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Abstract: We study the evolution of saturation profiles in a porous medium. When there is a more

saturated medium on top of a less saturated medium, the effect of gravity is a downward motion of the

liquid. While in experiments the effect of fingering can be observed, i.e. an instability of the planar front

solution, it has been verified in different settings that the Richards equation with gravity has stable planar

fronts. In the present work we analyze the Richards equation coupled to a play-type hysteresis model in

the capillary pressure relation. Our result is that, in an appropriate geometry and with adequate initial

and boundary conditions, the planar front solution is unstable. In particular, we find that the Richards

equation with gravity and hysteresis does not define an L1-contraction.

1 Introduction

The standard model for the description of saturation distributions in porous media is the Richards
equation. Denoting the fluid pressure by p and the volume fraction of pore space that is filled with fluid
by s (saturation), the combination of mass conservation and Darcy’s law for the velocities yields the
Richards equation

∂ts = ∇ · (k(s)[∇p+ ex]) . (1.1)

In this equation, a normalization of porosity, density, and gravity are performed, the acceleration of
gravity is 1 and points in direction −ex. The permeability k = k(s) is a given function k : R → [0,∞).
The unknowns are pressure and saturation, two scalar variables which depend on time t ∈ [T−, T+]
and position x̃ ∈ Ω, where Ω ⊂ Rn+1 is the domain of the porous medium. We decompose the spatial
variables according to the direction of gravity, x̃ = (x, y) ∈ Ω ⊂ Rn+1 for x = x̃ · ex and y ∈ Rn.

Equation (1.1) must be supplemented with a capillary pressure relation

p ∈ F(s).

The simplest possibility (and the standard choice for the Richards equation) is a functional dependence,
p = pc(s), where pc is a monotone function. In applications, the capillary pressure function can have
infinite slope and can even be multivalued, pc = F ⊂ R × R. In this degenerate case (even without
hysteresis) we must therefore write the inclusion symbol in the above pressure relation. In physical
variables, the saturation has only values in [0, 1], k is a function on [0, 1], pc = F is a maximal monotone
graph F ⊂ [0, 1]×R. Typically, k vanishes for small arguments and pc is multi-valued in the end-points of
its domain. Nevertheless, the instability result of the current work is shown for non-degenerate coefficient
functions.

1.1 Gravity wetting fronts

We are interested in the situation that a more saturated medium is above a less saturated medium such
that, under the influence of gravity, the saturation increases in the lower part of the medium. A question
which receives considerable interest is the following: Does the penetration into the initially dryer medium
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always happen with a one-dimensional front, i.e. with negligible variations in the horizontal variable y,
or can there also appear fingers, i.e. smaller structures with a higher saturation along which the fluid
moves downwards? We refer to the nice overview in [13] for fingering effects in other physical systems.

In various experimental works, the development of fingers was verified for well-adapted initial and
boundary conditions. Early works date into the 1960’ies. One more recent study is [26], where an exper-
imental set-up with finger development is described. It contains the measurement of saturation profiles
(non-monotonic in x), and the observation that the time evolution of fingers is approximately given
by a translation in x. Fingers are also observed in [3], where also the influence of an increased initial
saturation is studied. If the fluid enters a less dry medium, the finger widens and eventually dissapears,
and the saturation profile becomes monotonic in x. The importance of a very dry initial condition is also
discussed in [16].

To model the experimentally observed fingering effect, the standard Richards equation with a fixed
capillary pressure curve seems to be inadequate [11]. This observation coincides with the mathematical
analysis of [28] which contains a stability result for one-dimensional front solutions under Richards
equation with a function F . A stability result for the classical Richards equation can be derived also in
degenerate cases, see [18] and [6].

As a consequence, modifications of the Richards equation have been introduced in order to capture
gravity fingering. One of the most prominent models was introduced by Hassanizadeh and Gray [12].
Their suggestion is to replace the algebraic relation p = pc(s) by a kinetic equation such as τ∂ts = p−pc(s)
for some real parameter τ . Such non-equilibrium Richards equations (NERE) are studied e.g. in [10, 17];
a low-frequency instability criterion is introduced and used to predict an instability in the NERE model.
Once more, a low initial saturation is important for a spatial instability. The same model is also analyzed
in [20] with the result that non-monotonic one-dimensional profiles can be induced by the NERE model.
A two-dimensional numerical simulation shows a non-monotonic finger solution.

Another possible modification of the Richards equation is to introduce a rate independent hysteresis
in the form that different capillary pressure curves are used for imbibition and drainage. This most
elementary model is actually closely related to the play-type hysteresis studied here. Numerically, gravity
fingers for this model were observed in [15]. For a theoretical analysis of different hysteresis models we
refer to [30]. We mention that, starting from a quite different model, a higher dimensional instability is
also numerically observed in [9].

1.2 A rate independent hysteresis model

It is well known that porous media exhibit hysteresis effects [4]. Furthermore, the importance of hys-
teresis for the development of gravity fingers seems also to be evident. Much less clear is the choice of
an appropriate hysteresis model. Beliaev and Hassanizadeh distinguish in [5] between static capillary
pressure hysteresis and a dynamic variant. They give thermodynamic arguments in favor of the (static)
play-type hysteresis model and are able to confirm the model to some extend by reported measurements.
Furthermore, the model is expanded by the inclusion of dynamic effects in the spirit of [12].

In this work we discuss the play-type hysteresis model in its simplest form and study its possible effects
in terms of the gravity fingers instability. We emphasize that the play-type model has many virtues: it
gives a reasonable agreement with experimental data, it is rate-independent (as are most of the reported
measurements), such that, in particular no additional time-scale (τ) is introduced. Furthermore, the
play-type model is thermodynamically consistent, and it can, to some extend, be justified theoretically
[21, 22]. We do not doubt the presence of dynamic hysteresis effects in porous media, but we want
to analyze here the implications of the purely static hysteresis model. Our main result is a rigorous
instability result for the Richards equation with play-type hysteresis.

We next describe this model in more detail. Mathematically, we interpret the operator F in the relation
p ∈ F(s) not as an algebraic relation for every time instance, but rather as a map s|[T−,t] 7→ F(s|[T−,t]) ∈
R. With a parameter γ > 0, which is a measure for the difference in pressure between imbibition and
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drainage, we may specify F through the differential relation

p ∈ pc(s) + γ sign(∂ts), (1.2)

where sign(ξ) := [−1, 1] for ξ = 0 and sign(ξ) ∈ {±1} for ξ 6= 0. Relation (1.2) demands that the pressure
p is always in the s-dependent interval [pc(s)−γ, pc(s)+γ]. Furthermore, for p strictly between pc(s)−γ
and pc(s) + γ, the time derivative ∂ts necessarily vanishes.

The hysteresis relation can be made more general by demanding that, loosely speaking, the effect of
different values of γ is averaged. The result is a Prandtl-Ishlinskii hysteresis relation. For a finite number
of γ’s, the relation can be written as

p ∈ pj(sj) + γj sign(∂tsj) ∀j = 1, ..., N, s =
N∑

j=1

cjsj . (1.3)

Here, cj and γj are given positive numbers for j = 1, ..., N . We demand
∑

j cj = 1 such that the
saturation is a convex combination of the different sj , which can be thought of as the saturations
in different materials that constitute the porous medium. Regarding physical units, the numbers γj

are pressure variables. Finally, the functions pj are monotone graphs. The general Prandtl-Ishlinskii
hysteresis can be formulated equivalently, replacing the finite sums by integrals. A homogenization result
is derived in [23] for linear laws pj : a porous medium which consists of different materials that exhibit
the play-type hysteresis (1.2) (with different parameters) can be described in its averaged behavior by a
Prandtl-Ishlinskii relation.

Our main result is an instability statement for problem (1.1) with an hysteresis operator F in the
capillary pressure relation. We will show the instability for the simple model of play-type hysteresis in
(1.2). Since this is contained in the more complex models such as (1.3), the possibility of an instability
is clear also for those more complex models.

To conclude the description of our model we finally describe the boundary conditions. We consider a
time domain t ∈ (T−, T+) containing t = 0 and a spatial domain (x, y) ∈ [L−, L+]×Y , with Y = [0, Ly)n

a rectangle in Rn with periodically identified boundaries (the relevant cases are n = 1 and n = 2). Initial
values are given by s0 : [L−, L+] → R (which we identify with s0 : [L−, L+] × Y → R), and boundary
conditions p̄± : (T−, T+) → R. The initial and boundary conditions are chosen as

s(x, y, t = 0) = s0(x) ∀y ∈ Y, x ∈ (L−, L+), (1.4)

p(x = L±, y, t) = p̄±(t) ∀y ∈ Y, t ∈ (T−, T+). (1.5)

Wetting fronts appear when a more saturated medium is above a less saturated medium. Mathematically,
we choose a constant initial saturation s0, set p̄−(t) = pc(s0) + γ for all t, and p̄+(t) > pc(s0) + γ, at
least for t ∈ (T−, 0).

1.3 Main result: Instability

Our result is that, for appropriate boundary conditions, the hysteresis system is spatially unstable. By
spatially unstable we mean that y-independent solutions (planar solutions) are unstable solutions of the
higher dimensional system. For the precise definition of stability we refer to Definition 2.2 of the next
section.

Theorem 1.1 (Spatial instability) Let pc, k ∈ C1(R,R) satisfy k, ∂sk, ∂spc > 0 and let γ > 0 be given.
Then there exist initial and boundary conditions (1.4)–(1.5) such that the following holds. If Assumption
3.3 concerning existence and regularity properties of a one-dimensional free boundary problem is satisfied,
then the planar front solution of the hysteresis system (1.1)–(1.2) is unstable.

Loosely speaking, instability is defined as follows: for any ρ > 0, there is a geometry (given by L± and
Ly), a perturbation w (of size less than ρ) of the planar initial values, and a source function f (of size
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less than ρ), such that the corresponding solution is arbitrarily far from the planar solution for a large
observation time T .

Comments on the main theorem.
We impose positivity and monotonicity assumptions on pc and k that are natural in the context of the
Richards equation, but we restrict ourself to the non-degenerate case. In particular, we show that the
instability of front solutions is not a consequence of degenerate coefficients.

We only have a weak instability result in the sense that the numbers Ly and T must be chosen in
dependence of ρ, i.e. the fingers may be very wide and may develop only at large times. On the one
hand, this limitation is consequence of our method of proof. On the other hand, it is not clear if an
arbitrarily small perturbation can create fingers of finite size in the non-degenerate setting. Based on
the description in [3] concerning the finger widening, we expect that, for a stronger instability result,
degenerate coefficient functions must be studied.

