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Abstract

The paper presents an architecture de�nition language and various mappings to di�er-

ent programming languages. In addition, a major new idea is that the language contains

features which are exploited to de�ne a concept to support cooperative distributed devel-

opment of architectural descriptions. Besides the language and group-ware concepts the

paper sketches functionality and implementation of the corresponding support environ-

ment called Groupie. The section describing the implementation of Groupie illustrates the

suitability of an object database to build software engineering environments supporting

multiple users.

1 Introduction

The architectural description has become an important, if not the most important document
of a software systems life cycle. This description provides a possibility to structure a software
system into well-de�ned parts called modules, subsystems etc. and to encapsulate the main
design decisions within those parts. It serves as an important basis to guarantee maintainability
(adaptability and portability), to reuse parts of a system in the same and across project(s), to
systematically test and debug parts of (large) systems and to coordinate integration testing.
The architecture description can even be used as a basis for project scheduling and work
assignment.

Not surprisingly, a number of approaches based on data abstraction and in general the idea of
object-oriented design have increased to rather widespread use as a paradigm for architectural
descriptions. Those approaches include either languages which are a combination of a design
and implementation language like Ada, Modula-2 or Ei�el or they are rather independent from
any particular programming language. The latter ones are frequently called Module Intercon-
nection Languages (MILs). Examples include languages like � [CFGGR91], HOOD [HOO89],
Instress [Per89], CONIC [KMS89] and others. Our approach is not very di�erent from these
concerning just the language for de�ning modules and module dependencies except that we
provide di�erent types of modules which support structuring large complex software systems
more than just using only modules of one type. We also provide precise de�nitions of mappings
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from the architectural de�nition into existing programming languages (like C, ML, Modula-2
and others) which are not provided at least in that detail by the others.

What is missing in most of the above mentioned approaches is support for concurrent devel-
opment of architectures (and possibly implementations) by distributed cooperating teams of
developers. Our experience, which is based for consulting on a number of industrial projects
and software houses in architectural design, tells us that the architecture and implementation
of almost any non-trivial size software project is developed and maintained in a distributed
and concurrent fashion, but no appropriate support is available for this activity. Only In-
scape [Per89], the environment supporting Instress and an environment called STILE [SW91]
address the issue of support for multi-user, concurrent development. Both, however, propose
a rather general strategy incorporated in their environment without giving details of the en-
vironment's functionality resulting out of the concerning strategy and, more importantly, no
idea is given how this strategy can be implemented

In more detail, STILE proposes a strategy how to exploit knowledge about the semantics
of software documents to improve the number of concurrent accesses to the same document.
This is exactly what we do in our approach, but we combine this idea with the use of real
languages and corresponding documents. This makes the approach really applicable espe-
cially for architecture development. In addition, aspects like negotiations through automatic
composition of mails, automatic mailing, selective change propagations and the description of
our implementation are unique to our approach. The Inscape approach sketches a concept
of enforced and voluntary cooperation by building subsets and workspaces of modules. This
is di�erent from our approach because we have de�ned subsystems in a way that they addi-
tionally support structuring the architecture. In addition, subsystems are a precisely de�ned
syntactic construct in our language. In fact our approach could probably be used to implement
enforced and voluntary cooperation as proposed for Inscape. Finally, the de�ned mappings
into a number of existing programming languages make our approach very widely applicable.

In summary, the main new features of our approach are:

1. The use of speci�c features of our architecture de�nition language to support not only
structuring complex architectural speci�cations but also to de�ne team structure and
negotiation rules for managing software projects,

2. mapping to various programming languages,

3. the implementation of a support environment called Groupie which supports all the above
sketched concepts and supports the areas programming in the small, programming in
the large and project management (the latter one to some extend only so far) in a
tightly integrated way which supports incremental, intertwined development of all areas
concerned,

4. the support of team coordination based on the de�ned team structures through a built-in
but adaptable message communication facility,

5. automatic Make�le composition by exploiting the knowledge about module dependencies
in the architecture de�nition and

6. the use of an object database system as the underlying platform of our support environ-
ment.

As a side-e�ect, the construction of Groupie illustrates the adequacy of object database systems
for software engineering applications in general as already argued in [EKS93].
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It is worthwhile to mention that the approach presented in this paper have partly been com-
mercialized. Ongoing improvement of the approach is based on a daily use of the system in
industrial applications and frequent interaction with those industrial users (cf. Section 6).

The paper is structured as follows: The next section describes the architecture language.
Section 3 de�nes how the language features are used to support multi-user architectural de-
velopment and maintenance. Section 4 presents the functionality and user interface (derived
from the concepts in the previous sections) of Groupie. Section 5 sketches the implementation
of Groupie using the fully object-oriented database system GemStone [BMO+89]. Finally,
Section 6 concludes with an overview about the commercialisation of Groupie and sketches
ongoing and further work.

2 Architecture De�nition Language

2.1 Module Types and the Use-Relationship

The language is based on data abstraction and information hiding in the sense of object-
oriented languages, i.e. an architectural description consists of modules each of which basically
encapsulates a type and its operations. The interface of a module de�nes the exported type
and the exported operations (export interface) as well as the imported types and operations of
other modules (import interface), whereas the body contains the implementation of the export
operations possibly using other internally de�ned (hidden) operations. The import/export re-
lationship between modules is called use-relationship hereafter. Logically, a module represents
one design decision. Main parts of the language have been described in [Lew88]. We will start
with a brief introduction into the language and then concentrate on the extensions made by
us.

