interior of the design space X = [0, b] anymore. For example, if we
choose z1 = −1 and z2 = 6, an admissible e�ciency function of the type (3.5) is plotted in
Figure 13. For the cubic regression model on the design space X = [0, 5], the D-optimal
design for e�ciency function λ(x) = (x + 1)3(6 − x)4 has equal weights at the points
0.5452, 2.0089, 3.5190 and 4.8602.

b) If p1 = 1 and p2 = 0 , we obtain the e�ciency function (3.9). For α1 6= 0
and z1 ∈ R, the D-optimal design on the design space X = R has equal weight at the
roots of the Hermite polynomial Hn+1(α1x + z1) (see e.g. Federov [21], Theorem 2.3.3
or Karlin and Studden [27], Theorem 3.5). If the roots of this polynomial are located
inside the interval [0, b], then the design is also D-optimal on the design space X = [0, b].
Otherwise, Lemma 4.2 yields that at least one of the boundary points is a support point
of the D-optimal design. This case is discussed in Section 5.2.2.

c) Next we consider the case p1 = 1 and p2 = 1 . This case appeared �rst in (3.11),
and the D-optimal design on the design space X = R+

0 has equal mass at the roots of
the Laguerre polynomial (4.2). The condition z1 > 0, c > 0 and α > cz1 have also to be
satis�ed on the design space X = [0, b]. Furthermore, the largest root of L

(α−1)
n+1 (c(x+ z1))

has to be smaller than b. The support points of the D-optimal design on the design space
X = [0, b] are then located at the roots of this polynomial. Otherwise a boundary point
of the design interval is among the support points of the optimal design.
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d) The case p1 = 0 and p2 = 2 has been covered at (3.12), (3.13) and (3.14).
The D-optimal designs for these e�ciency function have always a support point either at
x = 0 or x = b. This case is discussed in Section 5.2.2.

5.1.2 p=1: eigenvalue problems similar to Section 4.1.2

We now consider the case p = 1. The di�erential equation for this case is the same as for
the design spaces X = R and X = R+

0 (with x0 > 0) and is stated in equation (3.15) with
p = max(p1 − 1, p2 − 2) = 1. A necessary condition that the support points are located
in the interior of the design space X = [0, b] is that the e�ciency function λ does not
have a maximum at either one of the boundary points. In general it seems to be di�cult
to specify simple conditions for the e�ciency function λ such that a resulting D-optimal
design is located in the interior of the design space X = [0, b] and a detailed discussion
on this matter would be beyond the scope of this paper.
All of the possible shapes have been discussed before and are listed in Table 3. The
only di�erence now is that we admit e�ciency functions which have roots or are negative
outside of the interval [0, b]. The generalization is straightforward and thus a detailed
treatment is omitted. We also omit this case in the later discussion since the di�erential
equation is essentially the same as in Section 4.1 and thus the analytical results are the
same as well. Refer to Table 3 for possible combinations of the polynomial degrees of
Pp1(x) and Qp2(x), and to the values of τ given in (4.4) which are needed to use Theorem
4.3.

5.2 One support point at the boundary

If the right boundary point xn = b is a support point of the D-optimal design for the
weighted polynomial regression model (1.1) on the design space X = [0, b], similar argu-
ments as in the previous sections give the di�erential equation

(x− b) (Pp1(x)f ′(x) + Qp2(x)f ′′(x)) = αRp(x)f(x), ∀x ∈ X (5.1)

with p = max (p1, p2 − 1). The constant α is determined by comparing the leading coe�-
cients. All possible e�ciency functions have been discussed before but for di�erent design
spaces.