Method of proof.
We study a switch in the pressure boundary condition on the upper boundary. Until time t = 0, a
large pressure on the upper boundary generates an imbibition process, water invades a medium with low
saturation from the top. At time t = 0, the pressure on the upper boundary jumps to a lower value. This
induces a decrease of pressure in a region near the upper boundary, while a (gravity driven) imbibition
process continues in the lower part of the domain. This setting is in accordance with experiments.

The switch at time t = 0 effectively means that a first evolution process is considered until time 0, while
a second evolution process runs after time 0. Both evolution processes are stable — but the combined
process is unstable: a small perturbation of initial data at time t = T− results in a small perturbation
at time t = 0, but this perturbation changes the second process for all later times. If T+ is large enough,
the perturbation at time t = T+ is large.

The proof of the theorem rests entirely on the analysis of the one-dimensional system, i.e. the system
with one spatial variable x ∈ (L−, L+) and a time variable t ∈ (T−, T+). We describe solutions of
this system after the switching time with a free boundary problem. The qualitative properties of this
free boundary problem can be analyzed, see Figure 1 for an illustration. In particular, there exists
a flux parameter q(t) which decreases in time, but does not vanish in the limit of large times. This
implies that the front continues to proceed with a finite speed. Since the limiting front speed depends
on the saturations at time t = 0, this implies that a small perturbation at time t = 0 can result in
large perturbation at time t = T+. The juxtaposition of slightly perturbed one-dimensional profiles in
y-direction provides an unstable solution.

Further literature.
For degenerate Richards equations without hysteresis, existence statements [1, 2, 24] and uniqueness
results [1, 6, 18] are available. Concerning the case that hysteresis is included, we are not aware of any
result in the degenerate case. In the one-dimensional case, the oil-trapping effect [25] shows that the
degeneracy can change qualitative properties of solutions.

Positive results on the stability of planar fronts are available for many systems. In comparison, in-
stability results are rare. As in our approach, long-wave perturbations are considered in [8] to show the
(linearized) instability of planar fronts in a reaction diffusion system. Other instability results for planar
fronts appear in [27, 7].

The remainder of this text is organized as follows. In Section 2 we recall fundamental facts about the
play-type hysteresis model, we introduce one-dimensional front solutions, and give a precise definition
of the stability of planar fronts. Section 3 is devoted to the thorough analysis of the one-dimensional
hysteresis system to special initial and boundary conditions. The main result is the determination of the
limiting flux for large times in Lemmas 3.6 and 3.8. In Section 4, we give the proof of Theorem 1.1.
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2 Preliminaries and stability

In this section we collect known properties of the system (1.1)–(1.2). In Subsection 2.1 we recall existence
results of [23]. In Subsection 2.2 we define our concept of stability. Subsection 2.3 collects some positive
stability results.

2.1 Existence result for a system with hysteresis

Existence properties of the hysteresis system were studied in [23] for s-independent permeability and
affine capillary pressure, neglecting gravity. The emphasis in that existence result was to generalize
relation (1.2) to a Prandtl-Ishlinskii hysteresis relation in order to treat the system which is obtained
after homogenization. In order to specify the results of [23] to our context, we set Γ(x, .) ≡ δγ(.) and
pc(σ) ≡ aσ + b, and read the results for s(x, t) := u(x, t), a := a∗, b := b∗, and k := K∗, where the
letters used in [23] appear on the right hand side of the four settings. Equations (1.8)-(1.10) of [23] with
w(x, t) ≡ w(x, γ, t) then read

w(x, t) = pc(s(x, t)), (2.1)

∂ts = ∇ · (k∇p), (2.2)

p(x) ∈ w(x, t) + γ sign(∂tw), (2.3)

and coincide with our system. Theorem 3.2 and case (ii) of Corollary 3.3 in [23] provide the following
existence result. The uniqueness is observed in Remark 3.4 of the same article, where the boundary
condition is imposed as p = g on ∂Ω× (0, T ).

Theorem 2.1 (Existence for an hysteresis system, S. 2007, [23]) Let Ω ⊂ Rn be a rectangle, T > 0,
s 7→ pc(s) strictly monotone affine and k(x, s) = K∗(x) piecewise constant. Let initial and boundary
values be given by s0 ∈ L2(Ω) and g ∈ C1([0, T ],H2(Ω,R)). Then there exists a unique pair (s, p) with

s, ∂ts ∈ L∞(0, T ;L2(Ω)), p ∈ H1(0, T ;H1(Ω)),

such that relations (2.1)–(2.3) are satisfied in the sense of distributions and almost everywhere in Ω ×
(0, T ), and the boundary conditions are satisfied in the sense of traces.

Theorem 2.1 was shown with an approximation procedure. A discretization of Ω with triangles of
maximal diameter h replaces the system by an ordinary differential inclusion equation with independent
variable t. This equation still contains the inclusion of (2.3). One can treat this degeneracy by replacing
the inverse of the sign-function signγ := γ sign by the Lipschitz function ψγ

δ : R → R,

ψγ
δ (r) :=


δr for r ∈ [−γ, γ],
γδ + 1

δ (r − γ) for r > γ,

−γδ + 1
δ (r + γ) for r < −γ.

(2.4)

More specifically, for δ > 0, we solve an ordinary differential equation, which we write as

∂tsh = ψγ
δ (ph − pc(sh)),

∇h
(
k(sh)∇hph

)
= ψγ

δ (ph − pc(sh)).

To make the the method precise, the operator ∇h is expressed with a finite element method, see (2.3)–
(2.6) of [23]. We emphasize that, in the existence result, it is important to send first δ → 0 with
discretization parameter h > 0 fixed, and then send h→ 0.

With Theorem 2.1 we have an existence and uniqueness result for system (1.1)–(1.2) in the case that
Ω is a rectangle, that k(x, s) = K∗ is independent of s, that pc(.) is affine function, and that gravity is
neglected. We expect that these assumptions can be relaxed for the existence proof, and that the same
existence result can be obtained for smooth strictly positive k, and smooth and strictly monotonically
increasing pc. From now on, we concentrate on stability aspects and skip the further discussion of
existence results.
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2.2 One-dimensional system and stability property

The one-dimensional system.
Let us now consider one-dimensional solutions to (1.1)–(1.2), i.e. solutions s(x, y, t) = s(x, t) and
p(x, y, t) = p(x, t). With x as the only spatial variable and gravity pointing in the negative x-direction,
the system for s(x, t) and p(x, t) with (x, t) ∈ (L−, L+)× (T−, T+) reads

∂ts = ∂x (k(s)[∂xp+ 1]) , (2.5)

p ∈ pc(s) + γ sign(∂ts). (2.6)

We recall that we always demand that ∂xp and ∂ts are functions in L2((L−, L+)× (T−, T+)), that (2.5)
holds in the sense of distributions and that (2.6) holds almost everywhere. We note that we must assume
for a planar solution that the initial and boundary conditions are y-independent, s(x, y, t = T−) = s0(x)
and p(x = L±, y, t) = p̄±(t).

Every solution to this one-dimensional problem is a solution to the higher dimensional problem if we
identify s and p with their trivial extensions in the periodic variable y ∈ Y = [0, Ly)n. We call a solution
of problem (2.5)–(2.6) a planar solution of (1.1)–(1.2).

The concept of spatial stability.
Our interest is the stability of a planar solution. More precisely, we are interested in the spatial stability.
We use this term to indicate that we expect the one-dimensional solution to be stable as a solution of
the one-dimensional system, but if we interpret the functions as a solution in higher space dimension,
they are unstable. We additionally allow a (small) source term in the conservation law and study, for
f : (L−, L+)× Y × (T−, T+) → R,

∂ts = ∇ · (k(s)[∇p+ ex]) + f, (2.7)

p ∈ pc(s) + γ sign(∂ts). (2.8)

For the definition of stability of system (1.1)–(1.2) we recall that n is the dimension of Y = [0, Ly)n.
We include the factor Ln

y in the subsequent L1-norm estimates. This scaling factor is chosen such that,
e.g., L−n

y ‖f‖L1((L−,L+)×Y×(T−,T+)) is a measure for the typical height of the function |f |, at least for
fixed numbers L± and T±.

Definition 2.2 (Stability) Let s0 = s0(x) and p̄± = p̄±(t) be fixed, and let (s, p) be a corresponding
planar solution without sources, i.e. a solution of (2.5)–(2.6). We say that (s, p) is stable, if, for every
ε > 0, there exists ρ > 0 with the following property: For all T− < 0 < T+, L− < 0 < L+, Ly > 0, for all
perturbations w ∈ C1((L−, L+)×Y ) of the initial data and all sources f ∈ C1((L−, L+)×Y × (T−, T+))
with

‖w‖L1((L−,L+)×Y ) + ‖f‖L1((L−,L+)×Y×(T−,T+)) < 2ρLn
y , (2.9)

there exist a solution (s̃, p̃) to system (2.7)–(2.8) with s̃|t=T− = s0 + w and

‖s̃(., T+)− s(., T+)‖L1((L−,L+)×Y ) < εLn
y . (2.10)

Accordingly, we say that (s, p) is unstable, if

∃ ε > 0 ∀ ρ > 0 ∃T±, L±, Ly ∈ R, w ∈ C1((L−, L+)× Y ), f ∈ C1((L−, L+)× Y × (T−, T+))

with ‖w‖L1 + ‖f‖L1 ≤ 2ρLn
y but ‖s̃(., T+)− s(., T+)‖L1((L−,L+)×Y ) ≥ εLn

y .
(2.11)

We remark that our stability criterion reflects standard concepts. Nevertheless, many variations of
the above definition are possible. We have a rather strong concept of stability since we demand that
ρ satisfies the desired inequalities independent of the geometry. Furthermore, in the current context, it
seems that the inclusion of the normalizing factors Ln

y makes the stability concept again stronger, since,
for large Ly > 0, large variations of the initial values are permitted.
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An important property of the above definition is observed in the next subsection: every system with
an L1-contraction property is stable in the sense of Definition 2.2.

2.3 Stability results

The system without hysteresis has an L1-contraction property. We recall here this well-known result
(see [1, 31]) and present the proof for the simplest case, namely for strong solutions to the system with
non-degenerate coefficient functions. The L1-contraction property derived in Theorem 2.3 and Remark
2.4 implies the stability of (1.1)–(1.2) in the sense of Definition 2.2 with the choice ρ = ε/2. In particular,
the system without hysteresis and the system with constant permeability are both stable.

In the case of strong solutions the result is readily obtained by considering two solutions and by
testing the difference of the equations with the sign of the solution difference. The interest in more
recent uniqueness studies is to have the same result for degenerate equations, when the distributional
derivative ∂ts is not necessarily an integrable function. In this case, the proof of the contraction property
can be performed with the technique of doubling the variables. For this interesting field we refer to
[6, 18].

