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Chapter 1
Introduction

1.1 General Motivation

In statistics, inference on parameters of a given probability distribution is usually made by

means of point estimation, based on observed data from the distribution under study.

In several fields of statistical practice though, it is of interest to estimate functions of

parameters instead of the parameters themselves. Nonlinear functions, see Definition 16,

are useful for describing the properties of a certain population or even for comparing the

properties of two different populations.

The main motivation for this type of approach comes from Casella and Berger (1990, p.

330) who investigated the estimation of two specific nonlinear functions; the inverse of the

mean, see Definition 11, and the ratio of two means, see Definition 9. For the estimation of

such functions in the aforementioned work a first-order approximation of the arithmetical

mean, see Definition 7, was used.

This work will focus on sufficiently smooth functions which are functions that have contin-

uous derivatives up to some desired order, see Definition 1.
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Neudecker and Trenkler (2002) show that in good approximation such a function can be

written as a sum of a linear and a quadratic form, see Definition 5. Similarly, Taylor Series

provide a means of approximating a function through polynomials, see Definition 3.

The fundamental aim of this work is to introduce a new method for handling the statistical

inference of functions of distribution parameters θ or of random variables. Due to its

complex nature, this work will focus specifically on nonlinear, sufficiently smooth (NLSS)

functions, see Definition 2. For a review of the underlying theoretical principles, ideas and

methods of point estimation, reference is made to standard books by Lehmann (1983) and

Zacks (1971), the former containing a more intuitive and applied approach towards this

topic.

For the estimation of transformations or NLSS functions f(θ) of distribution parameters θ

under simple random schemes, the usual choices are: either to calculate the transformation

of the estimator of θ, or to calculate the estimator of the transformed data. In the first

approach the estimation is made before the transformation and in the second the estimation

is made after the transformation, i.e. the function is applied on the estimator in the first

case and on the data in the second. This has influence on the bias and the variance of the

respective estimators, which will be shown in Section 2.2.

In comparative analysis, effects are commonly expressed as ratios. In particular, in bio-

assays the calculation of the relative potency requires the estimation of the ratio of two

normal means, see Definition 9. The first work in this context, and the extension to multiple

regression, was presented by Finney (1971). In Section 2.1 former research on this topic is

presented.

In statistical practice, sometimes the data need to be transformed; such transformations are

frequently used to stabilise the variance and/or to produce linearity or additivity. Reduction

in non-normality might also require such transformations, especially a logarithmical trans-

formation, see Section 6.2.2. The ratio of two lognormal means has been widely discussed

in the bio-statistic literature, where different estimators have been deduced. Estimations

2



1.2 Problem Statement

of this kind are commonly used in studies of equivalence of treatments, e.g. in the bio-

equivalence analysis.

In general, statistical inference is more intricate for a ratio of parameters than for linear

combinations of them. The task of making inferences about the ratio of two normal means

can be addressed within at least two different scenarios. First, if the corresponding variances

are equal, a simple solution can be obtained using the Bayesian approach, see Bernardo

(1977) and Bernardo and Ramón (1998). Second, if the assumption of equal variances

cannot be sustained, the frequentist approach can offer approximate (asymptotic) answers.

Estimation of the inverse of the population mean, see Definition 11, is used in many situ-

ations, for instance in Econometrics and Biological Sciences, see Zellner (1978), who pre-

sented a Minimum Expected Loss (MELO) estimator. The MELO and Maximum Likeli-

hood (ML) estimators, see Definition 24, have very different finite sample properties; but

as the sample size becomes larger, their large sample distributions become identical.

1.2 Problem Statement

Most published methods concerning the estimation of nonlinear functions, though, are

asymptotic in nature as well as based on the assumption of normal distribution and that the

random variables involved are not correlated. Therefore, the general application of those

methods of inference in small-sample data analysis, particularly for data from biological

and medical experiments, would be nearly impossible. For instance, existing methods

for comparing the means of two independent skewed lognormal distributions by means of

ratios have been shown not to perform well in a range of small-sample settings such as a

bio-availability study, see Crow (1977) and Shaban (1981).

The new inference method, to be presented in this work, is not based on any assumption

of any type of distribution or of any data structure. In this work different simulations will

be carried out in order to observe how the new method works under different distribution

assumptions and sample sizes. This method can even be used for comparing the parameters

3
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of two correlated distributions. To enable this comparison a new approach for generating

correlated random variables will also be developed.

The inference methods presented in literature have several good properties, which will be

discussed in Section 2. One inherent disadvantage of one of these methods is the non-

existence of higher order moments. This has significant implications in different data anal-

ysis situations. In particular, this problem appears when the inverse of the mean, see

Definition 11, is the function of interest. Due to the invariance property, Zacks (1971), p.

223, the inverse of the sample mean is the maximum likelihood estimator of the inverse

of the population mean under normality. Such an estimator is biased and has no second

or higher order moments, which is also the case with quite a few other distributions. The

problem of non-existence of moments is explained in Appendix A.6.

The first and second moments of the new inference method will be approximated, on the

basis of a linear plus quadratic function, as presented in Neudecker and Trenkler (2005a).

Thus, the problem of non-existence of higher order moments does not appear in this new

approach. For the calculation of these moments for correlated random variables, a new

approach based on Kleffe and Rao (1988) will also be developed.

1.3 Structure

This work is organised as follows:

In Section 2, NLSS functions are defined, see Definition 2. The general procedure used for

the estimation of such a function is also presented as well as previous investigations made

into this subject.

As mentioned in Section 1.1, the main motivation for the estimation of NLSS functions

comes from Casella and Berger (1990). Their general procedure will also be presented

in Section 2, as well as the mathematical foundations of Taylor Series, necessary for the

approximation of these functions.

4



1.3 Structure

The estimation of NLSS functions, such as f(θ), with θ a vector of parameters of a given

distribution, is presented in Section 3. Two inference methods, the transformation of the

estimator of the parameter involved, and the estimator of the transformed data, as well as

their basic properties are also illustrated in this section.

Approximated means and variances of the aforementioned estimators, as well as an approx-

imation of the covariance between them, are presented in this section.

In Section 4 an unbiased estimator for approximated NLSS functions f(θ), derived by using

the generalised Jackknife approach, will be presented.

In Section 5, it will be shown that the variance of the generalised Jackknife estimator can be

minimised with small bias. In the same section it will be explained how this minimisation

can be made and at the same time the most important properties of the resulting estimator

will be presented. The resulting estimator will have minimal Mean Squared Error (MSE).

In Section 6 estimation of some specific NLSS functions of parameters of distributions will

be investigated. As first NLSS function the estimation of the ratio of means is considered,

for this function different estimators from literature will be compared, by means of their

approximated MSEs and of simulations, with the generalised Jackknife estimator and with

the minimal MSE deduced in this work. Other functions to be investigated are the inverse

of the mean and the odds used for the calculation of the odds ratio.

Due to the nature of the new approach presented, several unsolved problems arise. In

Section 7 such problems and challenges are presented.

5
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Chapter 2
Estimation of NLSS Functions

Contents

2.1 Background and Literature Review . . . . . . . . . . . . . . . . 8

2.2 Definitions and Methods . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 General Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

In this section, the most significant results concerning the estimation of NLSS functions

presented in literature will be described.

The relevant definitions and general procedure used to develop a new inference method of

NLSS functions are also presented in this section.



2 Estimation of NLSS Functions

2.1 Background and Literature Review

One of the first works on inference for ratios of normal means with application to bio-

assays was published by Fieller (1944). Based on the fiducial argument Fieller and Creasy

(1954) proposed different solutions to the problem of building a confidence interval for the

ratio of means. This solution was controversial and prompted several discussions because

conventional methods had no principles for dealing with it. It is a prime example of an

estimation problem for which only Bayesian methods provide the technical requirements to

solve it. On the other hand, the main difficulty from the frequentist point of view is that,

with probability one, the expected longitude of any confidence interval for the ratio of two

normal means is infinite (Gleser and Hwang (1987)). In literature, this problem has been

approached from a Bayesian point of view. One of the first works in which this can be

seen is that presented by Bernardo (1977), who obtained the final distribution for the case

where the sample sizes and the variances are equal.

Crow (1977) derived a Minimum Variance Unbiased Estimator (MVUE) for the ratio of

means of two independent gamma distributed variables, with known shape as well as for

two lognormal distributed variables, with equal and unequal shape parameters.

Zellner (1978) recommended analysing the problem of estimating the inverse of the mean

and the ratio of means from a Bayesian point of view. For this approach it is assumed

that the observations are normally and independently distributed, each with mean µ and

variance σ2, and both are unknown. He developed the Minimum Expected Loss (MELO)

estimator of the inverse of the mean.

Srivastava and Bhatnagar (1981) have erroneously stated that the Maximum Likelihood

estimator of the inverse of the mean has no finite moments. This statement holds only for

the second and higher order moments, as in Voinov (1985) the first moment of the Maximum

Likelihood estimator of the inverse of the mean is presented, see Appendix B.2.3. Based

on the approach presented by Zellner (1978), Srivastava and Bhatnagar (1981) presented a

class of estimators which are free from the limitation of non-existence of moments. They

derived exact expressions for the first two moments in the case of normal populations and

8



2.1 Background and Literature Review

they also proposed large sample approximations for non-normally distributed populations.

Shaban (1981) obtained estimators for the ratio of means of two independent lognormal

distributed variables which are generally of smaller mean squared error than both the

Maximum Likelihood (ML) and the MVUE as given in Crow (1977).

Barndorff-Nielsen (1983) presented one of the first works where the problem in question is

analysed using the distribution of the Maximum Likelihood estimator.

Buonaccorsi (1985) considered the problem of estimating the ratio of two linear combi-

nations of the vector of parameters in the general linear model. He also discussed the

non-existence of an unbiased estimator under normal errors. In his work the author, as well

as Fieller (1932) and Srivastava and Bhatnagar (1981), declared that the first and higher

order moment of the inverse of the arithmetical mean does not exist.

Voinov (1985) has derived unbiased estimators of powers of the inverse of the normal pop-

ulation mean, µ. In the same work, it is shown that such an estimator is useful in the

solution of several problems in experimental nuclear physics.

Casella and Berger (1990) advocated using a first-order approximation for the estimation

the inverse of the mean and the ratio of means.

Tiwari and Elston (1999) approximated the variance of a function of random variables by

using a second degree Taylor series expansion, and demonstrated the increased accuracy this

second degree approximation gives over the usual Delta method by using some examples

from genetics.

Rao (2002) highlighted two estimators for the ratio of means. He pointed out that under

simple random sampling scheme, the usual choices for the estimation of the ratio of means

are (i) a (single) ratio of sample means or (ii) the mean of (n) ratios. He also reported

that both estimators are biased for the ratio of means. For the estimation of this function

he considered a class of Symmetrized Des Raj (SDR) strategies and looked for a choice

of a model-optimum estimator when design-unbiasedness is not demanded, among those

utilising “mean of ratios” and “ratio of means”, as he denominated these estimators.

9



2 Estimation of NLSS Functions

Troschke (2002) analysed forecasts for the future development of key variables in the field

under consideration. Specifically, he studied the case where the decision-maker has the

problem of having more than one forecast for the variables of interest, then instead of

selecting one of the forecasts it is a successful strategy and common practice to combine the

individual forecasts. His predominant approach was to concentrate on one target variable

at a time and to perform a linear combination of the forecasts for that variable. In his work,

this standard univariate linear combination approach was improved in two respects: Firstly,

a linear plus quadratic set-up for the combination of univariate forecasts was introduced as a

non-linear combination alternative (univariate linear plus quadratic combination). Similar

to a higher order Taylor approximation it may result in more accurate combined prediction.

Secondly, several target variables are considered at the same time, and forecasts for such

vector valued variables were combined linearly (multivariate linear combination). Thus,

additional information was exploited by taking the interactions between the components

of target vector and forecasts into account. For each approach the mean square prediction

error optimal combination parameters were derived. Finally, the new approaches were

investigated numerically in terms of their potential, their empirical performance and their

results in a simulation study.

Neudecker and Trenkler (2002) considered the problem of estimating a function of the mul-

tivariate mean. They assumed that in good approximation this function can be written as a

sum of a linear and a quadratic form. For the estimators presented in their work they obtain

mean and variance, when the populations are independent. The same problem was also

considered by Frauendorf, Neudecker and Trenkler (2005). In their work, it is shown that

two naive estimators turn out to be biased. Using a generalized jackknife procedure they

constructed an unbiased estimator of this function as a reasonable alternative. Variances

of the three estimators were calculated for the general and the normal case.

Neudecker and Trenkler (2005a) considered the problem of approximating the variance of

nonlinear functions of random variables using a second degree Taylor series expansion. In

contrast to Tiwari and Elston (1999), their approach also uses the covariances between the

random variables to obtain a better approximation.

10
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Qiao et al. (2006) addressed the problem of estimating the ratio of the means of independent

normal variables in agricultural research. In the first part of their research, the authors

examined the distributional properties of the ratio of independent normal variables, both

theoretically and using simulation. In the second part of their research, they evaluated the

relative merits of two common estimators of the ratio of the means of independent normal

variables in agricultural research, an arithmetic average or ratio of means and a weighted

average or mean of ratios, via simulation experiments using normal distributions. They

gave a condition under which the mean of the ratio of two independent normal variables

appears to exist and that can be used to evaluate the suitability of both estimators. In this

work it is mentioned that the development of a satisfactory estimator of the ratio when the

involved random variables are dependent remains an area for future research.

Friedrich et al. (2008) investigated the ratio of means method as an alternative to mean

differences for analyzing continuous outcome variables in meta-analysis. Meta-analysis of

continuous outcomes traditionally uses mean difference or standardized mean difference,

i.e. mean difference in pooled standard deviation units. They pointed out that both the

standardized mean difference and the ratio of means allow pooling of outcomes expressed in

different units and comparisons of effect sizes across interventions, but the ratio of means

interpretation does not require knowledge of the pooled standard deviation, a quantity

generally unknown to clinicians.

2.2 Definitions and Methods

The fundamental aim of this work is to introduce a new approach for handling the statistical

inference of NLSS functions by means of approximations. Before the general procedure of

this approach is explained it is essential; a) to introduce necessary definitions as well as

clarifying remarks, b) to clarify how NLSS functions are defined and c) to illustrate the

approach to be used for the approximation of those functions. For concepts related to

calculus and probability theory refer to Gradshteyn and Ryzhik (2000), Shorack (2000) as

well as Mood, Graybill and Boes (1974).

11



2 Estimation of NLSS Functions

The purpose of this section is to introduce the general definitions necessary for the devel-

opment of a new inference method of NLSS functions. It is primarily a “definitions-and-

their-understanding” section.

2.2.1 Types of Functions

In this section as well as in Appendix A.1.1 the most important concepts necessary to clarify

how NLSS functions are defined, are presented.

For the definition of NLSS functions the concept of smooth functions has to be introduced.

This kind of functions is presented in the following definition.

Definition 1 (Smooth Functions)

Let B, C ⊆ R, where B and C are unions of open intervals. Furthermore, let K be a

non-negative integer and f (i) the i-th derivative of the function f . A function f : B→ C

is said to be of class CK if the derivatives f (1), f (2), ..., f (K) exist and are continuous.

In the same way, the function f is said to be of class C∞, or smooth, if it has derivatives

of all orders.

After smooth functions have been defined, the kind of function to be analysed in this work

is presented in the following definition.

Definition 2 (Nonlinear, Sufficiently Smooth (NLSS) Functions)

For a given order K, a function f , say f : B → C, is said to be a NLSS function of

order K when it is nonlinear and of at least class CK .

For additional definitions refer to Appendix A.1.1.

2.2.2 Types of Approximations

As mentioned in Section 1.1 the main motivation for estimating functions by approximations

comes from Casella and Berger (1990, p. 330). They investigated the estimation of the

ratio of two means, see Definition 9, and the inverse of the mean, see Definition 11. In

their approach a Taylor Series expansion of order one was used for the estimation of the

aforementioned functions.
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The mathematical foundations, necessary for the approximation of the functions under

study, are presented in this section.

Definition 3 (Taylor Series Expansion)

The Taylor Series expansion of a real or complex function f(x) that is infinitely often

differentiable in a neighborhood of a real or complex number x0 is defined as:

f(x) =
∞∑
d=0

f (d)(x0)
d!

(x− x0)d,

where (d) represents the order of the derivatives of f .

Suppose a function f(x) of at least class CK is given, the Taylor Series expansion of

order K of f(x) in a neighborhood of x0 is defined as:

f(x) =
K∑
d=0

f (d)(x0)
d!

(x− x0)d + Error,

where each term higher than K is contained in the error term, denoted by Error, and

it is assumed to be neglectable.

For further details see Mera (1992).

Remark 2.1 (Approach according to Casella and Berger (1990))

Suppose x̄ is the arithmetical mean of a random sample, see Definition 7. If a function

f(µ) has to be estimated, using a Taylor Series expansion of order K = 1 Casella and

Berger (1990) presented the following approximated estimator for f(µ):

f(x̄) = f(µ) + f (1)(µ)(x̄− µ).

They also stated that the estimator f(x̄) has the following approximated mean and

variance:

E[f(x̄)] ≈ f(µ), and var(f(x̄)) ≈ [f (1)(µ)]2var(x̄),

where f (1)(µ) represents the first order derivative of f(µ).

Stimulated by the approach presented in Casella and Berger (1990) and Taylor Series expan-

sion, in this work, it is assumed that a function f(x) can be sufficiently good approximated

by a Taylor Series expansion of order K = 2.
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2 Estimation of NLSS Functions

This approximation is given as follows:

f(x) ≈ f(x0) + f (1)(x0)(x− x0) +
1
2!
f (2)(x0)(x− x0)2︸ ︷︷ ︸

fTaylor(x)

, (2.2.1)

where f (1)(x0) and f (2)(x0) represent the first and second order derivatives of f(x0), re-

spectively. For this approach, the function f(x0) is necessarily of at least class C2, see

Definition 1. The index Taylor stands for representing the Taylor approximation.

Expression 2.2.1 can be expanded to the p-dimensional case, i.e. the function to be ap-

proximated is not applied on a real value x, but is applied on a vector x. In such a case

it is necessary to use multidimensional versions of the first and second order derivatives of

f(x0).

In this work it is assumed that the gradient vector and the Hessian matrix, containing the

first and second order partial derivatives with respect to the vector x = (x1, . . . , xp)′, can

be used as multidimensional versions of the first and second order derivatives, f (1) and f (2).

These concepts are presented in the following definition.

Definition 4 (Gradient Vector and Hessian Matrix)

Let f : Bp → C be a function defined on the p-dimensional Euclidean space, where B

and C are cartesian products of unions of open intervals. The gradient of a function f(x)

with respect to the vector x = (x1, . . . , xp)′ is defined as a vector whose components are

the partial derivatives of the function f(x). It is defined as follows:

f (1)(x) =
(
∂f(x)
∂x1

, . . . ,
∂f(x)
∂xp

)′
.

If all second partial derivatives of f(x) exist, then the square matrix of second-order

partial derivatives of this function, the Hessian matrix, is defined as:
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2.2 Definitions and Methods

f (2)(x) =



∂2f(x)
∂x2

1

∂2f(x)
∂x1 ∂x2

· · · ∂2f(x)
∂x1 ∂xp

∂2f(x)
∂x2 ∂x1

∂2f(x)
∂x2

2
· · · ∂2f(x)

∂x2 ∂xp

...
...

. . .
...

∂2f(x)
∂xp ∂x1

∂2f(x)
∂xp ∂x2

· · · ∂2f(x)
∂x2
p


.

The second partial derivatives of f(x) with respect to two different variables are the off-

diagonal entries in the Hessian. If they are all continuous, then the Hessian of f(x) is

symmetric.

For example, for a two-dimensional vector x symmetry is represented by:

∂

∂x1

(
∂f(x)
∂x2

)
=

∂

∂x2

(
∂f(x)
∂x1

)
⇒ ∂2f(x)

∂x1 ∂x2
=

∂2f(x)
∂x2 ∂x1

.

For further details see Gradshteyn and Ryzhik (2000).

Following expression 2.2.1 and Definition 4 in this work, it is assumed that a function f(x)

can be sufficiently good approximated in a neighborhood of the vector x0 by the following

Taylor Series expansion of order K = 2:

fTaylor(x) = f(x0) + [f (1)(x0)]′(x− x0) +
1
2

(x− x0)′f (2)(x0)(x− x0), (2.2.2)

where [f (1)(x0)]′ represents the transpose of the gradient vector and f (2)(x0) the Hessian

matrix of the function f(x0).

Stimulated by Taylor Series expansions, Troschke (2002) investigated the linear plus

quadratic functions approach aiming to find a combined forecast for a scalar random vari-
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2 Estimation of NLSS Functions

able from several individual forecasts for that variable. This approach is presented in the

following definition.

Definition 5 (Class of Linear plus Quadratic Functions)

Let a0 be a constant, a a non-stochastic vector and A a non-stochastic symmetric

matrix, then the class of linear plus quadratic functions is defined as:

Θ =
{
a0 + a′x+ x′Ax|a0 ∈ R,a ∈ Rp,A ∈Mp×p

}
,

where a′x and x′Ax represent the linear and quadratic forms of this class, respectively.

Mp×p stands for the set of all symmetric p× p matrices.

Like Troschke (2002), in this work, also stimulated by Taylor Series expansions it is assumed

that the function f(x) may be approximated by the following linear plus quadratic function

in x:

fPoly(x) = a0 + a′x+ x′Ax, (2.2.3)

where a0 is a constant, a = f (1)(x) represents the gradient vector and A = 1
2f

(2)(x) the

Hessian matrix of the function f(x) divided by two, see Definition 4. The index Poly stands

for representing the approximation of a function by a linear plus quadratic form, i.e. by a

second order polynomial.

2.2.3 Estimation Approach

At this point the approximation of NLSS functions by means of Taylor Series expansions

has been introduced. Now, the same approximation approach will be used for estimating

NLSS functions of a given vector of interest based on sample information.

Before the general estimation approach is described, it is necessary to introduce the way

how the sample information will be represented in this work. It will be represented in

form of a matrix which will be called the sample matrix and is presented in the following

definition.
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2.2 Definitions and Methods

Definition 6 (Sample Matrix)

Suppose p random variables X1, X2, . . . , Xp with n observations taken on each of the

variables are given. The corresponding n×p sample matrix is denoted by X and defined

as:

X =


X11 X12 · · · X1p

X21 X22 · · · X2p

...
...

. . .
...

Xn1 Xn2 · · · Xnp

 ,

For i = 1, · · · , n and for j = 1, · · · , p, X can also be represented as:

X =


x1

x2

...

xn

 , with xi =


Xi1

Xi2

...

Xip



′

, or as: X =


x1

x2

...

xp



′

, with xj =


X1j

X2j

...

Xnj

,

for i = 1, · · · , n and for j = 1, · · · , p.

Moreover, x1,x2, . . . ,xn represents a realisation of an independent, identically dis-

tributed (i.i.d.) random sample from a p–dimensional distribution, with mean µ = E[xi]

and covariance matrix Σ = E[(xi − µ)(xi − µ)′].

Definition 7 (Arithmetic Mean)

The arithmetic mean of the j-th random variable in X, denoted by x̄j , is defined as:

x̄j = 1
n

∑n
i=1Xij , j = 1, . . . , p .

The resulting p-vector of means is x̄ = (x̄1, x̄2, . . . , x̄p)′, which alternatively can be

written as x̄ = 1
nX

′1In , where 1In is the n-vector of ones.

Suppose a NLSS function f(θ) of a p-dimensional parameter vector θ has to be estimated.

Furthermore, suppose that an estimator of the vector θ is given. For the estimation of

NLSS function f of a given vector, say θ, under simple random schemes, the usual choices

are either to apply the function on the estimator of θ or to calculate the estimator of the

transformed data. These estimation approaches are presented in the following definition.
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2 Estimation of NLSS Functions

Definition 8 (Estimation Approaches)

Let B, C ⊆ R and X be given as in Definition 6. Moreover, consider the following

functions: F : Bn×p → Cn, Ĝ : Bn×p → Cp, f : Bp → C, ĝ : Bn → C, with Ĝ and ĝ

representing estimators obtained from the sample information. Now, suppose a NLSS

function f has to be estimated.

The first estimation approach is defined as follows:

T1 = f(Ĝ(X)) = f


ĝ(x1)

ĝ(x2)
...

ĝ(xp)



′

= f
(
ĝ(x1), ĝ(x2), · · · , ĝ(xp)

)
, where x1, · · · ,xp ∈ Bn.

The second estimation approach is defined as follows:

T2 = ĝ(F (X)) = ĝ


f(x1)

f(x2)
...

f(xn)

 = ĝ(f(xi), i = 1, · · · , n), where x1, · · · ,xn ∈ Bp.

In this approach B and C are defined as the base set.

In the first approach the estimation Ĝ is made before the function f is applied and in the

second the estimation ĝ is made after the application of the function f , i.e. the function

f is applied on the estimator Ĝ(X) in the first case and on each row of the n × p sample

matrix X in the second. This has influence on the bias and the variance of the respective

estimators, which will be shown in Section 2.2.

Historically, f(Ĝ(X)) and ĝ(F (X)) have been of interest even in the classical inference

from infinite populations, see Rao (2002). Unfortunately, most of the authors have worked

on the estimation of NLSS functions by considering X to be normally distributed. In

this work both estimation approaches will be compared through a simulation study with

different underlying distributions. These estimation approaches are the building blocks of

the general estimation procedure to be developed in this work.
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Tiwari and Elston (1999) approximated the variance of a function of random variables by

using a second degree Taylor series expansion, and demonstrated the increased accuracy

that this second degree approximation gives over the usual Delta method by using some

examples from genetics. In the same respect, Neudecker and Trenkler (2005a) considered

the problem of approximating the variance of a nonlinear function of random variables on

the basis of a second degree Taylor series expansion. In contrast to the result achieved

by Tiwari and Elston (1999), their approach in addition uses the covariances between the

random variables to obtain a better approximation. This approach with its notation from

Neudecker and Trenkler (2005a) is presented in the following remark.

Remark 2.2 (Approach by Neudecker and Trenkler (2005a))

As in Tiwari and Elston (1999), Neudecker and Trenkler (2005a) consider a scalar

function f of the random vector y = (y1, y2, · · · , ym)′ with E[y] = µ = (µ1, µ2, · · · , µm)′

and Σ = D(y) = E[(y−µ)(y−µ)′] denoting the expectation vector and the dispersion

matrix, respectively, of y. They assume that the first and second partial derivatives of

f with respect to each yi (i = 1, · · · ,m) exist in an open neighborhood of µ.

Let y = µ+4y and f(y) = f(µ)+4f(y). Using Taylor’s formula they get the following

approximation:

f(y) ≈ f(µ) +
∂f(y)
∂y′

|y=µ dy +
1
2

(dy)′
∂f2(y)
∂y∂y′

|y=µ dy

= f(µ) + a′dy +
1
2

(dy)′Ady.

Since E[(dy)(dy)′] = D(y) = Σ and E[(dy)] = 0, they get:

E[f(y)] ≈ f(µ) +
1
2
tr(AΣ)

D(f(y)) ≈ D
(
a′(dy) +

1
2

(dy)′Ady

)
= D(a′(dy)) +

1
4

D((dy)′Ady) + cov(a′(dy), (dy)′Ady),

where a =
∂f(y)
∂y′

|y=µ,A =
∂f2(y)
∂y∂y′

|y=µ and dy = 4y = y − µ.

In this work this approach will be used in order to obtain approximated variances of esti-

mators of NLSS functions of distribution parameters.
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2 Estimation of NLSS Functions

In the following lemma an approximation of the estimators f(Ĝ(X)) and ĝ(f(xi), i =

1, · · · , n), on the basis of a second degree Taylor series expansion, is presented.

Lemma 2.1

Let θ represent an unknown parameter vector. Furthermore, θ can be estimated by

functions Ĝ and ĝ in two different ways, as explained in Definition 8.

Now, suppose a NLSS function f(θ) has to be estimated.

An approximation of the estimators f(Ĝ(X)) and ĝ(f(xi), i = 1, · · · , n), on the basis

of a second degree Taylor series expansion, is given by:

T Taylor1 =f(Ĝ(X))Taylor=f(θ)+[f (1)(θ)]′(Ĝ(X)−θ)+ 1
2(Ĝ(X)−θ)′f (2)(θ)(Ĝ(X)−θ)

T Taylor2 = ĝ(f(xi), i = 1, · · · , n)Taylor= f(θ) + [f (1)(θ)]′ĝ((xi − θ), i = 1, · · · , n)

+ 1
2 ĝ((xi − θ)′f (2)(θ)(xi − θ), i = 1, · · · , n),

where f (1)(θ) represents the gradient vector and f (2)(θ) the Hessian matrix of the

function f(θ), see Definition 4.

It can be seen that both estimation approaches differ just on the second order polynomial

of the approximation.

In the same way, as in Troschke (2002), an approximation on the basis of a linear plus

quadratic function, of the estimators T1 and T2 is presented in the following lemma.

Lemma 2.2

An approximation of the estimators f(Ĝ(X)) and ĝ(f(xi), i = 1, · · · , n), on the basis

of a linear plus quadratic function, is given by:

TPoly1 = f(Ĝ(X))Poly = a0 + a′Ĝ(X) + [Ĝ(X)]′AĜ(X)

TPoly2 = ĝ(f(xi), i = 1, · · · , n)Poly = a0 +a′ĝ(xi, i = 1, · · · , n) + ĝ(x′iAxi, i = 1, · · · , n),

where a0 is a constant, a = f (1)(θ) and A = 1
2f

(2)(θ).
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Troschke (2002) pointed out that similar to a higher order Taylor approximation, an ap-

proximation on the basis of a linear plus quadratic function may result in more accurate

combined prediction.

2.3 General Procedure

This work intends to answer the following questions:

1. Which approach should be preferred, f(Ĝ(X)) or ĝ(f(xi), i = 1, · · · , n), as an esti-

mator of a NLSS function of a p–dimensional parameter vector, f(θ)?

2. Is an improvement of these estimators possible?

To answer these questions the following approach is developed in the next sections:

Suppose a NLSS (of at least class C2) function f(θ) of parameter(s) θ of a distribution has

to be estimated, then:

1. the function f(θ), will be estimated by means of the estimators T1 = f(Ĝ(X)) and

T2 = ĝ(f(xi), i = 1, · · · , n),

2. the generalised Jackknife approach will be used in Section A.1.3 in order to generate

an unbiased estimator for a second order Taylor approximation of the NLSS function

f(θ),

3. if the unbiased estimator is obtained, a linear adjustment as presented in Troschke

(2002), is applied in order to obtain a minimal Mean Squared Error (MSE) estimator.

This estimator may be biased, but has smaller MSE than the unbiased one generated

by the generalised Jackknife approach.

4. improved approximated expressions for the mean and variance of all the aforemen-

tioned estimators will be obtained by using the approach presented in Neudecker and

Trenkler (2005a).
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Chapter 3
Estimation of NLSS Functions of

Distribution Parameters

Contents

3.1 Estimation of NLSS Functions of Parameters of Multivariate

Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Estimation of NLSS Functions of Parameters of Univariate Dis-

tributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

In the preceding section a new approach for the estimation of NLSS functions has been

presented. In this section, special emphasis will be placed on the estimators f(Ĝ(X)) and

ĝ(f(xi), i = 1, · · · , n) for NLSS functions of parameters of multivariate and univariate dis-

tributions. For both the multivariate and univariate distributions, the normal distribution

will also be considered, and for the multivariate distributions the properties of estimators for

correlated random variables will be considered as a special case. Approximated means and

variances of the aforementioned estimators, as well as an approximation of the covariance

between them, are presented in this section.



3 Estimation of NLSS Functions of Distribution Parameters

3.1 Estimation of NLSS Functions of Parameters of Multivariate

Distributions

In multivariate statistics, estimation of NLSS functions of parameters, such as the vector of

means µ of a particular distribution occurs commonly. Therefore, starting from here this

work will focus on the estimation of NLSS functions of this parameter, f(µ).