The so far rather conventional notation distinguishes itself from other languages like Ada
or Modula-2 by providing additional syntactical constructs to structure large and complex
architectures. First of all modules have one of four possible types, which are

an abstract data type (ADT) that encapsulates one type and its operations, i.e. it basi-
cally corresponds to an abstract data type or class in the object-oriented terminology,
i.e. it does yet not provide a formal speci�cation language to de�ne the semantics of
operations by e.g. algebraic equations (c.f. Section 6).

an abstract data object (ADO) that encapsulates a type and its operations but it only
exports operations and no type de�nition. It thus speci�es that only one object of this
type can be instantiated later during runtime because no other module can create an
object of that particular type,

a function module (FM) that encapsulates a group of functions without any related type.
Such a module itself has no internal memory and the invocation of any export operation
has exactly the same e�ect in any case irrespective of the state of an (internal) object,
and

a type collection (TC) that provides a construct to de�ne system-wide basic types (like
e.g. boolean, integer, or subtypes thereof) which are derived by renaming or combining
prede�ned types and used to specify especially parameter types of exported operations
in other modules. The reason not de�ne them in separate ADT-modules is that they
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unnecessarily blow up the size of a system architecture since they are more geared towards
a later implementation of the system.

Modules and their use-relationships have a textual and a graphical representation. As the
example in Figure 1 illustrates, the textual representation provides more details than the
graphical one. However, the graphical view provides the user with a traceable overview of the
system.

Figure 1: Module types and module relationships (graphical and textual notation)

The �gure gives a small excerpt of the architectural description of Groupie itself.1 At this
point in the paper, it is only important to understand that the arrows in the graphical depic-
tion represent use-relationships between modules and that the textual description in Figure 1
exempli�es the description of an interface de�nition of a module, namely CMControl in this
case.

2.2 Subsystems

An important observation is that architectures of non-trivial software systems tend to become
rather complex if they are only described by modules (or classes respectively) and their re-
lationships. We therefore have introduced an additional construct called subsystem in our
language which supports structuring collections of modules into larger grains. A subsystem
summarises groups of the above de�ned modules and provides a common interface to other
subsystems or modules. The export interface of a subsystem is de�ned by the sum of all export
interfaces of all modules which are identi�ed by the system architect(s) as export modules.
The import interface consists of all types and operations imported by any one module within

1Groupie's architecture has been fully de�ned by using Groupie as the architecture support environment.
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the subsystem. In addition, subsystems can contain other subsystems such that an architec-
ture is basically constructed as a hierarchy of subsystems. An external view of a subsystem is
given by a set of export and import relationships without identifying the particular modules
which export or import the types and operations. Thus, a subsystem transfers the idea of
information-hiding from the programming level to the architecture level. The principle idea
of subsystems is very similar to the notion of systems in [HP81]. The way how we e�ectively
use the subsystem construct as the facility to support multi-user concurrent development is
however unique to our approach. This is underlined by the very detailed de�nition of the
visibility rules (as given below), i.e. the de�nition of subsystems from which a subsystem can
potentially import.

Figure 2: Example of a subsystem (graphical and textual notation)

As an example for the textual and graphical notation of a subsystem cf. Fig. 2, which illustrates
the embedding of subsystem ComMgr in an architectural description by use-relationships and
the detailed textual de�nition of its interface. The graphical representation of the internal
structure of this subsystem and a part of its textual representation was given in Figure 1.
Now we are able to explain the little black square in the upper left half of modules CMControl,
CMDescriptor and BasicTypes in Figure 1. Such a black square indicates that the module's
export interface contributes to the export interface of the enclosing subsystem. The export
interface of subsystem ComMgr is hence de�ned by the sum of the export interfaces of modules
CMControl, CMDescriptor and BasicTypes. What is not given in Figure 1 is the de�nition of the
import relationships, i.e. which module's import interfaces contribute to the import interface
of the subsystem. In summary, a subsystem has four di�erent representations (containing
various degrees of details). These are the graphical and textual representation of the interface
as in Figure 2 and the graphical and textual representation of its internal structure which,
according to the information-hiding principle, is not visible from the outside. (The supporting
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environment, Groupie, provides a zoom-in and zoom-out command to visualise interface and
internal structure on demand if a person has the appropriate access rights (cf. Section 3
and 4)).

Following the above explanation of the context-free part of the language and its graphical
and textual representation we now describe the static semantics of the language. We will not
do this in full detail but rather concentrate on those parts which also e�ect the multi-user
support as explained in the next section. It will be shown that there are quite a number of
dependencies in the way static semantics are de�ned and how the language (and its supporting
environment) supports multiple users.

The interesting constraints are:

1. A hierarchy of subsystems builds a hierarchy of nested name scopes (similar to a program
language block structure). However, as a di�erence to nested blocks, any subsystem
carries a name which is unambiguous in its scope. Thus names in di�erent modules or
subsystems are unambiguous by adding (conceptually) the name of the enclosing module
or subsystem as an pre�x.