Theorem 2.3 (Stability in absence of hysteresis) We consider (2.7)–(2.8) in the case without hystere-
sis, i.e. for γ = 0,

∂ts = ∇ · (k(s)[∇(pc(s)) + ex]) + f. (2.12)

Let k = k(s) and pc = pc(s) be smooth, independent of x, with k, k′, and p′c strictly positive. Then an
L1-contraction property holds. More precisely, for two solutions s1 and s2 with ∂tsi ∈ L2(Ω× (T−, T+))
to the same boundary conditions and with the right hand sides fi ∈ L1(Ω× (T−, T+)), there holds∫

Ω

|s1 − s2|(x, t2) dx ≤
∫

Ω

|s1 − s2|(x, t1) dx+
∫ t2

t1

∫
Ω

|f1 − f2|(x, t) dx dt (2.13)

for all t2 > t1.

Proof We note that the non-degenerate problem without hysteresis (2.12) is a standard parabolic prob-
lem and existence results are classical. We consider strong solutions s1 and s2 to sources f1 and f2.

We use a Kirchhoff transformation. Choosing a function Φ : R → R with Φ′(s) = k(s)p′c(s), we use the
generalized pressure u = Φ(s) as a new dependent variable. Because of ∇u = Φ′(s)∇s = k(s)p′c(s)∇s =
k(s)∇(pc(s)), the equations for s1 and s2 transform into

∂ts1 = ∇ · (∇u1 + k(s1)ex) + f1, u1 = Φ(s1),

∂ts2 = ∇ · (∇u2 + k(s2)ex) + f2, u2 = Φ(s2).

Let Hη be a family of uniformly bounded smooth functions Hη : R → R that are odd and strictly
increasing. Using Hη(u1−u2) = −Hη(u2−u1) as a test-function in the equation for s1 and Hη(u2−u1)
as a test-function in the equation for s2, adding the equations and integrating yields∫

Ω

∂t(s2 − s1)Hη(u2 − u1) +
∫

Ω

∇(u2 − u1)∇[Hη(u2 − u1)]

−
∫

Ω

∂x[k(s2)− k(s1)][Hη(u2 − u1)] = −
∫

Ω

(f1 − f2)Hη(u2 − u1) .
(2.14)

We choose for Hη uniformly bounded and odd approximations of the sign function, Hη(ξ) → sign(ξ) for
every ξ in the limit η → 0. In the limit η → 0, since the sign of u2−u1 is identical to the sign of s2− s1,
the first integrand converges to ∂t|s1 − s2|. At this point we exploit that ∂tsi are integrable functions.
The second integrand of (2.14) is non-negative for every η > 0.
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It remains to consider the third integral, which we expand by adding and subtracting the same term,

Iη
3 =−

∫
Ωt

∂x[k(s2)− k(s1)] {Hη(Φ(s2)− Φ(s1))−Hη(k(s2)− k(s1))}

−
∫

Ωt

∂x[k(s2)− k(s1)]Hη(k(s2)− k(s1)) =: Iη
31 + Iη

32.

(2.15)

Let Ĥη be a primitive ofHη with Ĥη(0) = 0. Then the integrand in the last integral is ∂xĤη(k(s2)−k(s1)).
The identical boundary conditions for p1 and p2 (and thus for s1 and s2) imply that

Iη
32 = −

∫
Ωt

∂x[k(s2)− k(s1)]Hη(k(s2)− k(s1)) = −
∫

Ωt

∂x[Ĥη(k(s2)− k(s1))] = 0.

Concerning Iη
31 we note that the factor Hη(Φ(s2)−Φ(s1))−Hη(k(s2)−k(s1)) is uniformly bounded and

converges to 0 pointwise in (x, t). By Lebesgue’s convergence theorem, Iη
31 vanishes in the limit η → 0.

In the limit η → 0 we thus obtain∫
Ω

∂t|s2 − s1| ≤ −
∫

Ω

(f1 − f2) sign(u2 − u1) ≤
∫

Ω

|f1 − f2|.

An integration from t1 to t2 yields the desired estimate (2.13).

Spatial stability under perturbations in weighted L2-spaces are analyzed in [28]. The result of that
article is another stability result for solutions of the system without hysteresis. The following remark
contains the warning that hysteresis does not automatically lead to an instability.

Remark 2.4 (Stability of the hysteresis system for constant k) We consider problem (2.7)–(2.8) with
general γ ≥ 0, strictly monotone and smooth pc, and k independent of s. Then the system has an
L1-contraction property. In particular, in the class of strong solutions, every planar solution is stable.

Proof We follow the proof of Theorem 2.3. Let (s1, p1) and (s2, p2) two solutions of (2.7)–(2.8) with
pi ∈ pc(si) + γ sign(∂tsi) for i = 1, 2. Assuming, for notational convenience, k = 1, we consider the
difference of the two equations ∂tsi = ∆pi + fi and multiply with Hη(p1 − p2). This results in

0 ≥ −
∫

Ω

∇(p1 − p2)∇(Hη(p1 − p2)) =
∫

Ω

∂t(s1 − s2)Hη(p1 − p2)−
∫

Ω

(f1 − f2)Hη(p1 − p2)

=
∫

Ω

∂t(s1 − s2)Hη(pc(s1)− pc(s2)) +
∫

Ω

∂t(s1 − s2) {Hη(p1 − p2)−Hη(pc(s1)− pc(s2))}

−
∫

Ω

(f1 − f2)Hη(p1 − p2).

We choose again as sequence of functions Hη odd and bounded approximations of the sign-function. With
this choice, by monotonicity of pc, there holds Hη(pc(s1)−pc(s2)) → sign(pc(s1)−pc(s2)) = sign(s1−s2).
In particular, the first integrand converges to ∂t|s1 − s2| as in the last proof. For the other integral we
have a positivity property. Indeed, for ∂ts1 ≥ ∂ts2, there holds

pc(s1)− pc(s2) ∈ (p1 − p2)− γ(sign(∂ts1)− sign(∂ts2)) ≤ p1 − p2,

and therefore, by monotonicity of Hη,

∂t(s1 − s2) {Hη(p1 − p2)−Hη(pc(s1)− pc(s2))} ≥ 0.

We find the non-negativity of the integrand. The same argument can be repeated for negative ∂t(s1−s2).
By taking the limit η → 0 we find the same contraction result as in Theorem 2.3.

Our instability result of Theorem 1.1 implies that the hysteresis system with an s-dependent perme-
ability k does not posess the L1-contraction property.

We mention here that we do expect a stability property in another special situation. We conjecture
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that (even for an s-dependent positive k) a strictly monotonically increasing (in time) planar solution is
stable for the hysteresis system. We note that a strictly increasing planar solution (s, p) satisfies ∂ts > 0
everywhere and hence a system where the hysteresis relation is replaced by p = pc(s) + γ. Nevertheless,
such a stability result needs a deep analysis since the comparison solution (s̃, p̃) will, in general, only
satisfy the law (1.2).

3 The one-dimensional free boundary problem

In this section we consider once more x ∈ (L−, L+) as the only spatial variable and analyze the hysteresis
system (1.1)–(1.2) in its one-dimensional version (2.5)–(2.6). We restrict our analysis to x-independent
initial values and piecewise constant boundary conditions. Let the equations be specified by a number
γ > 0 and coefficient functions

k, pc ∈ C2(R,R) with k, k′, p′c > 0 on R. (3.1)

In order to specify boundary conditions we use four number s̄0, p−, p0
+, and p+ with

s̄0 ∈ R, p− := pc(s̄0) + γ, p0
+ > pc(s̄0) + γ, p+ < p0

+. (3.2)

The boundary conditions (1.4)–(1.5) are specified to the following piecewise constant initial saturation
and boundary pressures.

s(x, t = 0) = s̄0 for all x ∈ (L−, L+), (3.3)

p(x = L−, t) = p̄−(t) := p− for all t ∈ (T−, T+), (3.4)

p(x = L+, t) = p̄+(t) :=

{
p0
+ for t ∈ [T−, 0),

p+ for t ∈ [0, T+].
(3.5)

 0
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Figure 1. Numerical solutions obtained with the scheme indicated in (2.4). The parameter functions are pc(s) = s
and k(s) = 0.1 + s2, the parameters are γ = 1, s0 = 0, p0

+ = 2, p+ = 0.5, with the regularization parameter
δ = 10−3. The saturation at time 0.000002 is indistinguishable from the saturation at time 0. The large change
in the pressure at the switching time t = 0 is clearly visible. The saturation continues to increase in the left part
of the domain despite the low imposed pressure p+. We observe a small, but non-vanishing front speed for large
times, as derived in Subsection 3.3. The numerical results are obtained by Andreas Rätz.

3.1 Behavior of solutions on (T−, 0].

The boundary conditions are chosen in order to create an imbibition process on the time interval (T−, 0].
The constant function p ≡ p− together with s ≡ s0 is a solution of (2.5)–(2.6) satisfying the initial
condition and the left boundary condition, but the increased pressure p+ > p− on the upper boundary
initiates the wetting process. During this imbibition process, relation (2.6) reduces to p = pc(s) + γ.
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Lemma 3.1 (Solution properties on [T−, 0)) We consider (2.5)–(2.6) with conditions (3.1)–(3.5). There
exists a solution (s, p) of this system satisfying

∂ts > 0 and p = pc(s) + γ, (3.6)

p− ≤ p ≤ p0
+ and ∂xs > 0, (3.7)

for all t ∈ (T−, 0) and all x ∈ (L−, L+).

We note that the uniqueness for system (2.5)–(2.6) is assured by Theorem 2.1 only for constant k,
affine pc, and the case without gravity. For this reason we can not formulate in the above lemma that
every solution satisfies the monotonicity properties (3.6)–(3.7).

Proof We analyze (2.5) with (2.6) replaced by p = pc(s) + γ, i.e. the equation

∂ts = ∂x(k(s)[∂x(pc(s)) + 1]). (3.8)

This equation is non-degenerate parabolic and has therefore a classical solution on (T−, 0] × [L−, L+].
Furthermore, solutions of equation (3.8) satisfy a maximum principle. This implies that p = pc(s) + γ

satisfies the bounds p− ≤ p ≤ p0
+ of (3.7) and the corresponding lower bound s ≥ s̄0.

Differentiating (3.8) with respect to t shows that the time-derivative v = ∂ts satisfies

∂tv = ∂x(k′(s)v[∂x(pc(s)) + 1]) + ∂x(k(s)[∂x(p′c(s)v)]). (3.9)

We consider s as a given function that determines the coefficients of this linear equation for v. Because
of the uniform positivity k > 0 and p′c > 0, equation (3.9) for v is again a non-degenerate parabolic
equation. It is supplemented with the boundary condition v(L±, t) = 0. The idea is now to apply the
strong maximum principle to v in order to conclude v ≥ 0. This provides (3.6).