For the estimation of f(µ), under simple random schemes, the usual choices are to calculate

first the arithmetic mean and then apply the function afterwards, i.e. compute f(Ĝ(X)) =

f(x̄); or to do it the other way round, ĝ(f(xi), i = 1, . . . , n) = 1
n

n∑
i=1

f(xi), where xi,

i = 1, . . . , n denotes the i-th row of the sample matrix X, see Definition 8. Moreover, x̄ is

given in Definition 7.

As in Lemma 2.1 the functions f(x̄) and 1
n

n∑
i=1

f(xi) can be approximated by:

T Taylor1 = fTaylor(x̄) = f(µ) + [f (1)(µ)]′(x̄− µ) + 1
2(x̄− µ)′f (2)(µ)(x̄− µ)

T Taylor2 = 1
n

n∑
i=1

fTaylor(xi) = f(µ)+[f (1)(µ)]′ 1n
n∑
i=1

(xi−µ)+ 1
2n

n∑
i=1

(xi−µ)′f (2)(µ)(xi−µ),

where f (1)(µ) represents the gradient vector and f (2)(µ) the Hessian matrix of the function

f(µ), as presented in Definition 4.

For the particular case of the estimation of f(µ), an approximation by linear plus quadratic

forms of the function itself as well as of the estimators f(x̄) and 1
n

n∑
i=1

f(xi) is presented in

the following remark.

Remark 3.1

Let a0 be a constant, a a non-stochastic vector and A a non-stochastic symmetric

matrix. Let µ be the vector of means of a p-dimensional distribution, then a NLSS

function of this parameter vector, f(µ), can be approximated by:

fPoly(µ) = a0 + a′µ+ µ′Aµ.
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In the same way, the functions f(x̄) and 1
n

n∑
i=1

f(xi) can be approximated by the fol-

lowing linear plus quadratic functions in x̄ and xi, respectively:

TPoly1 = fPoly(x̄) = a0 + 1
na
′X ′1In + 1

n2 1
′
nXAX

′1In

= a0 + 1
na
′X ′1In + 1

n2 tr1In1
′
nXAX

′

= a0 + a′x̄+ x̄′Ax̄

and

TPoly2 = 1
n

n∑
i=1

fPoly(xi) = a0 + a′x̄+ 1
nΣn

i=1x
′
iAxi,

where a = f (1)(µ) and A = 1
2f

(2)(µ).

Frauendorf and Trenkler (1998) have shown that the equality TPoly1 = TPoly2 holds if and

only if: trAX ′HX = 0, where H = In − 1
n1In1I′n, where In represents the Identity Matrix

and 1In the n-vector of ones.

In order to represent the approximations TPoly1 and TPoly2 based on all observations

x1, · · · ,xn and not on a particular xi, i = 1, . . . , n a new notation will be introduced

in the following remark.

Remark 3.2

Let y = VecX ′ be the Vec operator of the matrix X ′, i.e. a column vector obtained

by stacking the column vectors of X ′ = (x1,x2, . . . ,xn) below one another. The mean

and covariance of VecX ′ are E[VecX ′] = 1In ⊗ µ and cov(VecX ′) = In ⊗Σ.

For y = VecX ′, the approximations TPoly1 and TPoly2 , presented in Remark 3.1, can also

be written as presented in Magnus and Neudecker (1988, Section 2.4) as follows:

TPoly1 = f0 + f ′y + y′F 1y

TPoly2 = f0 + f ′y + y′F 2y,

where f0 is a constant, f = 1
n1In ⊗ a is a non-stochastic vector, F 1 = 1

n2 1In1I
′
n ⊗A and

F 2 = 1
nIn ⊗A are non-stochastic symmetric matrices. Furthermore, ⊗ represents the

Kronecker product.
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3 Estimation of NLSS Functions of Distribution Parameters

For properties of the Vec operator and the Kronecker product, see Appendix A.4.2 and

A.4.1, respectively and for relations between them see Appendix A.4.2.

The aforementioned non-stochastic quantities can be represented as:

f0 = a0, f = 1
n(a′ · · ·a′)′,

F 1 = 1
n2



A A . . . A A

A A . . . A A
...

...
. . .

...
...

A A . . . A A

A A . . . A A


and F 2 = 1

n



A 0 . . . 0 0

0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0

0 0 . . . 0 A


,

where a0 is a constant, a = f (1)(µ) and A = 1
2f

(2)(µ).

However, when calculating var(TPoly1 ) and var(TPoly2 ) (the approximated variances of esti-

mators T1 and T2, respectively), a relationship between the 3rd and 4th moment matrices

of the xi and VecX ′ has to be established, see Definitions 26 and 27.

This relationship is presented in Lemma A.1.

The matrices Φ and Ψ as well as Φ∗ and Ψ∗ are presented in more detail in Appendix

A.5.2. These matrices are useful for the calculation of covariances as well as variances of

linear plus quadratic functions.

In Remark A.4 and Lemma A.2 different identities introduced by Seber (1977) and Kleffe

and Rao (1988, Section 2.1) are presented. They are useful for the computation of means

and variances of linear plus quadratic functions as well as the covariance between two linear

plus quadratic functions, Definition 5.

Notice that the expressions presented in Remark A.4 refer to xi = zi + µ, i.e. to an

arbitrary element of the i.i.d random sample x1,x2, . . . ,xn. In Lemma A.2 the expressions

corresponding to the whole sample are presented. For this the expression y = VecX ′ as

given in Remark 3.2 is useful.
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3.1 Estimation of NLSS Functions of Parameters of Multivariate Distributions

Neudecker and Trenkler (2002) obtained the following expressions for the expected values

and variances of TPoly1 and TPoly2 , when X1 and X2 are uncorrelated:

(i) E[TPoly1 ] = a0 + a′µ+ µ′Aµ+ 1
n trAΣ

(ii) E[TPoly2 ] = a0 + a′µ+ µ′Aµ+ trAΣ

(iii) var(TPoly1 ) = 1
n2 [4tr(µ′A⊗A)Φ + 2tr(a′ ⊗A)Φ + 1

n tr(A⊗A)Ψ + 2n−1
n β − α

n ] + γ

(iv) var(TPoly2 ) = 1
n [4tr(µ′A⊗A)Φ + 2tr(a′ ⊗A)Φ + tr(A⊗A)Ψ− α] + γ,

with γ = 1
n(2Aµ+ a)′Σ(2Aµ+ a), α = (trAΣ)2 and β = tr(AΣ)2.

From expressions (i) and (ii) it can be seen that both, TPoly1 and TPoly2 are biased for

fPoly(µ), see Remark 3.1. Their bias terms are given by b(TPoly1 , fPoly(µ)) = 1
n trAΣ and

b(TPoly2 , fPoly(µ)) = trAΣ, see Definition 20. Notice that TPoly1 is asymptotically unbiased.

Using the identities of Lemma A.2, equivalent expressions to those introduced in Neudecker

and Trenkler (2002) for the variances of TPoly1 and TPoly2 as well as the expression for the

covariance between TPoly1 and TPoly2 have been deduced in this work and are presented in

the following theorem.

Theorem 3.1

Using the properties presented in Remark A.4 and Lemma A.2, the expression for the

covariance between TPoly1 and TPoly2 as well as equivalent expressions for their variances

to those introduced in Neudecker and Trenkler (2002) can be rewritten as follows:

(i) var(TPoly1 ) = 1
n2 [4trAΦ∗(A)µ′ + 2trAΦ(a) + 1

n trAΨ(A) + 2n−1
n β − α

n ] + γ

(ii) var(TPoly2 ) = 1
n [4trAΦ∗(A)µ′ + 2trAΦ(a) + trAΨ(A)− α] + γ

(iii) cov(TPoly1 , TPoly2 ) = 1
n2 [2(n+1)trAΦ∗(A)µ′+(n+1)trAΦ(a)+trAΨ(A)−α]+γ.

Proof: See Appendix C.2.

Expressions of the MSE of the approximations TPoly1 and TPoly2 are obtained by using

Definition 22, i.e.:

MSE(TPolyl , fPoly(µ)) = E[(TPolyl −fPoly(µ))2] = var(TPolyl )+[b(TPolyl , fPoly(µ))]2, l = 1, 2.
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3 Estimation of NLSS Functions of Distribution Parameters

3.1.1 Properties of Estimators for Correlated Random Variables

Existing methods for generating correlated random variables do not allow the setting of

the correlation level between those variables. Therefore, it is necessary to develop a new

approach for generating correlated random variables with user-defined correlation level (ρ)

and probability distribution. This approach will be presented in Section 6.1.1.

The expressions given in Remark A.5 are based on an arbitrary element of the correlated

sample x1,x2, . . . ,xn. Now, based on these expressions those corresponding to the whole

sample have been deduced in this work and are presented Lemma A.3. These expressions

will make it possible to compare the MSEs of the approximations TPoly1 and TPoly2 for

correlated random variables.

Neudecker and Trenkler (2002) calculated the variances of the approximations, TPoly1 and

TPoly2 , for uncorrelated variables, X1 and X2. For the calculation of var(TPoly1 ) and

var(TPoly2 ), when the involved variables are correlated, a new approach based on Kleffe

and Rao (1988, Section 2.1), see Lemma A.3, is used. The expressions for the variances of

TPoly1 and TPoly2 for correlated random variables, X1 and X2 are presented as follows.

Theorem 3.2

Based on Lemma A.3 and the identities exposed in Remark A.5, the following expression

for the covariance between TPoly1 and TPoly2 as well as the expressions for their variances,

for correlated variables, were obtained in this work:

(i) var(TPoly1 ) = 1
n2 [4trAΦ∗u(A)µ′ + 2trAΦu(a) + trAΨu(A) + 2n−1

n β − α
n ] + γ

(ii) var(TPoly2 ) = 1
n [4trAΦ∗u(A)µ′ + 2trAΦu(a) + trAΨu(A)− α] + γ

(iii) cov(TPoly1 , TPoly2 ) = 1
n2 [2(n+1)trAΦ∗u(A)µ′+(n+1)trAΦu(a)+trAΨu(A)−α]+γ.

Proof: See Appendix C.4.

28
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3.1.2 Estimation of NLSS Functions of Parameters of Multinormal

Distributions

Now it is assumed that y = VecX ′ is multinormally distributed with E[y] = g∗ = 1In ⊗ µ

and cov(y) = V ∗ = In ⊗Σ.

Remark 3.3

For the normal case zi ∼ N(0,Σ) are the odd moments equal zero, i.e. Φ = ΦN = 0.

Furthermore, in Magnus and Neudecker (1979, Theorem 4.3, (iv)) the following expres-

sion for the fourth moment is given:

Ψ = ΨN = (Ip2 +Kpp)(Σ⊗Σ) + (VecΣ)(VecΣ)′.

The index N stands for representing the normal distribution.

Matrices Φ, Ψ, Ip2 = Ip ⊗ Ip and Kpp have been introduced in Lemma A.1 and are

presented in more details in Appendix A.4.

Given y = Vec X ′ ∼ N(1In ⊗ µ, In ⊗Σ) and the following identities:

F 1V ∗F 2V ∗ = 1
n3 1In1I

′
n ⊗ (AΣ)2

trF 1V ∗F 2V ∗ = 1
n2 tr(AΣ)2

F lg∗ = 1
n1In ⊗Aµ, l = 1, 2

(2F 1g∗ + f)′V ∗(2F 2g∗ + f) = 1
n(2Aµ+ a)′Σ(2Aµ+ a) = γ,

then the following expressions for the variances of TPoly1 and TPoly2 as well as covariance

between TPoly1 and TPoly2 were obtained:

(i) var(TPoly1 ) = 2
n2β + γ

(ii) var(TPoly2 ) = 2
nβ + γ

(iii) cov(TPoly1 , TPoly2 ) = var(TPoly1 ) = 2
n2β + γ.

With γ = 1
n(2Aµ+ a)′Σ(2Aµ+ a), α = (trAΣ)2 and β = tr(AΣ)2.
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3 Estimation of NLSS Functions of Distribution Parameters

3.2 Estimation of NLSS Functions of Parameters of Univariate

Distributions

For the univariate case it is supposed that x = (x1, x2, . . . , xn)′ represents a realisation of

an i.i.d. random sample drawn from a probability distribution with mean µ and variance

σ2. In this section the interest is also concentrated on the estimation of the NLSS function

f(µ), where µ represents the mean of a given univariate distribution.

The first step of the estimation approach developed in this work and presented in Section 2.3

consists of the approximation of the function to be estimated. As approximation approach

the linear plus quadratic form will be used, see Remark 3.1. This approximation is given

by:

fPoly(µ) = a0 + aµ+Aµ2,

where a0, a and A are real constants. Furthermore, a = f (1)(µ) and A = 1
2f

(2)(µ), i.e. the

first and second derivative of the function f(µ).

In the same way the estimators f(Ĝ(x)) and ĝ(f(xi), i = 1, · · · , n) can be approximated

by the linear plus quadratic forms, as made in Lemma 2.2. The resulting approximations

are denoted by TPoly1 and TPoly2 and presented as follows:

TPoly1 = fPoly(x̄) = a0 + ax̄+Ax̄2, with x̄ =
1
n

1I′nx

TPoly2 =
1
n

n∑
i=1

fPoly(xi) = a0 + ax̄+
A

n

n∑
i=1

x2
i .

Both TPoly1 and TPoly2 are biased for fPoly(µ), see Theorem 3.4.

The aforementioned approximations are presented in matrix notation as follows:

TPoly1 = f0 + f ′x+ x′F 1x

TPoly2 = f0 + f ′x+ x′F 2x,

with x is a realisation of an i.i.d. random sample, f0 a real constant, f a n× 1 vector and

F l, l = 1, 2 a n× n matrix. They are given by: f = a
n1In, F 1 = A

n2 1In1I
′
n and F 2 = A

n In.
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3.2 Estimation of NLSS Functions of Parameters of Univariate Distributions

Like in the multivariate case, when calculating var(TPoly1 ) and var(TPoly2 ) a relationship

between the 3rd and 4th moment matrices of the xi and Vecx′ has to be established. The

third and fourth moment matrices for the univariate case Φ∗ = E[z ⊗ zz′] and Ψ∗ =

E[zz′ ⊗ zz′] are given in the following theorem.

Theorem 3.3

Assume that x = (x1, x2, . . . , xn)′ represents a realisation of an i.i.d. random sample

drawn from a probability distribution with mean µ and variance σ2. Then z = x−E[x],

with E[z] = 0 and E[zz′] = cov(x) = σ2In. For the univariate case Φ∗ and Ψ∗ are

given by:

• Φ∗ = (In ⊗ In)GΦ, where G = (E11, . . . ,Enn)′, with Eii = eie
′
i, ei is the i-th

member of the canonical basis of Rn, and it is known that the commutation matrix

K1,n = Kn = In, see Appendix A.4.3.

• Ψ∗ = (In2 +Knn)(σ4In2) + σ4[Vec(In)][Vec(In)]′ + In2 [Knn(Ψ− 3σ4)]In2 ,

with Knn =
n∑
i=1

(Eii ⊗Eii) and In2 = (In ⊗ In).

Proof: Follows from Neudecker and Trenkler (2002), Theorem 1, where the same properties

for the multivariate case are presented.

According to the assumption on the rows of the vector x, it has already been mentioned

that the zi, i = 1, . . . , n, occurring in the vector z = (z1, . . . zn)′ are mutually uncorrelated,

with E[zi] = 0 and var(zi) = E[z2
i ] = σ2, i = 1, . . . , n.

For the univariate case the variance of TPoly1 and TPoly2 as well as cov(TPoly1 , TPoly2 ) can

be obtained using the expressions presented in Neudecker and Trenkler (2002) or those

presented in Kleffe and Rao (1988). The identities corresponding to the approach given by

Neudecker and Trenkler (2002) are presented in Appendix C.5.

For the obtention of the variances of TPolyl , l = 1, 2 as well as cov(TPoly1 , TPoly2 ) following

the approach presented in Kleffe and Rao (1988) the identities summarised in Lemma A.4

will be useful. The expressions for the means and the variances of TPolyl for l = 1, 2 and

the covariance between TPoly1 and TPoly2 are presented in the following theorem.
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3 Estimation of NLSS Functions of Distribution Parameters

Theorem 3.4 (Mean and Variance of TPoly1 and TPoly2 for Univariate Distributions)

Let Φ = E[z3
i ] = E[xi − µ]3 and Ψ = E[z4

i ] = E[xi − µ]4 represent the third and fourth

central moments of xi, respectively. The expressions for the means and the variances of

TPoly1 and TPoly2 and for cov(TPoly1 , TPoly2 ) for the univariate case are the following:

(i) E(TPoly1 ) = a0 + aµ+Aµ2 + 1
nAσ

2

(ii) E(TPoly2 ) = a0 + aµ+Aµ2 +Aσ2

(iii) var(TPoly1 ) = 1
n2 [4A2µΦ + 2aAΦ + 1

nA
2Ψ + 1

n(2n− 3)α] + γ

(iv) var(TPoly2 ) = 1
n [4A2µΦ + 2aAΦ +A2Ψ− α] + γ

(v) cov(TPoly1 , TPoly2 ) = 1
n2 [2(n+ 1)A2µΦ + (n+ 1)aAΦ +A2Ψ− α] + γ,

with common terms γ = σ2

n (2Aµ+ a)2 and α = β = (Aσ2)2 = A2σ4.

Proof: See Appendix C.6.

Notice that [b(TPoly1 , fPoly(µ)]2 = α
n2 and [b(TPoly2 , fPoly(µ)]2 = α, the bias of the approxi-

mations TPoly1 and TPoly2 , respectively.

Theorem 3.5 (Estimation of NLSS Functions for Normal Distributions)

Assume that x is normally distributed with E[x] = g∗ = µ1In and cov(x) = V ∗ = σ2In.

x ∼ N(µ1In, σ
2In), with Φ = ΦN = 0 and Ψ = ΨN = 3σ2. The index N stands for the

normal distribution.

Using the expressions given in the multivariate case and using the following identities:

F 1V ∗F 2V ∗ = A2σ4

n3 1In1I
′
n

trF 1V ∗F 2V ∗ = α
n2

F lg∗ = Aµ
n 1In, l = 1, 2

(2F lg∗ + f)′V ∗(2F 2g∗ + f) = σ2

n (2Aµ+ a)2 = γ,

the following expressions for the variances of TPoly1 and TPoly2 as well as covariance

between TPoly1 and TPoly2 are obtained:

(i) var (TPoly1 ) = 2
n2β + γ

(ii) var (TPoly2 ) = 2
nβ + γ

(iii) cov(TPoly1 , TPoly2 ) = var(TPoly1 ) = 2
n2β + γ, with β = A2σ4.
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As mentioned in Section 2.3 the new inference method developed in this work is based on the

construction of an unbiased estimator for the approximation of f(θ) using the generalised

Jackknife approach. This approach consists of a linear combination of the approximation

of two existing estimators, in this case TPoly1 and TPoly2 , see Appendix A.1.3.

In Section 3, the properties TPoly1 and TPoly2 have been presented. In this section, the

mathematical foundations of the new estimation approach as well as its properties are

presented.



4 Unbiased Estimation of NLSS Functions of Distribution Parameters

4.1 Unbiased Estimation of NLSS Functions of Parameters of

Multivariate Distributions

Let X denote the sample matrix, i.e. X ′ = (x1, . . . ,xn), where x1,x2, . . . ,xn represents a

realisation of an i.i.d. random sample drawn from a p–dimensional probability distribution

with mean µ = E[xi] and covariance matrix Σ = E[(xi − µ)(xi − µ)′].

In Section 3, approximations of estimators T1 = f(Ĝ(X)) and T2 = ĝ(F (X)) were presented

and their properties were investigated.

Using the Jackknife procedure described in Section A.1.3, an unbiased estimator for the

function f(µ) can be obtained.

This estimator is constructed as follows:

T3 =
T1 −RT2

1−R
=

1
n− 1

(n T1 − T2), for R =
b(T1, f(µ))
b(T2, f(µ))

=
1
n
, (4.1.1)

where b(Tl, f(µ)), l = 1, 2 represent the bias terms of the estimators T1 and T2.

Unfortunately, exact expressions for b(Tl, f(µ)), l = 1, 2 are not known.

In this case, the approximations, on the basis of a linear plus quadratic function, of the

estimators T1 and T2 and their properties will be used in order to construct an unbiased

estimator for the approximation fPoly(µ).

In Section 2.2.3 it was shown that TPoly1 and TPoly2 are biased for fPoly(µ). Their expected

values have been presented in Section 3.1.

Their bias with respect to fPoly(µ) are given by:

b(TPoly1 , fPoly(µ)) = 1
n trAΣ, and

b(TPoly2 , fPoly(µ)) = trAΣ, respectively.
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Using the Jackknife procedure described in Section A.1.3, Neudecker and Trenkler (2002)

introduced an unbiased estimator for the approximation fPoly(µ), denoted by TPoly3 .

This estimator is constructed as follows:

TPoly3 =
TPoly1 −RTPoly2

1−R
=

1
n− 1

(n TPoly1 − TPoly2 ), (4.1.2)

for R =
b(TPoly1 , fPoly(µ))

b(TPoly2 , fPoly(µ))
=

1
n
.

Based on Lemma 2.2, TPoly3 is given by:

TPoly3 = a0 + a′x̄+
1

n(n− 1)

∑
i 6=k

x
′
iAxk. (4.1.3)

Remark 4.1

Notice that R does not depend on unknown quantities and is a function of 1/nm with

m = 1, see Remark A.2. For TPoly1 and TPoly2 given as in Remark 3.2, TPoly3 is unbiased

for fPoly(µ).

This is shown as follows:

b(TPoly3 , fPoly(µ)) = n
n−1 [b(TPoly1 , fPoly(µ))− b(TPoly2 , fPoly(µ))] + b(T2, f

Poly(µ))

= 1
n−1 [nb(TPoly1 , fPoly(µ))− b(TPoly2 , fPoly(µ))]

= 1
n−1 [ntrAΣ/n− trAΣ] = 0.

TPoly3 can also be written in matrix notation as in Magnus and Neudecker (1988, Section

2.4), i.e.

TPoly3 = f0 + f ′y + y′F 3y, with F 3 = − 1
n(n−1)L⊗A and L = In − 1In1I

′
n.

Neudecker and Trenkler (2002) obtained the following expressions for the variance of TPoly3

when the variables involved, i.e. X1 and X2, are uncorrelated:

var(TPoly3 ) =
2

n(n− 1)
β + γ, with γ =

1
n

(2Aµ+ a)′Σ(2Aµ+ a) and β = tr(AΣ)2.
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4 Unbiased Estimation of NLSS Functions of Distribution Parameters

Since TPoly3 is unbiased for fPoly(µ), i.e. b(TPoly3 , fPoly(µ)) = 0, it holds:

MSE(TPoly3 , fPoly(µ)) = E[(TPoly3 − fPoly(µ))2] = var(TPoly3 ).

Since var(TPoly3 ) does not depend on the third and fourth moments matrices Φ = E[zi ⊗

ziz
′
i] and Ψ = E[ziz

′
i ⊗ ziz

′
i], i = 1, · · · , n, see Lemma A.1, this expression is the same for

the multinormal case and for the case where the variables involved are correlated.

4.2 Unbiased Estimation of NLSS Functions of Parameters of

Univariate Distributions

For the univariate case it is supposed that x = (x1, x2, . . . , xn)′ represents a realisation of

an i.i.d. random sample drawn from a probability distribution with mean µ and variance

σ2.

Based on the generalised Jackknife approach the new estimator is given by:

TPoly3 = a0 + ax̄−
n∑
i 6=j

xiAxj .

This estimator can also be written in matricial notation as presented in Magnus and

Neudecker (1988, Section 2.4), i.e.

TPoly3 = f0 + f ′x+ x′F 3x,

where f = a
n1In and F 3 = − A

n(n−1)L, with L = In − 1In1I
′
n.

The expression for the variance of TPoly3 for the univariate case is the following:

var(TPoly3 ) =
2

n(n− 1)
β + γ, where γ =

σ2

n
(2Aµ+ a)2, β = α = (Aσ2)2 = A2σ4.

Since var(TPoly3 ) does not depend on the third and fourth moments of xi, i.e. Φ = E[z3
i ] =

E[xi − µ]3 and Ψ = E[z4
i ] = E[xi − µ]4, this expression is the same for the normal case.
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Following the approach presented in Section 2.2, in this section it will be investigated

if an improvement of the presented estimators T1, T2 and T3 can be made. For this, the

unrestricted linear adjustment presented by Troschke (2002) will be used. The mathematical

foundations of the aforementioned approach are presented in this section.

The most important properties, e.g. the respective expressions for the variance and MSE

of the resulting estimator will also be presented in this section.

The multivariate and univariate cases are presented separately and the multinormal and

normal distributions are investigated as special cases.



5 Minimal MSE Estimation of NLSS Functions of Distribution Parameters

5.1 Minimal MSE Estimation of NLSS Functions of Parameters

of Multivariate Distributions

In Troschke (2002, Chapter 1.3) the linear plus quadratic approach for the combination of

forecasts is introduced. It is shown how the combination of estimators within the corre-

sponding classes should be chosen in order to minimise the Mean Squared Prediction Error

(MSPE) of the combined forecasts. The optimal combination of parameters depends on

the first to fourth order moments of the joint distribution of the target variable and its

forecasts. In the same work it is also widely explained how a linear adjustment is applied

to find an optimal Mean Squared Prediction Error (MSPE) of forecast F for the target

variable y, MSPE(F, y).

In this section the same approach will be used in order to find an optimal κ or κmin, so

that MSE(Tκmin , f(µ))= min
κ

MSE(Tκ, f(µ)).

As made for estimators T1, T2 and T3, an approximation, on the basis of a linear plus

quadratic function, of the estimator Tκmin will be used in order to obtain approximated

expressions for the MSEs of this estimator, i.e. MSE(TPolyκmin , f
Poly(µ)).

Lemma 5.1

Assume that the estimator TPoly3 can be written as TPolyκ = κ(TPoly1 − TPoly2 ) + TPoly2 ,

with κ = n
n−1 , then the MSE of TPolyκ can be minimised using the unrestricted linear

adjustment without constant term investigated by Troschke (2002).

The estimator TPolyκ has the following properties:

E[TPolyκ ] = κE[TPoly1 ] + (1− κ)E[TPoly2 ]

b(TPolyκ , fPoly(µ)) = κ(ι1 − ι2) + ι2, where ιl = b(TPolyl , fPoly(µ)), l = 1, 2

var(TPolyκ ) = κ2var(TPoly1 − TPoly2 ) + var(TPoly2 ) + 2κcov((TPoly1 − TPoly2 ), TPoly2 )

MSE(TPolyκ , fPoly(µ)) = var(TPolyκ ) + [b(TPolyκ , fPoly(µ))]2.

This estimator is unbiased for κ = n
n−1 .
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Proof:

Since TPolyκ = 1
n−1(n TPoly1 −TPoly2 ) it follows immediately that TPolyκ = κ(TPoly1 −TPoly2 )+

TPoly2 , with κ = n
n−1 .

Using these expressions and different identities of mean and variance, see for example Mood,

Graybill and Boes (1974), it can be demonstrated that:

E[TPolyκ ] = E[κ(TPoly1 − TPoly2 ) + TPoly2 ] = κE[TPoly1 − TPoly2 ] + E[TPoly2 ]

= κE[TPoly1 ] + (1− κ)E[TPoly2 ].

For R = 1
n the estimator is unbiased as was demonstrated in Section 4.1.

var(TPolyκ ) = var(κ(TPoly1 − TPoly2 ) + TPoly2 )

= κ2var(TPoly1 − TPoly2 ) + var(TPoly2 ) + 2κcov((TPoly1 − TPoly2 ), TPoly2 ).

Like in Troschke (2002) the following notation is used:

%i = ι2 − ι1, where ιl = b(TPolyl , fPoly(µ)), l = 1, 2 the bias of estimator TPolyl ,

%0 = ι2, then it follows %0%i = ι2(ι2 − ι1),

Σii = var(TPoly1 − TPoly2 ),

Σ00 = var(TPoly2 ) and

−Σi0 = cov((TPoly1 − TPoly2 ), TPoly2 ) = cov(TPoly1 , TPoly2 )− var(TPoly2 ).

Using the notation presented above the bias, the variance and the MSE of Tκ can be

rewritten as:

b(TPolyκ , fPoly(µ)) = %0 − κ%i, (5.1.1)

var(TPolyκ ) = κ2Σii + Σ00 − 2κΣi0, (5.1.2)

MSE(TPolyκ , fPoly(µ)) = Σ00 + %2
0 + κ2Σii − 2κΣi0 + κ2%2

i − 2κ%0%i. (5.1.3)
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According to Troschke (2002, Equation 1.17), the optimal choice for κ obtained using

Lemma 5.1 is given by:

κmin =
Σi0 + %0%i
Σii + %2

i

=
var(TPoly2 )− cov(TPoly1 , TPoly2 ) + ι2(ι2 − ι1)

var(TPoly1 − TPoly2 ) + (ι2 − ι1)2
. (5.1.4)

Theorem 5.1

With the results presented in Theorem 3.2, it is possible to deduce κmin by means of

Equation 5.1.4. This quantity is given by:

κmin =
n[2trAΦ∗(A)µ′ + trAΦ(a) + trAΨ(A) + (n− 1)α]

(n− 1)trAΨ(A) + 2β + (n− 1)2α
,

with Φ∗(A), Φ(a) and Ψ(A) as given in Remark A.4.

Proof: See Appendix C.7.

When correlated random variables are analysed κmin is also given by this equation with

different expressions for var(TPolyl ), l = 1, 2 and cov(TPoly1 , TPoly2 ), see Theorem 3.2.

Theorem 5.2

Let κmin be given as in Theorem 5.1, the MSE of TPolyκmin is given by:

MSE(TPolyκmin , f
Poly(µ)) = Σ00 + %2

0 + κ2
minΣii − 2κminΣi0 + κ2

min%
2
i − 2κmin%0%1

= Σ00 + %2
0 + κ2

min(Σii + %2
i )− 2κmin(Σi0 + %0%1)

= Σ00 + %2
0 −

(Σi0+%0%i)
2

(Σii+%2
i )

.

The latest result coincides with Troschke (2002, Equation 1.17).

Proof: The min
κ

MSE(TPolyκ , fPoly(µ)) was deduced by applying the following well-known

three steps:

1. Explicit calculation of the MSE(TPolyκ , fPoly(µ)).

MSE(TPolyκ , fPoly(µ)) = κ2var(TPoly1 ) + (1− κ)2var(TPoly2 )

+ 2κ(1− κ)cov(TPoly1 , TPoly2 ) + κ2ι21

+ 2κ(1− κ)ι1ι2 + (1− κ)2ι2.
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2. Differentiation. Common differential calculus

∂MSE(TPolyκ ,fPoly(µ))
∂κ = 2κvar(TPoly1 )− 2(1− κ)var(TPoly2 )

+ 2(1− 2κ)cov(TPoly1 , TPoly2 ) + 2κι21

+ 2(1− 2κ)ι1ι2 − 2(1− κ)ι2,

∂2MSE(TPolyκ ,fPoly(µ))
∂2κ

= 2var(TPoly1 − TPoly2 ) + 2(ι1 − ι2)2 > 0.

3. Equating to zero. Setting ∂MSE(TPolyκ ,fPoly(µ))
∂κ to zero and solving the resulting linear

equation for the unknown parameter κ, an optimal κ which minimises MSE(TPolyκmin , f
Poly(µ))

can be obtained.

From ∂MSE(TPolyκ ,fPoly(µ))
∂κ = 0 it follows:

κmin =
var(TPoly2 )− cov(TPoly1 , TPoly2 ) + ι2(ι2 − ι1)

var(TPoly1 − TPoly2 ) + (ι2 − ι1)2
,

which coincides with the Expression 5.1.4.

From the substitution of κmin through Expression 5.1.4 in Equation 5.1.3 it follows:

MSE(TPolyκmin , f
Poly(µ)) = Σ00 + %2

0 + (Σi0+%0%i)
2

(Σii+%2
i )

2 (Σii + %2
i )− 2Σi0+%0%i

Σii+%2
i

(Σi0 + %0%i)

= Σ00 + %2
0 + (Σi0+%0%i)

2

(Σii+%2
i )
− 2 (Σi0+%0%i)

2

(Σii+%2
i )

= Σ00 + %2
0 −

(Σi0+%0%i)
2

(Σii+%2
i )

.

