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The Symbol Associated with the Solution of a
Stochastic Differential Equation

RENE L. SCHILLING* and ALEXANDER SCHNURR™*

Abstract

Let (Z:)i=0 be an R™-valued Lévy process. We consider stochastic differential
equations of the form

dX? = ®(XT)dZ,
X =2, zcRY

where @ : R? — R*" is Lipschitz continuous. We show that the infinitesimal
generator of the solution process (X} );>0 is a pseudo-differential operator whose
symbol p : R? x R — C can be calculated by

lim [ ei(Xf—{E)Tg —1
p(z,) = —lmE” | ———— .

For a large class of Feller processes many properties of the sample paths can be
derived by analysing the symbol. It turns out that the process (X7);>o is a Feller
process if ® is bounded and that the symbol is of the form p(z,£) = ¥(®(2)¢),
where 1) is the characteristic exponent of the driving Lévy process.

MSC 2010: 60J75; 47G30; 60H20; 60J25; 60G51; 60G17.

1 Introduction

Within the last ten years a rich theory concerning the relationship between Feller pro-
cesses and their so called symbols which appear in the Fourier representation of their
generator has been developed, see for example the monographs [15, 16, 17| by Jacob or
the fundamental contributions by Hoh [9, 10, 11] and Kafmann [20]; see also |5] and |14]
for a survey. In this paper we establish a stochastic formula to calculate the symbol of
a class of Markov processes which we then apply to the solutions of certain stochastic
differential equations (SDEs). If the coefficient of the SDE is bounded, the solution turns
out to be a Feller process. As there are different conventions in defining this class of
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processes in the literature, let us first fix some terminology: consider a time homoge-
neous Markov process (2, F, (F)i=0, (X1)i=0, P?),ere With state space RY; we will always
assume that the process is normal, i.e. P*(Xy = x) = 1. As usual, we can associate with
a Markov process a semigroup (7})so of operators on By(R?) by setting

Tou(z) = B*u(X,), t>0, xR

Denote by Cw, = Coo (R4, R) the space of all functions u : R* — R which are continuous
and vanish at infinity, limg. u(z) = 0; then (Cw, ||||,) is a Banach space and T; is for
every t a contractive, positivity preserving and sub-Markovian operator on Bj(R9). We
call (T})i=0 a Feller semigroup and (X;);>0 a Feller process if the following conditions are
satisfied:

(F1) T} : Cx = Cx for every t > 0,
(F2) limyo ||Tiu — u||, = 0 for every u € C.
The generator (A, D(A)) is the closed operator given by

Tiu—u

Au = lim for uwe D(A) (1)

t10

where the domain D(A) consists of all v € C for which the limit (1) exists uniformly.
Often we have to assume that D(A) contains sufficiently many functions. This is, for
example the case, if

C= c D(A). (R)

A classical result due to Ph. Courrége |7] shows that, if (R) is fulfilled, A|ce is a pseudo
differential operator with symbol —p(z,§), i.e. A can be written as

Aule) = = [ @ oae)d ueCs )

where 4(€) = (21)~? [ e €u(y)dy denotes the Fourier transform and p : R? x R¢ — C
is locally bounded and, for fixed x, a continuous negative definite function in the sense of
Schoenberg in the co-variable £. This means it admits a Lévy-Khintchine representation

bl €)= —it@e + 30— [ (7 1Ty Ten) M) (3

where for each z € R? ({(z), Q(z), N(x,dy)) is a Lévy triplet, i.e. £(z) = (£9)(z))1<j<q €
RY, Q(x) = (¢""(x))1<jx<a is a symmetric positive semidefinite matrix and N(z,dy) is a
measure on R¢\ {0} such that fyﬂ](l Alyl?) N(x,dy) < co. The function p(z, ) is called
the symbol of the operator. For details we refer to the treatise by Jacob |15, 16, 17|.

Combining (2) and (3) the generator A of a Feller process satisfying condition (R)
can be written in the following way

1 &
Au(z) = 0(z) Vu(z) + 5 > M (@)000u()

]7k:1

[t~ ue) )TV ) NGy
y7#0



for u € C°(R?). This is called the integro-differential form of the operator.

An important subclass of Feller processes are Lévy processes. These are processes
which have stationary and independent increments and which are stochastically contin-
uous. For Lévy processes (Z;);>o it is well known that the characteristic function can be
written in the following way

E: <ez’(Zt—z)T€> _ [0 (ez‘ZJ s) NG

where ¢ : R? — C is a continuous negative definite function, i.e. it has a Lévy-Khintchine
representation where the Lévy triplet (¢,Q, N) does not depend on z.

This is closely connected to the following result. Every Lévy process (Z;);>o with
Lévy triplet (¢,Q, N) has the following Lévy-1t6 decomposition

Zy =t + W, +/ y (0?(ds,dy) — ds N(dy)) + Z AZ A az>11  (4)

[0,¢] x{|y[<1} 0<s<t

where £ € R?, ¥ is the unique positive semidefinite square root of Q@ € R¥¢, (W,);s0 is
a standard Brownian motion, and p? is the Poisson point measure given by the jumps
of Z whose intensity measure is the Lévy measure N. The second and third terms
appearing in (4) are martingales, while the other two terms are of finite variation on
compacts. Therefore every Lévy process is a semimartingale. Note that all four terms
are independent.

The generator of a Lévy process is given by

Aufz) = - /R ETS(EAE) d, we O, (5)

i.e. Lévy processes are exactly those Feller processes whose generator has ‘constant coef-
ficients’.

Every Lévy process has a symbol (that is: a characteristic exponent) ¢; on the other
hand, every ¢ and every Lévy triplet (¢, Q, N) defines a Lévy process. For Feller processes
the situation is different: every Feller process satisfying (R) admits a symbol, but it is
not known if every symbol of the form (3) yields a process. See |14, 17| for a survey. On
the other hand it is known that the symbol p(x, &) can be used to derive many properties
of the associated process X.