The argument can be made rigorous with a regularization of the boundary condition in L+. We use,
for εj ↘ 0, a sequence of C∞-functions pε

+ : [T−, 0] → R that are monotonically increasing and satisfy
pε
+ ≡ p− in the interval [T−, T− + ε]. The regularized boundary condition is now p(x = L+, t) = pε

+(t).
The corresponding solutions (sε, pε) and vε = ∂ts

ε satisfy (3.8) and (3.9), the boundary conditions
v(L+, t) = 0 and v(L+, t) = ∂tp

ε
+(t) ≥ 0. Furthermore, vε = 0 holds in t = T−. The maximum principle

for smooth functions yields the non-negativity of vε in the whole domain. For a sequence of functions
pε
+(t) that approximate p0

+ for ε → 0, the solutions of the ε-problem converge to a solution of the
original problem. Monotonicity properties of solutions remain valid in the limit and show ∂ts ≥ 0. The
non-negative function ∂ts can not vanish identically because of the initial and boundary conditions. Then
the strong maximum principle implies the strict inequality (3.6).

In order to conclude the second inequality of (3.7), we repeat the argument with the differentiated
equation, this time considering v = ∂xs. The non-negativity of v = ∂xs on the boundaries x = L± follows
from the a priori bounds on s, expressed in p− ≤ pc(s) + γ ≤ p0

+. A regularization argument as above
yields ∂xs ≥ 0. The strong parabolic maximum principle provides ∂xs(L+, t) > 0 for all t ∈ (T−, 0], since
s assumes its maximum at the right boundary (it is not constant by the left boundary condition). This
implies also the strict inequality ∂xs > 0 in the interior.

We emphasize that, during the time-span (T−, 0), the boundary conditions imply a pure wetting
process for equations (2.5)–(2.6). The monotonicity ∂ts ≥ 0 together with p = pc(s) + γ is consistent
with (2.6). The hysteresis relation has no effect in the time-span (T−, 0).

Initial values for the time-span [0, T+).
Our instability result for the hysteresis system is a consequence of properties of the evolution equation
(2.5)–(2.6) on the whole interval (T−, T+). On the interval (T−, 0), hysteresis was not relevant. Instead,
due to a decreased pressure boundary condition p+ < p0

+ on the upper boundary (see (3.2)), the hysteresis
relation (2.6) will be relevant for t > 0.



Instability of gravity wetting fronts for Richards equations with hysteresis 11

From now on, our analysis concerns the hysteresis system (2.5)–(2.6) on the time interval [0, T+). The
boundary conditions for the pressure and the initial condition for the saturation are given by

p(L±, t) = p±, s|t=0 = s1. (3.10)

Here, the initial saturation s1 is given as s1(x) := s(x, 0), where s is the solution of the system on (T−, 0].
From Lemma 3.1 we know that s1 ∈ C2([L−, L+],R) is strictly increasing in x.

For the subsequent analysis, a refined study of the situation at t = 0 is necessary. For t > 0, the
pressure value p+ at the right end point L+ is below the value pc(s1(L+)) + γ = p0

+. Assuming that γ
is sufficiently large, the hysteresis relation (2.6) allows that the pressure jumps to a lower value with an
unchanged saturation, i.e. s(x, t) = s1(x) for t > 0 sufficiently small and x < L+ sufficiently large. Our
next aim is to construct a function p1 : [L−, L+] → R which describes initial values for the pressure in
the sense that p(t) → p1 for t↘ 0.

For a given monotone saturation function s1 : [L−, L+] → R we consider the following system of
equations. The unknowns are the point x1 ∈ (L−, L+), the flux parameter q1 > 0, and a pressure
function p1 : [L−, L+] → R.

p1 = pc(s1) + γ on (L−, x1) (3.11)

k(s1)[∂xp1 + 1] = q1 on (x1, L+) (3.12)

p1(L+) = p+ (3.13)

p1(x1 + 0) = pc(s1(x1)) + γ (3.14)

q1 = (k(s1)[∂x(pc(s1)) + 1])|x1−0 (3.15)

In these equations, (3.12) is the evolution equation with ∂ts set to zero, while (3.14) and (3.15) express
the continuity of pressure and flux across x = x1.

We note that, on the left interval (L−, x1), the pressure p1 is determined by the algebraic relation
(3.11). Once that q1 > 0 is given, the ordinary differential equation (3.12) together with the initial
condition (3.13) determines p1 on the right interval (x1, L+). The two free parameters q1 and x1 must
be determined from the continuity relations (3.14) and (3.15).

For the subsequent construction we introduce the number qref > 0 as the flux at the outflow boundary
for t = 0,

qref := k(s1)[∂x(pc(s1)) + 1]|x=L−
. (3.16)

Due to Lemma 3.1, the reference flux qref is positive. Furthermore, again by Lemma 3.1, the differential
equation ∂x(k(s)[∂x(pc(s)) + 1]) = ∂ts ≥ 0 implies that, at time t = 0, the flux is monotonically
increasing in x and hence satisfies k(s1)[∂x(pc(s1)) + 1] > qref on (L−, L+). We define additionally a
reference pressure function pref : [L−, L+] → R as the solution of the ordinary differential equation

k(s1)[∂xpref + 1] = qref on (L−, L+) with pref(x = L−) = p− . (3.17)

The monotonicity of the flux function implies pref ≤ pc(s1) + γ and pref(L+) < pc(s1(L+)) + γ = p0
+.

Lemma 3.2 (Pressure system for t = 0) Let the initial saturation s1 ∈ C2([L−, L+],R) satisfy ∂xs1 > 0
on [L−, L+] and ∂x(k(s1)[∂x(pc(s1)) + 1]) > 0 on (L−, L+). Let the pressure boundary value p+ satisfy
pref(L+) < p+ < p0

+. Then problem (3.11)–(3.15) has a unique solution p1 ∈ C1([L−, L+],R), x1 ∈
(L−, L+), q1 > 0. There holds p1 ≤ pc(s1) + γ.

Proof We consider the map

A1 : [qref , qmax) 3 q 7→ p ∈ C1([L−, L+],R), (3.18)

where p is defined as the solution p = p1 of (3.12) and (3.13) to q1 = q. The number qmax > qref is
defined below. We note already here that, because of pref(L+) < p+, for q = qref , there holds p > pref on
[L−, L+]. We furthermore define the map

A2 : (qref , qmax) 3 q 7→ ξ1 ∈ [L−, L+], (3.19)



12 B. Schweizer

where ξ1 is the largest intersection point of the two pressure functions as in (3.11), i.e. a point with
p(ξ1) = pc(s1(ξ1)) + γ for p = A1(q). For q = qref we have, on the left boundary, p(L−) > pref(L−) =
p− = pc(s1(ξ1)) + γ, and on the right boundary we have p(L+) = p+ < p0

+ = pc(s1(L+)) + γ. Therefore,
an intersection point ξ1 = A2(q) exists for q = qref . By continuity of the above constructions, there exists
a maximal interval (qref , qmax) such that the intersection point A2(q) exists for all q ∈ (qref , qmax).

The value of q ∈ (qref , qmax) is now chosen in such a way that (3.15) is satisfied for q1 = q, p = A1(q)
and x1 = A2(q). We verify the existence of such a value q by analyzing relation (3.15) in the limits
q ↘ qref and q ↗ qmax. As a preparation we note the following monotonicity property. Increasing the
parameter q increases the values of ∂xp and hence decreases the values of p for p = A1(q) on the whole
interval [L−, L+]. Since pc(s1(.))+ γ is monotonically increasing in x ∈ [L−, L+], the largest intersection
point of the two graphs moves to the left: the map q 7→ ξ1 = A2(q) is monotonically decreasing.

The limit q ↘ qref is easily analyzed. The left hand side of (3.15) tends to qref while the right hand
side is strictly above that value (we exploit that the point x1 moves to the right when q is decreasing).
In particular, for q close to qref , the left hand side of (3.15) is smaller than the right hand side.

Regarding the limit q ↗ qmax we have to distinguish two cases. Let us assume that qmax is finite. Since
the intersection point A2(q) ceizes to exist at q = qmax, by monotonicity of A2 we can conclude that
A2(q) → L− for q ↗ qmax. In this case, the left hand side of (3.15) tends to a value larger than qref ,
while the right hand side tends to qref . In particular, relation (3.15) is satisfied for some q ∈ (qref , qmax).
On the other hand, in the case qmax = ∞, the left hand side of (3.15) tends to infinity while the right
hand side remains bounded. Therefore, also in this case we find q ∈ (qref , qmax) such that (3.15) holds.
In both cases we find the desired solution by setting q1 = q, x1 = A2(q), and, for p = A1(q),

p1(x) :=

{
pc(s1) + γ for x < x1

p(x) for x ≥ x1.

The inequality p1 ≤ pc(s1) + γ holds as an equality for x ≤ x1. By construction, we have (3.12)
and (3.15) satisfied, i.e. k(s1)[∂xp1 + 1] = q1 = (k(s1)[∂x(pc(s1)) + 1])(x1). The last expression was
assumed to be monotonically increasing in x. This implies that ∂xp1 < ∂x(pc(s1)) on (x1, L+) and thus
p1 ≤ pc(s1) + γ on [L−, L+]. The regularity of the solution can be read off from the ordinary differential
equation.

3.2 The free boundary problem for t ∈ (0, T+)

We now study the evolution equations (2.5)–(2.6) for t > 0. We expect the following qualitative behavior
of solutions. Due to the low pressure boundary condition on the right end point L+ we expect that, on
some interval (X(t), L+), the hysteresis relation (2.6) is satisfied with p < pc(s1) + γ and ∂ts = 0. On
the left interval (L−, X(t)) we expect further imbibition, i.e. that (2.6) is satisfied with p = pc(s) + γ

and ∂ts > 0.
Under these assumptions, by the evolution equation (2.5), the flux k(s1)[∂xp + 1] is constant on the

right interval. The equations are

k(s1)[∂xp+ 1] = q on {(x, t) : X(t) < x < L+} (3.20)

p(X(t) + 0, t) = pc(s1(X(t))) + γ (3.21)

p(L+, t) = p+ (3.22)

We emphasize that the boundary values for p in (3.21) and (3.22) are known (once that X(t) is known).
Equation (3.20) can be written as ∂xp = −1+ q/k(s1) and integrated for every q ∈ R. The monotonicity
in q shows that, for given X(t) := ξ, the equations (3.20)–(3.22) can be solved with some appropriate
parameter q =: Q(ξ).