Theorem 5.3 (Multinormal Distribution)

Assume that y = VecX ′ is multinormally distributed with E[y] = g∗ = 1In ⊗ µ and

cov(y) = V ∗ = In ⊗Σ, then the resulting κmin for the multinormal case is given by:

κmin =
2β + nα

2β + (n− 1)α
,

with γ = 1
n(2Aµ+ a)′Σ(2Aµ+ a), α = (trAΣ)2 and β = tr(AΣ)2.

Proof: See Appendix C.8.
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5 Minimal MSE Estimation of NLSS Functions of Distribution Parameters

5.2 Minimal MSE Estimation of NLSS Functions of Parameters

of Univariate Distributions

Like in the multivariate case, TPoly3 can be written as TPolyκ = κ(TPoly1 − TPoly2 ) + TPoly2 ,

with κ = n
n−1 . In this case, the interest is also focused on finding an optimal κ or κmin, so

that MSE(TPolyκmin , f
Poly(µ)) is minimised. MSE(TPolyκmin , f

Poly(µ)) is defined like in Theorem

5.2.

In Equation 5.1.4 the expression for κmin, based on the approach introduced by Troschke

(2002), is presented. Most of the expressions involved in this equation have already been

deduced and presented in Theorem 3.4. In the following theorem the optimal expression

for κ for the univariate case will be presented.

Theorem 5.4

Let z = y − E[y], with E[z] = 0, V ∗ = E[zz′] = cov(y) = σ2In and g∗ = E[y] = µ1In.

The resulting κmin for the univariate case is given as follows:

κmin =
n[2A2µΦ + aAΦ +A2Ψ + (n− 1)α]

(n− 1)A2Ψ + (2 + (n− 1)2)α
,

with γ = σ2

n (2Aµ+ a)2.

Proof: See Appendix C.9.

Theorem 5.5 (Normal Distribution)

Assume that x is normally distributed with E[x] = µ1In and cov(x) = σ2In. Further-

more, assume that y ∼ N(µ1In, σ
2In), with Φ = ΦN = 0 and Ψ = ΨN = 3σ2. The

index N stands for representing the normal distribution.

The resulting κmin for the normal case is given as follows:

κmin =
n+ 2
n+ 1

.

Proof: See Appendix C.10.
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In this section, asymptotical results for the estimation of NLSS from various references are

compared with both the new estimator developed using the generalised Jackknife approach

and the estimator obtained using the approach introduced by Troschke (2002).

The estimation quality or performance of the aforementioned estimators will be compared

by means of their approximated and simulated MSEs for different distribution assumptions,

parameter settings, correlation coefficients and sample sizes.

As first NLSS function, the ratio of means will be considered in Section 6.2.1. This func-

tion is a commonly used measure of comparison which can be used as an alternative to

mean differences for analyzing continuous outcome variables. In the same section, estima-

tion approaches for the ratio of means of two lognormal and gamma distributed variables

are presented as special cases. In this specific context, Crow (1977) derived a Minimum
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Variance Unbiased Estimator (MVUE) for the ratio of means of two independent lognormal

distributions with equal and unequal shape parameters. In the same context, Shaban (1981)

obtained estimators for the ratio of means of two independent lognormally distributed vari-

ables which are generally of smaller mean squared error than both the Maximum Likelihood

(ML) and the MVUE as given in Crow (1977). For the gamma distribution, Crow (1977)

also derived a MVUE for the ratio of means. In the same section the aforementioned

estimators will be compared with those analysed and deduced in this work.

As second NLSS function the inverse of the mean will be considered in Section 6.3. For

this function the ML estimator (one of the most frequently used estimators for this kind

of functions) has no second and higher order moments. Srivastava and Bhatnagar (1981)

presented a class of estimators free from the limitation of non-existence of moments and

from the assumption of normality. Both estimators as well as their properties are presented

in the same section. Further, both estimators will be compared with the estimators analysed

and developed in this work.

Estimation of the odds in favour of an event will be considered in Section 6.4 as an ex-

ample of a NLSS function for which the estimation approach deduced in this work can be

applied. In the same section comparisons between estimators presented in literature and

those analysed and developed in this work will also be carried out.

The following section introduces preliminaries, i.e. clarifying aspects and settings, needed

for the simulation study.

6.1 Preliminaries

The aim of this preliminary section is to introduce the main concepts necessary for the

simulation study to be carried out in this work. It consists basically of a general method

for the generation of two correlated random variables is also presented as well as their higher

order moments.
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6.1.1 Generation of two Correlated Random Variables

After an intensive literature review in this topic, it could be concluded that with existing

methods for generating correlated random variables it is quite simple, at least theoretically,

to generate correlated random variables under the assumption of a particular distribution.

In this respect, Fitzgerald et al. (2006) presented a technique for generating random vari-

ables that match moments and autocorrelations from a particular empirical distribution.

They also showed that their approach is more accurate than traditional techniques.

Additional to the problem of assumption of a particular distribution, the setting of the

correlation level between the variables to be generated is not straightforward. In this

respect, Kleijnen (1974) derived different procedures for sampling two variables which have a

predetermined correlation coefficient and possibly have prespecified marginal distributions.

In his approach, instead of specifying a particular value for the correlation coefficient, the

linear correlation may be maximized.

Another work related to this topic was written by Förster (1997), who describes a method

for the Monte Carlo simulation of two correlated random variables. The author analysed

linear combinations of stochastically independent random variables that are uniformly dis-

tributed over the interval [0, 1]. If a suitable matrix of coefficients is chosen, the subsequent

transformation results in random variables with the desired distribution properties and co-

variance between the involved variables, with covariance between the involved variables X1

and X2 in the interval [−0.3, 0.4].

In this work, the intention is to compare the performance of the estimators developed in

the preceding sections. For this comparison, variables from a desired distribution function

with different prespecified correlation levels, ρ ∈ [−1, 1] will be generated.

The aforementioned approaches are not sufficient for the intended task. Therefore, it is

necessary to develop a new approach for the generation of two correlated random variables

with an arbitrary user-defined correlation level.
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This approach was developed through personal communications with D. Trenkler and is

presented as follows:

1. A bivariate i.i.d random sample x1,x2, . . . ,xn with

E[xi] = 0 and cov(xi)=E[xix′i] = I2, for i = 1, · · · , n is generated.

The random vector xi is given by: (Xi1, Xi2)′.

Furthermore, X = (X1, X2)′ is a vector containing the two uncorrelated random

variables.

It holds that for suitable settings of parameters the following transformation

Y = (Y1, Y2)′ := CBX + b (6.1.1)

yields a vector of correlated random variables, Y , with E[Yj ] = µj , var(Yj) = σ2
j ,

j = 1, 2 and corr[Y1, Y2] = ρ.

Legal settings of these parameters are: µj ∈ R, σj ∈ R+ and ρ ∈ [−1, 1].

Furthermore, it is stated that:

b = µ =

µ1

µ2

, B =

1 q

q 1

 and C =

 τ1 0

0 τ2

 ,

where q, τ1 and τ2 are given below.

2. Similarly, the following transformation is applied:

u = (U1, U2)′ := BX = (X1 + qX2, qX1 +X2)′, with

var(u) = BB′ =

 1 + q2 2q

2q 1 + q2

,
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and

corr[U1, U2] = ρ = 2q
(1+q2)

.

From these equations it follows:

q =


1−
√

1−ρ2

ρ for ρ 6= 0

0 otherwise

3. Now the transformation v = (V1, V2)′ := Cu is considered, with:

var(V1) = σ2
1 = var(τ1U1) = τ2

1 var(qX1 +X2) = τ2
1 (1 + q2), and

var(V2) = σ2
2 = var(τ2U1)τ2

2 var(X1 + qX2) = τ2
2 (1 + q2).

These expressions yield:

τ1 =

√
σ2

1

1 + q2
and τ2 =

√
σ2

2

1 + q2
.

4. Finally, from transformation (6.1.1) the following vector of correlated random vari-

ables Y can be obtained:

Y = (Y1, Y2)′ = CBX + µ =

 τ1X1 + τ1qX2 + µ1

τ2qX1 + τ2X2 + µ2

 . (6.1.2)
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Moments of two Correlated Variables

In this section, the third and fourth central moments, necessary for the computation of the

covariance between TPoly1 and TPoly2 as well as their separated variances when the involved

random variables are correlated, are presented.

Suppose x1,x2, . . . ,xn represents a realisation of an i.i.d. bivariate random sample with

mean E[xi] = 0 and covariance matrix E[xix′i] = I2. From properties of the variance it

follows that E[X2
j ] = (E[Xj ])2 + var[Xj ] = 1, see e.g. Mood, Graybill and Boes (1974).

Let Y ∈ Rn×2 represent the matrix resulting from the transformation (6.1.2), with n the

sample size and 2 the number of correlated variables. It is to allude that Y has a similar

structure as X presented in Remark 6.1, so that a correlated random sample is given as

follows:
y1,y2, . . . ,yn, with yi = (Yi1, Yi2)′ and E[yi] = µ and E[(yi − µ)(yi − µ)′] = Σ.

Similarly to Section 3.1 the random vectors zi = yi−µ, i = 1, . . . , n, with existing moments

E[zi] = 0, E[ziz′i] = Σ, E[zi ⊗ ziz
′
i] = Φ and E[ziz

′
i ⊗ ziz

′
i] = Ψ are considered.

Now, let y = Vec(Y ′) and z = y − E[y], with E[y] = 1In ⊗ µ and cov(y) = In ⊗Σ, from

this it follows that E[z] = 0 and E[zz′] = cov(y) = In ⊗Σ.

Notice that z decomposes into independent subvectors zi with dimension p = 2, and that

the elements of zi (i.e. zi = (zi1, zi2)′) are correlated.

To facilitate notation for the particular bivariate case the following vectors containing ran-

dom variables are considered, i.e. X = (X1, X2)′, Y = (Y1, Y2)′ and Z = (Z1, Z2)′.

In Appendix A.5.2 the non-central as well as the central moments of two uncorrelated

random variables, i.e. X = (X1, X2)′ have been presented.

In the statistical literature the third and fourth non-central moments of the most commonly

used probability distributions have widely been reported, see for example Mood, Graybill

and Boes (1974). The first four central moments of the correlated variables Y = (Y1, Y2)′

are presented in Remark A.6.
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6.2 Estimation of the Ratio of Means (RM)

When a group of population means is given, one of the questions that normally arises is

how sample information can be used to distinguish between these means. Many times the

investigator starts analysing all the differences between each pair of means or expressing

these means as linear combinations. Nevertheless, in some situations the knowledge about

the group of means is obtained in a more natural way through the ratios between each pair

of means. This concept is presented more formally in the following definition.

Definition 9 (Ratio of Means)

Let x1 = (X11, · · · , Xn1)′ and x2 = (X12, · · · , Xn2)′ be two random samples drawn

from some distribution with means µ1 and µ2, respectively. The Ratio of Means, read

as the ratio of the mean µ2 to the mean µ1, is defined as:

f(µ) = µ2/µ1,

where µ = (µ1, µ2)′ and µ1 6= 0.

In most applications the case µ1 > 0 and µ2 > 0 is of particular interest.

The ratio of means can be used as a measure of comparison, e.g. in a test of equivalence

where the principal interest is to demonstrate whether two treatments differ more than a

certain quantity (specified clinically). Hence, the equivalence is defined in terms of the ratio

of means (Hauschke et al., 1999a,b).

Another example is the Consumer Price Index (CPI), which is a ratio of costs of purchasing

a fixed set of items for two points in time. Sociologists are interested in measures like the

ratio of the total monthly food budget to the total monthly income per family or the ratio

of the total number of children to the total number of people residing in the household.

However, it has to be pointed out that statistical inference is more complicated for a ratio

of parameters than for linear combinations of them. One of the difficulties in dealing with

ratios arises in computing the variance of their estimators. In epidemiological studies,

there are different factors which can be quantified using absolute measures, such as the risk
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difference, or by applying relative measures such as the relative risk or odds ratio. Both

the relative risk and the odds ratio require more caution from an inferential point of view

than the simple risk difference.

Beyene and Moineddin (2005) termed the ratio of population means as “a measure designed

to quantify and benchmark the degree of relative concentration of an activity in the anal-

ysis of area localisation, which has received considerable attention in the geographic and

economics literature as well as in the context of population health to quantify and com-

pare health outcomes across spatial domains”. They also pointed out that one commonly

observed limitation of the ratio of population means is its widespread use as only a point

estimation without an accompanying confidence interval.

A new approach for the point estimation of the ratio of means, free from the limitation of

non-existence of moments and from the assumption of normality, is presented as follows.

6.2.1 Estimation of the Ratio of Means of Arbitrary Distributions

Suppose a bivariate i.i.d random sample x1 = (X11, X12)′,x2 = (X21, X22)′, . . . ,xn =

(Xn1, Xn2)′ from a 2–dimensional probability distribution, with means E[X1] = µ1 and

E[X2] = µ2 and variances var(X1) = σ2
1 and var(X2) = σ2

2 is given. The multivariate mean

and covariance matrix can be represented as follows:

E[xi] = µ =

 E[X1] = µ1

E[X2] = µ2

, and

E[(xi − µ)(xi − µ)′] = Σ =

 var(X1) = σ2
1 cov[X1, X2] = 0

cov[X2, X1] = 0 var(X2) = σ2
2

 .

The structure of the corresponding bivariate sample matrix, based on the sample matrix

introduced in Definition 6, is presented in the following remark.
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Remark 6.1 (Bivariate Sample Matrix)

Suppose p = 2 random variables X1 and X2 with n observations taken on each of the

variables are given. The corresponding n× 2 sample matrix, is given by:

X =


X11 X12

X21 X22

...
...

Xn1 Xn2

 ,

X can also be represented as:

X =


x1

x2

...

xn

 , with xi =

Xi1

Xi2

′, or as: X =

x1

x2

′ , with xj =


X1j

X2j

...

Xnj

,

for i = 1, · · · , n and for j = 1, 2.

x1,x2, . . . ,xn represents a realisation of an i.i.d. random sample from a bivariate (2–

dimensional) distribution, with mean µ = E[xi] and covariance matrix Σ = E[(xi −

µ)(xi − µ)′].

Now, suppose that the ratio of the mean µ2 to the mean µ1, see Definition 9, has to be

estimated.

In Section 2.2.3 a general estimation approach that can be applied for the statistical in-

ference of functions of parameter(s) of a particular distribution has been presented. The

general procedure has been summarised in Section 2.3. There it has been stated that the

only condition for the application of the general estimation approach is that of smoothness

of the function to be estimated, i.e. the function has to be of at least class C2, see Definition

1.

In what follows it will be investigated, whether the function f(µ) = µ2/µ1 fulfills the

smoothness condition, i.e. whether it is of at least class C2.
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Remark 6.2 (Smoothness Condition)

Let f(µ) = µ2/µ1. The first and second order derivatives of f(µ) are given by:

f (1)(µ) =


∂f(µ)
∂µ1

∂f(µ)
∂µ2

 =


−µ2

µ2
1

1
µ1

 , the gradient of the function f(µ), and

f (2)(µ) =


∂
∂µ1

(∂f(µ)
∂µ1

) ∂
∂µ1

(∂f(µ)
∂µ2

)

∂
∂µ2

(∂f(µ)
∂µ1

) ∂
∂µ2

(∂f(µ)
∂µ2

)

 =


2µ2

µ3
1
− 1
µ2

1

− 1
µ2

1
0

 , the Hessian matrix.

For further details see Definition 4.

It can be seen that the smoothness condition of function f(µ) is fulfilled.

For the estimation of NLSS functions, in this work, two estimation approaches have been

investigated, i.e. f(Ĝ(X)) and ĝ(f(xi), i = 1, · · · , n), see Definition 8.

For the estimation of f(µ) = µ2/µ1 these estimation approaches investigated in this work

are given by:

T1 = f(Ĝ(X)) = f(x̄) = x̄2/x̄1, and

T2 = ĝ(f(xi), i = 1, · · · , n) = 1
n

n∑
i=1

f(xi) = 1
n

n∑
i=1

(Xi2/Xi1).

As second step of the estimation approach developed in this work, the generalised Jackknife

approach, see Section A.1.3, is used in order to generate an unbiased estimator for f(µ).

This estimator is given by:

T3 =
T1 −RT2

1−R
=

(
x̄2/x̄1 −R 1

n

n∑
i=1

(Xi2/Xi1)
)

1−R
, with R =

b(T1, f(µ))
b(T2, f(µ))

.
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In order to obtain an optimal estimator a linear adjustment as introduced by Troschke

(2002) is applied. This estimator may be biased, but has smaller MSE than its unbiased

counterpart generated by the generalised Jackknife approach.

For the calculation of the estimators T3 and Tκmin the first and higher order moments of

the estimators T1 and T2 are needed. They will be approximated by using the approach

presented in Neudecker and Trenkler (2005a) and improved in the previous sections of this

work.

For the particular case of the estimation of f(µ) = µ2/µ1, an approximation on the basis of

a linear plus quadratic function, of the function itself as well as of the estimators T1 = f(x̄)

and T2 = 1
n

n∑
i=1

f(xi), as made in Remark 3.1, is presented as follows:

fPoly(µ) = a0 + a′µ+ µ′Aµ,

TPoly1 = fPoly(x̄) = a0 + 1
na
′X ′1In + 1

n2 1
′
nXAX

′1In

= a0 + 1
na
′X ′1In + 1

n2 tr1In1
′
nXAX

′

= a0 + a′x̄+ x̄′Ax̄, and

TPoly2 = 1
n

n∑
i=1

fPoly(xi) = a0 + a′x̄+ 1
nΣn

i=1x
′
iAxi,

where a0 is a constant, a′ = [f (1)(µ)]′ is the transpose of gradient vector and A = 1
2f

(2)(µ)

the Hessian matrix of the function f(µ) divided by two, see Remark 6.2.

Remark 6.3

Notice that replacing a = f (1)(µ) and A = 1
2f

(2)(µ) by their respective expressions,

given in Remark 6.2, the approximation fPoly(µ) is equal to a0. Suppose a0 = f(µ)

then fPoly(µ) = f(µ).

In Section 3.1 it was pointed out that both approximated estimators TPoly1 and TPoly2 are

biased for fPoly(µ). The bias terms are presented in the following remark.
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Remark 6.4 (Bias of Approximated Estimators TPoly1 and TPoly2 )

Since AΣ is given by:

AΣ = 1
2


2µ2

µ3
1
− 1
µ2

1

− 1
µ2

1
0


σ

2
1 0

0 σ2
2

 = 1
2


2µ2σ2

1

µ3
1

−σ2
2

µ2
1

−σ2
1

µ2
1

0

 ,

and the trace of AΣ, say trAΣ, is given by:
µ2σ

2
1

µ3
1

, consequently the bias terms of

the approximated estimators TPoly1 and TPoly2 are given by:

b(TPoly1 , fPoly(µ)) = 1
n trAΣ = µ2σ2

1

nµ3
1
, and

b(TPoly2 , fPoly(µ)) = trAΣ = µ2σ2
1

µ3
1

, see Definition 20.

The expressions of the approximations, on the basis of a linear plus quadratic function, of the

estimators to be investigated in this work corresponding to the whole sample x1,x2, . . . ,xn

will be summarized in the following remark.

Remark 6.5

For the estimation of fPoly(µ) the following estimators are proposed:

TPoly1 = f0 + f ′y + y′F 1y

TPoly2 = f0 + f ′y + y′F 2y

TPoly3 = f0 + f ′y + y′F 3y

TPolyκmin = κmin(TPoly1 − TPoly2 ) + TPoly2 ,

where y = VecX ′, f0 is a constant, f = 1
n1In ⊗ a , F 1 = 1

n2 (1In1I
′
n)⊗A, F 2 = 1

nIn ⊗A,

F 3 = − 1
n(n−1)L ⊗A and L = In − 1In1I

′
n. Furthermore, a and A are given in Remark

6.2 and κmin is given as in Theorem 5.1.

The corresponding expressions for the covariance and variances of the aforementioned esti-

mators have been presented in Section 3.1.1.

In this work, one of the principal objectives is to compare the MSE of the estimators T1,

T2, T3 and Tκmin of f(µ) under different distribution assumptions, parameter settings and
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6.2 Estimation of the Ratio of Means (RM)

for different sample sizes. However, it is also intended to compare the performance of

the aforementioned estimators for correlated random variables, where the correlation level

between those variables is assumed to be known. The general approach for generating two

correlated random variables as well as their central moments is presented in Section 6.1.1.

The comparison of the MSEs will be done by means of their approximated expressions and

by simulations in the following section.

Comparison of Estimators of the Ratio of Means

As stated in Section 1.2, most published methods concerning the estimation of functions of

distribution parameters are asymptotic in nature and based on the assumption of uncorre-

lated standard normal random variables.

Since these assumptions are very restrictive, i.e. no correlation, standard normal distribu-

tion, asymptotic, in this work the interest is also concentrated on comparing the perfor-

mance of the different estimators under different conditions, so that the following questions

can be answered:

1. How does the sample size influence the performance of the estimators?

2. How do the estimators perform under the assumption of any arbitrary probability

distribution with different parameter settings?

3. Does the parameter setting influence the performance of the estimators? In the same

respect this raises the question: How do the estimators behave, when the mean of the

variable in the denominator is close to zero?

4. Does the level of correlation between the variables involved influence the performance

of the estimators?

It can be summarised as follows: The performance of the estimators T1, T2, T3 and Tκmin will

be compared by means of variables following different probability distribution assumptions,

parameter settings, such as µ and σ2, sample sizes n and correlation levels ρ (including

ρ = 0).
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Remark 6.6

In order to make a comparison of the performance of the estimators for two correlated

random variables possible, a new approach for generating correlated random variables

has been presented in Section 6.1.1.

For the application of this approach the generated random sample x1,x2, . . . ,xn has to

fulfill the condition E[xi] = 0 and E[(xi − µ)(xi − µ)′] = I2.

It is important to remember that: q = 1−
√

1−ρ2

ρ , for ρ 6= 0 and q = 0, for ρ = 0.

Assumed Distributions for the Estimation of the Ratio of Means

For concepts and definitions related to random variables and distribution functions refer to

Mood, Graybill and Boes (1974).

Remark 6.7

The third and fourth non-central moments of the uncorrelated random variables E[X3
j ]

and E[X4
j ], j = 1, 2 following a given distribution have widely been reported in the

statistical literature, e.g. Mood, Graybill and Boes (1974). Those of this distributions

assumed in the simulation study are given in Appendix A.1.4.

In order to make more generalisable comparisons between the estimators being analysed,

two variables following different distributions will be generated. These distributions and

their first four moments are presented as follows.

Distribution I: Standard Normal Distribution

Let x1,x2, · · · ,xn be a realisation of an i.i.d. bivariate random sample drawn from a

standard normal distribution with parameters E[xi] = 0 and E[(xi − µ)(xi − µ)′] = I2.

Since variables Xj , j = 1, 2 have a standard normal distribution, the assumption E[xi] = 0

and E[(xi − µ)(xi − µ)′] = I2 presented in Remark 6.6 is automatically fulfilled.

The first four central moments of the new variable generated using the approach presented

in Section 6.1.1, i.e. Yj , j = 1, 2, under standard normal distribution assumption of Xj ,

j = 1, 2, were obtained using the equations given in Remark A.6 and are presented as

follows:
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6.2 Estimation of the Ratio of Means (RM)

Central Moments of Yj, j = 1, 2

E[Yj − µj ] = E[Zj ] = 0

E[(Yj − µj)2] = E[Z2
j ] = τ2

j (1 + q2) = σ2
j

Φj = E[(Yj − µj)3] = E[Z3
j ] = 0

Ψj = E[(Yj − µj)4] = E[Z4
j ] = 3τ4

j [(1 + q4) + 2q2].

Distribution II: Exponential Distribution

Let Xj , j = 1, 2 be exponentially distributed with E[Xj ] = 1
λj

= 1 and var(Xj) = 1
λ2
j

= 1.

As following it will be examined whether the condition E[xi] = 0 and E[(xi−µ)(xi−µ)′] =

I2 presented in Remark 6.6 is fulfilled for this distribution, i.e.:

E[xi] =

 1
λ1

1
λ2

 =

1

1

 6= 0, and cov(xi) =

 var(X1) cov(X1X2)

cov(X1X2) var(X2)

 =

 1
λ2

1
0

0 1
λ2

2

 = I2.

The condition is not fulfilled, therefore, it will be necessary to apply a linear transformation

on the variables Xj , j = 1, 2; so that new variables, say Xj∗ = Xj − a with a ∈ R, have a

shifted exponential distribution with probability density function given as presented in the

following definition.

Let X be an exponential-distributed random variable with PDF given as above. Random

variables with the form X∗ = X±a follow a particular distribution called shifted exponential

distribution with shift parameter a.

The PDF of this particular distribution is presented in the following definition.

Definition 10 (Shifted Exponential Distribution)

Let X be an exponential-distributed random variable with parameter λ > 0.

A continuous random variable X∗ = X + a has a shifted exponential distribution, with

parameter λ > 0 and shift parameter a ∈ R, if its probability density function (PDF)

is given by:
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fX∗(x∗) =


λexp[−λ(x∗ − a)] if x∗ > a,

0 otherwise

The plot below shows the density function of an exponential random variable with param-

eter λ = 1 in black and of the shifted exponential random variable in red, with parameters

λ = 1 and a = 1.
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Figure 6.1: Exponential and shifted exponential distribution

The mean and variance of the variable X∗ are given by:

E[X∗] = E[X − a] = E[X]− a, and var(X∗) = var(X − a) = var(X).

In order to know whether the variables Xj∗, j = 1, 2 with λ = 1 and shift parameter a = 1

fulfill the condition presented in Remark 6.6, the mean and variance of these variables will

be presented as follows:

Mean and Variance of Xj∗, j = 1, 2

E[Xj∗] = E[Xj − 1] = E[Xj ]− 1 = 0

var(Xj∗) = var(Xj − 1) = var(Xj) = 1.
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6.2 Estimation of the Ratio of Means (RM)

As can be seen the shifted exponential distributed variables Xj∗, j = 1, 2 with parameter

λ = 1 fulfill the condition presented in Remark 6.6.

The first four central moments of Yj , j = 1, 2, under shifted exponential distribution as-

sumptions of Xj∗, j = 1, 2 Xj , j = 1, 2, with parameter λ = 1 are presented as follows:

Central Moments of Y1 and Y2

E[Zj ] = 0

E[Z2
j ] = σ2

j

Φj = E[Z3
j ] = τ3

j (1 + q3)

Ψj = E[Z4
j ] = τ4

j [(1 + q4) + 6q2].

Distribution III: Uniform Distribution

Let Xj , j = 1, 2 be uniformly distributed in the interval [a = −
√

3, b =
√

3] with mean and

variance given as follows:

Mean and Variance of Xj, j = 1, 2

E[Xj ] = aj+bj
2 =

√
3−
√

3
2 = 0

var(Xj) = (bj−aj)2

12 = (
√

3+
√

3)2

12 = 1.

The variables Xj , j = 1, 2 also fulfill the condition presented in Remark 6.6.

The first four central moments of Yj , j = 1, 2, under uniform distribution assumptions of

Xj , j = 1, 2 Xj , j = 1, 2, with parameters a = −
√

3 and b =
√

3 are presented as follows:

Central Moments of Y1 and Y2

E[Zj ] = 0

E[Z2
j ] = σ2

j

Φj = E[Z3
j ] = 0

Ψj = E[Z4
j ] = τ4

j [1.8(1 + q4) + 6q2].
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Assumed Parameter Settings (PS) for the Estimation of the Ratio of Means

In addition to the three distribution assumptions presented above, for the estimation of

f(µ), the performance of the estimators T1, T2, T3, and Tκmin will be compared for different

parameter settings of the random variables Y1 and Y2.

These parameter settings are presented as follows:

• PS 1: Equal Means and Variances (µ1 = µ2 and σ2
1 = σ2

2)

µ1 = E[Y1] = 10, µ2 = E[Y2] = 10, σ2
1 = var(Y1) = 1, σ2

2 = var(Y2) = 1

• PS 2: Equal Means and Unequal Variances (µ1 = µ2 and σ2
1 6= σ2

2)

µ1 = E[Y1] = 10, µ2 = E[Y2] = 10, σ2
1 = var(Y1) = 1, σ2

2 = var(Y2) = 3

• PS 3: Unequal Means and Equal Variances (µ1 6= µ2 and σ2
1 = σ2

2)

µ1 = E[Y1] = 10, µ2 = E[Y2] = 20, σ2
1 = var(Y1) = 1, σ2

2 = var(Y2) = 1

• PS 4: Unequal Means and Variances (µ1 6= µ2 and σ2
1 6= σ2

2)

µ1 = E[Y1] = 10, µ2 = E[Y2] = 20, σ2
1 = var(Y1) = 1, σ2

2 = var(Y2) = 3

• PS 5: µ1 ≈ 0 and σ2
1 = σ2

2

µ1 = E[Y1] = 1/2, µ2 = E[Y2] = 10, σ2
1 = var(Y1) = 1, σ2

2 = var(Y2) = 1

• PS 6: µ1 ≈ 0 and σ2
1 6= σ2

2

µ1 = E[Y1] = 1/2, µ2 = E[Y2] = 10, σ2
1 = var(Y1) = 1, σ2

2 = var(Y2) = 3.

Results from Approximated Expressions and Discussion

Numerical results of the approximated MSE(Tl, f(µ)), i.e. MSE(TPolyl , fPoly(µ)), l =

1, 2, 3, κmin for different variable settings, i.e. standard normal, exponential, uniform distri-

bution, ρ = −0.9, ρ = −0.5, ρ = 0, ρ = 0.5 and ρ = 0.9, n = 10, n = 100 and n = 1200 as

well as the parameter settings presented above, are presented in Appendix D. Each table,

i.e. Table D.1 - D.3, contains the numerical results for a different probability distribution.

In the following discussion each table will be analysed separately. However, it is important

to illustrate how the tables are to be read.
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6.2 Estimation of the Ratio of Means (RM)

The tables contain the MSEs of four approximated estimators whose names are given across

the top, i.e. TPoly1 , TPoly2 , TPoly3 and TPolyκmin . Each estimation is carried out with different

sample sizes which are also given across the top of the table, i.e. n = 10, n = 100 and

n = 1200. This accommodation on the table makes it possible to compare the approxi-

mated MSEs or performance of each estimator across the different sample sizes by moving

4 positions from the left to the right of the table and between estimators by moving 1

position from the left to the right of the table.

The 6 different parameter settings (PS), as given above, were accommodated as block rows,

where each block row consists of 5 rows representing 5 different correlation levels ρ, including

ρ = 0. In this way, the performance of each estimator for a given parameter setting and

a given correlation level can be compared simultaneously. The top-down correlation levels

in each PS block row represent the following correlations: high negative, medium negative,

no correlation, medium positive and high positive.

An illustration by means of an arbitrary example is presented as follows:

Consider the value 1.22e-05 in the row number 6, i.e. first correlation row in the second

block row, of Table D.1. This value shows the approximated MSE of estimator T1, presented

as TPoly1 , calculated from a medium negative-correlated bivariate normal sample, with equal

means and unequal variances, consisting of 10 elements.

Moving 4 positions to the right, it can be seen that the approximated MSE of the same

estimator takes the value 1.9e-07, when the bivariate sample as described above consists

of 100 elements instead of 10. Furthermore, moving another 4 positions to the right the

approximated MSE of the same estimator takes the value 1.7e−09 when the bivariate sample

consists of 1200 elements. From this comparison of the sample sizes it can be seen that

the MSE(TPoly1 , fPoly(µ)) decreases by at least two orders of magnitude as the sample size

increases.