In this paper we prove a probabilistic formula for the symbol. We use this formula to
calculate the symbol of the solution of a Lévy driven SDE. Let us give a brief outline how
the paper is organized: in Section 2 we introduce the symbol of a Markov process. It turns
out that the symbol which is defined in a probabilistic way coincides with the analytic (in
the sense of pseudo-differential operators) symbol for the class of Feller processes which
satisfy (R). The main result of the paper can be found in Section 3, where we calculate the
symbol of a Feller process, which is given as the strong solution of a stochastic differential
equation. In Section 4 we consider some extensions; these comprise, in particular, the
case

dX* =®(X*)dZ, +V(X")dt, X§ ==z,

which is often used in applications. We close by using the symbol of the process X* to
investigate some of its path properties.



2 The Symbol of a Markov Process

Definition 2.1. Let X be an R?valued Markov process, which is conservative and nor-
mal. Fix a starting point  and define 0 = 0% to be the first exit time from the ball of
radius R > 0:

o=op=inf{t>0: X} —z| > R}.

The function p : R? x R? — C given by

X —a)TE
p(z,§&) == —lim E” <u> (6)

tl0 t

is called the symbol of the process, if the limit exists for every z, ¢ € R? independently of
the choice of R > 0.

Remark 2.2. (a) In [30] the following is shown even for the larger class of [td processes
in the sense of [6]: fix z € RY if the limit (6) exists for one R, then it exists for every R
and the limit is independent of R.

(b) For fixed x the function p(z,£) is negative definite as a function of {. This can
be shown as follows: for every ¢t > 0 the function ¢ — E®e!X? ~2)"¢ ig the characteristic
function of the random variable X7 — x. Therefore it is a continuous positive definite
function. By Corollary 3.6.10 of [15] we conclude that & — —(E%eX =078 _ 1) is a
continuous negative definite function. Since the negative definite functions are a cone
which is closed under pointwise limits, (6) shows that £ — p(z,&) is negative definite.
Note, however, that £ — p(z,£) is not necessarily continuous.

If X is a Feller process satisfying (R) the symbol p(z, £) is exactly the negative definite
symbol which appears in the pseudo differential representation of its generator (2). A
posteriori this justifies the name.

We need three technical lemmas. The first one is known as Dynkin’s formula. It
follows from the well known fact that

MM = w(X,) — u(z) — /0 t Au(X,) ds

is a martingale for every u € D(A) with respect to every P* x € RY, see e.g. |25]
Proposition VII.1.6.

Lemma 2.3. Let X be a Feller process and o a stopping time. Then we have
oAt
e / Au(X,) ds = E=u(X, ) — u(x) (7)
0

for allt >0 and u € D(A).

Lemma 2.4. Let YV be an R-valued process, starting a.s. in y, which is right continuous
at zero and bounded. Then we have

1 t
zE/ Ysydsu—%y.
0



Proof. 1t is easy to see that

1 t
E (—/ O?—Yoy)ds) <FE (sup my—Yé’\)-
t Jo 0<s<t

The result follows from the bounded convergence theorem. O

Lemma 2.5. Let K C RY be a compact set. Let x : R? — R be a smooth cut-off function,
i.e. x € C(R?) with
Lg,0)(y) < x(y) < Lpy0)(y)
fory € R Furthermore we define x%(y) := x((y — 2)/n) and u®(y) := x%(y)e® €. Then
we have for all z € K
|ui (2 +y) = ui(2) =y V() g0 (v)] < C- (JyI* A1) .

Proof. Fix a compact set K C R%. An application of Taylor’s formula shows that there
exists a constant Cxg > 0 such that

|uf (2 +y) = ul(2) =y Vun(2) s, 0 (v)| < Ck (WP A1) D ([0
|| <2
uniformly for all z € K. By the particular choice of the sequence (x*),en and Leibniz’ rule
we obtain that 3, [[0%uf]l, < 32 4 <2 109Xl (1 4 [€]?), i-e. it is uniformly bounded

il

for all n € IN. O

Theorem 2.6. Let X = (X;)1>0 be a conservative Feller process satisfying condition (R).
Then the generator Alce is a pseudo-differential operator with symbol —p(x,§), cf. (2).
Let

o:=o0p:=inf{s > 0: || X; —z| > R}. (8)
If x — p(x,&) is continuous, then we have

i(X7-x)TE _q

t

i.e. the symbol of the process exists and coincides with the symbol of the generator.

The assumption that x — p(z,£) is continuous is not a severe restriction. All non-
pathological known examples of Feller processes satisfy this condition. It is always ful-
filled, if X has only bounded jumps, cf. the discussion in [5].

Proof of Theorem 2.6. Let (x*)new be the sequence of cut-off functions of Lemma 2.5
and we write eg(x) = eir'€ for r,& € R% By the bounded convergence theorem and
Dynkin’s formula (7) we see

E* <fzi(‘>{ta_“"3)T£ - 1) = lim (E"x5(X7)ee( X7 )e_¢(z) — 1)

n—oo

= c-ela) Jim B (X (X7)ec(X7) = xi(w)ee(x)

oAt
— ¢ ¢(x) lim B / A("ee)(X,) ds
0

n—oo

n—oo

—eoela) lim B [ e (X, ds.