5.2.1 p=0:

Because the discussion for the case p = 0 is essentially the same as in Section 4.2.1, we
omit the details. The possible polynomial degrees for Pp1(x) and Qp2(x) on the design
space X = [0, b] are listed in Table 4.
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5.2.2 p=1: more eigenvalue problems

Similarly, the possible combination for the degrees of the polynomials Pp1(x) and Qp2(x)
have already been discussed in Section 4.2.2 and are listed in Table 5. The case xn = b,
which is assumed in this section, appears for example if the e�ciency function λ either
has a global maximum at b (see proof of Lemma 4.1), or - because of a similar argument
as in the proof of Lemma 4.2 - there exists a D-optimal design on the design space
X = (0, b + δ], δ > 0 with support xn > b.
For the �rst case the conditions on λ arise naturally. For the second case one may
use results of Section 4.1.1 for p = 0 to check if the upper boundary point b of the
design space X = [0, b] is smaller than the largest support point of the D-optimal design
on X = R+

0 . Note that the only "new" admissible e�ciency functions are given by
(3.12), (3.13) and (3.14) with the condition that the e�ciency λ attains its maximum at
b for x ∈ X = [0, b].
To derive D-optimal designs for the case p = 1 on the design space X = [0, b] for admissible
e�ciency functions satisfying (4.19) one may apply the following theorem, where the
entries for the band matrix A de�ned in (4.3) are given by

τ−1(k) = −
(

(k − 1) (f(k − 2) + c)

(n + 1)(c + fn)
− 1

)
(5.2)

τ0(k) = −k ((a− bc) + (e− bf) (k − 1))

(n + 1)(c + fn)

τ+1(k) = −(k + 1) ((d− be) k − ab)

(n + 1)(c + fn)

τ+2(k) =
bd(k + 1)(k + 2)

(n + 1)(c + fn)
.

Theorem 5.2. The D-optimal design for the weighted polynomial regression model (1.1)
on the design space X = [0, b], b > 0 for an admissible e�ciency function λ satisfying
(4.19) has equal mass at (n+1) support points. If Assumption 4.1 is satis�ed, the smallest
support point of the D-optimal design is positive and the largest support point equals b, then
these points are given by the roots of the polynomial f(x) =

∑n+1
j=0 sjx

j, where the vector of
coe�cients sT = (s0, . . . , sn+1) is the eigenvector corresponding to the smallest eigenvalue
of the (n + 2)× (n + 2) band matrix A de�ned in (4.3). The entries τ−1(k), τ0(k), τ+1(k)
and τ+2(k) depend on the the e�ciency function λ and are given in (5.2).

5.3 Two support points at the boundary
If both boundary points of the design space X = [0, b] are support points of the D-optimal
design - i.e. x0 = 0 and xn = b - the di�erential equation is given by

x · (x− b) (Pp1(x)f ′(x) + Qp2(x)f ′′(x)) = αRp(x)f(x), ∀x ∈ X (5.3)
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with p = max (p1 + 1, p2).

5.3.1 p=0: one more "classical" orthogonal polynomial

If p = 0 we have p1 = p2 = 0 and we obtain the di�erential equation

x · (x− b) f ′′(x)− n(n + 1)f(x) = 0 .

Solving (2.3) yields

λ(x) = 1

for some c ∈ R+. This e�ciency function corresponds to homoscedastic data. The D-
optimal design has support at the roots of

x(x− b)L′n
(2x− b

b

)
,

where L′n(x) is the derivative of the nth Legendre polynomial (see e.g. Karlin and Studden
[28], Theorem 3.1 or Pukelsheim [34], Chapter 9.5). For the homoscedastic cubic regression
model on the design space X = [0, 5], the D-optimal design has equal mass at the points
0, 1.382, 3.618 and 5.