Now, keeping the same initial value 1.22e-05 and moving one row lower but staying in the

same block row, i.e. from correlation level ρ = −0.5 to ρ = 0, it can be seen that the

approximated MSE of the same estimator takes the value 1.12e-05. On the other hand,
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moving one block row lower and keeping the same correlation level, i.e. ρ = −0.5, the

approximated MSE of the same estimator calculated from a medium negative-correlated

bivariate normal sample, with unequal means and variances, consisting of 10 elements is

shown.

The main findings from the results presented in the Tables D.1, D.2 and D.3 can be com-

pared by keeping one or two variable settings fixed and varying the rest.

From Table D.1. Normal distribution:

• Keeping the PS and ρ fixed and varying n it can be seen that the approximated MSE

of all estimators decreases by at least two orders of magnitude as the sample size

increases. This happens for all PS and ρ values.

• Keeping n and PS fixed and varying ρ it can be seen that the approximated MSE

of all estimators, except of T2, decreases as the top-down correlation levels increase.

This always happens for large sample sizes. For small sample sizes it only happens

for PS 1,4 and 6, while for PS 2,3 and 5 it seems that the correlation does not play a

big role.

• Keeping n and ρ fixed and varying PS it can be seen that the approximated MSE of

all estimators for PS 5 and 6 are bigger, while no significant differences for the first

four PS are observed.

• Keeping n, ρ and PS fixed and varying TPolyl , for l = 1, 2, 3, κmin it can be seen that

the smallest approximated MSEs are obtained with the estimator Tκmin , the second

smallest with T3, the third with T1 and the highest with T2. For higher sample sizes,

the approximated MSE of estimators Tκmin and T3 are almost identical.

From Table D.2. Exponential distribution:

• Keeping the PS and ρ fixed and varying n it can be seen that the approximated MSE

of all estimators decreases by two orders of magnitude as the sample size increases.

For PS 5 and 6 the decrease is by five orders of magnitude when the sample size

increases from 10 to 100.
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• Keeping n and PS fixed and varying ρ it can be seen that the approximated MSEs

of all estimators decreases as the top-down correlation levels increase. This always

happens for large sample sizes. For small sample sizes it only happens for PS 1-4.

• Keeping n and ρ fixed and varying PS it can be seen that as exposed for the normal

distribution, see Table D.1, the approximated MSE of all estimators for PS 5 and 6

are much bigger, while no difference is observed among the first four PS.

• Keeping n, ρ and PS fixed and varying TPolyl , for l = 1, 2, 3, κmin it can be seen that,

as for the normal distribution, the smallest approximated MSEs are obtained with

the estimator Tκmin , the second smallest with T3, the third with T1 and the highest

with T2. For higher sample sizes, the approximated MSE of estimators Tκmin and T3

are almost identical.

From Table D.3. Uniform distribution:

• Keeping the PS and ρ fixed and varying n it can be seen that the approximated MSE

of all estimators decreases by two orders of magnitude as the sample size increases.

As obtained for the normal distribution, this happens for all PS and ρ values.

• Keeping n and PS fixed and varying ρ it can be seen that the approximated MSE of

all estimators decreases as the top-down correlation levels increase. Larger positive

correlation level ρ leads to a smaller approximated MSEs in many parameter settings.

This happens for all sample sizes.

• Keeping n and ρ fixed and varying PS it can be seen that as exposed for the two pre-

ceding distributions, see Table D.1 and D.2, the approximated MSE of all estimators

for PS 5 and 6 are bigger, while no difference is observed among the first four PS.

• Keeping n, ρ and PS fixed and varying TPolyl , for l = 1, 2, 3, κmin it can be seen that,

as for the normal and exponential distribution, the smallest approximated MSEs are

obtained with the estimator Tκmin , the second smallest with T3, the third with T1 and

the highest with T2. For higher sample sizes, the performances of estimators Tκmin

and T3 are almost identical.
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Now, fixing all parameters and varying the probability distribution and TPolyl , for l =

1, 2, 3, κmin the following conclusions can be drawn:

• For all distributions where the means and the variances are equal, i.e. PS 1, the

approximated MSEs are smaller than those for the remaining cases. The largest

approximated MSEs are obtained when E[Y1] is near 0, i.e. PS 5 and 6. This can

be explained from the fact that small changes on the E[Y1], when it is close to zero,

represent big changes on the MSE of all estimators.

• For all distributions, T2 has higher approximated MSEs than the rest of the estimators,

especially when E[Y1] is near 0. Conversely, it can be seen that the approximated MSE

of T2 does not improve meaningfully as the sample size increases. For more details

see Rao (1952) where the estimator T2 was considered as inconsistent.

• For all distributions, MSE(TPoly3 , fPoly(µ)) is slightly smaller than

MSE(TPoly1 , fPoly(µ)). This speaks in favour of the estimator T3, which is a

consistent estimator with small MSE, despite being a linear combination of a

consistent and an inconsistent estimator, i.e. a linear combination of T1 and T2.

However, the inconsistent part decreases with increasing sample size.

• For all distributions, the smallest approximated MSEs are obtained with the estimator

Tκmin . It demonstrates that the application of the linear adjustment presented in

Lemma 5.1 has made a notable improvement in MSE(TPoly3 , fPoly(µ)).

• The underlying distribution does not seem to play a big role in the performance

of the different estimators. The estimators are highly accurate irrespective of the

underlying distribution. A difference between the performance of the estimators could

only be observed for parameter settings 4 and 5, where the approximated MSEs of

the estimators under assumption of exponential distribution were higher.

From the above findings, Tκmin can be seen to be the best among the presented estimators,

for all distributions, despite being slightly biased. T3 is also highly accurate for the estima-

tion of the ratio of means. T2 cannot be recommended, whereas T1 for larger sample size

can be recommended in most cases.
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Results from Simulations and Discussion

For the estimated or simulated MSEs of the estimators being compared in this section,

5000 repetitions, say Rep, will be carried out. For each repetition the squared error, i.e.

the squared difference between each estimator and the function f(µ), is calculated and

then the average of those repetitions is computed, see Definition 22, i.e. M̂SE(Tl, f(µ)) =
Rep∑
i=1

(Tli−f(µ))2

Rep , for l = 1, 2, 3, κmin.

Numerical results of M̂SE(Tl, f(µ)), l = 1, 2, 3, κmin for the same variable settings as pre-

sented above are presented in tables in Appendix E. Each table, i.e. Table E.1 - E.3,

contains the numerical results for a different probability distribution. The tables can be

read in the same way as those presented above.

Analysing each table separately similar results are obtained as above. However, some

differences are outlined as follows:

From Table E.1 - E.3 (Normal, Exponential and Uniform distributions) it can be seen that:

• The simulated or estimated MSEs are much higher than the approximated MSEs

for all different variable settings. Those differences are by at least three orders of

magnitude.

• The estimated variance of the estimator T2 tends to infinity, when µ1 approaches zero.

• Keeping n and PS fixed and varying ρ the estimated MSE of all estimators decreases

as the top-down correlation levels increase. For small sample sizes this only happens

for PS 1 - 4.

From the simulated results, Tκmin has also the smallest MSE among the presented esti-

mators, for all distributions, despite being slightly biased. This represents a performance

improvement on the estimation of NLSS functions, such as the ratio of means.

In the next section, the performance of the estimators analysed in this work will be com-

pared, as made in this section by means of simulations, with existing solutions from litera-

ture where an specific distribution is assumed.
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6.2.2 Comparisons with Existing Solutions

As mentioned in Section 2.1, Crow (1977) derived a Minimum Variance Unbiased Estimator

(MVUE) for the ratio of means of two independent lognormal distributions with equal

and unequal shape parameters. His unbiased estimator was used to evaluate the effect of

seeding. He compared the ratio of means of seeded precipitation to the mean of natural

precipitation. Initially the shape parameter σ was assumed to be unchanged, but a MVUE

for the more general situation in which the shapes differ is also given. In this respect,

Shaban (1981) obtained estimators for the ratio of means of two independent lognormal

distributed variables which are generally of smaller mean squared error than both the

Maximum Likelihood (ML) and the MVUE as given in Crow (1977). For the gamma

distribution, Crow (1977) also derived a MVUE for the ratio of means. These approaches

are presented in Appendix B.

In this section, the estimation approach developed in this work, applicable for any arbitrary

probability distribution, will be compared with specific estimators for lognormal and gamma

probability distributions, by means of simulations.

Estimation of the RM of two Uncorrelated Lognormal Variables

Suppose two independent random variables X1 and X2 distributed according to a lognormal

distribution, with means E[X1] = exp[µ1 +σ2
1/2] and E[X2] = exp[µ2 +σ2

2/2] and variances

var(X1) = [exp[σ2
1] − 1]exp[2µ1 + σ2

1] and var(X2) = [exp[σ2
2] − 1]exp[2µ2 + σ2

2], are given,

so that U1 = log(X1) and U2 = log(X2) are normally distributed with parameters (µ1, σ
2
1)

and (µ2, σ
2
2).

Estimators of the expected value and variance of the variables U1 and U2 are given by:

Ū1 =
1
n

n∑
i=1

U1i, Ū2 =
1
n

n∑
j=1

U2j , S
2
U1

=
1
n

n∑
i=1

(U1i − Ū1)2 and S2
U2

=
1
n

n∑
i=1

(U1i − Ū2)2,

where U1i and U2j , for i = 1, · · · , n and j = 1, · · · , n are the elements of the nor-

mal distributed samples u1 and u2, respectively, i.e. u1 = (U11, U12, · · · , U1n)′ and

u2 = (U21, U22, · · · , U2n)′.
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Different properties of the lognormal distribution are presented in Remark B.1.

Shaban (1981) derived an estimator of % = exp[a(µ2−µ1)+b(σ2
2−σ2

1)], see Equation B.1.4,

with smaller MSE than the ML and the MVUE deduced by Crow (1977), for the following

three situations:

• 1st Situation: The shape parameters are equal σ2
1 = σ2

2 = σ2 and σ2 known.

• 2nd Situation: The shape parameters are equal σ2
1 = σ2

2 = σ2 and σ2 unknown.

• 3rd Situation: σ2
1 6= σ2

2 and both are unknown.

The performance of the estimators presented in Remark 6.5 will be compared with those

estimators presented in Shaban (1981), the ML estimator and the MVUE deduced by Crow

(1977) for the three aforementioned situations.

These estimators are presented for the three situations listed above in Appendix B.1.

In the following remark, it is shown how the function to be estimated looks like for fixed

parameter values a and b and for the aforementioned situations.

Remark 6.8

Assume that in % = exp[a(µ2 − µ1) + b(σ2
2 − σ2

1)], a = 1 and b = 1/2, then it follows:

(i) if σ2
1 = σ2

2, 1st and 2nd Situation from above, then the function

% = exp[(E[U2]]/exp[(E[U1])] = exp[µ2 − µ1],

(ii) if σ2
1 6= σ2

2, 3rd Situation from above, then the function % = E[X2]/E[X1].

Since the function % = exp[µ2 − µ1] is the same for the first and second situation from

above, the comparisons by means of simulations with different parameter settings can be

made for these two situations simultaneously.

The parameter settings to be used in the simulation study and the results from the com-

parisons are presented as follows.
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Assumed Parameter Settings (PS) for the 1st and 2nd Situations

In this section, the MSE of estimators T1, T2, T3, Tκmin and of those presented in Appendix

B.1 for the concrete case of two independent lognormal distributed variables will be esti-

mated by means of simulations and compared for different parameter settings, such as µ

and σ2 and sample sizes n.

Shaban (1981) pointed out that the exact expressions of the MSE of his estimators are too

complicated to permit analytical comparison between them. Therefore, for this distribution,

a simulation study with 5000 repetitions, as performed in the last section, will be carried

out for different sample sizes, i.e. n = 10, n = 50, n = 100 and n = 1200. The function to

be estimated is: % = exp[µ2]/exp[µ1], see Equation B.1.3.

The simulations will be carried out under the following parameter settings:

• PS 1: µ1 = µ2 = 1.1 and σ = 1/100

• PS 2: µ1 6= µ2, µ = (0.1, 3)′ and σ = 1/100

• PS 3: µ1 6= µ2, µ = (−1.40, 1.1)′ and σ = 1/100. With exp[µ1] ≈ 0

• PS 4: µ1 = µ2 = 1.1 and σ = 1/10

• PS 5: µ1 6= µ2, µ = (0.1, 3)′ and σ = 1/10

• PS 6: µ1 6= µ2, µ = (−1.40, 1.1)′ and σ = 1/10. With exp[µ1] ≈ 0.

Simulation Results and Discussion for the 1st and 2nd Situations

In Table E.4 the estimated MSE of the estimators T1, T2, T3 and Tκmin are compared with

those of the estimators from literature, i.e. %̂ML, %̂MV UEc , %̂Shaban and %̂Shaban1, see Remark

6.5. As can be seen in the aforementioned table, the estimated MSE of all the presented

estimators decreases when n increases. This decrease from n = 10 to n = 1200 is in most

cases by two orders of magnitude, with the exception of T2 and %̂Shaban1 whose decreases

are smaller for parameter settings 5 and 6.

When an evaluation is made on the basis of the parameter settings, it can be seen that

all estimators have demonstrated to depend hardly on the parameter setting for µ and

σ2. They perform best when the means are equal and the standard deviation is small
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(PS=1) and perform worst when the means are unequal, the standard deviation is large

and additionally exp[µ1] ≈ 0 (PS=6).

The estimators proposed by Shaban (1981), denoted as %̂Shaban and %̂Shaban1, declared

as minimal MSE within the class B.1.5 and B.1.6 respectively, estimate the function % =

exp[µ2]/exp[µ1], very accurately. However the estimator Tκmin was demonstrated to perform

very well, even when it is compared with the aforementioned estimators.

It is difficult to state which estimator has the universally smallest MSE. In general all

estimators, except T2, can be recommended.

Assumed Parameter Settings (PS) for the 3rd Situation

These simulations have been made under the same parameter settings as described above.

For the parameter settings 1-3 is σ1 = 1/100 and σ2 = 1/10 and for the parameter set-

tings 4-6 is σ1 = 1/10 and σ2 = 1. The function to be estimated is: E[X2]/E[X1] =

exp
[
(µ2 − µ1) + (σ2

2−σ2
1)

2

]
, see Equation B.1.1.

Simulation Results and Discussion for the 3rd Situation

In Table E.5 it can be seen that the estimated MSEs of all the presented estimators decrease

when n increases. This decrease is from n = 10 to n = 1200 for all estimators, except for

TML, by at least two orders of magnitude for all parameter settings.

TML performs well, for different parameter settings, but for parameter settings 5 and 6, i.e.

larger standard deviation and µ1 6= µ2, this estimator performs poorly and, as mentioned

above, the decrease of its estimated MSE, by increasing the sample size, is of lower order

of magnitude than with the rest of the estimators.

All estimators, except TML perform similarly, but for all parameter settings and sample

sizes TShaban1 is even better than the estimator developed in this work Tκmin .

In general all estimators, except T2 and TML for parameter settings 5-6, can be recom-

mended. But the estimator TShaban1 has the universally smallest estimated MSE.
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Estimation of the RM of two Uncorrelated Gamma Variables

Suppose two independent random variables X1 and X2 distributed according to a gamma

distribution with parameters α1 and β1 and α2 and β2 are given. For moments of the

gamma distribution refer to Appendix A.1.4.

Now suppose that the ratio of means of the aforementioned random variables has to be

estimated. This function is given as follows:

f(µ) =
E[X2]
E[X1]

=
α2β2

α1β1
.

The independent random sample means x̄1 = 1
n

n∑
i=1

X1i and x̄2 = 1
n

n∑
i=1

X2i are complete

sufficient MVUEs of α1β1 and α2β2 respectively.

As mentioned in Section 2.1, Crow (1977) derived a Minimum Variance Unbiased Estimator

(MVUE) from independent samples of the ratio of means of two gamma distributions of

known shape.

This estimator is given by:

TCROW =
nα1 − 1
nα1

x̄2

x̄1
, with nα1 > 1 and α1 assumed to be known.

It can be seen that with n sufficiently large TCROW ≈ x̄2
x̄1

.

As following, the MSE of estimators T1, T2, T3, Tκmin and TCROW will be estimated by

means of simulations and compared for different parameter settings, such as µ and σ2 and

sample sizes n.

The simulations will be carried out under the following parameter settings:

Assumed Parameter Settings

For this distribution a simulation study was performed for different sample sizes, i.e. n = 10,

n = 50, n = 100 and n = 1200 and the following parameter settings:

• PS 1: Equal Means and Variances (Both High) (µ1 = µ2 and σ2
1 = σ2

2)
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6.2 Estimation of the Ratio of Means (RM)

For α = (4, 4)′ and β = (8, 8)′ is µ1 = µ2 = 32 and σ2
1 = σ2

2 = 256

• PS 2: Equal Means and Variances (Both Medium) (µ1 = µ2 and σ2
1 = σ2

2)

For α = (6, 6)′ and β = (2, 2)′ is µ1 = µ2 = 12 and σ2
1 = σ2

2 = 24

• PS 3: Equal Means and Variances (Both Small) (µ1 = µ2 and σ2
1 = σ2

2)

For α = (1/2, 1/2)′ and β = (1, 1)′ is µ1 = µ2 = 0.5 and σ2
1 = σ2

2 = 0.5

• PS 4: Unequal Means and Variances (High µ1) (µ1 6= µ2 and σ2
1 6= σ2

2)

For α = (6, 4)′ and β = (6, 4)′ is µ1 = 36, µ2 = 16 and σ2
1 = 216 and σ2

2 = 64

• PS 5: Unequal Means and Variances (Medium µ1) (µ1 6= µ2 and σ2
1 6= σ2

2)

For α = (4, 2)′ and β = (4, 2)′ is µ1 = 16, µ2 = 4 and σ2
1 = 64 and σ2

2 = 8

• PS 6: Equal Means and Variances (Small µ1) (µ1 6= µ2 and σ2
1 6= σ2

2)

For α = (1/2, 1)′ and β = (1/2, 1)′ is µ1 = 0.25, µ2 = 1 and σ2
1 = 0.125 and σ2

2 = 1.

Simulation Results and Discussion

In Table E.6, the estimated MSE of a Minimum Variance Unbiased Estimator (MVUE),

denoted by TCROW , for the ratio of means of two gamma distributed random variables with

known shape, is compared with the MSEs of the estimators T1, T2, T3 and Tκmin , as given

in Remark 6.5.

It can be seen that, with the exception of T2, the estimated MSEs of all the presented

estimators decrease by at least two orders of magnitude as the sample size increases from

n = 10 to n = 1200.

The estimated variance of the estimator T2 tends to infinity, when µ1 approaches zero, PS

4 and PS 5. T3 is strongly influenced by estimator T2 for µ1 close to zero (remember that

T3 is a linear combination of estimators T1 and T2). The estimator TCROW performs better

than Tκmin for parameter settings 3 and 6, especially for small sample sizes.

In this case, it can be seen that for parameter settings 1,2,4 and 5 Tκmin has the smallest

estimated MSE of all the estimators, especially for larger sample sizes.
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6.3 Estimation of the Inverse of the Population Mean

The estimation of the inverse of the population mean and its functions, often arises in

different sciences, such as in Physics and Biology. For instance, Allen (1957) described the

use of the inverse of the mean, also known as the reciprocal mean, as a measure of covalent

bond energy. This function is presented more formally in the following definition.

Definition 11 (Inverse of the Mean)

Let x be a random sample drawn from some distribution with mean µ and variance

σ2. The inverse of the mean is defined as:

f(µ) = 1/µ,

where µ 6= 0.

Suppose x = (x1, x2, . . . , xn)′ represents a realisation of an i.i.d. random sample drawn

from a probability distribution with mean µ and standard deviation σ.

Now, suppose that the inverse of the mean µ, see Definition 11, has to be estimated.

The general estimation approach presented in Section 2.2.3 will be applied for the statistical

inference of the inverse of the mean. The general procedure has been summarised in Section

2.3. There it has been stated that the only condition for the application of the general

estimation approach is the smoothness of the function to be estimated, i.e. the function

has to be of at least class C2, see Definition 1.

As follows it will be investigated, whether the function f(µ) = 1/µ is of at least class C2.

Remark 6.9 (Smoothness Condition)

Let f(µ) = 1/µ. The first and second order derivatives of f(µ) are given by:

f (1)(µ) = −1/µ2, and

f (2)(µ) = 2/µ3.

It can be seen that the smoothness condition of function f(µ) is fulfilled.
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For the estimation of f(µ) = 1/µ the estimation approaches investigated in this work are

given by:

T1 = f(Ĝ(x)) = 1/x̄ and T2 = ĝ(f(xi), i = 1, · · · , n) = 1
n

n∑
i=1

1/xi.

As second step of the estimation approach developed in this work, the generalised Jack-

knife approach, see Section A.1.3, is used in order to generate an unbiased approximated

estimator for f(µ).

This estimator is given by:

T3 =
T1 −RT2

1−R
=

(
1/x̄−R 1

n

n∑
i=1

1/xi

)
1−R

, with R =
b(T1, f(µ))
b(T2, f(µ))

.

If an unbiased estimator is obtained, see Remark A.2, a linear adjustment as introduced

by Troschke (2002), is applied in order to obtain a minimal Mean Squared Error (MSE)

estimator Tκmin . This estimator may be biased, but has smaller MSE than its unbiased

counterpart generated by the generalised Jackknife approach.

For the calculation of the estimators T3 and Tκmin the first and higher order moments of

the estimators T1 and T2 are needed. They will be approximated by using the approach

according to Neudecker and Trenkler (2005a) and enhanced in this work.

For the particular case of the estimation of f(µ) = 1/µ, an approximation on the basis of a

linear plus quadratic function, of the function itself as well as of the estimators T1 = f(x̄)

and T2 = 1
n

n∑
i=1

f(xi), as made in Remark 3.1, is presented as follows:

fPoly(µ) = a0 + aµ+Aµ2,

TPoly1 = fPoly(x̄) = a0 + ax̄+Ax̄2, with x̄ =
1
n

1I′nx,

TPoly2 =
1
n

n∑
i=1

fPoly(xi) = a0 + ax̄+
A

n

n∑
i=1

x2
i .

where a0, a and A are real constants. Furthermore, a = f (1)(µ) and A = 1
2f

(2)(µ).
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Remark 6.10

Notice that replacing a = f (1)(µ) and A = 1
2f

(2)(µ) by their respective expressions,

given in Remark 6.14, the approximation fPoly(µ) is equal to a0. Suppose a0 = f(µ)

then fPoly(µ) = f(µ).

In Section 3.1 it was pointed out that both, TPoly1 and TPoly2 are biased estimators for

fPoly(µ). The bias terms are presented in the following remark.

Remark 6.11 (Bias of Approximated Estimators TPoly1 and TPoly2 )

The bias of estimators TPoly1 and TPoly2 are given by:

b(TPoly1 , fPoly(µ)) = Aσ2/n, and

b(TPoly2 , fPoly(µ)) = Aσ2, see Definition 20.

Furthermore, let α = A2σ4, then [b(TPoly1 , fPoly(µ))]2 = α
n2 and [b(TPoly2 , fPoly(µ))]2 =

α are the square of the bias of estimators TPoly1 and TPoly2 , respectively.

In the following remark the aforementioned estimators are presented in matricial notation.

Remark 6.12

For the estimation of fPoly(µ) the following estimators are proposed:

TPoly1 = f0 + f ′x+ x′F 1x,

TPoly2 = f0 + f ′x+ x′F 2x,

TPoly3 = f0 + f ′x+ x′F 3x,

TPolyκmin = κmin(TPoly1 − TPoly2 ) + TPoly2 ,

with x representing a realisation of an i.i.d. random sample and f0 a real constant, f

a n× 1 vector and F l, l = 1, 2, 3 a n× n matrix.

The aforementioned vector and matrices can be obtained by:

f = a
n1In, F 1 = A

n2 1In1I
′
n, F 2 = A

n In and F 3 = − A
n(n−1)In − 1In1I

′
n.
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6.3.1 Comparisons with Existing Solutions

For the estimation of the ratio of means or of the inverse mean Zellner (1978) has introduced

an estimator that has shown to have (at least) finite first and second moments, and hence

finite risk with respect to generalized quadratic loss. Additionally this estimator, known as

the Minimum-Expected-Loss (MELO) estimator, is consistent, asymptotically efficient and

asymptotically normal.

Zaman (1981) also investigated the estimation of the inverse of the mean of a normal

distributed variable from a Bayesian point of view. Given a sufficiently large sample,

Zaman (1981), Theorem 1, provides adequate justification for the ML estimator, if the loss

function is bounded. He also studied some conditions under which the ML estimator may

be more suitable than the MELO estimator, deduced by Zellner (1978), and vice versa, as

well as situations in which neither is appropriate.

For definitions in the Bayesian approach, see Bernardo and Ramón (1998).

In this respect, Akahira and Takeuchi (1981) asserted that if a bounded loss function is

appropriate, then lack of moments need not be regarded as a serious problem if the sample

size is large enough.

Since, in this work, comparisons for finite sample sizes will be made, no more emphasis will

be placed on the aforementioned estimators.

Based on the MELO estimator, Srivastava and Bhatnagar (1981) derived a class of esti-

mators, which is free from the limitation of non-existence of moments. They derived exact

expressions for the first two moments in the case of normal population and approximations

for the non-normal case. These expressions are presented in Appendix B.2.1.

Voinov (1985) also derived unbiased estimators of powers of the inverse of population means,

for the following cases:

a) unknown normally-distributed population mean µ and known variance σ2 .
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b) normal population mean 1/µk, k = 1, 2, . . ., assuming µ and σ to be unknown. Addi-

tionally, µ > 0 is assumed.

This approach is presented in Appendix B.2.2. In the same section it is also pointed out

that the estimator deduced for the first case has infinite variance; and that for the second

case an unbiased estimator of 1/µk for µ < 0 and σ2 unknown does not exist, see Voinov

(1985, p. 360) for discussions.

Since the estimator deduced by Voinov (1985) has infinite variance, it will not be possible

to make a comparison with the estimators resulting from the estimation approach developed

in this work, i.e. T1, T2, T3 and Tκmin .

The aforementioned estimators will be compared with those presented in Srivastava and

Bhatnagar (1981), denoted by TSriv and presented in Appendix B.2.1, for different sample

sizes, different underlying distributions and parameter settings in the following section.

Comparison of Estimators of the Inverse of the Mean

Most published methods concerning the estimation of the inverse of the mean are asymptotic

in nature and based on the normal distribution. Since these assumptions are very restrictive,

in this work the interest is also concentrated on comparing the performance of the estimators

T1, T2, T3, Tκmin and TSriv under different conditions, such as different sample sizes n,

probability distribution assumptions and parameter settings. For the last condition it is

especially interesting to observe how the estimators behave when the mean lies close to

zero.

The simulation study to be carried out can be summarised as follows: The performance

of the estimators T1, T2, T3, Tκmin and TSriv will be compared under different probability

distribution assumptions, parameter settings, such as µ and σ2 and sample sizes n.

The approach developed by Srivastava and Bhatnagar (1981) is shown in Appendix B.2.1.
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Assumed Distributions for the Estimation of the Inverse of the Mean

In order to make more generalisable comparisons between the estimators being analysed,

different distributions will be simulated. These distributions are presented as follows.

Distribution I: Normal Distribution

Let X be normally distributed with mean µ and variance σ2.

For this distribution Srivastava and Bhatnagar (1981) pointed out that the estimator TSriv,

see Equation B.2.9, is asymptotically unbiased if K = 1, while it has the smallest MSE to

the order of their approximation, i.e. (O(n−2)), if K = 4. In this simulation study, K = 4

will be used for the comparison of TSriv with the rest of the estimators.

Distribution II: Exponential Distribution

Let X be exponentially distributed with mean µ = 1
λ and variance σ2 = 1

λ2 .

As mentioned above, Srivastava and Bhatnagar (1981) stated that the estimator TSriv,

see Equation B.2.10, has smaller MSE than 1/x̄ for all negatively skewed populations and

positively skewed populations with δ < 4, provided K satisfies the inequality 0 < K <

2(4− δ).

From literature it is known that the exponential distribution is a positively skewed distribu-

tion and that its Pearson’s measure of skewness Sk is equal to 2, then it follows: δ = (2
v)1/2,

with v = σ2

µ2 .

Srivastava and Bhatnagar (1981) pointed out that for non-normal populations TSriv has a

smaller MSE than 1/x̄ if K = (4 − δ). For the comparison to be carried out in this work

K = (4− δ) will be used.

Distribution III: Uniform Distribution

Let X be uniformly distributed in the interval [a, b] with mean µ = a+b
2 and variance

σ2 = (b−a)2

12 .
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For this distribution the Pearson’s measure of skewness Sk is equal to 0, then it follows

that δ = 0. As pointed out above if δ = 0, then the expressions for the RB and RMSE are

the same as those obtained for normal populations.

Assumed Parameter Settings for the Estimation of the Inverse Mean

Besides the three distribution assumptions presented above, for the estimation of f(µ), the

performance of the estimators T1, T2, T3, Tκmin and TSriv will be compared for different

parameter settings of the random variable X.

The parameter settings for these distributions consist of a sequence of mean and variance

values going from around zero to three.

Since TSriv has been deduced for large-sample approximations for non-normal distributions,

in this simulation larger sample sizes than those used in the other simulations in this work

will be used, so that it can be compared with the rest of the aforementioned estimators.

The performance of the aforementioned estimators will be compared for the sample sizes:

n = 250, 500, 750 and 1200.

It is important to point out that the MSE of each estimator will be calculated using their

approximated expressions MSE(TPolyl , fPoly(µ)), for l = 1, 2, 3, κmin, Sriv and estimated by

simulations M̂SE(Tl, f(µ)) =
Rep∑
i=1

(Tli−f(µ))2

Rep , for l = 1, 2, 3, κmin, Sriv, with 5000 repetitions.

6.3.2 Results and Discussions from Approximated Expressions and from

Simulations

Results of the approximated and simulated MSEs of different estimators of the inverse of

the mean are presented in Figure F.1 - Figure F.14 of Appendix F.

In each figure two estimators are compared by means of: (a) the ratio of their approximated

MSEs, i.e. MSE(TPolyl ,fPoly(µ))

MSE(TPolyj ,fPoly(µ))
for l 6= j, and (b) the ratio of their estimated MSEs, i.e.

M̂SE(Tl,f(µ))

M̂SE(Tj ,f(µ))
for l 6= j.
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Two estimators are considered to perform similarly when the ratio of their MSEs is close

to one.

For biparametrical distributions, e.g. the normal distribution, the figures are to be read

as follows: On the y-axis the values of the ratios of the approximated or estimated MSEs

between two estimators are presented and on the x-axis the values of a parameter, i.e. µ,

of the distribution. The second parameter of this distribution, i.e. σ is represented in the

figures with different colours.

For uniparametrical distributions (see next remark) the approximated or estimated MSEs

of all estimators will be collocated together in the same figure. On the y-axis the values

of the approximated or estimated MSEs are presented and on the x-axis the values of a

parameter of the distribution. The different estimators are represented in the figures with

different colours.

Remark 6.13

The mean and variance of the exponential distribution only depend on the parameter

λ, while those of the uniform distribution depend on the parameters a and b.

Now, considering b = a + constant the mean and the variance just depend on one

parameter, i.e. µ = a+b
2 = 2a+constant

2 and variance σ2 = (b−a)2

12 = (constant)2

12 .

In this simulation study constant = 2 was used.

Distribution I. Normal distribution

In Figures F.1 and F.2 the performances of the estimators T1 and Tκmin are compared by

means of the ratio of their approximated and estimated MSEs.

It can be seen that the performances of the estimators T1 and Tκmin are similar, especially

for larger sample sizes. The ratios get closer to one as µ increases, especially for µ > 1. For

µ < 1 the ratios vary depending on the standard deviation σ. The higher σ, the better the

estimator Tκmin performs.
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In Figures F.3 and F.4 the performances of the estimators T1 and TSriv are also compared

by means of the ratio of their approximated and estimated MSEs. It can be seen that for

larger sample sizes the performance of the estimators T1 and TSriv are similar, especially

for µ > 1. For µ < 1 and smaller sample sizes, the ratios vary depending on the variance σ.

The higher σ, the better the estimator TSriv performs and the more the ratios differ from

one.

