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Matthias Röger and Hendrik Weber

Preprint 2010-09 September 2010

Fakultät für Mathematik
Technische Universität Dortmund
Vogelpothsweg 87
44227 Dortmund tu-dortmund.de/MathPreprints





TIGHTNESS FOR A STOCHASTIC ALLEN–CAHN EQUATION

MATTHIAS RÖGER AND HENDRIK WEBER

Abstract. We study an Allen–Cahn equation perturbed by a multiplicative sto-
chastic noise that is white in time and correlated in space. Formally this equation
approximates a stochastically forced mean curvature flow. We derive a uniform
bound for the diffuse surface area, prove the tightness of solutions in the sharp
interface limit, and show the convergence to phase-indicator functions.

1. Introduction

The Allen–Cahn equation

ε∂tuε = ε∆uε −
1

ε
F ′(uε) (1.1)

is an important prototype for phase separation processes in melts or alloys that is of
fundamental interest both for theory and applications. It describes an evolution of
non-conserved phases driven by the surface area reduction of their common interface.
The Allen–Cahn equation is a diffuse interface model, i.e. phases are indicated by
smooth fields, assuming a partial mixing of the phases. It is well-known [13, 19, 25]
that in the sharp interface limit ε→ 0 solutions of the Allen–Cahn equation converge
to an evolution of hypersurfaces (Γt)t∈(0,T ) by mean curvature flow (MCF)

v(t, ·) = H(t, ·), (1.2)

where v describes the velocity vector of the evolution and H(t, ·) denotes the mean
curvature vector of Γt.

Our goal is to introduce a stochastic perturbation of the Allen–Cahn equation that
formally approximates a stochastic mean curvature type flow

v(t, ·) = H(t, ·) +X(t, ·), (1.3)

where X now is a random vector-field in the ambient space. More specifically we
are considering is the following Stratonovich stochastic partial differential equation
(SPDE):

duε =
(

∆uε −
1

ε2
F ′(uε)

)
dt+∇uε ·X(x, ◦dt), (1.4)
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where X is a vectorfield valued Brownian motion. A particular case of such a Brow-
nian motion is

X(t, x) = X(0)(x)t+
N∑
k=1

X(k)(x)Wk(t), (1.5)

where the X(k) are fixed vectorfields and Wk are independent standard Brownian
motions. In this case (1.4) reduces to the Stratonovich SPDE

duε =
(

∆uε −
1

ε2
F ′(uε) +∇uε ·X(0)

)
dt+

N∑
k=1

∇uε ·X(k) ◦ dWk(t). (1.6)

Our setting is more general as it allows for infinite sums of Brownian motions. See
below for a more detailed discussion. We complement (1.4) by deterministic initial
and zero Neumann-boundary data,

uε(0, ·) = u0
ε in U, (1.7)

∇uε · νΩ = 0 on (0, T )× ∂U. (1.8)

Our main result is the tightness of the solutions (uε)ε>0 of (1.4) and the convergence
to an evolution of (random) phase indicator functions u(t, ·) ∈ BV (U). In particular
we prove a uniform control (in ε > 0) of the diffuse surface area of uε.

In the next sections we briefly review the analysis of the deterministic Allen–
Cahn equation and report on stochastic extensions. In Section 3 we state our main
assumptions and recall some notations for stochastic flows. Our main results are
stated in Section 4. In Section 5 we prove an existence result for (1.4). Finally in
Section 6 we derive the estimates for the diffuse surface area and prove the tightness
of solutions.

2. Background

2.1. Deterministic sharp interface limit. As many other diffuse interface models
the Allen–Cahn equation (1.1) is based on the Van der Waals–Cahn–Hilliard energy

Eε(uε) :=

∫
U

(ε
2
|∇uε|2 +

1

ε
F (uε)

)
dx for uε : U → R. (2.1)

The energy Eε favors a decomposition of the spatial domain U into two regions
(phases) where uε ≈ −1 and uε ≈ 1, separated by a transition layer (diffuse interface)
with a thickness of order ε. Modica and Mortola [35, 33] proved that Eε Gamma-
converges (with respect to L1-convergence) to a constant multiple of the perimeter
functional P , restricted to phase indicator functions,

Eε → c0P , P(u) :=

{
1
2

∫
U
d|∇u| if u ∈ BV (U, {−1, 1}),

∞ otherwise.

P measures the surface-area of the phase boundary ∂∗{u = 1} ∩ U . In this sense Eε
describes a diffuse approximation of the surface-area functional.

The Allen–Cahn equation (1.1) in fact is the (accelerated) L2-gradient flow of Eε.
It is proved in different formulations [13, 19, 25] that (1.1) converges to motion by
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mean curvature. Since mean curvature flow in general allows for the formation of
singularities in finite time it is necessary to consider suitable generalized formulations
of (1.2), as for example in the sense of viscosity solutions [2, 9, 10, 19, 20], De Giorgi’s
barriers [3, 4, 8, 14], or geometric measure theory. The first approaches rely on the
maximum principle, the latter was pioneered by Brakke [6] and is based on the
localized energy equality

d

dt

∫
Γt

η(x) dHn−1(x)

=

∫
Γt

∇η(t, x) · V (t, x) dHn−1(x)−
∫

Γt

H(t, x) · V (t, x)η(t, x) dHn−1(x) (2.2)

that holds for arbitrary η ∈ C1
c (U) and for any classical solutions (Γt)t∈(0,T ) of mean

curvature flow. Ilmanen [25] proved the convergence of the Allen–Cahn equation
to mean curvature flow in the formulation of Brakke, using a diffuse analog of the
(localized) energy equality (2.2). By similar methods Mugnai and the first author
[36] proved the convergence of (deterministically) perturbed Allen–Cahn equations.

One of the key results of the present paper is an energy inequality for the stochastic
Allen–Cahn equation (1.4). By Itô’s formula the stochastic drift produces some extra
terms in the time-derivative of the diffuse surface energy Eε(uε). These ‘bad’ terms
are exactly compensated by the additional terms in (1.4) which are hidden in the
Stratonovich formalism.

2.2. Stochastic perturbations of the Allen–Cahn equation and MCF. Ad-
ditive perturbations of the Allen–Cahn equation were studied in the one-dimensional
case in [22, 7] and in the higher-dimensional case in [23, 38, 31]. Note that perturba-
tion results such as [36] do not apply to the stochastic case as one typically perturbs
with a white noise i.e. the time-derivative of a Cα function for α < 1

2
, which is not

covered by most techniques.
In the one-dimensional case the equation was studied with an additive space-time

white noise and at least for the case where the interface consists of a single kink
the sharp interface limit was described rigorously [22, 7]. In higher dimensions the
picture is much less complete. For instance, the Allen–Cahn equation with space-
time white noise is in general not well-posed: the noise term is so rough that for
n ≥ 2 solutions to the stochastic heat equation attain values only in Sobolev spaces
of negative order, and on such spaces the nonlinear potential can a priori not be
defined. This existence problem can be avoided if one introduces spatial correlations
as we do in (1.4). In all of the above papers conditions on the stochastic perturbations
are much more restrictive than in our approach. In fact it is always assumed that
the noise is constant in space and smoothened in time with a correlation length that
is coupled to the interface width ε and goes to zero for ε ↓ 0. All of these papers
rely on a construction of the limit dynamics by different means and then an explicit
construction of sub- and supersolutions making use of the maximum principle. Our
approach is based only on energy estimates. On the other hand, we only prove
tightness of the approximations and do not obtain an evolution law for limit points.
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The restriction on spatially constant noise in previous papers and our problem to
derive the stochastic motion law in the limit are closely related to the lack of existence
results and generalized formulations for stochastically forced mean curvature flow.
Up to now there are only results for spatially constant forcing [15, 23, 31] or in the
case of evolution of graphs in 1 + 1 dimensions [16].