We note that Q is decreasing in ξ. For ξ2 > ξ1, the pressure values satisfy pc(s1(ξ2)) > pc(s1(ξ1)).
Additionally, the interval (ξ2, L+) is shorter than the interval (ξ1, L+). This results in Q(ξ2) < Q(ξ1).
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On the left domain (L−, X(t)) we demand p = pc(s) + γ and the equations

∂ts = ∂x (k(s)[∂xp+ 1]) on {(x, t) : x < X(t)} (3.23)

p(X(t)− 0, t) = pc(s1(X(t))) + γ, p(L−, t) = p− (3.24)

(k(s)[∂xp+ 1]) (X(t)− 0, t) = Q(X(t)) (3.25)

The equations demand with (3.24) and (3.21) the continuity of the pressure, and with (3.20) and (3.25)
the continuity of the flux across X(t). One may regard (3.24) as the boundary conditions for p on the
left domain, and (3.25) as a transmission condition that determines the free boundary X(.).

The initial conditions are given as

X(t = 0) = x1, s(t = 0) = s1, (3.26)

with x1 and p1 given by Lemma 3.2. For the pressure we can expect to recover p(t = 0) = p1.

The analysis of this section is based on the following principal assumption.

Assumption 3.3 Existence and regularity. We assume that the one-dimensional free boundary problem
(3.20)–(3.25) has a solution

p ∈ L∞(0, T ;H2((L−, L+),R)), X ∈ C0([0, T+], (L−, L+)) ∩ C1((0, T+),R), (3.27)

with s monotonically non-decreasing in t on a cylinder (L−, L+)× [0, ε0) for some ε0 > 0.
Smooth dependence. Let (−δ0, δ0) 3 δ 7→ sδ

1 ∈ C2([L−, L+]) be twice differentiable with s01 = s1 and let
pδ be the corresponding solution of the one-dimensional free boundary problem. Then, choosing a smaller
δ0 > 0 if necessary, the map (x, t, δ) 7→ sδ(x, t) is twice continuously differentiable in δ.

Remarks on Assumption 3.3.

1.) Regularity. The assumption demands the existence and regularity of a solution to the free boundary
problem. We emphasize that smoothness in t = 0 is not demanded. Regarding the regularity for t > 0
we note that the boundary value problem on the left domain, given by (3.23)–(3.25), can be transformed
onto a fixed domain. We may use the independent variable y ∈ (−1, 0), setting

y :=
x−X(t)
X(t)− L−

, u(y, t) := p(x, t) = p(y(X(t)− L−) +X(t), t).

For the new unknown u : (−1, 0)× (0, T+) → R derivatives are calculated as follows.

∂yu = (X(t)− L−) ∂xp, ∂tu = ∂tp+R(y, t)∂xp for R(y, t) = (1 + y) ∂tX(t).

These rules allow to transform the parabolic problem on a variable domain (3.23) into a parabolic
problem for u on the fixed domain (−1, 0).

We note that the smoothness assumption can be weakened for our result. We only need that on a
subset of points (x, t) with arbitrarily large fraction of its measure, the regularity in δ holds. In particular,
regularity in δ close to the free boundary and close to time t = 0 is not required.

2.) Monotonicity of s. From a physical point of view, the monotonicity of s is very natural: the
pressure variations across the domain are given, therefore the saturation cannot decrease, at least if
γ > 0 is chosen sufficiently large. Regarding the mathematical point of view, we note that s is non-
decreasing for x > X(t) by (3.28) and that s satisfies a parabolic equation with initial values ∂ts > 0 on
x < X(t). Therefore, just like the regularity properties, the monotonicity property can be expected to
hold.

An immediate consequence is that the free boundary point X(.) is monotonically non-decreasing in
t ∈ (0, ε0). To see this, it suffices to recall that, by (3.24), X(t) is an intersection point of the two graphs
x 7→ p(x, t) and x 7→ pc(s1(x)) + γ. Since p = pc(s) + γ for x ≤ X(t) is non-decreasing in t and pc(s1) is
increasing in x, the intersection point can not move to the left.

3.) Another interpretation of the assumption. We expect that a stronger version of Theorem 2.1 is
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valid and that the hysteresis system posesses a solution also in the general case. Then Assumption 3.3
is a statement on the regularity and on structural properties of solutions. It regards the existence of an
interface point X(.) that separates a region with {∂ts > 0} from a region with {∂ts = 0}.

4.) On the verification of the assumption. Concerning the verification of Assumption 3.3 we mention
that an existence result for a similar one-dimensional free boundary problem has been derived in [14].
The main idea is to transform (3.23)–(3.25) to a fixed domain, to consider Q as a given smooth function
and to modify the initial conditions in order to have a finite speed of X in t = 0. Iteration techniques
and monotonicity properties of the free boundary (see Lemma 3.5) provide existence and regularity. The
proof is lengthy and is therefore not performed here, but intended to be included in a future work.

Consistency.
We recall that the saturation can be recovered from a solution of the free boundary problem by setting

s(x, t) :=

{
p−1

c (p(x, t)− γ) if t ≤ 0 or t > 0, x < X(t)

s1(x) else.
(3.28)

We next want to establish the link between the one-dimensional free boundary problem and the original
hysteresis problem. We verify that every solution as in Assumption 3.3 is a solution of the hysteresis
problem. The hypothesis ∂ts ≥ 0 is checked for solutions in the subsequent Lemma 3.5.

Lemma 3.4 (Consistency) Let p and X be a solution for the free boundary problem (3.20)–(3.26) as
described in Assumption 3.3. Let the initial values s1 = s|t=0 be given by a solution s of the hysteresis
system on (T−, 0) as constructed in Lemma 3.1, and by x1 of Lemma 3.2. Then s of (3.28) has, for
every t0 ∈ (T−, 0), the regularity

∂xs, ∂ts ∈ L∞(t0, T+;L2((L−, L+),R)). (3.29)

If γ > 0 is sufficiently large and if ∂ts ≥ 0 is satisfied, the pair (p, s) is a solution to the one-dimensional
hysteresis system (2.5)–(2.6) on (T−, T+).

Proof Regularity property (3.29). We first check the regularity on the three subdomain of (L−, L+) ×
(0, T+). For t < 0, i.e. t ∈ (t0, 0), the regularity of the solution is a well-known property of the parabolic
evolution equation for p = pc(s) + γ. For t ∈ (0, T+) and x > X(t), the saturation s is given by
s1(x), such that ∂ts = 0 and ∂xs = ∂xs1 hold on that domain. For t ∈ (0, T+) and x < X(t), the
regularity p = pc(s) + γ ∈ L∞H2 was demanded in Assumption 3.3. Since pc has a twice differentiable
inverse, the regularity carries over to s. The differential equation then implies also a uniform bound for
∂ts(., t) ∈ L2((L−, X(t)),R).

It remains to consider the interfaces t = 0 and x = X(t). The saturation s has the same traces on
both sides of x = X(t) by (3.24) and (3.28). In t = 0, the saturation has no jump for x > x1 by the
construction (3.28). In t = 0 and for x < x1, the saturation has no jump because of the initial condition
s1 in the evolution equation (3.23) for p = pc(s) + γ. We conclude that both ∂xs and ∂ts contain no
singular parts and hence that (3.29) holds.

Solution properties. We have already seen that the two distributions ∂ts and ∂xp contain no singular
parts. Furthermore, the flux function k(s)[∂xp+ 1] has no jump in x = X(t) for t > 0. This follows from
the assumption p ∈ L∞H2 which, in turn, is consistent with the flux continuity of equation (3.25). On the
basis of the regularity properties, it only remains to verify that (2.5) and (2.6) hold almost everywhere.

For t < 0 and for t > 0 with x < X(t), the evolution equation is imposed explicitly with p = pc(s)+γ.
Because of ∂ts ≥ 0, both relations (2.5) and (2.6) are satisfied in these regions. In the domain t > 0 and
x > X(t), the saturation is s = s1 such that the time derivative is ∂ts = 0. Relation (3.20) then implies
(2.5) on that domain.

It remains to verify relation (2.6) for t > 0 and x > X(t). Because of ∂ts = 0 on that domain,
we only have to check that pc(s1) − γ ≤ p ≤ pc(s1) + γ. Since the solutions are bounded, the lower
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bound pc(s1) − γ ≤ p is satisfied for γ sufficiently large. It remains to verify the upper bound p ≤
pc(s1) + γ. There holds p(X(t)) = pc(s1(X1(t))) + γ by (3.21). Using (3.20) and (3.25) we conclude
(k(s1)[∂xp+1])(X(t)+ 0, t) = q = (k(s)[∂xp+1])(X(t)− 0, t) ≤ (k(s1)[∂x(pc(s1))+ 1])(X(t)), where the
last inequality is a consequence of p ≥ pc(s1) + γ for x < X(t), which is due to ∂tp = p′c(s)∂ts ≥ 0. The
expression k(s1)[∂x(pc(s1)) + 1]) is monotonically increasing in x > X(t) such that the ∂xp ≤ ∂x(pc(s1))
holds in this domain. This implies p ≤ pc(s1) + γ for x > X(t), which concludes the proof.

We note that the continuity of fluxes of (3.25) (together with the continuity of the saturation) implies
that p(., t) ∈ H2((L−, L+)) can be expected. On the other hand, the saturation s will not have this
regularity, since, in general, ∂xs has a jump across x = X(t). This jump is visible in Figure 1.

Qualitative properties of solutions.
We next investigate the qualitative behavior of solutions to the free boundary problem and, in particular,
its monotonicity properties. The result will be that the saturation increases everywhere, while the free
boundary point X moves to the right. Since Q is a decreasing function, this also yields that the flux
parameter q(t) of (3.20) is decreasing: the inflow at the upper boundary is decreasing in t, but, as we
will see in the next subsection, it approaches a value q∞ > 0 for t→∞.

Lemma 3.5 (Monotonicity properties of solutions) Let p and X be a solution of the free boundary prob-
lem (3.20)–(3.26) as in Assumption 3.3 with initial values s1 = st=0 given by a solution s of the hysteresis
system on (T−, 0). Then the solution satisfies, for number smin, smax that depend on initial and boundary
conditions and on pc the maximum principle smin ≤ s ≤ smax for all times. Furthermore, for all t > 0,
we have the monotonicity properties

∂ts ≥ 0, ∂xs ≥ 0, ∂tX ≥ 0. (3.30)

Proof We have derived with (3.29) of Lemma 3.4 the regularity ∂xs, ∂ts ∈ L∞(0, T+;L2((L−, L+),R)),
and we have assumed the regularity X ∈ C1((0, T+)). Therefore, the non-negativity statements of (3.30)
are well-defined in the sense of measurable functions.

Concerning the maximum principle for the saturation: s solves a parabolic equation and hence satisfies
a maximum principle on the left domain. It is given by the fixed function s1 on the right domain, which
obeys also a maximum principle by construction on (T−, 0). The continuity condition on the free boundary
point implies the maximum principle on the whole space-time domain.

We next observe that the three claimed monotonicities hold on a small time-interval (0, ε1). Indeed,
the monotonicity of s in t ∈ [0, ε0) was demanded in Assumption 3.3. This also implies that X is non-
decreasing on [0, ε0), see remark 2.) after Assumption 3.3. In t = 0, the saturation is strictly monotonic
in x by ∂xs = ∂xs1 > 0. On x > X(t) holds s = s1 and hence s is monotonic in x for all t ∈ (0, ε0) and
x > X(t).