In Figures F.5 and F.6, it can be seen that the approximated and estimated MSEs of

estimators T1 and T2 are different from one, i.e. the performances of these estimators differ

considerably, especially for larger sample sizes. The ratios get closer to zero as µ increases,

especially for µ > 1, indicating that the estimator T1 performs better than T2.

In Figures F.7 and F.8, it can be seen that for small sample sizes and µ < 1, the ratios

between the approximated and estimated MSEs of Tκmin and TSriv vary depending on

the standard deviation of the distribution, i.e. the higher the variability σ, the better the

estimator TSriv performs. While for small σ and for µ > 1 both estimators perform similarly

and the ratios are close to one.

In general for the normal distribution, it can be seen that the ratios of the approximated

and estimated MSEs of the presented estimators get closer to one, i.e. two estimators

perform similarly, for increasing sample size, except T2 which has not finite variance.

A pattern that could be observed for all comparisons under assumption of normal distri-

bution is that the ratios differ for µ > 1 and µ < 1, being higher for µ < 1. This can be

explained by the fact that f(µ) = 1/µ ≈ ∞, for µ ≈ 0.

Distribution II. Exponential distribution

In Figures F.9 and F.10, it can be seen that for the exponential distribution, with different

values of the parameter λ, the approximated and estimated MSEs of all estimators, except

of T2 which is presented in Figure F.13, are almost identical, with decreasing MSE for

increasing λ even for small sample sizes.
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From this figures it can also be seen that Tκmin performs slightly better than the remaining

estimators when λ is close to zero. However, TSriv performs better than the rest of the

estimators for quite a few λ values between (0, 1]. Unfortunately, in this figure the small

fluctuations along λ can hardly be appreciated.

Distribution III. Uniform distribution

In Figures F.11 and F.12, it can be seen that for the uniform distribution, with different

values of the mean µ, the results are very similar to those obtained for the exponential

distribution, with the difference that the approximated and estimated MSE values are

slightly smaller. The performance of estimator T2 is presented in Figure F.14

As a general conclusion it can be pointed out that for all distributions, Tκmin can be seen

as a good alternative among the presented estimators.

It can also be seen that the approximated and estimated MSEs of this estimator are very

close to that of TSriv. However, for the normal distribution when µ < 1, TSriv has a smaller

approximated and estimated MSE than that of the remaining estimators. On the other

hand, for the exponential and uniform distributions, when λ and µ respectively are close

to zero, the estimator Tκmin has a better performance.

The approximated MSE of estimator T2 for the exponential and uniform distribution are

presented in Appendix F.13 and F.14, respectively. From those figures it can be seen that

the estimator T2 cannot be recommended.

By comparing the approximated and estimated ratios of the MSEs of two estimators it can

be observed that the approximated values, except the ratio between the MSEs of T1 and

Tκmin are smaller than those estimated for all distributions.
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6.4 Estimation of the Odds in Favour of an Event

In probability theory and statistics, the odds in favour of an event, is the ratio of the

probability of the occurrence of the event of interest to the probability that it does not

occur. This statistical measure is commonly used in epidemiological studies to describe the

likely harm an exposure might cause and is often estimated by the ratio of the number of

times that the event of interest occurs to the number of times that it does not. This is

presented more formally in the following definition.

Definition 12 (Odds in Favour of an Event.)

Assume that X is a Bernoulli distributed random variable with mean p. Then the odds

in favour of an event is defined as:

f(p) =
p

1− p
, with p 6= 0 and p 6= 1.

If the odds of an event is greater than one, the event is more likely to happen than not,

while the odds of an event that is certain to happen is infinite and the odds of an impossible

event is zero.

The odds in favour of an event is very useful for the calculation of the odds ratio.

The odds ratio is defined as the ratio of the odds in favour of an event in one group to

the odds of it occurring in another group. These groups might be men and women, an

experimental group and a control group, or any other dichotomous classification. This

concept is presented more formally in the following definition.

Definition 13 (Odds Ratio (OR))

Assume P [A] and P [B] are the probabilities of an event in two different groups A and

B, respectively. Then the odds ratio is given as:

OR(A : B) =
P [A](1− P [B])
P [B](1− P [A])

.
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The odds ratio is a measure useful for investigating whether the probability of a certain

event is the same for two groups.

Let x = (x1, x2, . . . , xn)′ represent a realisation of an i.i.d. random sample of size n drawn

from a Bernoulli probability distribution with mean p and variance p(1− p). Now, suppose

m successes are obtained from the random sample n.

The following function can be considered as an estimator for the parameter p:

p̂ =
1
n

n∑
i=1

xi =
m

n
.

Now, suppose that the odds in favour of an event, see Definition 12, has to be estimated.

The general estimation approach presented in Section 2.2.3 will be applied for the statistical

inference of the odds in favour of an event. The general procedure has been summarised

in Section 2.3. There it has been stated that the only condition for the application of the

general estimation approach is that of smoothness of the function to be estimated, i.e. the

function has to be of at least class C2, see Definition 1.

As follows it will be investigated, whether the function f(p) = p
1−p is of at least class C2.

Remark 6.14 (Smoothness Condition)

Let f(p) =
p

1− p
. The first and second order derivatives of f(p) are given by:

f (1)(p) =
1

(1− p)2
, and

f (2)(p) =
2

(1− p)3
.

It can be seen that the smoothness condition of function f(p) is fulfilled.

For the estimation of the function f(p) the estimation approaches investigated in this work

are given by:
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T1 = f(Ĝ(x)) =
p̂

1− p̂
=

1
n

n∑
i=1

xi

1− 1
n

n∑
i=1

xi

, and

T2 = ĝ(f(xi), i = 1, · · · , n) =
1
n

n∑
i=1

xi
1− xi

.

Casella und Berger (1990, p. 292) have shown the invariance properties of the ML estimator.

Thus, knowing that p̂ is the ML estimator of p, it follows that f(p̂) = f(Ĝ(x)) = p̂
1−p̂ is the

ML estimator of f(p), see Definition 12.

Remark 6.15

Notice that as xi, i = 1, · · ·n are Bernoulli distributed, T2 cannot be considered as

an estimator since its denominator can take the value zero. It makes not possible the

calculation of the estimators developed in this work.

The explanation of this problem and a possible solution are presented as follows.

In Definition 8 it is assumed that the function f is defined in f : Bp → C , with p

representing, in the multidimensional case, the number of variables and B, C ⊆ R the

base set of the domain and counterdomain, respectively. For the univariate case, these

function is defined in f : B → C. Notice that the function f(p) = p
1−p has as domain

the set (0, 1) and as counterdomain the set (0,+∞), i.e. f : (0, 1) → (0,+∞). The same

function is found in the estimator approaches presented above, i.e. T1 = f(p̂) = p̂
1−p̂ and

T2 = ĝ(f(xi), i = 1, · · · , n). There it can be seen that the function f(p̂) has the same base

set in its domain and counterdomain as the function f(p). On the other hand, the function

f(xi), i = 1, · · · , n has as domain the set {0, 1} and as counterdomain the set [0,+∞], i.e.

f : {0, 1} → [0,+∞]. As can be seen, in the estimator T2 the function f(xi), i = 1, · · · , n has

not the same base sets in their domain and counterdomain as the functions f(p) and f(p̄)

do, additionally they are not open intervals. Therefore, the estimation approach developed

in this work cannot be applied for the estimation of the NLSS function f(p) = p
1−p .
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Remark 6.16

In order to make it possible the calculation of the estimators developed in this work,

the following approach is proposed:

1. Generate k independent Bernoulli distributed random samples with parameter p,

i.e. (x11, x12, · · · , x1n), (x21, x22, · · · , x2n), · · · , (xk1, xk2, · · · , xkn).

2. Calculate the arithmetical mean in each random sample, i.e. x̄1, x̄2, · · · , x̄k, with

x̄j 6= 1,∀j.

3. Calculate the estimators T1 and T2 for the function f(p) from the sample sizes

generated as above.

For the estimation of the function f(p) the estimators T1 and T2 are given by:

T1 = f(Ĝ(x̄)) =
¯̄p

1− ¯̄p
=

1
k

k∑
j=1

x̄j

1− 1
k

k∑
j=1

x̄j

, with ¯̄p =
1
k

k∑
j=1

x̄j , and

T2 = ĝ(f(x̄j), j = 1, · · · , k) =
1
k

k∑
j=1

x̄j
1− x̄j

, with x̄j 6= 1, ∀j.

Now, the function f(x̄j), j = 1, · · · , k has the same base set in their domain and counter-

domain as the functions f(p) and f(¯̄p) do, i.e. f : (0, 1)→ (0,+∞).

As second step of the estimation approach developed in this work, the generalised Jack-

knife approach, see Section A.1.3, is used in order to generate an unbiased approximated

estimator for f(p).

This estimator is given by:

T3 =
T1 −RT2

1−R
=

 1
k

k∑
j=1

x̄j

1− 1
k

k∑
j=1

x̄j

−R 1
k

k∑
j=1

x̄j
1−x̄j


1−R

, with R =
b(T1, f(µ))
b(T2, f(µ))

.
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If an unbiased estimator is obtained, see Remark A.2, a linear adjustment as introduced

by Troschke (2002), is applied in order to obtain a minimal Mean Squared Error (MSE)

estimator Tκmin . This estimator may be biased, but has smaller MSE than its unbiased

counterpart generated by the generalised Jackknife approach.

For the calculation of the estimators T3 and Tκmin the first and higher order moments of

the estimators T1 and T2 are needed. They will be approximated by using the approach

presented in Neudecker and Trenkler (2005a) and enhanced in the previous sections of this

work.

For the particular case of the estimation of f(p) = p
1−p , an approximation on the basis of a

linear plus quadratic function, of the function itself as well as of the estimators T1 = f(¯̄p)

and T2 = 1
k

k∑
j=1

f(x̄j), as made in Remark 3.1, is presented as follows:

fPoly(p) = a0 + ap+Ap2,

TPoly1 = fPoly(¯̄p) = a0 + a ¯̄p+A ¯̄p, and

TPoly2 =
1
k

k∑
j=1

fPoly(x̄j) = a0 + a ¯̄p+
A

k

k∑
j=1

x̄2
j ,

where a0, a and A are real constants. Furthermore, a = f (1)(p) and A = 1
2f

(2)(p).

Remark 6.17

Notice that replacing a = f (1)(p) and A = 1
2f

(2)(p) by their respective expressions,

given in Remark 6.2, the approximation fPoly(p) is equal to a0 + p
(1−p)3 .

In Section 3.1 it was pointed out that both, TPoly1 and TPoly2 are biased estimators for

fPoly(p). The bias terms are presented in the following remark.

Remark 6.18 (Bias of Approximated Estimators TPoly1 and TPoly2 )

Assume that X is a Bernoulli distributed variable with mean µ = p and variance

σ2 = p(1− p). The bias of estimators TPoly1 and TPoly2 are given by:86
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b(TPoly1 , fPoly(p)) = Aσ2/n = p
n(1−p)2 , and

b(TPoly2 , fPoly(p)) = Aσ2 = p
(1−p)2 , see Definition 20.

In the following remark the aforementioned estimators are presented in matricial notation.

Remark 6.19

For the estimation of fPoly(p) the following estimators are proposed:

TPoly1 = f0 + f ′x+ x′F 1x,

TPoly2 = f0 + f ′x+ x′F 2x,

TPoly3 = f0 + f ′x+ x′F 3x,

TPolyκmin = κmin(TPoly1 − TPoly2 ) + TPoly2 ,

with x representing a realisation of an i.i.d. random sample and f0 a real constant, f

a n× 1 vector and F l, l = 1, 2, 3 a n× n matrix.

The aforementioned vector an matrices can be obtained by:

f = a
n1In, F 1 = A

n2 1In1I
′
n, F 2 = A

n In and F 3 = − A
n(n−1)In − 1In1I

′
n.

The approximated and estimated MSE of the estimators presented in Remark 6.19 will be

compared under assumption of the following parameter setting.

Assumed Parameter Settings (PS)

For a comparison of the estimators presented in Remark 6.19 the approach outlined in

Remark 6.16 will be used.

In this case k = 4 independent Bernoulli distributed random samples with mean p and vari-

ance p(1 − p) are generated, i.e. (x11, x12, · · · , x1n), (x21, x22, · · · , x2n), (x31, x32, · · · , x3n)

and (x41, x42, · · · , x4n), with n = 250, 500, 750 and 1200. As second step the arithmetical

mean of each random sample, i.e. x̄1, x̄2, x̄3, x̄4 is obtained. Then the estimators T1,T2, T3
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and κmin for the estimation of the function f(p) are calculated. Finally, the approximated

and estimated MSEs of the aforementioned estimators are calculated.

Assume that X is a Bernoulli distributed variable with mean p and variance p(1− p).

Parameter Setting (PS) 1. p = 0.02, 1− p = 0.98.

E[X] = p = 0.02

var(X) = p(1− p) = 0.0196

Φ=E[Z3] = E[X − µ]3 = p(1− p)(1− 2p) = 0.018816

Ψ=E[Z4] = E[X − µ]4 = p(1− p)(3p2 − 3p+ 1) = 0.018448

Parameter Setting (PS) 2. p = 0.1, 1− p = 0.9.

E[X] = p = 0.15

var(X) = p(1− p) = 0.09

Φ=E[Z3] = 0.072

Ψ=E[Z4] = 0.0657

Parameter Setting (PS) 3. p = 0.5, 1− p = 0.5.

E[X] = p = 0.5

var(X) = p(1− p) = 0.25

Φ=E[Z3] = 0

Ψ=E[Z4] = 0.0625

Parameter Setting (PS) 4. p = 0.9, 1− p = 0.1.

E[X] = p = 0.9

var(X) = p(1− p) = 0.09

Φ=E[Z3] = −0.072

Ψ=E[Z4] = 0.0657
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6.4.1 Results and Discussions from Approximated Expressions and from

Simulations

Numerical results of the approximated MSEs or MSE(TPolyl , fPoly(µ)), l = 1, 2, 3, κmin

and of the estimated MSE or M̂SE(Tl, f(µ)), l = 1, 2, 3, κmin for different sample sizes n

and parameter settings, presented above, are shown in Appendix G by means of a table.

This table contains the approximated and estimated MSE of the aforementioned estimators

on the left and right side, respectively. Each estimator is presented in a column. The

4 different parameter settings (PS), as given above, were accommodated as block rows,

where each block row consists of 4 rows representing 4 different sample sizes. In this way,

the MSE of each estimator for a given parameter setting and a given sample size can be

compared simultaneously. This accommodation on the table makes it possible to compare,

for example, the approximated and estimated MSEs of each estimator across the different

sample sizes by moving 1 position down in each block row.

An illustration by means of an arbitrary example is presented as follows:

Consider the value 3.345e-04 in row number 6 of the right side table in Table G.1, i.e. second

row in the second block row and in the first column. This value shows the approximated

MSE of estimator T1 calculated from 4 Bernoulli distributed samples, with p=0.1 and

1− p=0.9, each one of them consisting of 500 elements.

Moving 1 top-down position, but staying in the same block row, it can be seen that the

approximated MSE of the same estimator takes the value 2.568e-04 when the samples, as

described above, consist of 750 elements instead of 500 and that moving one row lower,

the approximated MSE of the same estimator takes the value 1.491e-04 when the samples

consist of 1200 elements. From this comparison among the sample sizes, it can be seen that

the approximated MSE of estimator decreases as the sample size increases.

Now, keeping the same initial value 3.345e-04 and moving 4 top-down positions, i.e. moving

to the second row of the second block row, it can be seen that the approximated MSE of

the same estimator takes the value 7.755e-02 when the Bernoulli distributed samples, also

consisting of 500 elements, have the parameters p=0.5 and 1 − p=0.5. This indicates a
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notable increase in the approximated MSE of estimator T1, when the parameter p changes

from 0.1 to 0.5.

The main findings from the results presented in the Table G.1 can be compared by keeping

one or two parameters of the simulation fixed and varying the rest.

• Keeping the PS fixed and varying n it can be seen that for all PS the approximated and

estimated MSE of all estimators decreases, in much cases by one order of magnitude,

as the sample size increases.

• Keeping n fixed and varying PS it can be seen that the estimated MSEs of all esti-

mators for PS 3 and 4 are bigger, while no meaningful differences among the first two

PS are observed, whereas the smallest MSEs are obtained with PS 1 and the largest

with PS 4, where p is closer to 1, it has already been mentioned that for p ≈ 1 then
p

1−p ≈ ∞.

• Keeping n and PS fixed and varying Tl, for l = 1, 2, 3, κmin it can be seen that the

approximated and estimated MSE of the estimator Tκmin is smaller than those of the

remaining estimators for all parameter settings and sample sizes, whereas for PS 3

estimators T3 and Tκmin perform similarly.

From the exposed above, it can be seen that for the estimation of f(p) = p
1−p , the smaller

the probability p, the smaller the MSEs of all estimators. That means:

M̂SE(Tl)PS1 < M̂SE(Tl)PS2 < M̂SE(Tl)PS3 < M̂SE(Tl)PS3, l = 1, 2, 3, κmin, and

MSE(TPolyl )PS1 < MSE(TPolyl )PS2 < MSE(TPolyl )PS3 < MSE(TPolyl )PS4, l = 1, 2, 3, κmin.

A peculiarity presented in the estimation of this particular function is that the approximated

MSEs are higher than the estimated MSEs. This can be explained by the use of the

estimation approach presented in Remark 6.16.
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Chapter 7
Summary, Conclusions and Plans for

Further Research

Contents

7.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . 91

7.2 Further Plans for Research . . . . . . . . . . . . . . . . . . . . . . 95

In this work a new approach to the statistical inference of nonlinear, sufficiently smooth

(NLSS) functions has been introduced. The approach proposed here is based on Taylor

expansions to approximate sufficiently smooth functions and on the development of a min-

imal Mean Square Error (MSE) estimator of this approximation. This procedure has been

explored very carefully, from mathematical and application-oriented points of view.

The work-flow of this study as well as its most significant contributions are summarised as

follows.

7.1 Summary and Conclusions

Chapter 2 of this study was devoted to an in-depth review of literature on the estimation

of NLSS functions. Apart from framing the research’s focus, providing readers with an
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overview of, and background to the most significant definitions, results and progresses in

this area, the literature review chapter served to direct the research towards an in-depth ex-

ploration of comparatively unexplored issues without solutions that have been controversial

and that have prompted several discussions. This brings us directly to the question of the

research contribution of this study. The research has made different contributions to the

field of point estimation of NLSS functions, some of which shall now be briefly highlighted.

The first contribution concerns the recognition of the restrictions that existing estimation

methods present. The literature revealed that most published methods concerning the

estimation of NLSS functions are asymptotic in nature and based on the assumption of

normal distribution, and that the random variables involved are not correlated. Experience

confirms that this is not always the case, i.e. the conditions under which those methods

have been generated are very restrictive, so that the generated results are based upon the

particular case and are therefore only representative for that case. Additional arguments

are therefore required in order to generalise the results, see for example Qiao et al. (2006),

who pointed out that the development of a satisfactory estimator of the ratio, when the

involved random variables are dependent, remains an area for future research.

It could also be argued that many of the studies discussed in Chapter 2 are incomplete

or meager. Many research projects have uncovered a variety of conclusions regarding the

performance of their estimation methods and researchers have benefited from the properties

of the normal distribution. For example, for the estimation of the ratio of means when the

variables are obtained from two independent distributions, the estimation of such a function

presents different problems, for instance the aforementioned methods do not perform well

in a range of small-sampling settings such as a small-sample bio-availability study.

The second contribution draws directly from the first. From an exhaustive literature re-

search it could be stated that several studies show conflicting results, which indicates the

need for further research. In this respect, as an example, Srivastava and Bhatnagar (1981)

have erroneously stated that the Maximum Likelihood estimator of the inverse of the mean

has no finite moments. Conversely, Voinov (1985) has demonstrated that this statement

holds only for the second and higher order moments.
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A third piece of research contribution lies in the acquisition of knowledge about two useful

estimation approaches, as presented in Definition 8. These estimation approaches are the

building blocks for the construction of a new inference method of NLSS functions developed

in this study. For the particular case of the estimation of the ratio of means, Rao (2002)

called them “mean of ratios” and “ratio of means”. The general procedure of the new

inference method was also presented in Chapter 2. This inference method is basically

motivated by Casella and Berger (1990), Neudecker and Trenkler (2002) and Troschke

(2002). Each step of this general procedure is illustrated through the work-flow of this

dissertation as follows:

The first step consist of approximating the NLSS function and estimating it by using the

aforementioned estimation approaches, based on the approach presented by Casella and

Berger (1990). This was worked out in Chapters 2 and 3, where different basic properties,

such as the means and variances, of the aforementioned estimation approaches were de-

scribed and approximated expressions were deduced, following the approach presented by

Neudecker and Trenkler (2005a). For both multivariate and univariate data, the normal

distribution was considered as a special case. Based on the request presented in Qiao et al.

(2006) for the multivariate distributions, the properties of estimators for correlated random

variables were also considered as a special case and, in the same chapter, a new approach

based on Kleffe and Rao (1988, Section 2.1) was developed.

For the second step of the general procedure of the new inference method, the generalised

Jackknife approach was used in Chapter 4 in order to generate an unbiased estimator for

the approximation of NLSS functions.

After the unbiased estimator was obtained, a linear adjustment as presented in Troschke

(2002) was applied as the third step of the general procedure of the new inference method,

in order to obtain a minimal Mean Squared Error (MSE) estimator. This was presented in

Chapter 5.

Besides the theoretical results presented in Chapters 2 - 5 which give a general framework, in

Chapter 6, application-specific estimations have been developed using the results from those
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chapters. Asymptotical results for the estimation of NLSS from various literature studies

were compared with both the new estimator, developed using the generalised Jackknife

approach and the estimator obtained using the approach introduced by Troschke (2002).

As the first NLSS function, the ratio of means was considered in this chapter. Additionally,

the estimation approaches for the ratio of means of two lognormal and gamma distributed

variables were also presented as special cases.

Estimations of the inverse of the mean and of the odds in favour of an event were also

considered in Chapter 6 as examples of a NLSS function for which the estimation approach

deduced in this work can be applied. In the same chapter, comparisons between estimators

presented in literature and those analysed and developed in this work were also carried out.

The new inference method is not based on any assumption of any type of distribution or of

any data structure. In this work, different simulations were carried out in order to observe

how the new method works under different distribution assumptions and sample sizes. This

method can even be used for estimating the parameters of two correlated distributions.

For the comparisons between different estimators, carried out by means of simulations, in

Chapter 6, it was necessary to introduce some clarifying aspects and settings which are

fundamental for those simulations. Thus, a method for generating two correlated random

variables was deduced, so that the comparisons between the estimators can be carried out

under the assumption of different (user-defined) correlation levels and distributions.

The performance of the aforementioned estimators was compared by means of their approx-

imated and simulated MSEs under different distribution assumptions, parameter settings,

correlation coefficients and sample sizes. As a performance measure, the MSE was used.

The results of the comparisons suggest that the estimators developed here were very con-

vincing in nearly all the situations presented. They compared favorably to existing standard

methods. In general, some of the results obtained from the simulation study can be sum-

marised as follows:
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• The estimator T2 is the worst estimator. This conclusion agrees with the properties

exposed in Rao (1952), where the role of the estimators T1 and T2 based on pairs of ob-

servations from normal populations, was discussed. T2 was shown to be inconsistent

while T1 was considered consistent.

• T3 can be recommended for large sample sizes. This estimator has notably been

improved for most distributions and parameter settings through the use of Lemma

5.1, that is MSE(Tκmin) < MSE(T3).

• A final observation is that the results of this study provide support for the new

estimator, since it is demonstrated to have a minimal Mean Squared Error even when

it was compared with Minimal Variance Unbiased Estimators.

The new approach developed here has improved the existing theoretical and practical results

for the estimation of NLSS functions of distribution parameters given by its minimal MSE.

7.2 Further Plans for Research

By virtue of this being a new approach of estimating NLSS functions, a series of interesting

and challenging problems is brought up - both from a purely mathematical viewpoint, as

well as from the perspective of applications. Although those problems raised could be

addressed by taking solely one viewpoint or the other, according to one’s experience, the

best solutions can be obtained by means of a combination of mathematical theory and

supporting simulation-based, application-oriented evaluation.

To some extent this has been achieved in this work, wherein a balance between the asymp-

totic theory and real-life, small-sample approximations has been maintained.

Throughout this work, wherever appropriate, there have been suggestions for modification,

improvement and new proposals for further research. There are also many more possible

suggestions and unanswered questions, which are addressed as follows:

• Other NLSS functions of distribution parameters (e.g. the ratio of two variances)

should be explored in order to establish whether the estimator deduced in this work
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is generally the best choice. Nikulin and Voinov (1993 and 1996) have presented

different tables with unbiased estimators for different functions of different parameters

for the most commonly used distributions. It would be interesting to compare the

estimator deduced here with the unbiased estimator for some functions presented

in these works, for which the variance is not infinite. There is also a variety of

statistical problems, which can be viewed as questions of inference on NLSS functions

of the parameters in the general linear regression model. Inference for the general

formulation of this problem has only been developed using the Bayesian approach,

and credibility intervals for individual functions as well as for linear combinations of

the functions of the parameters have been obtained by using numerical integration.

• The estimators developed in this work should be compared with examples taken from

the bibliography, where the normal distribution is less common than other shifted dis-

tributions (e.g. the two parameter or shifted exponential distribution, shifted Gamma,

shifted Weibull, Lognormal, etc.), Meeker and Hahn (1980) considered the case where

the involved random variables follow an exponential time-to-failure distribution.

• To go further than the point estimation for f(µ) and investigate how approximated

confidence intervals for such a function could be determined, the point estimation

obtained in this work should be used. From a frequentist point of view, the pointwise

estimation of NLSS functions can be made using the approach presented in this study.

It is well known, however, that several methodological difficulties arise if the objective

is to calculate interval estimates for this parameter, see Fieller and Creasy (1954).

An interesting approach would be to use the point estimation obtained in this work

to calculate approximated confidence intervals for NLSS functions of distribution pa-

rameters for both normal and non-normal distribution, where the sample size is not

necessarily large.
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Appendix A
Additional Definitions, Remarks and
Lemmas

A.1 General Definitions

A.1.1 Functions

This section commences with a review of the definition of a function. This can be considered

as a complement of Section 2.2.1.

Definition 14 (Function)

A function, say f , with domain B and counterdomain C, where B and C are unions of

open intervals, i.e. f : B → C, is a collection of ordered pairs, say (b, c), satisfying (i)

b ∈ B and c ∈ C; (ii) each b ∈ B occurs as the first element of some ordered pair in the

collection (each c ∈ C is not necessarily the second element of some ordered pair); and

(iii) no two (distinct) ordered pairs in the collection have the same first element.

The set of all values of f is called the range of f , i.e. f = {c ∈ C : c = f(b) for some b ∈ B}

and is always a subset of the counterdomain C but is not necessarily equal to it.

Definition 15 (Linear Functions)

Consider a function f , say f : B → C. Linear functions are functions that have the

form:

f(x) = mx+ n ; m,n ∈ R.

In a graph m is the slope of the line y = mx+n and n is the y-intercept. A linear function

has a constant slope and is said to be increasing (or rising) when m > 0 and is decreasing
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(or falling) when m < 0. The graph of a linear function is a straight line. In the special

case where m = 0 the function f(x) = n is a constant function.

Functions whose graphs are not straight lines are called nonlinear functions. The graph of

a nonlinear function can be a curved line, whose slope changes for at least one x. More

formally, this kind of functions is introduced in the following definition.

Definition 16 (Nonlinear Functions)

Nonlinear functions are all functions other than linear ones.

Notice that although the slope of a linear function m is the same no matter where on the

line it is measured, the slope of a nonlinear function can be different at each point on the

line. Thus, there is no constant slope for a nonlinear function.

In several fields of statistics, linear functions are used to explain the relationship between

variables. Nevertheless, there are also different fields of statistics, such as econometrics,

where a linear function cannot explain the relationship between variables. In such cases a

nonlinear function tends to be more appropriate.

At this point it is important to introduce a measure of how a function f(x) changes as its

input x changes. This measure is known as derivative of f(x) with respect to x.

Definition 17 (Derivatives of a Function)

The simple derivative of a function f with respect to the variable x is denoted by either

f (1)(x) or d(1)f(x)
dx and defined as:

f (1)(x) = lim
h→0

f(x+ h)− f(x)
h

.

If the limit exists, then f is differentiable at x. The i-the derivative is denoted by either

f (i)(x) or d(i)f(x)
dxi

.

When a function f(x1, x2, · · · , xp) depends on more than one variable, a partial

derivative
∂f(x1,x2,··· ,xp)

∂x1
, · · · , ∂f(x1,x2,··· ,xp)

∂xp
,
∂(2)f(x1,x2,··· ,xp)

∂x1x2
, · · · , ∂

(2)f(x1,x2,··· ,xp)
∂x1xp

, · · · can

be used to specify the derivative with respect to one or more variables, with:

∂f(x1, x2, · · · , xp)
∂xm

= lim
h→0

f(x1, ..., xm + h, ..., xp)− f(x1, ..., xm, ..., xp)
h

.

106



A.1 General Definitions

If x and f(x) are real numbers, and if the graph of f(x) is plotted against x the derivative

measures the slope of this graph at point x.

When f(x) is a linear function of x, see Definition 15, an exact or constant value for the

slope of the straight line is obtained.

If the function f(x) is nonlinear, then the change in f(x) divided by the change in x varies

and the derivative determines an exact value for this rate of change at any given value of

x. Therefore, this kind of functions is going to be analysed in more detail in this work.

A general concept, which provides a convenient method of stating background assumptions

for future definitions, theorems, etc, is presented in the following definition.

Definition 18 (Factorial Function)

Let n be a positive integer. The factorial function of n is the product of all positive

integers less than or equal to n. This function is denoted by n! and defined by:

n! =
n∏
k=1

k ∀n ∈ N,

or recursively defined by:

n! =

{
1 if n = 0,
n(n− 1)! if n > 0

∀n ∈ N.

The double factorial of a positive integer n is a generalization of the usual factorial n!.

This is denoted by n!! and defined recursively by:

n!! =

{
1 if n = 0 or n = 1,
n(n− 2)!! if n ≥ 2

The gamma function is an extension of factorial to non-integer values of argument, e.g.

w. For a complex number w with positive real part the gamma function is defined by:

Γ(w) =
∫ ∞

0
tw−1e−tdt.

If n is a positive integer, then this function is defined by: Γ(n) = (n− 1)!.

Assume a n× p data matrix, as given above, is given. The arithmetical mean, a reasonable

estimator of the population mean µ, is presented in the following definition.
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A.1.2 Basic Properties of Estimators

Let x1, x2, · · · , xn be a realisation of an i.i.d. random sample drawn from a given probability

distribution fX with an unknown real parameter θ taking values in a parameter space, say

D ⊂ R.

A real-valued statistic (a function of the observable sample data) T ∗(x1, x2, · · · , xn) that is

used to estimate an unknown population parameter θ is called, appropriately enough, an

estimator of θ. Since an estimator is a random variable, it has a distribution and commonly

a mean, a variance, and so on. These properties are introduced in the following definitions.

For all these definitions the following assumption is made:

Let x1, x2, · · · , xn be a realisation of an i.i.d. random sample drawn from a probability

distribution with parameter θ. Furthermore, let T ∗ be an estimator for θ.

Definition 19 ((Random) Error)

The (random) error is defined as the difference between the estimator and the true

value of the parameter, i.e.

RE(T ∗) = T ∗ − θ.

The expected value of the (random) error is known as the bias.

Definition 20 (Bias of Estimators)

The bias of T ∗ is defined as: b(T ∗, θ) = E[T ∗]− θ, i.e.

the expected value of the estimator T ∗ minus the true value of the parameter θ.

This may be rewritten as: b(T ∗, θ) = E[T ∗ − θ], i.e.

the expected value of the difference between the estimator and the true value of the

parameter, since the expected value of θ is precisely θ.

T ∗ is an unbiased estimator of θ if the bias is zero.