Our approach is closely related to Yip’s construction [40] of a time-discrete stochas-
tically forced mean curvature flow. Yip follows the deterministic scheme of [1, 32],
where for a given time step δ > 0 a sequence of sets of bounded perimeter is con-
structed iteratively. The heart of the construction is the minimization of a functional
that is given by the perimeter plus a suitable distance from the previous set. Yip [40]
introduces randomness to this scheme by performing a stochastic flow in between
two minimization steps. For the resulting time-discrete evolution of sets Yip proves
uniform bounds (in δ) for the perimeter and shows tightness of the time-discrete
solutions with δ → 0. As in our case, a characterization of the limiting evolution
is not given. If one applies Yip’s scheme to the Allen–Cahn equation (substituting
the perimeter functional by the diffuse surface area energy and using a rescaled L2-
distance between phase fields) one in fact would obtain our stochastic Allen–Cahn
equation (1.4) in the limit δ → 0.

Noisy perturbations of the Allen–Cahn equation were studied from a different point
of view in [27]. There the authors study the action functional which appears if one
first applies Freidlin-Wentzel theory to the Allen–Cahn equation with an additive
noise that is white in time and spatially correlated, and then formally takes the
spatial correlation to zero. Then the sharp interface limit ε ↓ 0 is studied on the level
of action functionals and a reduced action functional as a possible Γ-limit is derived.
See [39, 37] for a subsequent analysis.

3. Assumptions and stochastic flows

3.1. Notation and assumptions. Let U ⊂ Rn be an open bounded subset of Rn

with smooth boundary, let T > 0, and set UT := (0, T ) × U . We denote by x ∈ U
and t ∈ (0, T ) the space- and time-variables respectively; ∇ and ∆ denote the spatial
gradient and Laplacian.

We assume the potential F to be smooth and verify the following assumptions:

F (r) ≥ 0 and F (r) = 0 iff r = ±1,

F ′ admits exactly three zeros {±1, 0} and F ′′(0) < 0, F ′′(±1) > 0,

F is symmetric, ∀r ≥ 0 F (r) = F (−r),
F (r) ≥ C|r|2+δ for some δ > 0 and |r| sufficiently large.

 (3.1)

The standard choice for F is

F (r) =
1

4
(1− r2)2,

such that the nonlinearity in (1.1) becomes F ′(r) = −r(1− r2).
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Next we give some geometric meaning to uε. We define the normal direction with
respect to uε by

νε(t, x) :=

{
∇uε
|∇uε|(t, x) if |∇uε(t, x)| 6= 0,

~e else,
(3.2)

where ~e is an arbitrary fixed unit vector. We define the diffuse surface area measures

µtε(η) :=

∫
U

η
(ε

2
|∇uε(t, ·)|2 +

1

ε
F (uε(t, ·))

)
dx (3.3)

for η ∈ C0
c (U). We denote the diffuse mean curvature by

wε := −ε∆uε +
1

ε
F ′(uε). (3.4)

For the initial data we assume that u0
ε is smooth and that

Eε(u
0
ε) ≤ Λ (3.5)

holds for all ε > 0 and a fixed Λ > 0. Note that by [25, page 423] the boundary of
every open set that verifies a density bound and that can be approximated in BV by
smooth hypersurfaces can be approximated by phase fields with uniformly bounded
diffuse surface area. On the other hand (3.5) implies by [34, 35] that the sequence
u0
ε is compact in L1(UT ) and that every limit belongs to the space of phase indicator

functions BV (U, {±1}).

3.2. Stochastic Flows. Let us briefly introduce some notations for stochastic flows.
We refer the reader to Kunita’s book [29] Chapter 3 and Section 2,5 and 6 in Chapter
4 for further background.

Let (Ω,F , P ) be a probability space with a filtration {Fs,t}0≤s≤ t≤T satisfying the
usual conditions. Let (X(t, x), t ∈ [0, T ], x ∈ U) be a continuous vectorfield val-
ued semimartingale with local characteristic (ãij(t, x, y), bi(t, x)) on (Ω,F , P ). This
means that for every x ∈ U the process X(t, x) is a continuous Rn valued semimartin-

gale with finite variation process
∫ t

0
b(s, x)ds and quadratic variation

〈Xi(t, x), Xj(t, y)〉 =

∫ t

0

ãij(s, x, y)ds. (3.6)

We assume that for every (x, y) ∈ U × U the function ã is continuous in time and
of class C4,α in both space variables, and that x 7→ bi(t, x) is of class C3,α for some
α > 0. Finally we assume that ã and b have compact support in U × U resp. in U .

Denote by (ϕs,t, s < t) the Stratonovich-Flow associated to −X. This means that
almost surely (ϕs,t, s < t) is a two parameter family of diffeomorphisms of U fixing
the boundary and verifying the flow property

ϕs,t ◦ ϕr,s = ϕr,t for r ≤ s ≤ t. (3.7)
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Furthermore, for every x and every s ∈ [0, T ) the process (ϕs,t(x), t ≥ s) is a solution
of the stochastic differential equation

dϕs,t(x) = −X(◦dt, ϕs,t(x)) (3.8)

ϕs,s(x) = x.

Under the above regularity assumption for all s ≤ t the mapping ϕs,t is a C3,β

diffeomorphism of U , for all β < α.
A particular example is that of a stochastic flow given by a usual Stratonovich-

differential equation. If X(k)(t, ·), k = 0, . . . , N are smooth time dependent vector-
fields on U and B1, . . . BN are independent standard Brownian motions, then

X(t, x) =
N∑
k=1

∫ t

0

X(k)(s, x)dBk(s) +

∫ t

0

X(0)(s, x)ds, (3.9)

is a vectorfield valued Brownian motion as considered above. Its local characteristic
is given by

ãij(s, x, y) =
N∑
k=1

X
(k)
i (s, x)X

(k)
j (s, y) (3.10)

bi(s, x) =X
(0)
i (s, x).

In this case the stochastic differential equation (3.8) reduces to the more familiar

dϕs,t(x) =X(0)(t, ϕs,t(x))dt+
N∑
k=1

X(k)(t, ϕs,t(x)) ◦ dBk(t) (3.11)

ϕs,s(x) = x.

The advantage of Kunita’s framework is that it allows for infinite sums in the noise
part i.e. for noise fields of the form

X(t, x) =
∞∑
i=1

∫ t

0

X(k)(s, x) ◦ dBk(s) +

∫ t

0

X(0)(s, x)ds, , (3.12)

for vectorfields with the right summability properties. We prefer this approach as a
restriction to finite dimensional noises is unnecessary and a severe restriction.

4. Results

In this section we state our main results. For the proofs see the subsequent sections.
We first address the question of existence and uniqueness of solutions for (1.4). There
are some classical existence and uniqueness results for equations similar to (1.4), see
for example [11, p. 212 ff.], [28], [21]. In those references either mild or weak
variational solutions are constructed. Using the technique from [29] we obtain here
Hölder-continuous strong solutions.
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Theorem 4.1. Let u0
ε, F , and X satisfy the assumptions (3.1), (3.5) and the smooth-

ness conditions stated in Section 3.2. Then for every ε > 0 there exists a unique
solution uε of

uε(t, x) = u0
ε(x) +

∫ t

0

(
∆uε(s, x)− 1

ε2
F ′(uε(s, x))

)
ds

+

∫ t

0

∇uε(s, x) ·X(x, ◦ds) (4.1)

∇uε · νΩ = 0 on (0, T )× ∂U. (4.2)

The function uε(t, ·) is a continuous C3,β(Ū)-valued semimartingale. Furthermore,
we have the following bound for the spatial derivatives:

E[sup
x∈U
|∂γuε(t, x)|p] <∞. (4.3)

for any multi-index γ with |γ| ≤ 3 and all t ∈ (0, T ).

Our main result concerns the tightness of the solutions uε in the limit ε → 0. In
addition we show that limit points are concentrated on the space of phase indicator
function of bounded variation. The key step in the proof of these results is a uniform
bound on the diffuse surface area.