It remains to show the monotonicity ∂xs ≥ 0 on the left domain for small times, i.e. for t ∈ (0, ε1)
and x < X(t). This can be concluded with a maximum principle argument (similar to Case 1 below).
The function v = ∂xs is initially non-negative, and v is non-negative on the left boundary x = L−
by the maximum principle for s. Furthermore, for t = 0, using ∂x(pc(s1)) > 0, the flux value satisfies
q = Q(X(0)) > k(s1(X(0))). Since X, Q, s1, and k are continuous, for small ε1 > 0, the inequality
remains valid and we have Q(X(t)) > k(s1(X(t))) for all t ∈ (0, ε1). The flux condition (3.25) then
implies ∂xp = ∂x(pc ◦ s) > 0 in (t,X(t) − 0) and hence positivity of v = ∂xs along the right boundary.
Since v solves a parabolic equation on a non-decreasing domain, the maximum principle provides v ≥ 0
for all t ∈ (0, ε1), x ∈ (L−, X(t)).

Definition of t∗. We define the time instance t∗ > 0 as the first time instance in which one of the three
monotonicity properties fails to hold. More precisely, we set

t∗ := sup {t∗ ∈ [0, T+] : for all t ∈ (0, t∗) holds ∂tX ≥ 0 and ∂ts ≥ 0, ∂xs ≥ 0 for a.e. x} .



16 B. Schweizer

We note that t∗ is well-defined and satisfies t∗ ≥ ε1 by the above considerations.

For a contradiction argument, let us assume t∗ < T+. In the following, we study properties of solutions
in the time instance t = t∗, distinguishing three cases. Once we have derived a contradiction, the lemma
is shown.

Case 1. ∂xs(x, t∗) = 0 for some L− ≤ x ≤ X(t∗). We consider the function v = ∂xs as in Lemma 3.1.
The function v is non-negative on (0, t∗) by construction of t∗. Furthermore, the function v satisfies the
parabolic equation (3.9) on a strictly increasing interval, and hence satisfies a maximum principle. In
particular, the minimum x must lie on the boundary. The case x = L− is excluded by the fact that the
saturation is non-decreasing on (0, t∗) and the left boundary condition is constant in time. We therefore
have the minimum in x = X(t∗).

We now read (3.23) as an elliptic equation for p with the non-negative right hand side ∂ts ≥ 0. The sat-
uration (and, hence, the pressure p = pc(s)+γ) is maximal at the right boundary x = X(t∗) by construc-
tion of t∗. The Hopf Lemma for elliptic inequalities then implies ∂xp(x, t∗) = p′c(s(x, t∗))∂xs(x, t∗) > 0,
a contradiction.

Case 2. ∂tX(t∗) = 0. We use v = ∂ts, which solves a parabolic equation. Because of ∂tX(t∗) = 0
and (3.24) for p = pc(s) + γ we find ∂tp(X(t∗), t∗) = 0 and hence v = ∂ts = 0 in X(t∗). This yields
that (X(t∗), t∗) is a minimum of the non-negative function v, which solves a parabolic equation. In this
minimum, there must hold ∂xv < 0 by Hopf’s lemma for parabolic equations. This is in contradiction
with the time-derivative of equation (3.25), which provides ∂t∂xp(X(t∗), t∗) = 0 under our hypothesis
∂tX(t∗) = 0.

Case 3. ∂ts(x, t∗) = 0 for some L− < x ≤ X(t). Arguing as above for the non-negative function
v = ∂ts, we know that the minimum with value 0 is necessarily attained at x = X(t∗). Then (3.24)
yields, in x = X(t)− 0,

0 = p′c(s)∂ts = ∂tp = p′c(s) ∂xs1 ∂tX − p′c(s) ∂xs ∂tX.

Since Case 2 is already excluded, we have ∂tX(t∗) > 0 and conclude ∂xs1 = ∂xs in X(t)−0. This implies
for the flux

Q(X(t))
(3.25)
= (k(s)[∂x(pc(s)) + 1]) (X(t)− 0, t) = (k(s1)[∂x(pc(s1)) + 1]) (X(t))

> (k(s1)[∂x(pc(s1)) + 1]) (X(0)) = Q(X(0)),

the inequality since the flux for t = 0 is strictly increasing in x, ∂x (k(s1)[∂x(pc(s1)) + 1]) = ∂ts|t=0 > 0.
On the other hand, as observed after (3.22), Q is non-increasing. In particular, for non-decreasing X, the
flux Q(X(t)) is non-increasing in t. This provides the desired contradiction in the third and last case.

3.3 Long-time behavior of solutions

For all times t > 0, the saturation on x < X(t) continues to increase by Lemma 3.5. The relevant
question is whether the flux at the free boundary point X(t) (which is related to the front-speed of the
wetting front) tends to zero for t→∞, or if it remains finite. The latter case would correspond to a front
that continues to proceed with finite speed. Our first aim is now to collect equations that determine the
behavior of solutions for large times.

In the free boundary problem, the equations for the right domain suggest a limit problem. If x∞
denotes the limiting position of the free boundary X(t) (we recall that X is monotonically increasing
and bounded by L+), we can expect that the limiting profile satisfies (3.20) with the right boundary
condition (3.22) and the left boundary condition (3.21), which is formulated in (3.31) and (3.32) below.

It remains to formulate a last relation that determines the limiting position x∞ of the free boundary. We
expect that the increasing saturation on the left domain leads to an almost vanishing slope ∂xs(X(t)−0, t)
and hence to an almost vanishing gradient ∂xp in the limit of large times. By the continuity (3.25) we
therefore expect that the flux q coincides with the permeability k(s1) for large times, which expresses



Instability of gravity wetting fronts for Richards equations with hysteresis 17

that, in the free boundary point, the flow is purely gravity driven. The limit relation is expressed with
(3.33), where we think of a given value of ζ with |ζ| small. The next lemma is devoted to the limit system
which determines q∞ > 0, x∞ < L+ and p : (x∞, L+) → R.

k(s1)[∂xp+ 1] = q∞ on x ∈ (x∞, L+), (3.31)

p(x = L+) = p+, p(x∞) = pc(s1(x∞)) + γ, (3.32)

k(s1(x∞)) = q∞ + ζ. (3.33)

Lemma 3.6 (Solvability of system (3.31)–(3.33) for large times) Let a family of initial values s1 be
given by a twice differentiable map (−δ0, δ0) 3 δ 7→ sδ

1 ∈ C2([L−, L+]), such that all sδ
1 are as in

Lemma 3.2 with p+ ∈ (pδ
ref(L+), p0

+). Then there exists δ1 > 0 and ζ1 > 0 such that system (3.31)–(3.33)
posesses, for all ζ ∈ (−ζ1, ζ1) and all δ ∈ (−δ1, δ1) a unique solution

x∞ ∈ (L−, L+), q∞ > 0, p ∈ H2((x∞, L+),R).

The solution depends continuously on δ and ζ.

Proof The construction is very similar to the one for Lemma 3.2. Indeed, (3.12)–(3.14) coincide with
(3.31)–(3.32). The only difference is the modified flux condition in the free boundary point.

We use q ∈ [0, q1] as a parameter, where q1 is the flux value of (3.12) with corresponding free boundary
point x1. Once more, we denote by p =: A1(q) the solution of (3.31) to q∞ = q, with the right boundary
condition p(x = L+) = p+. The rightmost intersection point ξ ∈ [L−, L+] of the graphs of p = A1(q)
and pc(s1(.)) + γ is denoted by A2(q) := ξ. The definitions are just as in Lemma 3.2. In particular, the
map q 7→ A2(q) is again monotonically non-increasing.

We claim that the map A2 is well-defined on [0, q1]. Indeed, for q ≤ q1, there holds ∂xp ≤ ∂xp1 and
therefore, since the same values are assumed in L+, the comparison result p ≥ p1. The function p1 has
an intersection point with pc ◦ s1 + γ, namely x1. Since on the right boundary p(L+) = p+ < p0

+ =
pc(s1(L+)) + γ, also p and pc ◦ s1 + γ have an intersection point ξ ≥ x1.

It remains to find q = q∞ such that also (3.33) is satisfied. We only have to evaluate the two sides of
(3.33) in the end-points of the q-interval. For q = 0, the number k(s1(A2(0))) is positive, hence greater
than q. Instead, for q = q1, there holds A2(q1) = x1 and hence

k(s1(A2(q1))) = k(s1(x1)) < (k(s1)[∂x(pc(s1)) + 1]) (x1) = q1

by (3.15). The continuity of the involved maps and the intermediate value theorem provide the existence
of q∞, such that (3.33) holds as an equality.

Uniqueness of solutions. Let q∞ and x∞ define a solution p of the system. We observe that for no
other x > x∞ the function p has an intersection with pc ◦ s1 + γ. This follows immediately from

k(s1)[∂xp+ 1] = q∞ = k(s1(x∞)) ≤ k(s1) and hence ∂xp ≤ 0,

while ∂x(pc ◦ s1) > 0. Therefore all solutions of (3.31)–(3.33) are detected as x∞ = A2(q∞) by the above
construction, which used the rightmost intersection point in A2. But k(s1(A2(q))) in non-increasing in
q, while the identity map q 7→ q is strictly increasing in q. Therefore, (3.33) has at most one solution q∞.

Continuous dependence. All the constructed maps are continuous in s1 and ζ. Additionally, the identity
q 7→ q has the derivative 1, which is bounded from below. We conclude that the zero q∞ depends
continuously on δ and ζ.

Our interest is the limit behavior of solutions to (3.20)–(3.25) for large times. We claim that, in the
limit of large t, the flux q(t) = Q(X(t)) approaches the limit flux q∞ of the above lemma (for ζ = 0).
Indeed, for increasing t, by Lemma 3.5, the point X(t) is increasing, the flux q(t) = Q(X(t)) of (3.20) is
decreasing, and, accordingly, the solution p on the right interval is increasing. By boundedness of these
quantities, it follows that there exist limits

X(t) ↗ x̃∞, q(t) ↘ q̃∞, p(., t) ↗ p̃(.) uniformly on [x̃∞, L+].
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for t ↗ ∞. Furthermore, (3.20)–(3.22) imply equations (3.31) and (3.32) for the limit functions. If we
can additionally verify (3.33) with ζ = 0, by the uniqueness statement of Lemma 3.6, we have x̃∞ = x∞
and q̃∞ = q∞, and hence the convergence to the limit determined by (3.31)–(3.33).

The true proof is more involved since we have to deal with the dependence on δ, the dependence on
the left end-point L−, and since we need a uniform convergence for t→∞. Our result will be based on
the following claim on ordinary differential equations. We use once more the Kirchhoff transformation
and the monotone function Φ : R → R with Φ′(s) = k(s)p′c(s).