The last equality follows since we are integrating with respect to Lebesgue measure and
since a cadlag process has a.s. a countable number of jumps. Using Lemma 2.5 and the
integro-differential representation of the generator A it is not hard to see that for all

z € K := Bg(z)

d
Alnee) () < e <|f<z>| 43 2l + [

Jk=1 y70

(LA Y1) Nz, dy)) (1+1¢)

< dysup sup [p(z, §)|;
zeK |g]<1
the last estimate follows with (some modifications of) techniques from [28] which we will,
for the readers’ convenience, work out in the Appendix. Being the symbol of a Feller
process, p(z,§) is locally bounded. By definition of the stopping time o we know that
for all s < o At we have z = X,_ € Br(x) = K. Therefore, the integrand A(x%e¢)(X,-),
s < o At appearing in the above integral is bounded and we may use the dominated
convergence theorem to interchange limit and integration. This yields

n—oo

oAt
B (07T 1) — e [ lim A(Gee) () ds
0

oAt
e @B [ el O)lx.ds.
0
The second equality follows from [7] Sections 3.3 and 3.4. Therefore,

10 (ez’(Xf—m)Ts _ 1)

: : T 1 ! o o
im t — el (7 [ XX (o))
) 1 /!
— el i (7 [ (XX2 Ot )
t}0 tJo

since we are integrating with respect to Lebesgue measure. The process X7 is bounded
on the stochastic interval [0, and x +— p(z,€) is continuous for every £ € R%. Thus,
Lemma 2.4 is applicable and gives

Ee <ei(X£’—:v)T£ _ 1)
lim
tl0 t

= —e_g(x)eg(x)p(x,ﬁ) = —p(flf,g). u

Theorem 2.6 extends an earlier result from [27] where additional assumptions are
needed for p(z,£). An extension to It6 processes is contained in [30].

3 Calculating the Symbol

Let Z = (Z;)i=0 be an n-dimensional Lévy process starting at zero with symbol ¢ and
consider the following SDE

4X7 = B(X) dZ, (9)
Xg=2x



where ® : RY — R%™ is locally Lipschitz continuous and satisfies the following linear
growth condition: there exists a K > 0 such that for every x € R?

[@(2)]* < K(1+ |2]). (10)

Since Z takes values in R™ and the solution X* is R%valued, (9) is a shorthand for the
system of stochastic integral equations

xXo0) — 40) 4 Z / (I)(X_)jk dZ(k), 7=1,....d.
k=1

A minor technical difficulty arises if one takes the starting point into account and if
all processes X* should be defined on the same probability space. The original space
(Q,F, (Ft)t=0, P) where the driving Lévy process is defined is, in general, too small as a
source of randomness for the solution processes. We overcome this problem by enlarging
the underlying stochastic basis as in [24], Section 5.6:

O:=R*xQ, P*:=¢, xP, zeRY
@::Bd@)fft i::ﬂ?g
u>t

where ¢, denotes the Dirac measure in x. A random variable Z defined on €2 is considered
to be extended automatically to Q by Z(@) = Z(w), for @ = (z,w).

It is well known that under the local Lipschitz and linear growth conditions imposed
above, there exists a unique conservative solution of the SDE (9), see e.g. [22] Theorem
34.7 and Corollary 35.3.

Theorem 3.1. The unique strong solution of the SDE (9) X[ (w) has the symbol p :
R? x R? — C given by

p(a,€) = (@' (x)€)
where ® is the coefficient of the SDE and 1) the symbol of the driving Lévy process.
Proof. To keep notation simple, we give only the proof for d = n = 1. The multi-
dimensional version is proved along the same lines, the only complication being notational;

a detailed account is given in [30]. Let o be the stopping time given by (8). Fix z,¢ € R.
We apply Itd’s formula for jump processes to the function eg(- — x) = exp(i(- — )§&):

1o e
_E* (ez(Xt —z)§ _ 1)
t
1 e eixe e L (" 2 itxe e
= ([ raxs g [t raxn

0<s<t



For the first term we get
1 ! :
_Er/ (igez(X;l—w)ﬁ) dxe
t 0+
(i€ 'X3-7"8) g ( /0 (X, )pop(,7) er)
(z{e @(XS_)]I[[OJE(-,S)) dZS
(256 RD( X, )0 ( s)) d(ls) (12)

),
e /
t 0+
e /
0+
1

+ 0<r<s

+ n /0 (256 <I>(XS_)]1[[O7U]](-, s)) d ( Z AZT]I{AZT>1}> (13)

where we have used the Lévy-Itd6 decomposition (4). Since the integrand is bounded, the
martingale terms of (4) yield martingales whose expected value is zero.

First we deal with (13) containing the big jumps. Adding this integral to the third
expression on the right-hand side of (11) we obtain

1 T (X9 —x 7 _ X .
7 E Z (6’ (K5 —=)e (6’ PH-)AZE ] — chb(Xs—)AZs]lﬂAXSKl}) ]l[[O,cr]]('a 5))
0<s<t
1 x
= ;E / Hx,{(';s_>y):uX(';ds>dy)
J0,¢]xR\{0}

1
— B [ Hlslidsdy
t 10,6 xR\ {0}

t]0 i (x .
— / (e —1 — i@ (2)yLyy<ry) N(dy)
R\{0}
where we have used Lemma 2.4 and the shorthand

fo(w; S, y) = €i(Xg(w)_x)€ (6i<1>(Xs(w))y§ -1 igcb(Xs(W))y]lﬂyKl}) ]l[[oﬁﬂ (w, S).

The calculation above uses some well known results about integration with respect to
integer valued random measures, see [12| Section I1.3, which allow us to integrate ‘under
the expectation” with respect to the compensating measure v(-;ds,dy) instead of the
random measure itself. In the case of a Lévy process the compensator is of the form
v(-;ds,dy) = N(dy)ds, see [12] Example I1.4.2.

For the drift part (12) we obtain

1 t
p /0 (zg el §<I>(Xs_)]l[[07(,]](-,s)€) ds

+

t
—igr B / (DX L (- 5)) s 2% il (a)
0

where we have used Lemma 2.4 in a similar way as in the proof of Theorem 2.6.



We can deal with the second expression on the right-hand side of (11) in a similar
way, once we have worked out the square bracket of the process.