2. Any imported type or operation must be de�ned in the export interface of another
module or subsystem.

3. A subsystem B contained in another subsystem A can only import from modules or
subsystemswhich are either (1) also contained in A, i.e. they are brothers of B concerning
the contains-hierarchy of subsystems, or (2) they are already imported from A. (This
restriction guarantees the mentioned information-hiding principle on the architecture
level.)
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Figure 3: A Hierarchy of Subsystems

As an example for the last constraint consider Figure 3 which describes a hierarchy of six
subsystems (and a few modules) and in particular indicates their internal structure. The
full range of a subsystem is indicated by a dashed rectangle, i.e. subsystem A contains two
subsystems B and C respectively as brothers in the subsystem hierarchy. Subsystem B in
turn contains subsystems D and E respectively and modules MB0 , MB1 , whereas subsystem
C contains a few modules (MC0 , MC1 andMC2) and subsystem F which in turn contains only
modules anymore. For the sake of simplicity import relationships have not (yet) been de�ned
in this example.
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Under the constraint de�ned above moduleMB0 , for instance, is only allowed to import from
subsystems D and E and from module MB1 , but never directly from subsystem C or its
subsystems or its contained modules respectively. If we now introduce a use-relationship such
that B imports from C, then this expands the scope of possible imports for all modules and
subsystems contained in B. Then MB0 could import MC0 as it is the export of subsystem C.
This exempli�es the second part of Rule 3 above.

Typical examples of subsystems are a set of application speci�c windows types (where in turn
each window type may be represented by a module), a speci�c I/O device driver, a database
system or the application-speci�c access interface to a database system. Note, that our ar-
chitecture language does not restrict to write the bodies of modules in di�erent programming
languages.

2.3 Mapping Architecture De�nitions to Programming Languages

So far, we have de�ned three mappings of the architecture de�nition language to programming
languages which are representatives for partly di�erent underlying paradigms. They include

1. a mapping to C which had to bridge a gap to a rather low-level programming level with
no modularisation concepts,

2. a mapping to standard ML [MTH90], which had to bridge a gap to a functional pro-
gramming language,

3. and a mapping to Modula-2 (which is that straight-forward, that we do not address it
any further in this paper).

Figure 4 exempli�es this mapping. It displays the result of mapping module CMControl that
was used in Figure 1 already to ML and C.

Figure 4: Function Module mapping to ML and C
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The most important problem to be addressed by the C-mapping is the absence of modulari-
sation concepts. We address this problem using the C preprocessor. We therefore map each
module interface speci�cation to a function header document (an example for such a header
document is displayed on the right-hand-side of Figure 4). Each of these header documents
contains a typedef declaration for each exported type, and function prototypes which are
declared using the extern linker directive (confer to the de�nition of the three functions in
Figure 4). Then any import statement of the module interface de�nition is mapped to a pre-
processor directive which textually includes the header document of the respective imported
modules (The include statements of ComInterface.h and BasicTypes.h are examples for this).
Thus, the preprocessor compiles a header document of a module into a �le that textually
contains all headers of all (transitively) imported modules. To assure that each header is only
included once, a header document is guarded by a preprocessor switch which only declares
the types and operations, if the document has not been included before (the ifndef directive
takes care of this). In order to still provide the developer with information about imported
types and operations, a comment is automatically inserted after each include directive that
enumerates all imported types and operations.

C source code frames which are derived from body speci�cations contain at the very beginning
a preprocessor directive which includes the header document of the respective module. Hence
all types and operations that have been imported in the module interface are known during
compilation of the C source code. Then a function de�nition is included for each exported or
hidden operation. In case of hidden operations, the functions are declared with the static

linker directive. Therefore these operations can only be used from within the source code
document, but not from others. As an example for a C source code document, confer Figure 10
on page 18.

Opposed to C, standard ML does not su�er from the lack of modularisation concepts. For the
ML mapping, we exploit ML signatures as implementations of module interfaces (the left-
hand-side of Figure 4 displays such a signature). Their names are derived from the respective
module name by translating them into upper-case letters. Structures are the implementation
of body speci�cations. Their names are given in lower-case letters. Complete signatures are
derived from interface speci�cations whereas the structure is generated as a code frame which
needs to be completed manually. The signature derived from a module is attached to the
respective structure. Therefore the structure de�nition loads its corresponding signature.
Consistency checks between design and implementation can be done by the ML interpreter
while checking for a signature match against the signatures which have been derived from the
current interface speci�cations. Import relationships between structures are implemented by
the use interpreter directive, which loads the respective structure into the interpreter (in the
example the structures stored in the CMDescriptor.sml and BasicTypes.sml are loaded). Usage
of an imported name is pre�xed by the imported structure's name.
The problemwe had to address with this mapping is the paradigm shift between an architecture
de�nition language for imperative languages and a functional programming language. The
only parameter passing mechanism in ML is call-by-value. This implies that functions only
have a return value, but no in-out parameters. We addressed this in providing a language
variant and also a Groupie variant that only o�ers IN parameters, hence we had to adjust our
architecture language to the use of ML. Moreover, ML is much more powerful with respect to
function parameters of functions, generic data types and inheritance. This clearly shows that
architecture languages, which are completely independent from any programming language,
are inappropriate for practical use, i.e. there is always a mutual in
uence on which language
constructs are de�ned.
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The two mappings discussed are summarised in Table 1.

Architecture Language C Standard ML

module interface header document signature de�nition
exported type typedef in header document type

exported operation extern function declaration in header
document

val in signature

in parameter in export call by value parameter type name
in-out parameter call by value parameter of pointer type |
import list include of respective header document use directive for interpreter
import comment comment

module body source document structure de�nition
type construction | TC modules: type

ADT modules: abstype
operation function in source document fun in structure
hidden operation static function in source document local fun in structure
owner comment comment
comment comment comment

Table 1: Mapping between architecture de�nition language, and programming languages

3 Process Model

Work assignment and responsibilities are based on the notion of a subsystem. Any subsystem is
assigned 1 to n developers who form a group, which is in charge of developing that subsystem.