5.3.2 p=1: more eigenvalue problems

The case p = 1 for the di�erential equation (5.3) only permits two cases for the polynomials
Pp1(x) and Qp2(x), namely p1 = p2 = 0 and p1 = 0, p2 = 1. To derive D-optimal designs
for an admissible e�ciency function λ(x) with

(log λ(x))′ =
a

d + ex
(5.4)

one may apply the following theorem, where the entries for the band matrix A de�ned
in (4.3) are given by

τ−1(k) = −
(

(k − 1) (e(k − 2) + a)

(n + 1)(a + en)
− 1

)
(5.5)

τ0(k) = −k ((d− be) (k − 1)− ba)

(n + 1)(a + en)

τ+1(k) =
bd(k + 1)k

(n + 1)(a + en)

τ+2(k) = 0 .
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Theorem 5.3. The D-optimal design for the weighted polynomial regression model (1.1)
on the design space X = [0, b], b > 0 for an admissible e�ciency function λ satisfy-
ing (5.4) has equal mass at (n + 1) support points. If Assumption 4.1 is satis�ed and
x0 = 0 and xn = b are both support points of the D-optimal design, then these points
are given by the roots of the polynomial f(x) =

∑n+1
j=0 sjx

j, where the vector of coe�-
cients sT = (s0, . . . , sn+1) is the eigenvector corresponding to the smallest eigenvalue of
the (n + 2) × (n + 2) band matrix A de�ned in (4.3). The entries τ−1(k), τ0(k), τ+1(k)
and τ+2(k) depend on the the e�ciency function λ and are given in (5.5).

We now discuss the two possible cases which have also been analyzed in Chang and Lin
[10] but in a less general fashion. If p1 = 0 and p2 = 0 , equation (2.3) takes the form
P0(x)/Q0(x) = −a and the corresponding e�ciency function is listed in equation (4.16).
To guarantee that the D-optimal design has a support point at xn = b , the largest root
of the Laguerre polynomial L

(1)
n (ax) has to be larger than b. If we choose with a = 1 the

e�ciency function λ(x) = exp(−x), the largest root of L
(1)
n (x) is 7.7588. On the design

space X = [0, 5], the D-optimal design is derived by an application of Theorem 5.3 and
puts equal mass at the points 0, 0.7822, 2.6291 and 5.
The remaining case p1 = 0 and p2 = 1 has been discussed in (4.17). If the imposed
conditions a < 2n and z1 > 0 remain active, the D-optimal design on the design space
X = R+

0 has support at the roots of the Jacobi polynomial xP
(1,a−1)
n ( 2

z1
x + 1). If the

largest root of this polynomial is larger than b, then the D-optimal design on X = [0, b]
puts weights at the boundary points 0 and b. To illustrate the results we consider the
e�ciency function λ(x) = (x + 3)−8, for which the largest root of that Jacobi polynomial
is 14.3739. Thus, on the design space X = [0, 5] the D-optimal design can be calculated
with the aid of Theorem 5.3. The resulting design for the cubic regression model puts
equal mass at the support points 0, 0.4977, 2.0515 and 5.
We may now also chose a 6= 0 and z1 ∈ [0, b]C arbitrarily. But for this choice it must
be veri�ed that the D-optimal design is supported at 0 and b. For example, the choice
a = z1 = 4 results in the e�ciency function λ(x) = (x + 4)4. The D-optimal design
for the weighted cubic regression model on the design space X = [0, 5] is derived by an
application of Theorem 5.3 and puts equal mass at the points 0, 2, 4 and 5.
In either case, the D-optimal design can be calculated with Theorem 5.3.

A Appendix: Proofs
Proof of Lemma 2.1. We prove the case p = max{p1 − 1, p2 − 2} = 1 and assume that
all support points are located inside the design space X . The remaining cases follow
analogously.
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We �rst show that the D-optimal design ξ∗ is supported at n + 1 points. The dispersion
function (2.2) can be restated without loss of generality as

d(x, ξ) = λ(x) · T2n(x) (A.1)

where in the following discussion Ti(x) denotes a polynomial of degree i. We set the
derivative of (A.1) equal zero and observe assumption (2.3), i.e.