Theorem 4.2. Let the assumptions of Theorem 4.1 be satisfied and let uε be the
solution of (4.1)-(4.2) for ε > 0. Then the following statements hold:

(1) Uniform bounds on the energy: For every T > 0 and every p ≥ 1 we have

sup
ε>0

E
[

sup
0≤t≤T

Eε(uε(t, ·))p
]
<∞. (4.4)

(2) Uniform bounds on the diffuse mean curvature: For every T > 0 and every p ≥ 1
we have

sup
ε>0

E
[(∫ T

0

∫
U

1

ε
wε(t, x)2 dxdt

)p ]
<∞. (4.5)

(3) Tightness of the sequence: Let Qε be the distribution of the solution (1.4). Then
the family Qε is tight on C([0, T ], L1(U)). In particular, there exists a sequence
εi ↓ 0 such that the processes uεi can jointly be realized on a probability space

(Ω̃, F̃ , P̃) and converge P̃-almost-surely in C([0, T ], L1(U)) to a limiting process
u. For almost all t ∈ (0, T ) we have u(t, ·) ∈ BV (U, {±1})) almost surely and

E
[

sup
0≤t≤T

‖u(t, ·)‖pBV (U)

]
<∞

holds for every T > 0 and every p ≥ 1.
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In most of the sequel we will use the Itô-form of (4.1), which is by [29, Section 6.2]
given as

uε(t, x) = uε(0, x) +

∫ t

0

(
∆uε(s, x)− 1

ε2
F ′(uε(s, x))

)
ds+

∫ t

0

∇uε(s, x) ·X(ds, x)

+
1

2

∫ t

0

(
A(s, x) : D2uε(s, x) + c(s, x) · ∇uε(s, x)

)
ds.

(4.6)

The Itô-Stratonovich correction terms in (4.6) are given by the matrix A =
(aij)i,j=1,...,n and the vector field c = (ci)i=1,...,n,

aij(t, x) = ãij(t, x, x), (4.7)

cj(t, x) = ∂yi ãij(t, x, y)|y=x, (4.8)

where we sum here and in the following over repeated indices. Note that the extra
term A : D2u is of highest order, such that it changes the diffusion coefficient in (4.1).
In particular, the stochastic-parabolicity condition (see e.g. [21, condition (1)]),
which is often needed in the case of gradient dependend noise, is always satisfied.

5. Existence and Uniqueness

In this section we prove Theorem 4.1 by reducing the existence of solutions of (1.4)
to an existence statement for a deterministic reaction-diffusion equation with random
coefficients. This technique is borrowed from [29].

Proof of Theorem 4.1. As above denote by ϕs,t the stochastic flow generated by −X.
For a function u : U → R define the transformation wt(u)(x) = u(ϕ−1

0,t (x)). By the

regularity of the stochastic flow it is clear that wt maps C3,β(U) into itself. Denote
by L the nonlinear operator

L(u) = ∆u− 1

ε2
F ′(u)

and by Lwt the operator w−1
t Lwt. Then a direct computation shows that Lwt is given

by

Lwt u(t, x) =
n∑

i,j=1

Ri,j
w (t, x)

∂2

∂xi∂xj
u(t, x) +

n∑
i=1

Siw(t, x)
∂

∂xi
u(t, x)− 1

ε2
F ′(u(t, x)),

(5.1)

with coefficients

Ri,j
w (t, x) =

∑
k,l

∂k

(
ϕ−1

0,t

)i
(ϕ0,t(x))∂l

(
ϕ−1

0,t

)j
(ϕ0,t(x)) (5.2)

Siw(t, x) =
∑
k,l

∂k∂l

(
ϕ−1

0,t

)i
(ϕ0,t(x)) (5.3)

In particular, the coefficients are random, the Ri,j
w are of class C3,β in space and

continuous Cγ in time for every γ < 1
2
, and the Si are of class C2,β in space and Cγ
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in time. Furthermore, note that Ri,j = δi,j and S = 0 close to the boundary. Similar
to Lemma 6.2.3 in [29] it can be seen by another straightforward computation that a
smooth semimartingal u is a solution to 4.1 if and only if u′ = w−1

t u is a solution to

∂

∂t
v′(t, x) = Lwt v(t, x). (5.4)

Existence and uniqueness of smooth solutions to reaction diffusion equation like (5.4)
can be derived in a standard way: For example, apply Schaefer’s Fixed Point Theorem
[18, Theorem 9.2.4] in combination with Schauder-estimates [30, Theorem IV.5.3] for
the linear part of (5.4) and a-priori estimates by the maximum principle. This yields
existence of solutions that are C2,α in space and C1,α/2 in time. Differentiation
with respect to space and another application of [30, Theorem IV.5.3] proves C4,α-
regularity in space. To derive (4.3) note that by (5.4) the derivatives of u up to order
3 can be bounded in terms of the derivatives of v and ϕ−1. The bounds on v follow
from the Schauder-estimates [30, Theorem IV.5.3] applied to the random coefficients
Ri,j and Sj. The bounds on these coefficients as well as on the derivatives of ϕ follow
from [29, Theorem 6.1.10]. �

6. Tightness

In this section we derive estimates for the diffuse surface area. For future use we
include a possible localization of the energy.

Proposition 6.1. Let uε satisfy (1.4). Then for all 0 ≤ t0 < t1 and all η ∈ C2(U)
we have

µt1ε (η)− µt0ε (η)

= −
∫ t1

t0

∫
U

η(x)
1

ε
w2
ε(t, x) dx dt+

∫ t1

t0

∫
U

wε(t, x)∇η(t, x) · ∇uε(t, x) dx dt

+

∫
U

∫ t1

t0

η(x)wε(x)∇uε(t, x) ·X(dt, x) dx

−
∫
U

∫ t1

t0

ε∇uε(t, x) · ∇η(x)∇uε(t, x) ·X(dt, x) dx

+

∫ t1

t0

∫
U

R(t, x, η(x),∇η(x), D2η(x)) : ε∇uε(t, x)⊗∇uε(t, x) dxdt

+

∫ t1

t0

∫
U

S
(
t, x, η(x),∇η(x), D2η(x)

)1

ε
F (uε) dx dt. (6.1)

The functions R, S are affine linear in the η,∇η,D2η components with coefficients
that are bounded in C0(UT ) by a constant that only depends on ‖A, Ã‖C0([0,T ],C2(Ū)).

Remark 6.2. According to our assumption in Section 3.2 X(t, ·) has compact sup-
port in U . Using this and the Neumann boundary condition for uε one sees that we
do not need to impose η to have compact support in order to avoid boundary terms
appearing in partial integrations.
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Proof. Let η ∈ C2(U) be a smooth function. We compute the differential of the
localized diffuse surface area

µεt(η) =

∫
U

η(x)
(ε

2
|∇uε(t, x)|2 +

1

ε
F (uε(t, x))

)
dx. (6.2)

The density of the cross variation q(x, y, s) of the stochastic drift term ∇uε · X in
(4.6) can by [29, Theorem 2.3.2] be computed from the local characteristics as

q(s, x, y) = ∇uε(s, x) · Ã(s, x, y)∇uε(s, y). (6.3)

To compute the differential of the first term in (6.2) we also need the density Q(x, y, s)
of the cross variation of ∇(∇uε ·X). Using [29, Theorem 3.1.3] this is given by

Qkl(s, x, x)

= ∂k∂
′
lq(s, x, y)|y=x

= ∂k∇u(s, x) · A(x, s)∂l∇uε(s, x) + ∂k∇uε(s, x) · ∂′lÃ(s, x, x)∇uε(s, x)

+∇uε(s, x) · ∂kÃ(s, x, x)∂′l∇uε(s, x) +∇uε(s, x) · ∂k∂′lÃ(s, x, x)∇uε(s, x), (6.4)

where ∂k and ∂′l denote the derivatives with respect to the xk and yl component,
respectively.