(X7, X5 = (X X)) = ([fo ®(X)dZ,, [y ®(X,)dZ:];)

:/\mxkﬁmwﬂ»$ﬂZZE

= /0 (I)(Xs_)z]]-[[o,aﬂ('? 5) d(QS>

Now we can calculate the limit for the second term

1 t
= Em/ ( 26 W(Xg_ )§> d[Xo’Xo]z
2t 0+

1 t oo s
= % E* /0+ (_52 eZ(XS,—:c)é) d (/0 (¢(XT_))2]1|IO,U}](.7T)Q dr)

1 11t oz
— _5 62@ ]EZ‘ <¥/0 (e'l(Xs )€¢(X8)2]l|1070_[[(.’5)) ds)
0 1
= 5 £Q ().
In the end we obtain

P, €) = —il(®(2)€) + ~(B(2)E)Q(@(2)€)

2
= [ (O 1= @)y Lien () Nidy)
y#0
= P(@(2)¢).
Note that in the multi-dimensional case the matrix ®(z) has to be transposed, i.e. the
symbol of the solution is 1 (®'(x)&). O

Theorem 3.1 shows that it is possible to calculate the symbol, even if we do not know
whether the solution process is a Feller process. However, most of the interesting results
concerning the symbol of a process are restricted to Feller processes. Therefore it is
interesting to have conditions guaranteeing that the solution of (9) is a Feller process.

Theorem 3.2. Let Z be a d-dimensional Lévy processes such that Zo = 0. Then the
solution of (9) is a strong Markov process under each P*. Furthermore the solution
process is time homogeneous and the transition semigroups coincide for every P*, x € R,

Proof. See Protter |24] Theorem V.32 and [23] Theorem (5.3). Note that Protter states
the theorem only for the special case where the components of the process are indepen-
dent. However the independence is not used in the proof. O

Some lengthy calculations lead from Theorem 3.2 directly to the following result which
can be found in [1] Theorem 6.7.2 and, with an alternative proof, in [30] Theorem 2.49.

Corollary 3.3. If the coefficient ® is bounded, the solution process X of the SDE given
by (9) is a Feller process.



Remark 3.4. In |30] it is shown that if ® is not bounded the solution of (9) may fail to
be a Feller process. Consider the stochastic integral equation

t
Xt:x—/ Xs— dNj;
0

where N = (Ny)0 is a standard Poisson process. The solution process starts in z,
stays there for an exponentially distributed waiting time (which is independent of x)
and then jumps to zero, where it remains forever. There exists a time ty > 0 for which
P*( Xy, = ) = P*(X;, = 0) = 1/2. For a function u € C.(R) with the property u(0) =1
we obtain )

E*(u(Xy,)) = 3 for every = ¢ suppu.

Therefore T},u does not vanish at infinity.
Next we show that the solution of the SDE satisfies condition (R) if @ is bounded.

Theorem 3.5. Let ® be bounded and locally Lipschitz continuous. In this case the solu-
tion X of the SDE

t
X, =z +/ ®(X,_)dZ,, xeR%
0
fulfills condition (R), i.e. the test functions are contained in the domain D(A) of the
generator A.

Proof. Again we only give the proof in dimension one. The multi-dimensional version is
similar. Let u € C2°(R). By Ito’s formula we get

_ Eru(Xy) — u(x)
t
— JE(u(X,) - u(a)

Dt:

1 t 1 [t
— —]Em</ u' (X, )dX, + —/ u” (X, )d[X, X]¢
t 0 2 0

+ +

+ Z (u(Xs) —u(Xs-) — u’(Xs_)AXS)),

0<s<t

Since X; = x + fot O(X,_)dZs we obtain
t

Dt == } Em(/0+ U/(Xs—)q)(Xs—) dZs + % /0+ u//(XS—>(I)(XS—)2 d[Z’ Z]g

t
] (00X + @) = u0Xer) = o (X B )

where ;12 is the random measure given by the jumps of the Lévy process Z. Next we use
the Lévy-Itdo decomposition Z in the first term. The expected value of the integral with
respect to the martingale part of Z is zero, since the integral

/Ot u'(X,_)®(X,_)d <2Wt +/[07ﬂx{y<l}y (1”(ds, dy) — dsN(dy)))

10



is an L?*-martingale. Therefore we obtain

1 t
D, = ;]E””/ W (X, ) (X, ) d <£t+ > AZﬂlﬂAZ@l})
0

+ 0<r<s

+%%Ex/0 U (Xoo) B(X,-) d(S75)

/7&0/ u (X + (X )y) — (Xs—)—u/(Xs_)CD(XS_)y)MZ(.;ds’dy).

We write the jump part of the first term as an integral with respect to y? and add it to
the third term. The integrand

H(-;s,y) = U(Xs— + (I)(Xs—)y> —u(Xs-) — u/(Xs—)q)(Xs—>y]l{|y\<1}

is in the class Fp1 of Tkeda and Watanabe, [12] Section I1.3, i.e. it is predictable and

([ [lttsnon siny) <o

where v denotes the compensator of uX. Indeed, the measurability criterion is fulfilled
because of the left-continuity of H(-;s, ), the integrability follows from

|u (X + P(Xe)y) — u(Xo) — v/ (Xon) (X )y Lyjyi<ny |
< Hu(Xom + @(Xon)y) —u(Xom) = o' (X)X )y} Liyiany] + 2 lull o Lyisny

1
<35Y 2O(X,0 ) | Dgyi<y + 2 [Jull o L1y
< @VI@2) (v* A1) (lully + ]l

where we used a Taylor expansion for the first term. Therefore H € Fp1 and we can,
‘under the expectation’, integrate with respect to the compensator of the random measure
instead of the measure itself, see [12| Section I1.3. Thus,

1 ¢ !
Dt:ﬂaw / WX s + B [ )e(x s ds
0+

/7&0 / u(Xy- + B(X,-)y) — u(X,-) — o/ (Xe ) (X )yl yicry) ds N(dy):

Since we are integrating with respect to Lebesgue measure and since the paths of a cadlag
process have only countably many jumps we get

t t
D, = %]E/ ' (X,)®(X,)lds + 21t E””/ "(X)B(X,)2* ds
0

/ /ﬂ w(Xs + B(X,)y) — u(Xs) — o (X)X )yl 1)) N(dy) ds.