Qp2(x)T2n−1(x) + Pp1(x)T2n(x) = 0 . (A.2)

Because max{p1 − 1, p2 − 2} = 1, the polynomial on the left hand side of equation (A.2)
has at most 2n + 2 extreme points. Let ξ∗ denote the D-optimal design and N the
number of its support points. From standard arguments in design literature it follows
that N ≥ n + 1 and we assume N ≥ n + 2. The dispersion function (2.2) has global
maxima at the support points of the D-optimal design. This yields at least n + 2 local
maxima and n + 1 local minima in between resulting in at least 2n + 3 critical points
contradicting the polynomial degree of (A.2) (note that all support points are located
in the interior of the design space). Thus, the assumption that the D-optimal design ξ∗

has more than n + 1 support points is false. There exists a D-optimal design, and since
N ≥ n + 1 it follows that any D-optimal design has N = n + 1 support points.
We now prove the uniqueness of the D-optimal design ξ∗. For this, we have to show
that the D-optimal information matrix M∗ is uniquely determined by a single design
ξ∗ = arg maxξ det(M(ξ)) where

M∗ = M(ξ∗)

and M as de�ned in (2.1). From Silvey [35], Sec. 3.4 it follows that the set of design
measures is convex, and the set of D-optimal design measures is also convex. Thus, if
there exist two two di�erent D-optimal designs, say ξ∗ and ξ (both with information
matrix M∗), then the design

η = αξ∗ + (1− α)ξ, 0 ≤ α ≤ 1

would also be D-optimal, again producing the same D-optimal information matrix M∗.
From the �rst part of this proof it follows that a D-optimal design is supported at n + 1
points, but the design η has at least n + 2 support points for 0 < α < 1 because the two
designs ξ∗ and ξ are di�erent. This is a contradiction and therefore the D-optimal design
ξ∗ is unique.

Proof of Lemma 4.1. The determinant of the matrix M(ξ) for a (n + 1) point design ξ is
given by

|M(ξ)| =
( 1

n + 1

)n+1

·
n∏

j=0

λ(xj) ·
∏

0≤i<j≤n

(xj − xi)
2 .
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For D-optimality, this expression has to be maximized with respect to the support points
xj for j = 0, . . . , n. Maximizing |M(ξ)| with respect to x0 ∈ X for �xed x1, . . . , xn readily
yields the assertion.

Proof of Lemma 4.2. We only demonstrate the case p = 0. The case p = 1 is derived by
the same arguments. Let λ be an admissible e�ciency function on the design space X = R,
and let ξ∗R denote the D-optimal design having at least one negative support point. Thus,
the D-optimal design ξ∗R+

0

on the design space X = R+
0 has to di�er from the D-optimal

design ξ∗R on the design space X = R. We assume that the smallest support point of ξ∗R+
0

is positive. The same reasoning as in the proof of Lemma 2.1 yields equation (A.2) where
the degree of the corresponding polynomial is (2n+1) because p = max{p1−1, p2−2} = 0.
Since there is equality in (2.2) at the (n+1) support points of ξ∗R+

0

, there are (n+1) local
maxima and n local minima resulting in at least (2n + 1) critical points. Since the design
ξ∗R+

0

is not D-optimal on the design space X = R (because min supp(ξ∗R) < 0), the function
d de�ned in (2.2) must exceed (n+1) somewhere in R−. This requires another minimum,
because the e�ciency function λ has no roots or poles on R, which contradicts the degree
of the polynomial on the left hand side of (A.2). Thus, x0 = 0 is always a support point
of the design ξ∗R+

0

.

Proof of Lemma 5.1. The D-optimality criterion maximizes the determinant of the Fisher
information matrix (2.1). In the case of (n + 1) support points, the weights are uniform,
and the determinant can explicitly be stated as (2.4). A straightforward calculation yields
the assertion.