We now obtain from (6.2) and Itô’s formula that

µt1ε (η)− µt0ε (η) =

∫
U

(∫ t1

t0

ηwε(t, ·) duε(t, ·)−
∫ t1

t0

ε∇uε · ∇η duε(t, ·)
)
dx

+
1

2

∫
U

∫ t1

t0

εη(x) trQ(t, x, x) + η(x)
1

ε
F ′′(uε(t, x))q(t, x, x) dtdx.

(6.5)

When evaluating the right hand-side of this equation we obtain one ‘good’ term,
which corresponds to minus the integral over the squared diffuse mean curvature
in the purely deterministic case. Additional terms are due to the stochastic drift
and Itô terms in (4.6), and the Itô terms in the last line. The objective is to show
that these term can finally be controlled by the good mean curvature term or by a
Gronwall argument. With this aim we derive by a series of partial integration the
representation (6.1).
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We start with the first term in (6.5) and deduce from (4.6) that∫ t1

t0

ηwε(t, x)duε(t, x)

=

∫ t1

t0

η(x)
(
− 1

ε
w2
ε(t, x) + wε(t, x)

1

2
A(t, x) : D2uε(t, x)

)
dt

+

∫ t1

t0

η(x)wε(t, x)
1

2
c(t, x) · ∇uε(t, x) dt

+

∫ t1

t0

η(x)wε(x)∇uε(t, x) ·X(x, dt)

= −
∫ t1

t0

η(x)
1

ε
w2
ε(t, x) dt+

∫ t1

t0

η(x)wε(x)∇uε(t, x) ·X(x, dt)

+

∫ t1

t0

(
R1(t, x) + T1(t, x) + T2(t, x)

)
dt, (6.6)

where

R1(t, x) := η(x)wε(t, x)
1

2
c(t, x) · ∇uε(t, x), (6.7)

and

T1(t, x) := −ε
2
η(x)∆uε(t, x)A(t, x) : D2uε(t, x), (6.8)

T2(x) :=
1

2ε
η(x)F ′(uε(t, x))A(t, x) : D2uε(t, x). (6.9)

The second term in (6.5) is given by

−
∫ t1

t0

ε∇uε(t, x) · ∇η(x) duε(t, x)

=

∫ t1

t0

ε∇uε(t, x) · ∇η(x)
(1

ε
wε(t, x)− 1

2
A(t, x) : D2uε(t, x)

− 1

2
c(t, x) · ∇uε(t, x)

)
dt

−
∫ t1

t0

ε∇uε(t, x) · ∇η(x)∇uε(t, x) ·X(dt, x)

=

∫ t1

t0

wε(t, x)∇η(x) · ∇uε(t, x) dt+

∫ t1

t0

(
R2(t, x) + T3(t, x)

)
dt

−
∫ t1

t0

ε∇uε(t, x) · ∇η(x)∇uε(t, x) ·X(dt, x), (6.10)

where

R2(t, x) := −ε
2
∇uε(t, x) · ∇η(x)c(t, x) · ∇uε(t, x) (6.11)
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and

T3(t, x) := −ε
2
∇uε(t, x) · ∇η(x)A(t, x) : D2uε(t, x). (6.12)

Using (6.4) we compute for the integrand in the third term of (6.5)

ε

2
η(x) trQ(x, x, t) =T4(t, x) + T5(t, x) + T6(t, x) +R3(t, x) (6.13)

where

R3(t, x) :=
ε

2
η(x)∇uε(t, x) · ∂k∂′kÃ(t, x, x)∇uε(t, x) (6.14)

and

T4(t, x) :=
ε

2
η(x)∂k∇uε(t, x) · A(t, x)∂k∇uε(t, x) (6.15)

T5(t, x) :=
ε

2
η(x)∂k∇uε(t, x) · ∂′kÃ(t, x, x)∇uε(t, x) (6.16)

T6(t, x) :=
ε

2
η(x)∇uε(t, x) · ∂kÃ(t, x, x)∂k∇uε(t, x). (6.17)

Finally, for the last integrand in (6.5) we have

T7(t, x) := η(x)
1

2ε
F ′′(uε(t, x))q(t, x, x)

= η(x)
1

2ε
F ′′(uε(t, x))∇uε(t, x) · A(t, x)∇uε(t, x). (6.18)

In the nect step we manipulate the terms T1,...,T7 and show that they combine to ex-
pressions that again can be controlled. We start with the terms involving derivatives
of F . For T7 we derive, noting that F ′′(uε)∇uε = ∇F ′(uε) and F ′(uε)∇uε = ∇F (uε)∫

U

T7(t, x) dx

=
1

2ε

∫
U

η(x)F ′′(uε(t, x))∇uε(t, x) · A(t, x)∇uε(t, x) dx

= − 1

2ε

∫
U

(
F ′(uε)∇η · A∇uε + ηF ′(uε)

(
∇ · A

)
∇uε + ηF ′(uε)A : D2uε

)
dx

=

∫
U

1

2ε
F (uε)

(
A : D2η + 2∇η∇ · A+ η∂i∂jaij

)
dx−

∫
U

T2(t, x) dx. (6.19)

In particular ∫
U

T2(t, x) + T7(t, x) dx =

∫
U

R4(t, x) dx, (6.20)

where

R4(t, x) =
1

2ε
F (uε)

(
A : D2η + 2∇η · ∇ · A+ η∂i∂jaij

)
. (6.21)
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Now we consider the terms not involving the potential F . We rewrite T4 and perform
a partial integration with respect to xj,∫

U

T4(t, x) dx

=

∫
U

ε

2
η∂k∂iuεaij∂k∂juε dx

= −
∫
U

ε

2
∂kuε∂k∂juε

(
η∂iaij + ∂iηaij

)
dx−

∫
U

ε

2
η∂kuεaij∂i∂j∂kuε dx

=

∫
U

ε

4
|∇uε|2

(
A : D2η + 2∇η · (∇ · A) + η∂i∂jaij

)
dx

+

∫
U

ε

2
ηA : D2uε∆uε dx+

∫
U

ε

2
∇η · ∇uεA : D2uε dx

+

∫
U

ε

2
η∂i∂juε∂kaij∂kuε dx

=

∫
U

ε

4
|∇uε|2

(
A : D2η + 2∇η · (∇ · A) + η∂i∂jaij

)
dx

−
∫
U

T1(t, x) dx−
∫
U

T3(t, x) dx+

∫
U

ε

2
η∂i∂juε∂kaij∂kuε dx, (6.22)

where in the third equality we have used that ∂kuε∂k∂juε = ∂j
1
2
|∇uε|2 and a partial

integration of the ∂i∂j∂kuε term with respect to xk. The last term in (6.22) can be
further manipulated by an xi partial integration∫

U

ε

2
η∂i∂juε∂kaij∂kuε = −

∫
U

ε

2
η∂juε∂kaij∂i∂kuε dx

−
∫
U

ε

2
η∂juε∂i∂kaij∂kuε −

ε

2
∂iη∂juε∂kaij∂kuε dx

= −
∫
U

T5 dx−
∫
U

T6 dx

−
∫
U

ε

2
η∂juε∂i∂kaij∂kuε dx+

ε

2
∂iη∂juε∂kaij∂kuε dx, (6.23)

where in the last equality we have used that

−ε
2
η∂juε∂kaij∂i∂kuε + T5 + T6 =

ε

2
η∂juε∂i∂kuε

[
−
(
∂kãij + ∂′kãij

)
+ ∂′kãij + ∂kãji

]
= εη∂juε∂i∂kuε

[
− ∂kãij + ∂kãji

]
= 0,

since the factor in the brackets is antisymmetric and the other factor symmetric in
i, j. Putting together (6.22) and (6.23) we obtain the identity∫

