Warm Electromagnetic Forming of AZ31B Magnesium Alloy Sheet

I. Ulacia1, A. Arroyo2, I. Eguia2, I. Hurtado1, M.A. Gutiérrez2

1 Mondragon Goi Eskola Politeknikoa, Mondragon Unibertsitatea, Mondragon, Spain
2 Labein-Tecnalia Research Center, Derio, Spain
OUTLINE

- Introduction and motivation
- Electromagnetic forming experiments
 - EMF drawing
 - EMF bending
- Conclusions and ongoing work
There is a clear tendency for **weight reduction** in automotive and aeronautic industries.

“Cars on a diet”

The use of magnesium parts is expected to increase (e.g. Usamp 2007)

Mg alloys

<table>
<thead>
<tr>
<th></th>
<th>Al</th>
<th>Mg</th>
<th>Steel</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho)</td>
<td>2.8</td>
<td>1.74</td>
<td>7.83</td>
<td>4.5</td>
</tr>
<tr>
<td>(E)</td>
<td>70</td>
<td>45</td>
<td>210</td>
<td>110</td>
</tr>
<tr>
<td>(R_m)</td>
<td>150-680</td>
<td>100-380</td>
<td>300-1200</td>
<td>910-1190</td>
</tr>
<tr>
<td>(R_m/\rho)</td>
<td>54-243</td>
<td>57-218</td>
<td>38-153</td>
<td>202-264</td>
</tr>
<tr>
<td>(E/\rho)</td>
<td>25.0</td>
<td>25.9</td>
<td>26.8</td>
<td>24.4</td>
</tr>
<tr>
<td>(\sqrt{R_m/\rho})</td>
<td>9.3</td>
<td>11.2</td>
<td>4.4</td>
<td>7.7</td>
</tr>
<tr>
<td>(\sqrt{E/\rho})</td>
<td>14.7</td>
<td>20.4</td>
<td>7.6</td>
<td>10.6</td>
</tr>
</tbody>
</table>

[Kleiner et al. 2003]
Strategies to increase formability:

Increasing Temperature: Warm Forming

[Doege et al. 2001] [Ulacia et al. 2008]

Increasing Strain Rate (EMF, EHF and explosive forming)

[El-Magd et al. 2004] [Ishikawa et al. 05]
MOTIVATION

Previous work in EMF of Mg alloys:

Tube
- **TU Berlin, Germany [Uhlmann et al. 2004]**
 - A tool for combining Inductive Heating and Magnetic Forming was shown.
 - No deformed parts or values were shown.

- **IUL Dortmund, Germany [Psyk et al. 2006]**
 - Suitability of different extruded Mg tubes for EMF was characterised.

Sheets
- **VTT and Helsinki University, Finland [Revuelta et al. 2007]**
 - Increase of formability was reported for AZ31B, although deformation values were not shown.

- **Labein and Mondragon Univ., Spain [Ulacia et al. 2008]**
 - Increase of formability was measured for AZ31B at Room Temp.

- **AIST, Japan [Murakoshi et al. 2008]**
 - EMF at different temp.
Current research:

Aim: Evaluate the effect of temperature on the electromagnetic forming of Mg AZ31 sheets

AZ31B (commercial). 1 mm thickness. GS=10 µm

<table>
<thead>
<tr>
<th>Element</th>
<th>Zn</th>
<th>Al</th>
<th>Si</th>
<th>Cu</th>
<th>Mn</th>
<th>Fe</th>
<th>Ni</th>
<th>Ca</th>
<th>Sn</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt%</td>
<td>0.96</td>
<td>2.7</td>
<td>0.01</td>
<td>≤0.01</td>
<td>0.21</td>
<td>0.002</td>
<td>≤0.001</td>
<td>≤0.01</td>
<td>0.00</td>
<td>≤0.30</td>
</tr>
</tbody>
</table>

Increasing temperature
- Decrease of electrical conductivity
- Decrease of yield strength
- Increase of active def. mechanisms
EMF at different temperatures:

Machine: Maxwell Magneform at *Labien-Tecnalia*

- **Capacitor bank:** 60kJ (1800 μf – 8.66 kV)
- **40 Tn Hydraulic Press**
- **Coils & dies:**

Test conditions:

- **Temperatures:** R.T., 100°C, 150°C, 200°C, 250°C
- **Discharged Energies:**
 - 6 kJ - 15 kJ (Drawing)
 - 1 kJ – 6 kJ (Bending)
EMF at different temperatures:

Heating Strategy: Heating outside the forming position

- Step 1. Heating: Temperature was controlled with thermocouples
- Step 2. Automatic Transfer: Temp drop measured (Cooling curves for each Temp)
- Step 3. Closing and EMF discharge: Time for discharging measured → Initial Temp.

![Cooling curve for 250ºC](image)
Increasing the temperature:
- Decreases h_{max} (for a given E)
- More energy (strain energy) is gained to obtain

EMF Drawing

EXPERIMENTAL RESULTS
EMF Bending

Room temperature

Energy for impact?

- Non-symmetrical deformation (coil)
- Impact in 2.5-3 kJ
- Decrease of springback with increasing energy
 → Higher plastic deformation
 → High velocity impact
EXPERIMENTAL RESULTS

EMF Bending

Different temperatures

For a given energy, if:

Temperature \uparrow (Elect. Conductivity \downarrow) \rightarrow Forces (Acceleration) \downarrow \rightarrow Impact vel. \downarrow

Then, from the previous results we should expect that:

The final springback will increase with temperature.
EXPERIMENTAL RESULTS

EMF Bending

Different temperatures

250°C
200°C
150°C
100°C
20°C

4.5 kJ

250°C
200°C
150°C
100°C
20°C

6 kJ

*Non homogeneous deformation in the whole flange

Increasing temperature: final angle is closer to the target angle

→ Reduction of springback due to decrease of yield strength with temperature
Concluding remarks:

Warm EMF is studied: **Higher deformation** values could be obtained increasing **temperature**

→ It could be suitable to form **complex geometries** in Mg parts

Springback behavior of magnesium sheet at high strain rates was studied (EMF bending experiments). It was shown that:

- Increasing the discharged energy the springback decreases
- Increasing temperature also decreases the springback

It is shown that temperature has different effect depending on the EMF operation:
- The decrease of electrical conductivity is important in drawing operations
- The decrease of yield stress is more important in bending
ONGOING WORK

Material Characterization at high strain rate biaxial loading:

- Microstructure and texture analysis (EBSD & Neutron diff.)

P_{\text{max}} = 9.1 \text{ m.r.d.}
P_{\text{max}} = 2.58 \text{ m.r.d.}

- Compare with uniaxial results

EMF of other Mg alloys (e.g. ZE10)

- Weaker initial texture
Warm Electromagnetic Forming of AZ31B Magnesium Alloy Sheet

Thank you for your attention!

Dr. Ibai Ulacia
Mechanical and Manufacturing Department
Mondragon Goi Eskola Politeknikoa
Mondragon Unibertsitatea
iulacia@eps.mondragon.edu

Columbus, 09 March, 2010