Claim 3.7 Let numbers smin < smax and qmin < qmax be given and let Φ ∈ C1(R) be strictly increasing.
For arbitrary ε1 > 0, there exist L0, ε2 > 0 such that the following holds. Let s : (−L0, 0) → [smin, smax]
solve

∂x(Φ(s)) + k(s) = q + f for some q ∈ [qmin, qmax], f : (−L0, 0) → R with ‖f‖L∞ < ε2. (3.34)

Then

|k(s(0))− q| < ε1. (3.35)

Proof Given ε1, we choose L0 large enough, such that every solution of the differential equation
∂x(Φ(s)) + k(s) = q on (−L0, 0) solves |k(s(0)) − q| < ε1/2. For fixed initial value s(−L0) and fixed q

this is possible since the differential equation provides exponential convergence to the solution s0 ∈ R
of k(s0) = q. The lower bound L0 for the interval length can be chosen with continuous dependence on
q and on s(−L0). Since the initial values s(−L0) and the values of q are chosen in a compact interval,
there exists L0 > 0 satisfying the uniform estimate.

Let us now assume that (3.35) does not hold for all f . Then we find a sequence fj → 0 in L∞((−L0, 0)),
qj → q, and solutions sj to ∂x(Φ(sj)) + k(sj) = qj + fj with |k(sj(0)) − qj | ≥ ε1. But then, by the
compactness of Arzela-Ascoli, for a subsequence, the solutions sj converge uniformly to a solution s of
the limit problem, which satisfies |k(s(0))−q| < ε1/2 by the first step. We find the desired contradiction.

In the subsequent lemma we consider once more a twice differentiable sequence of initial values
[−δ0, δ0] 3 δ 7→ sδ

1 ∈ C2([L−, L+]) with s01 = s1, all sδ
1 strictly increasing with boundary conditions

(pc + γ)−1(p0
+) and (pc + γ)−1(p−). The numbers δ1 and ζ1 are those of Lemma 3.6. We assume that L+

is large enough in order to have the initial position of the free boundary positive, x1 > 0.

Lemma 3.8 (Behavior for large times) We consider solutions of the free boundary problem (3.20)–
(3.25) on (0, T ), with position Xδ(t) and flux constant qδ(t) as in Assumption 3.3. The solutions depend
on initial values sδ

1 as in Lemma 3.6. Let furthermore xδ
∞, qδ

∞, and δ1 be as in Lemma 3.6. Then, for
every ε > 0, there exist L0 > 0 and m∗ > 0 independent of T such that, for all L− ≤ −L0,

∃N ⊂ [−δ1, δ1]× [0, T ] with two-dimensional Lebesgue-measure |N | < m∗, (3.36)

such that ∣∣Xδ(t)− xδ
∞

∣∣ +
∣∣qδ(t)− qδ

∞
∣∣ < ε ∀(δ, t) ∈ [−δ1, δ1]× [0, T ] \N. (3.37)

Proof We study solutions of the free boundary problem for various L− < 0 and δ ∈ [−δ1, δ1]. We
consider (3.20)–(3.22) for a fixed time instance t, and compare these equations with (3.31)–(3.32). The
continuous dependence on ζ in Lemma 3.6 provides the existence of ε1 > 0 (depending on ε, but not on
L− and t) such that, for all |δ| ≤ δ1,

|k(sδ
1(X

δ(t))− qδ(t)| < ε1 ⇒ |Xδ(t)− xδ
∞|+ |qδ(t)− qδ

∞| < ε. (3.38)

We can satisfy the smallness requirement of the left hand side with the help of Claim 3.7. That claim
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provides L0 > 0 and ε2 > 0 (both depending on ε1, but not on δ and t) such that, for

‖∂x(Φ(sδ)) + k(sδ)− qδ(t)‖L∞((−L0,Xδ(t))) < ε2, (3.39)

the condition |k(sδ
1(X

δ(t))− qδ(t)| < ε1 is satisfied by (3.35). We therefore define

N :=
{
(δ, t) ∈ [−δ1, δ1]× [0, T ] : ‖∂x

(
∂x(Φ(sδ)) + k(sδ)

)
‖L1((−L0,Xδ(t))) ≥ ε2

}
. (3.40)

For all (δ, t) /∈ N holds (3.39), since qδ(t) is the value of ∂x(Φ(sδ)) + k(sδ) in the free boundary point
Xδ(t). Therefore (3.37) is satisfied.

It remains to study the measure of N . We calculate, using the evolution equation and ∂ts
δ ≥ 0,

ε2|N | ≤
∫ δ1

−δ1

∫ T

0

∫ Xδ(t)

−L0

|∂ts
δ| ≤

∫ δ1

−δ1

(L+ + L0)(smax − smin) = 2δ1(L+ + L0)(smax − smin).

We find

|N | ≤ 2δ1(L+ + L0)(smax − smin)
ε2

=: m∗(ε).

This concludes the proof.

4 Proof of the instability result

We now turn to the higher dimensional problem and prove our main result, Theorem 1.1. It asserts
that the hysteretic Richards equation with time-dependent boundary data shows spatial instability. Our
starting point is a solution (s, p) of the one-dimensional problem (2.5)–(2.6) to initial and boundary data
given by numbers s0, p−, p0

+, and p+. Under natural assumptions on these numbers, the qualitative
behavior of the solution (s, p) was analyzed in Section 3.

Our aim is the verification of the instability property (2.11) of Definition 2.2 for this quite general
one-dimensional solution. We will be able to show the result even for the large deviation ε = 1. We
recall that the additional spatial variables are y ∈ Y = [0, Ly)n. The goal is to construct, given a small
ρ > 0, numbers T±, L±, Ly ∈ R, a perturbation w ∈ C1((L−, L+) × Y ) of the initial data and a source
f ∈ C1((L−, L+) × Y × (T−, T+)), both of size ρ, such that the corresponding solution to the higher
dimensional problem deviates by more than ε from the planar solution.

Construction of w and f .
Let (s, p) be a one-dimensional solution as in Section 3. To introduce an x-dependence of the initial
perturbation we use an arbitrary nonnegative function

w1 ∈ C∞c ((0, L+),R) with ‖w1‖L1 ≤ 1. (4.1)

We denote by (sδ, pδ) the one-dimensional solution to the perturbed initial values s0(x) + δw1(x) for
δ ∈ R. We emphasize at this point that the initial values are not necessarily increasing in x, but the
solution sδ

1 = sδ(t = 0) is increasing in x for small δ, such that the analysis of Section 3 can be applied.
We next construct a higher dimensional perturbation of the planar initial data s(x, y) = s(x). For

notational convenience we assume from now on n = 1 and y ∈ (0, Ly) ⊂ R1. To treat the case n > 1 it
is sufficient to replace y by its first component y1 in the sequel. As a y-periodic perturbation we use

w2 ∈ C∞((0, L+)× [0, Ly),R), w2(x, y) := w1(x) sin(2πy/Ly). (4.2)

Later on, we will consider the small perturbation w = ρw2 of the initial values. We construct a comparison
solution (s̃, p̃) by juxtaposing solutions of one-dimensional problems, treating y ∈ [0, Ly) only as a
parameter. More precisely, we define (x, t) 7→ (s̃(x, t, y), p̃(x, t, y)) as the solution of the one-dimensional
system (2.5)–(2.6) with initial condition

s̃(x, t = 0, y) = s0(x) + ρw2(x, y). (4.3)
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In other words, the functions (x, t) 7→ (s̃, p̃)(x, t, y) are the one-dimensional solutions with

s̃(x, t, y) = sδ(x, t) to sδ
0(x) = s0(x) + δw1(x) for δ = ρ sin(2πy/Ly). (4.4)

In particular, the functions are not solutions of the two-dimensional homogeneous system. But they do
satisfy p̃ ∈ pc(s̃) + γ sign(∂ts̃) almost everywhere. Furthermore, the conservation law is satisfied up to a
small error,

∂ts̃−∇ · (k(s̃)[∇p̃+ ex]) = {∂ts̃− ∂x (k(s̃)[∂xp̃+ 1])} − ∂y (k(s̃)∂yp̃) . (4.5)

We conclude that (s̃, p̃) solves (2.7)–(2.8) with

f = −∂y (k(s̃)∂yp̃) . (4.6)

Lemma 4.1 For some constant C1 = C1(L−, T+) > 0 the source function f of (4.6) satisfies

1
Ln

y

‖f‖L1((L−,L+)×(0,Ly)×(T−,T+)) ≤ C1ρL
−2
y . (4.7)

Proof It was part of Assumption 3.3 that the map δ 7→ (sδ(x, t), pδ(x, t)) is two times continuously
differentiable in a neighborhood of δ = 0, with uniformly bounded first and second derivatives for x and
t in compact intervals. In particular, the map y 7→ s̃(x, t, y) is differentiable with all derivatives bounded
by some constant C. By (4.4), for |ρ| ≤ 1, it has the derivatives

|∂y s̃(x, y, t)|2 ≤ |∂δs
ρ sin(2πy/Ly)(x, t) ρ cos(2πy/Ly)2π/Ly|2 ≤ CρL−2

y , (4.8)

|∂2
y s̃(x, y, t)| ≤ ‖∂2

δ s‖∞ (2πρ/Ly)2 + ‖∂δs‖∞ ρ (2π/Ly)2 ≤ CρL−2
y , (4.9)

and similarly for p̃. Formula (4.6) for f together with the differentiability of k implies (4.7).

In the subsequent lemma we assume that (sδ, pδ) are solutions of the one-dimensional problem to
initial values s0(x) + δw1(x) with |δ| ≤ 1. To this family of solutions, Lemma 3.6 provides 0 < δ1 ≤ 1
with a continuity property of qδ

∞, and Lemma 3.8 provides a smallness property for |qδ(t) − qδ
∞|. The

result in the next statement is that, for many values of δ, the solution sδ differs considerably from the
solution s0 to δ = 0.

Lemma 4.2 (Flux variation in the one-dimensional problem) Let δ ∈ [−δ1, δ1] and let (sδ, pδ) be one-
dimensional solutions to initial values s0(x) + δw1(x). Let qδ(t) denote the corresponding flux. We set
Mδ := (δ1/2, δ1) ⊂ (−δ1, δ1) with |Mδ| = δ1/2.

Then there exists εq > 0 such that, for any fraction 0 < Θ < 1, there exist constants L0, T0 > 0, such
that, for all T > T0 and all L− < −L0, there exists a set M ⊂ Mδ × [0, T ] of measure |M | > Θ|Mδ|T
such that

qδ(t)− q0(t) ≥ εq ∀(δ, t) ∈M. (4.10)

Proof We start with the construction of εq > 0. Loosely speaking, we only have to make sure that
qδ
∞ > q∞ + 2εq for many values of δ.