U

T1(t, x) + T3(t, x) + T4(t, x) + T5(t, x) + T6(t, x) dx =

∫
U

R5(t, x) dx, (6.24)
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where

R5(t, x) :=
ε

4
|∇uε|2

(
A : D2η + 2∇η · (∇ · A) + η∂i∂jaij

)
− ε

2
η∂juε∂i∂kaij∂kuε −

ε

2
∂iη∂juε∂kaij∂kuε (6.25)

Finally, we manipulate the term R1 in (6.7). For this we first observe that

∇ ·
(
ε∇uε ⊗∇uε

)
= ε∆uε∇uε + εD2uε∇uε

= ε∆uε∇uε +∇ε
2

∣∣∇uε∣∣2 (6.26)

and therefore

wε∇uε = − ε∆uε∇uε +
1

ε
F ′(uε)∇uε

= −∇ ·
(
ε∇uε ⊗∇uε

)
+∇

(ε
2

∣∣∇uε∣∣2 +
1

ε
F (uε)

)
. (6.27)

Using this equality we derive∫
U

R1(t, x) dx

=

∫
U

η(x)wε(t, x)
1

2
c(t, x) · ∇uε(t, x) dx

=
1

2

∫
U

(
∇η(x)⊗ c(t, x) + η(t, x)Dc(t, x)

)
: ε∇uε(t, x)⊗∇uε(t, x) dx

− 1

2

∫
U

(
∇η(t, x) · c(t, x) + η(t, x)∇ · c(t, x)

)(ε
2
|∇uε(t, x)|2 +

1

ε
F (uε(t, x))

)
dx.

(6.28)

Evaluating now (6.5), inserting (6.6), (6.10), (6.13), (6.18), and using (6.20), (6.24)
we deduce that

µt1ε (η)− µt1ε (η) = −
∫ t1

t0

∫
U

η(x)
1

ε
w2
ε(t, x) dx dt+

∫ t1

t0

∫
U

wε∇η · ∇uε dx dt

+

∫
U

∫ t1

t0

η(x)wε(x)∇uε(t, x) ·X(dt, x) dx

−
∫
U

∫ t1

t0

ε∇uε(t, x) · ∇η(x)∇uε(t, x) ·X(dt, x) dx

+

∫ t1

t0

∫
U

(
R1(t, x) +R2(t, x) +R3(t, x) +R4(t, x) +R5(t, x)

)
dx dt.

(6.29)
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By the definition of R1, ..., R5 and (6.28) we obtain∫
U

(
R1 +R2 +R3 +R4 +R5

)
dx

=

∫
U

[
η

1

2

(
Dc− (∇ · c) Id +∂k∂

′
kÃ+∇ · ∇ · A Id−D(∇ · A)

)
: ε∇uε ⊗∇uε

+ η
1

2

(
−∇ · c+∇ · (∇ · A)

)1

ε
F (uε)

+
1

2

(
−∇η · c Id−∂iη∇ai· +

(1

2
A : D2η +∇η · (∇ · A)

)
Id
)

: ε∇uε ⊗∇uε

+
(
− 1

2
∇η · c+

1

2
D2η : A+∇η · (∇ · A)

)1

ε
F (uε)

]
dx. (6.30)

and by (6.29) this shows (6.1). �

In the following we only need an estimate for the global energy.

Corollary 6.3. For all ε > 0 and all 0 < t0 < t1

Eε(uε(t1, ·))− Eε(uε(t0, ·))

=−
∫ t1

t0

∫
U

1

ε
w2
ε(t, x) dx dt+

∫
U

∫ t1

t0

wε(t, x)∇uε(t, x) ·X(dt, x) dx

+

∫ t1

t0

∫
U

ε∇uε(t, x) ·Ψ(t, x)∇uε(t, x) + ψ(t, x)
1

ε
F (uε(t, x))dxdt (6.31)

holds with

Ψ(t, x) =
1

2

(
Dc− (∇ · c) Id +∂k∂

′
kÃ+ (∇ · ∇ · A) Id−D(∇ · A)

)
,

ψ =
1

2

(
−∇ · c+∇ · ∇ · A

)
. (6.32)

Proof. Taking η = 1 in (6.1) and evaluating (6.30) we immediately obtain the desired
estimate. �

Proposition 6.4. Let T > 0 be given. Then for every p ∈ N there exists Cp =

Cp(‖b‖C0([0,T ]×U), ‖Ã‖C0([0,T ];C2(U))) such that the following estimates hold:
For every ε > 0, and for all 0 ≤ s ≤ t ≤ T

E
[(
Eε(uε(t, ·))

)p∣∣Fs ] ≤ Eε(uε(s, ·))p exp
(
Cp(t− s)

)
(6.33)

and

sup
0≤t≤T

E
[ ∫ t

0

(
Eε(uε(s, ·))p−1

∫
U

1

ε
w2
ε(s, x) dx

)
ds

∣∣∣∣Fs] ≤ Cp. (6.34)

Proof. We treat the case p = 1 first. Taking the expectation in (6.31) and using that
the martingale part of the stochastic term has vanishing conditional expectation
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yields that

E
[
Eε(uε(t, ·)) +

∫ t

s

∫
U

1

ε
w2
ε(r, x) dx dr

∣∣∣Fs]
=Eε(uε(s, ·)) + E

[ ∫ t

s

∫
U

wε(r, x)∇uε(r, x) · b(r, x) dx dr
∣∣∣Fs]

+ E
[ ∫ t

s

∫
U

ε

2
∇uε(r, x) ·Ψ(r, x)∇uε(r, x) + ψ(r, x)

1

2ε
F (uε(r, x)) dx dr

∣∣∣Fs],
(6.35)

with ψ,Ψ as defined in (6.32). The first integral on the right hand side can be
bounded using Young’s inequality:∣∣∣ ∫ t

s

∫
U

wε(r, x)∇uε(r, x) · b(r, x) dx dr
∣∣∣

≤ 1

2

∫ t

s

∫
U

1

ε
wε(r, x)2 dx dr +

1

2
‖b‖2

C0([0,T ]×U)

∫ t

s

∫
U

ε |∇uε(r, x)|2 dx dr. (6.36)

For the second integral we obtain that∣∣∣ ∫ t

s

∫
U

ε

2
∇uε(r, x) ·Ψ(r, x)∇uε(r, x) + ψ(r, x)

1

2ε
F (uε(r, x)) dxdr

∣∣∣
≤C(‖Ã‖C0([0,T ];C2(U)))

∫ t

s

Eε(uε(r, ·)) dr. (6.37)

Therefore, we obtain from (6.35) - (6.37)

E
[(
Eε(uε(t, ·)) +

∫ t

s

∫
U

1

2ε
wε(r, t)

2 dxdr
)∣∣∣Fs]

≤Eε(uε(s, ·)) + C
(
‖b‖2

C0([0,T ]×U), ‖Ã‖C0([0,T ];C2(U))

) ∫ t

s

E
[
Eε(uε(r, ·))

∣∣∣Fs] dr. (6.38)

Thus Gronwall’s Lemma first yields (6.33) for p = 1. Then (6.38) and (6.33) imply
(6.34) for p = 1.

Let us now treat the case p ≥ 2. Note that Itô’s formula implies

dEp
ε = pEp−1

ε dEε +
p(p− 1)

2
Ep−2
ε d〈Eε〉. (6.39)

From (6.31) we see that

d〈Eε〉t =

∫
U

∫
U

wε(t, x)∇uε(t, x)Ã(t, x, y)wε(t, y)∇uε(t, y)dx dy dt. (6.40)
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Therefore, we have

dEp
ε = pEp−1

ε

(∫
U

−1

ε
w2
ε(t, x) dx dt+

∫
U

wε(t, x)∇uε(t, x) ·X(dt, x) dx

+

∫
U

ε

2
∇uε(t, x) ·Ψ(t, x)∇uε(t, x) dt+ ψ(t, x)

1

2ε
F (uε(t, x))dxdt

)
+
p(p− 1)

2
Ep−2
ε

(∫
U

∫
U

wε(t, x)∇uε(t, x)Ã(t, x, y)wε(t, y)∇uε(t, y)dx dy
)
dt.