A measure of statistical dispersion of an estimator is obtained by averaging the squared

distance of its possible values from the expected value (mean).
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Definition 21 (Variance of Estimators)

The variance of T ∗ is defined as:

var(T ∗) = var(T ∗(x1, x2, · · · , xn)) = E[(T ∗ − E[T ∗])2].

The quality or performance of estimators is usually measured by computing the Mean

Squared Error, i.e. in terms of its variation and unbiasedness.

Definition 22 (Mean Squared Error (MSE))

The Mean Squared Error of T ∗ is defined as the expected value of the squared difference

between the estimator and the true value of the parameter, i.e.

MSE(T ∗, θ) = E[(T ∗ − θ)2].

The following property of the MSE holds true:

MSE(T ∗, θ) = var(T ∗) + [b(T ∗, θ)]2.

In particular, if the estimator is unbiased, then the MSE of T ∗ is simply the variance of

T ∗. In general, it is desired to have unbiased estimators with small MSE (small variance).

Additionally, if two unbiased estimators of θ are obtained, denoted T ∗1 and T ∗2 , naturally

the one with the smaller variance should be preferred.

A very useful asymptotic property of estimators is that of consistency. This property is

introduced in the following definition.

Definition 23 (Consistency of Estimators)

Let x1, x2, · · · , xn be a realisation of an i.i.d. random sample drawn from a probability

distribution with parameter θ and T ∗ an estimator for θ. T ∗ is consistent as an estimator

of θ if:

lim
n→∞

P [|T ∗(x1, x2, · · · , xn)− θ| ≤ ε) = 1 ∀ ε > 0.

It indicates that the estimator T ∗ will perform better and better as the sample size, say n,

increases.

Remark A.1 (Consistency of Unbiased Estimators)

An unbiased estimator T ∗ is consistent if lim
n→∞

var(T ∗(x1, x2, · · · , xn)) = 0.
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The following definitions are concerned with two well-known estimation methods in statis-

tics.

Definition 24 (Maximum Likelihood (ML) Estimator)

Let x1, x2, · · · , xn be a realisation of an i.i.d. random sample drawn from a probability

distribution with parameter θ.

As a function of θ with x1, x2, · · · , xn fixed, the likelihood function is given by:

L(θ) =
∏n
i=1 fX(xi).

The method of maximum likelihood estimates θ by finding the value of θ that maximizes

L(θ). Thus, the maximum likelihood (ML) estimator of θ is given by:

θ̂ = arg max
θ

L(θ).

The maximum likelihood estimator is consistent. However, this estimator may not be

unique, or indeed may not even exist. In general maximum likelihood estimators have

desirable mathematical and optimality properties, for further details refer to Lehmann

(1983).

In the following definition an unbiased estimator that has lower variance than any other

unbiased estimator for all possible values of the parameter is introduced.

Definition 25 (Minimum-Variance Unbiased Estimator (MVUE))

Let x1, x2, · · · , xn be a realisation of an i.i.d. random sample drawn from a probability

distribution with parameter θ. Moreover, let T ∗(x1, x2, · · · , xn) be an estimation of θ,

where θ ∈ D and D is the parameter space. An unbiased estimator of θ is UMVU if ∀

θ ∈ D the following identity holds true:

var(T ∗(x1, x2, · · · , xn)) ≤ var(T̃ ∗(x1, x2, · · · , xn)),

for any other unbiased estimator T̃ ∗.

In Section A.1.3 an estimator approach which enables bias reduction has been explained in

detail.
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A.1.3 Generalised Jackknife Estimator

The generalized Jackknife estimator, or simply the Jackknife is an estimator, introduced

by Quenouille (1956) for the purpose of bias reduction.

This estimation approach is presented as follows, for concepts and definitions refer to Section

A.1.2.

Let x1, x2, · · · , xn be a realisation of an i.i.d. random sample drawn from a probability

distribution with parameter θ. Moreover, suppose that two functions, T ∗1 and T ∗2 , are defined

over the n observations and are considered as two different estimators of the parameter θ.

Further suppose that each of these estimators is biased such that:

E[T ∗i (x1, x2, · · · , xn)]− θ = b(T ∗i , θ) 6= 0, i = 1, 2. (A.1.1)

As mentioned in Schucany et al. (1971) the combination of the two estimators T ∗1 and

T ∗2 may produce a third random variable which will often be an unbiased estimator for θ,

conditions for unbiasedness will be presented in Remark A.2.

Let R =
b(T ∗1 , θ)
b(T ∗2 , θ)

,

with b(T ∗1 , θ) and b(T ∗2 , θ) the respective bias terms of T ∗1 and T ∗2 with respect to θ.

The generalised Jackknife is given by:

T ∗3 = G(T ∗1 , T
∗
2 ) =

T ∗1 −RT ∗2
1−R

. (A.1.2)

The properties of the new generated estimator will be summarised in the following remark.

Remark A.2

If R depends on 1/nm (for m ≥ 1) and lim
n→∞

R exists and is different from 1, then

Schucany et al. (1971), Theorem 2.1, present two important properties of G(T ∗1 , T
∗
2 ):

1. when T ∗1 and T ∗2 are consistent for θ, then T ∗3 is also consistent.

2. the quantity T ∗3 is an unbiased estimator for θ.
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The variance of the new estimator depends jointly upon the value of R and the covariance

between the two estimators T ∗1 and T ∗2 , as well as their variances. This is shown by:

var(T ∗3 ) =
1

(1−R)2
[var(T ∗1 ) +R2var(T ∗2 )− 2Rcov(T ∗1 , T

∗
2 )]. (A.1.3)

As pointed out in Schucany et al. (1971), “within the class of estimators for which R is

fixed and positive we would desire that T ∗1 and T ∗2 have a high positive correlation. On the

other hand it would appear that in the set of all G(T ∗1 , T
∗
2 ) one should prefer to have R < 0

and T ∗1 and T ∗2 negatively correlated. Unfortunately a general method for accomplishing

the latter is yet to be established”.

A.1.4 Moments of Different Probability Distribution Functions

As pointed out in Mood, Graybill and Boes (1974), an additional way of characterising the

position and shape of a probability distribution is by means of its moments. Moments are

expectations of particular functions in the variable X. Since higher order moments will be

used in this work, the r-th central moments as well as the r-th non-central moments are

presented in the following definitions.

Definition 26 (Non-central Moments)

Let X be a random variable. The r-th non-central moment of X, denoted by µ′r, is

defined by:

(i) E[Xr] = µ′r =
∑N

j=1 x
r
jfX(xj), j = 1, · · · , N , if X is discrete.

(ii) E[Xr] = µ′r =
∫∞
−∞ x

r fX(x) dx, if X is continuous.

Notice that µ′1 = E[X], i.e. the mean of X.

Definition 27 (Central Moments)

Let X be a random variable. The r-th moment of X about a is defined by E[(X − a)r].

The rth moment of X about a = µ is called the rth central moment of X, it is defined

as follows:

(i) E[(X − µ)r] = µr =
∑N

j=1(xj − µ)rfX(xj), j = 1, · · · , N , if X is discrete.
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(ii) E[(X − µ)r] = µr =
∫∞
−∞(x− µ)r fX(x) dx, if X is continuous.

Notice that the first four central moments have immediate interpretations:

• The first central moment is zero, i.e. µ1 = E[(X − µ)] = 0.

• The second central moment equals the variance of X, i.e. µ2 = E[(X−µ)2] = var(X).

• The third and fourth moments about the mean are used to define the standardized

moments which are used to define skewness and kurtosis, respectively.

The last two concepts are introduced in the following definitions.

Definition 28 (Skewness)

Let µ3 be the third central moment of a random variable X and σ its standard deviation.

The skewness or third standardized moment is a measure of the asymmetry of the

probability distribution of a random variable which is defined as:

Sk =
µ3

σ3
.

In probability theory and statistics, a measure of the ”peakedness” of the probability dis-

tribution of a random variable is known as kurtosis.

This measure is defined more formally as follows.

Definition 29 (Kurtosis)

Let µ4 be the fourth central moment of a random variable X and σ its standard

deviation.

Kurtosis is defined as the fourth central moment divided by the standard deviation the

power of 4 of the probability distribution minus 3, i.e.:

Ku =
µ4

σ4
− 3.

Higher kurtosis means more of the variance is due to infrequent extreme deviations.
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Remark A.3 (Relation Between Non-central and Central Moments)

Non-central moments can be converted to central moments. The general equation for

converting the r-th order moment about the origin to the moment about the mean is

given as:

µr =
∑r

j=0

(
r
j

)
(−1)r−jµ′jµ

r−j ,

where µ is the mean of the distribution and µ′j the j-th moment about the origin.

For the particular cases r = 2, 3, 4, which are of most interest because of the afore-

mentioned relations to variance, skewness and kurtosis, respectively, the expression µr

becomes:

µ2 = µ′2 − µ2,

µ3 = µ′3 − 3µµ′2 + 2µ3,

µ4 = µ′4 − 4µµ′3 + 6µ2µ′2 − 3µ4.

In Section 4.1 it was pointed out that for the calculation of var(TPoly1 ) and var(TPoly2 ) the

third and fourth non-central and central moments are needed. In this section, the corre-

sponding moments of different established continuous probability distributions, such as the

normal distribution, uniform distribution, exponential distribution, lognormal distribution

and gamma distribution, as well as an established discrete probability distribution, such

as the Bernoulli distribution, will be presented in more detail. For definitions of random

variables and of probability distribution functions refer Mood, Graybill and Boes (1974).

Expressions for the first four non-central as well as central moments of a normally dis-

tributed variable X are listed in the following table:
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Distribution Non-Central Moments Central Moments

µ′r = 1

σ
√

(2π)

∫∞
−∞ x

rexp
[
− (x−µ)2

2σ2

]
dx

µ
′
1 = µ µ1 = 0

Normal µ
′
2 = µ2 + σ2 µ2 = σ2

µ
′
3 = µ(µ2 + 3σ2) µ3 = 0
µ
′
4 = µ4 + 6µ2σ2 + 3σ4 µ4 = 3σ4

µ′r = λ−rr!
µ′1 = 1/λ µ1 = 0

Exponential µ′2 = 2/λ2 µ2 = 1/λ2

µ′3 = 6/λ3 µ3 = 2/λ3

µ′4 = 24/λ4 µ4 = 9/λ4

µ′r = br+1−ar+1

(r+1)(b−a)

µ′1 = (1/2)(a+ b) µ1 = 0
Uniform µ′2 = (1/3)(a2 + ab+ b2) µ2 = (1/12)(b− a)2

µ′3 = (1/4)(a+ b)(a2 + b2) µ3 = 0
µ′4 = (1/5)(a4 + a3b+ a2b2 + ab3 + b4) µ4 = (1/80)(b− a)4

µ′r = exp
[
rµ+ r2σ2

2

]
µ′1 = exp[µ+ σ2

2 ] µ1 = 0
Lognormal µ′2 = exp[2(µ+ σ2)] µ2 = exp[2µ+ σ2](exp[σ2]− 1)

µ′3 = exp[3µ+ 9σ
2

2 ] µ3 = exp[3µ+ 3σ
2

2 ]
(exp[σ2]− 1)2(exp[σ2] + 2)

µ′4 = exp[4µ+ 8σ2] µ4 = exp[4µ+ 2σ2](exp[σ2]− 1)2

+ (exp[4σ2]2exp[3σ2]
+ 3exp[2σ2]− 3)

µ′r = βrΓ(α+r)
Γ(α)

µ′1 = βα µ1 = 0
Gamma µ′2 = β2(α+ 1)α µ2 = α

µ′3 = β3(α+ 2)(α+ 1)α µ3 = 2α
µ′4 = β4(α+ 3)(α+ 2)(α+ 1)α µ4 = 3α2 + 6α
µ′r = p
µ′1 = p µ1 = 0

Bernoulli µ′2 = p µ2 = p(1− p)
... µ3 = p(1− p)(1− 2p)
... µ4 = p(1− p)(3p2 − 3p+ 1)

Table A.1: Non-Central and Central Moments of Different Distributions
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A.2 Additional Remarks

Remark A.4 (Mean and Variance of TPoly1 and TPoly2 )

Suppose x1,x2, . . . ,xn represents a realisation of an i.i.d. random sample drawn from a

p–dimensional probability distribution with mean µ = E[xi] = g and covariance matrix

Σ = E[(xi−µ)(xi−µ)′]. Then, consider zi = xi−µ, i = 1, . . . , n, with moments given

as in Appendix A.5.2 and in Remark A.1. The elements of zi are zij , for j = 1, · · · , p,

with E[zij ] = 0, E[z2
ij ] = σ2

j , E[z3
ij ] = ηjσ

3
j and E[z4

ij ] = υjσ
4
j .

Furthermore, consider the nonstochastic vectors a and b and the nonstochastic sym-

metric matrices A and B. The following identities hold true:

(i) Ψ(A) = (trAΣ)Σ + 2ΣAΣ + ΣDiag(A)∆Σ

(ii) Φ∗(A) = Σ3/2Diag(A)η

(iii) Φ(a) = Diag(aη′)Σ3/2

(iv) trAΨ(A) = α+ 2β +AΣDiag(A)∆Σ

(v) trAΨ(B) = trBΨ(A) = tr(A⊗B)Ψ

(vi) a′Φ∗(A) = trAΦ(a) = tr(a′ ⊗A)Φ

(vii) E[a′xi + x′iAxi] = a′g + g′Ag + trAV

(viii) var(a′xi + x′iAxi) = 4g′AV Ag + 4tr(g′A⊗A)Φ + tr(A⊗A)Ψ
+4a′V Ag + 2tr(a′ ⊗A)Φ + a′V a− (trAV )2.

(ix) cov(a′xi + x′iAxi, b
′xi + x′iBxi) = b′[2ΣAg + Σa+ Φ∗(A)]

+trB[4gg′AΣ + 2Φ(Ag) + 2Φ∗(A)g′

+Ψ(A) + 2ga′Σ + Φ(a)− (trAΣ)Σ],

where η = (η1, · · · , ηp)′, Diag(A) is a diagonal matrix obtained from A by replacing

the off-diagonal elements of A by zero, ∆ is a diagonal matrix with υ1 − 3, · · · , υp − 3

as the diagonal elements and tr the trace of a square matrix. Notice that Ψ and Φ are

linear functions instead of matrices, Ψ from Rp →Mp×p and Φ from Mp×p →Mp×p,

whereMp×p stands for the set of all symmetric p× p matrices, Φ∗ is the conjugated or

transposed operator with respect to the usual inner product of matrices.
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Remark A.5 (New Approach Based on Kleffe and Rao (1988, Section 2.1))

Kleffe and Rao (1988, Theorem 2.1.2) have shown equivalent expressions to the equa-

tions (i) - (iii), from Remark A.4, for correlated variables X1 and X2, i.e. p = 2. These

expressions are given as follows:

(i) Ψz(A) = (trAΣ)Σ + 2ΣAΣ + Diag(D1, . . . ,Dn),

with Di = Ψi(Aii) − 2ΣAiiΣ − (trAiiΣ)Σ, i = 1, · · · , n. Since Aii = A, then

Di = Ψu(A)− 2ΣAΣ− (trAΣ)Σ and Ψu(A) =
p∑
i=1

p∑
j=1

AijΨij .

(ii) Φ∗z(A) = (Φ∗1(A11)′, . . . ,Φ∗n(Ann)′)′, with Φ∗i (Aii)=Φ∗u(A)=(trAΦ1, . . . , trAΦp).

(iii) Φz(a) = Diag(Φ1(a1), . . . ,Φn(an)), with Φi(ai) = Φu(a) =
p∑
i=1

aiΦi.

Remark A.6 (Central Moments of two Correlated Variables)

Let Y = (Y1, Y2)′ and Z = (Z1, Z2)′ be given as in Section 6.1.1. The first four central

moments of the correlated random variables Yj , i.e. non-central moments of Zj are:

First central moments of Yj , for j = 1, 2:

E[Zj ] = E[Yj − µ1] = E[Yj ]− µj = 0.

Second central moments of Yj , for j = 1, 2:

E[Z2
j ] = E[Yj − µj ]2 = var(Yj) = E[τjX1 + τjqX2]2 = τ2

j E[X2
1 ] + τ2

j q
2E[X2

2 ].

Since E[X2
1 ] = E[X2

2 ] = 1 it follows: E[Z2
j ] = τ2

j (1 + q2) =
σ2
j

(1+q2)
(1 + q2) = σ2

j .

Third central moments of Yj , for j = 1, 2:

Φj = E[Z3
j ] = E[Yj − µj ]3 = E[τjX1 + τjqX2]3 = τ3

j E[X3
1 ] + τ3

j q
3E[X3

2 ].

Since E[X3
1 ] = E[X3

2 ] = E[X3
j ] it follows: Φj = E[X3

j ]τ3
j (1 + q3).

Fourth central moments of Yj , for j = 1, 2:

Ψj = E[Z4
j ] = E[Yj−µj ]4 = E[τjX1+τjqX2]4 = τ4

j E[X4
1 ]+6E[τ2

jX
2
1τ

2
j q

2X2
2 ]+τ4

j q
4E[X4

2 ].

Since E[X4
1 ] = E[X4

2 ] = E[X4
j ] and E[X2

1 ] = E[X2
2 ] = 1 it follows:

Ψj = E[Z4
j ] = τ4

j [E[X4
j ](1+q4)+6q2],with τj =

√
σ2
j

1 + q2
, j = 1, 2 and q =

1−
√

1− ρ2

ρ
,

for ρ 6= 0 and q = 0, for ρ = 0.

It can be seen that for q = 0 these expressions are equivalent to those given for uncorrelated

random variables, see Appendix A.5.2.
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A.3 Additional Lemmas

Lemma A.1 (Moment Vectors and Matrices)

Suppose x1,x2, . . . ,xn represents a realisation of an i.i.d. random sample drawn from

a p–dimensional probability distribution with mean µ = E[xi] and covariance matrix

Σ = E[(xi − µ)(xi − µ)′]. Furthermore, consider the random vectors zi = xi − µ,

i = 1, . . . , n, with existing moments E[zi] = 0, E[ziz′i] = Σ, E[zi ⊗ ziz
′
i] = Φ and

E[ziz
′
i ⊗ ziz

′
i] = Ψ, with zi, i = 1 · · · , n independent vectors.

Now, let y = Vec(X ′) be given as in Remark 3.2 and z = y − E[y], with E(y) = g∗ =

1In⊗µ. Then the first moment vector and the second, third and fourth moment matrices

of z are given by:

(i) E[z] = 1In ⊗ 0, with 0 ∈ Rp

(ii) V ∗ = E[zz′] = cov(y) = In ⊗Σ

(iii) Φ∗ = E[z ⊗ zz′ ] = (In ⊗Kpn ⊗ Ip)(G⊗Φ),

whereG = (E11, . . . ,Enn)′ , Eii = eie
′
i , with ei being the i-th member of the canonical

basis in Rn, and Kpn = Kp,n is the commutation matrix of type pn× pn.

(iv) Ψ∗ = E[zz
′ ⊗ zz′ ] = (In2p2 +Knp,np)(In ⊗Σ⊗ In ⊗Σ)

+[Vec (In ⊗Σ)][Vec (In ⊗Σ)]′ + (In ⊗Kpn ⊗ Ip) ·

{K̃nn ⊗ [Ψ− (Vec Σ)(Vec Σ)′ − (Ip2 +Kpp)(Σ⊗Σ)]} ·
(In ⊗Knp ⊗ Ip),

where Knp,np is the commutation matrix of type n2p2×n2p2 and K̃nn =
n∑
i=1

(Eii⊗Eii).

For proof see Neudecker and Trenkler (2002) and for properties of the commutation matrix

see Appendix A.4.3.
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Lemma A.2 (Mean and Variance of TPoly1 and TPoly2 for whole Multivariate Sample)

Consider z = y −E[y], with y = VecX ′ and E(y) = g∗ = 1In ⊗µ. Then E[z] = 1In ⊗ 0

and V ∗ = E[zz′] = cov(y) = In ⊗Σ.

The following identities can be deduced for the approximations TPoly1 and TPoly2 by

using Remark A.4:

(i.1) Ψ(F 1) = 1
n [trAΣ(In ⊗Σ) + 2

n1In1I
′
n ⊗ΣAΣ + 1

nIn ⊗ΣDiag(A)∆Σ]

(i.2) Ψ(F 2) = [trAΣ(In ⊗Σ) + 2
nIn ⊗ΣAΣ + 1

nIn ⊗ΣDiag(A)∆Σ]

(ii.1) Φ∗(F 1) = 1
n2 1In ⊗Σ3/2Diag(A)η

(ii.2) Φ∗(F 2) = 1
nIn ⊗Σ3/2Diag(A)η

(iii) Φ(f) = 1
nIn ⊗Diag(aη′)Σ3/2

(iv.1) trF 1Ψ(F 1) = tr(F 1 ⊗ F 1)Ψ∗ = 1
n3 [trAΨ(A) + (n− 1)(2β + α)]

(iv.2) trF 2Ψ(F 2) = tr(F 2 ⊗ F 2)Ψ∗ = 1
n [trAΨ(A) + (n− 1)α]

(v) trF 2Ψ(F 1) = tr(F 2 ⊗ F 1)Ψ∗ = 1
n2 [trAΨ(A) + (n− 1)α]

(vi.1) f ′Φ∗(F 1) = tr(F 1)Φ(f) = tr(f ′ ⊗ F 1)Φ∗ = 1
n2 tr(a′ ⊗A)Φ = 1

n2 trAΦ(a)

(vi.2) f ′Φ∗(F 2) = tr(F 2)Φ(f) = tr(f ′ ⊗ F 2)Φ∗ = 1
n tr(a

′ ⊗A)Φ = 1
n trAΦ(a)

(vii) E[f ′y + y′F ly] = f ′g∗ + g′∗F lg∗ + trF lV ∗, l = 1, 2

(viii) var(f ′y + y′F ly) = 4g
′
∗F lV ∗F lg∗ + 4tr(g

′
∗F l ⊗ F l)Φ∗

+tr(F l ⊗ F l)Ψ∗ + 4f ′V ∗F lg∗

+2tr(f ′ ⊗ F l)Φ∗ + f ′V ∗f − (trF lV ∗)2

(ix) cov(f ′y + y′F 1y,f
′y + y′F 2y) = f ′[2V ∗F 1g∗ + V ∗f + Φ∗(F 1)]

+trF 2[4g∗g′∗F 1V ∗ + 2Φ(F 1g∗)

+2Φ∗(F 1)g′∗ + Ψ(F 1)

+2g∗f
′V ∗ + Φ(f)− (trF 1V ∗)V ∗].

Proof: See Appendix C.1.
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Lemma A.3 (Approach by Kleffe and Rao (1988) for whole Multivariate Sample)

Let Ψz and Φz be linear functions and Φ∗z the conjugated or transposed operator with

respect to the usual inner product of matrices given as in Remark A.5. For correlated

random variables X1 and X2 the following identities, useful for the calculation of the

variances and covariances, were obtained:

(i.1) Ψz(F 1) = 1
n [(trAΣ)(In ⊗Σ) + 2

n1In1I
′
n ⊗ΣAΣ + 1

nIn ⊗Diag(Di)]

(i.2) Ψz(F 2) = (trAΣ)(In ⊗Σ) + 2
nIn1I

′
n ⊗ΣAΣ + 1

nIn ⊗Diag(Di)

(ii.1) Φ∗z(F 1) = 1
n2 1In ⊗ Φ∗u(A)

(ii.2) Φ∗z(F 2) = 1
n1In ⊗ Φ∗u(A)

(iii) Φz(f) = 1
nIn ⊗Diag(Φu(a)).

Proof: See Appendix C.3.

Lemma A.4 (Mean and Variance of TPoly1 and TPoly2 for whole Univariate Sample)

Assume that z = x − E[x], with E[z] = 0, g∗ = E[x] = µ1In and V ∗ = E[zz′] =

cov(x) = σ2In. Furthermore, assume the elements of z are zi, with E[zi] = 0, E[z2
i ] =

σ2, E[z3
i ] = ησ3 and E[z4

i ] = υσ4. Using the expressions given in Remark A.4 and

different matrix operations the following properties hold true:

(i.1) Ψ(F 1) = 1
n [Aσ4In + 1

n2Aσ41In1I
′
n + A∆σ4

n In]

(i.2) Ψ(F 2) = [Aσ4In + 1
n2Aσ4In + +A∆σ4

n In]

(ii.1) Φ∗(F 1) = 1
n2Aησ

31In

(ii.2) Φ∗(F 2) = 1
nAησ

3In

(iii)Φ(f) = 1
naησ

3In

(iv.1)trF 1Ψ(F 1) = 1
n3 [trAΨ(A) + (n− 1)(3α)]

(iv.2)trF 2Ψ(F 2) = 1
n [trAΨ(A) + (n− 1)α]

(v)trF 2Ψ(F 1) = 1
n2 [trAΨ(A) + (n− 1)α]

(vi.1)f ′Φ∗(F 1) = tr(F 1)Φ(f) = 1
n2aησ

3A

(vi.2)f ′Φ∗(F 2) = tr(F 2)Φ(f) = 1
naησ

3A,

where f = a
n1In, F 1 = A

n2 1In1I
′
n, F 2 = A

n In and trAΨ(A) = 3α+AΣDiag (A)∆Σ.

Proof: See Appendix C.5
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A.4 Matrix Operations

A.4.1 The Vec Operator

The Vec operator of an m× n matrix A, denoted by Vec(A), is the mn× 1 column vector

obtained by stacking the column vectors of A = [a1a2 · · ·an] below one another. For

example, for the 2× 2 matrix A =
[
a11 a12

a21 a22

]
, the Vec operator is Vec(A) =


a11

a12

a21

a22

 .
For more details reference is made to Schmidt and Trenkler (2006).

A.4.2 The Kronecker Product

The Kronecker product, denoted by ⊗, is an operation on two matrices of arbitrary dimen-

sion. The result of this product is a block matrix.

If A is an m×n matrix and B is a p× q matrix, then the Kronecker product A⊗B is the

mp× nq block matrix. It is represented as follows:

A⊗B=

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

.

The product can be represented in further details, as follows:

A⊗B =



a11b11 a11b12 · · · a11b1q · · · · · · a1nb11 a1nb12 · · · a1nb1q
a11b21 a11b22 · · · a11b2q · · · · · · a1nb21 a1nb22 · · · a1nb2q

...
...

. . .
...

...
...

. . .
...

a11bp1 a11bp2 · · · a11bpq · · · · · · a1nbp1 a1nbp2 · · · a1nbpq
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...
am1b11 am1b12 · · · am1b1q · · · · · · amnb11 amnb12 · · · amnb1q
am1b21 am1b22 · · · am1b2q · · · · · · amnb21 amnb22 · · · amnb2q

...
...

. . .
...

...
...

. . .
...

am1bp1 am1bp2 · · · am1bpq · · · · · · amnbp1 amnbp2 · · · amnbpq



.

Furthermore, the following useful identities of the Kronecker are presented:
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(A⊗B)⊗C = A⊗ (B ⊗C),

A⊗ (B +C) = A⊗B +A⊗C, where C is a matrix.

(kA)⊗B = A⊗ (kB) = k(A⊗B), where k is a scalar.

AC ⊗BD = (A⊗B)(C ⊗D), denoted as the mixed-product property.

The Kronecker product, A⊗B, is invertible if and only if the matrices involved, A and B,

are invertible. The inverse is given by:

(A⊗B)−1 = A−1 ⊗B−1.

In the same way the following properties are given:

tr(A⊗B) = trAtrB

(A⊗B)T = AT ⊗BT .

For further details; refer to Schmidt and Trenkler (2006) and Neudecker and Trenkler

(2005a).

Relations Between Vec Operator and Kronecker Product

The following properties of the Kronecker product are used in this work in order to get a

convenient representation for several matrix equations.

(B> ⊗A)Vec(C) = Vec(ACB)

Vec(ABC) = (I ⊗AB)Vec(C) = (CTBT ⊗ I)Vec(A)

Vec(AB) = (I ⊗A)Vec(B) = (BT ⊗ I)Vec(A),

where I is the n× n identity matrix.

A.4.3 The Commutation Matrix

As mentioned in Magnus and Neudecker (1979) the main properties of the commutation

matrix are:
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• it transforms the Vec operator form of a matrix into the Vec operator form of its

transpose;

Km,n is the mn×mn matrix which, for any m×n matrix A, transforms Vec(A) into

Vec(AT ), i.e.

Km,n Vec(A) = Vec(AT ) .

• for every m × n matrix A and every p × q matrix B, it commutes the Kronecker

product;

Kp,m(A⊗B)Kn,q = B ⊗A.

For further details; refer to Magnus and Neudecker (1979).

A.5 Asymptotic Distribution of Quadratic Statistics

A.5.1 Fourth Order Moments of Quadratic Statistics

Consider the independent random vectors zi = yi − µ, i = 1, . . . , n, with E[zi] = 0 and

E[ziz′i] = cov(yi) = Σ.

Assume that the following third and fourth moment matrices exist:

Φ = E[zi ⊗ ziz
′
i]

Ψ = E[ziz
′
i ⊗ ziz

′
i].

In Kleffe and Rao (1988) the following identity is presented and holds for any general Φ,

Ψ and Σ:

Let A and B be symmetric matrices of order n and a be an n-vector.

Then it follows:

(a) E[z′iAzi] = tr(AΣ),
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(b) E[aziz′iAz] = tr(a⊗A)Φ,

(c) E[z′iAziz
′
iBz] = tr(A⊗B)Ψ.

A.5.2 Third and Fourth Order Moment Matrices of VecX ′

Suppose x1,x2, . . . ,xn, with xi = (Xi1, Xi2)′ represents a realisation of an i.i.d. bivariate

random sample drawn from a bidimensional probability distribution with mean E[xi] = µ

and covariance matrix E[(xi−µ)(xi−µ)′] = Σ, see Remark 6.1 for more details about the

structure of the bivariate random sample x1,x2, . . . ,xn.

Similarly to Section 3.1 the random vectors zi = xi−µ, i = 1, . . . , n, with existing moments

E[zi] = 0, E[ziz′i] = Σ, E[zi ⊗ ziz
′
i] = Φ and E[ziz

′
i ⊗ ziz

′
i] = Ψ are considered.

Now, let y = Vec(X ′) and z = y − E[y], with E[y] = 1In ⊗ µ and cov(y) = In ⊗Σ, from

this it follows E[z] = 0 and E[zz′] = cov(y) = In ⊗Σ.

Notice that z decomposes into independent subvectors zi with dimension p = 2, and that

the elements of zi (i.e. zi = zi1, zi2) are correlated.

To facilitate notation for the particular bivariate case the following vectors containing ran-

dom variables are considered, i.e. X = (X1, X2)′ and Z = (Z1, Z2)′.

The vectors zi, i = 1, · · · , n are given as follows:

z1 =

z11
...
z1p

 , · · · , zn =

zn1
...
znp

.

As mentioned above the elements of zi are independent, i.e. zi1, · · · , zip. Similarly, the

vector z contains the following elements:
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z =



X11 − µ1
...

X1p − µp
...
...

Xn1 − µ1
...

Xnp − µp


=



z11
...
z1p
...
...
zn1
...
znp


=


z1
...
...
zn


(np×1)

.

The third and fourth moment matrices Φ and Ψ, necessary for the computation of the

covariance between TPoly1 and TPoly2 as well as the separated variances of those estimators

are given as follows:

Φ =
(

Φ1

Φ2

)
= E[zi ⊗ ziz

′
i] = E[Z ⊗ZZ ′ ]

= E
[(
Z1

Z2

)
⊗
(
Z1

Z2

)(
Z1 Z2

)]
,

and

Ψ =
(

Ψ11 Ψ12

Ψ21 Ψ22

)
= E[ziz

′
i ⊗ ziz

′
i] = E[ZZ ′ ⊗ZZ ′ ]

= E
[(

Z2
1 Z1Z2

Z2Z1 Z2
2

)
⊗
(
Z2

1 Z1Z2

Z2Z1 Z2
2

)]
,

where Φj and Ψj , j = 1, 2 are the third and fourth central moments of the variables Yj ,

j = 1, 2.