To develop a subsystem means to design the architecture for that subsystem and to implement
the bodies of all modules. (How Groupie supports the programming task will be explained
in Section 4.4). Including the programming task into a group's work assignment (and not to
identify di�erent groups for architecture design and programming as often proposed) is based
on the fact that our architecture language is still quite close to a programming language and
thus a separation between architect groups and programmer groups would be rather arti�cial.
In addition, the bene�t of this decision is underlined by a lot of practical experiences with
Groupie as a major part of Groupie has been commercialized and is in daily industrial use (cf.
Section 6). Although as said, the abstraction level provided by our language is still somewhat
close to programming, we will now illustrate that this is a very suitable level for supporting
cooperative work in a software project. (Of course, this is especially due to the introduction
of subsystems.)

Any group consists of its group members and a group leader who is called the owner of the
respective subsystem. The leader controls the design of the interface of the subsystem assigned
to that group and he or she is the negotiator with other group leaders which are owners of
other subsystems on the same level of the subsystem hierarchy within the same enclosing
subsystem. Thus, group leaders themselves in turn form a new group which is responsible for
the next upper level in the subsystem hierarchy. In summary, the nesting of a group structure
is analogous to the nesting of the subsystem hierarchy. Consequently, the overall responsibility
for a system architecture would be with the owner of the top-level subsystem hierarchy (who
could be called chief architect).

As an example consider the scenario given in Fig. 5 which is taken from the previous �gure in
the last section but annotated by the names of groups and owners. Group G0 consists of the
group leader O0 (who is thus the overall responsible) and its membersO1 and O2. Members O1
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Figure 5: Sample Task Assignment

and O2 in turn are group leaders (and members) of groupsG1 andG2 and owners of subsystems
B and C. As B is re�ned into subsystems D and E with groups G3 and G4 being assigned to
them, group leaders O3 and O4 of those groups G3 and G4 form group G1 together with their
group leader O1 and so on. The dashed rectangles visualise the areas of responsibilities, i.e.
the ownership in the architecture. The annotation in the upper right corner of each rectangle
gives the name of the subsystem, group, and group leader in the form subsystem/group/group
leader.

The advantage of such a nested group structure is that necessary communication to achieve
a consistent architecture is minimised and that even for large projects (we have examples
of a few hundred modules and subsystems) the structure of the development team and the
corresponding software is still easy to manage. Minimisation of communication is also the
reason for not de�ning ownerships only for single modules. This strategy forces architects
to build systems out of subsystems and not to spoil the architecture by basically not using
subsystems. The more responsibility has to be shared (in usually large projects), the more
subsystems have to be de�ned, whereas small single developer (sub-)projects can come along
without using subsystems.

This advantage is however only fully achievable, if we put an additional constraint on the
de�nition of export interfaces of subsystems. We do not allow subsystems to be exported by
the enclosing subsystem. This would possibly result in a use-relationship between a fairly
high-level subsystem and a fairly low-level subsystem, if the low-level subsystem is exported a
number of times along the subsystem hierarchy. As a consequence communication structures,
i.e. possible negotiations of group leaders could signi�cantly increase. Logically, subsystems
can be considered as abstract machines in a layered architecture. Therefore, export of a
subsystem interface upwards through various levels of the hierarchy does not make sense
logically either.

The read and write access rights for the di�erent groups can now be automatically derived
from the group structure by adhering to the information-hiding principle. A group leader has
write access right to every module of the assigned subsystem. The whole group has read access
right to every component interface from which a type or operation can be imported according
to the static semantics constraints as given in Section 2. Note that this possibly means to
see all export interfaces of all subsystems which are on a direct path to the root starting with
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the subsystem somebody is assigned to. Group leaders, in addition, get read access right to
every subsystem included in the one which they are assigned to, on an arbitrary level of the
subsystem hierarchy, because as negotiators in discussions within their groups they can thus
better represent the whole subsystem and better decide on rearrangements of the architecture.

In summary, the strict policy on write access rights ensures a highly consistent architecture
development without the possibility of a group to introduce bad side e�ects into the design
of another one. Read access rights are granted more freely to ensure as much overview about
(parts of) the architecture as possible without diluting this overview by too many details.

So far, our approach structures and minimises communication in building a consistent archi-
tecture without considering how to detect and resolve inconsistencies in the architecture if they
happen to be included. Despite the introduced group and negotiation structure there are still
a couple of cases where inconsistencies may arise. We intentionally allow those inconsistencies
to arise in order not to hamper concurrent development of di�erent subsystem.

In the �rst case, a developer can import a type or operation, although that type or operation
has not (yet) been de�ned. If we would not allow this inconsistency, we would always enforce
a bottom-up design as exports must always be de�ned, before they can be imported. This is
a pragmatically not acceptable approach. The resolution of such an inconsistency is however
nicely enabled through the well-de�ned group structure. If such a non-existing import is
requested, a note (requesting such an import) must be sent to the owner of the subsystem
where the import is requested from or even more, all owners of all subsystems from which an
import is allowed could be noticed about the newly requested export.