11



The change of the order of integration is again justified by the estimate of |H|. By Lemma
2.4 we see that
Efu(X;) — u(x) o

t B 0 () (z) + %2%'/(9;)@(95)2

[ (ulo+ B)y) — ula) - @By - L)) N(dy).
y#0

As a function of x, the limit is continuous and vanishes at infinity. Therefore the test
functions are contained in the domain, cf. Sato [26] Lemma 31.7. O

Remark 3.6. In the one-dimensional case the following weaker condition is sufficient to
guarantee that the test functions are contained in the domain of the solution. Let ® be
locally Lipschitz continuous satisfying (10) and assume that

T sup

——— c O (R). 14
Ao T + AP(x) (®) (1)

The products ©/® and u”® are bounded for every continuous ®, because u has compact
support. The only other step in the proof of Theorem 3.5 which requires the boundedness
of ® is the estimate of |H| in order to get H € F,.

However, (14) implies that for every r > 0 there exists some R > 0 such that

|z + AP(z)| >r forall |z|> R, A €]0,1]. (15)
Therefore, see the proof of Theorem 3.5, we can use Taylor’s formula to get

|H (32, y) L y<y = {u(Xoem + ©(Xon)y) — u(Xoo) — o/ (X)) (Xom )y} Liyi<ny ]
1

< [0 (X) W (X + 9y @(Xe) ey

for some ¢ €]0,1[. Set A\ := ¢ -y and pick r such that suppu” C B,.(0); then (15) shows
that ®(X,_)?u" (X, + Jy®(X,_)) is bounded.

Combining our results, we obtain the following existence result for Feller processes.

Corollary 3.7. For every negative definite symbol having the following structure

plw,&) = (@ ()€)

where 1 : R® — C is a continuous negative definite function and ® : R? — R™" is
bounded and Lipschitz continuous, there exists a unique Feller process X*. The domain
D(A) of the infinitesimal generator A contains the test functions C* = C®°(R"™) and
Alcee is a pseudo-differential operator with symbol —p(z,&).

We close this section by mentioning that in a certain sense our investigations of the
SDE (9) cannot be generalized. For this we cite the following theorem by Jacod and
Protter [19] which is a converse to our above considerations.

Theorem 3.8. Let (2, F, (F;)i=0, P) be a filtered probability space with a semimartingale
Z. Let f € B(R) such that f is never zero and is such that for every x € R the equation
(9) has a unique (strong) solution X*. If each of the processes X* is a time homogeneous
Markov process with the same transition semigroup then Z is a Lévy process.

12



4 Examples

In the case d = 1 we obtain results for various processes which are used most often in
applications:

Corollary 4.1. Let Z',..., Z™ be independent Lévy processes with symbols (i.e. char-
acteristic exponents) vy, ..., 1, and let ®*,... ®" be bounded and Lipschitz continuous
functions on R. Then the SDE

dX] = o (X[ )dZ! + -+ O"(X}) dZ]

16
Xy == (16)

has a unique solution X* which is a Feller process and admits the symbol
p(w, ) =Y v(@(2)§), = E€R.
j=1

Proof. This follows directly from the multi-dimensional case of Theorem 3.1 if one writes
the SDE (9) in the form

Z}
dX; = (®',...,")(X,)d]| :
Z¢
Xy = O

Ezxample 4.2 (Lévy plus Lebesgue). Let @, ¥ : R — R be bounded and Lipschitz contin-
uous and (Z;);>o be a one-dimensional Lévy process with symbol . The unique solution
process X” of the SDE
dX] =o(X})dZ, + V(X[ )dt
Xy ==
has the symbol p(z,£) = ¥(P(x)§) — i(V(x)E). Note that the driving processes d X7 and
dt are independent since the latter is deterministic.

Ezample 4.3 (Wiener plus Lebesgue). Let &, ¥ : R — R be bounded and Lipschitz
continuous and (W;);>o be a one-dimensional Brownian motion. The unique solution
process X* of the SDE

(17)

dX? = B(XZ ) dW, + U(X2 ) dt
Xy ==
has the symbol p(z, &) = |®(2)|* |€]* — i U(z)E.

(18)

Ezample 4.4 (Symmetric a-stable). Let (Z])i=0, j = 1,...,n, be independent symmetric
one-dimensional aj-stable Lévy processes, i.e. the characteristic exponents are of the form
P(€) = €] with a; € (0,2], and let ®; : R — R be bounded and Lipschitz continuous.
The unique solution process X7 of the SDE
dX} = &(X}P)dZ} + -+ ®,(X] ) dZ)
Xy ==

has the symbol p(z,&) = >0, [®;(x)[* - €Y.

(19)
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5 Some Applications

Using the symbol of a Feller Process it is possible to introduce so-called indices which
are generalizations of the Blumenthal-Getoor index /3 for a Lévy process, see e.g. [28, 14].
These indices can be used to obtain results about the global behaviour and the paths of
the process.