(6.41)

Noting as above that the conditional expectation of the martingale part of the sto-
chastic integral vanishes, we get

E
[
Eε(uε(t, ·))p + p

∫ t

s

(
Eε(uε(r, ·))p−1

∫
U

1

ε
w2
ε(r, x) dx

)
dr

∣∣∣∣Fs]
=Eε(uε(s, ·))p + E

[ ∫ t

s

pEε(uε(r, ·))p−1
(∫

U

wε(r, x)∇uε(r, x) · b(r, x) dx
)
dr

+

∫ t

s

pEε(uε(r, ·))p−1·(∫
U

ε

2
∇uε(r, x) ·Ψ(r, x)∇uε(r, x) + ψ(r, x)

1

2ε
F (uε(r, x))dx

)
dr

+

∫ t

s

p(p− 1)

2
Ep−2
ε ·(∫

U

∫
U

wε(r, x)∇uε(r, x) · Ã(r, x, y)wε(r, y)∇uε(r, y)dx dy
)
dr

∣∣∣∣Fs]. (6.42)

We now give bounds on the individual terms on the right hand side of (6.42): Using
Young’s inequality one obtains for the first integral for any δ > 0:∣∣∣∣ ∫ t

s

pEε(uε(r, ·))p−1
(∫

U

wε(r, x)∇uε(r, x) · b(r, x) dx
)
dr

∣∣∣∣
≤‖b(r, x)‖C0([0,T ]×U)

∫ t

s

pEε(uε(r, ·))p−1·(δ
2

∫
U

1

ε
wε(r, x)2 dx+

1

2δ

∫
U

ε |∇uε(r, x)|2 dx
)
dr

≤‖b(r, x)‖C0([0,T ]×U)

∫ t

s

pEε(uε(r, ·))p−1
(δ

2

∫
U

1

ε
wε(r, x)2 dx+

1

δ
Eε(uε(r, ·))

)
dr.

(6.43)

The terms in the second line can directly be bounded:∫ t

s

pEε(uε(r, ·))p−1
(∫

U

ε

2
∇uε(r, x) ·Ψ(r, x)∇uε(r, x) + ψ(r, x)

1

2ε
F (uε(r, x))dx

)
dr

≤ p
(
‖Ψ‖C0([0,T ]×U) + ‖ψ‖C0([0,T ]×U)

) ∫ t

s

E
[
Eε(uε(r, ·))p

]
dr. (6.44)
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To bound the last term in (6.42) we use (6.27); a partial integration yields∫
U

Ã(r, x, y)wε(r, y)∇uε(r, y) dy (6.45)

=

∫
U

∇yÃ(r, x, y)
(
ε∇uε(r, y)⊗∇uε(r, y)

)
−∇yÃ(r, x, y)

(ε
2

∣∣∇uε(r, y)
∣∣2 +

1

ε
F (uε(r, y))

)
dy. (6.46)

Thus repeating the same partial integration in the x-variable we can conclude that∣∣∣ ∫
U

∫
U

wε(r, x)∇uε(r, x) · Ã(r, x, y)wε(r, y)∇uε(r, y)dx dy
)
dr

∣∣∣∣
≤ 4‖Ã‖C0([0,T ];C2(Ū×Ū))Eε(uε(t, ·))2 (6.47)

So the last term in (6.42) can be bounded by

E
[ ∫ t

s

p(p− 1)

2
Ep−2
ε

(∫
U

∫
U

wε(r, x)∇uε(r, x)Ã(r, x, y)wε(r, y)∇uε(r, y)dx dy
)
dr

∣∣∣∣Fs]
≤2p(p− 1)‖Ã‖C0([0,T ],C2(Ū×Ū))

∫ t

s

E
[
Ep
ε (uε(t, ·))

∣∣Fs]ds (6.48)

Therefore, we get from (6.42)-(6.48) taking δ =
(
‖b‖C0([0,T ]×U)

)−1

that:

E
[
Eε(uε(t, ·))p +

p

2

∫ t

s

(
Eε(uε(r, ·))p−1

∫
U

1

ε
w2
ε(r, x) dx

)
dr

∣∣∣∣Fs]
≤Eε(uε(t, ·))p + C(p, ‖b‖C0([0,T ]×U), ‖Ã‖C0([0,T ];C2(Ū×Ū)))

∫ t

s

E
[
Eε(uε(r, ·))p

∣∣∣∣Fs] dr.
(6.49)

Thus (6.33) follows from another application of Gronwall’s Lemma. In order to
deduce (6.34) we use (6.49) and note that the terms on the right hand side can be
bounded using (6.33). �

Lemma 6.5. For every p ∈ N we have

lim
λ→∞

sup
ε>0

P
[

sup
0≤t≤T

Eε(uε(t, ·))p > λ
]

= 0, (6.50)

sup
ε>0

E
[

sup
0≤t≤T

Eε(uε(t, ·))p
]
<∞ (6.51)

Proof. Fix p ∈ N. For t ≥ 0 set Y ε
p (t) = exp

(
− Cp t

)
Eε(uε(t, ·)). From Proposition

6.4 we conclude that Y ε
p (t) is a supermartingale. Thus Doob’s maximal inequality

[26, Theorem 3.8 (ii) on page 14] implies

P
[

sup
0≤t≤T

Eε(uε)
p > λ

]
≤P
[

sup
0≤t≤T

Y ε
p (t) > λ exp(−Cp T )

]
≤λ−1 exp(Cp T )Eε(u

0
ε))

p. (6.52)
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Due to (3.5) the last term converges to 0 for λ→∞ uniformly in ε. Assertion (6.51)
follows in the same way using the integrated version of the maximal inequality [26,
Theorem 3.8 (iv) on page 14]. �

We will need the following bound for the diffuse mean curvature.

Lemma 6.6. For all p ∈ N and all T > 0 we have:

sup
ε>0

E
[(∫ T

0

∫
U

1

ε
w2
ε(t, x) dxdt

)p ]
<∞ (6.53)

Proof. Equation (6.31) implies:∫ T

0

∫
U

1

ε
w2
ε(t, x) dx dt

=Eε(u
0
ε)− Eε(uε(T, ·)) +

∫
U

∫ T

0

wε(t, x)∇uε(t, x) ·X(dt, x) dx

+

∫ T

0

∫
U

ε

2
∇uε ·Ψ∇uε + ψ

1

ε
F (uε) dx dt.

(6.54)

We then compute that

E
[(∫ T

0

∫
U

1

ε
wε(t, x)2 dx dt

)p]
≤ 2p−1 E

[∣∣∣Eε(u0
ε)− Eε(uε(T, ·))

∣∣∣p
+
∣∣∣ ∫ T

0

∫
U

ε

2
∇uε ·Ψ∇uε + ψ

1

ε
F (uε) dx dt

∣∣∣p]
+ 2p−1E

[∣∣∣ ∫
U

∫ T

0

wε∇uε ·X(dt, x) dx
∣∣∣p]. (6.55)

By (6.51) the terms in the second and third line of (6.55) are bounded uniformly
in ε. For the last term one writes using Burkholder-Davis-Gundy inequality ([26,
Theorem 3.28 on page 166]):

E
[∣∣∣ ∫

U

∫ T

0

wε(t, x)∇uε(t, x) ·X(dt, x) dx
∣∣∣p]

≤ 2p−1E
[∣∣∣ ∫ T

0

∫
U

wε(t, x)∇uε(t, x) · b(t, x) dx dt
∣∣∣p]

+ 2p−1E
[∣∣∣ ∫ T

0

∫
U

∫
U

wε(r, x)∇uε(r, x) · Ã(r, x, y)∇uε(r, y)wε(r, y) dx dy dt
∣∣∣p/2].
(6.56)
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Using Young’s inequality the first term on the right hand side of (6.56) can be
estimated by