In this work Φj and Ψj , j = 1, 2 has been calculated for selected distributions, based on

the relations between non-central and central moments presented in Remark A.3 and the

expressions presented in Remark A.6.

In the statistical literature the third and fourth non-central moments of the most commonly

used probability distributions have widely been reported, see for example Mood, Graybill

and Boes (1974).
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In the following remark two useful properties of covariance and correlation are presented.

These properties are useful for the numerical calculation of the remaining elements of the

matrices showed above.

Remark A.7

Let Z = (Z1, Z2)′ represent a vector containing two random variables with mean E[Zj ] =

0 and variance var[Zj ] = σ2
j , j = 1, 2.

From properties of the covariance and correlation, see Mood, Graybill and Boes (1974),

it follows:

E[Z1Z2] = E[Z1]E[Z2] + cov[Z1, Z2].

Since the covariance can be obtained from the predefined (known) correlation, i.e.

cov(Z1, Z2) = corr(Z1, Z2)σ1σ2 and E[Zj ] = 0, then it follows:

E[Z1Z2] = corr(Z1, Z2)σZ1σZ2 .

Since the standard deviations of Zj , j = 1, 2 are equal to one, then it follows:

E[Z1Z2] = corr(Z1, Z2).

It can be seen that for uncorrelated random variables, i.e. corr(Z1, Z2) = 0, then it follows:

E[Z1Z2] = E[Z1]E[Z2] = 0.

Now, the third and fourth central moment matrices of the vector z, with z =

(z
′
1, z

′
2, . . . ,z

′
n)′ are presented:

Φ∗ = E[z ⊗ zz′]

and

Ψ∗ = E[zz′ ⊗ zz′].

In Neudecker and Trenkler (2002) (Theorem 1) the following identities are presented:
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(i) Φ∗ = (In ⊗Kpn ⊗ Ip)(G⊗Φ),

whereG = (E11, . . . ,Enn)′ with Eii = eie
′
i, ei being the i-th member of the canonical

basis of Rn, and commutation matrix Kp,n = Kpn =
p∑
i=1

n∑
j=1

(H ij⊗H
′
ij), where H ij

is the p× n matrix with 1 being its (i, j)-th position and zero elsewhere.

Additionally, the following identities have been used:

(a) zi ⊗ zz′ =

 z1 ⊗ zz′
...

zn ⊗ zz′

 =



 z11
...
z1p


︸ ︷︷ ︸

p×1

⊗ zz′︸︷︷︸
np×np

... zn1
...
znp


︸ ︷︷ ︸

p×1

⊗ zz′︸︷︷︸
np×np


(n2p2×np)

.

(b) zi ⊗ zz′ = Kp,np(zz′ ⊗ zi), i = 1, . . . , n. (cf. Magnus and Neudecker, 1979,

Theorem 3.1 (viii)),

(c) z ⊗ zz′ =

 z1 ⊗ zz′
...

zn ⊗ zz′

 = (In ⊗Kp,np)

 zz′ ⊗ z1
...

zz′ ⊗ zn

 ,

and

(d) E[z ⊗ zz′] = (In ⊗Kp,np)E

 zz′ ⊗ z1
...

zz′ ⊗ zn

 .

(ii) Ψ∗ = (In2p2 +Knp,np)(In ⊗Σ⊗ In ⊗Σ)

+[Vec(In ⊗Σ)][Vec(In ⊗Σ)]′
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+(In ⊗Kpn ⊗ Ip){K̃nn ⊗ [Ψ− (Ip2 +Kpp)(Σ⊗Σ)

−(VecΣ)(VecΣ)′]}(In ⊗Knp ⊗ Ip), where K̃nn =
n∑
i=1

(Eii ⊗Eii).

Additionally, the following identities have been used:

(a) ziz
′
j ⊗ zz′ = Kp,np(zz′ ⊗ ziz

′
j)Knp,p,

(b) E[ziz
′
i ⊗ zjz

′
j ] = Σ⊗Σ,

(c) zz′ ⊗ zz′ =

 z1z
′
1 ⊗ zz′ . . . z1z

′
n ⊗ zz′

... . . .
...

znz
′
1 ⊗ zz′ . . . znz

′
n ⊗ zz′

 ,

and

(d) zz′ ⊗ zz′ = (In ⊗Kp,np)

 zz′ ⊗ z1z
′
1 . . . zz′ ⊗ z1z

′
n

...
...

zz′ ⊗ znz
′
1 . . . zz′ ⊗ znz

′
n

 (In ⊗Knp,p).
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A.6 Negative Moments of Random Variables

Calculation of the negative moments of a random variable is a problem that can arise in

different situations. Casella and Piegorsch (1985) presented different practical applications

(quoted from Mendenhall and Lehman (1960)), where the evaluation of negative moments

of random variables is of interest.

They mentioned that the theory behind the existence of negative moments of random

variables, such as E[X−1] or E[x̄−1], is difficult and not nearly as complete as that involving

positive moments. They gave a number of sufficient conditions for the existence of negative

moments of a random variable X. In the same field, Casella and Khuri (2002) demonstrated

that those conditions can be gathered into one necessary and sufficient condition, which is

presented in the following remark.

Remark A.8 (Casella and Khuri (2002), Theorem 4)

Let fX(x) be a continuous density function defined on [0,∞). According to Casella

and Khuri (2002), Theorem 4 E[1/X] exists if and only if for any ε > 0, there exists a

z0 such that:∫ b

a

fX(x)
x

dx < ε, where a and b are any two numbers such that 0 < a < b < z0.

Casella and Piegorsch (1985) pointed out that with the exception of the Cauchy distribution,

the existence of at least two positive moments is usually a foregone conclusion. This is not

the case, if one is attempting to evaluate negative moments, where non-existence of moments

is a much more likely occurrence.

Remark A.9 (Cauchy Distributions)

The Cauchy distribution is an example of a distribution which has no mean, variance

or higher moments defined.

For example Lehmann and Shaffer (1988), Theorem 2.1 establishes: a) positive and negative

Cauchy tails for the inverted distribution of variables with normal, t, logistic and double–

exponential, or uniform distributions on (a, b) with a < 0 < b; and b) positive Cauchy tails

for many positive random variables, including those with uniform distributions on (0, a)

and with exponential distribution, including the χ2 with 2 degrees of freedom (d.f.).
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Some concepts and theorems, useful for understanding the problem of non-existence of nega-

tive moments of higher order of random variables, are presented in the following definitions.

But in general it is difficult to derive special properties of inverted distributions.

Definition 30 (Cauchy Principal Value)

The Cauchy Principal Value (CPV) of a finite integral of a function f about a point c,

with a ≤ c ≤ b is given by:

∫ b

a
f(x)dx = lim

ε→0+

[∫ c−ε

a
f(x)dx+

∫ b

c+ε
f(x)dx

]
.

The Cauchy principal value is also known as the principal value integral. For more details

refer Whittaker and Watson (1990).

Definition 31 (Gauss Hypergeometric Function)

A generalized hypergeometric function pFq(a1, ..., ap; b1, ..., bq;x) is a function which

can be defined in the form of a hypergeometric series, i.e., a series for which the ratio

of successive terms can be written.

The classical standard hypergeometric series 2F1 is given by:

2F1(a, b; c; z) = 1 +
(ab)
(1!c)

z +
(a(a+ 1)b(b+ 1))

(2!c(c+ 1))
z2 + ...

Definition 32 (Error Function)

The “error function” is a normalized form of the Gaussian function. It is an entire

function defined by:

erf(z) =
2√
π

∫ z

0
exp[−t2]dt.

The complementary error function, denoted erfc, is defined in terms of the error function:

erfc(z) = 1− erf(z) =
2√
π

∫ ∞
z

exp[−t2]dt.

This function can also be defined in terms of an Hypergeometric Function as follows:

erfc(z) =
2z√
π

1F1(
1
2

;
3
2

;−z2).

This functions will be sued in Section B.2.2.
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Appendix B
Problem Specific Solutions for the
Estimation of NLSS Functions

B.1 Estimation of the Ratio of Means of two Uncorrelated
Lognormal Variables

In the following remark different properties of the lognormal distribution are presented.

Remark B.1

Let X be a lognormally distributed random variable and U = log(X) a normally

distributed variable with mean µ and variance σ2.

Equivalent relationships to obtain µ and σ2, given the expected value and variance of

the lognormally distributed variable X are the following:

µ = log(E[X])− 1
2 log[1 + var(X)/(E[X])2], and

σ2 = log[1 + var(X)/(E[X])2].

In Laurent (1963), it is pointed out that the estimation of the ratio of the expected values

of two lognormal variables is usually of interest, i.e.

E[X2]/E[X1] = exp
[
(µ2 − µ1) +

(σ2
2 − σ2

1)
2

]
, (B.1.1)

as well as the expected value of their ratio, i.e.
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E[X2/X1] = exp
[
(µ2 − µ1) +

(σ2
2 + σ2

1)
2

]
, (B.1.2)

or the following ratio:

exp[(E[U2]]/exp[(E[U1])] = exp[µ2 − µ1]. (B.1.3)

As pointed out in Laurent (1963), from the viewpoint of descriptive statistics only the third

expression is of interest to one who wants to compare the tendencies of two distributions,

because the two other expressions may be affected by the influence of the dispersion (or

variability) of the variables, represented by σ1 and σ2. If σ1 = σ2, then E[X2]/E[X1] =

exp[(E[U2]]/exp[(E[U1])].

In Shaban (1981) the estimation of the following general function was considered:

% = exp[a(µ2 − µ1) + b(σ2
2 − σ2

1)]. (B.1.4)

In particular, Equation B.1.4 contains ratios of two lognormally distributed random vari-

ables, see Remark B.1. It just depends on how the parameters a and b are chosen.

The ratio of the logarithm variances:

% = exp[var(log(X2))]/exp[var(log(X1))] = exp[σ2
2 − σ2

1], i.e. a = 0, b = 1.

The ratio of the logarithm means:

% = exp
[
µ2 +

σ2
2

2

]
/exp

[
µ1 +

σ2
1

2

]
, i.e. a = 1, b = 1/2.

As mentioned above, Shaban (1981) derived an estimator of %, see Equation B.1.4, with

smaller MSE than the ML and the MVUE deduced by Crow (1977), for the following three

situations:
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B.1 Estimation of the Ratio of Means of two Uncorrelated Lognormal Variables

1. The shape parameters are equal σ2
1 = σ2

2 = σ2 and σ2 known.

2. The shape parameters are equal σ2
1 = σ2

2 = σ2 and σ2 unknown.

3. σ2
1 6= σ2

2 and both are unknown.

Remark B.2

Assume that in Equation B.1.4 a = 1 and b = 1/2, then it follows:

(i) if σ2
1 = σ2

2, Equation B.1.4 coincides with Equation B.1.3,

(ii) if σ2
1 6= σ2

2, Equation B.1.4 coincides with Equation B.1.1.

B.1.1 1st Situation: Estimation of the Ratio of Means when the Shape
Parameters are Equal and Known

Based on Remark B.2, (i), for this first situation the function to be estimated is given by:

% = exp[µ2 − µ1], as presented in Equation B.1.3.

The ML estimator as well as the MVUE, presented by Crow (1977), and the minimal MSE

estimators, presented by Shaban (1981), belong to the following class of estimators:

%̂c = exp[a(Ū2 − Ū1)]f(σ2). (B.1.5)

Here Ū1 and Ū2 represent the arithmetical mean of the logarithms of the n X1-variables

and n X2-variables in the sample respectively.

Furthermore, c represents the class of estimators and f(σ2) stands for clarifying that the

class of estimators depends on a function of the known parameter σ2.

Remark B.3

For a = 1, it follows that: %̂c = exp[(Ū2 − Ū1)]f(σ2).
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The resulting ML estimator and MVUE for %, as presented in Equation B.1.4, with a = 1

are the following:

%̂ML = exp[(Ū2 − Ū1)]

%̂MV UEc = exp
[
(Ū2 − Ū1)− σ2

n

]
.

Shaban (1981) pointed out that the MSE of this MVUE is readily seen to be minimum

when f(σ2) = exp[−3σ2/n].

The minimal MSE estimator within the class B.1.5 deduced by Shaban (1981) is given by:

%̂Shaban = exp
[
(Ū2 − Ū1)− 3σ2

n

]
.

B.1.2 2nd Situation: Estimation of the Ratio of Means when the Shape
Parameters are Equal and Unknown

The function to be estimated is the same as for the first situation, i.e.

% = exp[µ2 − µ1], as presented in Equation B.1.3.

The class of estimators considered for %, see Equation B.1.4, when σ2
1 = σ2

2 = σ2 and

unknown is:

%̂s = exp[a(Ū2 − Ū1)]f(Sp), (B.1.6)

where s represents the class of estimators, Sp =
n∑
i=1

(U2i− Ū2)2 +
n∑
j=1

(U1j − Ū1)2, and f(Sp)

stands for clarifying that this new class of estimators depends on a function of the sample

variance Sp.

Both the Maximum Likelihood (ML) estimator and a Minimum Variance Unbiased Esti-

mator (MVUE) of % are members of the class %̂s, presented in Equation B.1.6.

The ML estimator is:
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%̂ML = exp[Ū2 − Ū1].

The MVUE is:

%̂MV UEs = exp[Ū2 − Ū1]g2(n−1)

(
− (2n− 1)

4n(n− 1)2
Sp

)
,

with g`(t) =
∞∑
r=0

`r(`+ 2r)
`(`+ 2) . . . (`+ 2r)

(
`

`+ 1

)r tr
r!
,

this function was introduced by Finney (1941).

Shaban (1981) pointed out that unlike the situation when σ2 is known it is not possible

to find a minimum MSE estimator within the class (B.1.6). However, in the same work

the following two methods for obtaining estimators were investigated and their MSEs were

studied:

%̂Shaban1 = exp[a(Ū2 − Ū1) + kSp/(2n)], with k = −3/n

%̂Shaban2 = exp[a(Ū2 − Ū1)]g2(n−1)

(
− 3

2(n−1)2

)
Sp,

where g`(.) is defined as above.

Shaban (1981) mentioned that especially for the case σ2
1 = σ2

2 = σ2, the expressions are too

complicated to permit analytical comparison between the MSE of the estimators presented

in his work.

However, a numerical comparison was carried out in the aforementioned work, with σ2 ≤ 3,

there it was shown that except in very few cases %̂Shaban1 has the smallest MSE in the class

(%̂s = exp[(Ū2 − Ū1)]f(Sp)) and %̂Shaban2 is shown to be the second best.

Shaban (1981) also pointed out that a limitation of estimators %̂MV UEs and %̂Shaban2 is that

the function g`(.) can produce negative values, because their arguments are negative. Due

to the exponential term contained in the function % = exp[µ2−µ1], it can be seen that this
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function cannot take negative values, therefore estimators %̂MV UEs and %̂Shaban2 cannot be

considered as reasonable estimators of the function %. Therefore, these estimators will not

be taken into account in the simulation study.

B.1.3 3rd Situation: Estimation of the Ratio of Means when the Shape
Parameters are Unequal and both Unknown

Based on the second identity presented in Remark B.2, for this third situation the function

to be estimated is given by:

% = E[X2]/E[X1] = exp
[
(µ2 − µ1) + (σ2

2−σ2
1)

2

]
, as presented in Equation B.1.1.

When σ2
1 6= σ2

2 and both are unknown, Shaban (1981) considered the following class of

estimators:

%̂ss = exp[(Ū2 − Ū1)]f(S1, S2), (B.1.7)

where ss represents the class of estimators and S2 =
n∑
i=1

(U2i−Ū2)2 and S1 =
n∑
j=1

(U1j−Ū1)2.

The ML estimator is:

%̂ML = exp
[
(Ū2 − Ū1) + (S2 − S1)/2n

]
.

The MVUE is:

%̂MV UEss = exp[(Ū2 − Ū1)]gn−1

(
−(2nb+ a2)

2(n− 1)2
S2

)
gn−1

(
(2nb− a2)
2(n− 1)2

S1

)
.

Like the case when σ2
1 = σ2

2 = σ2 and σ2 unknown, it is not possible to find a minimal MSE

estimator.

For this case Shaban (1981) also suggested the following two methods and studied their

MSEs:

%̂Shaban1 = exp[(Ū2 − Ū1) + Sw],
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B.2 Estimation of the Inverse of the Mean

%̂Shaban2 = exp[Ū2 − Ū1]gn−1

(
− (n+ 3)

2(n− 1)2
S2

)
gn−1

(
(n− 3)

2(n− 1)2
S1

)
,

with Sw = C2S2 − C1S1 , C2 =
n2 + 3(n+ 1)

2n2
and C1 =

n2 − 3(n+ 1)
2n2

.

In a numerical comparison in Shaban (1981) with σ2
1 6= σ2

2 it was shown that, for all the

parameter settings considered, %̂Shaban1 was the estimator with the smallest MSE within

the class %̂ss = exp[Ū2 − Ū1]f(S1, S2).

Additionally, %̂Shaban2 and %̂MV UEss have the limitation that the function g`(.) can produce

negative values, because their arguments are also negative. Due to the exponential term

contained in the function % = exp[a(µ2 − µ1) + b(σ2
2 − σ2

1)], it can be seen that this func-

tion cannot take negative values either, then estimators %̂MV UEss and %̂Shaban2 cannot be

considered as reasonable estimators of the function %. Therefore, these estimators will not

be taken into account in the simulation study and comparisons for this case will only be

carried out with %̂ML and %̂Shaban1.

B.2 Estimation of the Inverse of the Mean

B.2.1 Estimator Derived by Srivastava and Bhatnagar (1981)

As mentioned in Section 6.3.1, based on the MELO estimator, Srivastava and Bhatnagar

(1981) derived a class of estimators, which is free from the limitation of non-existence of

moments. They derived exact expressions for the first two moments in the case of normal

population. The resulting expressions are merely functions of the sample size n and the

ratio v = σ2/µ2, but quite intricate so that no clear inference is drawn. To address this,

they proposed large sample approximations.

Based on a random sample of size n and supposing that x̄ and s2 =
√

1
n−1

∑n
i=1(xi − x̄)2

are unbiased estimators of the mean µ and variance σ2 respectively, for the inverse of the

mean f(µ) = 1/µ they considered the following estimator characterised by a scalar K:
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TSriv =
x̄

x̄2 +K(s2/n)
, for K > 0. (B.2.8)

This estimator has moments as long as K is positive and for K = 1 is asymptotically

unbiased (cf. Srivastava and Bhatnagar (1981)).

The exact expression for normal populations presented by Srivastava and Bhatnagar

(1981) is:

TSriv =
√
n

σ
· z

z2 + w

[
1−

(
1− K

n− 1

)
· w

z2 + w

]−1

, (B.2.9)

with z =
√
nx̄

σ
, v =

σ2

µ2
and w =

(n− 1)s2

σ2
.

z follows a normal distribution with mean (n/v)1/2 and variance 1, while w follows a χ2-

distribution with (n-1) degrees of freedom. Further, they are stochastically independent.

The Relative Bias (RB) and Relative Mean Squared Error (RMSE) to order O(n−2) of

TSriv are given as follows:

RB(TSriv, f(µ))N = Bias(TSriv ,f(µ))N
f(µ) = µE[TSriv − (1/µ)]

= (1−K)v/n+ (K2 − 6K + 3)v2/n2.

RMSE(TSriv, f(µ))N = MSE(TSriv ,f(µ))N
f(µ)2 = µ2E[TSriv − (1/µ)]2

= v/n+ (K2 − 8K + 9)v2/n2.

N stands for “normal population”.

From the equations above it can be seen that the estimator TSriv is asymptotically unbiased

if K = 1, while it has the smallest MSE, to the order of O(n−2), if K = 4.

Srivastava and Bhatnagar (1981), also considered the case of large-sample approxima-

tions for non-normal populations with finite moments of first, second and third order.
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B.2 Estimation of the Inverse of the Mean

The obtained estimator is given as:

TSriv =
(1 + U)

µ
[(1 + U)2 +K(v + V )/n]−1, (B.2.10)

with v =
σ2

µ2
, U =

(x̄− µ)
µ

and V =
(s2 − σ2)

µ2
.

The Relative Bias (RB) and Relative Mean Squared Error (RMSE) of order O(n−2) are

given as follows:

RB(TSriv, f(µ)) = (1−K)v/n+ (K2 − 6K + 3 + (3K − 1)δ)v2/n2,

RMSE(TSriv, f(µ)) = v/n+ (K2 − 8K + 9 + 2(K − 1)δ)v2/n2,

where δ =
(
Sk

v

)1/2

and Sk is the Pearson’s measure of skewness of the population, given as:

Sk =
3(µ− x̃)

σ
, with x̃ representing the sample median.

If δ = 0, i.e., population is symmetrical, then the expressions for the RB and RMSE are

the same as those obtained for normal population.

Srivastava and Bhatnagar (1981) pointed out that the estimator TSriv has a smaller MSE

than 1/x̄ if 0 < K < 2(4 − δ), for δ < 4. This implies that TSriv has smaller MSE than

1/x̄ for all negatively skewed populations and positively skewed populations with δ < 4,

provided K satisfies 0 < K < 2(4− δ).

In the same paper it is stated that the smallest MSE is achieved if K = 2(4− δ).

Srivastava and Bhatnagar (1981) also presented a family of estimators for f(µ) = 1/µ on

the pattern of TSriv when σ2 is known.

This estimator is given as:

TSriv∗ =
x̄

x̄2 + g(σ2/n)
,
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where g is the scalar specifying the estimation and g > 0.

In the mentioned work, the expressions for the relative bias and variance of the mentioned

estimators are presented.

B.2.2 Unbiased Estimator Deduced by Voinov (1985)

Voinov (1985) also derived unbiased estimators of powers of the inverse of population means,

for the following cases:

a) unknown normally-distributed population mean µ and known variance σ2 .

b) normal population mean 1/µk, k = 1, 2, . . ., assuming µ and σ to be unknown. Addi-

tionally, µ > 0 is assumed.

The aforementioned estimator for the first case is given by:

ĝk(x̄) =
(−1)k−1√n
(k − 1)!

√
2

( n
σ2

) k
2 d(k−1)

dzk−1

[
exp

[
z2

2

]
erfc

(
z√
2

)]∣∣∣∣
z=
√
nx̄
σ

, (B.2.11)

with erfc given as in Definition 32.

If, for example, k = 1, 2, then:

T =
1
µ̂

= ĝ1(x̄) =
√
nπ√
2σ

exp
[
nx̄2

2σ2

]
erfc

(√
nx̄√
2σ

)

and

T =
1
µ̂2

= ĝ2(x̄) =
n

σ2
− x̄
√
πn3/2

√
2σ3

exp
[
nx̄2

2σ2

]
erfc

(√
nx̄√
2σ

)
,

respectively.

The asymptotic expansions of these equations, if
√
nµ√
2σ

> 1, are expressed in the aforemen-

tioned work as:
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B.2 Estimation of the Inverse of the Mean

ĝ1(x̄) ' 1
x̄

[
1 +

∞∑
m=1

(−1)m(2m− 1)!!σ2m

nmx̄2m

]

and

ĝ2(x̄) ' 1
x̄2

[ ∞∑
m=0

(−1)m(2m+ 1)!!σ2m

nmx̄2m

]
,

respectively. With (2m− 1)!! representing the double factorial of 2m− 1, see Definition 18.

The unbiased estimator of 1/µk can also be rewritten as:

ĝk(x̄) = −
√
π(n/σ2)k/2√
2(k − 1)!

· d
k−1

dzk−1

[
exp

[
z2

2

]
erfc

(
z√
2

)]∣∣∣∣
z=−

√
nx̄
σ

. (B.2.12)

In Voinov (1985) it is mentioned that in general the estimator ĝk(x̄) (as presented in Equa-

tion B.2.11 and B.2.12) has infinite variance. This divergence is due to the infinity in

Expressions B.2.11 and B.2.12, at x̄ = −∞ and x̄ = +∞, respectively. The variance of

B.2.11 and/or B.2.12 will be finite in applications when the probability density function of

X is truncated at large |x̄|.

In Voinov (1985) an unbiased estimator of powers of the inverse of the normal population

mean 1
µk
, k = 1, 2, . . ., assuming µ and σ to be unknown, with µ > 0 is also presented. It

is given by:

ĝk(x̄, S) =
1
x̄k

2F1

(
k + 1

2
,
k

2
;
n− 1

2
;−S(n− 1)

nx̄2

)
, n > k + 1, . . .

It can be seen that this equation represents the sum of the ML estimator 1
x̄k

, and a correction

for its bias.

2F1(α, β; γ; z) is the Gauss hypergeometric function of the second kind, see Definition 31.

Furthermore, S = 1
n−1

∑n
i=1(xi − x̄)2.

Unfortunately, an unbiased estimator of 1
µk

if µ < 0, σ2 being unknown, is not obtainable,

see Voinov (1985, p. 360) for discussion.
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B.2.3 First Moment of ML Estimator According to Voinov (1985)

As mentioned in Section 2.1, Voinov (1985) presented the first moment of the Maximum

Likelihood estimator of the inverse population mean, 1/µ. This is given by:

Eµ

(
1
x̄

)
=
√
n√

2πσ

∫ ∞
−∞

1
x

exp
[
−n(x− µ)2

2σ2

]
dx =

∫ ∞
−∞

dx

ϕ(x)
. (B.2.13)

Since the first derivative of ϕ(x) exists in the vicinity of x = 0 and the second derivative

ϕ′′(x) also exists (ϕ′(x) being nonzero) it is stated in Voinov (1985) that there exists the

Cauchy Principal Value (see Appendix A.6, Definition 30) of the integral in Equation B.2.13.

In the same work, the bias of the Maximum Likelihood estimator of the inverse population

mean is presented. It is given by:

b
(

1
x̄
,

1
µ

)
= Eµ

(
1
x̄

)
− 1
µ

=
n

σ2

∫ µ

0
exp

[
n(t2 − µ2)

2σ2

]
dt− 1

µ
.
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Appendix C
Additional Proofs

C.1 Lemma A.2

Suppose x1,x2, . . . ,xn represents a realisation of an i.i.d. random sample from a p–

dimensional distribution with mean µ = E[xi] = g and covariance matrix Σ = E[(xi −

µ)(xi − µ)′]. Then, consider zi = xi − µ, i = 1, . . . , n, with moments given as in Lemma

A.1. The elements of zi are zij , for j = 1, · · · , p, with E[zij ] = 0, E[z2
ij ] = σ2

j , E[z3
ij ] = ηjσ

3
j

and E[z4
ij ] = υjσ

4
j , where η = (η1, · · · , ηn)′, Diag(A) is a diagonal matrix obtained from

A by replacing the off-diagonal elements of A by zero and ∆ is a diagonal matrix with

υ1 − 3, · · · , υp − 3 as the diagonal elements.

Additionally, are Ψ and Φ linear functions instead of matrices, Ψ from Rp →Mp×p and Φ

fromMp×p →Mp×p, whereMp×p stands for the set of all symmetric p× p matrices, Φ∗ is

the conjugated or transposed operator with respect to the usual inner product of matrices.

Furthermore, consider z = y − E[y], with y = VecX ′ and E(y) = g∗ = 1In ⊗ µ. Then

E[z] = 1In ⊗ 0 and V ∗ = E[zz′] = cov(y) = In ⊗Σ.

The following notation will also be introduced:

∆∗ = In ⊗∆

η∗ = 1In ⊗ η.



C Additional Proofs

Using Remark A.4 and different matrix operations given in Appendix A.4, as well as the

following identities:

• trF 1 = 1
n2 tr(1In1I′n ⊗A) = 1

n trA

• trF 2 = 1
n tr(In ⊗A) = trA

the properties presented in Lemma A.2 are proven as follows:

(i.1) Ψ(F 1) = tr(F 1V ∗)V ∗ + 2V ∗F 1V ∗

+ V ∗Diag(F 1)∆∗V ∗

= 1
n2 [tr((1In1I

′
n ⊗A)(In ⊗Σ))(In ⊗Σ) + 2V ∗F 1V ∗ + V ∗Diag(F 1)(In ⊗∆)V ∗]

= 1
n [trAΣ(In ⊗Σ) + 2

n1In1I
′
n ⊗ΣAΣ + 1

nIn ⊗ΣDiag(A)∆Σ].

(ii.1) Φ∗(F 1) = (In ⊗Σ)3/2Diag(F 1)η∗

= (In ⊗Σ3/2) 1
n2 In ⊗Diag(A)(1In ⊗ η)

= [ 1
n2 In ⊗Σ3/2Diag(A)](1In ⊗ η)

= 1
n2 1In ⊗Σ3/2Diag(A)η,

with Diag(F 1) = 1
n2 Diag(1In1I′n ⊗A).

Similarly, the expressions for F 2 can be demonstrated.

(iii) Φ(f) = Diag(fη′∗)V
3/2
∗

= 1
nDiag(1In ⊗ a)(1I′n ⊗ η′)(In ⊗Σ3/2)

= 1
n [Diag1In1I′n ⊗Diag(aη′)](In ⊗Σ3/2), since Diag(1In1I′n) = In

= 1
nIn ⊗Diag(aη′)Σ3/2.

It is important to point out that the expressions presented in Kleffe and Rao (1988) and

Neudecker and Trenkler (2002) are equivalent. As an example it can be mentioned:

(a) tr(F 1 ⊗ F 1)Ψ∗ = trF 1Ψ(F 1).

From Neudecker and Trenkler (2002) it is known:
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tr(F 1 ⊗ F 1)Ψ∗ = 1
n3 (tr(A⊗A)Ψ + (n− 1)(α+ 2β)).

Using the properties introduced by Kleffe and Rao (1988, Section 2.1) for the same examples,

the equivalent expression looks like:

(iv.1) trF 1Ψ(F 1) = tr(F 1 ⊗ F 1)Ψ∗
= trF 1

[
1
n trAΣ(In ⊗Σ) + 2

n2 1In1I′n ⊗ΣAΣ + 1
n2 In ⊗ΣDiag(A)∆Σ

]
= 1

n2α+ 2
n2β + 1

n3AΣDiag(A)∆Σ

= 1
n2 (α+ 2β) + 1

n3AΣDiag(A)∆Σ

= (n−1)
n3 (α+ 2β) + 1

n3 (α+ 2β +AΣDiag(A)∆Σ)︸ ︷︷ ︸
trAΨ(A)

= 1
n3 (trAΨ(A) + (n− 1)(α+ 2β)).

(b)tr(F 2 ⊗ F 2)Ψ∗ = trF 2Ψ(F 2).

From Neudecker and Trenkler (2002) it is known:

tr(F 2 ⊗ F 2)Ψ∗ = 1
n(tr(A⊗A)Ψ + (n− 1)α).

Using the properties introduced by Kleffe and Rao (1988, Section 2.1) for the same examples,

the equivalent expression looks like:

(iv.2) trF 2Ψ(F 2) = tr(F 2 ⊗ F 2)Ψ∗
= 1

n tr(In ⊗A)
[
trAΣ(In ⊗Σ) + 2

nI
′
n ⊗ΣAΣ + 1

nIn ⊗ΣDiag(A)∆Σ
]

= 1
n (α+ 2β +AΣDiag(A)∆Σ)︸ ︷︷ ︸

trAΨ(A)

+ (n−1)
n α

= 1
n(trAΨ(A) + (n− 1)α).

(v) trF 2Ψ(F 1) = tr(F 2 ⊗ F 1)Ψ∗ = trF 1Ψ(F 2) = tr(F 1 ⊗ F 2)Ψ∗

= 1
n tr(In ⊗A)

[
1
2 trAΣ(In ⊗Σ) + 2

n2 ΣAΣ + 1
n2 Diag(A)∆Σ

]
= 1

n2 (α+ 2β +ADiag(A)∆Σ)︸ ︷︷ ︸
trAΨ(A)

+ (n−1)
n α

= 1
n2 (trAΨ(A) + (n− 1)α).

(vi.1) f ′Φ∗(F 1) = tr(F 1)Φ(f) = 1
n2 trAΦ(a) = 1

n2a
′Φ∗(A) = 1

n2 tr(a′ ⊗A)Φ.
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(vi.2) f ′Φ∗(F 2) = tr(F 2)Φ(f) = 1
n trAΦ(a) = 1

n tr(a
′ ⊗A)Φ.