Remark 5.1. Tt is shown in [13] Lemma 5.2, see also Lemma 6.1 in the Appendix, that

2
y
1 ﬂ|L |Iyl2 - /]Rd\{o} (1= cos(y"p)) galp) dp
where
1 [~ 2
) = 5/ (2mA) "2 WP/ N2 gy e RO {0}, (20)
0

It is straightforward to see that fIRd\{O} Ip)” g(p) dp < oo for all j =0,1,2,...
Let p(z,€), z,& € RY, be the symbol of a Markov process. Set

H(r,R):= sup sup (/_OO Rep (y, %) 9(p) dp + )p (y %) D (21)

ly—z|<2R |e|<1 00

with the function g = ¢; from Remark 5.1. If the symbol satisfies the following sector-type
condition, |Imp(z, )| < ¢o - Rep(x, ), we set

h(z,R) := inf supRep <y, i) (22)

ly—z|<2R le|<1 4k R

where  := (4 arctan(1/2c)) ™"

Definition 5.2. Let p(z,&), ,€ € R be the symbol of a Markov process. Then

R—0

B .= inf {)\ >0 : limsup R*H(z, R) = 0}
is the generalized upper index at infinity. If | Imp(z,&)| < ¢ - Rep(z, ), then

Bo := sup {)\ >0 : limsup R* sup H(z, R) = O}

R—o0 z€R4
is the generalized upper index at zero.

In a similar fashion one can define lower versions of these indices using the function
h(z, R) and liminf which are useful for fine properties of the sample paths, cf. [28] for
details. Here we restrict our attention to 82 and ;. The next lemma helps to simplify
the Definition 5.2.

Lemma 5.3. H(z,R) < sup sup

ly—e|<2R [e<1

& d
p(y,R>’forallR>0andx€IR.
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Proof. The estimate H(z,R) > Supj,_,<or SUPjej<1 ‘p (y, %)‘ follows immediately from
(21). Since & — p(z, &) is negative definite, the square root is subadditive, cf. |3],

Vip(z, & +n)| < Vipx, )|+ /Ip(z,n)|

and we conclude that for all R, p > 0 and y € R?

S ‘p (y,p%)‘ < sg( M%%)‘ L) + \/‘p@’(p_ L'OJ)%)D

< 2 sup ‘p (y, E)‘ (1+4p).
le|<1 R

Since [7°_(1+ p)? g(p) dp < oo, the lemma follows. O

Ezample 5.4. (a) For a d-dimensional symmetric a-stable Lévy process the symbol is
given by p(z, &) = ¥(€) = [£]?, x,£ € RY. In this case 8% = a and [ = a.

(b) The symbol p(z, &) = [£]°®), z, ¢ € R, where a : R — [0, 2] is Lipschitz continuous
and satisfies 0 < o = inf a(x) < sup a(z) < @ < 2, corresponds to the so-called stable-like
Feller process, cf. [2]. In this case % = a(x) and [y = a.

Lemma 5.5. The only continuous negative definite function vanishing at infinity is con-
stantly zero.

Proof. Let ¢ be a continuous negative definite function which vanishes at infinity. For
every € > 0 there exists some R > 0 such that |[¢(£)] < £2/4 if |§] > R. For every
v € Bg(0) there exist two vectors £, € Bgr(0)¢ such that v = £ + 1. By the sub-
additivity of \/W we obtain

VIO = VIvE+m)l < V1) + ViIv] < e

which completes the proof. O

We can now simplify the calculation of the upper index. The assumptions of the
following proposition are trivially satisfied by any Feller process satisfying condition (R),
cf. [7].

Proposition 5.6. Let p(x,&) be a non-trivial (i.e. non-constant) symbol of a Markov
process which is locally bounded. The generalized upper index BZ, can be calculated in the
following way

1
3% = B(x) = limsup  sup log [p(y. m)|
Inl—oo  |y—z|<2/|n| log |n|

Proof. First we show that 3(x) € [0,2]. Fix x € R¢. For |n| > 1 we have only to consider
points y such that |y — x| < 2. The argument used in the proof of Lemma 5.3 can be
modified to prove that

p(y,m)| < h(y)- (L+1n?),  h(y) =4sup p(y, )]

l€I<1

15



Since p(y,n) is locally bounded, we see there exists a constant C' > 0 such that

log [p(y,n)| _ log(2C) + log n|* log(2C)
log || log |n] log |n|

The right-hand side tends to 2 as || — oo. This shows that () < 2. In order to see
that 5(z) > 0, we note that

. log [p(y,n)| S log \p(fﬁ,n)\‘
y—zl<2/ln|  1og|n] log ||

Because of Lemma 5.5 there exists a 6 > 0 such that for every R > 0 there is some £ with
|€| =2 R and |p(x, )| > 6. Therefore,

1 log ¢
oo log 7] nl—so0 10g [7]

and we conclude that 5(z) > 0.
In view of Lemma 5.3, 8% = B(z) follows, if we can show that

SUp|,— 5
lim sup p| y|<2/|§\| Ip(y, &)
€00 €]

according to A > §(x) or A < 5(x). Let h € R. Then

sup|x_T;‘;(;)+|f(yaf)| ~exp <log ( sup \p(y,§)|> — (B(x) + h)log \f\)

lz—y[<2/[¢]

—z|< l )
o (MR DI 50)) tog g — -l ).

Taking the limsup for || — oo of this expression, the inner bracket converges to zero
since B(x) € [0,2] as we have seen above. This means there exists some r = r;, > 0 such
that for every R > r

=0 or ©

(sup SUD|,,_ <2/l 108 [P(y, §)| B 6(55)) < g

€[>R log [¢]
Thus, if A > 0,
. sup r—y|<2 |p(ya §)| . —
lim sup | y‘<ﬁ{g|f)|+h < lim sup exp(log(|¢]™"?)) = 0;
¢l—o0 I3 j¢l—vo0
if h <0,
. SUP|, yj<a/jel Py, ) . -
lim sup i | B(f)trh > lim sup exp(log(|¢|™?)) = 0,
j¢l—>o00 I3 g0
which completes the proof. O
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Theorem 5.7. Let X be a solution process of the SDE (9) with d = n and where the
linear mapping & — ®'(y)¢ is bijective for every y € R, If the driving Lévy process has
the non-constant symbol ¢ and index BY,, then the solution X of the SDE has, for every
x € RY, the upper index 3%, = BY..