In the second case, a consistent import could become inconsistent if the imported type or
operation is changed in the corresponding export interface. The policy to recover from this
inconsistency is that a change of an exported type or operation has to result in a note to every
owner of a subsystem which imports that type or operation. The concerned group leaders
can then get together and negotiate that change. In case they agree on it, the change can be
performed system-wide or in case some owners do not agree the change must be performed
selectively only to those subsystems whose owners have agreed to the change. Of course, if no
one agrees, no change happens at all.

4 Environment Functionality

4.1 Overview

Groupie provides two syntax-directed tools to develop and maintain architectural descriptions.
These are a tool to develop a graphical layout of a software system (based on the notations
introduced in Section 2) and a tool which enables development of module interface de�nitions.
Figure 6 depicts the user interfaces of these two tools.

As usual in syntax-directed editing, any syntactic construct can be selected using a pointing
device. The tools deduce commands applicable to the selected construct and o�er them in
a pop-up menu. The developer can select a command, and Groupie responds after having
executed the command with updating the display. (Of course, textual input of commands and
text is also possible.)
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Figure 6: User Interface of Groupie's Architecture and Interface Tools

To work on a subsystemwhich is represented as an icon in the enclosing subsystem, a developer
can use a zoom-in command which is o�ered in the menu when a subsystem is selected (confer
also Figure 7). A zoom-out command is o�ered in order to change the display from the current
subsystem to the enclosing one.

Groupie automatically maintains consistency between the graphical and the textual architec-
ture depiction. If, for instance, a use-relationship is created by the graphical tool between
the module CMDisplay and CMMessage, not only an arrow will be displayed in the graphical
depiction between the two respective modules, but also a new import list will be inserted in
the textual interface representation of CMDisplay .

Groupie commands support users in achieving correctness regarding static semantics. As an
example, consider that we expand an import list. Then all exports of the respective module,
which have not been imported so far, are displayed in a selector box and the developer can
select those he or she wants to import. Similarly, all types declared within a module are
displayed in a selector box, as soon as a developer wants to expand a parameter type or a
result type of an exported operation.

For the developers' convenience, they may also enter imports or types which have not yet been
declared. In this case, Groupie informs the user about an error. If the user con�rms that his
or her input was intended, the command will be executed and the resulting error is visualised
by putting the erroneous parts into brackets.

Analysis commands may later on be used to see whether a module contains errors. There are
two kinds of analysis commands: commands to identify static semantic errors and commands
to visualise the dependencies between di�erent syntactic constructs. Using the �rst kind of
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commands, a developer can identify erroneous constructs and navigate to their location. Using
the second kind of command, a developer can identify where operations or types exported from
a module are actually used. Finding obsolete operation or type de�nitions is also supported
by this kind of analysis command.

4.2 Access Rights

We have introduced the notion of group-oriented access rights in Section 3. These are enforced
by Groupie in the following way. If a new architecture is created by a developer, the developer
is the leader and the only member of the group which by default works on the root subsystem
of that architecture. He or she therefore becomes the owner of the new system.

If a new subsystem is created it is contained in an already existing subsystem. The owner
of the existing subsystem is initially the owner of the new subsystem as well. He or she can
change the ownership of the subsystem by a tool command applicable to a subsystem which
is accessed by the owner. Using this command, a group leader can include a new member in
his or her group and transfer the ownership for a subsystem to the new member. When doing
so, a new subgroup of the group leader's group is created and the newly introduced member
becomes the group leader of this subgroup.

Figure 7: Enforcement of Access Rights in the Architecture Tool

When starting Groupie, developers have to identify themselves with their Groupie account.
Groupie authenticates whether a person is a Groupie developer by requesting a password
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during startup. The access rights de�ned are enforced in the architecture tool by only o�ering
those commands that respect the rights de�ned. If, for instance, the textual interface tool is
invoked by a developer who has only read access granted, the tool works like a browser, i.e.
no command can be invoked which would change the interface.

Figure 7 depicts the way access rights are enforced for the architecture tool. The �gure
depicts two instances of the architecture tool which display the same subsystem. One instance
is used by developer Wilhelm and the other is used by developer Wolfgang. Wilhelm is the
group leader of the subsystem displayed. As the displayed menus suggest, Wilhelm can not
change Wolfgang's subsystem (ComMgr). Except for ComMgr, Wolfgang can only read the other
components displayed, but not change them.

4.3 Concurrent Development

Groupie supports concurrent development, which allows multiple developers to work on an
architecture at the same time. Two problems must be resolved to support concurrent devel-
opment adequately. The �rst problem is that due to the access rights de�ned, negotiations on
changes between developers may be required. The second problem is that despite the access
rights de�ned concurrency control con
icts between concurrent Groupie sessions can occur.

Change Negotiations may become necessary, whenever a developer imports types or op-
erations from some other developer's subsystem or module. Sometimes, he or she may then
not be able to stick to the static semantics de�ned for use relationships. Three alternatives
require negotiations:

1. a developer wants to import from another developer's subsystem which does not yet
export the respective type or operation,

2. a developer wants to import from another developer's subsystem but can not due to a
missing import of the enclosing subsystem, or

3. an export is changed that is used already in some other developer's subsystem as an
import.

In the �rst case, the developer who imports a non-existing export must negotiate with the
imported subsystem's owner to de�ne the export. In the second case, the group leader is the
developer to negotiate with on de�ning an import in the enclosing subsystem. In the last case,
the developer who wants to change or delete an already used export must negotiate with the
developers using the export on whether or not the change or deletion can be performed.