Identities (vii) - (ix) are obtained by substituting zi by y, a = b by f , A by F 1, B by F 2,

Σ by V ∗ = In⊗Σ and g by g∗ = 1In⊗µ in the equations (vii) - (ix) given in Remark A.4.

C.2 Theorem 3.1

Additionally to the identities proved in the last section the following identities will be useful

for obtaining the expressions of the variances of TPoly1 and TPoly2 as well as cov(TPoly1 , TPoly2 )

introduced in Theorem 3.1.

• V ∗F 1 = 1
n2 1In1I

′
n ⊗ΣA

• V ∗F 2 = 1
nIn ⊗ΣA

• F 1V ∗ = 1
n2 1In1I

′
n ⊗AΣ

• F 2V ∗ = 1
nIn ⊗AΣ

• F 1V ∗F 1 = 1
n3 1In1I

′
n ⊗AΣA

• F 2V ∗F 2 = 1
n2 In ⊗AΣA

• trF 1V ∗ = 1
n trAΣ

• trF 2V ∗ = trAΣ

• V ∗F 1g∗ = 1
n1In ⊗ΣAµ

• g∗g′∗F 1 = 1
n1In1I

′
n ⊗ µµ′A

• g∗g′∗F 1V ∗ = 1
n1In1I′n ⊗ µµ′AΣ

• trF 1(trF 1V ∗)V ∗ = α
n2

• trF 2(trF 2V ∗)V ∗ = α

• trF 2(trF 1V ∗)V ∗ = α
n
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The following identities hold for l = 1, 2:

• V ∗f = 1
n1In ⊗Σa

• g∗f ′∗V ∗ = 1
n1In1I′n ⊗ µa′Σ

• f ′g∗ = a′µ

• f ′V ∗f = 1
na
′Σa

• F l g∗ = 1
n2 (1In1I′n ⊗A)(1In ⊗ µ) = 1

n(1In ⊗Aµ)

• g′∗F lg∗ = µ′Aµ, l = 1, 2

• f ′V ∗F l g∗ = 1
na
′ΣAµ

• g′∗F l V ∗F l g∗ = 1
nµ
′AΣAµ

• Φ(F lg∗) = 1
nΦ(1In ⊗Aµ)),

= 1
nDiag[(1In ⊗Aµ)η′∗]V

3/2
∗ = 1

n [Diag(1In1I′n ⊗Aµη′)](In ⊗Σ3/2)

= 1
nIn ⊗Diag(Aµη′)Σ3/2

In Lemma A.2 the following expressions for l = 1, 2 are given:

var(TPolyl ) = var(f ′y + y′F ly)
= 4g

′
∗F lV ∗F lg∗ + 4tr(g

′
∗F l ⊗ F l)Φ∗

+tr(F l ⊗ F l)Ψ∗ + 4f ′V ∗F lg∗ + 2tr(f ′ ⊗ F l)Φ∗
+f ′V ∗f − (trF lV ∗)2.

cov(TPoly1 , TPoly2 ) = f ′[2V ∗F 1g∗ + V ∗f + Φ∗(F 1)]
+trF 2[4g∗g′∗F 1V ∗ + 2Φ(F 1g∗)
+2Φ∗(F 1)g′∗ + Ψ(F 1)
+2g∗f

′V ∗ + Φ(f)− (trF 1V ∗)V ∗].

The preceding calculations show that the variances of the TPolyl , for l = 1, 2, have the

following common terms:

4g
′
∗F lV ∗F lg∗ + 4f ′V ∗F lg∗ + f ′V ∗f

= 4 1
nµ
′AΣAµ + 4 1

na
′ΣAµ+ 1

na
′Σa.

This summarises in a constant common term, which is denoted by γ, i.e.
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γ = 1
n(2Aµ+ a)′Σ(2Aµ+ a) ≥ 0 .

It can also be seen that in the expression of the covariance the following constant terms are

contained:

2f ′V ∗F 1g∗ + f ′V ∗f + 4trF 2g∗g
′
∗F 1V ∗ + 2trF 2g∗f

′V ∗

= 2 1
na
′ΣAµ+ 1

na
′Σa+ 4 1

nµ
′AΣAµ + 2 1

na
′ΣAµ

= 4 1
na
′ΣAµ+ 1

na
′Σa+ 4 1

nµ
′AΣAµ,

which is also equal to γ.

Then it follows:

var(TPoly1 ) = 4tr(g
′
∗F 1 ⊗ F 1)Φ∗ + tr(F 1 ⊗ F 1)Ψ∗

+2tr(f ′ ⊗ F 1)Φ∗ − 1
n2 (trAΣ)2 + γ

var(TPoly2 ) = 4tr(g
′
∗F 2 ⊗ F 2)Φ∗ + tr(F 2 ⊗ F 2)Ψ∗

+2tr(f ′ ⊗ F 2)Φ∗ − (trAΣ)2 + γ

cov(TPoly1 , TPoly2 ) = f ′Φ∗(F 1) + trF 2[2Φ(F 1g∗)
+2Φ∗(F 1)g′∗ + Ψ(F 1) + Φ(f)]− 1

n(trAΣ)2 + γ.

The following identities hold true:

• F 1 ⊗ F 1 = 1
n4 1In1I

′
n ⊗A⊗ 1In1I

′
n ⊗A

• F 2 ⊗ F 2 = 1
n2 In ⊗A⊗ In ⊗A

• tr(F 1 ⊗ F 1)Ψ∗ = trF 1Ψ(F 1) = 1
n3 [trAΨ(A) + (n− 1)(2β + α)]

• tr(F 2 ⊗ F 2)Ψ∗ = trF 2Ψ(F 2) = 1
n [trAΨ(A) + (n− 1)α]

• tr(F 2 ⊗ F 1)Ψ∗ = trF 1Ψ(F 2) = trF 2Ψ(F 1) = 1
n2 [trAΨ(A) + (n− 1)α]

• tr(f ′ ⊗ F 1)Φ∗ = f ′Φ∗(F 1) = tr(F 1)Φ(f) = 1
n2a

′Φ∗(A) = 1
n2 trAΦ(a)

• tr(f ′ ⊗ F 2)Φ∗ = f ′Φ∗(F 2) = tr(F 2)Φ(f) = 1
na
′Φ∗(A) = 1

n trAΦ(a)

• Φ∗(F 1)g′∗ = 1
n2 1In1I′n ⊗Σ3/2Diag(A)ηµ′

• Φ∗(F 2)g′∗ = 1
nIn ⊗Σ3/2Diag(A)ηµ′
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• tr(g′∗F 1 ⊗ F 1)Φ∗ = trF 1Ψ∗(F 1)g
′
∗ = 1

n2 trAΦ∗(A)µ′

• tr(g′∗F 2 ⊗ F 2)Φ∗ = trF 2Ψ∗(F 2)g
′
∗ = 1

n trAΦ∗(A)µ′

• trF 1Φ(F 1g∗) = trF 2Φ∗(F 1)g′∗ = 1
n2 trAΦ∗(A)µ′ = 1

n2 tr(µ′A⊗A)Φ

• trF 2Φ(F 1g∗) = trF 2Φ(F 2g∗) = trF 2Ψ∗(F 2)g
′
∗ = 1

n trAΦ∗(A)µ′ = 1
n tr(µ

′A⊗A)Φ.

Form the identities presented above and assuming α = (trAΣ)2, then the equations for the

variance presented above can be rewritten as:

var(TPoly1 ) = 4trF 1Ψ∗(F 1)g
′
∗ + trF 1Ψ(F 1)

+2f ′Φ∗(F 1)− 1
n2α+ γ

var(TPoly2 ) = 4trF 2Ψ∗(F 2)g
′
∗ + trF 2Ψ(F 2)

+2f ′Φ∗(F 2)− α+ γ

Now, substituting the identities exposed in Lemma A.2 and those presented above in the

corresponding equations of the variances and covariance it follows:

var(TPoly1 ) = 4
n2 trAΦ∗(A)µ′ + 1

n3 trAΨ(A)

+
n− 1
n3

(2β − α) +
2
n2
trAΦ(a)− α

n2︸ ︷︷ ︸
2

(n−1)

n3 β− α
n3

+γ

var(TPoly2 ) = 4
n trAΦ∗(A)µ′ + 2

n trAΦ(a) + 1
n trAΨ(A) +

(n− 1)α
n

− α︸ ︷︷ ︸
−α
n

+γ

cov(TPoly1 , TPoly2 ) = 1
n2 trAΦ(a) + 2

n trAΦ∗(A)µ′ + 2
n2 trAΦ∗(A)µ′

+ 1
n2 [trAΨ(A) + (n− 1)α] + 1

n trAΦ(a)− 1
n2α+ γ.

After applying some properties of addition it follows:

(i) var(TPoly1 ) = 1
n2 [4trAΦ∗(A)µ′ + 2trAΦ(a) + 1

n trAΨ(A) + 2n−1
n β − α

n ] + γ

(ii) var(TPoly2 ) = 1
n [4trAΦ∗(A)µ′ + 2trAΦ(a) + trAΨ(A)− α] + γ

(iii) cov(TPoly1 , TPoly2 ) = 1
n2 [2(n+ 1)trAΦ∗(A)µ′ + (n+ 1)trAΦ(a) + trAΨ(A)− α] + γ.
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C.3 Lemma A.3

In Kleffe and Rao (1988, Section 2.1) the following properties are introduced:

(i) tr(A⊗B)Ψ = trBΨ(A) = trAΨ(B)

(ii) tr(b′ ⊗B)Φ = trBΦ(b) = b′Φ∗(B)

(iii) Ψz(A) = (trAΣ)Σ + 2ΣAΣ + Diag(D1, . . . ,Dn),

with Di = Ψi(Aii)− 2ΣiAiiΣi − (trAiiΣi)Σi.

Since the variance for each i = 1, · · · , n is the same, Σi = V ∗ = In⊗Σ and at the same

time Aii = A, then Di = Ψu(A)− 2ΣAΣ− (trAΣ)Σ and Ψu(A) =
p∑
i=1

p∑
j=1

AijΨij .

(iv) Φ∗z(A) = (Φ∗1(A11)′, . . . ,Φ∗n(Ann)′)′,

with Φ∗i (Aii) = Φ∗u(A) = (trAΦ1, . . . , trAΦp).

(v) Φz(a) = Diag(Φ1(a1), . . . ,Φn(an)), with Φi(ai) = Φu(a) =
p∑
i=1
aiΦi, with ai = a.

Using Remark A.5 and the aforementioned properties introduced by Kleffe and Rao (1988,

Section 2.1), the statements made in Lemma A.3 are proven as follows:

(i.1) Ψz(F 1) = (trF 1V ∗)V ∗ + 2V ∗F 1V ∗ + Diag(D1, · · · ,Dn)

= Ψz(F 1) = (trF 1V ∗)V ∗ + 2V ∗F 1V ∗ + Diag(D1, · · · ,Dn)

= 1
n2 tr(1In1I′n ⊗AΣ)(In ⊗Σ) + 2

n2 1In1I′n ⊗ΣAΣ + Diag(D1, · · · ,Dn)

= 1
n tr(AΣ)(In ⊗Σ) + 2

n2 1In1I′n ⊗ΣAΣ + Diag(D1, · · · ,Dn)

= 1
n [(trAΣ)(In ⊗Σ) + 2

n1In1I
′
n ⊗ΣAΣ + 1

nIn⊗ Diag(Di)].

(ii.1) Φ∗z(F 1) = 1
n2 1In ⊗ Φ∗u(A)

Similarly, the expressions for F 2 can be demonstrated.

(iii) Φz(f) = 1
nIn ⊗Diag(Φu(a))
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C.4 Theorem 3.2

Additionally to the identities proved in the last section the following identities will be useful

for obtaining the expressions of the variances of TPoly1 and TPoly2 as well as cov(TPoly1 , TPoly2 )

introduced in Theorem 3.2,

Φz(F 1g∗) = 1
nΦz((1In ⊗Aµ)) = 1

nIn⊗ Diag(Φu(Aµ′)) = Φz(F 2g∗),

with F 1g∗ = 1
n2 (1In1I′n ⊗A)(1In ⊗ µ) = 1

n(1In ⊗Aµ) = 1
nΦz(1In ⊗Aµ).

Φ∗z(F 1)g′∗ = 1
n2 1In1I

′
n ⊗ Φ∗u(A)µ′

Φ∗z(F 2)g′∗ = 1
nIn ⊗ Φ∗u(A)µ′

tr(g′∗F 1 ⊗ F 2)Φ = trF 2Φu(g′∗F 1) = g′∗F 2Φ∗u(F 1)

= tr
[

1
n2 (1I′n ⊗ µ′)1In1I′n ⊗A⊗ 1

nIn ⊗A
]
Φ

= 1
n2 tr(µ′A⊗A)Φ = 1

n2 trAΦu(Aµ)

= 1
n2 (µA)′Φ∗u(A), reminding that A is symmetric, i.e. A = A′.

tr(g′∗F 1 ⊗ F 2)Φ = 1
n2 trAΦ(Aµ′)

tr(g′∗F 2 ⊗ F 2)Φ = trF 2Φu(g′∗F 2) = g′∗F 2Φ∗u(F 2) = 1
n trAΦu(Aµ)

2tr(g′∗F 1 ⊗ F 2)Φ + tr(g′∗F 2 ⊗ F 2)Φ = 2(n+1)
n trAΦu(Aµ) .

Theorem 3.2 follows directly from the expressions of variance and covariance given in Lemma

A.2, the identities given in Lemma A.3 and the additional identities given above.

C.5 Lemma A.4

Suppose x1, x2, . . . , xn represents a realisation of an i.i.d. random sample from a univariate

distribution and xi an arbitrary element of x with E[xi] = µ and variance var(xi) = σ2.

Furthermore, is E[x] = µ1In and cov(x) = σ2In.
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Assume that z = x − E[x], with E[z] = 0, g∗ = E[x] = µ1In and V ∗ = E[zz′] = cov(x) =

σ2In. Furthermore, assume the elements of z are zi, with E[zi] = 0, E[z2
i ] = σ2, E[z3

i ] = ησ3

and E[z4
i ] = υσ4.

Additionally, are Ψ and Φ linear functions instead of matrices, Ψ from Rp →Mp×p and Φ

fromMp×p →Mp×p, whereMp×p stands for the set of all symmetric p× p matrices, Φ∗ is

the conjugated or transposed operator with respect to the usual inner product of matrices.

The following notation will also be introduced:

∆∗ = Inυ

η∗ = 1Inη

The identities presented in Lemma A.4 were deduced by applying the properties presented

in Remark A.4 as well as the following additional properties:

• trF 1 = 1
n2 trA 1n1I

′
n = 1

nA

• trF 2V ∗ = trAσ
2

n In = A

The identities presented in Lemma A.4 can be proven as follows:

(i.1) Ψ(F 1) = 1
nAσ

4In + 2
n2Aσ

41In1I
′

n2 +
1
n2
Aσ4InDiag1In1I

′

n︸ ︷︷ ︸
Aσ4

n2

∆In

= 1
n [Aσ4In + 2

nAσ
41In1I

′
n + 1

nA∆σ4In]

(ii.1) Φ∗(F 1) = 1
n2 Aησ

3InDiag(1In1I
′

n)1In︸ ︷︷ ︸
1
n2Aησ

31In

Similarly, the expressions for F 2 can be demonstrated.

(iii) Φ(f) = Diag(fη∗)V
3/2
∗ = 1

nDiag(aη1In1I′n)σ3In

= 1
naησ

3In, with Diag(1In1I′n) = In and InIn = In

= (iv.1) trF 1Ψ(F 1) = tr(F 1 ⊗ F 1)Ψ∗, knowing that trF 1 = 1
nA

= 1
n3 [trAΨ(A) + (n− 1)(3α)], since α = β

.
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(iv.1) trF 1Ψ(F 1) = 1
n3 [trAΨ(A) + (n− 1)(3α)]

(iv.2) trF 2Ψ(F 2) = 1
n [trAΨ(A) + (n− 1)α]

(v) trF 2Ψ(F 1) = 1
n2 [trAΨ(A) + (n− 1)α], where trAΨ(A) = 3α+AΣDiag (A)∆Σ

(vi.1) f ′Φ∗(F 1) = tr(F 1)Φ(f) = 1
n2aησ

3A

(vi.2) f ′Φ∗(F 2) = tr(F 2)Φ(f) = 1
naησ

3A

C.6 Theorem 3.4

Additionally to the identities proved in the last section the following identities will be useful

for obtaining the expressions of the variances of TPoly1 and TPoly2 as well as cov(TPoly1 , TPoly2 )

introduced in Theorem 3.4.

• V ∗F 1 = Aσ2

n2 1In1I
′
n

• V ∗F 2 = Aσ2

n In

• F 1V ∗ = 1
n2 1In1I

′
n ⊗AΣ

• F 2V ∗ = Aσ2

n In

• F 3V ∗ = − Aσ2

n(n−1)L

• trF 1V ∗ = 1
n2 trAσ

21In1I
′
n = 1

nAσ
2

• trF 2V ∗ = −tr Aσ2

n(n−1)L = trAσ
2

n In = Aσ2

• trF 3V ∗ = 0

• V ∗F 1g∗ = Aµσ2

n 1In

• F 1V ∗F 1 = A2σ2

n3 1In1I
′
n
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• F 2V ∗F 2 = A2σ2

n2 In

• F 3V ∗F 3 = A2σ2

n2(n−1)2 [In + (n− 2) 1In1I
′
n]

• trF 1(trF 1V ∗)V ∗ = α
n2

• trF 2(trF 1V ∗)V ∗ = α
n

• trF 2(trF 2V ∗)V ∗ = α

The following identities hold true for l = 1, 2, 3:

• V ∗f = aσ2

n 1In

• g∗f
′
V ∗ = 1

naµσ
21In1I

′
n

• f ′g∗ = a
n1I
′
n1Inµ = aµ

• f ′V ∗f = a
n1In

aσ2

n 1In = a2σ
n

2
.

• g′∗F lg∗ = Aµ2, l = 1, 2

• F l g∗ = Aµ
n 1In

• g∗g
′
∗F l = 1

nAµ
21In1I

′
n

• g∗g
′
∗F lV ∗ = 1

nAµ
2σ21In1I

′
n

• f ′V ∗F lg∗ = aAµσ2

n

• g′∗F lV ∗F lg∗ = (Aµσ)2

n .

Furthermore it can be obtained:

• F 1 ⊗ F 1 = A2

n4 1In1I
′
n ⊗ 1In1I

′
n

• F 1 ⊗ F 2 = A2

n3 1In1I
′
n ⊗ In

• F 2 ⊗ F 2 = A2

n2 In ⊗ In

• F 3 ⊗ F 3 = A2

n2(n−1)2L⊗L.

• g′∗F 1 ⊗ F 1 = A2µ
n3 1I

′
n ⊗ 1In1I

′
n
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• g′∗F 2 ⊗ F 1 = A2µ
n2 1I

′
n ⊗ 1In1I

′
n

• g′∗F 2 ⊗ F 2 = A2µ
n2 1I

′
n ⊗ In

• g′∗F 3 ⊗ F 3 = − A2µ
n2(n−1)2 1I

′
n ⊗L

• f ′ ⊗ F 1 = aA
n3 1I

′
n ⊗ 1In1I

′
n

• f ′ ⊗ F 2 = aA
n2 1I

′
n ⊗ In

• f ′ ⊗ F 3 = − aA
n2(n−1)

1In ⊗L

• Φ(F 1g∗) = 1
nΦ(Aµ1In) = σ2

n Diag(Aµ1Inη1I′n)In︸ ︷︷ ︸
Aησ3In

= 1
nAµησ

3In

• Φ∗(F 1)g′∗ = Aµησ3

n2 1In1I′n

• trF 1Φ(F 1g∗) = trF 2Φ∗(F 1)g′∗ = trF 1Φ∗(F 1)g′∗ = A2µησ3

n2

• trF 2Φ(F 1g∗) = trF 2Φ(F 2g∗) = A2µησ3

n

For the univariate case, E[x] = µ1In and cov(x) = σ2In. Theorem 3.4 follows directly from

the expressions of variance and covariance given in Lemma A.2, where the expressions for

the multivariate case are presented. Additionally, it is based on Theorem 3.3, the identities

presented in Lemma A.4 and those presented above.

C.7 Theorem 5.1

Let κmin be given as introduced in Section 5.1, i.e. as:

κmin =
var(TPoly2 )− cov(TPoly1 , TPoly2 ) + ι2(ι2 − ι1)

var(TPoly1 − TPoly2 ) + (ι2 − ι1)2
.

In Remark 3.1 the properties presented in Lemma A.4 (introduced by Kleffe and Rao (1988))

were used for obtaining the following expressions for the variances and covariances of the

estimators:

(i) var(TPoly1 ) = 1
n2 [4trAΦ∗(A)µ′ + 2trAΦ(a) + 1

n trAΨ(A) + 2(n−1)
n β − α

n ] + γ
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(ii) var(TPoly2 ) = 1
n [4trAΦ∗(A)µ′ + 2trAΦ(a) + trAΨ(A)− α] + γ

(iii) var(TPoly3 ) =
2

n(n− 1)
β + γ

(iv) cov(TPoly1 , TPoly2 ) = 1
n2 [2(n+ 1)trAΦ∗(A)µ′ + (n+ 1)trAΦ(a) + trAΨ(A)− α] + γ.

The following notation will also be introduced:

(ι2 − ι1) = trAΣ− 1
n trAΣ = n−1

n trAΣ

ι2(ι2 − ι1) = n−1
n (trAΣ)2 = n−1

n α

(ι2 − ι1)2 = (n−1
n )2α.

Using the notation given above and expressions given in Remark A.4 and Lemma 3.1 it

follows:

var(TPoly2 )− cov(TPoly1 , TPoly2 )

= 1
n2 [2(n− 1)trAΦ∗(A)µ′ + (n− 1)trAΦ(a) + (n− 1)trAΨ(A) + (1− n)α]

var(TPoly2 )− cov(TPoly1 , TPoly2 ) + ι2(ι2 − ι1)

= (n−1)
n2 [2trAΦ∗(A)µ′ + trAΦ(a) + trAΨ(A)] +

(1− n)
n2

α+
n− 1
n

α︸ ︷︷ ︸
(n−1
n

)2

= (n−1)
n2 [2trAΦ∗(A)µ′ + trAΦ(a) + trAΨ(A) + (n− 1)α]

var(TPoly1 − TPoly2 ) = var(TPoly1 ) + var(TPoly2 )− 2cov(TPoly1 , TPoly2 )

= 1
n2 [

(n2 + 1)
n

trAΨ(A)− 2trAΨ(A)︸ ︷︷ ︸
(n2−2n+1)

n
trAΨ(A)

+ (n−1)
n 2β−(n2 + 1)

n
α+ 2α︸ ︷︷ ︸

−(n2−2n+1)
n

α

]

= 1
n2

[
(n−1)2

n trAΨ(A) + (n−1)
n 2β − (n−1)2

n α
]

= (n−1)
n3 [(n− 1)trAΨ(A) + 2β − (n− 1)α]
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C.8 Theorem 5.3

var(TPoly1 − TPoly2 ) + (ι2 − ι1)2

= 1
n3

[
(n−1)2

n trAΨ(A) + (n−1)
n 2β

]
−(n− 1)2

n3
α+ (

n− 1
n

)2︸ ︷︷ ︸
(n−1)2(n−1)

n3 α

= (n−1)
n3 [(n− 1)trAΨ(A) + 2β + (n− 1)2α]

=⇒ κmin =
n(2trAΦ∗(A)µ′ + trAΦ(a) + trAΨ(A) + (n− 1)α)

(n− 1)trAΨ(A) + 2β + (n− 1)2α
.

C.8 Theorem 5.3
Assume that y = VecX ′ is multinormally distributed with E[y] = g∗ = 1In ⊗ µ and

cov(y) = V ∗ = In ⊗Σ.

Moreover, let κmin be given as introduced in Section 5.1, i.e. as:

κmin =
var(TPoly2 )− cov(TPoly1 , TPoly2 ) + ι2(ι2 − ι1)

var(TPoly1 − TPoly2 ) + (ι2 − ι1)2
.

The following notation will also be introduced:

(ι2 − ι1) = trAΣ− 1
n trAΣ = n−1

n trAΣ

ι2(ι2 − ι1) = n−1
n (trAΣ)2 = n−1

n α

(ι2 − ι1)2 = (n−1
n )2α.

Using the notation given above and expressions given in Remark A.4 and Lemma 3.1 it

follows:

var(TPoly2 )− cov(TPoly1 , TPoly2 )
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= (n−1)
n2 2β

var(TPoly2 )− cov(TPoly1 , TPoly2 ) + ι2(ι2 − ι1)

= (n−1)
n2 2β + n−1

n α

= (n−1)
n2 [2β + nα]

var(TPoly1 − TPoly2 ) = var(TPoly1 ) + var(TPoly2 )− 2cov(TPoly1 , TPoly2 )

= 1
n2 2β + γ + 1

n2β + γ − 1
n4β − 2γ

= (n−1)
n2 2β

var(TPoly1 − TPoly2 ) + (ι2 − ι1)2

= (n−1)
n2 2β + (n−1

n )2α

= (n−1)
n2 [2β + (n− 1)α]

=⇒ κmin =
(n−1)
n2 [2β + nα]

(n−1)
n2 [2β + (n− 1)α]

=
2β + nα

2β + (n− 1)α
.

C.9 Theorem 5.4

Let z = y − E[y], with E[z] = 0, V ∗ = E[zz′] = cov(y) = σ2In and g∗ = E[y] = µ1In.

Moreover, let γ = σ2

n (2Aµ+ a)2 and α = β = A2σ4.

The following notation will also be introduced:

(ι2 − ι1) = trAσ − 1
n trAσ = n−1

n Aσ2

ι2(ι2 − ι1) = n−1
n (Aσ2)2 = n−1

n α
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C.9 Theorem 5.4

(ι2 − ι1)2 = (n−1
n )2α.

Using the notation given above and the expressions given in Theorem 3.4 it follows:

var(TPoly2 )− cov(TPoly1 , TPoly2 )

=
[

4
n −

2(n+1)
n2

]
A2µΦ +

[
2
n −

(n+1)
n2

]
aAΦ +

[
1
n −

1
n2

]
A2Φ +

[
1
n2 − 1

n

]
α

=
[

2(n−1)
n2

]
A2µΦ +

[
(n−1)
n2

]
aAΦ +

[
(n−1)
n2

]
A2Φ +

[
(1−n)
n2

]
α

var(TPoly2 )− cov(TPoly1 , TPoly2 ) + ι2(ι2 − ι1)

=
[

2(n−1)
n2

]
A2µΦ +

[
(n−1)
n2

]
aAΦ +

[
(n−1)
n2

]
A2Φ +

[
(n−1)(n−1)

n2

]
α

var(TPoly1 − TPoly2 ) = var(TPoly1 ) + var(TPoly2 )− 2cov(TPoly1 , TPoly2 )

=
[

(4(n+ 1)− 4(n+ 1))

n2

]
︸ ︷︷ ︸

0

A2µΦ +
[

2(n+ 1)− 2(n+ 1)

n2

]
︸ ︷︷ ︸

0

aAΦ

+
[

1
n3 + 1

n −
2
n2

]
A2Φ +

[
(2n−3)
n3 − 1

n + 2
n

]
α

=
[

(n−1)(n−1)
n3

]
A2Φ +

[
− (n−3)(n−1)

n3

]
α

var(TPoly1 − TPoly2 ) + (ι2 − ι1)2

=
[

(n−1)2

n3

]
A2Φ +

[
−

(n− 3)(n− 1)

n3
+

(n− 1)2

n2

]
︸ ︷︷ ︸

(n−1)

n3 [n(n−1)−(n−3)]

α

(n−1)

n3

[
n2 − 2n+ 3

]
(n−1)

n3

[
2 + (n− 1)2

]

=⇒ κmin =
n[2A2µΦ + aAΦ +A2Ψ + (n− 1)α]

(n− 1)A2Ψ + (2 + (n− 1)2)α
.
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C.10 Theorem 5.5

Assume that x = (x1, x2, . . . , xn)′ represents a realisation of an i.i.d. random sample from

a random variable with E[xi] = µ and variance var(xi) = σ2. Furthermore, is E[x] = µ1In

and cov(x) = σ2In.

Furthermore, assume that x is normally distributed with E[x] = g∗ = µ1In and cov(x) =

V ∗ = σ2In. x ∼ N(µ1In, σ
2In), with Φ = ΦN = 0 and Ψ = ΨN = 3σ2.

It has already been mentioned that for the univariate case α = β = A2σ4, from this equality

the expression for κmin for the normal case follows automatically , i.e.

=⇒ κmin =
2α+ nα

2α+ (n− 1)α
=
α(2 + n)
α(1 + n)

=
(2 + n)
(1 + n)

.
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E Simulation Results for the Estimation of the Ratio of Means
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F Approximated and Simulated Results for the Estimation of the Inverse Mean
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F.2 Comparison of Estimators T1 and TSriv. Normal Distribution
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F Approximated and Simulated Results for the Estimation of the Inverse Mean

F
.3

C
o

m
p

ar
is

o
n

o
f

E
st

im
a

to
rs
T

1
a

n
d
T

2.
N

o
rm

a
l

D
is

tr
ib

u
ti

o
n

1.
0

1.
5

2.
0

2.
5

3.
0

0.00.20.40.60.81.0

n=
25

0

µµ

MSE((T1))MSE((T2))

σσ
==

1
2

σσ
==

1
σσ

==
3

2
σσ

==
2

σσ
==

5
2

σσ
==

3

1.
0

1.
5

2.
0

2.
5

3.
0

0.00.20.40.60.81.0

n=
50

0

µµ

MSE((T1))MSE((T2))

σσ
==

1
2

σσ
==

1
σσ

==
3

2
σσ

==
2

σσ
==

5
2

σσ
==

3

1.
0

1.
5

2.
0

2.
5

3.
0

−0.050.050.150.25

n=
75

0

µµ

MSE((T1))MSE((T2))

σσ
==

1
2

σσ
==

1
σσ

==
3

2
σσ

==
2

σσ
==

5
2

σσ
==

3

1.
0

1.
5

2.
0

2.
5

3.
0

−0.050.050.150.25

n=
12

00

µµ

MSE((T1))MSE((T2))

σσ
==

1
2

σσ
==

1
σσ

==
3

2
σσ

==
2

σσ
==

5
2

σσ
==

3

F
ig

ur
e

F
.5

:
M

SE
(T

P
o
ly

1
,f

P
o
ly

(µ
))
/M

SE
(T

P
o
ly

2
,f

P
o
ly

(µ
))

.

1.
0

1.
5

2.
0

2.
5

3.
0

0.00.20.40.60.81.0

n=
25

0

µµ

MSE((T1))MSE((T2))

σσ
==

1
2

σσ
==

1
σσ

==
3

2
σσ

==
2

σσ
==

5
2

σσ
==

3

1.
0

1.
5

2.
0

2.
5

3.
0

0.00.20.40.60.81.0

n=
50

0

µµ

MSE((T1))MSE((T2))

σσ
==

1
2

σσ
==

1
σσ

==
3

2
σσ

==
2

σσ
==

5
2

σσ
==

3

1.
0

1.
5

2.
0

2.
5

3.
0

−0.050.050.150.25

n=
75

0

µµ

MSE((T1))MSE((T2))

σσ
==

1
2

σσ
==

1
σσ

==
3

2
σσ

==
2

σσ
==

5
2

σσ
==

3

1.
0

1.
5

2.
0

2.
5

3.
0

−0.050.050.150.25

n=
12

00

µµ

MSE((T1))MSE((T2))

σσ
==

1
2

σσ
==

1
σσ

==
3

2
σσ

==
2

σσ
==

5
2

σσ
==

3

F
ig

ur
e

F
.6

:
M̂

SE
(T

1
,f

(µ
))
/
M̂

SE
(T

2
,f

(µ
))

.

176



F.4 Comparison of Estimators Tκmin and TSriv. Normal Distribution
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F.6 Comparison of Estimators T1, T3, Tκmin and TSriv. Uniform Distribution
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