Proof. Fix x € R%. We use the characterization of the index from Proposition 5.6

1
B, =limsup sup M
nl—soo ly—al<2/lnl  10& 1]

>From Theorem 3.1 we know that p(x,&) = (®'(z)€). Therefore,

log [¢(®(y)n)| _ log [¥((y)n)| log|®T(x)n]
log |n] log [®T(z)n| log [n]

where the second factor is bounded from above and below, since the function  — ¢'(x)n
is bijective. Consequently,

5 —limsup  sup log [¢(2(y)n)|
oo y—al<2/im log|®T(x)n]

By Lemma 5.5 ¢ does not vanish at infinity. In particular there exists an ¢ > 0 and a
sequence (&, )nen such that |€,] — oo and [1(&,)| > ¢ for every n € IN. Since n — ®'(z)n
is linear and bijective there exists a sequence (1,)nen such that [¢(®7(z)n,)| > € for
every n € IN and |n,| — co. In order to calculate the upper limit it is, therefore, enough
to consider the set

{7] eR?: W(@T(x)n)} > 5}. (23)
We write
log |4(®(y)n)|

sup
y—al<2/ly| 1og | T(x)n)

SUD| <oy 108 [(@ (y)n) | = log [ (@ (x)n)|  log | (@ T(x)n)|
- log [®T(x)n| log [®(z)n|

Denoting the local Lipschitz constant of y — ®(y) in a neighbourhood of z by L, > 0,
we obtain for |y — x| < 2/ 7|

1D (y)n — @ T(x)n| < In| - |P(y) — ®(x)| < |n] - Lo |y — x] < 2L,

It follows that the numerator of the first term on the right-hand side of (24) is bounded
on the set (23) because the function y — log |y| is uniformly continuous on [, co[; for the
second term we obtain

1 ol 1
lim sup o8 W( - (:E)n)‘ = lim sup 08 1VAS )] 4 ()l = 5})@
= 108 [@T(z)n| elsoo logg]
since the function 1 — ¢'(z)n is bijective and linear. O
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Remark 5.8. In order to obtain 82 < ﬁffo in the case d < n it is sufficient to demand that
®(y) never vanishes.

We will first use this theorem to derive a result on the (strong) ~y-variation of the
process X.

Definition 5.9. If v €]0, 00[ and g is an R%valued function on the interval [a, b] then

VY (g;[a,b]) :=sup > _|g(t;) — g(t;—1)|

T =

where the supremum is taken over all partitions 7, = (a = tg < t; < ... < t, = b) of
la, b] is called the (strong) y-variation of g on [a, b].

Corollary 5.10. Let X* = (X[)i=0 be the solution of the SDE (9) where Z is a Lévy
process with characteristic exponent 1. Denote by B3 the generalized upper index of X.
Then

VI(X*[0,T]) < oo P®-a.s. for every T >0

if v > sup, B

Note that in the situation of Theorem 5.7 the index sup, 3% = % where 3% is the
upper index of the driving Lévy process.

Proof of Corollary 5.10. Since X is a strong Markov process we can use a criterion for
the finiteness of y-variations due to Manstavicius [21]. Consider for h € [0,7] and r > 0

alh,r) =sup {P*(|X; —z| >7r): 2 € RLO<t S (RAT)}

< sup sup P* (sup | Xs — 2| > r) )

t<h zeRd 0<s<t

Using Lemma 4.1 and Lemma 5.1 in [28] we obtain

e
]Px<sup |X5—x|>r)<0-t sup sup p(y,—)’
0<s<t ly—z|<2r |e|<1 r

where C' > 0 is independent of x and t. Hence,

e
a(h,r) <supsup C'-t sup sup |p (y, —)‘
t<h zeRd ly—z|<2r |e|<1 r

/()

<C-hsup | sup sup  [p(y,n)| |-
/)

z€RD \ [n|<(1/r) ly—=[<

<C’-hsup< sup sup

z€R? \ |ly—z|<2r |e|<1

>From Lemma 5.3 we know that for every A > sup, 8%

SUD|y—z|<(2/In]) Ip (y,m)l
|)\

lim

|n|—o0 In

= 0.
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Therefore we find for every x a compact set K such that

sup [p(y, )| <C-yf* <C-r?
ly—z|<2/|n|
on the complement of K. Since the right-hand side is independent of x, there exists an
ro > 0 such that for all » €]0, 7] we have
- Rt

al(h,r) <C’~C’-T—A
which means that X is in the class M(1, 8%) of Manstavi¢ius. The result follows from
|21] Theorem 1.3. O

We can use the indices to obtain information on the Holder and growth behaviour of
the solution of the SDE (9). As usual, we write (X. — z); := supgc,; | Xs — 2|.

Corollary 5.11. Let X* = (X[)>0 be the solution of the SDE (9) where Z is a Lévy pro-

cess with characteristic exponent ¥ satisfying the sector condition |Im(§)| < co Re(§)

for some constant ¢y > 0. Denote by 5% and By the generalized upper indices of X. Then
lir%t_l/’\(X. —x); =0 if A>supfy and tlim tTYMNX. —2)F =0 if 0<)\<fo.
— T — 00

Under the assumptions of Theorem 5.7, sup, B is the upper index of the driving Lévy

process: 3%.