Groupie supports these kinds of negotiations based on its knowledge about use relationships
between subsystems and the de�nition of ownership. Groupie incorporates a mail tool which
is used for passing messages between developers. To anticipate the �rst two of the above
mentioned cases, i.e. an export or subsystem import is not yet de�ned, Groupie o�ers a
command to post a request to an owner of a subsystem. When selected, this command provides
a text editor to write the request and then sends the request to the developer who is currently
in charge of the respective subsystem. Please note, that Groupie enables the de�nition of an
import although it is not exported and hence the developer can continue in specifying the
respective module while the other developer is handling the change request.
Figure 8 depicts how this functionality is o�ered at Groupie's user interface. It depicts a
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situation in which Wolfgang who is in charge of designing ComMgr requests a function from
the owner of subsystem ViewMgr. Therefore, Wolfgang selects the subsystem ViewMgr. In the
pop-up menu that displays the available command, a Mail command appears. After being
selected, this command pops up a new window in which the request can be written. After the
window is closed, the request is automatically sent to the developer responsible for ViewMgr.

Figure 8: Requesting a Change in Groupie

To support negotiations between developers that are necessary due to a change or a deletion of
an already used export, Groupie implements a two-phase message protocol. When a developer
selects an export that is used and executes the tool command to change or delete the export,
Groupie �rst of all warns the developer that the export is used already. If the developer con-
�rms that the export is to be changed, Groupie requests a rationale for the change from the
developer. It then sends in the �rst phase of the protocol a change request with the given
rationale to all owners of subsystems in which the export is used. Each of these owners have
to con�rm that they have no objections against the requested change. In the second phase,
Groupie awaits a con�rmation of all these owners to perform the change. Only after having
received all con�rmations, Groupie performs the change automatically. In case of a change to
an exported identi�er, it then propagates this change to all places where the identi�er is used
and changes these places. In case of a deletion, it marks the using places to be inconsistent.
A developer who had requested a change can abort waiting for con�rmations and then the
change is done selectively only to subsystems of owners who con�rmed the change. In the
other subsystems, the respective imports are marked to be inconsistent.
If Groupie has performed a change propagation, it redisplays the e�ect not only on the work-
station of the developer who actually made the change, but also on the workstations of all
developers who work on subsystems in which the change propagation has resulted in changes.
Finally, an automatically composed mail is sent by Groupie to all owners who were involved
in this change negotiations saying that change has been completed.
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A Concurrency Control Con
ict occurs if two di�erent Groupie sessions (running under
the same Groupie account) modify the same module or subsystem at the same time (write-
write con
ict). There is also a con
ict if one Groupie session accesses a component which is at
the same time modi�ed by another session (read-write con
ict). As an example of a read-write
con
ict, consider that one developer executes the tool command to import an operation. Then
all exports of the respective module or subsystem have to be retrieved for presenting it in a
selector box. The developer selects a particular operation. A con
ict occurs, if the owner
of the imported module or subsystem at the same time changes the export by deleting the
operation the other developer wanted to import.
Groupie resolves these con
icts by regarding each tool command (like e.g. to import an
operation or to change an operation's name) as an ACID transaction [Gra78]. The chance
for a concurrency control con
ict is fairly remote, because the accessed objects are of very
�ne granularity and the execution of a tool command only needs a few hundred milliseconds.
Moreover, only a single command is involved in such a con
ict and developers therefore can
tolerate a small delay or even an abort of the command execution.
Hence, the above concurrency control con
ict is resolved by Groupie in either of the following
ways. In the �rst case, the delete command is executed earlier and then the developer who
had issued the import command will get a message that the export is not available, or if the
import command is executed before the delete command, then the developer who wants to
delete the exported operation will have to negotiate about the deletion as described at the
beginning of this subsection.

4.4 Programming Support

In Section 3, we have explained that subsystem owners not only de�ne the subsystem's archi-
tecture, but also implement the contained module bodies. To support this implementation,
Groupie provides two further tools, a body editor and a programming language tool.

The body editor supports a pseudo-code speci�cation of the exported types and operations and
a de�nition and pseudo-code speci�cation of hidden operations. Therefore, the body editor
by default displays all types and operations that have been declared in the respective export
interface. It then allows the developer to specify the type constructions and to describe the
algorithms of the operations' bodies in the pseudo-code notation. Figure 9 depicts the the body
editor invoked on the body speci�cation of Module CMMessage whose interface speci�cation was
sketched already in Figure 6.

The interface tool and the body editor can be used in an intertwined fashion. The e�ect of
each change, which a developer performs in the interface de�nition of a module, is immediately
propagated to the body editor. If a developer, for instance, de�nes a new exported operation,
this operation will automatically be included in the body speci�cation. We have decided not
to support the reverse. This is because, we want to enforce designers to separate the concerns
of interface design and implementation design. We therefore want to have them using the
interface tool for interface design only and the body editor for implementation design only.

As an example for a programming language support tool, we describe the C programming tool.
This C tool displays all operations that have either been de�ned as export in the interface
de�nition of a module or as hidden operation in the body speci�cation. It then allows the
developer to select a place holder for a function body and to implement this body. The
programming language tool is hybrid in the sense that it supports not only structure-oriented
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Figure 9: Body Editor

editing as do the other tools, but also enables free textual input with a text editor. It checks
the static semantics of the C programming language as de�ned in the ANSI speci�cation.

The integration of the tool with the other tools is done in the same fashion as for the body
editor. As soon as changes are done, for instance, to an operation declaration in the interface
de�nition or the body speci�cation, this change is propagated to the programming language
representation.