Step 1. Limiting fluxes. We analyze the system (3.31)–(3.33), which determines the limiting speed q∞
for arbitrary values of the one-dimensional initial saturation s0. For the perturbed initial values s0 + δw1

we denote the corresponding limiting speed by qδ
∞. The comparison principle for the parabolic system

on the time interval (T−, 0) implies that the values of the saturation in t = 0 are ordered. For δ > 0,

sδ
1 := sδ(t = 0) ≥ s01 = s0(t = 0),

with strict inequality sδ
1 > s01 on (0, L+). We claim that this implies

qδ
∞ > q∞. (4.11)

In order to show (4.11) we argue by contradiction and assume that qδ
∞ ≤ q∞. We first exploit (3.33)
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with ζ = 0, sδ
1 ≥ s1, and monotonicity of k to find

k(s1(xδ
∞)) ≤ k(sδ

1(x
δ
∞)) = qδ

∞ ≤ q∞.

The monotonicity of k ◦ s1 in x then yields xδ
∞ ≤ x∞. The differential equation (3.31) now implies for

the limiting pressure functions p and pδ on (x∞, L+)

∂xp
δ =

qδ
∞

k(sδ
1)
− 1 ≤ q∞

k(sδ
1)
− 1 <

q∞
k(s1)

− 1 = ∂xp.

The identical boundary conditions p(x = L+) = p+ = pδ(x = L+) imply the strict inequality pδ > p

on (x∞, L+). The point xδ
∞ is defined as the maximum of pδ, and pδ lies above p, hence we conclude

pδ(xδ
∞) > p(x∞). In particular, exploiting (3.33) and (3.32),

qδ
∞ = k(sδ

1(x
δ
∞)) = (k ◦ (pc + γ)−1)(pδ(xδ

∞)) > (k ◦ (pc + γ)−1)(p(x∞)) = k(s1(x∞)) = q∞.

This is in contradiction with our assumption qδ
∞ ≤ q∞, hence (4.11) is verified.

Step 2. Choice of εq, T0 and L0. By inequality (4.11), we have qδ
∞ − q∞ > 0 for all δ ∈ (0, δ1). By the

continuity result of Lemma 3.6, for Mδ = (δ1/2, δ1), we find εq > 0 such that

qδ
∞ − q∞ ≥ 2εq∀δ ∈Mδ.

We are now given Θ < 1, and our aim is to find numbers T0, L0 > 0 with the desired property. Lemma
3.8 with ε := εq/2 implies the existence of L0 > 0 and m∗ > 0. We use this number L0 and it remains to
choose T0 based on the given values of m∗ and Θ. For all (δ, t) ∈ [−δ1, δ1]× [0, T ] \N we find, by (3.37)
and the triangle inequality,

|qδ(t)− q0(t)| ≥ |qδ
∞ − q∞| − |q0(t)− q∞| − |qδ(t)− qδ

∞| ≥ 2εq − εq/2− εq/2 = εq.

Choosing T0 large enough we achieve that the portion of N (which has measure at most m∗, independent
of T ) in the set Mδ × [0, T ] is smaller than 1−Θ. Setting M = Mδ × [0, T ] \N , this concludes the proof.

Proof of Theorem 1.1. We actually prove a stronger result, namely (2.11) for any ε > 0. Let therefore
ε > 0 be arbitrary, the choice ε = 1 provides a proof of the theorem. Let now ρ be an arbitrary (small)
positive number, describing the size of the initial perturbation w and of the source f . Our aim is to find
T±, L±, Ly > 0, w, and f as in (2.11).

We choose δ1 ≤ ρ with the properties as in Lemma 3.6. Upon lowering ρ > 0, we may assume ρ = δ1.
We now consider, as in (4.1)– (4.3), s̃(x, t, y) = sδ(x, t) with δ = ρ sin(2πy/Ly), and f as in (4.6). We
set T− = −1 and choose L+ large enough to satisfy x1 > 0.

Step 1. Smallness of w and f . The choice of w implies

1
Ln

y

‖w‖L1((L−,L+)×Y ) =
1
Ln

y

∫
Y

∫ L+

L−

ρw1(x)| sin(2πy/Ly)| dx dy ≤ ρ. (4.12)

Regarding f we have to satisfy

1
Ln

y

‖f‖L1((L−,L+)×Y×(T−,T+)) ≤ ρ. (4.13)

Relation (4.7) for the norm of f implies that (4.13) can be satisfied in the end of our other constructions
by choosing Ly large enough.

For later use we note that, by continuity in δ, we find bounds smin ≤ sδ ≤ smax and qmin ≤ qδ ≤ qmax,
where the bounds are independent of δ, T , L−, and Ly.

Step 2. Choice of T and L−. Our aim is to select T and L− in order to satisfy

1
Ln

y

‖s̃(., T )− s(., T )‖L1((L−,L+)×Y ) ≥ ε. (4.14)
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Lemma 4.2 provides a positive number εq, which measures variations of the flux. We now choose the
number Θ < 1 large enough to have

Θεq > 2(1−Θ)(qmax − qmin). (4.15)

With this choice of Θ, we select Mδ = (δ1/2, δ1), T0, and L0 by Lemma 4.2.

We consider the total mass on the left domain (for notational convenience and without loss of generality
we assume the initial saturation to be s0 = 0, such that also smin = 0),

mδ(t) :=
∫ Xδ(t)

L−

sδ(x, t) dx.

The time increment is calculated with the conservation law (3.23),

d

dt
mδ(t) = sδ(Xδ(t), t) ∂tX

δ(t) +
∫ Xδ(t)

L−

∂ts
δ(x, t) dx

= sδ(Xδ(t), t) ∂tX
δ(t) +

(
k(sδ)[∂xp

δ + 1]
)∣∣Xδ(t)

L−
.

(4.16)

We abbreviate the outflow at x = L− by qδ
−(t) :=

(
k(sδ)[∂xp

δ + 1]
)
(L−). Integrating (4.16) over [0, T ]

yields, for δ = 0,

m0(T )−m0(0) ≤ smaxL+ +
∫ T

0

q0(t) dt−
∫ T

0

q0−(t) dt. (4.17)

On the other hand, we can derive a lower bound for δ ∈ Mδ. We use the estimate qδ(t) − q0(t) ≥ εq of
(4.10) on the large set M ⊂ Mδ × [0, T ] (depending on T , but with a bounded volume fraction), and
the estimate qδ(t)− q0(t) ≥ −(qmax − qmin) on the remainder. Integrating (4.16) over [0, T ] and Mδ and
exploiting (4.17) yields∫

Mδ

mδ(T )−mδ(0) dδ ≥
∫

Mδ

∫ T

0

qδ(t) dt dδ −
∫

Mδ

∫ T

0

qδ
−(t) dt dδ

≥
∫

Mδ

∫ T

0

q0(t) dt dδ + |Mδ|TΘεq − |Mδ|T (1−Θ)(qmax − qmin)−
∫

Mδ

∫ T

0

qδ
−(t) dt dδ

≥
∫

Mδ

m0(T )−m0(0) dδ − smaxL+|Mδ|+
∫

Mδ

∫ T

0

(q0− − qδ
−)(t) dt dδ +

1
2
|Mδ|TΘεq.

We can therefore compare the total mass at time T for δ ∈ Mδ and for δ = 0. We use that the initial
mass mδ(0) is bounded, independent of δ, and that the total outflow can be bounded by an arbitrary
positive number by enlarging L− (e.g. by 1, see below). We find, with C independent of T ,∫

Mδ

(mδ(T )−m0(T )) dδ ≥ −C + TΘεqδ1/4.

We now transform this lower bound for a mass difference into a lower bound for the L1-norm of (s̃−s)(T )
as required for (4.14). With the set My := {y ∈ Y : ρ sin(2πy/Ly) ∈Mδ} we find

1
Ln

y

‖s̃(., T )− s(., T )‖L1((L−,L+)×Y ) =
1
Ln

y

∫
Y

∫ L+

L−

|sρ sin(2πy/Ly) − s0|(T ) dx dy

≥ 1
Ln

y

∫
My

∫ L+

L−

(sρ sin(2πy/Ly) − s0)(T ) dx dy ≥ 2
1
Ln

y

∫
Mδ

∫ L+

L−

(sδ − s0)(T ) dx
Ln

y

2πρ
dδ

≥ 1
πρ

∫
Mδ

∫ L+

L−

(sδ − s0)(T ) ≥ −C + TΘεqδ1/(4πρ),

where we used in the last line once more the bounds for the saturation and L+ = 1. We can choose T
large in order to have the right hand side large. In particular, we can achieve that (4.14) holds.
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Boundedness of qδ
−(t). We claim that, for fixed T and constant C = 1, we can achieve the bound∫ T

0

|qδ
−|(t) dt ≤ C (4.18)

by imposing a large lower bound on |L−|. This can be seen as follows. With p = pc(s)+γ, the saturation
s solves the parabolic problem (3.23) on (L−, 0), with constant Dirichlet data on the left boundary
and constant (and matching) initial values. The Dirichlet data on the right boundary are bounded,
smin ≤ s ≤ smax.

Transformed solutions ŝ(x) = s(|L−|x) solve the same quasilinear parabolic problem on a fixed spatial
domain (−1, 0) with a new time variable. The transformed solution satisfies an upper bound for the
Neumann data on the left, |∂xs

δ(x = −1)| ≤ CN for all times. This implies |∂xs(x = L−)| ≤ CN/|L−|.
Choosing |L−| large (in dependence of smin, smax, and T ) provides (4.18) and concludes the proof.

5 Conclusions

We studied the Richards equation with gravity. It is well known that the classical Richards equation
(without hysteresis) defines an L1-contraction and hence a stable evolution. Even in the “unstable”
situation that a more saturated medium is above a less saturated medium, the classical Richards equation
will therefore not show an instability; the model predicts a stable planar wetting front, contradicting
experiments.

We have therefore included a play-type hysteresis relation between pressure and saturation as suggested
and discussed in [5]. Our rigorous analysis shows that this modified Richards equation does not define
an L1-contraction. Instead, for appropriate boundary data, we have shown that an arbitrarily small
perturbation of the initial values can lead to the development of fingers.

Our results are obtained for non-degenerate coefficient functions. In this setting, the instability can
be shown only on large domains, i.e. with wide fingers. In order to observe fingers in an arbitrary
finite domain, we believe that degenerate coefficients must be considered. This is in accordance with
experiments, where authors report that very dry sand must be used in order to obtain fingering effects.

The proof of our instability result was based on the analysis of a one-dimensional free boundary
problem. The obtained saturation profile in the fingers is monotone in our setting. In order to obtain the
experimentally observed non-monotone profiles, it might be necessary to include additionally dynamic
hysteresis.
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