Proof. This is a combination of Proposition 5.6 and Theorem 5.7 with the abstract result
from [28], Theorems 4.3 and 4.6. For the growth result as ¢ — oo we need the sector
condition for the symbol p(z, &) which is directly inherited from the sector condition of
1. Note that one can identify values for A by using, in general different, indices such that
the above limits become +o0. O

Let us finally indicate how we can measure the ‘smoothness’ of the sample paths of
the solution of the SDE (9). Since we deal with cadlag-functions, in general, the right
scale of function spaces are (polynomially weighted) Besov spaces BS(LP((1+t2)~#/2dt))
with parameters p,q € (0, 00] and s, u > 0. We refer to the monographs by Triebel [31]
and the survey [8] by DeVore for details. Note that information on Besov regularity is
important if one is interested in the effectiveness of numerical adaptive algorithms for the
solutions of an SDE. In a deterministic context this is discussed in [8].

Corollary 5.12. Let X* = (X[)i=0 be the solution of the SDE (9) where Z is a Lévy
process with non-degenerate (i.e. non-constant) characteristic exponent 1. Denote by %
and By the generalized upper indices of X. Then we have almost surely

1 1
{t— X[} e B (LP((1+ t)H2dt)) if s-sup{p,q, LY <1 and p> — + —.
Y o P
In particular we get locally

{t = X7} € BY(LP(dt)) if s-sup{p,q,B%} <1
Y

and

{t — X[} & BS°(LP(dt)) if sp> 1.
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Proof. This is a consequence of Theorems 4.2 and 6.5 in [29]. Note that, although all
statements are in terms of Feller processes, only the existence of a symbol of the underlying
process is required. In [29] we assume that the smoothness index s satisfies the condition
s > (p~'—1)*. This restriction can be easily overcome by using the imbedding B (L) —
B!(L?) which holds for all s > ¢, all p € (0,00] and all r,q € (0, 0], see [31], vol. III,
Theorem 1.97. U

6 Appendix

For the readers’ convenience we collect in this appendix some variations on standard
estimates for symbols of Feller processes. They are based on methods from [28] and can
also be found in [30]. For the rest of the paper we use the notation || f|| , := sup,cx | f(2)|
where |- | can be a vector or matrix norm.

Lemma 6.1. We have

— 1—
14+ |y|2 ( COS(y p)) g(p) d,O, Yy € R ,

where g(p) = & [F(2mX) =42 e lPP/2X e=M2 )\ s integrable and has absolute moments of
arbitrary order.

Proof. The Tonelli-Fubini Theorem and a change of variables show for £ € IN

1

/|p|’“g(p) dp = 5/ (2m)—d/2/|p|ke—p2/2xdp N2 )
0

= %/oo(zm)—dﬂ/Ak/2|n|'fe—’7l2/2w2 dn e d
0

_ %(27r)—d/2 / |77|ke—\7]|2/2 d77 /00 )\(k+d)/2 e—)\/2 d)\,

0

i.e., g has absolute moments of any order. Moreover, the elementary formula
eNv2/2 _ (97\)/2 / e/ i g
and Fubini’s Theorem yield

2 oo
l = 1/ (1— e_’\‘y|2/2) e M2 d\
L+[y? 2o

_ %/oo /(270\)_6[/2 (1 B ein”)e_‘p‘z/z)‘ P dp d\
0

— / (1- ein”) g(p) dp.

The assertion follows since the left-hand side is real-valued. O

Lemma 6.2. Let p(z,£) be a negative definite symbol of the form (3) with Lévy triplet
(U(x),Q(x), N(z,dy)) and let K C R be a compact set or K = R, Then the following
assertions are equivalent.
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(@) lp( Ol < (X + 1€, €eRY

ly|?
y#0 1+ |y|2

(b) llellx + 1Rl + N(, dy)|| < oo;

K

(c) sup sup [p(z, §)| < oo.
l€]<1 2K

If one, hence all, of the above conditions hold, there exists a constant ¢ > 0 such that

ly|?

1]l + 11Ql  + —
K K y#0 1+ |y|2

N(-,dy)|| < csupsup|p(z,§)|.

K [§l<1zeK

Proof. (a)=-(b). By Lemma 6.1 we have

ly|? B B -
/y;éo 1+|y|2N($,dy) —/y#o/(l cos(n'y)) g(n) dn N(z, dy)
Z/(Rep(xm)—nTQ(x)n)g(n) dr

< /Rep(af,n)g(n) dn
<c / (1+ [n2) g(n) dn

uniformly for all z € K. Using Taylor’s formula and Lemma 6.1 we find

T
)Tl < |mpe &) +1m [ [1—e€v 4 BV N ay)
y#0 1+ |y|
<(ote [ T oNwa) a+led
y#0 1+ |y|

<o (1re [+ 1) atman) 1+ )
uniformly in z € K and for all £ € R?, so ||{]|; < co. Finally,

€7 Q(2)€] < Rep(w,€) < |p(x, )] < cp(1 + [€]%)

which shows that ||Q]|, < oco.

(b)=-(c). Using the Lévy-Khinchine representation for p(x,¢) and Taylor’s formula we
find

2
(o < 1l €]+ 1@l 168 +2 [ 221 Vo) 1+ 1€

(we use the /2-norm in R¢ and R%*?) and (c) follows.

(c)=(a). Set P(&) := sup,cg [p(z,£)|. Since both & — +/p(x,&) and the sup, are
subadditive, we conclude

VPE+n) <PE) +P £.neRY
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i.e., v/ P(-) is subadditive. Fix £ and choose the unique N = N¢ € IN such that N — 1 <
|€| < N. Applying the subadditivity estimate N times gives

P(§) < NP (5) < N?sup P(n) < 2 (1 + [¢[?) sup P(n)

Inl<1 In[<1

and this is claimed in (a).

|

An inspection of the proof of (a)=(b) shows that each of the terms ||¢||,, || Q] and
Syo WP+ Y1) N(~,dy)H is bounded by constants of the form ¢ - ¢, where ¢, is
K

from (a). The proof of (c)=>(a) reveals that ¢, = 2sup,¢x supy,<; [p(x,n)| which proves
the last statement. O
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