Proof of Theorem 4.3, 4.7, 5.2 and 5.3. It follows instantly that the resulting D-optimal
design is equally supported at (n + 1) support points because of Corollary 2.2. We only
prove Theorem 5.2, where the design space is given by X = [0, b] with x0 > 0 and
p = max (p1, p2 − 1) = 1. The arguments only need to be slightly modi�ed for the re-
maining cases and are omitted for the sake of brevity.
Note that it can be shown that b is always an eigenvalue of the matrix A, whose cor-
responding polynomial (determined by the coe�cients of the corresponding eigenvector)
yields to a non-valid solution because equation (5.1) reduces with the choice γ = b to
equation (3.3) with p = 0. Thus, let γj, j = 1, . . . , r denote the distinct eigenvalues of A
excluding b. We split the proof into 4 parts.
Lemma A.1. The upper bound b of the design space X is always a root of any polynomial
f which is a solution of the di�erential equation (5.1).
Lemma A.2. All eigenvalues γj, j = 1, . . . , r are real.
Lemma A.3. Let ξ∗ denote the D-optimal design for the design space X = [0, b]. Then,
the slope of the function on the left hand side of (2.2) at the point xn = b is strictly
positive i.e. d′(b, ξ∗) > 0.
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Lemma A.4. The D-optimal design for the weighted polynomial regression model (1.1)
has equal masses at the roots of the polynomial fT sj, where sj is the eigenvector corre-
sponding to the smallest eigenvalue γj 6= b, j = 1, . . . , r of the matrix A de�ned in (4.3).

Proof of Lemma A.1. It follows by a direct calculation that the vector fT (b) = (1, b, b2, . . . , bn+1)
is a left eigenvector of the matrix A for the eigenvalue γ = b, i.e.

fT (b) · A = bfT (b) .

Consequently, we observe that

fj(b) = fT (b) · sj =
1

b
fT (b) · A · sj =

1

b
fT (b) · γj · sj =

γj

b
fT (b) · sj =

γj

b
· fj(b)

for any polynomial solution fj(x) = (1, x, . . . , xn+1) · sj corresponding to the eigenvector
sj and its eigenvalue γj 6= b, j = 1, . . . , r, which gives fj(b) = 0 for all j = 1, . . . , r.

Proof of Lemma A.2. We state equation (5.1) as a singular Sturm-Liouville equation with
boundary condition f(b) = 0 and the requirement of a polynomial solution of degree
(n + 2). See e.g. Birkho� and Rota [6], Chapter 10 for a more detailed discussion of this
topic.
We start by restating equation (5.1) as

L[f ] + (−γ)ρ(x)f = 0, x ∈ [0, b] (A.3)

with

L[f ] =
d

dx

[
p(x)

df

dx

]
+ q(x)f(x)

p(x) = λ(x)

ρ(x) = |α| · λ(x) /
(
Qp2(x)(b− x)

)

q(x) = |α| · x · λ(x) /
(
Qp2(x)(b− x)

)
.

Equation (A.3) is the general form of a Sturm-Liouville equation. Note that both p(x)
and ρ(x) are real valued, positive functions on (0, b) since the polynomial Qp2(x) has no
roots in X = (0, b), and because we can assume that Qp2(x) is positive in X without loss
of generality. This set is singular because the functions p(x) and ρ(x) either vanish or
are singular at the boundary points x = 0 and x = b. Nevertheless, several properties of
a regular Sturm-Liouville system still apply here: the di�erential operator L is still self-
adjoint for the solution set (see Birkho� and Rota [6], Chapter 10 or Arfken and Weber
[2], Chapter 9). Eigenvalues of self-adjoint operators are always real valued.
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Proof of Lemma A.3. Let ξ∗ denote the D-optimal design for the design space X = [0, b]
with positive smallest support point x0. The derivation of the right hand side of (2.2) has
been derived in the proof of Lemma 4.2 and is given by

d′(x, ξ∗) = λ(x)T2n−1(x) + λ′(x)T2n(x)

where Ti(x) denotes a polynomial of degree i. This function vanishes for all interior
support points xj, j = 0, . . . , n − 1 (compare (A.2)). Furthermore, the derivative at b
needs to be d′(b, ξ∗) 6= 0 because otherwise this design would also be optimal for the
unbounded design space X = R+. This can be seen by applying a similar counting
argument as in the proof of Lemma 4.2. On the other hand, d′(b, ξ∗) cannot be negative
either: if d′(b, ξ∗) < 0 there must be an x̃ ∈ X , x̃ ∈ (0, b] with d(x̃, ξ∗) > 1. This
contradicts the Kiefer-Wolfowitz theorem because the design ξ∗ is D-optimal.