The functionality of the programming language tool that goes beyond that of an editor is
concerned with static semantic analysis. The tool provides capabilities in order to �nd ob-
solete variable declarations or statically unreachable statements. Figure 10 depicts the user
interface of the programming language tool. It displays the implementation of the function
KMCreateMessage whose body speci�cation is depicted in Figure 9.

Finally, the programming tool is capable of writing the implemented source code into the
UNIX �le system. It therefore maintains a directory hierarchy according to the subsystem
hierarchy of the architecture de�nition. The written source code may then be translated with
the system's C compiler in order to obtain the object code for the module.

Derivation of executable �les from a set of source modules is most often controlled by
make [Fel79] in a UNIX environment. The input for make is a Make�le which de�nes the
dependencies between the di�erent source modules and the build rules. The tedious task of
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Figure 10: Groupie Programming Tool

manually writing and especially maintaining Make�les becomes obsolete when using Groupie,
because Make�les are generated by Groupie. This is enabled by Groupie's knowledge about
the use-relationships de�ned in the architecture which enable to derive the source module
dependencies and due to the fact that Groupie knows the source module locations in the �le
system.

The other mappings to programming languages discussed in Section 2 have so far only been im-
plemented as compilers which translate an architecture into initial programming language code
frames. They could, however, as well be implemented as interactive tools tightly integrated
into Groupie.

5 Implementation Issues

We now explain the main features of the Groupie implementation. We especially elaborate
on how to use the object database system GemStone [BMO+89]. The suitability of object
database systems as a basis for environment construction is discussed in [EKS93]. Exploiting
GemStone's transaction mechanism and its client/server architecture, was an excellent basis
for implementing the discussed negotiation and concurrency control strategies.
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5.1 An object-oriented Schema for Abstract Syntax Graphs

Groupie's internal data structure is an abstract syntax graph.2 Figure 11 depicts a partial
display of such an abstract syntax graph. It sketches the part of the graph that represents
subsystem ComMgr which we have displayed previously in Figure 6.
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Figure 11: Excerpt of Abstract Syntax Graph used by Groupie

We want to store these abstract syntax graphs in a database without changing their represen-
tation because

1. it does not �t into main memory,

2. developers must not loose signi�cant e�ort in case of hardware or software failures,

3. the e�ciency required at the user interface will not be achieved if complex transforma-
tions between external and internal representation are necessary and

4. the same graph must be accessible by di�erent users concurrently.

To de�ne a GemStone schema for Groupie's abstract syntax graphs, the graph structure and
the applicable operations have to be de�ned in OPAL, GemStone's data de�nition and ma-
nipulation language. OPAL evolved from Smalltalk [Gol85]. Therefore, common properties
of nodes such as out-going edges or attributes are de�ned in OPAL classes. Nodes are imple-
mented as complex objects whose instance variables implement edges or attributes. Integrity
constraints on the abstract syntax graph are enforced by encapsulation, i.e. Groupie's tools
are not allowed to directly modify instance variables, but must use the methods de�ned for
that purpose. As an example, consider terminal classes such as ModName or OpName, which o�er
a scan method. This method provides the only facility to set the attribute for storing lexems

2A rationale why this is the appropriate data structure for environments like Groupie may be found
in [ELN+92] and [ESW93].
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of identi�ers. It only stores a string passed as argument, if the string is a lexically correct
identi�er.

Objects have unique identi�ers which are called object oriented pointers (OOPs) in GemStone.
GemStone's programming interface which is used by the tools then provides means to send
messages to OOPs. To execute a tool command such as expansion of an identi�er placeholder,
the tool sends the message scan to the OOP associated with the currently selected placeholder.
All further computation of the tool command is then controlled by the database schema and
executed within the database server process. The performance gain is that for executing tool
commands no objects need to be transferred via expensive network communication from the
database server to tools. After the operation is completed, its e�ect is displayed and all
modi�ed OOPs are associated with their respective displayed representation.

5.2 Using Optimistic Transactions for Command Execution

GemStone o�ers an optimistic transaction mechanism which performs concurrency control of
concurrent sessions. After having started a transaction with ACID properties in GemStone,
a session can work on a logical copy of the database. During commit of the transaction,
GemStone checks whether the transaction has performed accesses to objects which are in
read-write or write-write con
ict to other successfully completed transactions. In this case the
transaction can not be completed, but has to be aborted. A transaction abort updates the
logical copy of the database taking into account all database updates made by successfully
completed transactions. Then the transaction can be restarted. If the commit succeeds, the
logical copy of the database is also updated.

GemStone's transaction mechanism is exploited in Groupie for executing tool commands. As
soon as the user selects a command from a menu (or has �nished its textual input), Groupie
starts a transaction. The command is executed by sending a message to the currently selected
object. After the message execution is �nished, Groupie tries to commit the transaction. If it
fails, a con
ict occurred with a tool command executed concurrently by some other developer.
Groupie then aborts the transaction, and automatically restarts another transaction again
in order to resent the same message, whose parameters are still available. All this is done
transparently to the developer and in many cases he or she will even not recognise the con
ict
at all.