E
[∣∣∣ ∫ T

0

∫
U

wε∇uε · b dx dt
∣∣∣p]

≤ ‖b‖pC0([0,T ]×U)E
[∣∣∣ ∫ T

0

∫
U

δ

2ε
w2
ε +

ε

2δ
|∇uε|2 dx dt

∣∣∣p]
≤ 2p−1‖b‖pC0([0,T ]×U)E

[
δ
∣∣∣ ∫ T

0

∫
U

1

2ε
w2
ε dx dt

∣∣∣p +
∣∣∣ ∫ T

0

∫
U

ε

2δ
|∇uε|2 dx dt

∣∣∣p] (6.57)

For the second term in (6.56)we write

E
[∣∣∣ ∫ T

0

∫
U

∫
U

wε(r, x)∇uε(r, x) · Ã(r, x, y)wε(r, y)∇uε(r, y) dx
∣∣∣p/2]

≤‖Ã‖p/2C0([0,T ]×U×U) E
[∣∣∣ ∫ T

0

(∫
U

1

ε
w2
ε(t, x)dx

)(∫
U

ε
∣∣∇uε(t, x)

∣∣2dx)dt∣∣∣ p2 ]
≤‖Ã‖p/2C0([0,T ]×U×U) E

[∣∣∣ sup
0≤t≤T

Eε(uε(t, ·))
∣∣∣ p2 ∣∣∣ ∫ T

0

∫
U

1

ε
w2
ε(t, x)dx ds

∣∣∣ p2 ]
≤ δ E

[∣∣∣ ∫ T

0

∫
U

1

ε
w2
ε(t, x)dx ds

∣∣∣p]+ ‖Ã‖p/2C0([0,T ]×U×U)

1

4δ
E
[∣∣∣ sup

0≤t≤T
Eε(uε(t, ·))

∣∣∣p].
(6.58)

Choosing δ = δ(‖Ã‖C0([0,T ]×U×U), ‖b‖C0([0,T ]×U)) small enough the first term on the
right hand side of (6.57) and (6.58) respectively can be absorbed into the left hand
side of (6.55). The other terms are bounded by (6.51). This finishes the proof. �

Denote by G the function G(r) =
∫ t

0

√
2F (r)dr. Note that G is smooth, increasing

and that G(0) = 0. We will need the following bound on the increments of G(uε(t)):

Lemma 6.7. For every smooth testfunction ϕ ∈ C∞(U) and every p ∈ N we have
for all 0 ≤ s < t ≤ T

E
[∣∣∣ ∫

U

G(uε(t, x))ϕ(x) dx−
∫
U

G(uε(s, x))ϕ(x) dx
∣∣∣2p] ≤ C|t− s|p, (6.59)

where C = C(p, ‖Ã‖C0([0,T ]×U×U), ‖A‖C0([0,T ];C1(U)), ‖b, c‖C0([0,T ]×U), ‖ϕ‖C1(U)).
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Proof. Noting that G′(uε) =
√

2F (uε), Itô’s formula and (4.6), (6.3) imply that∫
U

G(uε(t, x))ϕ(x) dx−
∫
U

G(uε(s, x))ϕ(x) dx

=

∫
U

[ ∫ t

s

ϕ(x)
√

2F (uε(r, x))

[(
∆uε(r, x)− 1

ε2
F ′(uε(r, x))

)
dr

+

∫ t

s

∇uε(r, x) ·X(dr, x)

+

∫ t

s

1

2
A(r, x) : D2uε(r, x) dr +

1

2
c(r, x) · ∇uε(r, x) dr

]
dx (6.60)

+
1

2

∫ t

s

∫
U

G′′(uε(r, x))ϕ(x)∇uε(r, x) · A(r, x)∇uε(r, x)dx dr.

Thus for p ∈ N one can write

E
[∣∣∣ ∫

U

G(uε(t))ϕdx−
∫
G(uε(s))ϕdx

∣∣∣2p] ≤ 4p−1(I1 + I2 + I3 + I4). (6.61)

Let us bound the individual terms:

I1 =E
[∣∣∣ ∫ t

s

∫
U

ϕ(x)
√

2F (uε(r, x))
[
∆uε(r, x)− 1

ε2
F ′(uε(r, x))

]
dx dr

∣∣∣2p]
≤‖ϕ‖2p

C0(U) E
[(∫ t

s

∫
U

1

ε
F (uε(r, x)) dxdr

)p(∫ t

s

∫
U

1

ε
wε(r, x)2 dxdr

)p]
≤‖ϕ‖2p

C0(U) E
[(∫ t

s

Eε(uε(r, ·)dr
)2p
]1/2

E
[(∫ t

s

∫
U

1

ε
wε(r, x)2 dxdr

)2p
]1/2

≤‖ϕ‖2p
C0(U) (t− s)p E

[(
sup
s≤r≤t

Eε(uε(r, ·)
)2p
]1/2

E
[(∫ t

s

∫
U

1

ε
wε(r, x)2 dxdr

)2p
]1/2

≤C(t− s)p. (6.62)

Here in the second and third line we have used Cauchy-Schwarz inequality. In the
last line we have used (6.51) and (6.53). The second term can be bounded using
Youngs inequality:

I2 =E
[∣∣∣ ∫ t

s

∫
U

ϕ
√

2F (uε(r, x))
[
∇uε(r, x) ·

(1

2
c(r, x) + b(r, x)

)]
dx dr

∣∣∣2p]
≤‖ϕ‖2p

C0(U) ‖c+ b‖2p
C0([0,T ]×U) E

[∣∣∣ ∫ t

s

Eε(uε(r, ·))dr
∣∣∣2p] (6.63)

≤C(t− s)2p.

Here we have used the inequalities |∇uε
√

2F (uε)| ≤ ε
2
|∇uε|2 + 1

ε
F (uε) and (6.51)

in the last line. For the martingale term we get using Burkholder-Davis-Gundy
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inequality in the second line and then Youngs inequality in the third line:

I3 =E
[∣∣∣ ∫ t

s

∫
U

ϕ(x)
√

2F (uε(r, x))
[
∇uε(r, x) ·

(
X(dr, x)− b(r, x)dr

) ]
dx
∣∣∣2p]

≤E
[ ∫ t

s

∣∣∣ ∫
U

∫
U

ϕ(x)
√

2F (uε(r, x))∇uε(r, x)·

· Ã(r, x, y)∇uε(r, y)
√

2F (uε(r, y))ϕ(y) dx dy dr
∣∣∣p]

≤‖ϕ‖2p
C0(U)‖Ã‖

p
C0([0,T ]×U)E

[(∫ t

s

( ∫
U

√
2F (uε(r, x))|∇uε(r, x)| dx

)2

dr
)p]

≤‖ϕ‖2p
C0(U)‖Ã‖

p
C0([0,T ]×U) E

[∣∣∣ ∫ t

s

Eε(uε(r, ·))2dr
∣∣∣p]

≤C(t− s)p. (6.64)

For the fourth term we write:

I4 =
1

2
E
[∣∣∣ ∫ t

s

∫
U

ϕ(x)
√

2F (uε(r, x))
(
A(r, x) : D2uε(r, x)

)
+ ϕ(x)G′′(uε(r, x))∇uε(r, x) · A(r, x)∇uε(r, x) dx dr

∣∣∣2p]. (6.65)

After a partial integration the second summand can be written as:∫
U

ϕ(x)G′′(uε(r, x)∇uε(x) · A(r, x)∇uε(x) dx

=

∫
U

ϕ(x)∇
(√

2F (uε(r, x))
)
· A(r, x)∇uε(x)dx

= −
∫
U

∇ϕ(x) · A(r, x)∇uε(x)
√

2F (uε(r, x)) dx

−
∫
U

ϕ(x)
√

2F (uε(r, x))
(
∇ · A(r, x)

)
∇uε(r, x) dx

−
∫
U

ϕ(x)
√

2F (uε(r, x))A(r, x) : D2uε(r, x)
)
dx. (6.66)

Noting that the terms involving D2u in (6.65) and (6.66) cancel it remains to bound:

E
[∣∣∣ ∫ t

s

∫
U

∇ϕ(x) · A(r, x)∇uε(x)
√

2F (uε(r, x)) dx

+

∫ t

s

∫
U

ϕ(x)
√

2F (uε(r, x))
(
∇ · A(r, x)

)
∇uε(r, x) dx ds

∣∣∣2p]
≤
(

2‖A‖C0([0,T ],C1(U)‖ϕ‖C1(U))

)2p

E
[∣∣∣ ∫ t

s

Eε(uε(r))dr
∣∣∣2p]

≤ C(t− s)2p. (6.67)

This finishes the proof. �
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Now we are ready to prove our main theorem.