Proof of Lemma A.4. We arrange the distinct eigenvalues which are di�erent from b as
γ1 < ... < γr and denote by nj the number of roots of the corresponding polynomial
solution fj(x) = (1, x, . . . , xn+1) · sT

j falling into the design space X = (0, b]. Using

d

dx

[
p(x)

df

dx

]
+ ((−γ)ρ(x) + q(x)) f(x) = 0

as derived in the proof of Lemma A.2 allows us to apply the Sturm-Comparison-Theorem
(see Birkho� and Rota [6], Theorem 10.3 or Szegö [38], Theorem 1.82.1), which yields
that the corresponding number of roots are decreasing, i.e.

n + 1 ≥ n1 ≥ ... ≥ nr . (A.4)

Note that all polynomials fj(b) = 0, j = 1, . . . , r because of Lemma A.1.
In what follows we present a careful counting argument of the possible extrema of the
function d(x, ξ∗R+

0

), where ξ∗R+
0

denotes the D-optimal design on R+
0 . The same arguing as

used in the proof of Lemma 2.1 yields that the equation d′(x, ξ∗R+
0

) = 0 is equivalent to
(A.2), which is in this case a polynomial of degree (2n+1) because p = max{p1, p2−1} = 1.
Consequently, the function d(x, ξ∗R+

0

) has at most (2n + 1) local extrema.

Let us assume that there exist two di�erent (n + 1) point designs, say ξ∗ and ξ, with
support within the design space X = [0, b] originating from two di�erent eigenvalues.
Since the D-optimality criterion is strictly concave, only one solution can be D-optimal.
Otherwise, both designs would have to produce the same information matrix M (as de�ned
in (2.1)) which is not possible in our setting, see the proof of Lemma 2.1. Without loss
of generality, let ξ∗ be the D-optimal solution. With the same arguments as in the proof
of Lemma 2.1 we derive that the structure of an optimal design ξ∗ follows a unique and
somewhat �xed pattern: there exist 2n points in the interval (0, b) solving the equation
d′(x, ξ∗R+

0

) = 0, which corresponds to n maxima and n minima.
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On the other hand, for the non-optimal design ξ with design points x0, . . . , xn, there exists
at least one x̃ ∈ [0, b] with d(x̃, ξ) > (n + 1). Note that the function d′(x, ξ) = 0 satis�es

d′(xi, ξ) = 0, i = 0, . . . , n− 1 (A.5)

because the corresponding polynomial fT sj is a solution of the di�erential equation (5.1).
Let us �rst consider the case where the function on the left hand side of equation (2.2)
crosses the line y = (n + 1) at two consecutive support points xi, xi+1 and is larger than
n + 1 in the interval (xi, xi+1). This means that xi and xi+1 are roots of the order larger
than two because of equation (A.5). Counting the required roots of (A.2) yields n roots
for the support points, n roots for local minima, and 2 additional roots for the second
derivative at the points xi, xi+1. Thus, there are at least (2n + 2) roots of (A.2) inside
the design space X = [0, b] (counting with their multiplicities). This contradicts the
polynomial degree of (2n+1) of (A.2). On the other hand, if we cross y = n+1 at a point
x 6∈ supp(ξ), then there is at least one additional maximum and minimum. A similar
argument shows that this is not possible.
Therefore, because there exists a D-optimal designs, the inequality (A.4) is strict for the
smallest eigenvalue, i.e n + 1 = n1 > n2, which yields the desired result.
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