Note, that using this transaction mechanism is only possible because we are storing the abstract
syntax graph in the database as discussed in the previous subsection. Groupie's tools are then
enabled to access those and only those objects necessary for executing a command. If for
instance, an operation is imported, a new Import object is created and the set of OpName

objects contained in the imported module object is searched for a match against the name
of the import. If such an OpName object is found, this object is modi�ed as well in order to
establish a context-sensitive edge DeclaredIn. This transaction mechanism cannot be used if
the database representation of the abstract syntax graph takes the form of some coarse-grained
objects (such as �les) from which the abstract syntax graph is loaded and into which it is
stored. Then a lot of objects will be accessed unnecessarily. The result are many unnecessary
concurrency control con
icts.
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5.3 A Communication Server for Message Passing between Developers

Developers expect messages they sent to other developers that work in parallel to be deliv-
ered immediately. Only then can Groupie's negotiation mechanism work as a communication
facility to support developer dialogues. Moreover, a document change (e.g. due to a change
propagation) must immediately be displayed in every Groupie session that has opened the
document, even if it is running on a di�erent workstation. Otherwise, developers could get
confused when their displays show document states di�erent from those in the database (They
may for instance not understand why they can not perform a particular import, although
their display shows the export). To address this, only storing messages in a database and
polling for them is inappropriate, because it is too ine�cient. Instead an active component is
required that handles inter-tool communication. The Groupie architecture therefore contains
a communication server which is used for sending messages between parallel Groupie sessions.

Groupie needs to have four kinds of messages sent:

1. developer initiated change requests,

2. developer initiated negotiations with all users of a type or operation,

3. developer initiated con�rmation to or objection against a requested change and

4. automatically generated messages about changed exports to all users of the exports,
which also updates the users display if the respective document is opened.

The addressees of these messages have to be determined according to the current state of the
abstract syntax graph. Messages may have to be stored persistently, if developers are not
logged in. For developers who are working in parallel, their messages may have to be routed
to other workstations in the network.

We have implemented these requirements by running the message server as a database session.
When doing so, we manage to

� �nd the addressee of a message and

� store messages persistently if the addressees are not working.

As soon as a tool requests a message to be delivered to a developer, the server looks up the
responsible for the subsystem or module in the abstract syntax graph. Therefore the object
identi�er of the respective subsystem or module is passed as argument of the message. The
server then looks up in some internal tables whether the developer is currently working. If so,
it looks up the display address of the developer's display and communicates the message to
the Groupie session on that display. This, of course, requires that all Groupie sessions perform
a server login which informs the server about the developer's account and the display address.
If the developer is not working, the message server will store the message within the abstract
syntax graph and display it after the next login.

For the implementation of this communication server, we have decided not to use one of the
standard communication mechanisms such as the HP Broadcast Message Server [Cag90], DEC
Fuse or Sun Tool-Talk since they do not support persistent storage of messages. In addition,
the HP Broadcast Message Server and DEC Fuse cannot pass messages to remote displays.
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6 Current and Further Work

The language as proposed here is currently improved by introducing the concepts of inheritance
and genericity. A �rst proposal has already been made by [B�93].

A multi-user version of Groupie called OPUS which does not yet include the message server
functionality and does not yet support the explicit de�nition of access rights (but enables
concurrent development of subsystems) has been commercialized by two local software houses
STZ and ProDV. Those companies which together have a sta� of about 100 people apply the C-
version of OPUS in their mainly technical oriented customer-speci�c software development and
in building and maintaining their software products which are a geographic information system
and a production planning and control system, both consisting of a few 100.000 lines of C-code.
In addition, OPUS is used in graduate and undergraduate software engineering courses at the
University of Dortmund serving a few hundred students each year and the University of Leiden
(NL). Several other universities have expressed interest in getting a licence. Finally, OPUS
is part of the Kernel/2R software factory [ADH+92] developed as a result of the EUREKA
project ESF (EUREKA Software Factory).

Current improvements of OPUS are the ongoing work of introducing the already available
Groupie features concerning access right speci�cation and message passing.

Current extensions of Groupie include the development of a version/con�guration manage-
ment system and the introduction of a possibility to make the Groupie process model more

exible. Currently, as explained above, the group model, i.e. the correspondence between
group (owners) and subsystems and the negotiation paths between group owners are prede-
�ned and basically hard-coded into Groupie. By making this process de�nition more explicit
by extending Groupie with a process de�nition language and a corresponding interpreter, the
so far rigorously �xed group model can easily be changed. For example, new roles, new re-
sponsibilities and other negotiation protocols could be de�ned. As a �rst step in this direction
Groupie has been integrated into our own process-centred environment called Merlin which
uses a rule-based speci�cation of software processes [JPSW94].

This is also a step in the direction of generalising the group-ware concepts in Groupie towards
applying them to concurrent development of arbitrary documents which are highly dependent
of each other. In particular, the negotiation and con
ict resolution concepts and the corre-
sponding implementation using an object database are independent from the speci�c languages
used.

Two more long-term development e�orts concern �rstly the introduction of a formal language
to specify the semantics of exported operations. The approach we intend to take is similar
to the speci�cation proposed for Inscape, i.e. the de�nition of logically di�erent types of pre-
and postconditions for the execution of each operation. Secondly, such a speci�cation will
serve as a basis to construct libraries of subsystems which can then be reused in di�erent
architecture descriptions as described in the Inscape paper. In fact, it is already possible right
now to store subsystems separately from a particular architecture description and to include
them as a reused subsystem into another architecture. As the speci�cation of those subsystems
is however yet only on the syntactical level of signatures of operations (as explained in this
paper), the retrieval mechanisms are not very sophisticated and will be improved on the basis
of formal pre-postcondition speci�cations.
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