Proof of Theorem 4.2. As a first step we will show that the distributions of G(uε) are
tight on C([0, T ], L1(U)). To this end it suffices to show the following two conditions
(see e.g. [12, Theorem 3.6.4, page 54 ] together with [5, Theorem 8.3, page 56]. Note
that conditions (8.3) and (8.4) in [5] are implied by our stronger assumption (ii)):

(i) (Compact Containment) For every δ > 0 there exists a compact set Kδ ⊆
L1(U) such that for all ε > 0

P
[
G(uε(t, ·)) ∈ Kδ for all 0 ≤ t ≤ T

]
≥ 1− δ (6.68)

(ii) (Weak tightness) For every smooth testfunction ϕ ∈ C∞(U) there exist posi-
tive α, β, C such that for all 0 ≤ s < t ≤ T

E
[∣∣∣ ∫

U

G(uε(t, x))ϕ(x) dx−
∫
G(uε(s, x))ϕ(x) dx

∣∣∣α] ≤ C|t− s|1+β. (6.69)

To prove the first statement note that∫
U

∣∣∇G(uε(t, x))
∣∣ dx =

∫
U

∣∣√2F (uε(t, x))
∣∣∇uε(t, x)

∣∣ dx
≤
∫
U

ε

2

∣∣∇uε(t, x)
∣∣2 +

1

ε
F (uε(t, x)) dx. (6.70)

Furthermore, (3.1) implies G(r) ≤ C(1 + F (r)) such that∫
U

∣∣G(uε(t, x))
∣∣ dx ≤C ∫

U

F (uε(t, x))dx+ C|U |. (6.71)

Thus Lemma 6.5 yields that

P
[

sup
0≤t≤T

‖G(uε(t, ·)‖W 1,1(U) ≥ λ
]
→ 0, (6.72)

for λ→∞ which together with Rellich’s Theorem implies condition (i).
The second condition (ii) follows from (6.59). The tightness of G(uε) is thus proved.

As a second step we prove that the distributions of uε are tight in C([0, T ], L1(U)).
Denote by G−1 the inverse function of G. Then similar to [34, page 139] we observe
that the operator v 7→ G−1 ◦ v is continuous from L1(U) to itself. In fact assume
vi → v as i → ∞ in L1(U). The growth condition in (3.1) implies that G−1 is
uniformly continuous on R. This implies convergence in measure and convergence
pointwise in U for the sequence G−1 ◦ vi. Furthermore, using the growth condition
once more one can see that |G−1 ◦ vi| ≤ C(|vi| + 1) which then implies by Vitali’s
Convergence Theorem that G−1(vi) → G−1(v) in L1(U). Thus using the following
Lemma 6.8 we can conclude that the distributions of uε are tight on C

(
[0, T ], L1(U)

)
as well.

In particular, there exists a decreasing sequence εk ↓ 0 such that the distributions
of uε converge weakly to a limiting measure on C

(
[0, T ], L1(U)

)
. We may now use

Skorohod’s observation that we can find a subsequence εk ↓ 0 such that the random
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functions uεk can be realized on a single probability space (Ω̃, F̃ , P̃). On this space
the uεk converge almost surely in C0([0, T ];L1(U)) towards u (see [24, page 9] . By
(6.51) and Fatou’s Lemma we can for almost all ω ∈ Ω, t ∈ (0, T ) select a subsequence
ε′k → 0 such that supε′k Eε

′
k
(uε′k(t, ·)) < ∞. Thus using the Gamma convergence of

the functionals Eε we can conclude that uε′k(t, ·) converges for a subsequence strongly

in L1(U) to a limit v ∈ BV (U ; {−1, 1}) and that

‖v‖ ≤ lim inf
ε′k→0

Eε′k(uε′k(t, ·)) (6.73)

But since uεk → u almost surely in C([0, T ], L1(U)) we have v = u(t, ·). This proves
that u(t, ·) ∈ BV (U ; {−1, 1}); (6.51), (6.73) yield

E
[

sup
0≤t≤T

‖u(t, ·)‖pBV (U)

]
< ∞.

which concludes the proof. �

Lemma 6.8. Let
(
(Xε

t , t ∈ [0, T ]), ε > 0) be a family of stochastic processes taking

values in a separable metric space E. Let Ẽ be another separable metric space and
F : E → Ẽ a continuous function. Suppose the family of distributions of Xε

t is tight
on C([0, T ], E). Then the family of distributions of F (Xε

t ) is tight on C([0, T ], Ẽ).

Proof. According to [17, Thm. 7.2 and Rem. 7.3 on page 128] the distributions of
Xε
t are tight if and only if

(1) For all η > 0 there exists a compact set Γη ⊆ E such that for all ε

P
[
Xε
t ∈ Γη, ∀0 ≤ t ≤ T

]
≥ 1− η (6.74)

(2) For all η > 0 there exists δ > 0 such that

sup
t

P
[
ω
(
Xε
t , δ
)
≥ η
]
≤ η, (6.75)

where the modulus of continuity is defined as ω
(
Xt, δ

)
= supt−δ≤s≤t+δ d(Xt, Xs).

It is clear from the continuity of F that the F (Xε
t ) satisfy the property correspond-

ing to (6.74) if Xt does.
To see that F (Xt) also satisfies (6.75) fix η > 0 and the set Γη/2 such that

P
[
Xε
t ∈ Γη/2, ∀0 ≤ t ≤ T

]
≥ 1− η/2.

As Γη/2 is compact F is uniformly continuous when restricted to Γη/2. Thus one can
choose η′ such that d(x, y) ≤ η′ implies d(F (x), F (x)) ≤ η for all x, y ∈ Γη/2. Thus

choosing δ small enough such that supt P
[
ω
(
Xt, δ

)
≥ η′

]
≤ η/2 one obtains

sup
t

P
[
ω
(
F (Xt), δ

)
≥ η
]
≤ sup

t
P
[
Xt /∈ Γη/2

]
+ sup

t
P
[
ω
(
Xt, δ

)
≥ η′

]
≤ η

2
+
η

2
. (6.76)

This finishes the proof. �
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Extrinsically Immersed Symplectic Symmetric Spaces

2009-12 Alexander Kaplun
Continuous time Ehrenfest process in term structure modelling

2009-11 Henryk Zähle
Ein aktuarielles Modell für die Portabilität der Alterungsrückstellungen
in der PKV

2009-10 Andreas Neuenkirch and Henryk Zähle
Asymptotic error distribution of the Euler method for SDEs with
non-Lipschitz coefficients

2009-09 Karl Friedrich Siburg, Pavel A. Stoimenov
Regression dependence

2009-08 Wilfried Hazod
Continuous convolution hemigroups integrating a sub-multiplicative function



2009-07 Sergio Conti and Ben Schweizer
On optimal metrics preventing mass transfer

2009-06 Simon Castle, Norbert Peyerimhoff, Karl Friedrich Siburg
Billiards in ideal hyperbolic polygons

2009-05 Ludwig Danzer
Quasiperiodic Tilings - Substitution Versus Inflation

2009-04 Flavius Guiaş
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