Early Warning on a National Level – Project AMSEL

Martin Apel, Joachim Biskup, Ulrich Flegel, Michael Meier

tu

technische universität
dortmund

Computer Science Department
Chair VI, Information Systems and Security
Overview

• early warning systems
• project overview
• architecture
• challenges and technologies
 ★ efficient and effective classification and detection
 ★ enablement of required cooperation
• summary
Early Warning Systems [1]

- aim at
 - detecting yet unclassified but potentially harmful system behavior
 - based on preliminary indications
 - establish hypotheses, predictions and advices in not yet completely understood situations
 - include two meanings of „early“
 - “fast”: start early in time in order to avoid/minimize damage
 - “incomplete”: process uncertain and incomplete information

Project AMSEL - Goals

• development of an EWS for automatic
 • privacy and confidentiality preserving
 • detection
 ▪ of known and unknown
 ▪ automatized attacks (malware)
 • reporting of
 ▪ incidents
 • integration into a situation picture

Automatisch Malware Sammeln und Erkennen Lernen
automatically collect and learn to detect malware
Approach

- coupling of technologies in an automatized process
 - sub-process detection
 - honeypot technology
 - malware collection
 - malware analysis technology
 - controlled execution and observation of malware
 - machine learning
 - generation of detection criteria (signatures)
 - sub-process reporting
 - central provision of detection criteria
 - update of detection systems
 - central reporting of detected incidents
Idea of a Malware EWS

- automatically
 - collect malware
 - analyze malware
 - generate signatures
 - distribute and deploy signatures
 - report alerts centrally

⇒ combination of misuse detection and anomaly detection techniques
 - provide specific alerts with low false positive rates
 - detect a priori unknown attacks
Architecture

- Threat repository
- Alert repository
- Emergency response team
- Situation picture
- Malware collector
- Malware database
- Malware analysis
- Signature generator
- Intrusion detection system
- Malware detection system
- Detecting and alerting (DA) box
- Collecting and learning (CL) box

Flow:
- Malware
- Signatures
- Alerts
• protection level achieved and quality of situation picture depend on number and placement of deployed CL and DA boxes

⇒ cooperative information exchange required
Challenges and Technologies

- efficient and effective classification and detection
 - malware collection
 - malware analysis
 - signature generation
 - malware detection
- enablement of required cooperation
 - balance/resolve conflicting interests
Malware Collector

- collecting new malware as early as possible
- Nepenthes and Amun
 - low-interaction server honeypots
 - emulate vulnerabilities
 - catches/collects malware binaries
 - typically downloaded after initial compromise
- possible extensions
 - honey clients
 - collecting drive-by-downloaded files
 - spam traps
 - collecting attached files or targets of URLs
Malware Analysis

- inspecting and extracting appropriate features characterizing and distinguishing malware and benign programs
- static analysis
 - static features: directly extracted from malware samples
 - byte sequences of code or data segments
 - control flow graphs extracted by disassemblers
 - morphing/obfuscation techniques and tools
 - generate programs of equal/similar functionality but different static feature instantiations
 - 30,000 new unique (wrt. static features) malware samples a day
 - polymorphic variants of a few malware types
 - would require to handle 30,000 new signatures a day
Malware Analysis

- **dynamic analysis**
 - **dynamic features:** behavior observed during execution
 - e.g. trace of systems calls
 - **logic bombs**
 - difficult to trigger the malicious execution path during analysis

⇒ dynamic analysis more promising for malware analysis and detection

- **CWSandbox** is used as dynamic analysis system
 - execution in a controlled and monitored environment
 - behavior report: chronologically ordered list of system calls performed by the program during analysis
1. group similar malware behavior reports
 - (get the few malware types of the 30,000 malware samples a day)
 - clustering of behavior reports
2. create a signature for each group
 - incorporates behavior reports of known benign programs (good pool) to avoid false positives
Clustering

- requires a distance/similarity metric for program behavior reports
 - candidates, e.g.
 - edit distance
 - normalized compression distance
 - Manhattan distance (n-gram vectorization)
 - based on experimental evaluation [1] we chose Manhattan
- hierarchical clustering algorithms, e.g., single-link, complete-link, WPGMA, UPGMA, fuzzy clustering
 - currently under investigation: complete-link

Signature Generation

• given a cluster C determine sequences of system calls
 • that are shared among all behavior reports of cluster C
 • but are absent in behavior reports of the good pool

• determine shared substrings using Ukkonen's algorithm
• create a signature that matches, if all shared substrings occurred
Malware Detection System

• integration of existing behavior detection systems requires compatible feature domains
 - features extracted using CW Sandbox and used for signature generation and features observed/monitored by the detection system need to be compatible
 - signature transformations need to be realized

• new detection systems are developed
 - based jSAM – Java Signature Analysis Module
 ▪ optimized multi-step-signature matching engine
 ▪ expressive signature language EDL (Event Description Language)
 ▪ full support of the behavior features used by EWS supplied signatures
Deployment Scenario

- information exchange
 - private and confidential information
 - allows outsiders (competitors, customers) insights into security incidents
Cooperation Enablement

- consideration of conflicting confidentiality and availability interests of participating and involved parities
- resolution of conflicts by use of information reductions, e.g. pseudonymization
- detailed study of
 - flow of information inside the EWS
 - participating and involved parties and their interest wrt. to particular information
- two classes of EWS functionality
 - **analysis**: requires linkability of information
 - are two ip addresses equal?
 - **reaction**: requires disclosure of original information
 - block this ip address
Information Flow

domain A
collecting and learning box

threat repository

exploitation
malware download
attack
data dropping

domain B
detecting and alerting box

alert repository

situation picture

victim systems (VS)
malware host system (MHS)

malware distribution system (MDS)

malware target system (MTS)

malware drop zone (MDZ)

malware download
attack
data dropping

exploitation
malware download
attack
data dropping
Exchanged Information

- timestamp
- alert signature name
- sending endpoint of MHS
- receiving endpoint of MTS
- download endpoint of MDS
- receiving endpoint of MDZ
- vulnerability module name
- receiving endpoint of CL box
- observing endpoint of DA box
- malware exploit payload
- malware sample payload

personal data of victim systems
Participating and Involved Parties

- collecting and learning box
- detecting and learning box
- threat repository
- alert repository
- victim systems
 - malware host system
 - malware distribution system
 - malware target system
 - malware drop zone
Conflicting Interests (Examples)

- **victim systems**
 - want to keep their endpoints confidential

- **collecting and learning boxes**
 - want to keep their existence confidential

- **threat repository**
 - needs to disclose endpoints of MDZ and MDS for blacklisting sites involved in an malware outbreak

- **alert repository**
 - need to link all data to create a situation picture

⇒ defining a suitable balance between conflicting interests
 - in some cases a given interest is only supported for repositories and not for box owners
 - confidentiality interest of VS is only partially supported – box and repository owners can link and disclose information in most cases

⇒ pseudonymization techniques are used for tailoring linkable or disclosable pseudonyms
Summary

- architecture of an automatic EWS
- existing approaches are used for malware collection and analysis
- focus of our ongoing research
 - clustering of malware behavior
 - generating behavior signatures
 - balancing conflicting availability and confidentiality requirements
Thank You!
Optimization

- clustering and signature generation are time-consuming
- for each new malware behavior
 - check if existing signature matches
 - if no signature matches
 - determine cluster closest to the new behavior
 - add new behavior to closest cluster
 - generate new signature for this cluster
- complete re-clustering is performed periodically